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Abstract—A common practice in induction machine parameter 

identification techniques is to use external measurements of 

voltage, current, speed, and/or torque. Using this approach, it has 

been shown that it is possible to obtain an infinite number of 

mathematical solutions representing the machine parameters. 

This paper examines the identifiability of two commonly used 

induction machine models, namely the T-model (the conventional 

per phase equivalent circuit) and the inverse Γ-model. A novel 

approach based on the Alternating Conditional Expectation 

(ACE) algorithm is employed here for the first time to study the 

identifiability of the two induction machine models. The results 

obtained from the proposed ACE algorithm show that the 

parameters of the commonly employed T-model are un-

identifiable, unlike the parameters of the inverse Γ-model which 

are uniquely identifiable from external measurements. The 

identifiability analysis results are experimentally verified using 

the measured operating characteristics of a 1.1 kW three-phase 

induction machine in conjunction with the Levenberg-

Marquardt (L-M) algorithm which is developed and applied here 

for this purpose. 

Index Terms: induction motor (IM), identifiability analysis, 

parameter identification.  

I. INTRODUCTION 

UE to their reliability and low cost, induction machines  

have been widely utilized in a large variety of industrial 

applications. Different induction machine models have been 

derived to represent the machine dynamic and steady-state 

behavior [1, 2]. One of the most commonly used steady-state 

models of the induction machine is the standard per-phase 

equivalent circuit (T-equivalent circuit) shown in Fig. 1. This 

model includes five electrical parameters: 𝑅𝑠, 𝑅𝑟, 𝑙𝑙𝑠 , 𝑙𝑙𝑟 , and 

𝐿𝑚, where 𝑅𝑠 is the stator resistance, 𝑅𝑟 is the rotor resistance 

(referred to the stator), 𝑙𝑙𝑠 is the stator leakage inductance, 𝑙𝑙𝑟  

is the rotor leakage inductance (referred to the stator), 𝐿𝑚 is 
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the magnetizing inductance and s is the slip given by 

(𝑛𝑠 − 𝑛𝑟) 𝑛𝑠⁄ , where 𝑛𝑠 is the speed of the stator field and 𝑛𝑟 

is the rotor mechanical speed.  

A simple induction machine equivalent circuit that gives the 

same input impedance as the T-equivalent circuit, but with 

only two inductances, has also been proposed [3-5]. This 

equivalent circuit, referred to as the Inverse Γ-model, is shown 

in Fig. 2. For the same input voltage, the circuit produces the 

same output torque as the T-model. The relationship between 

the parameters of the T- and inverse Γ- models is given by the 

following equations:  
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where 𝐿𝑠 and 𝐿𝑟 are the self-inductances of the stator and rotor 

given by 𝐿𝑠 = 𝐿𝑚 + 𝐿𝑙𝑠and 𝐿𝑟 = 𝐿𝑚 + 𝐿𝑙𝑟  , respectively. 

The parameters of the T-model and Inverse Γ-model may be 

identified by using the standard no-load, DC and locked rotor 

tests [6]. For the T-model, it is not possible to determine 𝑙𝑙𝑠 

and 𝑙𝑙𝑟  from these tests, without making an additional 

assumption about the ratio 𝑙𝑙𝑠/𝑙𝑙𝑟 . This ratio may or may not be 

available in the machine datasheet, so lls and llr are often taken 

to be equal, or another ratio is assumed depending on motor 

classification. These assumptions are not always valid leading 

to inaccurate parameter estimation [7]. Similarly, motor 

parameters are often identified for the purpose of condition 

monitoring of a running motor that is coupled to a load. In 

such cases, it will not be possible to take the machine out of 

service in order to carry out the standard tests and an 

alternative approach is required. Several methods of parameter 

identification of the induction machine have been proposed in 

the literature [8-11]. These can be divided into two main 

categories; signal-based [12, 13] and model-based techniques 

where machine parameters are identified based on external 

measurements of voltage, current, speed, and/or torque [14-

18]. In this case, different sets of parameter values may be 

obtained depending on whether the machine model is 

identifiable or not [4, 15, 19].  

