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ABSTRACT 

Hybrid energy storage systems (HESS) involve synergies between multiple energy storage technologies with 

complementary operating features aimed at enhancing the reliability of intermittent renewable energy sources 

(RES). Nevertheless, coordinating HESS through optimized energy management strategies (EMS) introduces 

complexity. The latter has been previously addressed by the authors through a systems-level graphical EMS via 

Power Pinch Analysis (PoPA). Although of proven efficiency, accounting for uncertainty with PoPA has been 

an issue, due to the assumption of a perfect day ahead (DA) generation and load profiles forecast. This paper 

proposes three adaptive PoPA-based EMS, aimed at negating load demand and RES stochastic variability. Each 

method has its own merits such as; reduced computational complexity and improved accuracy depending on the 

probability density function of uncertainty. The first and simplest adaptive scheme is based on a receding 

horizon model predictive control framework. The second employs a Kalman filter, whereas the third is based on 

a machine learning algorithm. The three methods are assessed on a real isolated HESS microgrid built in 

Greece. In validating the proposed methods against the DA PoPA, the proposed methods all performed better 

with regards to violation of the energy storage operating constraints and plummeting carbon emission footprint. 

Keywords: Hybrid Energy Storage Systems; Energy Management Strategies; Model Predictive Control, Kalman 

Filter; Reinforcement Learning  
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Nomenclature 

 	����� Available excess energy for the 
next day 

∆� 

 

Time interval 

��	 Battery 
 The proportion of flow � � The capacity of accumulator	� 
η��,η�� , ��� , ��� 

 

DC converter, PV panel, 
fuel cell, electrolyser 
efficiency factors ��� Diesel generator ��	��� Binary variable for the 
state of the ith 
dispatchable unit �� Electrolyser   ���� The binary variable 
related  to the temporal 
conditions of the 
accumulator  �� Fuel cell 

Subscripts/superscripts 

 	 Hydrogen Tank �!�"" Accumulator or energy 
storage # 

 

A fixed reward  

 

�$� Availability of resources 

% Identity matrix ∈ ℜ()( #*+ Override logic for PoPA 
energy dispatchable units 
FC and EL �� Load ,*- Demand for resources .�� Minimum absorbed energy  �	 Time step 

.!�� Minimum outsourced energy 
supply 

/ Index of Converter 

01 Previous state before a transition 
by the agent 

� Accumulator  

�!�""( State of accumulator	�  234 maximum ��5  Lower pinch limit or utility  2/+ minimum 	�67  Upper pinch limit or utility 2	, + Model and the plant 
respectively 8!9 Power flow /: A set of controllable 
energy converter elements 
for PoPA targeting  8#�� Power grand composite curve → The arrow head indicates 
the direction of flow of 
energy/material from 
source to sink ℛ Zero mean Gaussian noise ∈ ℜ()( 

  

= Input ∈ ,>)?   91	,92 Penalty weights which control the 
propagation of the negative 
reward exerted on the agent. 

  

9	 Water tank   
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1. Introduction 
 
    Growing concerns over the impact of greenhouse gas emission on the environment has led to policy 

initiatives to advance the proliferation of renewable energy sources (RES) (such as wind turbines and solar 

panels), for distributed generation (DG). Furthermore, in remote areas without access to an electrical grid, RES 

are a favourable electrification alternative when compared to the cost of deploying high-voltage transmission 

lines and associated power losses [1-3]. The use of RES (particularly in a standalone microgrid (MG)) can 

reduce the reliance on backup diesel generators (DSL) which have a high carbon emission impact on the 

environment [4, 5]. Nevertheless, due to weather stochasticity, some RES can have predictable but variable 

power output and so, incorporating energy storage technology with RES can mitigate this variability. Multiple 

energy storage technologies (e.g. battery and hydrogen) with complementary properties (such as life cycle, 

seasonality, power and energy density etc.) are often combined to further mitigate the RES variability. This is 

the concept of hybrid energy storage systems (HESS) as shown in Figure 1 [6, 7]. This system was designed and 

built in Xanthi, Greece in collaboration with CERTH and SUNLIGHT [8] and it is been used here as a case 

study. The mathematical model of each asset has been previously validated [9] by the authors and real 

load/weather profiles have been used.  

 

Fig. 1. Schematics of the experimental Islanded HESS [7] used as a case study 
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In such systems, when supply exceeds demand and a local battery is completely charged, the energy from the 

RES can, for example, be converted to hydrogen (H2) by an electrolyser (EL) for long term storage (as opposed 

to the battery that can be seen as short-term storage option). Then, the hydrogen can be used when demand 

exceeds supply, by means of a fuel cell (FC) [7, 10]. The HESS thereby can reduce the dumped load in times of 

excess supply, and further reduce the need for backup DSL in times of excess demand [11]. Newer innovative 

hydrogen production approach, which relies on internal rather than external reforming of fuel mixtures into 

mass production of electric and thermal energy carriers, with high efficiency, based on the use of Solid Oxide 

Fuel Cells (SOFCs) have recently been investigated. In [12], an intermediate temperature solid oxide 

electrolyser stack is fed with carbon dioxide (CO2)-steam mixture at the anode. Here the fuel mixture is 

reformed into CO - H2 mixture while at the cathode, oxygen fed into the system is converted into ions. The 

oxygen ions generate current by moving through the electrolyte towards the anode to combine with the CO - H2 

mixture to produce CO2 and water. Furthermore, authors [13] investigated the use of low weight as well as low 

cost high temperature steam electrolysis (HSTE) stack for durability and performance to highlight current 

density and steam conversion ratio at the temperature of 800oC.  In [14] the anion exchange membrane (AEM) 

FC which is attractive due to its outstanding fast electrochemical kinetics, low dependence on non-precious 

catalyst and water removal mechanisms was presented. In [15] an analytic model for alkaline anion exchange 

membrane FC is proposed. The authors in their investigation, illustrated more anode humidification improved 

performance. Nevertheless, a systems-level analysis approach has been implemented in this work, hence, the 

impact on the HESS as a result of integrating these newer H2 technological innovations which were highlighted 

will be an interesting subject for future investigation.   

    Despite the advantages offered by a HESS, the heterogeneity of the components/devices introduces 

complexity due to the need to account for different forms/characteristics of energy flows between multiple 

assets and for numerous decision parameters in energy management strategies (EMSs) used for HESS control. 

To address such complexity, several studies have proposed the use of if-then-else rules, artificial intelligence 

(AI) (such as fuzzy logic controllers, neural networks, and genetic algorithms), linear and dynamic 

programming and advanced control techniques to realise EMSs for HESS [16-18]. Development of EMSs using 

if-then-else rules in the form of hierarchical diagrams is widely used in published literature due to its 

computational efficiency [16].  

In [19] a rule-based EMS was proposed for domestic microgrid. The rules are such that the load requirement at 

each time interval is compared with the PV power and which only fulfils the load power requirement, and 

whenever the output power of the PV is greater and given the battery level, any excess is either used for 

charging operation or arbitrage or to cover the deficit. The rule based EMS had accurate result and faster 

processing time in comparison with an optimisation based EMS.  However, this approach is largely heuristic 

and limited to very few potential options, omitting numerous alternatives which may improve the HESS 

performance, as illustrated in [7]. In addition, fuzzy logic controller which is classically rule-based has enhanced 

adaptation and robustness in contrast to a conventional rule base controller as depicted in the case of energy 

management (EM) of islanded MG in [20]. 

