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Abstract 
 

Here, we investigated the biocompatibility of a bioactive sodium calcium silicate glass containing 2.6 

mol% Nb2O5 (denoted BGPN2.6) and compare the results with the archetypal 45S5 bioglass. The glass 

bioactivity was tested using a range of in vitro and in vivo experiments to assess its suitability for bone 

regeneration applications. In vitro studies consisted of assessing the cytocompatibility of the BGPN2.6 

glass with bone-marrow-derived mesenchymal stem cells (BM-MSCs). Systemic biocompatibility was 

verified by means of the quantification of biochemical markers and histopathology of liver, kidneys, 

and muscles. The glass genotoxicity was assessed using the micronucleus test. The regeneration of a 

calvarial defect was assessed using both qualitative and quantitative analysis of 3D microcomputed 

tomography images. The BGPN2.6 glass was not cytotoxic to BM-derived MSCs. It is systemically 

biocompatible causing no signs of damage to high metabolic and excretory organs such as the liver 

and kidneys. No mutagenic potential was observed in the micronucleus test. MicroCT images showed 

that BGPN2.6 was able to nearly fully regenerate a critical-sized calvarial defect and was far superior 

to standard 45S5 Bioglass®. Defects filled with BGPN2.6 glass showed over 90% coverage compare 

to just 66% for 45S5 Bioglass®. For one animal the defect was completely filled in 8 weeks. These 

results clearly show that Nb-containing bioactive glasses are a safe and effective biomaterial for bone 

replacement. 

 

Keywords: Bioactive glass; niobium; bone regeneration; in vivo; genotoxicity. 
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Introduction 

Bone fractures are the most widespread large-organ traumatic injury that affects humans.1-2 

The regeneration process after fractures normally achieves a successful healing outcome, yet, up to 

10-15% of the patients show an impaired healing, delaying the process or even leading to a non-union.3 

Fractures represent not only a burden for the patient’s quality of life, but also the costs of surgery and 

hospitalization constitutes a considerable cost for socio-economic and health care systems.3 In fact, it 

has been reported that the treatment of an established non-union of a bone costs over $10,000 on 

average.3 The estimated number of fractures for the year 2000 was 9.0 million worldwide, but, as some 

fractures cause disability for a period longer than 1 year this number was estimated at approximately 

50 million.4 This high number of fractures stimulates the need to develop better synthetic materials for 

bone replacement. 

In 1971 Larry Hench developed the first bioactive material, the Bioglass® 45S5.5 This material 

is a glass composed of 46.1 mol. % SiO2, 24.4 mol.% Na2O, 26.9 mol.% CaO and 2.6 mol.% P2O5.
6-7 

Under physiological conditions the glass slowly dissolves releasing calcium and phosphorous ions into 

solution. These ions then precipitate to form an amorphous calcium phosphorous layer that then 

crystalizes to form a layer of hydroxyl carbonate apatite (Ca5(PO4)3OH) (HCA) on its surface.8-9 Due 

to its micro-/nano-scale complexity this HCA layer supports the adsorption of adhesive proteins that 

will further anchor integrin proteins in osteogenic cells, which will allow the cells to attach, spread, 

and produce mineralized bone matrix whilst the biomaterial slowly dissolves, until it is completely 

substituted by the new-formed bone.5-6, 8, 10 Many variations of the original Bioglass® 45S5 

composition have been designed and investigated in the hope of improving the biological properties.7-

8, 11-12 

Incorporating niobium into biomaterials is of significant interest and has been reported to 

improve their mechanical and biological properties.12-23 Niobium has been incorporated into metallic 

alloys for dental implants where it imparts superior corrosion resistance, low cytotoxicity, and 
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enhanced wear resistance.21, 24 Furthermore, some investigations reported that sol-gel-derived niobium 

oxide gels promote apatite formation within a week of immersion in simulated body fluid which 

indicates that this element is a good candidate for bioactive glass for bone replacement.25 Niobium has 

already been incorporated into calcium phosphate invert glasses15 and in fluorapatite glass-ceramics26 

showing great biocompatibility and also stimulating osteogenic differentiation of human mesenchymal 

stem cells (MSCs) and maturation of mouse osteoblast-like cells (MC3T3-E1 cell) by means of direct 

