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Abstract  

In vitro and in vivo experiments were undertaken to evaluate the solubility, apatite-forming 

ability, cytocompatibility, osteostimulation, and osteoinduction for a series of Nb-containing bioactive 

glass (BGNb) derived from composition of 45S5 Bioglass®. Inductively coupled plasma optical 

emission spectrometry (ICP-OES) revealed that the rate at which Na, Ca, Si, P and Nb species are 

leached from the glass decrease with the increasing concentration of the niobium oxide. The formation 

of apatite as a function of time in simulated body fluid was monitored by 31P MAS NMR spectroscopy. 

Results showed that the bioactive glasses: Bioglass 45S5 (BG45S5) and 1 mol%- Nb- containing- 

bioactive glass (BGSN1) were able to grow apatite layer on their surfaces within 3 hours, whilst glasses 

with higher concentrations of Nb2O5 (2.5 and 5 mol%) took at least 12 hours. Nb-substituted glasses 

were shown to be compatible with bone marrow-derived mesenchymal stem cells (BMMSCs). 

Moreover, the bioactive glass with 1 mol% Nb2O5 significantly enhanced cell proliferation after four 

days of treatment. Concentrations of 1 and 2.5 mol% Nb2O5 stimulated osteogenic differentiation of 

BM-derived MSCs after 21 days of treatment. For the in vivo experiments, trial glass rods were 

implanted into circular defects in rat tibia in order to evaluate their osteoconductivity and 

osteostimulation. Two morphometric parameters were analyzed: (i) thickness of new-formed bone 

layer and (ii) area of new-formed subperiostal bone. Results showed that BGNb bioactive glass is 

osteoconductive and osteostimulative. Therefore, these results indicate that Nb-substituted glass is 

suitable for biomedical applications. 

 

Keywords: Bioactive glass, niobium, osteostimulation, osteoinduction, bone regeneration 
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Introduction 

Musculoskeletal disorders are the most widespread human health issue with bone fractures one 

of the most debilitating.[1] Recent investigations showed that men and women aged 50-64 account for 

nearly 30% of most types of fractures. Furthermore, most tibia fractures occur in working-age 

individuals. Therefore, fractures not only compromise the quality of life of people but also represent 

an economic burden due to the medical costs associated with fracture repair, the related lost work 

productivity and disability to the working age population.[1, 2] 

The progressive increase in the number of fractures has prompted the development of synthetic 

materials for bone replacement.[3, 4] Currently, the most widespread treatments for bone replacement 

include autologous bone, allografts, xenografts, and various types of biomaterials.[3] Autologous bone 

is considered a gold standard for the treatment of large fractures but presents some drawbacks, such as 

donor site morbidity, limited availability, and some degree of resorption. Both allografts and 

xenografts possess potential risk of disease transmission, unpredictable resorption rate, and graft 

rejection. To overcome these challenges, synthetic materials have been developed, and bioactive glass-

ceramics are therefore of great importance.[3, 5-8]  

The second generation of biomaterials was defined by their ability to interact with biological 

environment to enhance tissue bonding as well as progressively degrade while the new tissue 

regenerates and heals (e.g. hydroxyapatite).[9] Today, we are in the era of third generation of 

biomaterials, which have the additional ability to stimulate specific cellular responses at the molecular 

level (e.g. Bioglass® 45S5).[9-11] 

The first biomaterial of the third generation was the Bioglass® 45S5.[12, 13] This biomaterial is 

a glass that is biocompatible and also forms bonds with hard and soft tissues, which ultimately 

optimizes the stability and lifespan of implants. Many investigations describe several biological 

properties of Bioglass® 45S5, such as angiogenesis, osteostimulation, osteoconduction, and 

osteoinduction, which are essential for a biomaterial for bone replacement.[9] These effects on living 
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tissues are determined by the chemical composition of the glass. Hence, several researchers have been 

designing variations of the original Bioglass® 45S5 in order to improve its mechanical and biological 

performance.[5, 7, 9, 10, 14-18]  

Recent investigations reported the ability of niobium to optimize mechanical and biological 

performance of synthetic implants.[1, 3, 10, 14-16, 19] Niobium first appeared in biomaterials as a 

component of metallic alloys.[20] The introduction of Nb in alloys substituting vanadium, for instance, 

was shown to enhance biocompatibility.[21] In one study Nb-2Zr was reported to exhibit excellent 

corrosion resistance, fatigue strength, and crack propagation in simulated body fluids.[21, 22] It is 

noteworthy that Nb2O5 is an effective nucleating agent and generally leads to the development of glass-

ceramic in silica-poor compositions, such as Bioglass® 45S5.[12] 

In one of our previous studies, we studied two series of bioactive glasses derived from 45S5 

Bioglass® composition (SiO2-Na2O-CaO-P2O5-Nb2O5 system) by multinuclear solid-state NMR under 

MAS conditions and Raman spectroscopy, which provided a direct experimental insight into the glass 

structure. We concluded that Nb2O5 (NbO6 octahedra) predominantly participates in the silicate 

network by breaking the Si-O-Si bonds to form structures, such as -Si-O-Nb-O-Si- chains, whereas the 

Nb-O-P bonds would occur in the terminal sites.[16, 23, 24] These alterations modified the glass 

dissolution rate and magnitude, which is believe increases the lixiviation of species with biological 

importance such as Si, Ca, Na, and Nb.[24, 25] Some recent investigations incorporated niobium into the 

structure of fluorapatites and phosphate-inverted glass and tested their cytocompatibility, 

osteostimulation and osteoinduction.[14, 15] They observed that the presence of niobium resulted in 

greater biocompatibility and enhanced bioactive properties.[3, 14, 15] Furthermore, osteogenic 

differentiation of human Mesenchymal Stem Cells (hMSCs) was achieved after 21 days of culture on 

Nb-doped fluorapatite glass-ceramics.[3] Even though Nb-substituted silicate glass appears to possess 

interesting bioactive properties, its effect over pluripotent cells and bone regeneration has not been 

investigated so far. 
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Previous studies have investigated the biological effect of substituting niobium pentoxide for 

phosphorous pentoxide within the glassy matrix.[26] The present study is the first investigation to 

evaluate the properties of the bioactive glass whereby niobium pentoxide is partially substituted for 

silicon dioxide. In vitro and in vivo experiments were carried out to assess the bioactivity of the 

niobium doped bioactive glass with 45S5 as the control glass. For the in vivo assay glass rods with and 

without niobium pentoxide were implanted into circular defects in rat tibia and bone formation was 

quantified. The in vitro experiments consisted of treating bone-marrow-derived mesenchymal stem 

cells (BMMSCs) isolated from rats with the dissolution products from the glass and verifying their 

viability and osteogenic differentiation. It also investigated the leaching profile of Si, Ca, Na, P, and 

Nb species from the bioactive glass using inductively coupled plasma optical emission spectrometry 

(ICP-OES) as well as the kinetics of apatite formation using high resolution magic angle spinning and 

solid-state NMR spectroscopy method to explore the 31P chemical environments. 