  The concept of identifiability can be explained by 

comparing the two functions shown in Fig. 3. In Fig. 3a, there 

is only one combination of parameter values that results in the 

function having a global minimum. In contrast, an infinite 

number of combinations of parameter values can result in the 

same minimum value of the function shown in Fig 3b. The 

system represented in Fig. 3a is identifiable whereas that 

represented in Fig. 3b is non-identifiable.  
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Fig. 1. Induction motor T-equivalent circuit. 

   

Fig. 2. Induction motor Inverse Γ- equivalent circuit. 

  

(a)                                                          (b) 

Fig. 3.  Estimation of hypothetical parameters 𝑝1 and 𝑝2. (a) identifiable 
system, (b) non-identifiable system. 
 

Several approaches for identifiability analysis have been 

proposed in the literature [20, 21]. More specifically, two 

approaches, the first based on a transfer function approach and 

the second on Bond graph techniques, have been applied to 

induction machine identifiability analysis [15, 22]. Using these 

techniques, it has been shown that the conventional machine 

T-model is non-identifiable. However, these approaches have 

not been employed to assess the identifiability of other 

machine models.  

In this paper, a novel identifiability analysis approach is 

proposed in which the Alternating Conditional Expectation 

(ACE) algorithm [6, 7] is used for the first time to address 

induction machine model identifiability issues. The analysis is 

employed to examine the identifiability of both the T- and 

inverse Γ- models. Unlike previous approaches, the ACE is a 

fast algorithm that does not require a priori assumptions and 

can be employed for both linear and nonlinear systems. ACE 

results confirm the un-identifiability of the T-model 

parameters while demonstrating that the inverse- model can 

be uniquely determined from externally measured machine 

waveforms. For verification purposes, an experimental model-

based approach based on the use of the Levenberg-Marquardt 

(L-M) algorithm in conjunction with measured machine 

currents and voltages is developed to identify the parameters 

of a 1.1 kW three-phase induction machine, considering both 

the T- and the inverse Γ-models. In both cases, the parameter 

identification results confirm the identifiability analysis 

outcomes obtained from the ACE algorithm. 

II. ALTERNATING CONDITIONAL EXPECTATION (ACE) 

ALGORITHM 

Since the publication of the original paper on the subject in 

1970 [2], the identifiability issue has received considerable 

attention in a number of fields including statics, economics, 

system engineering, and mathematical biology [19, 23-25]. 

The identifiability of induction machine model parameters is 

concerned with the unique association of the solution 

(identified model parameters) with the measured 

characteristics of the machine. If some parameters of a system 

model are not uniquely identifiable, there will be always 

several combinations of parameters that satisfy the solution. 

Identifiability analysis can be carried out either structurally or 

experimentally. A structural non-identifiability arises when 

there are redundant parameters in the model structure [26]. In 

experimental identifiability analysis, identifiability is tested by 

finding out if the measured information is enough to estimate 

the parameters reliably or not. 

The ACE algorithm was initially developed in 1985 for the 

purpose of regression analysis [27]. It is a simulation-based 

approach that can be used to determine whether the model is 

identifiable or not. The power and usefulness of this algorithm 

lie in its ability to identify the effect of one or more 

independent variables (predictors) on a dependent variable 

(response) and reveal accurate relationships between them. In 

addition, ACE is a non-parametric approach that does not 

require any assumptions about the functional relationship 

between the dependent and independent variables [28, 29]. 

In the ACE approach, the problem of estimating a linear 

function of n-dimensional predictors 𝐏 = (𝑝1, 𝑝2, ..., 𝑝𝑛) and a 

response Y is replaced by estimating 𝑛 separate one-

dimensional functions of the predictors and a function of the 

response [29] as expressed by:  
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where 𝜃 is a function of the response variable Y, ∅𝑖 is a 

function of the predictor 𝑝𝑖  and  is an independent normal 

random variable. These transformations are achieved through 

minimizing the variance of a linear relationship between the 

transformed response variable and the summation of 

transformed predictor variables. The normalized error variance 

(𝑒2) (for  ‖𝜃‖2 = 1) is given by: 
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The minimization of the error is carried out through a series 

of individual function minimizations that result in the 

following expressions: 
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These two equations represent conditional expectation (E) 

and iterative minimization, from which the name of 


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Alternating Conditional Expectation is derived. Fig. 4 shows 

the operational steps of the ACE algorithm.  