In [21] self-organising and dynamic fuzzy logic decision making was used to improve electric vehicle (EV) 

efficiency by estimating the required output power of a FC based on the driving load requirement and state of 

charge of a BAT in MATLAB  environment. In [22], the merits underling the integration of hybrid energy 
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systems, specifically; a FC, BAT and supercapacitor in an EV are first analysed. Thereafter, an active power 

flow control technic is proposed based on optimal control theory with the objective of optimising BAT life and 

total energy cost while meeting vehicle loads demand requirements based on the minimisation of a square error 

cost function between the desired and actual parameters. In [23] an energy calculation tool is proposed and 

implemented in MATLAB, for hybrid polymer electrolyte FC based on a generic users predefined route. The 

calculator tool accounted for electric energy recoverable downhill and in the course of deceleration period.   In 

[24] an optimal control strategy based on a two dimensional Pontryagin’s minimum principle, was proposed for 

EM of a batteries and super-capacitor in a plug-in hybrid electric vehicle. The optimisation approach led to 

improved battery degradation and a 21.7% reduction in total economic; fuel, electricity outsourcing and 

maintenance cost. In [25] a dynamic EMS was proposed in response to deviation in dc-link voltage ensuing 

from dynamic load and RES uncertainty in a grid connected HESS microgrid which comprised a battery bank 

and ultra-capacitor. In [26] a piecewise robust optimisation EMS was proposed for combined cooling, heating 

and power MG with the objective of minimising total cost under the worst case scenario to carter for power 

uncertainty. In [27] a dual stage robust MPC optimisation is proposed, in order to reduce the impact of load 

demand and RES uncertainty in an islanded MG. However, robust optimisation method is considered as a 

pessimistic approach and can result in over budgeting in real world application [28]. More so, stochastic and 

chance constrained based optimisation which have been applied in [29-32] and [33 -35] respectively for Energy 

management of MGs are not only computationally cumbersome and but also intractable. Hence, the use of 

approximate solutions which largely depend on the accuracy of probabilistic distribution or explicit modelling 

of the underlying uncertainty parameters, which is practically limiting in real-world applications as the 

distribution might be unavailable [26, 34]. Furthermore, in [36] MPC strategy with corrective feedback was 

proposed for energy management of a domestic microgrid was shown to achieve better energy savings than the 

standard rule based control strategy. In [37] MPC combined with adaptive-Markov chain prediction was 

proposed for energy management of a dual hybrid EV. The MPC based method achieved better fuel economy 

over a rule base strategy. In [38] real-time EM optimal control algorithm for a dual mode split HEV formulated 

as a multivariate quadratic optimisation problem solved offline to obtain control laws which was thereafter 

applied in real time in a traditional MPC manner. The proposed strategy had reduced computational cost and 

fuel economy of 97.46% and 23.3% respectively compared to the traditional MPC. 

    On the other hand, AI or mathematical programming approaches are able to investigate a vast number of 

options and to identify optimum solutions. However, they may suffer from increased computational demands 

due to combinatorial complexity or non-linear system models, making them inefficient for on-line decision 

making [39, 40]. Furthermore, they only provide one final solution which hinders the opportunity to derive 

insights from intermediate solutions and analyse the HESS operation. To address such shortcomings, the Power 

Pinch Analysis (PoPA) [41, 42] was proposed both as an effective means of graphical EMS analysis and a tool 

which may enhance the computational efficiency of mathematical optimization approaches. PoPA is a process 

integration technique, inspired from the original Pinch Analysis for heat exchange networks [43] and evolved to 

sophisticated tools [44] that allow the analysis of complex energy systems based on the identification of insights 

pointing toward promising design and operating decisions [45]. The PoPA, used as a graphical and/or  

numerical tool, aids in the identification of deficit or surplus targets for energy recovery by the use of 

dispatchable resources to satisfy a conservative minimum energy target. It considers power demand and supply 
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requirements with respect to time in the form of the Power grand composite curves (PGCC) to identify 

inflection points (called pinches) where power demand must be satisfied. The PoPA, which has mostly been 

used for optimal sizing, planning of energy supply and demand management in hybrid energy systems, has 

recently grown in use compared with mathematical programming techniques [46]. Some of the promising 

aspects of PoPA are reduced computational effort, analytical insights derived through a graphical interface tool, 

as well as the systematic consideration of the assets’ interdependence and intrinsic complexity [5].  

 

1.1. Applications of PoPA for Electric Power systems sizing and design 

    Several researchers have considered PoPA for electric power systems sizing and design. In [41, 46] the grand 

composite curve was realised by integrating the energy demand and supply over time, and then it was used to 

optimally size an isolated power generation system. Additionally, in [47] the PoPA was utilised as a 

combination of both the graphical analysis and numerical approach with the aid of the power cascade analysis 

and storage cascade table for optimal sizing of the hybrid power system.  The extended Power Pinch analysis 

(EPoPA) in [48] was proposed as an enhancement to the PoPA in order to optimally design renewable energy 

systems integrated with battery-hydrogen assets as well as a DSL. These studies on PoPA for sizing MG assets 

with the exclusion of [46] in which chance constrained programming was used to achieve technical and 

economic feasibility, were realised without recourse to uncertainty.  

 

1.2. Applications of PoPA for energy management 

    Apart from the use of PoPA in electric power systems sizing and design, it has also been used, by the authors, 

as an EM tool, as first reported in [5, 7, 49]. More specifically, in [7] the power grand composite curve (PGCC) 

was realised within a model predictive control (MPC) framework for the first time with a day ahead (DA) 

forecast to infer and effect (EM) decisions in a HESS stand-alone MG. By shaping the PGCC, a series of 

optimal control decisions for the activation and duration of the HESS operation were determined. The 

effectiveness of this approach was limited by the assumption of a perfect DA weather and load forecast. 

 

1.3. Generic approaches to uncertainty 

    The pinch analysis despite being a well-established process integration recovery and conservation technique 

for assets such as waste management, water, heat, and carbon emission requires consideration and expansion in 

power systems application [42]. Also, as highlighted, most literature on PoPA have not dealt with uncertainty, 

as these studies have mostly relied on the assumption of perfect (or ideal) weather forecast and load profile with 

the exception of [46] where uncertainty was considered in the sizing of a MG asset. Consequently, the 

significant impact of uncertainty, imposes the need to integrate PoPA tools with a complementary technique, 

especially when consistency is so desired.  The techniques which account for uncertainty in EM can 

fundamentally be classed as either predictive or reactive approach [50]. These predictive or reactive approaches 

may perhaps be considered in PoPA application, whereby, the scheduling of dispatchable units are realised with 
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or without prior consideration for the impact of an impending uncertainty respectively. The reactive approach 

uses the latest state feedback for re-computation, upon model mismatch due to uncertainty, which may be 

expensive when seeking an optimum solution in the event of frequent perturbation. The predictive technique 

may employ stochastic programming, fuzzy programming, robust optimisation, machine learning techniques, in 

order to infer the optimal control action that negates the effect of uncertainty [51-53]. Furthermore, the linear 

Kalman filter, first presented by Kalman in 1960 for solving the Wiener problem has since been applied 

extensively in areas of control system, short-term prediction, navigation tracking and for systems state 

estimation associated with uncertainty [54]. In [55] the ensemble Kalman filter was combined with a multiple 

regression model to enhance forecasting accuracy of electricity load. Similarly, in [56] the Kalman filter was 

used recursively to estimate short-term hourly load demand forecast parameters based on the historical load and 

weather data and the current measurements of the time-varying parameters.  Moving away from the well-known 

prediction methods, the work of [57] on temporal difference (TD) learning, a model-free reinforcement learning 

(RL) algorithm, introduced a prediction method which relies on the experience of successive predictions to infer 

the behaviour of an unknown system. This was a paradigm shift to the conventional approach which depended 

only on the difference between the actual and predicted outcome. Hence, RL is a machine learning technique, 

suitable for solving a Markov decision process (MDP) which involves sequential optimal decision making under 

uncertainty. Thus, many researchers have sought to deploy several machine learning algorithms in an MDP. In 

[58], machine learning algorithms such as policy iteration and value iteration Dynamic programming, and RL 

techniques such as the least squares policy iteration, Q-Learning, and SARSA were reviewed for MDPs. 

Specifically of interest, is the Q-learning, a class of model-free RL, a similar algorithm to Sutton’s (1988) TD 

learning [56], first introduced by Watkins in 1989, which proffers an intelligent agent with the learning ability to 

act optimally in a MDP based on experience [59]. In Q-learning, an agent seeks to maximise the sum of 

expected reward by acting optimally with respect to any given circumstance (referred to as a state). Typically, 

an agent will evaluate a state, and will then undertake an action either in an exploitative or exploratory manner 

thereafter and finally will receive an instant reward, while transitioning to a new state. Q-learning has 

tremendous success in robotics, especially in mobile robot navigation and obstacle avoidance [60, 61]. In [62] 

the Dyna AI architecture was proposed to integrate both learning, and experience, based on online planning, as 

well as reactive execution in a stochastic environment.  