Experimental 

Preparation of niobium doped bioactive glass samples 

The glass compositions were prepared using a traditional melt‐quenchin g technique since it is 

the most widespread method used to produce the currently commercialized bioactive glasses.[12, 27, 28] 

The detailed process of preparation of bioactive glass samples is described in our previous 

publication.[16, 26] In brief, high purity SiO2, Na2CO3, CaCO3, P2O5 powders (>99.9%) were purchased 

from Sigma-Aldrich (St. Louis, MO, USA) except for the niobium oxide (Nb2O5) that was donated by 

the CBMM (Companhia Brasileira de Metalurgia e Mineração, Araxá, Minas Gerais, Brazil). The 

precursors were mixed and ground in a high‐energy mill to homogenize , before transferring into a 

platinum crucible and heating to 950°C for 3 h with a heating rate of 5 °C.min-1 to decompose the 

carbonates and form oxides. P2O5 was added just before the melting process begins. Thirty‐gram 

batches were melted in a platinum crucible at 1400°C in air for 3 h with a heating rate of 10 °C.min-1 

using a Lindberg/Blue M 1700°C furnace (model BF51524C). The melt was poured onto a cylindrical 



 7 

graphite mold. The prepared glasses were immediately transferred to another furnace maintained at 

500°C for annealing and relieving the thermal stresses for 12 h in air before being slowly cooled to 

room temperature (1°C.min-1) to obtain the glass compositions depicted in Table 1.  

INSERT TABLE 1 
 

The niobium oxide was donated by the CBMM (Companhia Brasileira de Metalurgia e 

Mineração, Araxá, Minas Gerais, Brazil). The glasses were ground and sieved to isolate the desired 

particle size (between 38µm and 53µm). For the in vivo studies cylindrical rods with 4 mm length x 2 

mm diameter were prepared by casting method using appropriate graphite molds (see the Topic SM1). 

Ionic leaching patterns of bioactive glass by ICP-OES 

Inductively coupled plasma optical emission spectrometry (ICP-OES) was used to verify the 

ionic leaching patterns of bioactive glass particles. In brief: 300 mg of bioactive glass particles were 

dispersed in a beaker with 200 mL of buffer solution and maintained under continuous stirring (stirring 

rate of 75 rpm), at room temperature. Using a 50.69 mM HEPES (2-(4-(2-hydroxyethyl)piperazin-1-

yl)ethanesulfonic acid) (Sigma-Aldrich, St. Louis, MO, USA) and 1 mM NaOH (Sigma-Aldrich, St. 

Louis, MO, USA) the solution pH was adjusted to 7.40. The solution was filtered using a 0.22 µm pore 

filter (Millipore®) in order to remove contaminants and aggregates. The glass was then added to the 

solution and allowed to mix for 3, 6, 12, 24 and 48 hours. At each time point 10 mL of solution was 

collected with a syringe and passed through a 0.22 µm pore filter (Millipore®) and analyzed with an 

ICP-OES spectrometer (Optima 8300 ICP-OES, PerkinElmer, Inc., Shelton, CT, USA). Three 

replicates were measured for each element. 

Analysis of the calcium phosphate layer by 31P MAS NMR spectroscopy 

31P MAS NMR was performed to analyze the rate of formation of the calcium phosphate layer 

on the bioactive glass surfaces. Samples of 50 mg of bioactive glass particles were added to 5 mL of 

simulated body fluid (SBF) (see the Topic SM2 – Table SM1) and the mixture was stirred in a 

thermostatic bath at 37 °C. After 3, 12, 24 and 48 hours the solution was filtered and the remaining 
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powder was immediately dried between two filter papers. Soon after the drying procedure the material 

was packaged into a 4-mm cylindrical zirconia rotor and spun at the MAS frequency at the magic angle 

to remove any anisotropy effect. The samples were spun at 10 kHz. The 31P MAS spectra were obtained 

using a high-power decoupling (HPDEC) pulse sequence with 2.50 μs pulses, 82 ms acquisitions, 5s 

recycle delays, a 100 kHz spectral width, and 1024 scans. The 31P chemical shifts were referenced to 

85% H3PO4. The spectra were processed with TopSpin 2.1.6 software using Fourier transforms and an 

exponential filter of 50 Hz. The phase was manually adjusted, and the baseline was obtained using a 

five-order polynomial function. This experiment was performed in triplicate. 

Culture of BM derived Mesenchymal Stem Cells (MSCs) 

Bone marrow derived Mesenchymal Stem Cells (BMMSCs) were isolated from the tibia and 

femoral of five adult Wistar rats weighing 250 - 300g. For this, the bone epiphyses were removed and 

discarded. The bone shafts were centrifuged at 1500 rpm for 15 minutes in order to precipitate their 

bone marrows. The pellet (composed by the precipitated bone marrow) was re-suspended in 

Dulbecco's modified Eagle's medium (DMEM) supplemented with 1 % penicillin/streptomycin 

solution and 10 % fetal bovine serum (FBS) (complete DMEM) in a 37 °C / 5 % CO2 incubator. Cells, 

up to their fourth passage, were maintained in supplemented DMEM. All media were changed every 

other day.  

Cell viability – MTT assay 

Cytotoxicity was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) assay (Sigma-Aldrich, St. Louis, MO, USA). For this, 5000 BMMSCs were cultured 

in conditioned media containing 10 mg∙mL-1 of each of the glass compositions (BG45S5, BGSN1, 

BGSN2.5 and BGSN5), for a period of four days. Cells grown in complete DMEM served as a positive 

control while cells previously incubated in Dimethyl sulfoxide (DMSO) for 30 minutes served as a 

negative control. The MTT assay was performed following the manufacturer’s instructions. In short, 

12 mM stock solution of MTT was prepared and diluted 10 x in phenol red free medium before being 
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added to the cells, which were incubated for 4 h at 37 °C. After the incubation 75 μL of medium was 

replaced by 50 μL of Dimethyl sulfoxide (DMSO) and left to incubate at 37 °C for 10 min. MTT was 

reduced to formazan by metabolically active cells and the optical density was measured using a 

spectrophotometer (at 570 nm). This assay was performed in quintuplicate. 