 For a simple two dimensional case, considering two 

random variables p and y with zero expectation 𝐸[𝑝] =
𝐸[𝑦] = 0, the functions 𝜃(𝑦) and 𝜙(𝑝) are called optimal 

transformations if they satisfy: 
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This is equivalent to the maximization of the correlation 

coefficients between the transformed variables 𝜃(𝑦) and 

𝜙(𝑝). ACE estimates the optimal transformations 𝜃̂(𝑦) and 

𝜙̂(𝑝) which maximize the linear correlation 𝑅 between 𝜃̂(𝑦) 

and 𝜙̂(𝑝) [30] non-parametrically (i.e. based on classification 

and ranking, not actual numbers): 

))(),((sup},{
^^

,
,

^^

^^ pyRpy 


                                       (7) 

with a correlation coefficient of: 
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where the goal is to minimize ‖𝜃(𝑦) − 𝜙(𝑝)‖2 with ‖𝜃‖2=1. 

The maximum correlation coefficient R (−1 ≤ 𝑅 ≤1) is 

used as a measure of the relationship between two variables p 

and y.  R=0 if and only if p and y are independent. A large 

correlation coefficient, such as ±0.8, would suggest a strong 

relationship between parameters which may make a model 

not-identifiable. On the other hand, a small correlation 

coefficient, such as ±0.3, suggests weaker parameter 

dependence and an identifiable model. This concept can be 

extended to higher-dimensional problems with more than one 

predictor variable, i.e. 
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The calculation of (9) is carried out iteratively by the 

algorithm where new estimates of the transformation of the 

response serve as an inputs to new estimates of the 

transformation of the predictors and vice versa.  

A simple example to demonstrate the use of the ACE is to 

consider a multivariate (multi-dimensional) case with three 

predictors (𝑝1, 𝑝2, 𝑝3) and a response y. Five hundred tuples of 

predictors are drawn independently and randomly from the 

interval [0, 1] and the response is calculated for each tuple 

from (10), imitating 500 different observations.  

)(tan5.0 2
13

1 ppy                                                   (10) 

This was repeated three different times and, accordingly, 

three different matrices 𝐤𝐢 = [𝑦 𝑝1  𝑝2  𝑝3] (i=1, 2 and 3) with 

dimension of 500 × 4 are obtained and serve as inputs for the 

ACE algorithm. Functionally related parameters provide quite 

stable optimal transformations from one sample to another and 

from the one matrix to another. If there is a relation between 

parameter, all matrices ( 𝐤𝟏, 𝐤𝟐 and 𝐤𝟑) render the same 

optimal transformations from one sample to another and vice 

versa. 

 
Fig. 4. ACE Algorithm description. 

Fig. 5 shows a scatterplot of these data sets after applying 

ACE three times, where the three different colors illustrate the 

three estimates ( 𝐤𝟏, 𝐤𝟐 and 𝐤𝟑). One can see that, for each 

estimate (a row of the matrix k), only the first three columns 

(𝑦, 𝑝1 and 𝑝2) are functionally related (based on Equation 10) 

and the forth (𝑝3) is independent and, thus nearly linear 

transformations for all variables except 𝑝3 exist. The 

transformations of the first three parameters (𝑦, 𝑝1 and 𝑝2) 

remain stable from one sample to another and from one 

estimate to another, while the transformation of the fourth 

parameter (𝑝3) looks different. The estimated regression 

model of (10) from ACE transformed variables has a 

maximum correlation value of 0.99986 which is almost equal 

to 1. Such a high correlation coefficient between the 

parameters means that the model is not identifiable. 

