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Highlights 

 Analogues of glucose-dependent insulinotropic polypeptide (GIP) with agonist or antagonist 

effects at the GIP receptor have been developed. 

 Studies in rodents have noted that both reduced and enhanced activity of GIP can prevent or 

reverse obese non-insulin dependent forms of diabetes.  

 Species differences in GIP receptor responsiveness have complicated the extrapolation of 

evidence from rodents to humans. 

 Clinical studies have shown the potential of GIP receptor agonists to be used in combination 

with other glucose-lowering peptides in the treatment of obese type 2 diabetes.  
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Abstract 

The potential application of glucose-dependent insulinotropic polypeptide (gastric inhibitory 

polypeptide, GIP) in the management of obesity and type 2 diabetes has been controversial. Initial 

interest in the therapeutic use of GIP was dampened by evidence that its insulinotropic activity was 

reduced in type 2 diabetes and by reports that it increased glucagon secretion and adipose deposition 

in non-diabetic individuals.  Also, attention was diverted away from GIP by the successful 

development of glucagon-like peptide-1 (GLP-1) receptor agonists, and a therapeutic strategy for GIP 

became uncertain when evidence emerged that both inhibition and enhancement of GIP action could 

prevent or reverse obese non-insulin dependent forms of diabetes in rodents.  Species differences in 

GIP receptor responsiveness complicated the extrapolation of evidence from rodents to humans, but 

initial clinical studies are investigating the effect of a GIP antagonist in non-diabetic individuals.   A 

therapeutic role for GIP agonists was reconsidered when clinical studies noted that the insulinotropic 

effect of GIP was increased if near-normal glycaemia was re-established, and GIP was found to have 

little effect on glucagon secretion or adipose deposition in obese type 2 diabetes patients.  This 

encouraged the development of designer peptides that act as GIP receptor agonists, including chimeric 

peptides that mimic the incretin partnership of GIP with GLP-1, where the two agents exert 

complementary and often additive effects to improve glycaemic control and facilitate weight loss.  

Polyagonist peptides that exert agonism at GIP, GLP-1 and glucagon receptors are also under 

investigation as potential treatments for obese type 2 diabetes.   

 

 

Introduction 

After the discovery of gastric inhibitory polypeptide (glucose-dependent insulinotropic polypeptide; 

GIP) evidence soon emerged to show that this hormone contributed to more physiological effects than 

the inhibition of gastric acid secretion [1, 2].    Potentiation of nutrient-induced insulin release secured 

a place for GIP alongside glucagon-like peptide-1 (GLP-1) as an incretin hormone, and reports of a 

reduced incretin effect in type 2 diabetes mellitus raised the possibility that GIP might offer a 

therapeutic opportunity to restore the incretin effect [3-5]. Moreover, GIP enhanced first-phase 

glucose-induced insulin secretion in non-diabetic individuals and promoted proliferation of islet beta-

cells in rodent models and insulin-secreting cell lines [6].  However, the insulin-releasing effect of 

GIP was diminished in type 2 diabetes, whereas the insulin-releasing potency of GLP-1 was largely 

retained in type 2 diabetes, and GLP-1 additionally exerted a satiety effect and suppressed prandial 

glucagon secretion [7-9]. Also, meal-stimulated GIP concentrations were similar in people with and 

without type 2 diabetes, whereas GLP-1 concentrations were reduced in type 2 diabetes, providing an 

opportunity to preferentially raise GLP-1 concentrations as a treatment strategy [5, 9, 10].   Thus, 
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interest in a possible therapeutic role for GIP was over-shadowed by the development of GLP-1 

receptor agonists.  The therapeutic strategy for GIP also became undecided when inhibition of GIP 

action as well as administration of excess GIP were both shown to prevent or reverse obese non-

insulin dependent forms of diabetes in rodents [11].  However, recent clinical studies have identified 

potential benefits of GIP in combination with GLP-1, and this review examines the evidence and 

evaluates the opportunities for GIP-based therapies in the treatment of type 2 diabetes.   