    Furthermore, in [63] a comparative study of MPC and Monte Carlo RL on a non-linear deterministic system 

with known uncertainty dynamics was undertaken. More recently, [64] harnessed the merits of the MPC and RL 

control strategies to form an adaptive controller for a heat pump thermostat based on the suggestion of [63]. The 

adaptive controller maximised energy savings while tracking a varying temperature set-point for thermal 

comfort, more effectively than the MPC or RL alone.  

    The application of RL based energy management for HESS has mostly been considered in literature with 

respect to hybrid Electric vehicle while only a few have considered microgrid systems. In [65] energy 

management based on a 2 steps-ahead RL framework was proposed for a grid connected microgrid which 

comprised consumers load, ES, wind turbine. The RL is formulated as a multi-criteria decision making tool, 

aided by a 2 steps-ahead prediction of available wind power via a Markov chain model. This approach allowed 

the learning agent to optimally utilise the WT, independently of the grid to charge the ES, while maximising the 

use of the ES during peak demands.  Hence, enabling an intelligent consumer to learn a stochastic scenarios 
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while incorporating experience based optimal actions. In [66] deep RL EMS which uses a convolution neural 

net to extract relevant time series information, from a large continuous non-handcrafted feature space is 

proposed to address stochastic electricity production in a residential MG. In [67] the authors propose an EMS 

which applies a decentralised cooperative multi-agents enabled Fuzzy Q-learning to a standalone MG. The 

formulation of the continuous input states entails the use of five membership functions and the action space 

comprising a fuzzy set pertaining to each MG asset and rules base in conjunction with a reward formulation, 

shapes the agent’s continuous action policy. In [68] the authors proposed a real-time EM algorithm to optimise 

performance and energy efficiency with power split control for a hybrid (battery and ultra-capacitor) tracked 

vehicle for various road driving conditions. A speedy Q-Learning algorithm is used to accelerate the 

convergence of a multiple transition probability matrix which is also updated whenever the error norm exceeds a 

set criteria. In our work we have excluded the use of a Markov chain to model a stochastic transition probability 

matrix (TPM) of the MDP, as this not mandatory in the development a RL framework [69]. Though in [70] and 

[68] Markov chain is used to model a stochastic TPM which is updated periodically when a specific criterion is 

exceeded by the magnitude of an induced matrix norm and kull-back divergence respectively. This is in contrast 

to an earlier proposed method in [71] where the authors for the first time applied reinforcement learning 

technique (specifically TD(λ)) to minimise the fuel consumption of a hybrid electric vehicle without the need 

for prior knowledge or stochastic information of the driving cycle, and uses only a partial hybrid electric vehicle 

model. Nevertheless, our proposed RL formulation requires only the (corrected) adaptive Pinch analysis target, 

strictly for evaluating the environment state and scalar reward which the dyna-Q learning agent receives after 

taking an action in a given state. Furthermore, the step wise non-linear optimisation used to derive the optimal 

control strategy in [70] and [68] and a backward-looking optimisation in [71] is replaced with a heuristic 

graphical based adaptive power pinch analysis MPC framework, which we have proposed in our work. Thus, 

eliminating the computational cost associated with building a TPM offline, as well as solving a complex non-

convex optimisation EMS for HESS (particularly with heterogeneous energy and flow mix as in our case, where 

we have to deal with the intrinsic interaction of power, hydrogen, and water flow between subsystems). 

Furthermore, we have omitted detailed operational considerations with regards to losses associated with device 

level operation, since the considered EM approach is at the systems level.  

    Nevertheless, evaluation and formulation of the scalar reward in aforementioned RL papers excluding [70] 

which applies a backward-looking optimisation, have mostly been implemented subjectively and without 

recourse to a systematic approach which determines the ideal optimal action strategy as in the use of a corrected 

adaptive PoPA. Hence, these rewards are based on a local maximisation which increases the operational cost 

and incurred excess energy losses in contrast with a global maximum insight which the corrected adaptive PoPA 

offers. 

 

 

1.4. Main Contributions and Novelties 

    It is clear that PoPA has rarely addressed the issue of uncertainty and only in a case of HESS sizing, while the 

PoPA approach has significant advantages (described above) in cases of adaptive EM. To this end, such 

advantages have been previously exploited by the authors within an MPC framework, however under limiting 
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assumptions of perfect weather and load forecasting. The focus of this work is therefore on addressing the issue 

of RES/load forecast error which is bound to occur in a realistic scenario, in the context of the PoPA approach.   

Three novel adaptive PoPA schemes are proposed based on an EMS algorithm for an islanded HESS aimed at 

significantly reducing the effect of forecast error while shaping the PGCC. It has to be noted here that the 

islanded HESS that is being used here as a case study, has been designed and built by the authors at CERTH in 

collaboration with SUNLIGHT [8], and the mathematical models of the assets have been previously 

experimentally validated [9]. 

 

 

    More specifically, the main contributions of this work are as follows: 

I. The DA PoPA in [49] for EM of HESS has been adapted for the first time, to realise an ‘Adaptive PoPA’ [72], 

by re-shaping the PGCC in a multi-step, look ahead, receding horizon MPC framework as shown in Figure 2. 

This method offers a simple but effective means to counter the effects of forecast error.  

 

Fig. 2. Schematics of the Adaptive Power Pinch Analysis EMS for HESS [40] 
 

II. A Kalman filter for the first time, has been used in conjunction with the aforementioned Adaptive PoPA [72], 

to predict the State of Charge of the battery (�!�""BCD> ) based on the likelihood estimation of uncertainty. The 

algorithm is more sophisticated than the Adaptive PoPA but nevertheless computationally efficient and offers a 
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preventive measure as an improvement. Furthermore, the occurrence of the forecast error is not dependent on 

the corrective action, as in case (I), which may improve the algorithmic performance. 

III. A RL-based adaptive PoPA (RL+Adaptive) method has been proposed for the first time, in the context of 

the dyna Q-learning algorithm. The dyna Q-learning algorithm entails learning a policy by means of rewarding 

an agent based on the next state of the system after inferring a control action given the current state of the 

system.  Thus, the agent learns an EMS by solving for the optimal action policy. Additionally, with the action 

policy, the agent decides the de/activation of the dispatchable units in accordance with a corrected PGCC shaped 

with the Adaptive PoPA. This approach does not assume that the underlying uncertainty is normally distributed 

in the procedure that minimizes the mean squared error in the estimated state-of-charge, as in case (II). This may 

improve the algorithmic performance, hence it is worth investigating.  

   The three approaches are analysed in this paper. Furthermore, a sensitivity analysis with hydrogen uncertainty 

is used to evaluate the proposed methods against the DA PoPA. The rest of the paper is structured as follows: 

Section 2 briefly describes the Power Pinch concept. Section 3 presents the formalisation of the receding 

adaptive MPC-PoPA concept. In section 4 and 5, the proposed Kalman filter state estimator approach with 

Adaptive PoPA and the RL Adaptive PoPA algorithms are presented, respectively. The results are presented in 

Section 6, and Section 7 provides a conclusion. 

 

2. Power Pinch Analysis for Energy Management of Hybrid Energy Storage Systems 

2.1 Generic description 

    In order to understand how Pinch Analysis can be used to determine an EMS in a HESS (as shown in Figure 

1), infer a generic islanded energy system with multiple energy carriers (like electrical and hydrogen), multiple 

storage assets (like a BAT and a HT), generation assets (like photovoltaic panels (PV)), controllable assets that 

can transform an energy from one carrier to another (like a FC and an EL) and a load (possibly for each energy 

carrier). Also, for each storage component we set up operating limits that should not be violated, say SLO and SUP 

which is the minimum and maximum allowed stored energy/material respectively.  