III. IDENTIFIABILITY ANALYSIS OF INDUCTION MACHINE 

MODELS USING ACE  

In this section, the ACE algorithm is used to assess the 

identifiability of induction machine T- and inverse Γ- models. 

To avoid complexity, skin effect, magnetic saturation and iron 

losses have been assumed to be negligible, a common 

assumption in parameter identification studies [31, 32].  
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A. T- Model analysis 

The induction machine T-model (Fig. 1) is a multivariate 

model with a response (𝑍𝑒𝑞) and five predictors (𝑅𝑠 , 𝑅𝑟 , 𝑥𝑙𝑠, 

𝑥𝑙𝑟 , and 𝑥𝑚). Five hundred tuples of 𝑅𝑠, 𝑅𝑟, 𝑥𝑙𝑠, 𝑥𝑙𝑟  and 𝑥𝑚 

are independently and randomly drawn from the interval [0, 1] 

and 𝑍𝑒𝑞  was calculated for each tuple. This was carried out 

three different times to obtain three different (500 × 6) 

matrices 𝐤𝐢  = [𝑍𝑒𝑞   𝑅𝑠  𝑅𝑟  𝑥𝑙𝑠 𝑥𝑙𝑟 𝑥𝑚] (i=1, 2 and 3) to serve 

as inputs to the ACE algorithm. The optimal transformations 

of T-model parameters are achieved through minimizing the 

variance between the transformed response variable 𝜃(𝑍𝑒𝑞) 

and the summation of transformed predictor 

variables ∑ ∅𝑖(𝐤(𝑝𝑖))𝑛
𝑖=1 , where 𝐏= [𝑅𝑠  𝑅𝑟  𝑥𝑙𝑠 𝑥𝑙𝑟  𝑥𝑚]. The 

optimal transformations of the five predictors 𝑅𝑠, 𝑅𝑟 , 𝑥𝑠, 𝑥𝑟 , 

and 𝑥𝑚 for the three different estimated matrices are shown in 

Fig. 6. It is difficult to draw the scatterplot for complex 

variables ( 𝑍𝑒𝑞) because it would require four dimensions (for 

the real and imaginary parts of 𝑍𝑒𝑞  and ). Therefore, a 

scatterplot of |𝑍𝑒𝑞| is plotted to represent 𝑍𝑒𝑞.  

For functionally related parameters, almost the same 

optimal transformations from one sample to another and from 

one estimate to another will be obtained. Nearly linear 

transformations are obtained for |𝑍𝑒𝑞|, 𝑥𝑙𝑠, 𝑥𝑙𝑟  and 𝑥𝑚. These 

transformations remained stable for all estimates and, thus the 

parameters are functionally related. However, different 

transformations are obtained for 𝑅𝑠  and 𝑅𝑟. Optimal 

transformations of functionally related parameters are 

invariant under different estimates for each new drawn 

matrix 𝐤. A non-identifiable model causes parameters to be 

functionally related. The maximum correlation between the 

response and the five predictors is 0.99583. Such a high 

correlation coefficient between the parameters means that 

there is a strong dependence between them which is a 

characteristic of a non-identifiable model. 

 
Fig. 5. ACE plot of Equation (10). 

 
Fig. 6. ACE optimal transformations plot of the T-model parameters. 
 

B. Inverse Γ-Model analysis  

To assess the identifiability of the inverse Γ-model, the 

ACE algorithm is used to estimate the transformations of a 

response 𝑍𝑒𝑞
′  and a set of four predictor variables (𝑅𝑠, 𝑅𝑟

′ , 𝐿𝑙𝑠
′  

and 𝐿𝑚
′ ). 𝑅𝑠

′ , 𝑅𝑟
′ , 𝑥𝑙𝑠

′ , and 𝑥𝑚
′  are independently drawn and the 

total impedance 𝑍𝑒𝑞
′  is calculated for each estimate. The 

optimal transformations for the response (|𝑍𝑒𝑞
′ |), and the four 

predictors (𝑅𝑠 , 𝑅𝑟
′ , 𝑥𝑙𝑠

′ , and 𝑥𝑚
′ ) are shown in Fig. 7. The 

transformations look different from one estimate to another. 