Physiological studies in human obesity and type 2 diabetes 

An increased density of GIP-producing K-cells has been observed in the duodenum of type 2 diabetes 

patients, but this does not appear to significantly alter GIP responses to an oral glucose challenge [ 10, 

12 ].   A meta-analysis of 23 studies found generally similar peak GIP concentrations with only a 

marginally lower incremental area-under-the-curve of GIP concentrations in response to nutrient 

stimulation in subjects with type 2 diabetes compared to non-diabetic controls [ 10 ].  It is noted, 

however, that GIP secretion is highly sensitive to the types and amounts of nutrients ingested, 

previous diet and the rate of gastric emptying: thus each of these variables could obscure subtle 

alterations of GIP secretion in type 2 diabetes [13-16]. While the ability of GIP to enhance nutrient-

induced insulin release is reduced in type 2 diabetes, this is most evident in severely hyperglycaemic 

patients, suggesting that this probably reflects the impaired functional status of the beta-cells in these 

patients rather than a defect of GIP action [17, 18].  Also, the ability of GIP to enhance the acute (first 

phase) insulin response is better preserved in type 2 diabetes than the later (second phase) response.  

The therapeutic relevance of this is that loss of the first phase nutrient-induced insulin response is an 

early feature of defective beta-cell function in type 2 diabetes, and restoring the acute response is 

known to considerably improve prandial glycaemic control [19].    

Nutrient-stimulated GIP secretion in obese subjects is similar or higher than non-obese controls, but is 

often reduced with coexistent type 2 diabetes, although findings have not been consistent and appear 

to vary with the extent of hyperglycaemia and the time period studied after nutrient intake   [10, 16-

18, 20 ].  Nevertheless, a protracted reduction of calorie intake with weight loss is generally 

associated with increased meal-stimulated GIP secretion and an increased insulin response [20, 21].   

Evidence from bariatric procedures 

In obese non-diabetic individuals, gastric banding with reduced food intake has mostly decreased GIP 

concentrations, whereas vertical sleeve gastrectomy with rapid delivery of gastric content into the 

duodenum has generally raised acute GIP responses, although studies have not been consistent [ 22-

28].  Roux-en-Y gastric bypass (RYGB), which diverts food from a small gastric pouch into the 

jejunum, has been variously reported to increase, decrease or have no effect on meal-stimulated GIP 
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concentrations, and no obvious correlation with the extent of improved glycaemic control has been 

identified amongst individuals with type 2 diabetes [25, 29-32].  Improved glycaemic control after 

RYGB has been attributed in large part to increased concentrations of GLP-1 and possibly peptide YY 

that result from rapid delivery of nutrients into the distal small intestine [ 33-35].  No relationship has 

been found between changes in glycaemic control and the reduction in GIP concentrations after 

surgical removal of the duodenum [36], and although hydrothermal ablation of the duodenal mucosa 

can reduce hyperglycaemia in type 2 diabetes this has not been compared with GIP concentrations 

[37].   Thus physiological and bariatric studies in humans have not identified a clear therapeutic 

strategy for GIP in the treatment of obesity or type 2 diabetes. 

Experimental studies 

Genetic obesity-diabetes syndromes in mice that are caused by defects of leptin production or action 

(notably ob/ob and db/db mutants) and diet-induced murine obesity and glucose intolerance are  

associated with hyperplasia of duodenal K-cells, increased GIP content of the duodenum and 

increased GIP concentrations [38, 39].  Interruption of GIP production by administration of GIP 

receptor antagonists, antibodies against GIP or against the GIP receptor can partially reduce or reverse 

the obesity, hyperglycaemia, hyperinsulinaemia and insulin resistance in these animal models, and 

reduce glucagon and corticosterone concentrations [40-45].  Also, GIP receptor knockout (Gipr(-/-)) 

prevented the development of diet-induced obesity in mice and reduced weight gain in ob/ob mice, 

consistent with the effect of GIP receptor antagonists  [46 ].  However, there are small differences in 

the amino acid sequences of human GIP compared with rat GIP and mouse GIP (Figure 1), and the 

human GIP receptor has only 81% homology with rat and mouse GIP receptors [47 ].  These 

structural differences are associated with important functional differences.  For example, whereas rat 

GIP receptor antagonists such as rat GIP(3-30) exert a strong competitive antagonist effect in rodents,  

human GIP(3-30) exerts little or no antagonism against the rat or mouse GIP receptor [ 48, 49 ].  