Cell viability – Live/Dead assay 

10,000 BM- derived MSCs were seeded per well and treated for 72 h with conditioned media 

containing the dissolution products of 45S5 Bioglass®, BGSN1, BGSN2.5 and BGSN5 at a 

concentration of 10 mg∙mL-1. Following the incubation period, a negative control of dead cells was 

established by incubating cells with 70% methanol for 30 min. Cells treated with regular growth media 

served as a positive control. The polyanionic dye calcein-green is retained within live cells, producing 

an intense uniform green fluorescence. Ethidium homodimer-1 (EthD-1) enters cells with damaged 

membranes and undergoes a 40-fold enhancement of fluorescence upon binding to nucleic acids, 

thereby producing a bright red fluorescence in dead cells. To stain BM- derived MSCs working 

concentrations of calcein-green at 2 μM and EthD-1 at 4 μM were combined into one solution and 

used to treat cells. Cells were overlaid with 200 μL of staining solution. For this assay five wells of 

cells were used per group. 

Staining mineralized nodules with Alizarin Red 1% 

 BM-derived MSCs were cultured in complete medium until a monolayer was formed (~10 

days). Following the formation of the monolayer cells were treated for three weeks with one of the 

experimental media: (a) complete DMEM; (b) osteogenic medium, composed of complete DMEM 

supplemented with 0.1 mM ascorbic acid, 3mM β-Glycerolphosphate and 10-8 M dexamethasone 

(Sigma-Aldrich, St. Louis, MO, USA); (c) BGSN1 (complete DMEM + 10mg/mL of BGSN1); (d) 

BGNS2.5 (complete DMEM + 10mg/mL of BGSN2.5; or (e) BGSN5 (complete DMEM + 10mg/mL 

BGSN5). After 21 days of incubation the monolayers were stained with Alizarin Red 1% (Sigma-

Aldrich, St. Louis, MO, USA) in order to analyze the presence of mineralized nodules, which is a 
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marker of osteogenic differentiation. In short, cell monolayers were fixed with 70% ethanol for 1 hour 

at 4 °C and incubated in 1% Alizarin Red for 10 minutes. The plates were then washed five times with 

distilled water and microphotographs at 100 x magnification were taken from each well. Five wells 

were used per group.  

Immunofluorescence for Osteocalcin 

20,000 BM- derived MSCs were cultured per well. Cells were treated for 21 days with culture 

media conditioned with the dissolution products of BG45S5 and BGSN1. Cells treated with osteogenic 

medium (StemPro™ Osteogenesis Differentiation Kit, ThermoFisher) were used as a positive control. 

After 21 days of treatment cells were fixed with 4% paraformaldehyde for 30 minutes and treated with 

a 0.25% solution of Triton X-100 for 30 minutes. Cells were then incubated in Osteocalcin primary 

antibody (Abcam) at 1:100 for 1 hour at room temperature. After washing with saline solution, cells 

were incubated in the secondary antibody (Alexa-Fluor 647 goat to rat, Abcam) for 1 hour at room 

temperature. The cellular nucleuses were stained with DAPI. Images were obtained with a Laser 

Scanning Confocal Microscope (LSCM, Leica TCS SP5) in PMT mode. Reflection images of laser in 

TRANS mode were obtained in order to identify mineralized matrix. This experiment was performed 

in triplicate. 

Atomic force microscopy (AFM) 

Surface roughness of bioactive glasses before and after immersion in culture medium was 

measured by atomic force microscopy (AFM) using a NX-10 atomic force microscope (Park System) 

operating on intermittent contact. The nominal spring constant and resonant frequency of the silicon 

tip (Nanosensors) were 42 N/m and 320 kHz, respectively. Firstly, the bioactive glass discs were 

polished in a similar way and immersed in culture medium and maintained at 37 °C for 24 hours. Then, 

the samples were allowed to completely dry for 48 hours at room temperature. The images were 

recorded at room temperature and Gwyddion software was used to process the AFM images. The root 
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mean square (RMS) surface micro-roughness was obtained on 30 x 30 µm scans. This experiment was 

performed in triplicate. 

Scanning electron microscopy (SEM) 

The surface roughness was qualitatively characterized by scanning electron microscopy (SEM) 

using FEI Inspect F50 available at LNNano, Campinas. The operating voltage and working distance 

were 20 kV and 10.5 mm, respectively. The samples before and after immersion in culture medium 

were fixed on a metal stub using carbon tape and coated with gold before observations. This assay was 

performed in triplicate. 

In vivo analysis 

 Glass rods were implanted into rat tibia. For this, Brazilian College of Animal Experimentation 

(BCAE) guidelines were followed, and experiments were approved by Ethics Committee in Animal 

Use – ECAU/Unicamp (Protocol nº 2777-1). Rods composed of BG45S5 or BGNS1 were implanted 

into a round defect created in the tibia of rats that had been anesthetized with a mixture of ketamine 

(ANASEDAN®) at 80 mg∙kg-1 and xylazine (DOPALEN®) at 10mg∙kg-1. Five rats were used per 

group. A round transcortical defect was created using a spherical threfine bur (JET®) with a diameter 

of 2 mm after pulling aside the periosteum. The glass rod (4 mm length x 2 mm diameter) was carefully 

introduced into the defect until total coupling, then the periosteum and the skin were sutured. After 28 

days, the animals were euthanized, and the tibia was obtained from the animals and fixed for 24 h at 4 

ºC in 10% zinc-buffered formalin (Sigma-Aldrich, St. Louis, MO, USA). After fixation, they were 

decalcified in 5% EDTA (Synth Labsynth, Diadema, SP, Brazil), the glass rod was then carefully 

removed and the bones were paraffin-embedded and sectioned. 

Morphometry 

All histological slides were stained with hematoxylin and eosin dyes and a light microscope 

(Nikon 80i model, Nikon Corporation, Tokyo, Japan) with a camera Nikon Model DS-Ri1 and NIS-

Elements software: Advanced Research 3.0 were used to quantify: (i) area of new-formed subperiostal 
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bone and (ii) thickness of new-formed bone layer. For each quantification five rats per group were 

used. 

Statistical Analysis 

A comparison between the mean values of subperiostal new formed bone and of the thickness of 

the bone layer formed around the implant were undertaken using an ANOVA one-way test with tukey 

(homogeneous variances) or Games-Howell (non-homogeneous variances) post-hoc. For all tests α = 

0.05 was assumed. All data are described using the mean and standard error. 

