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Abstract 

This paper presents a new Data Envelopment Analysis (DEA) target setting approach that uses 

the Compromise Programming (CP) method of multiobjective optimization. This method 

computes the ideal point associated to each Decision Making Unit (DMU) and determines an 

ambitious, efficient target that is as close as possible (using an lp metric) to that ideal point. The 

specific cases p=1, p=2 and p= are separately discussed and analyzed. In particular, for p=1 

and p=, a lexicographic optimization approach is proposed in order to guarantee uniqueness of 

the obtained target. The original CP method is translation invariant and has been adapted so that 

the proposed CP-DEA is also units invariant. An lp metric-based efficiency score is also defined 

for each DMU. The proposed CP-DEA approach can also be utilized in the presence of 

preference information, non-discretionary or integer variables and undesirable outputs. The 

proposed approach has been extensively compared with other DEA approaches on a dataset from 

the literature. 
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1. Introduction 

Data envelopment analysis (DEA) is a non-parametric methodology generally used to assess the 

relative efficiency of a set of homogeneous Decision Making Units (DMUs) (Cooper et al. 2004, 

2006). It is assumed that the inputs and outputs values for all units are explicitly known and the 

aim is to determine whether each unit is efficient or not. The latter corresponds to the case that 

the same (or more) outputs can be produced by consuming less inputs. The efficient DMUs are 

located on the efficient frontier, which corresponds to the best practice and the distance of a 

DMU to the efficient frontier is used to define an efficiency score. 

Another key concept in DEA is the Production Possibility Set (PPS) which includes all 

technologically feasible operating points. This set is inferred from the observed DMUs using 

some standard axioms (like envelopment of the observed data, free disposability and convexity) 

together with the Minimum Extrapolation Principle. The efficient frontier is actually the non-

dominated subset of the PPS. 

In addition to computing an efficiency score for each unit, DEA generally determines a target 

operating point on the efficient frontier. That target indicates the amount of input reduction and 

output increment that is required for the unit under evaluation to become efficient. Since the 

target is computed as a linear combination of some efficient DMUs, this information is useful for 

each unit to know its benchmarks (a.k.a. reference units). There are several DEA approaches for 

target setting, considering different orientations or projection directions and different ways of 

measuring the distance to the efficient frontier. Thus, DEA models that use Directional Distance 

Function (DDF) project an inefficient unit on a specific direction that can be exogenous or 

endogenous (e.g. Färe et al. 2013, Pastor et al. 2016, Wang et al. 2019, etc.). Another important 

class of DEA models aims at determining the closest efficient target (e.g. Aparicio et al. 2007, 

2017, Aparicio 2016). Other methods follow the direction of the gradient of an efficiency 

potential function (Lozano and Calzada-Infante 2018), move towards the ideal point associated to 

the DMU (Asmild and Pastor 2010) or use some other criteria to determine the targets (e.g. 

Korhonen et al. 2018, Lee 2018). 

As indicated above, most DEA approaches compute targets as a by-product of the efficiency 

measurement goal. However, proper DEA target setting should be approached from a 
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multiobjective optimization perspective so that any Pareto efficient operating point dominating 

the DMU being projected can be selected as target. There are different multiobjective 

optimization techniques that can be used in this regard (see, for example, Marler and Arora 

2004). Some of those techniques involve an interactive articulation of preferences (which 

requires a complex iterative process and a great deal of involvement by the DMU) or a posteriori 

articulation of preferences (which may produce cognitive stress on the DMU and requires visual 

aids to aid the DM in the target selection step). Compromise Programming (CP), on the other 

hand, does not require preference information (although it can incorporate it in the form of 

weights) and is therefore a simple and effective multiobjective optimization method. In addition 

it has a fine graphical interpretation that can be used to explain how it works. This makes this 

technique particularly fitting for the DEA target setting task considered. 

Hence, in this paper a CP DEA target setting approach is proposed. CP is a multiobjective 

optimization method that dates back to Yu (1973) (see also Freimer and Yu 1976) and is also 

known as the Yu family solution of bargaining problems (Thomson 1994). The method computes 

the closest target (using lp metric) to the ideal point. This ideal point must be previously 

computed and, as its name suggests, it is not achievable in general. Parameter p can take values 

 1p ,   with values 1p  , 2p   and p    singled out, corresponding to rectangular, 

Euclidean and Tchebycheff distances, respectively. The value p    is also known as MinMax 

or Tchebycheff approach. The CP model is known to be translation invariant and to lead to a 

Pareto optimal solution for 1 p  , with the solution being unique for 1 p   (Yu 1973). 

The proposed approach radically differs from traditional DEA target setting in the point of view 

adopted. Thus, most methods look at the efficient frontier from inside the PPS. They use the 

observed DMU as home base and measure input and output improvements with respect to the 

current situation. However, consistent with its CP character, the proposed target setting approach 

computes an ideal point which represents the maximum aspiration levels along the different input 

and output dimensions. This ideal point is generally infeasible (i.e. too ambitious) but can be used 

as reference so as to try to get as close to this ideal point as possible. Therefore, in CP-DEA the 

perspective is from outside the PPS and the targets computed are as ambitious as they can get. 
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The structure of this paper is as follows. Section 2 reviews the implementation of the CP method 

in DEA. Section 3 presents and discusses the proposed CP-DEA approach. Section 4 provides a 

numerical example to illustrate the proposed approach.  Section 5 compares the proposed 

approach with different DEA approaches using a dataset from the literature. Finally, the paper is 

concluded in section 6 with some further research outlined. 

2. Literature review 

CP has been used before in DEA but not for target setting. Almost all existing DEA CP 

approaches use a multiplier formulation to compute a common set of weights (CSW) (e.g. 

Despotis 2002, Hashimoto and Wu 2004, Kao and Hung 2005, Zohrehbandian et al. 2010, etc). 

This type of approaches assumes that the multiple objective functions to maximize are the 

efficiencies of the DMUs and considers either  1,1,...,1  or the vector formed with individual 

DMUs’ efficiency scores (denoted by 
CCR
θ ) as the ideal point. Some methods also use 

 0,0,...,0  as an anti-ideal point. Table 1 provides a classification of such methods. The table 

also includes other closely related DEA approaches which, without being labeled CP, are closely 

related (e.g. Roll and Golany 1993, Hosseinzadeh Lofti et al. 2000, Cook and Zhu 2007, Wang et 

al. 2011a, Davoodi and Rezai 2012). 