Moreover, human (Pro3)GIP acts as an antagonist at the rat and mouse GIP receptors  but acts as an 

agonist at the human GIP receptor [ 47-49].  Thus species differences of GIP receptor responsiveness 

to GIP antagonists make it difficult to extrapolate antagonist evidence from rodent models to man.   

Regarding surgical information between species, a RYGB procedure in diet-induced obese mice 

reduced the obesity and decreased GIP production by the Roux-limb, but not by the biliopancreatic 

limb of the intestine, and the serum GIP response was maintained  [50]. This supports the view that 

different GIP responses to feeding after RYGB in human subjects may reflect differences in the length 

of the Roux limb and the adaptations of the mucosa.   

Although the foregoing experimental evidence indicates that inactivation of GIP can reduce obesity 

and improve glycaemic control in mice, administration of stable long-acting forms of GIP to rodent 
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models can also improve glycaemic control, mostly without a significant effect on body weight.  This 

is attributed to increased insulin secretion, increased β-cell mass and a reduced effect of C-terminally 

modified GIP on adipose deposition [51-54].  Moreover, transgenic mice that over-express GIP and 

show improved glycaemic control and increased β-cell function, also show reduced diet-induced 

obesity [55].  GIP has been variously reported to increase feeding or have no effect on feeding 

although intracerebroventricular administration of GIP decreased food intake and body weight in 

normal mice, possibly acting centrally by altering sensitivity to leptin [56-58]. Potent GIP receptor 

agonists also decreased food intake and body weight in diet-induced obese mice [ 58 ]. 

Early development of GIP analogues 

Although the clinical investigation of GIP analogues has lagged far behind that of GLP-1 analogues, 

early development proceeded largely in parallel. When studies in Coleraine led by Peter Flatt noted 

that the dipeptidyl peptidase-4 (DPP-4) degradation product GIP(3-42) was less potent than native 

GIP(1-42) and antagonised the effect of native GIP(1-42),  the group examined a series of N-

terminally modified GIP analogues and found that modifications at N1 or N2 generally conferred 

DPP-4 resistance and enhanced insulin releasing and anti-hyperglycaemic activity [59-62].   However, 

amino acid substitution at N3 reduced biological activity and antagonised the action of native GIP(1-

42) [11].  To increase the stability of GIP, D-Ala2 substitution, acylation and PEGylation were 

undertaken and the potential therapeutic application of these molecules was studied in rodent models 

[63-67].   

Because experimental studies in obese-diabetic rodents indicated that both increased and decreased 

activity of GIP receptors can improve glycaemic control with or without concurrent weight loss, it 

was uncertain which therapeutic strategy to adopt: GIP antagonism or agonism?  Moreover, 

differences in the activation and inhibition of GIP receptors between rodents and humans complicated 

the extrapolation of rodent studies into a clinical context [68, 69].  To address this,  detailed analyses 

of structure-activity relationships for native GIP and variant GIP molecules have been undertaken 

using an assay of cAMP production by Chinese hamster ovary (CHO) cells and monkey kidney 

(COS) cells transfected with cDNA to express human GIP receptors [70, 71].  These studies 

determined that the biological activity of GIP resides with the N-terminal 1-14 sequence of residues, 

while the middle region (residues 19-30) can improve binding affinity and C-terminal residues (31-

42) appear to contribute conformational advantage to the molecule [Figure 1].    

GIP antagonism 

Although the anti-obesity and anti-hyperglycaemic effects of GIP inhibition in rodents fuelled interest 

in the therapeutic potential of GIP antagonists, detailed evaluation of such agents in obese-diabetic 
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patients has yet to take place. In vitro studies established that truncations, deletions or substitutions 

along the 1-14 sequence of human GIP results in molecules with very weak partial agonism or no 

agonism, and some of these molecules have shown biological antagonism of human GIP receptor 

function.  GIP(3–30) and GIP(5–30) are reported to be the most potent competitive antagonists at 

human GIP receptors, and the antagonistic effect of GIP(3-30) is increased when competing against 

GIP molecules that lack a C-terminal region  [71].  Thus, although endogenous active circulating 