This demonstrates the independence of the parameters and 

thus the identifiable nature of the model. 

The maximum total correlation between the response 𝑍𝑒𝑞
′  

and the four predictors was calculated at 0.0023038. This very 

low correlation coefficient between the inverse Γ-model 

impedance and the four electrical parameters means there is no 

dependence between the parameters. Thus, the parameters of 

the inverse Γ-model can be uniquely identified. 
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Fig. 7. ACE optimal transformations plot of the Inverse Γ-model parameters. 

IV. EXPERIMENTAL VERIFICATION 

In this section, the identifiability analysis presented in 

Sections II and III is verified using the Levenberg-Marquardt 

optimization tool in conjunction with measured time-domain 

data from a 1.1 kW, 50 Hz, 230/400 V, 4-poles three-phase 

induction machine operating under steady-state conditions. 

The Levenberg-Marquardt (L-M) [33] optimization tool is 

developed and employed to estimate the parameters of the T- 

and Inverse Γ-models of the induction machine. In the case of 

an identifiable model, the results should not be affected by the 

identification algorithm initialization. The algorithm will 

converge to the same solution (within acceptable limits) 

regardless of the initial conditions used to initialize the 

identification search. For a non-identifiable model, different 

parameter values will be obtained for different initial 

conditions (i.e. for different runs of the algorithm). 

Herein, the L-M algorithm is used to find the best-fit 

machine parameters by minimizing an objective function, the 

weighted square errors between the measured data vector 𝐘𝐦 

and the calculated data vector 𝐘𝐜. This is known as a chi-

squared error function (χ2) [33], given by:  
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       (11) 

where q is the number of data points, 𝜔𝑖 is a measure of the 

error in the measurement, 𝐖 is a weighting matrix with 

𝐖ii = 1/𝜔𝑖
2. The goal is to minimize χ2 with respect to the 

parameters by finding the perturbation h to the parameter 

vector P.  

The L-M algorithm is an optimization technique that uses a 

combination of two methods; the Gauss-Newton method and 

the Gradient Descent method. The parameter values are 

updated in the opposite direction to the gradient of the 

objective function (error) and the error is reduced by assuming 

that the objective function is approximately quadratic near to 

the optimal solution. 

Like many parameter estimation algorithms, especially for 

nonlinear models, the L-M algorithm is based on the 

minimization of an index (usually an error). The most 

commonly applied procedure is to search the best parameters 

set 𝐏∗ in the search space S that minimize the error function 

err, 

))(min( PEerr                                                                 (12) 

The update relationships [33] are given by: 

)( cm YYWJ  Th                                                         (13) 

)()]([ cm YYWJWJJWJJ  TTT hdiag                   (14) 

where 𝛼 is a positive scalar which determines the length of the 

step in the steepest-descent direction, J is an 𝑞 × 𝑛 jacobian 

matrix [∂𝐘c ∂𝑝⁄ ] represents the local sensitivity of 𝐘𝐜 to 

variation in parameters, h is the perturbation that moves the 

parameters in the direction of the steepest descent, and 𝜆 is the 

damping parameter.  

For each step (iteration), if the present 𝜆 produces a smaller 

error, then the step is applied and 𝜆 is divided by a constant 𝜎. 

In contrast, if the present 𝜆 produces a higher error, the step is 

discarded and 𝜆 is multiplied by 𝜎. L-M acts in a similar way 

to the Gauss-Newton method when parameters are close to 

their optimum values (small values of ) and similar to the 

Gradient Descent method at large values of . Fig. 8 shows the 

operational steps of L-M algorithm. 

Steady-state experimental measurements of stator voltage 

(𝑣𝐴𝑚) and current (𝑖𝐴𝑚) were recorded with a digital 

oscilloscope using current and voltage probes. Motor speed 

(ω𝑟) was also measured using an encoder with a digital 

display unit.  