==================== Table 1 =================== 

Table 2 reports the different mathematical formulations in DEA CP literature. Constant Returns 

to Scale (CRS) are assumed for the production technology in all formulations. A major difference 

between our proposed CP-DEA approach and the existing DEA CP methods is that CP-DEA is 

based on envelopment forms and aims at target setting instead of ranking DMUs. Except when 

indicated otherwise, in all models of Table 2, we assume that 
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where DMU j consumes ijx  value of input i to produce kjy value of output k for all 1 2j , ,...,n , 

1 2i , ,...,m  and 1 2k , ,...,s , 0   is non-Archimedean, iu and kv  are the (common set of 

weight) shadow prices of input i and output k, respectively for all 1 2i , ,...,m  and  1 2k , ,...,s . 

Also jE  is the Common Set of Weights (CSW) efficiency score and CCR
j  is the efficiency score 

‘under the best possible light’ for DMU j. In addition,  1 2
CCR CCR CCR CCR

n, ,...,   θ  denotes  

the vector of individual DMUs’ efficiency scores. 

==================== Table 2 =================== 

A somewhat different CSW DEA CP approach was proposed by Kao (2010) for ranking 

alternatives in a MCDM context. Kao (2010) considers a pure output DEA model and assumes an 

ideal point defined by the best observed value among DMUs, i.e., maxmax
k kj

j
y y , and an anti-

ideal point given by minmin
k kj

j
y y . Also, Carrillo and Jorge (2016) proposed a CSW DEA CP 

approach for ranking alternatives in a MCDM context. The two objective functions they consider 

are minimizing the virtual input and maximizing the virtual output.  

The parameter p in CP represents the importance given to the computation of the pl  distance to the 

maximum regret. For 1p  , the maximum regret is considered as important as all other regrets and 

CP minimizes the sum of the regrets (i.e. the average regret). On the contrary, for p   , the 

maximum regret is the only one that matters and CP minimizes the maximum regret. For 

1 p  , we have all intermediate cases among those two extremes. For 1 p  , the solution 

is guaranteed to be Pareto optimal while for p    only weak Pareto optimality is guaranteed. 

Uniqueness is only guaranteed when 1 p  . Finally, when the constraints are linear as 
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generally they are in DEA, the resulting optimization model is Linear Programming (LP) only for 

1p   and p   . 

Zohrehbandian et al. (2010) only considered the cases, 1p   and p   , and they obtained LP 

formulations. Same happens in the work of Carrillo and Jorge (2016). Despotis (2002) considered 

a convex linear combination of 1p   and p    distances as the objective function. Hashimoto 

and Wu (2004) only considered the values 1p  , 2p   and p    and recommended 2p   due 

to the uniqueness of the solution. Kao and Hung (2005) claimed that 1p   and p    are not 

good choices because they may produce alternative solutions, but 2p  , which compromises 

among the regrets “in an statistical sense”, is probably the most appropriate assumption. For 

p   , they considered the classical scalarizing function that utilizes the 1l  distance in order to 

guarantee Pareto optimality and to discriminate among the closest solutions computed applying 

l . Note that their proposed scalarizing function is equivalent to the augmented Tchebycheff 

method. This method, together with the modified and lexicographic Tchebycheff methods, have 

been applied in different multiobjective DEA approaches (e.g. Chen et al. 2009, Despotis et al. 

2016). 

Kao (2010) studied two different CSW DEA CP approaches, one based on the absolute weighted 

distance to the ideal point and the other based on the relative distance to both the ideal and anti-

ideal points. In the first case, 2p   is considered and the solution is obtained analytically using 

Lagrange’s method. For the relative distance model, 1p   is assumed to compute the distances but 

then the objective function minimizes the square of those 1l  distances (summed for all DMUs). 

The final remark is that there are many DEA approaches (e.g. Wang and Luo 2006, Wang et al. 

2011b, Sun et al. 2013) that define and utilize an ideal DMU  min maxx , y   

 1 2 1 2
min min min max max max

m sx ,x ,...,x , y , y ,..., y  with coordinates minmin
i ij

j
x x  and maxmax

k kj
j

y y . 

This should not be confused with the ideal point  0 0
min maxx , y  in our method (or in MEA, for that 

matter), which is specific for each DMU 0 and requires, as it can be seen in the next section, 

solving (m+s) LP models, one for each input and output index. 
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Apart from the existing DEA CP approaches reviewed above, it is relevant to mention the 

Multidirectional Efficiency Analysis (MEA) proposed by Asmild and Pastor (2010) which 

computes the target using two phases. Phase I consists of moving along the direction from the 

DMU being projected to its associated ideal point. Thus, the target is computed moving away 

from the observed DMU towards the efficient frontier. The proposed CP-DEA approach, 

however, computes the target from outside, looking for the closest feasible point to the ideal 

point. In this regard, the proposed CP-DEA approach is more similar to other outside-projection 

approaches, based on the weighted Tchebycheff method, that can be used to sample the whole 

efficient frontier by varying the weight vector (e.g. Gutiérrez and Lozano 2016) or in an 

interactive DEA MOLP fashion (e.g. Ebrahimnejad and Tavana 2014, Tavana et al. 2018). 

3. Our proposed CP-DEA approach 

First of all, we normalize the observed input and output data using the standard deviation of the 

corresponding input or output variable. The normalized (and dimensionless) input and output 

values are computed as 

ij kj
ij kjx y

i k

x y
ˆ ˆx i j , y k j     

 
 (2) 

Now, we define the dimensionless PPS for the Variable Returns to Scale (VRS) case as follows: 

1 0
VRS tˆ ˆˆ ˆ ˆ ˆT {( x, y )| x X , y Y ,e , }.          (3) 

It is clear that 
VRS

T  has a one-to-one correspondence with the original VRS PPS 

1 0VRS tT {( x, y )| x X , y Y ,e , }.          (4) 

This specific normalization allows the proposed CP-DEA approach to be units invariant and, in the 

VRS case, also translation invariant. Note, in this regard, that since the CP method is based on the 

pl  distance, it is translation invariant. 
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In order to project a certain DMU 0 onto the efficient frontier, we must compute its associated 

dimensionless ideal point    0 0 10 20 0 10 20 0
min max min min min max max max

m sˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆx , y x ,x ,...,x , y , y ,..., y  whose 

coordinates are obtained by solving the corresponding LP models for each input i and each output 

k, which aim at improving each input and output dimension in turn as much as possible. The 

following models compute the input and output entries of the ideal point respectively: 

0

0

0

Min

s.t.