GIP(1-42) is degraded by DPP-4 to GIP(3-42), which has a competitive antagonist effect at the GIP 

receptor, the C-terminal residues of GIP may partially protect against this antagonism [71, 72].  GIP 

may also be degraded by neutral endopeptidases and several truncated GIP variants such as GIP(6–

30) and GIP(7–30) have been identified.  These act as GIP receptor antagonists in rodents, but have 

little effect at human GIP receptors [73-75].   A long-acting GIP antagonist [palmitoylated human 

GIP(3–30), with a C-terminal extension based on the GLP-1 receptor agonist exendin], promoted 

weight loss and improved glycaemic control in fat-fed mice [76].  However, an infusion of human 

GIP(3-30) in healthy non-diabetic subjects significantly reduced the insulin response and increased 

glucose excursions, confirming that inhibiting GIP action raises blood glucose in non-diabetic humans 

[77, 78].  The clinical effect of inhibiting GIP action with GIP(3-30) was compared to inhibiting GLP-

1 action with exendin(9-39), and it was concluded that GIP may normally provide a greater stimulus 

for insulin secretion than GLP-1 [78].  The effect of GIP receptor antagonism in human type 2 

diabetes remains to be established.  

GIP agonism 

Recent clinical interest in the potential therapeutic opportunities of GIP agonism was encouraged by 

evidence that the insulinotropic potency of GIP is increased when near-normal glycaemia is 

established in type 2 diabetes patients receiving insulin  [79-81]. Although this might reflect in part a 

sparing effect on the beta cells, the first phase glucose-induced insulin response is enhanced by GIP 

and glucagon secretion is only increased at low glucose concentrations, improving the 

counterregulatory response to hypoglycaemia [81 ]. The need to first re-establish near normal 

glycaemia points to the use of GIP in combination with another glucose-lowering agent:  indeed the 

effect of chronic administration of GIP alone or a potent GIP receptor agonist alone in obese type 2 

diabetes patients has not been established.   While GIP may increase adipose deposition in lean human 

subjects, partly due to increased vascular perfusion of adipose tissue, this effect appears to be 

diminished in non-diabetic obese individuals, suggesting that GIP does not promote adipose 

deposition in human obesity  [82, 83 ].  A further property ascribed to GIP is that of improved bone 

health through inhibition of bone resorption [84].  This is consistent with the decrease in bone mineral 

density, decreased bone strength, decreased cortical thickness and increased osteoclast activity in GIP 

receptor knockout mice [85, 86].  
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The foregoing provides evidence to support the therapeutic value of GIP agonism in combination with 

at least one other glucose-lowering agent in the treatment of hyperglycaemia in humans.  But why 

should the diametrically opposite approaches of GIP agonism and GIP antagonism improve obesity-

diabetes status in rodent models?  Suggestions in the literature include the possibility that chronic 

exposure to GIP receptor agonists might cause desensitisation of the GIP receptor through receptor 

down-regulation which reduces the effect of GIP, and/or degradation products of GIP might 

antagonise receptor function [87].  Whether such ideas could be extrapolated to human type 2 diabetes 

remains a further conjecture, but it is suggested that if GIP antagonists can improve glucose 

homeostasis without enhancing insulin secretion, then other glucose-lowering mechanism must be 

taking place [41-43]. Possible effects on other aspects of metabolism, hunger-satiety behaviour and 

exercise remain to be clarified.    

GIP therapy in combination with GLP-1  

Many of the potential benefits of GIP administration are complementary to those of GLP-1, and use of 

the two hormones together could offer advantages for the treatment of obese type 2 diabetes.  Both 

hormones contribute to the incretin effect to enhance prandial insulin secretion, and they may act on 

the islet beta-cells in part through different and partially additive mechanisms [88].  Both can promote 

beta-cell mass in vitro and in animal models but this has yet to be clearly shown in type 2 diabetes 

patients.  The suppressive effect of GLP-1 on glucagon secretion should moderate a possible tendency 

for high GIP concentrations to increase glucagon secretion without hypoglycaemia, and the satiety 

and weight loss effects of GLP-1 should counter the possibility that GIP might increase adipose 

deposition as seen in lean individuals. Both hormones promote bone health and have been reported to 

confer benefits against age-related cognitive decline [89].  GLP-1 is already established as an 

effective therapy for obese type 2 diabetes and chimeric designer peptides provide a means to achieve 

agonism at both GLP-1 and GIP receptors with the same molecule [90-92].  