    The first step to apply the PoPA concept is to define the Power Grand Composite Curve (PGCC) for each 

energy carrier, which is the integration of all uncontrolled energy demands and generation in the system for that 

carrier for each instance. When the system is at a specific instant k, we predict the PGCC as shown in Figure 

(2a) by assuming that the controllable assets are not activated and we check if the predicted PGCC violates any 

of the aforementioned limits. The predictive horizon is based on an hourly interval which spans for 24h ∈E�:�G , where � is the /HI hour in a day and � indicates the end of the day (or 24th h). The hourly interval ∆� is 

expressed as the difference between two successive time steps; 	 ∆� = E�� + 1� − �G where, � and � + 1 are the 

current and next time step respectively. The interval between the current time step	� and the end of the horizon � is given as	�� − ��/∆�, and the entire horizon would have 23 intervals, if	� is the first hour, 01: 00h	and � = �� + 23�	is the 24: 00h of the day. If the PGCC violates a limit at a specific instant, then at an appropriate 

instant before the violation occurs, a suitable controlled asset will be activated in a control horizon of interval 

24h ∈ E�: �G with equivalent time duration as in the predictive horizon in order to provide/remove the necessary 
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energy/material so that the system limits are not exceeded. In order to better describe the aforementioned 

concepts, a specific motivating case will be presented in the next subsection.  

 

2.2 Motivating case  

    In the HESS as shown in Figure 1, let the stored electrical energy (i.e. state of charge, �!�"") be the quantity 

that we wish to control within specific operating limits. Therefore, an EMS is derived in prediction horizon 

using a DA strategy and implemented on the HESS in a control horizon. In the prediction horizon, �!�""	is 

plotted (dotted black line in Figure 3a) at an hourly time step	�, for a daily (24 h) span as defined in section 2.1. 

The PoPA enables the identification of deficit and excess energy targets, which must be successively met, in 

order to prevent the �!�"" in the control horizon from falling below the lower pinch utility (or limit) ��5 (say 

30%) and/or rising above the upper pinch utility �67 (say 90%).   

    At first, the control strategy aims to determine the deficit energy target at the minimum	�!�"", denoted 

as	�2/+. In this case study, the deficit results from the absence of sufficient energy supply by the PV. The 

deficit energy target is then the amount of energy needed to ensure �!�"" avoids the violation of the ��5 limit at 

time	� + �2/+. The PGCC determines the minimum amount of outsourced electricity supply (MOES) required 

in order to violate SLO. A dispatchable asset, (such as a FC) indicated by a red arrow pointing upward at time	� 

shown in Figure 3b, supplies the energy needed to shift the PGCC above	��5.  
    Secondly, the control strategy aims to determine the excess energy target at the maximum	�!�"", denoted 

as	�.34. The excess energy target is then the amount of energy that needs to be dumped in order to avoid the 

violation of the �6� limit at time 	� + �234. This is denoted as the minimum excess energy for storage 

(MEES).  Thus, the MEES is recovered for storage by a dispatchable asset (such as an electrolyser (EL)) 

denoted by the red arrow pointing downwards shown in Figure 3b.  

    Thirdly, to preserve the duty cycle of the energy storage, the available energy for the next day (AEEND) i.e. �!�"" at time step � has to be matched to the	�!�""	at time step	�, by activating dispatchable assets (either the 

FC or EL) at time step	� − 1.   

    Consequently, by shifting the entire PGCC up or down (black dot-dashed line in Figure 3b), there are 

instances where the PGCC reaches (but no longer exceeds) the ��R or �6� at times � + �2/+	and	� + �234, 

which is termed the Pinch point. Therefore, the shifted PGCC which resolves the PoPA EMS is responsible for 

the instant and duration for which the energy targeting resources are activated/deactivated in the control horizon 

[5, 7, 49, 73].  

    However, effectively realising the optimal PoPA EMS via DA operation requires an accurate load and 

weather forecast model for an ideal PGCC plot, which is impractical due to uncertainty for most real 

applications. The effect of uncertainty,	∆  due to RES variability and stochasticity of electricity demand, causes 

a mismatch between the actual (red line) and predicted (blue line) �!�"" as illustrated in Figure 3c and 

consequent violation of 	�6� and the duty cycle constraint. Therefore, the utilisation of a feedback loop is crucial 

to improve the excess energy recovery and reliability indices. It can also reduce the need for (potentially higher 

carbon emission) energy imports to the system. 
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(a) 

 

(b) 
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(c) 

 

Fig. 3. (a) Original PGCC; (b) Shaped PGCC and (c) the effects of uncertainty with the DA-PoPA 

 

 

3. Adaptive Power Pinch Analysis 

    The effects of uncertainty on renewable energy sources and electricity demand with respect to the DA-PoPA 

operation have been highlighted in section 2. Thus, in this section we adapt the DA-PoPA, to create an Adaptive 

PoPA which uses a receding horizon MPC approach. In a prediction horizon spanning 24 h with hourly 

interval	∆�	and time step	�, as defined in section 2, the dispatchable control variable S:���	is determined based 

on the PoPA targets. Accordingly, S:��� determined in the prediction horizon is activated in control horizon at 

each time interval	�. Furthermore, the �!�"" as a function of the minimum energy recovery is achieved with 

regards to the Adaptive PoPA expressed as follows: 

T��(:I = 2/+S: ∑ V���	���	, 	�!�"">���, S:����W1?XY?                                                                                                  (1)                                                     

 
Subject to the Power Pinch analysis constraints: 
                 ��5 ≤ �!�"">��� ≤ �67 	                                                        (2) �!�""(��?� ≅ �!�"">���	                                               (3) ������ + ������ ≤ 1	                                                    (4) 

 

where,	�? is the first hour ,  �� (t)  is a binary variable for the dispatchable asset’s state / ∈ E��, ��G,		(see 

appendix I), S: 	���	represents the PoPA EMS control variable and subscript	 " ∈ 	 \��, ��] indicates the 

dispatchable asset. In �!�"">,(	the superscripts 2 and +	refers to the predicted and real �!�"" respectively, 

and subscript � ∈ 	 \��	, 	,9	] indicates the energy storage of note.  
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    The constraints imposed by (2) ensures the pinch operating limits are not violated. The duty cycle of the energy 

storage is preserved by the terminal constraint (3) to infer the available energy at the end of the prediction horizon 

N (AEEND). The binary variable constraint (4) prevents the simultaneous dispatch of assets that concurrently 

consume and produce the same energy carrier (e.g. �� and	��).  

    The following explanation is for one asset, the BAT, but is relevant to all asset types. At every time step	�, 

the proposed algorithm compares the forecast and real 	�!�""BCD( ��� for inconsistency or forecast deviation via 

a state feedback close loop [72]. As illustrated in Figure 4a, ∆  exceeds 5% at time	� + 2. Therefore, state 

correction is effected at the next time	� + �2/+, to decrease the forecast deviation between the predicted 	�!�""BCD>  and actual	�!�""BCD( . The re-computation of the PGCC (dotted black line in Figure 4a) which 

follows reveals an anticipated violation of the �6� such that 	�!�""BCD>  is a maximum at time	� + 11, and the 

AEEND. Thus, the predicted PGCC is re-shaped as shown in Figure 4b (blue line) with the EL dispatched at 

time � + 10 and	� − 1.  

    The error *���  and magnitude of uncertainty ∆  between the forecast and real state of charge of the Battery 

are expressed in (5) and (6) respectively as follows: 

*��� = �!�""BCD( ��� − �!�""BCD> ��|� − 1�                       (5) 

∆ ��� = |*���|                                                                                        (6) 

where, �!�""BCD> ��|� − 1� is the predicted battery state of charge at time � based on a prior time step � − 1 

and �!�""BCD( ��� is the actual battery state of charge at time step �.  
    Furthermore, if ∆  is greater than the deviation threshold	` at any sampling instance, the PoPA is repeated in 

the predictive horizon in order to determine the optimal dispatch and schedule sequence from that instant up 

until time	�. ` (which may be varied or decreased for a tighter bound) is set at 5%, to ensure minimal forecast 

deviations as well as to reduce any computational cost. Re-computation of the PGCC uses equations (7) - (8) as 

follows: 

�!�""BCD> ���: = a Vb∆ ���c																																										/V		∆ ��� > `	�!�""BCD> ��|� − 1�																																		!eℎ*gh/0*  					, ∀X 		                                                   

(7) 

Where,	Vb∆ℋ���c corrects �!�""BCD>  as follows: 