contactor through its ionic dissolution products. Nb doped glasses are also reported into increase 

vascularization.27 However, despite its great potential for biomedical applications niobium has rarely 

been incorporated in silicon-rich bioactive glass such as Bioglass® 45S5. In view of that, we altered 

that composition of the original Bioglass® 45S5 replacing P2O5 (2.6 mol %) with Nb2O5 and 

investigated the biocompatibility, genotoxicity and the potential for osteointegration of this new Nb-

containing glass. The biocompatibility of Nb-containing glass was tested using a series of in vitro and 

in vivo experiments. The in vitro experiments assessed the cytocompatibility of the Nb-doped glass 

with Normal Human Osteoblasts (NHOsts) by quantitative MTT analysis and qualitative Live/Dead 

assay. Systemic biocompatibility was verified by means of quantification of biochemical markers of 

hepatic (TGO, TGP, and GamaGT), renal (creatinine and urea), and cardiac damage (total CK). In 

addition, histological sections of liver and kidneys were examined for any sign cellular or tissue 

damage. The glass genotoxic potential was tested using the micronucleus test. The regeneration of a 5 

mm sized calvarial defect was examined by means of both qualitative and quantitative analysis of 3D 

microcomputed tomography images. 

 

Experimental Section 

Preparation of bioactive glasses and conditioned cell culture media. We tested a variation of melt-

quench derived Bioglass® 45S5, (SiO2)46.1(CaO)26.9(Na2O)24.4(P2O5)2.6. In this variation 2.6 mol% of 

P2O5 were replaced by 2.6 mol% of niobium pentoxide (Nb2O5), resulting the composition named 
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BGPN2.6. The glass was prepared by thoroughly mixing the precursors oxides SiO2 (Alfa Aesar, 

99.5%), CaCO3 (Alfa Aesar, 99.95-100.5%), Na2CO3 (Sigma-Aldrich, ≥ 99.5%), P2O5 (Sigma-

Aldrich, ≥99.5%), and Nb2O5 (Sigma-Aldrich, ≥ 99.99%). The batches were melted at 1400ºC for 90 

minutes in platinum crucibles. The melt was then poured into graphite mold which had been preheated 

to 370°C and annealed at 500 °C overnight before being allowed to cool slowly to room temperature. 

After cooling down the glasses were ground to powder. Particles with different sizes have different 

surface areas and therefore different ion release rates, therefore the particle size was standardized 

between 40 and 63 µm using a series of micro sieves. For experiments with the cells, glass-conditioned 

media was prepared. For this, powders of BGPN2.6 and 45S5 were added to cell culture medium 

(Osteoblast Growth Medium Bullet Kit, Lonza, Walkersville, MD) at a concentration of 10 mg∙mL, 

mixed for 24 hours, filtered using an ultrafine filter (0.22µm pore size) and left within the cell incubator 

for 4 hours (time necessary for pH buffering). In this case filtering the media was important not just 

for sterilization (bacteria and fungus are bigger than 0.22 µm so they cannot pass through the filter) 

but also to guarantee no glass particle would be in direct contact with the cells (as all particles were 

larger than 40 µm), thus only the glass extracts were present in the final cell culture media.    

Determining pH behavior of culture media containing bioactive glasses prior cell treatment. Cell 

culture medium has bicarbonate ions in its composition. These ions ultimately interact with CO2 in the 

cell incubator in order to maintain the pH of the medium in an ideal level for cells. Glass dissolution 

affects the pH of the medium, usually increasing it, and pH directly influences cell behaviour. It well 

known that the body responds to pH alterations much more efficiently than cell culture medium does, 

so the increase in pH caused by the presence of bioactive glasses may be rapidly buffered.28 In view 

of this, we studied the kinetics of media buffering in the cell incubator over time in order to determine 

how much time would be necessary to neutralize their pH before adding the cells. For this, 500 µL of 

each of the following media were added to each well of a 24-well plate, in duplicate: (a) Control 

medium (Osteoblast Growth Medium Bullet Kit (OGM), Lonza, Walkersville, MD), (b) Osteogenic 
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medium (OGM containing osteogenic supplements), (c) 45S5 (OGM containing 1% w/v of 45S5), (d) 

BGPN2.6 (OGM containing 1% w/v of BGPN2.6). The pH was measured prior to incubation and after 

increasing time intervals up to 72 hours using a pH meter (Accumet®, Fisher Scientific).  