Studies in diet-induced obese and genetically obese diabetic rodents have noted that administration of 

GIP or GIP analogues with potent GIP receptor agonism can increase the weight-reducing, insulin-

releasing and blood glucose-lowering effects of GLP-1 [90-95].  Also, GLP-1 and GIP together 

increased energy expenditure and did not promote appetite in rodent models, while a study in 

overweight and obese non-diabetic subjects has indicated that GIP might reduce the satiety effect of 

GLP-1 [96].  Initial ‘proof of principle’ studies in non-diabetic and type 2 diabetic subjects using 

peptides with agonistic effects at GIP and GLP-1 receptors recorded similar or greater glucose-

lowering activity than equivalent doses of a GLP-1 receptor agonist alone [91, 92].   For example, a 

GIP/GLP-1 dual agonist with the catchy nickname ‘twincretin’, which incorporates substantial N-

terminal homology with GIP and C-terminal homology with the GLP-1 receptor agonist exenatide,   
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produced a dose dependent decrease in HbA1c over 6 weeks in type 2 diabetes subjects (Figure 2) 

[91, 92, 97]. To protect against enzymatic degradation by DPP-4, the twincretin has aminoisobutyric 

acid at N2, and to further prolong the active form in the circulation there is a fatty acid link at the C-

terminus to attach to albumin.  Several other GIP/GLP-1 dual agonist peptides have now been 

reported, including the N-ac(d-Ala2)GIP/GLP-1-exe hybrid which has D-Ala at N2 to protect against 

DPP-4 degradation and C-terminal homology with exenatide [95].  This dual agonist has been shown 

to decrease HbA1c and body weight in high fat fed mice, and increase beta-cell mass, pancreatic 

insulin content and insulin responsiveness.     

The most extensively studied GIP/GLP-1 dual agonist is tirzepatide (LY3298176).  This 39 amino 

acid peptide is based on the biologically active N-terminal GIP(1-14) sequence with an N2 

aminoisobutyric acid substitution (Figure 2) [98].  The mid-sequence contains substitutions 

compatible with GLP-1 receptor agonism and there is a C20 fatty diacid chain linked via glutamic 

acid to the Lys20 residue to facilitate attachment to albumin to prolong viability in the circulation.  

There is also an amidated exenatide-like C-terminal sequence.  The structure confers stronger 

agonism for the GIP receptor than the GLP-1 receptor: binding affinity for the GIP receptor is similar 

to native GIP(1-42), but about 5-fold weaker for the GLP-1 receptor than native GLP-1.  This 

provides a degree of balance that takes account of the physiologically higher circulating 

concentrations of GIP than GLP-1.  The modifications that reduce enzymatic degradation provide 

sufficient durability for once-weekly subcutaneous administration.    Preclinical studies in rodent 

models indicated that the peptide could increase beta-cell function more than GIP agonism or GLP-1 

agonism alone, reduce food intake and body weight, and increase energy expenditure [98].   

The preclinical observations were confirmed in humans: initial 1-month trials with tirzepatide in 

healthy subjects and people with type 2 diabetes noted improved oral glucose tolerance, an increased 

insulin response to oral glucose and reduced body weight in a dose-dependent manner [98].  In a 

phase 2  double-blind placebo-controlled study, 316 type 2 diabetes patients treated by lifestyle + 

metformin  (baseline HbA1c 8.2%, body weight 92 kg and BMI 32 kg/m2) were randomised to once 

weekly subcutaneous injection of  tirzepatide  (1, 5, 10, and 15 mg), dulaglutide (1.5 mg) or placebo 

for 26 weeks [99].  Compared to placebo, tirzepatide was associated with dose related mean 

reductions in HbA1c of 1∙00%, 1∙67%, 1∙83% and 1∙89% for the 1,5,10 and 15mg doses respectively.  