1

0 free

min
i i

j i' j i'
j

j ij i
j

j kj k
j

j
j

j i

ˆ ˆx x

ˆ ˆx x i' i

ˆ ˆx x

ˆ ˆy y k

ˆj x



   

 

  

 

  









 

(5) 

0

0

0

Max

s.t.

1

0 free

max
k k

j ij i
j

j k ' j k '
j

j kj k
j

j
j

j k

ˆ ˆy y

ˆ ˆx x i

ˆ ˆy y k ' k

ˆ ˆy y

ˆj y



  

   

 

 

  









 

(6) 

The above models are analogous to the ones used in the MEA approach of Asmild and Pastor 

(2010) except that they are formulated on the dimensionless input and output variables. However, 

while MEA uses a DDF approach that projects DMU 0 along the direction from that unit to its 

associated ideal point, the proposed CP-DEA approach considers a reverse projection and looks 

at the PPS from outside, minimizing the distance from the ideal point to the PPS, i.e. projecting 

the ideal point onto the PPS frontier. This idea has a nice graphical interpretation where different 

iso-distance curves of the objective function are depicted starting from the dimensionless ideal 

point increasingly until one of them is tangent to the subset of the dimensionless PPS that 

dominates DMU 0. Actually, the point of tangency is the obtained target, as it is the closest 

feasible point (among those that dominate DMU 0) to the dimensionless ideal point of DMU 0. 

Therefore, the proposed CP-DEA model can be formulated as 
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   0 0

0

0

Min

s.t.

1

0 free free

min max

p

j i' j i i
j

j kj k k
j

j
j

j i k

ˆ ˆ ˆ ˆx, y x , y

ˆ ˆ ˆx x x i

ˆ ˆ ˆy y y k

ˆ ˆj x i y k



   

   

 

    







 (7) 

Let 1 p  . According to the definition of pl  metric, we have 

   

   

1

0 0 0 0

1

0 0

/ p
p p

min max min max
i i k k

p i k

/ p
p p

min max
i i k k

i k

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆx, y x , y x x y y

ˆ ˆ ˆ ˆx x y y

 
      

  

 
    
  

 

 

 (8) 

Since the power function is monotonic, the 1 p  exponent can be omitted from the corresponding 

objective function of model (7). For p   , we have  

     
    

0 0 0 0
i

0 0

max max max

max max max

min max min max
i i k k

k

min max
i i k k

i k

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆx, y x , y x x , y y

ˆ ˆ ˆ ˆx x , y y


    

  

 (9) 

In all cases, the target unit corresponding to the dimensionless target point computed by above 

model (7) can be recovered as 

yx
i i i k k k

ˆ ˆx x i , y y k       (10) 
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Let us consider each of the three typical values for parameter p, starting with 2p  . In that case, 

model (7) involves a quadratic programming (QP) problem, with the objective function  

   
2 2

0 0Min min max
i i k k

i k

ˆ ˆ ˆ ˆx x y y     (11) 

For 1p   the objective function of model (7) becomes 

   0 0Min min max
i i k k

i k

ˆ ˆ ˆ ˆx x y y     (12) 

and can be simply rewritten as 

Min i k
i k

ˆ ˆx y   (13) 

Hence, the resulting model can be shown to be equivalent to the classical additive DEA model. 

The CP-DEA perspective, however, is different and, for example, allows us to realize that this 

model may have alternative optima, which means the target is not uniquely determined. This 

defect appears in the classical additive DEA model (and in other slacks-based DEA models like 

the Range Adjusted Measure of efficiency, RAM, of Cooper et al. 1999 or the Slacks-based 

Inefficiency SBI model of Fukuyama and Weber 2009) and it is generally neglected and ignored. 

The issue of alternative targets is more widespread than it is acknowledged, for example, in the 

classical radial BCC DEA model of Banker et al. (1984) where the target is determined by the 

slacks maximization in phase II, which in fact uses a rectangular metric. The solution we propose 

to uniquely determine the CP-DEA target for the 1p   case is a lexicographic optimization 

approach that uses the 2p   distance to select among the possible alternative optima of (13), i.e.  

        0 0 0 0
1 2

Lex Min min max min maxˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆx, y x , y , x, y x , y   (14) 
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Since for 2p   the solution is guaranteed to be unique, this seems to be a simple and reasonable 

way of breaking ties and selecting among the closest l1 targets. Note that the 2p   objective 

function involves QP. However, that step is not necessary if there are no alternative optima for 

1p  , which can be ascertained from the optimal dual solution for 1p   checking whether any 

dual variable is zero. 

For p   , we have a similar scenario where the solution of model (7) may not be unique. 

Therefore we propose using a similar lexicographic optimization approach. i.e. 

        min max min max
0 0 0 0

2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆLex Min x, y x , y , x, y x , y


   (15) 

As before, the 2p   objective function, whose aim is to select among the closest l2 targets is 

only necessary if there are alternative optima for p   , which can be ascertained from the 

corresponding optimal dual solution. 

Therefore, the proposed CP-DEA approach, (with the lexicographic enhancements commented 

above for 1p   and p   ), can compute an efficient and unique target  * *ˆ ˆx , y . We address 

now the question of computing an efficiency score for DMU 0 based on the target obtained 

above. 

Definition 1. The CP-DEA efficiency score is defined as 

   
0

0 0

1

1

p

* *

p
ˆ ˆ ˆ ˆx , y x , y

 
 

 
(16) 

where  * *ˆ ˆx , y  is the obtained target unit from the CP-DEA model. 