The measured current is compared with calculated current 

with the model parameters adjusted by the L-M algorithm to 

minimize the error and to find the model parameters that give 

the best match between the two current sets. The block 

diagram of the identification process is shown in Fig. 9. 
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Fig. 8. L-M Algorithm description. 

A. T- Model results 

For the T-model, the L-M algorithm continuously updates 

the five parameter values (𝑅𝑠, 𝑅𝑟, 𝑙𝑙𝑠, 𝑙𝑙𝑟 , and  𝐿𝑚) and feed 

them to the system model (constructed in Matlab/Simulink)  to 

calculate the phase current until a close agreement between the 

measured and calculated currents is achieved. 

The process is then repeated for different initial conditions. 

Fig. 10 shows the convergence of the estimated parameters of 

the T-Model for different estimates. Fig. 11 shows the error 

function convergence for the 1
st
 estimate. Table I shows three 

sets of L-M estimated parameter values (each obtained with 

different initial conditions). The total impedance 

corresponding to each estimate are also calculated and shown 

in the Table.   

 

 
Fig. 9. General structure of the identification algorithm. 

It can be observed from the results given in Table I that, 

completely different sets of parameters can be obtained 

depending on the initial conditions. The process is then 

repeated for different initial conditions. Table I shows three 

sets of L-M estimated parameter values (each obtained with 

different initial conditions). The total impedance 

corresponding to each estimate are also calculated and shown 

in the Table.  Fig. 10 shows the convergence of the estimated 

parameters of the T-Model for different estimates. Fig. 11 

shows the error function convergence for the 1
st
 estimate. It 

can be observed from the results given in Table I that, 

completely different sets of parameters can be obtained 

depending on the initial conditions. Despite the significant 

differences between the three sets of parameters, the 

calculated current closely matches the measured current in 

each case. This confirms that the T-model is non-identifiable. 

 

 

 

 

 

Fig. 10. Convergence of the estimated parameters of the T-Model for different 
estimates. 
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Fig. 11. The the error function convergence for the 1st  estimate (T-model). 

TABLE I.  PARAMETER ESTIMATION OF T-MODEL 

Pars 1st estimate 2nd estimate 3rd estimate 

𝑅𝑠 10.4824 Ω 5.1722 Ω 7.3494 Ω 

𝑅𝑟 7.6361 Ω 2.6230 Ω 4.3881 Ω 

𝑙𝑙𝑠 0.0263 H 0.1346 H 0.0696 H 

𝑙𝑙𝑟 0.0108 H 0.0199 H 0.0177 H 

𝐿𝑚 0.3387 H 0.2356 H 0.2975 H 

|𝑍𝑒𝑞| 115.58 Ω 115.54 Ω 115.37 Ω 

∠𝑍𝑒𝑞 80.35 º 81.34 º 80.45 º 

Fig. 12 shows the close agreement between the waveform 

of the measured current (𝐼𝐴𝑚) and that of the calculated 

current (𝐼𝐴𝐶) obtained from one of the parameter sets given in 

Table I (1
st
 estimate) at a machine speed of 1491 rpm (slip of 

0.006). Similar levels of agreement were obtained when using 

the other sets of the estimated parameters given in Table I. Fig 

13 shows the squared error (𝜒2) as a function of rotor and 

stator leakage inductances based on the measured data. As 

shown, infinite combinations of the two inductance values 

result in the same minimum value of squared error, i.e. there is 

no unique global minimum. This confirms that it is not 

possible to determine 𝑙𝑙𝑠 and 𝑙𝑙𝑟  uniquely using external 

measurements of voltage, current, and speed.  

 
Fig. 12. Measured (𝐼𝐴𝑚) and calculated (𝐼𝐴𝑐) stator currents waveforms 
coresponding to the optimal solution of the 1st estimate (T-Model). 

  
Fig. 13. The sum of the squared error as a function of 𝑙𝑙𝑠 and 𝑙𝑙𝑟 based on the 
measured data (T-Model). 