Cell Culture. Normal Human Osteoblasts (NHOsts, Lonza, Walkersville, MD) were cultured in 

growth medium (Osteoblast Growth Medium Bullet Kit, Lonza, Walkersville, MD). Cell flasks were 

kept in incubator at 37ºC in an atmosphere of 5% of CO2. The culture medium was changed every 

other day. All procedures using osteoblasts were carried out following the manufacturer’s protocol.   

MTT assay. MTT (3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide) is a soluble tetrazole 

salt that can be reduced to insoluble strongly pigmented purple formazan by the redox potential in 

active mammalian cells. 5,000 Normal Human Osteoblasts (NHOsts, Lonza, Walkersville, MD) were 

seeded in each well of  24-well plates containing 500 µL of osteoblast growth medium per well.  After 

24 hours the growth medium was replaced by the treatment media (conditioned with glass extracts and 

negative and positive controls). Cell culture media conditioned with 1% w/v of 45S5 and BGPN2.6 

were used to treat the cells for 72 hours. A positive control group of NHOsts was treated with osteoblast 

growth medium (Osteoblast Growth Medium Bullet Kit (OGM), Lonza, Walkersville, MD). A 

negative control group of cells was killed by incubation in Etoposide (Sigma-Aldrich). To quantify 

cell viability 10 µL of MTT (Invitrogen®) (stock solution at the concentration of 5mg∙mL) were added 

to each well (containing 100 µL of phenol red-free culture medium) incubating for 4 hours in the cell 

incubator at 37°C and 5% CO2. After the incubation time the formed formazan was solubilized with 

Dimethyl sulfoxide (DMSO) (Invitrogen®) incubating it for 10 minutes. The absorbance of the 

converted formazan was measured at the wavelength of 570 nm using a microplate spectrophotometer 

(Thermo Scientific™ Multiskan™ GO). This experiment was performed in duplicate. One-way 

ANOVA and the post hoc test Tukey were used to compare the means of the groups. 

Live/dead assay. For this assay 10,000 NHOsts were seeded per well in a 24-well plate and treated for 

72 h with conditioned media containing the dissolution products of 45S5 and BGPN2.6 glasses at a 
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concentration of 10 mg/mL. Cells treated with osteoblast growth medium (Lonza, Walkersville, MD) 

were used as a positive control whereas cells killed with Etoposide (Sigma-Aldrich) served as negative 

control. In this assay live cells are distinguished by ubiquitous intracellular esterase activity, which is 

determined by enzymatic conversion of the virtually non-fluorescent cell-permeant calcein AM to the 

intensely fluorescent calcein. Calcein is retained within live cell’s cytoplasm, producing an intense 

green fluorescence (~495nm).29 Ethidium Homodimer-1 (EthD-1) enters cells with damaged 

membranes and undergoes a 40-fold enhancement of fluorescence upon binding to nucleic acids, 

thereby producing a bright red fluorescence in dead cells (ex/em ~495 nm/~635 nm). EthD-1 is 

excluded by the intact plasma membrane of live cells.29 For this assay all procedures were carried out 

following the instructions of the manufacturer (ThermoFisher-Scientific®). Briefly, calcein-green at 

0.5 μM and EthD-1 at 0.5 μM were combined into one solution and used to treat NHOsts cells. 100 

μL of staining solution was added per well and left to incubate for 45 min at room temperature 

(protected from light). Cells were photographed using a fluorescent microscope at 100× magnification. 

This experiment was performed in duplicate. 

Animals. All experimental protocols were in accordance with the ethical principles for animal 

experimentation adopted by the Brazilian College of Animal Experimentation (COBEA) and were 

approved by the Committee for Ethics in Animal Use of the University of Campinas – 

CEUA/UNICAMP (Protocol Number: 3467-1). We used 72 adult rats (HanUnib: WH (Wistar), ZFV, 

Hannover, Germany, 1987) weighing between 350 and 460 g provided by the Central Bioterium of 

UNICAMP (CEMIB).  The rats were maintained in the Bioterium of the Department of Anatomy, in 

the Institute of Biology (IB), UNICAMP. They stayed in standard boxes in controlled environmental 

conditions (12 hours’ bright/dark cycles) with standard food and water. Table 1 shows the sample size 

of the experimental groups and subgroups.  