It is clear that 00 1
p

   . Moreover, 0 1
p

   if and only if    0 0
* *ˆ ˆ ˆ ˆx , y x , y , or, equivalently, if 

DMU 0 is projected onto itself. Since the computed target is always efficient, that can only 

happen if DMU 0 is efficient. 
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Note that although the simple pl  norm has been applied above, in case that there are some 

preference information for the data, the weighted pl  distance can be used (Yu 1973) 

correspondingly. Thus, given a vector of strictly positive weights 
yx

i k( w ,w )  with the property that 

1 1

1
m s

yx
i k

i k

w w

 

   , the corresponding weighted pl  distances for the objective function of model (7) 

can be considered  as follows: 

       

        

1

0 0 0 0

0 0 0 0

for 1

max max max for

/ p
p p

ymin max x min max
i i i k kk

p,w i k

ymin max x min max
i i i k kk

i k,w

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆx,y x ,y w x x w y y p

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆx,y x ,y w x x , w y y p


                       

          
      

 
 (17) 

Also, the following distances are used in equation (16) to define the efficiency scores, 

correspondingly: 

       

        

1

0 0 0 0

0 0 0 0

for 1

max max max

/ p
p p

y* * x * *
i i i k kk

p,w i k

y* * x * *
i i i k kk

i k,w

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆx ,y x ,y w x x w y y p

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆx ,y x ,y w x x , w y y


                       

        
      

 
 (18) 

Note that assigning different weights to different inputs and outputs affects the targets and the 

efficiency scores, favoring improvements along the more important dimensions and weighing the 

corresponding slacks (i.e. inefficiencies) more. The graphical interpretation of the weighted CP-

DEA scenario leads to changes in the iso-distance curves’ shape which, for example, for p 2  

are no longer circles but ellipses. 

Our proposed CP DEA approach can also be used when some of the variables are non-

discretionary following Banker and Morey (1986). Thus, let 
DI  and 

NDI  be the index sets of 

discretionary and non-discretionary inputs and DO  and NDO  be the index sets of discretionary 

and non-discretionary outputs. For the non discretionary inputs and outputs it is not necessary to 

solve models (5) and (6) to obtain 0
min
ix̂  and 0

max
kŷ  since the components of the ideal point for 

those variables are, by definition, equal to the corresponding components of DMU 0, i.e. 
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0 0
min ND
i ix x i I   , 0 0

max ND
k ky y k O   . Therefore, the corresponding CP-DEA model can 

be written as 

   0 0

0

0

0

0

Min

s.t.

1

0 free free

min max

p

D
j i' j i i

j

ND
j i' j i i

j

D
j kj k k

j

ND
j kj k k

j

j
j

j i k

ˆ ˆ ˆ ˆx, y x , y

ˆ ˆ ˆx x x i I

ˆ ˆ ˆx x x i I

ˆ ˆ ˆy y y k O

ˆ ˆ ˆy y y k O

ˆ ˆj x i y k



    

    

    

    

 

    











 

(19) 

Therefore for non-discretionary inputs and outputs, both the ideal and the target values are fixed 

to the value of DMU 0. This means that the pl  distance involves only the discretionary input and 

output indices. No more changes are necessary to handle non-discretionary variables. 

Similarly, although it will not be explicitly formulated, the proposed CP DEA approach can be 

similarly extended to handle integer variables and undesirable outputs. To this end the DEA 

technologies proposed by Lozano and Villa (2006) and Kuosmanen (2005) can be used, 

respectively. 

Finally, a possible criticism of our proposed CP-DEA approach is that, since it gets as closest as 

possible to the ideal point, it tends to compute efficient targets that may be far from the unit 

under evaluation. This is the usual case in DEA although it is opposite to the concept of least 

distant target (e.g. Aparicio 2016, Aparicio et al. 2007, 2017). However, if the obtained efficient 

target is so ambitious in terms of the suggested input and output improvements that the 

corresponding changes cannot be accomplished by the DMU in a single step, they can be divided 
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into a sequence of smaller, monotonous and bounded changes leading to the final target in the 

spirit of stepwise benchmarking paths (e.g. Lozano and Villa 2005, 2010, Lozano and Calzada-

Infante 2018, Nasrabadi et al 2019, Dehnokhalaji and Soltani 2019). Due to the convexity 

assumption for the PPS, all intermediate benchmarks along the segment connecting DMU 0 to 

the target computed by the proposed approach are feasible and, hence, it is easy to compute a 

sequence of intermediate targets leading to the final computed benchmark. 

4. Illustration 

In this section, the proposed target setting approach is illustrated with a small single-input/single-

output dataset. Table 3 presents the input and output values for six DMUs labelled as A, B,…, F. 

and their corresponding ideal points. It can be seen that DMUs A, B, C and D are efficient and 

their ideal point coincide with themselves. Therefore, we only need to solve model (7) for units E 

and F. We consider the objective function (8) for 1 p  , (14) for 1p   and (15) for p    

and three different scenarios: one unweighted case and two weighted scenarios corresponding to 

   2 3 1 3
yxw w ,w / , /   and  1 3 2 3w / , / . The illustrative example has also been solved 

applying MEA approach proposed by Asmild and Pastor (2010), with the corresponding target 

and efficiency scores reported in Table 3. 

==================== Table 3 =================== 

Table 4 reports the results of CP-DEA method for units E and F. Note that the targets for the 

weighted scenarios enhance the improvement of variables with larger weights (at the expense of 

others), where improvement means reduction in inputs and increment in outputs. The obtained 

target generally depends on the value of parameter p although sometimes the targets for two 

different values of p may be close. This can be seen in Figures 1 and 2 as well, which show the 

targets corresponding to units E and F, respectively, for all three scenarios and for all three values 

for p. To avoid clutter, the iso-distance curves are plotted only for 2p  . Note that although in 

the unweighted case they are circles in the dimensionless PPS, they become ellipses in the 

original PPS. For comparison, Figures 1 and 2 also show the corresponding MEA target, which 

does not assume any preference structure and hence is similar to the unweighted scenario. 
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==================== Table 4 =================== 

==================== Figure 1 =================== 

==================== Figure 2 =================== 

About the efficiency scores 
0
p

 , it is rational that, for a given value of p, they differ from the 

unweighted case to weighted cases since each case involves a different scenario. Thus, even if the 

computed target is the same as it happens for unit F in the unweighted and the  2 3 1 3w / , /  

scenarios, the corresponding efficiency scores differ because the weighted and the unweighted lp 

distances are different. Similarly, for a given scenario, it is clear that the efficiency score depends 

on the value of parameter p as it influences the way the pl  distance is computed. 