 
Results and discussion 

Dissolution studies 

Figure 1 illustrates the release of Na, Ca, Si and P from the glass and Figure 2 shows the 

concentration of Nb species as determined by inductively coupled plasma optical emission 

spectrometry (ICP-OES). The release of soluble ions from bioactive glasses is known to be the key 

first step in the bio-mineralization process as described by Clark and Hench.[11, 12, 29] 

INSERT FIGURE 1 
The release of Ca and P creates a supersaturated solution which then precipitates into 

amorphous calcium phosphate which then crystallizes in apatite.[30, 31] Furthermore, the controlled 

release of Si, Ca, Na, P, and Nb species from the bioactive glass has been associated with the promotion 

of bioactivity, angiogenesis, osteostimulation, osteoconduction, and other important properties for 

bone regeneration.[2, 9-11] The BG45S5 bioglass composition is also presented for the purpose of 

comparison. As shown there is a rapid release of ions following immersion in HEPES solution. From 

the release of Na and Ca ions (Figure 1 (a-b)) it appears at first glance as though the BG45S5 bioglass 

is the most soluble and that the solubility decreases upon increasing concentrations of Nb. However, 

it is important to note that the molar mass of Nb2O5 is ~ 4.4 times heavier than SiO2. Therefore a 300 

mg sample of BGSN5 will contain 15% less CaO, Na2O and P2O5 compared to BG45S5. Taking this 

into consideration and given the errors the release of Ca and Na is similar for the glasses with the 
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exception of the BGSN5 which is clearly much less soluble. The Si concentrations shows a slight 

increase in solubility for the 1 and 2.5 mol% Nb glasses despite it having a lower SiO2 concentration. 

The increase in Si solubility is attributed to the degree of matrix fragmentation caused by both 

the reduction of Si and more importantly the additional oxygen atoms provided by Nb2O5 compared 

to SiO2. The higher the niobium content the more non-bridging oxygen atoms and the greater the 

number of Si-O-Nb bonds.[16, 23, 24] 

The release profile of phosphorus suggests a maximum concentration (approximately the 

solubility limit), from which there is a dramatic reduction, presumably associated with the removal of 

some of the soluble phosphate species to form the calcium phosphate layer on the bioactive glass 

surface (Figure 1d). The results indicate that an amorphous calcium phosphate is rapidly deposited 

for BG45S5 and BGSN1, with a delay and a reduction observed for BGSN2.5 whilst BGSN5 appears 

too insoluble to release sufficient P (or Ca) to begin to form ACP. A characteristic common to all 

leaching curves for sodium, calcium, silicon, and phosphorus species in the earliest dipping times is 

the mechanism of the species lixiviation. The initial elemental concentrations up to about 120 min for 

all compositions are a linear function of the square root of time, which indicates a diffusion-controlled 

process (see the Topic SM3). 

The profile shape of niobium species at early soaking times are similar to those observed for 

P, i.e., a sudden increase in the Nb concentration in the medium, reaching a maximum value, followed 

by a characteristic reduction of concentration value for each glass (Figure 2).  

INSERT FIGURE 2 
This initial increase is related to the leaching of niobium species near surface and/or release of 

isolated NbO6 units, which are more labile since their release does not require extra energy to break 

bonds in comparison with the Nb-O-Nb groups. The rate at which the niobium species are removed 

from the solution is gradual and can be mostly attributed to polymerization of the niobate species (Nb-

O-Nb), which are continuously subtracted from the medium to form the niobium gel layer on the 

bioactive glass surface.[24] The Nb-OH groups are chemically stable (Brønsted and Lewis acid sites), 
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as well as effective nucleation centers for the removal of the leached niobium species from the glass.[16] 

Consequently, the concentration of free niobium decreases as the niobium gel layer is established on 

the surface of the bioactive glass, i.e., the limit solubility of niobium is reduced. 

Apatite layer formation ability by 31P MAS NMR spectroscopy 

Amorphous calcium phosphate / apatite formation on the bioactive glass surface in simulated 

body fluid (SBF) has been verified by 31P MAS NMR (Figure 3 (a-d)). 

INSERT FIGURE 3 
As shown the local structural arrangement of phosphorus changes rapidly even for early 

soaking times.[7, 24] The 31P MAS NMR spectra of unreacted BG45S5, BGSN1, BGSN2.5 and BGSN5 

exhibit a single broad resonance around 11 ppm with peak maximum at 11.9, 11.8, 11.6 and 8.5 ppm, 

respectively. The 31P resonances are attributed to the PQ0 isolated orthophosphate units (charge 

balanced by Na+ and Ca2+.[24, 32] In addition, as the niobium content increases there is a tiny shift to 

lower frequencies followed by a more significant shift for the BGSN5 suggesting that Nb interacts 

with phosphorus, presumably forming P-O-Nb bonds. The data extracted from the 31P MAS NMR 

spectra such as peak positions and full width half maximums (FWHM) for BG45S5 and Nb-substituted 

glass, unreacted and after 3, 12, and 24 hours of immersion in in simulated body fluid (SBF) are listed 

Table 2. 

INSERT TABLE 2 
 

31P MAS NMR data show a trend that describes the evolution in the chemical environment of 

the phosphorus during the chemical transformations at the bioactive glass solution interface as a 

function of the soaking time in SBF. All 31P resonances are characterized by notable shift to lower 

frequencies during the soaking time in SBF, reaching the frequency of approximately 4 ppm, which is 

similar to the signal observed in the spectrum of hydroxyapatite. Such spectral changes and the 

decrease in FWHM values describe the partial degradation of glass and precipitation of amorphous 

calcium phosphate and its progressive crystallization.[24] 31P MAS NMR spectra for BG45S5 (Figure 
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3a) and BGSN1 (Figure 3b) suggest that 3 hours of incubation in SBF are enough to establish an ACP/ 

apatite layer. While for BGSN2.5 glass the time required is considerably longer, approximately 12 

hours (Figure 3c). Although subtle, the changes observed in the BGSN2.5 spectrum in the range of 

13-24 hours are related mainly to the gradual increase in the crystallinity of calcium phosphate 

(increase of long-range order). In contrast, 31P MAS NMR spectrum for the BGSN5 exhibit a 

progressive increase in the FWHM values of the resonance peak as a function of the soaking time in 

SBF (Figure 3d). This is a result of some P remaining in the glass network at ~11ppm whilst some P 

starts to form an ACP/ apatite precipitated on the glass surface ~4ppm resulting in a much wider 

distribution of frequencies. For the BG45S5, BGSN1 and BGSN2.5 samples, almost all of the 

phosphorus present in the glass network is continuously leached into the solution, where it is 

precipitated in the form of calcium phosphate in the gel layer (silica- and/or niobosilica-gel) formed 

on the bioactive glass surface. 

In summary, all vitreous compositions have been able to form the phosphate layer, but as the 

niobium content increases the chemical stability of the bioactive glass increases, and the dependence 

of an external source of phosphorus for apatite composition increases. In accordance with this 

assumption, 31P MAS NMR spectra display resonance peaks with a slight asymmetry on the left-hand 

side of the peak owing to the residual glass fraction. 