Dulaglutide reduced HbA1c by 1∙21% in this study suggesting that high doses of tirzepatide exerted 

considerably greater glucose-lowering efficacy than the maximum dose of dulaglutide in routine 

clinical use.  Tirzepatide was also associated with a marked dose-dependent loss of body weight (by 

0∙9 kg with the 1 mg dose to 11∙3 kg with the 15 mg dose) versus reductions of 2∙7 kg for dulaglutide 

and 0∙4 kg for placebo.  Small reductions in circulating triglyceride concentrations and a marginal 
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reduction in blood pressure were also noted with tirzepatide, and there was no change in the incidence 

of cardiovascular events or hypoglycaemia. 

Set against the efficacy of high doses of tirzepatide is a high incidence of gastrointestinal 

disturbances, although these were mostly early and transient. Also of note, over half of patients 

receiving the 15mg dose of tirzepatide developed antibodies to this agent, but these were generally of 

low titre and did not appear to compromise efficacy.    

Preliminary accounts of the effects of several other GIP/GLP-1 dual agonist peptides in healthy 

subjects and type 2 diabetes patients have been reported, eg once-daily injection of  RG7697 

(MAR709) and NNC0090-2746  [82-85, 103].  These accounts confirm that GIP receptor agonism 

does not interrupt the glucose-lowering or weight-lowering effects of GLP-1 receptor agonism, and 

may provide additional efficacy, but not with the same potency as the long-acting once-weekly agent 

tirzepatide.    

GIP as part of a triple agonist  

Triple agonist (triagonist) peptides with stimulatory effects at the glucagon, GLP-1 and GIP receptors 

(GcgR/GLP-1R/GIPR) have been developed with a balance of activation at the three receptors. Their 

structures are largely based on the amino acid sequence of glucagon with positional modifications, 

and their activity at each of the receptors has been assessed in vitro.  Each has shown strong glucose-

lowering and weight-lowering effects in rodents and/or monkeys [93, 97, 104, 105]. Examples of 

triagonists are shown in Figure 2. Weight-lowering was particularly effective with some triagonists 

which may be attributable to the inclusion of glucagon agonism: glucagon exerts a satiety effect and 

promotes energy expenditure.  It is anticipated that the glucose-lowering effects conferred by the 

GLP-1 and GIP components of the triagonists are more than compensating for the effect of glucagon 

receptor agonism to promote endogenous glucose production.   Triagonists can also reduce hepatic 

lipid stores in animal models: this favours use in the treatment of hepatic steatosis, noting that the 

removal of ectopic hepatic fat is a feature of the success of calorie restricted diets in the early 

treatment of obese type 2 diabetes [106].   

In principle, designer polyagonist molecules offer the opportunity to produce a variety of amino acid 

sequences with different activities at different receptors.  This could enable glucose-lowering and 

weight-lowering potencies to be selected to closely align with the therapeutic needs of the individual - 

a move towards precision medicine with a single molecule.  By simultaneously targeting multiple 

receptors it should be possible to achieve treatment goals with lower dose-equivalents than required if 

only one or two differently acting agents is used.  Also, lesser effects at several receptors should 

reduce the side effects associated with a high dose of one agent, although the levels of receptor 

Jo
ur

na
l P

re
-p

ro
of



10 

 

activation required to produce the therapeutic effects might lead to long-term desensitisation, or incur 

risk of anaphylactic reactions [107].  Production cost and maintaining the physico-chemical stability 

of large peptides in injection media can be a challenge, and a particular caution resides with the 

immunogenicity of non-native peptide sequences and the development of antibodies as already seen 

with tirzepatide [98, 99].    

Many gastro-intestinal peptides with different effects on glucose homeostasis could be considered for 

therapeutic use in the management of obesity and type 2 diabetes, as agonists and antagonists, with or 

without GIP (table 1).    Effects of mixtures, hybrids and chimeras exerting agonist effects of these 

peptides without affecting GIP receptors have received preliminary assessment in obese and diabetic 

animal models, and several have proceeded into clinical development [103].   Combined peptide-

steroid molecules have also been developed, and formulations for enteral as well as parenteral 

administration continue to receive attention.  With a view to the long-term future it is possible that 

glucose-responsive (so-called ‘smart’) formulations could be devised to release the active agent(s) 

within the body to coincide with changes in blood glucose [107].     