Finally, for the sake of comparison, we have also considered the gradual improvement approach 

of Dehnokhalaji and Soltani (2019) that computes a sequence of targets for each unit. The lower 

bounds of admissible changes of inputs and the upper bounds of admissible changes of output at 

each step have been set to 0.1 (i.e. 10%) for this problem. The corresponding results are reported 

in Table 5. As it can be seen, five steps and two steps are required for inefficient units E and F, 

respectively, to reach the efficient frontier so that the returns to scale of the target is the same as 

that of the unit under evaluation. Figure 3 shows those the successive targets for DMUs E and F. 

Note that the conventional single-step projection approach for those two units involves inputs and 

outputs changes larger than 10%. 

==================== Table 5 =================== 

==================== Figure 3 =================== 

5. Numerical experiments 

In this section the proposed CP-DEA approach is extensively compared with different DEA 

approaches on the dataset used in Asmild and Pastor (2010). The dataset includes observations 

for 27 OECD countries and considers four inputs (practicing physicians per 103 population, 

inpatient beds per 1000 population, Magnetic Resonance Imaging MRI units per 106 population, 

healthcare expenditure expressed as % of GDP) and two outputs (life expectancy and infant 
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survival rate). Of the four inputs, only the one corresponding to the expenditure on healthcare is 

considered discretionary. 

After normalizing the data, the first step of the proposed approach is computing the ideal point 

for each DMU which are reported in an un-normalized form, in Table 6. The table also shows the 

standard deviations coefficient used to normalize the corresponding inputs and outputs. For the 

14 efficient DMUs, whose rows are shown in bold in Table 6, their ideal point coincides with the 

observed DMU itself. For the rest of units, the ideal point dominates the observed DMU and is 

not attainable in general. 

==================== Table 6 =================== 

 

Table 7 shows the targets computed by the proposed CP-DEA approach for the inefficient DMUs 

using 1p  , 2p   and p   . For 1p  , from the dual variables of the optimal solution of 

model (7) it was detected that for all the inefficient DMUs there were no alternative optima and 

hence it was not necessary to solve the phase II specified in (14). For p    this happened but 

only for some DMUs (namely Hungary, Portugal and USA). For the rest, the phase II in (15) was 

solved to select among the alternative optima of the phase I as per (15). 

==================== Table 7 =================== 

For comparison, the dataset was also solved using different DEA approaches, namely the slacks-

based measure of efficiency (SBM) of Tone (2001), the range directional model (RDM) and 

MEA of Asmild and Pastor (2010), the largest improvement approach of Hampf and Krüger 

(2015) and the potential-based measure of efficiency (PBM) of Soltani and Lozano (2018). The 

corresponding targets are shown in Table 8. Note that the targets computed by SBM, PBM and 

Hampf and Krüger (2015) coincide for all inefficient DMUs. This certainly does not hold in 

general, as those methods differ significantly in the criterion used to compute the targets. 

==================== Table 8 =================== 



17 

The differences between the targets computed by the different methods should be analyzed for 

each DMU separately. Thus, for example, Figure 4 uses parallel coordinates to show those targets 

for USA. Note that the target computed by CP-DEA for 1p   is similar to those of RDM and 

MEA. The targets computed by CP-DEA for 2p   and p    are somewhat more demanding in 

the input side and less demanding for the outputs. They are thus closer to the target computed by 

SBM, Hampf and Krüger (2015) and PBM, which concentrates all improvements only in the 

input. 

==================== Figure 4 =================== 

Tables 9, 10 and 11 show the lp distance between the targets computed by the different methods 

and the ideal point for 1p  , 2p   and p   , respectively. For each row, the minimum pl  

distance is shown in bold and occurs, as expected, for the proposed CP-DEA approach. This 

supports the assertion that the CP-DEA targets are ambitious since they are as close as possible to 

the ideal point. 

==================== Table 9 =================== 

==================== Table 10 =================== 

==================== Table 11 =================== 

Finally, Tables 12 and 13 provide the efficiency scores (inefficiency score in the case of Hampf 

and Krüger 2015) computed by the different methods as well as the corresponding Spearman’s 

rank correlation coefficients between them. Note that CP-DEA is the method that provides the 

largest range in efficiency scores, with scores as low as 0.198. Compare that with the opposite 

case of PBM, whose lowest efficiency score is 0.879. This can be interpreted as that the proposed 

approach emphasizes computing ambitious efficient targets (in the sense of being as close as 

possible to the ideal operating point) and hence tries to improve the inputs and outputs as much 

as possible. This is the opposite of computing the closest target and hence can lead to lower 

efficiency scores. Finally, note that the CP-DEA efficiency scores seem to be highly correlated 

with those of PBM and Hampf and Krüger (2015) and less so with SBM, RDM and MEA. 
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==================== Table 12 =================== 

==================== Table 13 =================== 

6. Conclusions 

This paper presents a novel CP-based approach for target setting in DEA. It is based on the belief 

that DEA target setting should be approached as a multiobjective optimization problem and in the 

fact that CP is a multiobjective optimization method that requires no preference information and 

hence is both simple and effective. It also has a simple graphical interpretation that helps to 

understand how it works. CP has already been applied in DEA but using CSW formulations with 

the aim of ranking the DMUs. The proposed CP-DEA approach utilizes an envelopment 

formulation based on the ideal point associated to each DMU. There are some DEA approaches 

(e.g. MEA) that use such ideal point to orient a directional vector and solve the corresponding 

DDF model but CP works differently. Instead of computing the target from within the PPS, CP 

looks at the PPS from outside, specifically from the ideal point, and then computes the closest 

feasible point from the PPS applying an pl  metric. This method has an interesting geometric 

interpretation considering the iso-distance curves centered at the ideal point. Thus, the computed 

target corresponds to the iso-distance curve that is tangent to the PPS. 

CP is a one-parameter family of solutions so that different values of the parameter p can be used. 