   Vb∆ ���c	= k		�!�""BCD> ��|� − 1� + ∆ ���														*��� > 0�!�""BCD> ��|� − 1� − ∆ ���														*��� < 0 					                                                (8)
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(a) 

 

(b) 

Fig. 4. (a) State error correction and (b) re-shaped PGCC with Adaptive PoPA 

 

4. Kalman Filter Adaptive Power Pinch Analysis 

     In the previous section a reactive error correction strategy has been presented, the adaptive PoPA, which does 

not consider the effect of future un-modelled uncertainty. This may result in a limit violation as shown in Figure 

5a. Therefore, the Kalman filter is incorporated into the Adaptive PoPA framework for robustness, as the 

battery’s future state (�!�""BCD> �� + 1|�)  is predicted while incorporating the effect of uncertainty at each 

time interval upon the availability of the most recent battery state (�!�""BCD( (�)) measurement. In order to 
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predict the battery’s state, a priori error covariance	mX1? matrix with respect to	�!�"", updates the Kalman 

gain	no�X� as follows: 

	no�X� = mX1?	ℐD	Eℐ	mX1?	ℐD +	ℛXG1?	                        (9)

  

    The updated Kalman gain is used to update the a priori covariance matrix: 

mX = qℐ − no�X�ℐr	mX1?                                                                              (10)                   

    The most recent output state measurement	�!�""(��� is used to update the estimated state as follows: 

�!�"">��� = �!�"">��|� − 1) + no(�!�""((�) − ℐX�!�"">(�|� − 1))                                    (11)                        

    The posterior error covariance matrix is also updated: 

mXs? = A	mX 	AD +	ℛX                                                      (12) 

Where, A ∈ �	x	� is an identity state transition matrix for the energy storages	�, ℐX ∈	 �	x	� is an identity matrix 

and ℛX is the	covariance noise matrix related to the uncertainty in	�!�""> .  
    Therefore, this formulation can be used to consider a multi-vector case of uncertainty in the energy storages. 

Nevertheless, in this work only the �v�"" of the BAT is the parameter directly impacted by the LD and RES 

uncertainty since it acts as the central integrating ES, and a change in the �v�"" of HT and WT can be 

considered deterministic as well as contingent on the controlled activation of FC or EL. Therefore, the variance 

and co-variance of  �v�"" of HT and WT in mX matrix are set to 0. Furthermore, the �!�""BCD> (�) ∈[�!�"">(�)] is determined in (11) in order to identify the uncertainty over successive �- steps ahead and 

consequently to compute the PGCC. Thereafter, the PGCC is re-shaped via PoPA minimum energy targeting as 

before. Thus, a sequence of dynamic EMSs which satisfies both the PoPA SLO and SUP constraints with 

uncertainty projection is realised in the prediction horizon for the optimal dispatch and scheduling of energy 

resources in the control horizon. The concept is illustrated in Figure 5b, where the cyan plot indicates the PGCC 

re-shaped via the Kalman+Adaptive PoPA. The violation of the	�6� at time � + 11, which occurred with the 

Adaptive PoPA EMS in Figure 5a, is avoided by dispatching the EL to recover correct MESS at time k+10. 

Likewise, the procedure is repeated for the AEEND constraint. Figure 6, shows the Kalman+Adaptive PoPA 

algorithm. 
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(a) 

 

b) 

Fig. 5. (a) PGCC shaped with Adaptive PoPA and (b) PGCC shaped with Kalman+Adaptive PoPA 
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Fig. 6. Kalman +Adaptive Power Pinch Algorithm 
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5. Reinforcement Learning Adaptive Power Pinch Analysis 

    The approach presented in this work involves formulating the uncertainty problem as a MDP considered in 

the discrete time step	�, where an agent has to act optimally by inferring an action in each state as determined by 

the adaptive MPC PoPA trajectory.  

    The MDP is a tuple��, �, ,, �’, �’) where: w: is a set of discrete n-states	w = \0?,	0x, . . . , 0(	 } and 0X denotes the state of the environment at time step k.  

    In this work, 0X: = V〈�!�""BCD> ���, �!�""BCD( ���, *���〉	                                  (13) {	: is a discrete set of n-actions for selection by the agent { = \3?	 ,	3x, … , 3}	 } and 3X	indicates the selected 

action at time k.  

    Furthermore, the set of dispatchable assets for the PGCC shaping is expressed as follows: 		S:�e� ⊆ {X ∶= \3?, 	
?��, 
x��, 
���, 
���, 
���, 
���	]  
Where, 
), 4 ∈ E1: 6G, represents percentage proportions {10, 50, 90} and {10, 50, 100} of corresponding flow 

of energy/material	���→BCD�5� ��� and �BCD→���5� ��� respectively to a selected action and	3? denotes null action.  ��0, 3, 0Ą�: is the probability of transitioning to a next state 0’ from state	0 over a given set of transitions 

when an action 3 is chosen. w	4	{ → 	,	: An immediate reward	gH 	is received as a result of the system state transition ��0, 3�	to the next 

state 0Ą by mapping state and action pair (s, a) due to a decision making policy	�.  

    Therefore, both the transition and reward probability distributions are implicitly Markov properties where the 

future state	0Ą only depends on the present state	0. The current action 3	is independent of the past state(s) 01 

that lead to the present state [74, 75].  ��0Ą|01, 0, 3)=	�(0Ą|0, 3)                                                                                                                                      

(14) 

    The model of the system is required for initial training of the agent in order to infer the control action on the 

actual system from the MPC-PoPA. The agent adapts to the real system over time and retrains on newer 

samples. The MDP learning agent learns the optimal policy �∗(3|0) from accumulated past experience which 

maps an optimal action to a given state. Hence, this maximises the cumulative scalar reward return as shown in 

(15). 

�� = � �∑ �X1?gX(0?, 3?|�)ĞXY? �                                                                                                                          

(15) 

    The Q-function ��(s, a) for a given MDP represents the optimal value function	��∗.  
The agent learns the optimal action to take in the environment through experience by taking actions in the 

environment while learning the optimal policy. 

   The Q-learning rule after taking an action 3	in a state s, obtaining a reward g and transitioning to 0’ is as 

follows: 

�X(s, a) = ��X(s, a) + 	α	[gX + �	 	�Xs?bsĄ, aĄc − �X(s, a)]													∀	� = [1,2, …� − 2]�Ą>�)
					�X(s, a) + 		α	[gX 		− �X(s, a)]	�X(s, a) 																																																						∀	� = � − 1∀	� = � 	 	�, �	 ∈ [0, < 1]    

(16) 
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Where �, � are learning rate and future reward discount factor with the future discounted reward omitted during 

the update of the agent at a terminal state at time step	� − 1.  

 

5.1 Planning stage for the Q-learning Agent  

    The MPC-PoPA model is used to bootstrap the Q-learning agent to ensure that the agent acts optimally with 

respect to tracking the PoPA trajectory, computed offline prior to online deployment so as to minimise and 

avoid exploiting costly mistakes on the real system. The advantage of the Q-algorithm is that the agent garners 

experience from the real environment and retrains offline by replaying the experience after each episode at time � to further reinforce the learning agent’s Q - value to guarantee optimality. The model-free learning happens 

using the Q-learning algorithm and switches to a Monte Carlo algorithm at � − 1 which denotes the terminal 

state  (horizon) for the agent, as shown in (16). Therefore, the learning involves two steps; a direct and indirect 

learning, from the model and from the actual system (environment) respectively.  