B. Inverse Γ- model results 

With the inverse Γ-model, the parameter vector P represents 

a set of the four parameters (𝑅𝑠, 𝑅𝑟
′ , 𝑙𝑙𝑠

′ , and  𝐿𝑚
′ ). The same 

process described above was repeated, using the measured 

waveforms to estimate the parameters of the inverse Γ-model. 

Fig. 14 shows the convergence of the estimated parameters of 

the Inverse Γ-Model for the different estimates. Fig. 15 shows 

the error function convergence for the 1st estimate. Table II 

shows three sets of estimated parameters with different initial 

conditions. It is obvious that, regardless of initial conditions, 

the L-M algorithm can successfully estimate the same 

parameter vector of the inverse Γ-model (within acceptable 

limits). 

 

 

 

 
Fig. 14. Convergence of the estimated parameters of the Inverse Γ-Model for 

different estimates. 

TABLE II.  PARAMETER ESTIMATION OF INVERSE Γ -MODEL 

Pars. 1st estimate 2nd estimate 3rd estimate 

𝑅𝑠 3.6848 Ω 4.0599 Ω 3.8638 Ω 

𝑅𝑟′ 2.368 Ω 2.6858 Ω 2.4024 Ω 
𝑙𝑙𝑠′ 0.1098 H 0.1118 H 0.1101 H 

𝐿𝑚′ 0.2627 H 0.2594 H 0.2616 H 

|𝑍𝑒𝑞| 115.4 Ω 115.53 Ω 115.29 Ω 

∠𝑍𝑒𝑞 79.87º 80.79º 79.94º 
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Fig. 15. The error function convergence for the 1st  estimate (Inverse Γ-
Model).  

Fig. 16 shows the measured (IAm) and the calculated 

current (IAC) waveforms with one of the parameter sets given 

in Table II (1st estimate) at a machine speed of 1491 rpm (slip 

of 0.006). As shown, very good agreement between the 

measured and calculated current waveforms is realized. 

Similar agreement between current waveforms is obtained 

with the other sets of estimated parameters. The squared error 

(χ2) as a function of the two inductances (𝑙𝑙𝑠′ and 𝐿𝑚′) based 

on the measured data is shown in Fig. 17. As illustrated, there 

is only one optimal combination of the two parameter values 

(𝑙𝑙𝑠′ ≈ 0.11 H, 𝐿𝑚
′ ≈ 0.26 H) that satisfies the objective 

function and provides one global minimum. 

 
Fig. 16. Measured (𝐼𝐴𝑚) and calculated (𝐼𝐴𝑐) stator currents waveforms 
coresponding to the optimal solution of the 1st estimate (Inverse Γ-Model). 

 
Fig. 17. The sum of the squared error as a function of of 𝑙𝑙𝑠′ and 𝐿𝑚′ based on 
the measured data (Inverse Γ-model). 

V. CONCLUSION 

This paper presented a detailed study of the identifiability of 

the parameters of the T- and inverse Γ-equivalent circuits of 

the induction motor. The identifiability of both models is 

investigated using a novel approach based on the Alternative 

Conditional Expectation (ACE) algorithm. The analysis shows 

that the machine T-model is non-identifiable whilst the inverse 

T- model is. Results are experimentally verified using a 1.1 

kW, 4-pole three-phase induction machine. 

Using the ACE algorithm, a high correlation coefficient of 

about 0.996 between the parameters of the T-model is 

obtained suggesting that the parameters are dependent on each 

other and cannot be uniquely identified. On the other hand, 

ACE produces a small maximum correlation coefficient of 

only 0.0023 between the parameters of the inverse Γ-model 

suggesting that the parameters of the model are identifiable. 

These results are verified using measured machine waveforms 

in conjunction with the Levenberg-Marquardt (L-M) 

algorithm. When comparing measured and calculated current 

waveforms to minimize the sum of the squared errors, an 

infinite combination of parameter values produce the same 

input impedance of the T-model.  In contrast, for inverse Γ-

model, only one combination of parameter values provides the 

equivalent impedance and a single global minimum of the 

objective function is obtained.  
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