Conclusion  

Therapeutic aspirations for GIP receded into the shadow of its incretin partner GLP-1 after the 

insulinotropic potency of GIP was shown to be much reduced in type 2 diabetes.  It was also difficult 

to reconcile evidence that both an increase and a decrease in GIP action could prevent or reverse 

obese non-insulin dependent diabetes in rodents.  Clinical attention to the therapeutic potential of GIP 

was rekindled after studies identified species differences in GIP receptor responsiveness and noted 

that the insulinotropic potency of GIP returned in type 2 diabetes patients when near normal 

glycaemia was re-established.   The complementary effects of GIP and GLP-1 to enhance nutrient-

induced insulin release while facilitating weight loss are now being incorporated into designer 

peptides,  
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Legend to Figures 

Figure 1.   

Amino acid sequence of glucose-dependent insulinotropic peptide (gastric inhibitory peptide, 

GIP) showing functional properties and species differences.  Structure-activity relationships of 

variant GIP molecules were assessed using an assay of cAMP production by Chinese hamster ovary 

(CHO) cells and monkey kidney (COS) cells transfected to express human GIP receptors [70, 71].   

GIP(1-42) is the main active form of GIP, and GIP(1-30) is also active in the circulation.  The N-

terminal GIP(1-14) amino acids are essential for biological activity: the middle region (amino acids 

19-30) affect receptor binding affinity and C-terminal amino acids (31-42) provide conformational 

advantage.  GIP(1-42) is degraded by dipeptidyl peptidase-4 (DPP-4) to GIP(3-42), which can act as a 

competitive antagonist to GIP(1-42) at the GIP receptor.  GIP variants with further deletions at the N-

terminus can also act as antagonists at the GIP receptor: the antagonistic potency reduces with the 

number of deletions from the N-terminal sequence. The C-terminal region of GIP(1-42) reduces the 

competitive potency of GIP antagonists.  There are small variations in the amino acid sequences of 

human, rat and mouse GIP molecules which do not alter the essential active N-terminal region but can 

alter biological activity between species.  
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Amino acid sequences of glucose-dependent insulinotropic peptide (gastric inhibitory peptide, 

GIP), glucagon-like peptide-1 and glucagon compared with a dual GIP/GLP-1 receptor agonists 

and triple GIP/GLP-1/glucagon receptor agonists.  Amino acids consistent with GIP are shown in 

black.   X, aminoisobutyric acid.  A, D-Ala2.    a  GIP/GLP-1 ‘twincretin’ described by Finan et al 

[91].  b GIP/GLP-1 hybrid described by Pathak et al [95]. c GIP/GLP-1dual agonist tirzepatide also 

known as LY3298176 described by Coskun et al [98].   d  Triagonist A decribed by Finan et al [93].  e  

Triagonist B  ([DA2]GLP1/GcG) described by Gault et al [105]. 
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Table 1.  

Glucoregulatory effects of gastro-intestinal and pancreatic peptides in clinical use or being 

investigated as templates to develop GIP-based therapeutic interventions for obese type 2 

diabetes.  Based on a recent review [107].  ↑, increase; ↓, decrease; ↔, no clear change; ?, uncertain; 

*, depends on pathophysiological circumstances; CCK, cholecystokinin; GIP, glucose-dependent 

insulinotropic peptide; GLP1, glucagon-like peptide 1; Oxynto, oxyntomodulin; PYY, peptide 

tyrosine tyrosine; 

 HbA1c     Wt Food 

intake 

Energy expended Insulin 

b-cell mass 

Glucagon 

secretion 

GIP ↓ ↑ ? ↓ ↑ ↑ 

GLP-1 ↓ ↓ ↓ ? ↑ ↓ 

Glucagon ↑ ↓ ↓ ↑ ↑ ↔ 

Insulin ↓ ↑ ↓ ↓↔↑* ↔ ↓ 

PYY ↔ ↓ ↓ ? ?  ↔↓ 

Oxynto ↓ ↓ ↓ ↑ ↑ ?  

Gastrin ↔ ↔ ↓ ↔ ↑ ?  

CCK ↔ ↔ ↓ ↔ ↔ ↔ 

Xenin ↔ ↓ ↓ ? ↑ ? 
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