Cytocompatibility assessment 

Cytocompatibility is essential for all biomaterials. Any sign of toxicity may represent a risk for 

the recipient organism and therefore must be avoided. In this work we evaluated the cytocompatibility 

of the dissolution products of different compositions of BGNb glasses (BGSN1, BGSN2.5 and 

BGSN5) with BG45S5 as the control with rat bone marrow mesenchymal stem cells (BM-MSCs) by 

MTT and Live/Dead assay. We treated cells with culture media conditioned with the dissolution 

products of the different glasses for up to four days. Cells treated with complete DMEM were used as 

positive controls meanwhile cells killed with dimethyl sulfoxide (DMSO) or 70% methanol served as 
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negative controls. None of the glass-conditioned media was cytotoxic to this cell type (Figures 4). 

This result demonstrates that the incorporation of niobium oxide into the structure of Bioglass® 45S5 

does not compromise its cytocompatibility. 

INSERT FIGURE 4 
As it can be seen on Figure 4g the viability of cells treated with medium conditioned with the 

composition BGSN1 were considerably higher than the Bioglass® 45S5 glass and the positive control 

group (complete DMEM) which indicates that this glass enhances cell proliferation. Several other 

studies have also shown that the addition of niobium into biomaterials do not result in cytotoxicity. 

These investigations include tests with different materials such as fluorapatite glass-ceramics,[3] 

phosphate glasses,[33] bioactive glass-niobium granules,[19] hydroxyapatite bioceramics,[34] and 

calcium silicate cements with different cell lines.[35] In one of these assays human osteogenic cells 

(SAOS) were incubated with Nb-doped hydroxyapatite for 72 hours and cell viability was tested by 

means of a MTT assay. They observed no difference or even a statistically significant increase in cell 

proliferation when compared to the control group (reference material) which allowed them to conclude 

that Nb-doped hydroxyapatite has the ability to support cell proliferation.[34] Furthermore, a very recent 

investigation evaluated the cytocompatibility of calcium silicate-based cements combined with 

niobium oxide (Nb2O5) micro and nanoparticles, comparing the response in four different cell lines: 

(a) human dental pulp cells - hDPCs; (b) human dental follicle cells - hDFCs; (c) human osteoblast-

like cells (SAOS-2); and (d) mouse periodontal ligament cells - mPDL. After 24 hours of incubation 

within media conditioned with the materials they measured cellular viability by means of MTT assay. 

The authors concluded that calcium silicate cements combined with Nb2O5 micro and nanoparticles 

presented cytocompatibility and can be used as an alternative radiopacifier agent for calcium silicate 

cements. Therefore, our results complement the existing literature demonstrating that Nb-substituted 

bioactive glass is cytocompatible and also constitutes a safe biomaterial for biomedical applications. 

Osteoinductive potential of Nb-containing glass 
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Over the past few years the role of engineered scaffolds complexed with mesenchymal stem 

cells (MSCs) for bone regeneration has been a main research topic in regenerative medicine.[36-38] The 

bone marrow derived mesenchymal stem cells (BM-MSCs) are multipotent cells that are able to self-

renewal and to differentiate into several cell types depending on which chemical or mechanical 

stimulus they are subjected.[39] The bone formation that is required for integration of biomaterials relies 

on the presence of multipotent cells that are capable of differentiating into osteoblasts.[39] As BM-

MSCs constitute one of the most abundant multipotent cell types present at the fracture site they play 

major roles in supporting faster bone formation along implants. 

Previous MSCs were complexed with different types of biomaterials such as calcium 

phosphate[33, 37] and biodegradable poly(lactide) (PLA) scaffolds.[36] The incorporation of human BM-

MSCs in macroporous calcium phosphate cement (CPC) promoted great cell attachment, osteogenic 

differentiation and mineralization. When these BM-MSCs - containing scaffolds were used to treat 

cavarials defects in rats new bone and blood vessels were generated between 4 and 24 postoperative 

weeks. In summary, the authors concluded that seeding stem cells with CPC increased new bone and 

new blood vessel density, compared to CPC without cells, suggesting this material can be used for 

craniofacial and orthopedic applications.[37] In other very recent investigation[36] human gingival 

mesenchymal stem cells (hGMSCs) were cultured with three-dimensional printed PLA scaffolds pre-

treated with hGMSCs derived extra cellular vesicles (EVs) in order to test the in vitro osteogenic 

performance of this material by means of alizarin red staining, gene expression of RUNX2 and BMP-

2 (RT-PCR), and the concentration of the proteins RUNX2, BMP-2, and β-Actin (Western Blot). The 

combination of hGMSCs + 3D-PLA + EVs promoted excellent osteogenic differentiation indicating 

that the combination of pluripotent cells and inorganic scaffolds enhances bone regeneration of 

calvarial defects.[36] 

The formation of bone requires not only the recruitment and/or migration of potentially 

osteogenic cells but also their differentiation towards the osteoblastic lineage.[40] Scaffolds composed 
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of BGNb glass may favor MSCs to differentiate into osteoblasts because some investigations have 

reported that the incorporation of niobium into other types of biomaterials such as fluorapatites and 

phosphate-inverted glass has incited osteogenic differentiation of hMSCs[2] and maturation of mouse 

osteoblast-like cells (MC3T3- E1 cell).[14] The study of Obata and his collaborators[14] is of particular 

importance for the scope of the present work because they tested the osteostimulative capacity of 

niobium ions over MC3T3-E1 cells. They reported that both ALP activity and calcium deposition of 

MC3T3-E1 cells was significantly higher in the medium containing niobium at a concentration of 10−7 

M when compared with control or other Nb-containing media, even though none of the tested media 

contained osteogenic supplements. The authors proposed that this may indicate that the niobium ions 

not only enhance but also induce osteogenic differentiation.[14] 

The osteoinduction capacity of Nb-substituted bioactive glass may result in a higher number 

of osteoblasts within the implant and consequently at the fracture site. In order to test the capacity of 

different compositions of BGNb bioactive glass to stimulate the osteogenic differentiation of BM-

MSCs we stained mineralized nodules at the extracellular matrix with Alizarin Red after 21 days of 

treatment with culture media conditioned with the dissolution products of different Nb-containing 

glasses. We also marked matrix-mineralization-related protein osteocalcin with fluorescent antibody 

and obtained micrographs using a Laser Scanning Confocal Microscope to demonstrate the presence 

of this protein which is also a marker of osteogenic differentiation. 