In this paper, the three values of p most commonly used in the literature, namely 1p  , 2p   

and p    were explicitly formulated and discussed. Although the cases 1p   and p    result 

in LP formulations, the optimal solution of the corresponding CP model may not be unique, 

leading us to apply a lexicographic approach (with a secondary goal). Since the Euclidean 

distance provides a QP and guarantees a unique solution, it is rational to use the minimization of 

the Euclidean distance as a secondary goal for 1p   and p    cases. 

Since the proposed CP-DEA models have been formulated on the dimensionless PPS obtained by 

normalizing the input and output variables using the standard deviation, the proposed approach is 

translation and units invariant, if VRS assumption holds, and units invariant in CRS case. An 

efficiency score, based on the pl  distance from the DMU to its computed target, is also defined. 
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The proposed CP-DEA approach can also be applied to situations with preference structure, 

undesirable outputs and non-discretionary or integer variables. 

The results of the computational experiments on a dataset from the literature indicate that there 

are small differences between the targets computed for different values of p and between these 

and those of other methods. In any case, the CP-DEA targets are, by construction, the ones that 

are closest to the corresponding ideal points. This translates into ambitious targets. Also, although 

this does not need to happen in general, the CP-DEA efficiency scores seem to be highly 

correlated with those of PBM and Hampf and Krüger (2015) and less so with SBM, RDM and 

MEA methods. 

Although the proposed approach is quite effective in computing ambitious, efficient targets it has 

also some limitations and drawbacks. One is that the target computed depends on the value of 

parameter p chosen and only in the case of 1p   and p    the resulting model is LP. For both 

values of p a phase II is generally needed to select among the alternative optima. Also, for some 

DMUs the computed target may be distant from the ideal point thus leading to a low efficiency 

score. 

As mentioned above, the proposed approach considered a perspective from outside the PPS 

which makes it different from the traditional DEA target setting models. This perspective is in 

common with other multi-objective optimization methods (like Weighted Tchebycheff) as well as 

bargaining problem solutions (like the Equal Loss and Claims Egalitarian solutions), which could 

also be applied in DEA. Other topics for further research can be extending CP-DEA to 

centralized, network and fuzzy DEA contexts. 
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1  
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θ  

Despotis (2002) 

Kao and Hung (2005) 
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Kao and Hung (2005) 
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Wang et al. (2011a) 
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 Min Max

s.t.

1

CCR
j j

j

j

E

E j

 

 

 

p    

Non-linear 

Cook and Zhu (2007) 

Min

s.t.

1

0

j
j J

j

CCR
j j j

j

d

E j

E d j J

d j J



 

    

  



 

Within-group J common 

weights 

 1 2J , ,...,n  

Non-linear 

Chiang et al. (2011) 

Hosseinzadeh Lofti et al. (2013) 

Min

s.t.

0

0

j
j

k kj i ij j
k i

j

ˆ̂
d

ˆ̂
v y u x d j

ˆ̂
d j

   

 



 
 LP 

Table 2. DEA CP CSW models formulations (cont.) 
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Reference Model Remarks 

Chen et al. (2009) 

   Min Max

s.t.

0

0

j j'
j j'

k kj i ij j
k i

j

ˆ ˆˆ ˆd d

ˆ̂
v y u x d j

ˆ̂
d j

  
       

  

   

 



 
 

,   small positive 

numbers 

LP 

Zohrehbandian et al. 

(2010) 

Omrani (2014) 

Min

s.t.

0

1

0

j
j

CCR
k kj j i ij j

k i

i k
i k

j

d̂

ˆv y u x d j

u v

d̂ j

    

 

 



 

 

 
LP 

Despotis (2002) 

Min 1

s.t.

0

0

j max
j

CCR
k kj j i ij j

k i

max j

j

ˆ ˆd ( ) d

ˆv y u x d j

ˆ ˆd d j

d̂ j

     

    

 

 



   

Surrogate formulation 

0 1    

LP 

Wang et al. (2011) 

 
2

Min

s.t.

0

free

j
j

CCR
k kj j i ij j

k i

i ij k kj
i j k j

j

d̂

ˆv y u x d j

u x v y n

d̂ j

    

 





 

   

 
Least Squares error 

regression 

Non-linear 

Table 2. DEA CP CSW models formulations (cont.) 
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DMU 

  Ideal point MEA 

x  y  minx  
maxy  MEAx  

MEAy  
Efficiency Score 

MEA  

A 2 1 2 1 2 1 1.000 

B 3 4 3 4 3 4 1.000 

C 4 5 4 5 4 5 1.000 

D 6 6 6 6 6 6 1.000 

E 5 3 2.67 5.50 3.55 4.55 0.500 

F 7 5.2 4.40 6 5.39 5.70 0.530 

Standard 

deviation 
1.87 1.81      

Table 3. Illustration of the dataset, ideal points and MEA results 
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DMU E 1p =  2p =  p =   

Scenario *x̂  
*ŷ  0

p
  *x̂  

*ŷ  0
p

  *x̂  
*ŷ  0

p
  

Unweighted 4 5 0.379 3.61 4.61 0.463 3.60 4.60 0.531 

(2/3,1/3)w=  3 4 0.527 3.05 4.05 0.581 3.29 4.29 0.621 

(1/3,2/3)w=  5 5.50 0.521 4 5 0.569 3.90 4.90 0.588 

 

DMU F 1p =  2p =  p =   

Scenario *x̂  
*ŷ  0

p
  *x̂  

*ŷ  0
p

  *x̂  
*ŷ  0

p
  

Unweighted 4.40 5.20 0.418 4.74 5.37 0.452 4.94 5.47 0.476 

(2/3,1/3)w=  4.40 5.20 0.519 4.50 5.25 0.529 4.73 5.36 0.553 

(1/3,2/3)w=  6 6 0.679 5.23 5.61 0.740 5.21 5.61 0.758 

Table 4. CP-DEA targets and efficiency scores for units E and F 
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DMU  Step 0 Step 1 Step 2 Step 3 Step 4 Step 5  