 

 

5.2 Action Selection 

    The action selection approach in (17) which has been modified to include safety precautions in critical states 

(near the Pinch limits), is based on the probability (1 - �) of selecting a �g**�� policy ��s� over a random 

action with probability of � [76, 77]. This approach exploits the best action as indicated by the maximum value 

function ��∗�0, 3� for a given state while performing exploration with the inverse probability (�� of acting 

greedily. This strategy strikes a balance between exploration and exploitation while satisfying the famous 

Bellman’s principle of optimality [78], minimizing the deviation of the system controlled by the learning agent 

from the Pinch target, and exploring the state space. If the �!�""BCD( ���	is	less	than	�v	or greater than S�, the 

FC and EL are dispatched by the agent respectively. Furthermore, the AEEND constraint imposed at the end of 

the day is achieved by overriding the agent’s action with the Adaptive PoPA’s EMS. The action policy ��s� is 

expressed as follows: 

 

��s�=
��
� 
��
¡ 3X�0� ¢V	S < 	�g**��	3"e/v+	�gv£3£/�/e�	�1	 − 	��		

	
��� /V	S > 	�g**��	3"e/v+	�gv£3£/�/e�	�1	 − 	�� ∧ �!�""BCD( ��� ≤ 30%
	
��� /V	S > 	�g**��	3"e/v+	�gv£3£/�/e�	�1	 − 	�� ∧ �!�""BCD( ��� ≥ 90%

0*�*"e	3	g3+�v2	3"e/v+	 !eℎ*gh/0*		 	 �̈�
©
��
ª

 

                                                (17)      

Where,  

 S is a randomly generated value between 0 and 1 given each	� time step. 
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3X�s�: =

���
���
 
���
��¡

	
��� �!�""BCD( ��� ≤ 30%
	
��� �!�""BCD( ��� ≥ 90%

			 														3g�234�«�¬�	⊆\�,	®¯��]	,(∈E?:�G��0X , 3X�	
											3g�234�«�¬�	⊆\�,	®¯��]	,(∈E�:�G��0X , 3X�	

	

											3g�234																					�«�¬�	⊆	C° ��0X , 3X�	

�!�""BCD( ��� ≥ 30% ∧ �!�""BCD( ��� ≤ 40%
�!�""BCD( ��� ≥ 80% ∧ �!�""BCD( ��� ≤ 90%

veℎ*gh/0*

 

                          (18) 

 

5.3 Reward Function Formalisation 

    In order to train the Q-learning agent, a suitable reward function is expressed mathematically. This is such 

that the agent follows the optimal policy	�∗�0� which minimises the cost function between the agent’s off-

policy and the adaptive MPC PoPA trajectory, and is expressed as follows:  

T�	��!�""BCD( � = �/2� → � − 2		 	�	q∑ |�!�""BCD> − �!�""BCD( |x + b	�T�	(0Xs?)cW1xXY?		 r                                        
(19)                                       

Thus, it follows that:                        

min6� T�	(�!�""BCD( )	 ≜ �/2� →Ğ	3g�2343X ∈ �X 	� �∑ b	�X1?ℛ(0Xs?, 3Xs?)c1?ĞXYW1x �	                                                  
(20)                          

 

    The reward function in (21) is aimed at accelerating learning. It comprises of a fixed reward	#, with penalty 

factors 9? and 9x, representing a squared error penalty cost function and constant penalty factor respectively.  

 

 

 

 

The magnitude of the 9? penalty factor is such that it increases proportionally to the absolute squared error 

deviation from the pinch target at that instant and the systems state if the agent takes a suboptimal action as 

shown in equation (22). Furthermore, the rewarded function in (23) - (25) is able to update the agent �(0, 3) 
regardless of whether the availability proposition ��C´(�)	(see appendix II) for both the FC and EL assets are 

met, while exploiting an action which minimises the error cost. 

     A typical illustration; if the operating point dictated by Adaptive PoPA anticipates future energy deficit and 

requests activation of the FC, while the agent activates the EL, a penalty would suffice. Thus, the penalty 

function, serves as a closed loop negative feedback to the agent. Therefore, in order to obtain the maximum 

reward G at a given time step, the action performed by the agent, must satisfy the consequent conditional 

proposition. As shown in (23) S">�( is contingent on function D and E in equation (24) and (25) respectively. 

Where, functions D and E are performed abstractly by iterating over all actions 3� the agent can perform. 

Specifically, assuming the 	�!�""BCD> (� + 1) is less than 80%, function D is used and thus by iterating over all 
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actions	3� 	/ ∈ E1: 7G, S">�( becomes the minimum (infimum) action which results in 	�!�""BCD> �� + 1� being 

greater or equal to 	�!�""BCD( �� + 1�. This supresses the excessive usage of the FC. Similarly, where function E 

suffices, the maximum (supremum) action which results in 	�!�""BCD> �� + 1� being less than or equal 

to	�!�""BCD( �� + 1� becomes S">�( such that the EL is used optimally. 

Furthermore, if the action performed by the agent is not equal	�¬=) to	S">�(, and consequently �!�""BCD( �� +1� becomes less than or equal to �!�""BCD> �� + 1�	a negative penalty denoted by –W1 ensues in other to 

apprise the agent from exploiting adverse actions which over discharges the BAT. 

 Also, where the agent performs 3X	 not equal to S">�(, but which results in the �!�""BCD( �� + 1� becoming 

greater than or equal to �!�""BCD> �� + 1�, a penalty W1 is deducted from the maximum reward G in order to 

dampen excessive usage of the FC. Similarly, a penalty	−�9? +9x�  is used to accelerate the agent’s learning 

curve if successive violations of any of the pinch limits occur as a result of suboptimal action. 

 

The reward function proposition for	w	4	{ ∶ ℛ�w,{� is implemented as follows; 

ℛ�0X , 3X� = 

��
��
��
��
��
� 
��
��
��
��
��
¡ #

−9?
# −9?

−�9? +9x�

	 ·
·
·
·
·
·
· ¸�!�""BCD( �� + 1� ≥ �!�""BCD> �� + 1� ∧ 3X	 == S">�( 	∧E�!�""BCD( �� + 1� > ��5 ∧	�!�""BCD( �� + 1� < �67 G 	¹
	¸E�!�""BCD( �� + 1� ≤ �!�""BCD> �� + 1�G ∧ 3X	¬= S">�( 	∧										E�!�""BCD( �� + 1� > ��5 ∧	�!�""BCD( �� + 1� < �67 G			 ¹
ºE�!�""BCD( �� + 1� ≥ �!�""BCD> �� + 1�G ∧ 		3X	¬= S">�( 		∧						E�!�""BCD( �� + 1� > ��5 ∧	�!�""BCD( �� + 1� < �67 G		 »

¼½½
½¾ E�!�""BCD( ��� ≤ �!�""BCD( �� + 1�G ∧	E�!�""BCD( ��� ≥ �67 ∧ �!�""BCD( �� + 1� ≥ �67 G ∧3X	¬= S">�( ∨ 	�!�""BCD( �� + 1� ≥ �67 ∧ 3X	¬= S">�(

							ÀÁÁ
ÁÂ

¼½½
½¾ E�!�""BCD( ��� ≤ �!�""BCD( �� + 1�G ∧	E�!�""BCD( ��� ≥ �67 ∧ �!�""BCD( �� + 1� ≥ �67 G ∧	3X	¬= S">�( 	∨ 	�!�""BCD( �� + 1� ≤ ��5	 ∧	3X	¬= S">�(	

				ÀÁÁ
ÁÂ
∨
	

	 �̈�
��
��
��
��
©
��
��
��
��
��
ª

 

                           (21) 

Where, 9?	3+�	9x are penalty factors for reward shaping. 9? = E��!�""(�� + 1�−�!�""BCD> �� + 1�� �!�""BCD> �� + 1�⁄ Gx                                                                   

(22)  

 

The action which results in the minimum optimal control action is derived abstractly as follows: 

 

S">�( ≔ a� �!�""BCD> �� + 1� > ��5 ∧	�!�""BCD> �� + 1� ≤ ��67 − 10%�� 					�!�""BCD> �� + 1� > ���5 + 50%� ∧	�!�""BCD> �� + 1� < ��67 �Æ                                       
(23) 
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Where, � ∶= inf	\��!�""BCD> �� + 1�| ∑ �(3�}�Y? , 0Xs?)) ≥ �!�""BCD( (� + 1)}                                                         (24)

   �:= sup	{	(�!�""BCD> (� + 1)|∑ �(3�}�Y? , 0Xs?)) ≤ �!�""BCD( (� + 1)}                               (25) 

  

During the online deployment, the PoPA	target is modified respectively with the MOES or MEES so as to 

capture the effect of uncertainty after SLO and SUP violation occurs at any instant as follows: 

�!�""BCD> (�|�): = a�67 			�!�""BCD( (�) > �67 		��5 					�!�""BCD( (�) < ��5 													,				∀H 		/V	∃	∆ (�) ≠ 0	                                               (26)    