The formation of mineralized nodules marks the final step of the process of osteogenic 

differentiation. In short, this process follows the subsequent stages: (i) proliferation of multipotent 

cells (as differentiation only progresses after this step we chose to wait for the BM-MSCs to form a 

monolayer before starting to treat them with the different cell media); (ii) formation of non-mineralized 

matrix mostly composed of type I collagen; and (iii) mineralization of the matrix forming calcium-rich 

nodules. Our results showed that the compositions BGSN1 and BGSN2.5 stimulated the formation of 

nodules comparable to the positive control group (MSCs treated with an osteogenic culture medium) 
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(Figure 5, six upper squares) which is an ultimate sign of osteogenic differentiation. In addition, 

osteocalcin was present in the bone matrix corroborating previous results (Figure 5, four lower 

squares). 

INSERT FIGURE 5 
These results support the claim that Nb-doped bioactive glass may be used to produce highly 

bioactive scaffolds for bone tissue engineering because they support migration of BM-MSCs and also 

stimulates osteogenic differentiation of these cells, increasing the population of mature secretory 

osteoblasts in the fracture site which may hasten bone regeneration. 

Bone formation stimulated by Nb-containing bioactive glasses  

In vivo experiments were performed in order to analyze the properties of osteoconductivity and 

osteostimulation of Nb-containing glass. Osteoconductivity is often referred in the biomaterial 

literature as the capacity of a material to allow bone to grow onto its surface.[41] Despite this definition 

correctly describing the event it does not explain exactly how it happens. In fact, what makes a new 

bone form onto a material’s surface in a particular direction is the migration of multipotent cells 

coming from the bone-marrow (bone marrow-derived MSCs), blood (blood- derived MSCs) or, to a 

lesser extent, from surrounding tissues (e.g. myocytes from the muscles and pericytes from the blood 

vessels). Just the migratory activity of these cells over the surface responds for the expansion of a bone 

spicule.[42] As soon as a material is placed into a surgically made defect (as in our experiment) it rapidly 

undertakes a series of ion exchange with the body fluid that culminates with a drastic increase in the 

surface’s roughness (Figure 6). 

INSERT FIGURE 6 
Rough surfaces are more easily coated with many proteins, lipids, ions, and sugars which will 

dictate which cell types will subsequently attach.[42] It is known that some characteristics of the 

material’s surface, such as its topography, chemical composition, charge, and energy, directly 

influence protein adsorption and consequently cell adhesion and migration.[42] Hence, biomaterials 

designed for bone replacement must provide a suitable surface for the adhesion and migration of 
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osteogenic cells that will populate the surface, differentiate into osteoblasts and produce a mineralized 

matrix. 

As the composition BGSN1 showed better performance in the in vitro experiments and a 

significant increase in topographical complexity of its surface it was chosen for the in vivo 

investigation. We implanted glass rods made of BGSN1 into the tibia of rats and examined the 

formation of a bone layer around the implant. The composition BG45S5 was used as a control. We 

observed the presence of a bone layer around both glass compositions and calculated their thickness 

in order to compare the groups (Figure 7 and Figure 8). 

INSERT FIGURE 7 
In the present work we demonstrate in vivo osteoconductivity of Nb-containing bioactive glass. 

Nevertheless, the ability of other type of niobium-containing materials to support bone growth onto 

their surfaces was demonstrated in vivo by Matsuno and his collaborators.[43] They introduced a wire 

of 99.9% niobium, 1.0 Ø x 7.0mm in size in rat femur bone marrow and evaluated bone formation 

around the implant after 14 and 28 days. They observed new bone formation onto niobium implant’s 

surface after 28 days, confirming its osteocondutivity.[43] In another investigation a cylindrical implant 

made of Ti-Nb alloy was implanted into medial tibia of beagles for 2, 4 and 12 weeks.[44] New bone 

formation was observed to grow in contact with the material’s surface after 4 weeks. In the same study 

the authors reported that the incorporation of Nb to the metallic alloy increased its surface roughness 

(Ti-Nb: 1.79 ± 0.23 µm compared to pure Ti: 1.63 ± 0.17 µm) and reduced its contact angle (Ti-Nb: 

81.75 ± 2.94º compared to pure Ti: 96.46 ± 3.56º) (more hydrophilic). It is generally accepted that 

osteogenic cells respond to microroughness (<25µm) and tend to adhere to more hydrophilic 

surfaces.[45] 

As a matter of fact the surface characteristics determine which types of proteins will adsorb 

and as a consequence which cell types will be attracted to it.[42] Thus, it is believed that the 

incorporation of Nb into these materials might have provided them with a more suitable surface for 
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adhesion and maturation of osteogenic cells. A similar mechanism may have been involved in the 

formation of the bone layer onto BG45S5 and BGNS1. 

INSERT FIGURE 8 
We suggest that osteogenic cells coming from the bone marrow and the periosteum contributed 

to the observed bone formation. As the surface of the material was in direct contact with the periosteum 

at the outer surface of tibia cortical osteogenic cells could migrate from the periosteum onto material’s 

surface by haptotaxic migratory movement. This pattern of migration is described as a directional 

motility of cells towards cellular adhesion sites or surface-bound chemoattractans.[46] In addition, bone 

marrow derived MSCs also may have substantially contributed to bone formation attaching to the 

material’s surface probably attracted by its favorable physical, chemical, and/or biological 

characteristics. The bone formation on the surface reveals that it presented ideal features that favored 

protein adsorption and consequently cell migration and adhesion followed by subsequent osteogenic 

differentiation. To confirm this scenario and fully understand the mechanisms underlying the 

formation of the observed bone layer more comprehensive studies should focus on the characteristics 

of Nb-containing bioactive glass such as surface topography and hydrophobicity. 

It is worth mentioning that direct contact is not the only way by which materials can influence 

living cells. In fact, inorganic ions were shown to influence formation, regulation and maintenance of 

bone.[47] In our dissolution studies we showed that BGSN1 presents a pattern of ion release very similar 

to BG45S5 except for the Nb, obviously only found in the Nb-containing glass. The biological roles 

of BG45S5-derived ions are well described in the literature,[47, 48] whereas the role of Nb soluble 

species over osteogenic cells started to be investigated only recently.[14] Ca ions were shown to affect 

osteoblasts in vitro. In low concentrations (2-4 mmol) Ca stimulates osteoblasts to proliferate whereas 

in medium concentrations it boosted cell differentiation and matrix mineralization. In high 

concentration (> 10 mmol) Ca ions were shown to be toxic to cells.[49] Soluble P was reported to 

promote expression of matrix 1a protein (MGP) which is an essential protein for bone formation.[49] It 

is well accepted that Si participates in the process of bone formation probably by inducing precipitation 
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of hydroxyapatite in the early stages of matrix mineralization.[46, 47] The only study that investigated 

the effect of Nb species on osteoblast-like cells (MC3T3-E1 cells) concluded that in a dose-dependent 

manner (3x10-7 M) these ions induce differentiation and mineralization of osteogenic cells rather than 

adhesion and proliferation.[14] 