Surgical Procedure. Before the surgery, animals were weighed and transferred into individual boxes. 

A pre-anaesthetic dose of Tramadol (TRAMAL® - RETARD) (5mg∙kg) was applied 15 minutes 
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before the injection of anaesthetics. Animals were anaesthetized by means of an intraperitoneal 

injection of a mixture of Xilazin (Xilazin - Syntec) (0.3 mg∙kg) and ketamine hydrochloride (0.8 

mg∙kg). A prophylactic dose of 1 mg∙kg of Enrofloxacin (Biofloxacin - Biovet) was applied to prevent 

bacterial contamination. First, an incision was made starting at the nose bridge, and ending at the base 

of the skull, using a scalpel. The skin, subcutaneous tissue, temporal muscle, and the periosteum were 

pulled aside for complete exposure of the parietal bone. A 5 mm round full-thickness calvarial defect 

was then created in the parietal bone using a 5 mm-diameter tissue punch (Richter®). In the control 

group, the critical sized defect was left empty whereas in the other groups it was filled with the different 

glass compositions (45S5 or BGPN2.6) in powder form. The periosteum was sutured using a 6-0 Nylon 

non-absorbent monofilament (ETHILON®) and the skin was sutured using a 4-0 Nylon non-absorbent 

monofilament (ETHILON®). In the SHAM group the periosteum and skin were sutured without 

making the bone defect (Figure 1). The sample number of each group is depicted on table 1.  

Systemic Toxicity. The systemic compatibility of the two compositions of bioactive glasses (45S5 and 

BGPN2.6) was tested by pathological analysis of histological sections of rats’ liver and kidneys and 

also by comparing the blood serum concentration of biochemical markers of renal, hepatic, and 

muscular damage of the experimental groups with the SHAM group (group without fracture). For this, 

following the experimental time (14, 28 or 56 postoperative days) rats were euthanized and their blood, 

liver, and kidneys were collected. The sample size of each group is showed in table 1. The specimens 

of liver and kidneys were fixed with Bouin solution for 24 hours and embedded in paraplast (Sigma-

Aldrich®). All paraplast-embedded histological sections were stained using Hematoxilyn and Eosin 

and histopathologically examined under a light microscope. The quantification of biochemical 

toxicological markers from kidneys (Creatinine), liver (TGO, TGP) and muscles (Total Creatine 

Kinase - Total CK) was performed using enzymatic kits (Interkit®).The normality of the data was 

attested by the kolmogorov smirnov test (KS test) and the results of the different groups were then 

compared using One-way ANOVA test with Tukey post hoc test.  



9 

 

Micronucleus test. Micronucleus induction is a key characteristic of genotoxic compounds and the 

analysis of micronuclei formation, resulting from DNA strand breakage (clastogens) or interference 

with chromosome segregation (aneugens), is an important component of toxicology screening of new 

biomaterials. For this assay, we collected bone marrow from rat’s femur using a disposable syringe 

containing 1 mL of 0.9% saline at room temperature. The harvested bone marrow was transferred to a 

sterile tube, homogenized and centrifuged for 10 minutes at 900 rpm and part of its supernatant was 

discarded. The sediment was re-suspended in the remaining supernatant. One drop of this bone marrow 

suspension was placed on one extremity of a microscope slide. Using another glass slide a smear was 

made and left to dry at room temperature. The dry slides were fixed in 100% methanol for 10 minutes 

and dried at room temperature. Once fixed, the slides were stained with Giemsa diluted in Sorensen 

buffer (Na2HPO4 0,06 M e KH2PO4 0,06 M - pH 6,8), at the proportion of 1 mL of Giemsa for 20 mL 

of buffer solution for 10 minutes, washed with distilled water, and dried at room temperature. Entellan® 

was used to mount the histological slides for further analysis. For the calculation of the relative number 

of micronucleus 3000 erythrocytes were counted per animal in five animals per group (45S5, BGPN2.6 

and SHAM). The means of micronucleus were compared to the SHAM group using One-way ANOVA 

test with Tukey post hoc test. 