A 

x 2.00       

y 1.00       

BCC Eff. Score 1.00       

*

0u  1.00 (NDRS)1      

B 

x 3.00       

y 4.00       

BCC Eff. Score 1.00       

*

0u  0.56 (NDRS)1      

C 

x 4.00       

y 5.00       

BCC Eff. Score 1.00       

*

0u  -0.25 (NIRS)2      

D 

x 6.00       

y 6.00       

BCC Eff. Score 1.00       

*

0u  -1.00 (NIRS)2      

E 

x 5.00 4.50 4.05 3.65 3.28 3.00  

y 3.00 3.30 3.63 3.99 4.00 4.00  

BCC Eff. Score 0.53 0.61 0.71 0.82 0.91 1.00  

*

0u  0.33 0.37 0.41 0.46 0.51 0.56 (NDRS)1 

F 

x 7.00 6.30 6.00     

y 5.20 5.72 6.00     

BCC Eff. Score 0.63 0.86 1.00     

*

0u  -0.86 -0.95 -1.00 (NIRS)2    

1(
*

0 0u  means Non-Decreasing Returns to Scale) 2(
*

0 0u  means Non-Increasing Returns to Scale) 

Table 5. Sequence of targets and efficiency scores for units E and F computed by Dehnokhalaji and 

Soltani (2019) 
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 Inputs  Outputs 

DMU Beds MRI Physicians Expenditure  Infant Survival Life Expectancy 

Australia 8.5 4.5 2.5 8.30  0.99581 78.813 

Austria 8.9 8.4 3.0 6.82  0.99647 79.532 

Belgium 7.2 3.2 3.4 7.34  0.99580 78.803 

Canada 4.7 1.8 2.1 9.49  0.99443 78.670 

Czech republic 8.9 1.4 3.0 7.15  0.99480 74.600 

Denmark 4.5 2.5 3.3 8.30  0.99523 76.200 

Finland 7.8 8.7 3.0 6.91  0.99580 77.300 

France 8.5 2.5 3.0 8.28  0.99563 78.745 

Germany 9.3 6.2 3.5 6.94  0.99645 79.315 

Greece 5.0 1.2 4.1 8.28  0.99330 77.900 

Hungary 8.3 1.5 3.1 5.35  0.99446 77.020 

Ireland 3.7 0.3 2.2 6.36  0.99380 75.960 

Italy 5.9 6.4 5.9 7.22  0.99644 79.306 

Japan 16.5 18.8 1.9 7.63  0.99640 80.600 

Korea 5.1 4.0 1.3 5.04  0.99224 74.470 

Mexico 1.1 0.1 1.6 4.54  0.98420 74.700 

Netherlands 11.3 3.9 2.6 7.37  0.99613 78.823 

New Zealand 6.2 2.6 2.2 7.69  0.99490 78.047 

Norway 14.5 0.7 2.4 8.92  0.99600 78.400 

Poland 5.3 0.4 2.4 5.67  0.99391 76.256 

Portugal 4 2.8 3.1 6.44  0.99502 78.017 

Spain 3.9 3.8 4.4 7.06  0.99493 78.100 

Sweden 3.8 6.8 3.1 8.37  0.99650 79.400 

Switzerland 18.1 13.2 1.9 7.46  0.99582 79.681 

Turkey 2.5 0.6 1.2 3.93  0.96210 68.700 

UK 4.2 3.4 1.7 6.74  0.99430 77.270 

USA 3.7 7.6 2.7 6.30  0.99519 78.685 

Normalization 

coefficients 
4.129 4.264 1.005 1.959  0.007 2.683 

Table 5. Ideal points and normalizing coefficients (efficient DMUs in bold) 
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 1p   2p   p    

 Input Outputs Input Outputs Input Outputs 

DMU Expenditure 
Infant 

Survival 

Life 

Expectancy 
Expenditure 

Infant 

Survival 

Life 

Expectancy 
Expenditure 

Infant 

Survival 

Life 

Expectancy 

Australia 8.299 0.99581 78.700 8.327 0.99580 78.715 8.359 0.99570 78.732 

Austria 7.163 0.99524 78.686 7.251 0.99534 78.755 7.340 0.99544 78.825 

Belgium 7.337 0.99501 78.000 7.607 0.99526 78.191 7.723 0.99537 78.274 

France 8.284 0.99546 78.400 8.381 0.99548 78.460 8.458 0.99550 78.507 

Germany 7.308 0.99530 78.538 7.351 0.99535 78.572 7.433 0.99544 78.638 

Hungary 6.600 0.99419 76.694 6.242 0.99295 76.263 6.035 0.99201 76.081 

Italy 7.227 0.99526 78.577 7.493 0.99554 78.754 7.581 0.99563 78.812 

Netherlands 7.372 0.99506 78.000 7.664 0.99534 78.206 7.768 0.99544 78.281 

New Zealand 7.693 0.99469 77.800 7.760 0.99470 77.846 7.809 0.99468 77.879 

Poland 6.394 0.99385 76.064 6.180 0.99305 75.824 6.063 0.99251 75.723 

Portugal 6.802 0.99448 77.354 6.802 0.99448 77.354 6.876 0.99400 77.420 

Switzerland 7.460 0.99578 79.500 7.509 0.99581 79.530 7.553 0.99580 79.553 

USA 7.762 0.99519 78.626 7.028 0.99397 77.774 6.961 0.99285 77.786 

Table 6. CP-DEA targets for inefficient DMUs for p 1 , p 2  and p    
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 SBM, Hampf and Krüger (2015), PBM RDM MEA 