While the solubility of ions and their effect on the cells provide an insight into the probable 

mechanism by which bioactive materials influence biological effects it is not without problems. It is 

important to take into account the fact that these ions will mostly be complexed in large molecules, 

thus, the observed effects of the glass-derived ions might actually be caused by the compounds of the 

elemental constituents of the glass rather than individual ions. Despite the specific ionic compounds 

formed after dissolving from the bioactive glasses not being well described they were shown to possess 

an overall effect over gene expression of osteoblasts.[50] Xinus et al.[50] prepared a bioactive glass 

conditioned medium containing 1% w/v of 45S5 Bioglass® in DMEM and filtered the medium to 

remove glass particulates (0.2 µm filter). Thus, they treated human osteoblasts with this medium for 

24 hours and performed cDNA microarrays to analyze gene expression. Their results showed that 

bioglass dissolution products were able to up-regulate many genes related to osteoblast metabolism, 

cell proliferation, cell-cell and matrix-cell adhesion up to 5 fold.[50] 

Immediately after implantation the glass rod started to exchange ions with the body fluid, 

releasing ionic products that acted over osteogenic cells located in the adjacent periosteum and bone 

marrow. The glass dissolution products may have stimulated periosteal osteogenic cells to differentiate 

into polarized secretory osteoblasts that began to produce new bone onto the pre-existent bone 

promoting appositional bone growing forming a very clear cement line (arrows in Figure 8). This 

chain of events is believed to have happened for both glass compositions, as the two of them showed 

histological signs of subperiosteal bone formation. The comparison of subperiosteal bone area in the 

BGSN1 group and in the control group (BG45S5) showed significant larger bone area in the control 
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group after 28 days of implantation [F (3, 16) = 1.881, p= 0.174)] (Figure 8) despite both glasses 

clearly stimulating periosteal cells to differentiate and produce new bone. 

The present study has gathered sufficient information to claim that substituting small 

concentrations of silicon dioxide with niobium pentoxide in 45S5 Bioglass® results in biomaterials 

that are cytocompatible with BM-derived MSCs and that are able to stimulate these cells to 

differentiate into osteoblast. Furthermore, we showed these new materials possess the bioactive 

properties of osteoconductivity and osteostimulation in vivo. 

Conclusion 

This paper brings the investigation of biological properties of a novel bioactive glass in which 

silicon dioxide was partially substituted with niobium pentoxide. In sum, our results showed that when 

incubated in buffered solution the glass composition BGSN1 released similar amounts of Ca, Na, P, 

and Si compared to BG45S5. However, BGSN1 also released Nb into the solution. The Nb-containing 

glasses BGSN1 and BGSN2.5 exhibited the ability to form an apatite layer onto their surfaces, which 

is a sign of bioactivity. In addition, the immersion of BGSN1 and BG45S5 into complete culture media 

for 24 h significantly increases the surface’s roughness. Furthermore, BGNb glasses are nontoxic to 

BM-derived MSCs, instead, BGSN1 stimulated greater cell proliferation after up to 4 days of treatment 

than the control group. The dissolution products of the glass compositions BGSN1 and BGNS2.5 are 

osteogenic as they differentiated BM-derived cells towards osteoblast lineage after 21 days of 

treatment. In vivo experiments showed that BGSN1 was osteoconductive enabling the formation of a 

bone layer onto its surface. In addition, BGSN1 stimulated the osteogenic cells of the periosteum to 

form bone (from a very clear cement line) which indicates good osteostimulative capacity for this glass 

composition even though it was lower than that stimulated by BG45S5. These results let us conclude 

that the addition of 1 mol% of Nb2O5 substituted for SiO2 in 45S5 Bioglass® generates a 

cytocompatible material with great bioactive properties with significant potential for biomedical 

applications. 
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Figure Captions 
Figure 1. ICP data: ion release vs. time in 50.69 mM HEPES solution at pH 7.40 for BG45S5 and Nb-
substituted bioactive glass. The data displayed in (a), (b), (c) and (d) are related to leached Na, Ca, Si, 
and P species from glass derived from substitution of SiO2 for Nb2O5. 
 
Figure 2. ICP data: Nb ion release vs. time in 50.69 mM HEPES solution at pH 7.40 for BG45S5 and 
Nb-substituted bioactive glass. The amounts of niobium determined by ICP-OES is consistent with the 
niobium content in each sample, i.e. BGSN5 exhibits a higher peak of niobium concentration compared 
to the BGSN1 bioactive glass. As expected, no niobium was detected for BG45S5. 
 
Figure 3. 31P MAS-NMR spectra for the different glass compositions, recorded at a magnetic field 
strength of 9.4 T and a spinning speed of 10 kHz: (a) BG45S5, (b) BGSN1, (c) BGSN2.5, and (d) 
BGSN5. The chemical environmental for 31P shifts progressively evolves to lower values of δ, reaching 
a peak position similar to the 31P spectrum observed in the hydroxyapatite control. 
 
Figure 4. Micrographs of BM-derived MSCs treated for 72 h with culture media conditioned with the 
dissolution products of: BG45S5 (a), BGSN1 (b), BGSN2.5 (c), and BGSN5 (d) at a concentration of 
10 mg∙mL. Following the incubation period, a negative control of dead cells was established by 
incubating cells with 70% methanol for 30 min (e). Cells treated with regular growth media served as 
a positive control (f). Dissolution products of none of the glass compositions were toxic to the tested 
cell line. (g) Viability of bone-marrow-derived mesenchymal stem cells (BM-MSCs) after 4 days of 
treatment with different glass-conditioned media measured by MTT assay. DMEM was used as a 
positive control and cells killed with DMSO as negative control. Results are expressed in mean and 
SEM. One-way ANOVA followed by Tukey’s test was used to compare the groups. None of the glass-
conditioned media (BG45S5, BGSN1, BGSN2.5 and BGSN5) reduced cell viability in comparison 
with the control group (DMEM). The group BGSN1 showed significantly higher absorbance than 
DMEM (p=0.0014) and BG45S5 (p<0.0001) after 4 days, suggesting superior cell proliferation. 
 