Computed Microtomography of rats’ calvaria. Immediately after the euthanasia, the calvarias were 

dissected and fixed with 10% buffered formaldehyde for 24 hours and kept in 70% ethanol up to the 

analysis. Prior to the microcomputed tomography scanning specimens were left to dry at room 

temperature for at least 60 minutes. We scanned 5 calvarias per group. Scanning was performed using 

SkyScan 1278 with 84.6 µm of pixel size, 53kV, 0.5 mm of Al filter and 0.18° of rotation. For the 

image reconstruction a correction of 10% of Beam Hardening was applied together with a ring artefact 

correction of 5 and Gaussian smoothing of zero. The amount of bone formed within the defect was 

calculated as a percentage of the total volume of a pre-determined volume of interest and normalized 

by the mean values of the SHAM group (which represented 100%). The amount of bone found in the 
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control group served as a blank that was subtracted from the other values. The sample size used for 

this experiment is detailed on table 1. 

 

Results 

pH behaviour in culture media containing bioactive glasses. It is known that pH is a variable that 

significantly affects cell behaviour. For the cell culture experiments we decided to remove this variable 

in order to investigate the precise role of the ionic products derived from glass dissolution. For this, 

we studied the kinetics of media buffering in the cell incubator over time to determine how long it 

would take to neutralize media’s pH.  

We observed that all glass compositions caused an increase in pH which can be attributed to 

the release of Ca2+ and Na+ ions from the glass into the cell medium as previously described.30 After 

24 hours mixing the different glass compositions in media at a concentration of 10 mg∙mL we 

measured their pH. The pH reached 10.27 in the medium conditioned with 45S5 and 9.46 in the group 

BGPN2.6 (Figure 2). No glass was added to the control group (growth medium) and osteogenic group 

(osteogenic medium) and their pHs were 7.77 and 8.22 respectively.  

Cell culture medium containing living cells tends to become acidic over time due to normal 

cell metabolism reactions. Chemical reactions related to HCO3
- present in the cell medium and the 

CO2
 present in the cell incubator are responsible for buffering the system maintaining medium’s pH 

around 7.4-8.2 which is suitable for living mammal cells. We observed that it takes 4 hours inside the 

incubator for the media’s pH to reach physiological levels (Figure 2). Thus, to exclude pH as a variable 

all media were left to buffer in cell incubator for 4 hours prior being used to treat cells. 

Viability of bone-marrow-derived MSCs. The survival of Normal Human Osteoblasts (NHOsts) 

within the different media over 72 hours was assessed using MTT and Live/Dead assay (Figure 3). It 

can be seen that none of the glass-conditioned media were cytotoxic to the cells. It proves that the 
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addition of niobium species did not compromise the cytocompatibility of 45S5 and that niobium can 

replace phosphorous pentoxide (P2O5) without damaging living bone cells. 

Systemic Biocompatibility: Biochemical Markers. In all groups the levels of TGO/AST, TGP/ALT 

were similar to those of the Control and SHAM groups (Figure 4, upper row). This result shows that 

the presence of the implants did not cause any kind of damage to the hepatic cells. Results of the levels 

of renal (Creatinine) and cardiac (Total CK) biochemical markers support the claim that these materials 

are biocompatible as none of them showed significant differences between the glass-treated rats and 

those from the control and SHAM groups (Figure 4, bottom row). 

Histopathology. Histological sections of liver and kidneys were stained with Haematoxylin and Eosin 

and were qualitatively analysed. We looked for any sign of tissue damage or cellular disturbance. A 

thorough examination of the organs confirmed the results for the biochemical markers. After 56 

postoperative days no organ showed any noticeable sign of damage (Figure 5). In the livers all 

hepatocytes presented normal morphology as did the hepatic parenchyma, showing no aggregates of 

connective tissue or the presence of any inflammatory cells which could represent a sign of toxicity 

(Figure 5, upper row, A-C). In the kidneys, their functional units, the glomerulus appeared normal as 

well as the proximal and distal convoluted tubules (Figure 5, bottom row, D-F). Just as in the liver, 

no sign of inflammation or tissue damage was observed in any group attesting the integrity of the 

kidneys and that none of the materials caused any harm to these organs. 