 Input Outputs Input Outputs Input Outputs 

DMU Expenditure 
Infant 

Survival 

Life 

Expectancy 
Expenditure 

Infant 

Survival 

Life 

Expectancy 
Expenditure 

Infant 

Survival 

Life 

Expectancy 

Australia 8.299 0.99581 78.700 8.391 0.99579 78.749 8.405 0.99579 78.757 

Austria 6.824 0.99510 77.800 7.199 0.99544 78.477 7.509 0.99581 78.694 

Belgium 7.337 0.99501 78.000 7.989 0.99551 78.447 7.993 0.99551 78.450 

France 8.284 0.99546 78.400 8.857 0.99554 78.675 8.734 0.99553 78.623 

Germany 6.939 0.99530 77.600 7.750 0.99581 78.873 7.983 0.99612 78.821 

Hungary 5.349 0.99030 75.062 5.779 0.99251 75.368 5.869 0.99297 75.432 

Italy 7.220 0.99525 78.570 7.687 0.99575 78.883 7.782 0.99585 78.946 

Netherlands 7.372 0.99506 78.000 7.906 0.99556 78.378 7.965 0.99562 78.419 

New Zealand 7.686 0.99455 77.800 7.889 0.99472 77.929 7.881 0.99472 77.925 

Poland 5.671 0.99050 75.445 5.916 0.99176 75.619 6.027 0.99233 75.698 

Portugal 6.440 0.99400 76.519 6.881 0.99461 77.189 6.921 0.99467 77.250 

Switzerland 7.460 0.99578 79.500 7.799 0.99569 79.681 7.742 0.99572 79.651 

USA 6.305 0.99280 76.700 8.115 0.99468 78.676 7.527 0.99479 78.354 

Table 7. Targets for inefficient DMUs computed by different DEA approaches 
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DMU CP-DEA RDM MEA 
SBM, PBM 

Hampf and Krüger (2015) 

Australia 0.042 0.156 0.162 0.114 

Austria 0.664 1.430 1.523 1.733 

Belgium 0.412 1.009 1.010 0.804 

France 0.153 0.643 0.572 0.345 

Germany 0.642 1.254 1.538 1.716 

Hungary 0.799 2.084 2.109 1.962 

Italy 0.444 0.891 0.923 0.738 

Netherlands 0.459 0.979 0.996 0.824 

New Zealand 0.125 0.321 0.318 0.248 

Poland 0.449 0.884 0.916 0.815 

Portugal 0.509 1.269 1.249 1.499 

Switzerland 0.073 0.340 0.312 0.181 

USA 0.766 1.819 1.554 1.987 

Table 8. 1l  distance from the different targets to the ideal point 

 

 

 

DMU CP-DEA RDM MEA 
SBM, PBM 

Hampf and Krüger (2015) 

Australia 0.039 0.112 0.120 0.114 

Austria 0.397 1.119 1.082 1.732 

Belgium 0.277 0.743 0.746 0.803 

France 0.119 0.577 0.466 0.345 

Germany 0.382 0.924 1.155 1.715 

Hungary 0.578 1.707 1.671 1.958 

Italy 0.280 0.631 0.668 0.736 

Netherlands 0.296 0.695 0.717 0.823 

New Zealand 0.089 0.235 0.231 0.247 

Poland 0.329 0.683 0.662 0.811 

Portugal 0.318 0.938 0.906 1.498 

Switzerland 0.062 0.340 0.284 0.181 

USA 0.531 1.810 1.267 1.985 

Table 9. 2l  distance from the different targets to the ideal point 
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DMU CP-DEA RDM MEA 
SBM, PBM 

Hampf and Krüger (2015) 

Australia 0.030 0.092 0.105 0.114 

Austria 0.263 1.054 0.838 1.732 

Belgium 0.197 0.652 0.657 0.803 

France 0.089 0.573 0.450 0.345 

Germany 0.252 0.811 1.044 1.715 

Hungary 0.350 1.652 1.589 1.958 

Italy 0.184 0.467 0.563 0.736 

Netherlands 0.202 0.533 0.592 0.823 

New Zealand 0.063 0.203 0.195 0.247 

Poland 0.200 0.637 0.558 0.811 

Portugal 0.223 0.829 0.768 1.498 

Switzerland 0.048 0.340 0.282 0.181 

USA 0.335 1.810 1.223 1.985 

Table 10. l  distance from the different targets to the ideal point 
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DMU 
CP-DEA 

SBM 
Hampf and 

Krüger* 
RDM MEA PBM 

1p   2p   p    

Australia 0.817 0.871 0.897 0.975 0.026 0.806 0.807 0.996 

Austria 0.526 0.618 0.685 0.828 0.172 0.758 0.669 0.969 

Belgium 0.522 0.604 0.639 0.830 0.170 0.681 0.680 0.969 

France 0.597 0.624 0.640 0.866 0.134 0.849 0.853 0.976 

Germany 0.332 0.373 0.385 0.657 0.343 0.576 0.507 0.932 

Hungary 0.257 0.320 0.332 0.763 0.275 0.605 0.589 0.951 

Italy 0.555 0.658 0.713 0.862 0.139 0.655 0.639 0.975 

Netherlands 0.604 0.676 0.707 0.859 0.141 0.753 0.741 0.975 

New Zealand 0.704 0.782 0.819 0.950 0.050 0.812 0.812 0.991 

Poland 0.383 0.479 0.506 0.867 0.151 0.748 0.728 0.974 

Portugal 0.423 0.517 0.559 0.815 0.195 0.717 0.710 0.965 

Switzerland 0.385 0.401 0.405 0.715 0.285 0.685 0.684 0.946 

USA 0.198 0.227 0.227 0.462 0.538 0.472 0.469 0.879 
* Inefficiency scores 

Table 11. Efficiency scores computed by different DEA approaches 

 

 

 

 

 

CP-DEA 

1p   

CP-DEA 

2p   
CP-DEA 

p    SBM 
Hampf and 

Krüger 
RDM MEA PBM 

CP-DEA 1p   1.000 0.989 0.967 0.802 0.901 0.808 0.769 0.912 

CP-DEA 2p   

 
1.000 0.989 0.841 0.923 0.769 0.731 0.931 

CP-DEA p     
 

1.000 0.824 0.901 0.725 0.654 0.906 

SBM 

   
1.000 0.967 0.775 0.797 0.964 

Hampf and Krüger 
    

1.000 0.786 0.797 0.997 

RDM 

     
1.000 0.918 0.815 

MEA 
      

1.000 0.813 

PBM 

       
1.000 

Table 12. Spearman’s rank correlation coefficients between the different DEA approaches 
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Figure 1. Visualization of the CP-DEA targets for unit E 
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Figure 2. Visualization of the CP-DEA targets for unit F
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Figure 3. Visualization of the sequence of targets computed by Dehnokhalaji and Soltani (2019) for units E and F 
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CP-DEA 1p   CP-DEA 2p   CP-DEA p    

   

SBM, Hampf and Krüger (2015), PBM RDM MEA 

   

Figure 4. Parallel coordinates representation of the computed targets for USA 