Figure 5. Micrographs of calcium deposits within and around BM- derived MSCs stained with alizarin 
red (1%) and osteocalcin immunofluorescence after 21 days of treatment with different media. The six 
superior squares show micrographs (100× magnification) of BM-MSCs in which the red aggregates 
are calcium deposits. Cells treated with osteogenic medium (OST) showed a fully mineralized matrix 
which meaning that most cells were in a late stage of differentiation to osteoblasts. Those cells treated 
with BGSN1 and BGSN2.5 showed matrix mineralization. The four inferior squares display laser 
scanning confocal micrographs of BMMSCs treated with BGSN1 showing osteocalcin 
immunofluorescence (in red), cell nucleuses stained with DAPI (in bright blue), mineralized matrix by 
reflection of laser in TRANS mode (black) and an overlapping of matrix and nucleuses. 
 
Figure 6. Three-dimensional surface AFM images for an area of 30 x 30 µm and SEM micrographs 
at magnifications of 3000x of bioactive glass 45S5 (a) before and (b) after 24 hours of immersion in 
complete culture medium; BGSN1 (c) before and (d) after 24 hours of immersion in complete culture 
medium showing the increase of surface roughness. 
 
Figure 7. Micrographs of transversal histological sections of rats’ tibias treated with glass rods for 28 
days and stained Haematoxilin and Eosin at 100 and 400 x magnification. The glass implants were 
removed after decalcification to allow the preparation of the histological sections (empty areas marked 
with “Glass” are where the glass rods were located for 28 days), but, some fragments of the glass can 
still be seen (red arrows). The micrographs show the bone layer (marked with “*”) that formed around 
the glass implant. Images A and B illustrate the group treated with BG45S5 whilst images C and D 
represent rats treated with BGSN1. A t-student test showed no significant different between thickness 
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of the bone layer formed in the rats treated with BGSN1 and the control group (BG45S5) (p=0.9568). 
For this analysis p<0.05 was considered. 
 
Figure 8. Micrographs of transversal histological sections of rats’ tibias treated with glass rods for 28 
days and stained Haematoxilin and Eosin at 100 and 400 x magnifications. The glass implants were 
removed after decalcification to allow the preparation of the histological sections (empty areas marked 
with “Glass” are where the glass rods were located for 28 days). The micrographs show the formation 
of bone by the osteogenic cells present at the inner layer of the periosteum (marked with an “*”). The 
cement line (black arrows in images A and B) mark where the new bone started to form after the 
implantation of the material. Images A and B illustrate the group treated with BG45S5 whilst images 
C and D represent rats treated with BGSN1. A t-student test revealed that the group treated with 
BG45S5 (46469±804.5µm) presented a significantly larger sub periosteal bone area than the group 
treated with BGSN1 (40615±1503µm) (P=0.0085). For this analysis p=0.05 was considered. 
 



Table 1 - Glass compositions (mol%) of BG45S5 and Nb-substituted 45S5 bioglass. 

Glass  
SiO2 CaO Na2O P2O5 Nb2O5 

BG45S5 46.1 26.9 24.4 2.6 - 
BGSN1 45.1 26.9 24.4 2.6 1.0 

BGSN2.5 43.6 26.9 24.4 2.6 2.5 
BGSN5 41.1 26.9 24.4 2.6 5.0 

 



Table 2 - 31P MAS NMR peak positions and full width half maxima (FWHM) for BG45S5, Nb-substituted 45S5 bioglass and commercial hydroxyapatite. 

Glass 

31P MAS NMR 

Immersion time in SBF (hours) 

0  3  12  24 

Peak (ppm) FWHM (ppm)  Peak (ppm) FWHM (ppm)  Peak (ppm) FWHM (ppm)  Peak (ppm) FWHM (ppm) 

BG45S5 11.9 7.9  4.0 6.2  4.3 6.6  4.0 6.1 

BGSN1 11.8 7.9  3.8 5.9  3.9 6.1  4.1 5.9 

BGSN2.5 11.6 8.0  5.7 11.8  4.3 7.2  4.1 7.2 

BGSN5 8.5 8.1  7.4 9.7  6.3 11.4  5.7 10.7 

Reference            

Hydroxyapatite 3.4 2.7  -- --  -- --  -- -- 
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SM1. Glass rods preparation 
 
Figure SM1 shows the experimental setup employed to prepare samples for in vivo 

assays. 

 
 

 
Figure SM1. Devices used for the preparation of glass rods for in vivo tests: Graphite mould and suction system 
to force filling of the glass in the graphite mould. The vacuum pump was used to suction the molten glass, 
overcoming the high surface tension of the melt and allowing it to fill the 2 mm diameter graphite mould.[1]  

 
Figure SM2 shows a photograph of the glass rods used in the in vivo assays in the 

present work. 

 

Figure SM2. Photograph of the glass rods used in the in vivo assays. 



 

 
SM2. Preparation of SBF solution 

 

The acellular simulated body fluid (SBF) solution was prepared with concentrations of 

ions equal to those of blood plasma, including Cl- and HCO3-. The pH value of 7.40 was obtained 

using the Hepes buffer at concentration 50.69 mmol/L. Details about the concentrations of the 

ions present in the SBF solution is presented in Table SM1. 

 
Table SM1. Nominal ion concentrations of the SBF in comparison with those of human blood plasma. 
 
 
 
 

 

 

 

 

 

 

 
 
 
 
 
SM3. Ion release in 50.69 mM HEPES solution at pH 7.40 for BG45S5 and Nb-substituted 
bioactive glass 
 

Figure SM3 shows a linear function with the square root of time up to about 120 min 

for all compositions.  

 

Ions 
Concentration/mM 

Blood Plasma SBF 

Na+ 142.0 142.0 

K+ 5.0 5.0 

Mg2+ 1.5 1.5 

Ca2+ 2.5 2.5 

Cl- 103.0 103.0 

HCO32- 27.0 27.0 

HPO42- 1.0 1.0 

SO42- 0.5 0.5 



 
Figure SM3. ICP data: ion release as a function of square root of time in 50.69 mM HEPES solution at pH 7.40 
for BG45S5 and Nb-substituted bioactive glass. The data displayed in (a), (b), (c), and (d) are related to leached 
of Na, Ca, Si, and P species, respectively, from glass derived from substitution of SiO2 by Nb2O5. Lines are 
linear regression of dissolution data up to 120 min. 

 

The elemental concentrations of sodium, calcium, silicon, and phosphorus exhibited a 

linear function of the square root of time up to about 120 min for all compositions, which 

indicates a two-step degradation mechanism with initial dissolution controlled by diffusion 

(exhibits a t1/2 dependence). 

 

 
[1] Souza L, Lopes JH, Encarnação D, et al. Comprehensive in vitro and in vivo studies of novel melt-
derived Nb-substituted 45S5 bioglass reveal its enhanced bioactive properties for bone healing[J]. 
Scientific Reports 2018,8(1):12808. 
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