Mutagenic Potential. The carcinogenic risk of Nb-containing glass was tested by means of the 

micronucleus test which is a method to assess chromosomal damage in cells exposed to genotoxic 

agents. We counted 3000 erythrocytes per animal and compared the mean of each group with the 

SHAM group. The SHAM group exhibited, on average, 1.87 micronucleus per thousand of 

erythrocytes. No significant difference was observed between the experimental groups and the SHAM 

group (P=0.0863) (Figure 6). This result reveals that none of the glass compositions are genetically 

toxic and suggest they display no mutagenic potential. 
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MicroCTs of rat calvaria. The regeneration of a 5 mm calvarial defect was assessed by means of 

microcomputed tomography (microCT). This analysis is a powerful tool for the evaluation of bone 

tissue because it provides clear visualization of the 3D microarchitecture of the bone. In the present 

work the qualitative and quantitative microCT analysis of the rat`s calvarias were performed ex vivo. 

MicroCT images showed that the calvarial defect maintained its size even 56 days after surgery in the 

control group, proving that it was in fact a critical-sized defect. The treatment with 45S5, on average, 

filled 65.63% of the bone defect whereas BGPN2.6 filled 91.66% of the defect, on average. In one rat 

BGPN2.6 completely filled the defect (Figure 7). 

Discussion 

We performed both in vitro and in vivo analysis in order to verify the biological properties of 

Nb-containing bioactive glass. The glass showed excellent cytocompatibility with normal Human 

Osteoblasts (NHOsts) as demonstrated in the in vitro assay. In the in vivo experiments it did not 

compromise high metabolic and excretory organs such as the liver and kidneys throughout the eight 

week period tested. Through microcomputed tomography we observed that Nb-containing glass was 

capable of stimulating the regeneration of a 5-mm calvarial defect in 56 days.  

When implanted into the body a biomaterial for bone replacement must be compatible with its 

surrounding cells in order to enable efficient osteointegration. The biocompatibility of 45S5 Bioglass® 

dissolution products (Ca, Si, Na and P) has been described in various studies.5, 6, 8 Elemental analysis 

using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) revealed that the ionic 

products of Niobium-containing glass are similar to those from 45S5, apart from trace amounts of Nb, 

thus, this material is not expected to be toxic to living cells.23 Previous reports demonstrated the 

cytocompatibity of other niobium doped biomaterials with different types of cells.13, 17, 31 Pure niobium 

discs were shown to be cytocompatible with mesenchymal stem cells derived from human bone 

marrow (HBMSCs) seeded and grown onto its surface up to 10 day.13 Cells adhered well to the surface 

of pure-niobium discs presenting a spread morphology which is an evidence that they were active.13 
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Mesenchymal stem cells were also observed to attach and proliferate well onto niobium-doped 

fluorapatite glass-ceramics. The dissolution products of Nb-doped glass-ceramic were also shown to 

stimulate greater osteogenic differentiation of HBMSCs when mixed with osteogenic medium.17 Pure 

metalic Nb also proved to be bioinert when implanted into rats for 4 weeks.31  

In addition to the analysis of the cytocompatibility of the materials, which is a good sign of 

non-toxicity, it is also important to take into account the fact that the implant will progressively 

dissolve in the body fluid. Part of its dissolution products and even microscopic particles may get into 

the blood stream and end up in high metabolic and excretory organs such as liver and kidneys which 

may be of concern. This is the first study in which organs have been verified to test the systemic 

behavior of Nb-doped bioactive glass to ensure that no damage was caused by its dissolution products 

after eight weeks of implantation (Figure 4 and Figure 5). The observed results are in accordance with 

an investigation in which Swiss male mice were treated with a single dose (1 mL) of 3 % niobium 

species diluted in phosphate-buffered saline (PBS), intraperitoneally. In this cited study rats 

hepatocytes showed some signs of degeneration between the third and seventh day after the 

intraperitoneal application. However, after 12 days all livers appeared to regenerate with cellular 

mitoses.32 In our investigation we did not observe any sign of degeneration nor regeneration at any of 

the studied time points. We believe that in the aforesaid investigation they might have provoked a mild 

hepatic degeneration due to the direct intraperitoneal injection of a much higher dose of niobium 

species (~30µg per rat) compared to the present study (~3.4 µg per rat). 

