

# Industrial-Scale Waste Pyrolysis in a Novel **Pyrolysis Reactor** by Jorge López Ordovás (j.ordovas@aston.ac.uk) **European Bioenergy Research Institute (EBRI)**





Pyrolysis  $\rightarrow$  thermochemical decomposition of biomass in the absence of air or oxygen at a high temperature for the production of noncondensable gases, solid biochar and liquid product. There are three types; slow, intermediate and fast.

The main product of the slow pyrolysis is the solid product, the biochar. The main characteristics of the charcoal produced are:

- Renewable
- It contains virtually no sulfur or mercury and little nitrogen and ash
- It conducts electricity as well as metal
- High surface area
- Good fuel for cooking, preferred to kerosene





#### Figure 2: Pyroformer Scheme

Figure 1: Municipal solid waste

### **CHALLENGES**

Process design improval Typical scheme of pyrolysis process Feeding  $\rightarrow$  Reaction  $\rightarrow$  Collection Plant commissioning and design Limited experience and knowledge in industrial environment



Figure 3: Intermediate pyrolysis

#### **IMPACT**

Wider understanding of slow pyrolysis $\rightarrow$ different feedstocks.

Energy plant with Municipal Solid Waste and Pyrolysis process

It reduces the amount of waste sent to landfill

Obtain value from a waste stream



Figure 4: Intermediate pyrolysis system



## **RESEARCH PROGRESS**

- Beginning of experiments with equipment shown in Figure 3.
- Conducting hot runs and analyzing the results in order to understand the system and the results obtained and mass balance closure. New cooling system installed and leak checking.
- Mass and Energy Balance of the industrial plant desgn
- Bio-oil distillation experiment done with the results of the mass balance in Figure 4.
- Focus on the Slow Continuous Pyrolysis processes within the market. There are some companies already producing biochar with different processes:
  - Labiotte (France)



Total distillate Non-distilled Liquid lost pyrolysis liquid

Figure 5: Mass balance of the pyrolysis liquid distillation

Total distillate + non-distilled + lost liquid (closure)





Figure 6: Lambiotte process

#### **REFERENCES**:

Antal, M. J. and M. Grønli (2003). "The Art, Science, and Technology of Charcoal Production." Industrial & Engineering Chemistry Research 42(8): 1619-1640. Basu, P. (2013). Biomass gasification, pyrolysis, and torrefaction : practical design and theory, London, UK : Elsevier : Academic Press, 2013. Second edition. The pyroformer reactor and its current status, Y. Yang, May 2017. https://www.baltcarbon.lv/lang/en/images/shema-big.jpg http://greencarbon-etn.eu/

This research is conducted as part of the European Union project "GreenCarbon -Advanced Carbon Materials from Biowaste: Sustainable Pathways to Drive Innovative Green Technologies", from the H2020-MSCA-ITN-2016 call.

# era.ac.uk

Innovate UK