           

    The reward function is modified to incorporate the MOES or MEES thus guaranteeing the model-free agent 

will act optimally in the event of uncertainty to maximise the expected reward: 

T��(:I	(�!�""BCD( ) + TÌ	(∆ ) =2/+S: 	 T�	(�!�""BCD( )                                                                                          

(27) 

 

    Furthermore, by performing the optimal policy �∗ the corresponding cost is as follows: 

 

T�∗(�!�""BCD( ) → limX→Ğ �	 �∑ �	(	T��(:I	(�!�""BCD( ) + TÌ	(∆ ))ĞX �                                                                      

(28) 

 

    Since the cost of the error due to uncertainty tends to zero when following the optimal policy, T�∗(s), the agent 

incorporates the uncertainty estimation into the PoPA: 

 	 limX→Ğ						T�(X)∗ (�!�""BCD( ) 	≤ �T��(:I(X)	(�!�""BCD( )                                                                                         (29)     

    

    The expected cost following the pinch analysis and uncertainty propagation is less than following only the 

PoPA model. Hence, the experience of the agent integrated into the MPC Adaptive PoPA framework guarantees 

optimal operation, as long as the conditions of optimal action selection and learning rate decay are satisfied. 

Figure 7 and 8, illustrates the RL+Adaptive PoPA architecture and algorithm respectively. Furthermore, the 

pseudo codes for the proposed algorithms are presented in Appendix I. 
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Fig. 7. Reinforcement Learning Adaptive Power Pinch architecture 
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Fig. 8. RL + Adaptive Power Pinch Algorithm 
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6. Results and Discussion 

    The three new methods are evaluated against the DA-PoPA in a short (three days (72h)) and long-term (one 

year (8760 h)) deployment in a stand-alone HESS. The initial conditions for the	�!�""> 	is such that	� ∈\BAT, HT	and	WT]	corresponds to 70%, 80% and 30% respectively. The HESS parameters used as case study 

are derived from an existing real system [9] as shown in Table 1. Also, real load demand profiles for a typical 

residential home and solar irradiance data pertaining to Newcastle, United Kingdom, are sourced from 

ELEXON [79] and NREL [80] respectively. 

 

Table 1  

HESS Micro-grid parameters [9] 

System Components Specification 
Load (peak) 2200 W 

PV (66.64 W rated power) 217 
DSL 2210 W 
BAT 3000 Ah  / 48 V 
FC 3000 W 
EL 4000 W 
HT 30 bar, 15 m3 

η��,η�� , ��� , ��� 0.95, 0.10, 0.87, 0.87 

 

 

    The performance main indices (30) - (32) used in evaluating the EM approaches are with respect to the total 

number of times the ��5  (30%) and �67  (90%) Pinch limits are violated and the DSL activated, as follows [42];  

Sum of Deficit=∑ k1 	��5 > �!�""BCD( �	�	�	0 veℎ*gh/0* ÒWYÓ}�ÔXY?                                                                                        (30) 

Sum of Surplus=∑ k1 	�67 > �!�""BCD( �	�	�	0 veℎ*gh/0* ÒWYÓ}�ÔXY?                                                                                      (31) 

Sum of DSL activation =∑ Õ1 	20% > �!�""BCD( �	�	�	0 veℎ*gh/0* ÖWYÓ}�ÔXY?                                                                       (32)              

 

6.1 Short-term operation 

6.1.1 Day – Ahead Power Pinch Analysis  

    As illustrated in Figures 9(a), the original PGCC show the �!�""BCD>  would dip successively below the SLO 

due to impending energy deficit within the first 72 h, if electricity is not outsourced in advance. Thus the PGCC 

is shaped accordingly by activating the FC four times as shown in Figure 9 (b). However, the PGCC 

continuously violated SLO 14 time instances which led to the activation of the DSL twice due to uncertainty 

indicated by the error plot as shown in Figure 8a, regardless of hydrogen availability.  
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a) 

 

b) 

Figure 9: a) DA-PoPA response and b) Dispatchable Logic state for the first 72h of the year 

 

6.1.2 Adaptive Power Pinch Analysis Energy Management Strategy for Uncertainty 

    The energy deficit and consequent forecast error deviation exhibited by the DA-PoPA was reduced by the 

dynamic shaping of the PGCC within a receding control horizon as shown in Figure 10(a). Figure 10(b) 

illustrates the state error correction at the inception of the 11:00 Hr after ∆  became greater than 5% at 10:00 h. 

However, the �!�""BCD(	  dipped at the 33rd,   34th,    47th,    57th,    58th,   70th,   and 71st h, without activating the 

DSL. Furthermore, despite dispatching the FC six times, as shown in Figure 10(c) after the occurrence of the 

unforeseen dip, a further violation of SLO re-occurred. This was because the MOES delivered by the FC was less 

than required, due to deficit energy target variability. The successive dips underscore the need for a preventive 

approach since the reactive approach only responds after the forecast error has occurred.  
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(a) 

 

 

(b) 

 

(c) 

Fig. 10. a) Adaptive Power PoPA, b) State error correction and c) Converter Logic 
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  6.1.3 Kalman Filter Adaptive PoPA 

    The Kalman + Adaptive approach results in the PGCC violating SLO 7 times at time 49:00 - 56:00 h and at 

time 64:00 - 70:00 h, as shown in Figure 11a.  Additionally, the FC was activated 20 times in response to 

uncertainty with the DSL never activated as shown in Figure 11 (b). The Kalman+Adaptive PGCC closely 

matched the actual state of the plant as shown in Figure 11(a), with the uncertainty adequately propagated 

within the first 48h, hence, the performance was better than using the Adaptive PoPA alone. However, the 

uncertainty (previously unknown until now, but expected to be a normal Gaussian distribution) was essentially 

non-Gaussian (bimodal). Thus, further investigation as illustrated in Figure 12(a) and 12(b) shows that the 

Kalman+Adaptive PoPA performs better as the variance of forecast error is reduced when the uncertainty is 

normally distributed. Figure 12(b) shows the converter logic. Hence, a more sophisticated approach when the 

uncertainty is unknown should suffice. 

 

a) 

 

b)  
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Fig 11. (a) The estimated and real Battery �!�"" response with the Kalman Adaptive PoPA for 72 h under 

Gaussian uncertainty; (b) converter logic  

 

(a) 

 

b) 

 

c) 
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Fig 12: a) The estimated and real Battery �!�"" response with the Kalman Adaptive PoPA for 72 h under Non-

Gaussian (Bimodal) uncertainty, b) Comparison of the real �!�"" response under both Gaussian and Non-

Gaussian uncertainty, and c) converter logic under non-Gaussian uncertainty. 

6.1.4 RL+Adaptive PoPA 

    The RL+Adaptive PoPA had only one violation of SLO, which occurred at the 45th h as shown in Figure 13a. 

Also, the DSL was never activated. However, the FC and EL were activated 28 and 20 times respectively in a 

bid to track the Adaptive PoPA’s PGCC as shown in Figure 13b.  

a) 

b) 
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Fig. 13. (a) shows the performance of the RL+Adaptive Pinch strategy for 72h; (b) converter logic 

 

    The violation of  SLO as indicated in Table 2, evidently showed Kalman Adaptive PoPA  had  the most 

significant improvement from 7 to 0 SLO violations and none for the SUP under Gaussian uncertainty and non-

Gaussian case respectively. The RL Adaptive had no limit violations under the Gaussian uncertainty. While the 

Adaptive PoPA had an improvement when the uncertainty was Gaussian, there was negligible in the DA-

PoPA’s performance.   

 

Table 2  

Summary of the performance indices for 72h. 