The assessment of the genotoxic potential of new biomaterials is imperative. In order to 

evaluate the genotoxicity of Nb-containing glass we performed micronuclei analysis. This is 

considered to be one of the gold-standard analyses for the recognition of the mutagenic potential of 

any treatment. In the present study 3,000 erythrocytes were taken into account per animal and the 

number of micronuclei found was compared to the SHAM group (group in which no fracture nor 

treatment was performed). Nb-glass showed no sign of genotoxicity demonstrating that, at least in this 
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particular dose, niobium is a safe material to be used in biomaterials (Figure 6). Other metallic ions 

have been shown to possess genotoxic effects. Vanadium, one of the components of the titanium alloy 

(Ti-6Al-4V), a well-recognized primary metallic biomaterial for orthopedic implants, can generate 

long-term health problems such as peripheral neuropathy, osteomalacia and Alzheimers disease.33 

Furthermore, lanthanum and nickel were shown to cause some degree of DNA damage.34-35 Therefore, 

Nb-containing glass appears to be a safe biomaterial that causes no cellular or DNA damage and is 

therefore a very interesting candidate for use in biomedical devices for bone replacement.  

The osteoestimulative capacity of Nb-containing glass was tested by treating critical-sized 

calvarial defect for up to eight weeks. A critical size defect is defined as “the smallest size tissue defect 

that will not completely heal over the natural lifetime of an animal”.36 For the rat calvarial defect, 8 

mm is generally accepted to be of critical size.37 Nevertheless, we chose to work with 5 mm size defect 

because it can be made in one rat’s parietal bone without crossing the sagittal suture. The sutures are 

nearly immovable fibrous joints that connect two or more bones. In the case of the sagittal suture it 

connects the two parietal bones. It is important to take into account the fact that fibrous joints (such as 

the sagittal suture) show a very different pattern of regeneration from flat bones (such as parietal 

bones). In view of this, we believe the occurrence of these two different rates of regeneration at the 

fracture site might constitute an extra variable that could confuse the interpretation of the results as the 

bioactive glass may interact with these two tissues in different ways. Furthermore, even though our 5 

mm size calvarial defect showed very low regeneration along eight weeks, in order to avoid any 

influence of such regeneration over the results, the mean value of the control group (empty defect) 

served as a blank that was subtracted from the means of all other groups during the quantification of 

bone formation using MicroCT images. 

The analysis of MicroCT images showed that treating circular calvarial defect with Nb-doped 

glass promoted greater bone regeneration over eight postoperative weeks revealing the great 

osteostimulative capacity of this glass (Figure 7). Our study is the first one to report osteostimulative 
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effects of Nb-containing bioactive glass using critical-sized calvarial defect. Two other studies 

investigated the osteintegrative properties of other types of Nb-containing biomaterials.13, 21 Wang at 

al. implanted Ti–Nb-Zr-Ta-Si alloy into rabbit’s femur to assess its mineral apposition rate and bone-

implant contact.21 The authors concluded that Ti-Nb-Zr-Ta-Si alloy showed significantly higher 

mineral apposition rate compared to CpTi implants after 4 postoperative weeks and showed no 

difference in bone-implant contact (BIC). They suggested that Ti–Nb–Zr–Ta–Si alloy had favorable 

biocompatibility and had an effect on the promotion of osteogenesis.21 Furthermore, Bartolomé and 

colleagues verified the biological tolerance of new zirconia/Nb biocermets implants in rabbit’s tibias. 

Their results demonstrated the effectiveness of osseointegration after six postoperative months as new 

bone was observed around the implants at retrieval date.13 Together these results indicate that the 

presence of niobium in the bulk of biomaterials seems to improve material’s biocompatibility and 

increase bioactive properties such as osteoconduction and osteostimulation.  

It is important to considerate that the calvarial defect serves as a model for intramembranous 

bone formation and thus may be less applicable to biomaterials or strategies for endochondral bone 

formation;37 thus, this result may be applicable mainly for large fractures in flat bones such as those of 

the skull, ribs, pelvis and some parts of the vertebras. 

 

Conclusion 

In summary we conclude that the Nb-containing glass BGPN2.6 is not cytotoxic to Human 

Osteoblasts. Its biocompatibility was confirmed by the results of the in vivo experiments showing that 

the material does not cause any harm to high metabolic and excretory organs such as liver and kidneys. 

Moreover, the Nb-containing glass does not show any genetic toxicity, therefore can be used without 

risk of mutagenicity. These results attest this glass composition is biocompatible and, up to the used 

concentration, can be implanted into the body without any harm. Microcomputed tomography 

demonstrated that Nb-containing glasses stimulated the regeneration of a large calvarial defect and the 
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results showed a 40% increase in defect repair compared to 45S5 bioglass. Taken together these results 

support the claim that Nb-glass is a safe and efficient biomaterial to be used for bone replacement.  
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Captions for Figures 

Figure 1. Development of a critical size calvarial defect in rat: (a) an incision was made starting at the 

nose bridge, and ending at the base of the skull, using a scalpel; (b) skin, subcutaneous tissue, temporal 

muscle, and the periosteum were pulled aside for complete exposure of the parietal bones; (c) 5 mm 

round full-thickness calvarial defect was created in the parietal bone with a 5 mm-diameter tissue 

punch (Richter®); (d) in the control group, the defect was left empty, in the other groups it was filled 

with different glass compositions (in powder form); (e) The periosteum was sutured using a 6-0 Nylon 

non-absorbent monofilament (ETHILON®). (f) The skin was sutured using a 4-0 Nylon non-absorbent 

monofilament (ETHILON®). In the SHAM group the periosteum and skin were sutured immediately 

after step “(b)”, without making the bone defect.  

 

Figure 2. pH variation of different culture media along 8 h of incubation at 37 ºC and 5% CO2. It takes 

4 hours inside the cell incubator for the media’s pH to reach physiological levels (7.4 - 8.2). 

 

Figure 3. Live/Dead assay photomicroscopies of normal human osteoblasts (NHOsts) treated with 

Control medium (A), 45S5 (B), BGPN2.6 (C), and ETOPOSIDE (D) for 72 hours (100x 

magnification). Living cells appear in bright green whereas the dead cells appear in red. None of the 

glass conditioned media was cytotoxic to the human osteoblasts (E). Quantification of MTT assay 

displaying the absorbance as % of the control group and standard deviation of the mean (SEM) (E). 

One-way ANOVA revealed no significant difference between the groups treated with glass- 

conditioned media and the control group (ns bars). All groups showed significantly higher viability 

than the negative control group (ETOPOSIDE) (*).  

 

Figure 4. Blood serum concentration of biochemical markers of hepatic, renal and muscular damage 

after 56 postoperative days. Data are displayed as mean and SEM. One-way ANOVA and Tukey’s 

post-test were performed to compare the experimental groups (45S5 and BGPN2.6) with the SHAM 

group. No significant difference was found between treatment groups and SHAM group. This result 

reveals that none of the glass compositions were toxic to these three organs. 

 

Figure 5. Photomicrographs of histological sections of liver (upper row) and kidneys (lower row) after 

56 postoperative days. Control (A and D), 45S5 (B and E), and BGPN2.6 (C and F). Magnification 

200x. Haematoxylin and Eosin staining. No sign of damage was observed in any of the analyzed 

organs. None of the glass compositions were toxic to these organs in the studied experimental time. 

 

Figure 6. Number of micronuclei per 3000 erythrocytes. Data are displayed as mean and SEM. One- 

way ANOVA and Tukey’s post-test were performed to compare the experimental groups (45S5 and 

BGPN2.6) with SHAM. No significant difference was found between the experimental groups and the 

SHAM group (p=0.0863). This result shows that none of the glass compositions possesses mutagenic 

potential. The red arrow points to one micronucleus. 

 

Figure 7. 3D reconstructions of microcomputed tomography images of rats’ calvarias from the three 

experimental groups: Control (A-B), 45S5 (C-D), and BGPN2.6 (E-F). Images taken after 56 

postoperative days using SkyScan 1278. Almost no bone formation can be observed in the control 

group (A) after 56 days which confirms the model of a critical-sized defect. The group treated with 

45S5 (C) showed a good amount of bone within the defect yet not enough to completely fill it. The 

composition BGPN2.6 (C) was the only one that was able to completely fill the 5 mm calvarial defect 

after 56 days in one of the subjects. 



 

Table 1. Sample division into the different experimental groups  

 Number of rats 

Material 14 days 28 days 56 days 

Control 6 6 6 

Sham 6 6 6 

45S5 6 6 6 
BGPN2.6 6 6 6 

   Total:                                                                                                              72 rats 
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