 Non-Gaussian Uncertainty Gaussian Uncertainty 

 DA-

PoPA 

Adaptive 

PoPA 

Kalman+

Adaptive 

PoPA 

RL+ 

Adaptive 

PoPA 

DA-

PoPA 

Adaptive 

PoPA 

Kalman + 

Adaptive 

PoPA 

RL + 

Adaptive 

PoPA 

Lower Pinch 

violation 

14 7 7 1 13 3 0 0 

Upper Pinch 

violation 

0 0 0 0 0 0 0 0 

DSL 

Activation 

2 0 0 0 4 0 0 0 

 

 

6.2 Long-term operation  

    The proposed methods are evaluated against the DA-PoPA over a period of 8760 h and the results are shown 

in Table 3. From Table 3, the DA PoPA method had the worst performance indices as regards excessive 

charging of BAT (�!�""BCD(	 >90%) and over-discharging (�!�""BCD(	 <30%) and consequently fossil fuel 

utilisation due to the DSL activation, despite a decently sized HT of 15m3 (initialised with �!�""×D(	  at 100%). 

The lower limit (�!�""BCD(	 <30%) of the BAT was violated 804 times and accordingly the DSL was activated 

229 times. Also the upper pinch limit  ��!�""BCD( > 90%� of the BAT was violated 756 times.  

    Thus, benchmarked against the performance of the DA, the Adaptive, Kalman+Adaptive and RL+Adaptive 

PoPA methods led to a reduction in SLO violation by 66%, 92% and 94%, as well as a decrease in the upper limit 

violation by 60%, 65% and 70%, respectively. Additionally, the DSL was activated only once with the Adaptive 

PoPA and was never activated with the Kalman, and RL+Adaptive PoPA. Consequently, a reduction in fossil 

fuel emission by 99.59%, 100% and 100% was achieved with the Adaptive, Kalman, RL+Adaptive PoPA EMS 

respectively. Furthermore, the reduction in upper limit violation by the Adaptive, Kalman and RL+Adaptive 

PoPA methods led to an increase in PV penetration by 6%, 6% and 7% respectively, due to the decreased 

violation of the PV (ON/OFF) protection constraint. 
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    The RL+Adaptive method had the best performance with the least violations of SLO and SUP. However, to 

counteract the uncertainty, the learning agent increased activation of the FC and EL in the control horizon by 

642% and 425% respectively, compared to the dictate of the Adaptive PoPA in the predictive horizon.  

    Also, the activation of the FC and EL with the Adaptive PoPA was seen to have increased by 95% and 150% 

and similarly for the Kalman +Adaptive PoPA, it was 520% and 255 % respectively, compared to the DA-

PoPA. 

    The available hydrogen in HT at 8760 hrs is as follows: 55% (DA-PoPA), 45% (Adaptive), 44% 

(RL+Adaptive) and 19% (Kalman+Adaptive). The		�!�""×D( 		and �!�""BCD( 	are shown in Figure 14-17. The 

Kalman+Adaptive PoPA had the most usage of the hydrogen energy carrier, with the DA-PoPA having the least 

utilisation. 

 

Table 3 
Performance metrics characterizing the proposed Pinch methods for one year (8760 hr) with HT Volume of 

15m3.  

 Day –   

Ahead 

PoPA 

Adaptive 

PoPA 

Kalman+Adaptive 

PoPA 

RL+Adaptive 

PoPA 

Lower Pinch violation (�!�""BCD(  < 30%) 804 271 64 51 

Upper Pinch violation (�!�""BCD( >90%) 756 303 265 226 

FC start-stop (cycles/year) 296 577 1837 3802 

EL start-stop (cycles/year) 262 654 931 3503 

DSL start-stop (cycles/year) 229 1 0 0 

PV start-stop (cycles/year) 8004 8457 8495 8534 

 

 

(a)       
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(b)  

Fig.14. (a) The response of the BAT and (b) HT with the DA-PoPA 

 

(a) 

 

(b) 

Fig. 15. (a) The response of the BAT and (b) HT with the Adaptive PoPA method 
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(a)    

 

(b)    

Fig. 16. (a) The response of the BAT and (b) HT response with Kalman +Adaptive PoPA 

 

(a) 
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(b) 

Fig. 17. (a) The response of the BAT and (b) HT response using RL+Adaptive Pinch Analysis 

6.3 Sensitivity Analysis of HT Size with the PoPA Schemes  

    As shown in Figure 18, a sensitivity analysis was carried out to investigate the impact of hydrogen 

uncertainty by varying the HT capacity between 10, 5, and 1 m3 with the EMS’s. The RL+Adaptive PoPA 

scheme with HT at 10 m3 had the fewest SLO and SUP violations of 68 and 256 times respectively, with the DSL 

never activated. The Kalman Adaptive PoPA had an SLO and SUP violation of 264 and 87 times. The DA-PoPA 

SLO and SUP violations were 756 and 804 times, and the adaptive PoPA violations were 303 and 271.  However, 

the Kalman Adaptive PoPA activated the DSL at 15 instances in response to 87 lower limit violations, compared 

to the Adaptive PoPA which activated the DSL only once. Decreasing the HT capacity to 5 m3 and 1 m3, the 

RL+Adaptive PoPA lower limit was violated 1553 and 2616 times respectively, which consequently lead to the 

activation of the DSL  440 and 782 times.  
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Fig.18. Sensitivity analysis of the PoPA Energy Management Schemes with 10, 5 and 1m3 HT capacity. 

    When considering upper limit violations for different HT sizes, the RL+Adaptive PoPA had the best upper 

limit violation for an HT of 10m3 and 5 m3, and the second-best upper limit violation with an HT of 1m3.  

    The RL+Adaptive PoPA had the least DSL activation overall for HT sizes of 5m3 and 1m3, which 

consequently implies that despite the SLO violation of 1203 and 2616 times in that order were only better than 

the Kalman Adaptive PoPA’s 1553 and 3468 times respectively. Additionally, as seen in Figure 17, the 

preventive methods were more effective when the hydrogen is adequately available (i.e. HT > 5 m3) (see Figure 

A.1 in the appendix). 

    The DA-PoPA violation of the upper limit remained almost unchanged despite the HT size variation. This 

clearly indicates the weakness of the DA-PoPA to uncertainty, in event of an unanticipated excess or deficit 

energy not considered during the daily energy target planning.  

 

7. Conclusion 

    The Adaptive, Kalman+Adaptive and RL+Adaptive PoPA methods have been proposed to counteract 

uncertainty caused by PV and load profile variation which may impact the reliability of the HESS. These 

methods were compared against the existing DA-PoPA strategy using real-world data. The Adaptive PoPA had 

a better performance than the DA-PoPA, as a result of the inclusion of a feedback loop which minimised the 

effect of forecast deviations. However, the method offered a reactive strategy whose correction mechanism 

relied on the occurrence of the forecast error. Furthermore, the Adaptive PoPA incorporated a receding horizon 

without uncertainty propagation. The Kalman + Adaptive PoPA had a better performance than the adaptive 
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PoPA. However, the formulation of the estimator relies on the assumption of a normally distributed uncertainty 

which was not the case. The RL+Adaptive method, which incorporates a learning agent illustrated for short and 

long-term operation, was shown to maximise the expected reward by acting optimally to meet the identified 

pinch targets. The RL+Adaptive had the best response across all performance indices; SLO and SUP limits 

violation as well as reduced diesel carbon footprint when the HT was sized at 10m3. However, even though the 

RL +Adaptive PoPA method offers the best results with respect to an avoided violation of operating limits on 

the storage devices this excellent performance comes at the cost of increased complexity. Therefore, the method 

used will be dependent on the application. For example, if there is a high confidence in the load/weather forecast 

then the DA PoPA method can be used, but if there is some error in the forecast, then the first Adaptive PoPA 

method, which does not require heavy processing power but is less accurate, should be used. However, if the 

difference between the real and the forecasted load/weather profile is significant and the uncertainty has specific 

statistical properties, then the right choice should be the use of the Adaptive PoPA with Kalman filter. Finally, if 

the error is large with no information about the type of uncertainty, then the RL+Adaptive PoPA should be the 

choice.  
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Appendix 

Fig. A.1 

 
Fig. A.1. Sensitivity analysis of the PoPA Energy Management Schemes with 10, 7.5 and 5m3 HT capacity. 
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Highlights 

• Adaptive Power Pinch achieved enhanced results over the Day-ahead Power Pinch  

• Adaptive based Power Pinch achieved 6% reduction in fossil fuel usage 

• Kalman based Adaptive Power Pinch was optimal only under Gaussian uncertainty  

• Reinforcement learning based Adaptive Power Pinch analysis had the best performance 


