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Highlights 

 A fixed cost allocation model for a two-stage system is built 

 It is first work to apply efficiency invariance principle in two-stage system 

 Both cooperative and non-cooperative scenarios are investigated 

 The former scenarios are based on overall efficiency invariance principle 

 The latter scenarios are based on divisional efficiency invariance principle 
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Abstract 

Fixed cost allocation among groups of entities is a prominent issue in numerous 

organisations. Addressing this issue has become one of the most important topics of 

the data envelopment analysis (DEA) methodology. In this study, we propose a fixed 

cost allocation approach for basic two-stage systems based on the principle of 

efficiency invariance and then extend it to general two-stage systems. Fixed cost 

allocation in cooperative and noncooperative scenarios are investigated to develop the 

related allocation plans for two-stage systems. The model of fixed cost allocation 

under the overall condition of efficiency invariance is first developed when the two 

stages have a cooperative relationship. Then, the model of fixed cost allocation under 

the divisional condition of efficiency invariance wherein the two stages have a 

noncooperative relationship is studied. Finally, the validation of the proposed 

approach is demonstrated by a real application of 24 nonlife insurance companies, in 

which a comparative analysis with other allocation approaches is included.  

Keywords: Data envelopment analysis, Fixed cost allocation, Cooperative model, 

Noncooperative model, Efficiency invariance principle 
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1. Introduction 

Data envelopment analysis (DEA) is a mathematical programming approach that 

is used to evaluate the efficiency of groups of decision-making units (DMUs) with 

multiple inputs and outputs (Charnes, Cooper, and Rhodes, 1978). It has been widely 

used in many fields, such as education, geoponics, healthcare and transportation 

(Emrouznejad and Yang, 2018). In recent years, DEA has also been applied to allocate 

fixed cost, because it can examine the effect of feasible allocation plans by the 

empirical description of the production possibility set based on the real productions 

(Beasley, 2003; Cook and Kress, 1999; Li, Yang, Liang, and Hua, 2009). The issue of 

fixed cost allocation is commonly encountered in real life when some agents (i.e. 

DMUs) use a common platform. An example provided by Cook and Zhu (2005) is the 

allocation of a manufacturer‟s advertising expenses to local retailers. Another example 

is the allocation of a bank‟s common television or newspaper advertising expenses to 

its branches. The crucial issue in fixed cost allocation is how to make an allocation 

plan for assigning cost to multiple DMUs.  

So far, many DEA works have focused on fixed cost allocation issues on the basis 

of efficiency invariance principle or efficiency maximization principle. It should be 

noted that the efficiency of a DMU here is relative efficiency by comparing with other 

DMUs. The principle of efficiency invariance refers to the invariance in the efficiency 

of DMUs before and after allocation. Cook and Kress (1999) firstly studied the issue 

of fixed cost allocation by using DEA. Their proposed allocation procedure solved 

linear programming problems on the basis of efficiency invariance principle and 

Pareto-minimality principle. In a subsequent work, Jahanshahloo, Lotfi, Shoja, and 

Sanei (2004) argued that Cook and Kress (1999)‟s method exists computational 

difficulties. Then they presented an approach that does not require the solution of 

linear programming problems but require some simple mathematical formulae to 

allocate the cost. Cook and Zhu (2005) pointed that Cook and Kress (1999)‟s 

approach cannot be used directly to determine cost allocation among DMUs although 

it can examine existing rules for equitable cost allocation. Thus, they modified Cook 
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and Kress (1999)‟s approach by providing a practical approach to the problem of cost 

allocation. Lin (2011a) proved that the method proposed by Cook and Zhu (2005) has 

no feasible solution under special constraints. To obtain a feasible allocation plan, Lin 

(2011a) improved Cook and Zhu (2005)‟s approach and set output targets in 

accordance with the amount of fixed cost shared by each DMU. Furthermore, Lin 

(2011b) proposed a DEA method for allocating cost and distributing common revenue 

among DMUs, which reflects the relative efficiency and the input-output scales of 

DMUs. More importantly, Lin and Chen (2016) illustrated that the “Pareto-minimality” 

introduced by Cook and Kress (1999) is inappropriate and then proposed a method 

based on super efficiency invariance and practical feasibility. Mostafaee (2013) 

presented an alternative allocation approach where the efficiency and the return to 

scale (RTS) of all DMUs remain unchanged after allocation. Lin, Chen, and Li (2016) 

proposed a method based on the principle of unit invariance to address the uniqueness 

of allocation plans successfully and allocate positive resources along with a positive 

target to each DMU. Amirteimoori and Kordrostami (2005) established a method 

based on a common set of weight and the efficiency invariance principle. However, 

Jahanshahloo, Sadeghi, and Khodabakhshi (2017) showed that the efficiency 

invariance principle is not necessarily satisfied when using Amirteimoori and 

Kordrostami (2005)‟s method. Hence, they presented two equitable approaches based 

on the efficiency invariance principle and a common set of weight principle.  

The principle of efficiency maximization indicates that the efficiency of all 

DMUs will be improved after cost allocation. Beasley (2003) firstly provided a cost 

allocation method based on this principle. Later, Si, Liang, Jia, Yang, Wu, and Li 

(2013) extended the work of Beasley (2003). They examined the equity of the 

proportional sharing method, and investigated the relationship between the extended 

method of proportional sharing and other DEA-based allocation methods. Li, Yang, 

Chen, Dai, and Liang (2013) utilised the DEA approach for equitable fixed cost 

allocation by considering the effect of allocation to each DMU. To identify a fair 

scheme, they introduced the concept of satisfaction degree and proposed a max-min 

model to generate a unique allocation plan. Du, Cook, Liang, and Zhu (2014) 
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established a cost allocation method on the basis of the cross-efficiency concept. 

Khodabakhshi and Aryavash (2014) proposed that the allocation must be directly 

proportional or inversely proportional to the inputs and the outputs. Lin and Chen 

(2017) introduced a global modified additive DEA (MAD) model to allocate fixed 

cost by optimizing the global MAD-efficiency. Li, Zhu, and Liang (2019) suggested 

that each DMU should propose an allocation plan to punish itself so as to guarantee 

the acceptability of the allocation plan. Considering the game relations in the 

allocation process, Li, Li, Emrouznejad, Liang, and Xie (2019) proposed a 

cooperative game allocation approach for cost allocation. To guarantee the uniqueness 

of the allocation result, Chu and Jiang (2019) defined the concept of utility of each 

DMU and obtained the cost allocation result by maximizing the minimum utility. 

According to the structure of the studied system, we mainly classify the fixed 

cost allocation studies into two categories. One category is cost allocation for 

single-stage systems, including the studies mentioned above. Although most studies 

on fixed cost allocation of single-stage system satisfy either efficiency maximization 

or efficiency invariance, several studies solve allocation issues from another way. For 

example, Yang and Zhang (2015) proposed a modified Shapley value to solve fixed 

cost allocation in single systems fairly, and they established a new Gini coefficient to 

evaluate the fairness of the allocation plan. To help managers incorporate different 

sub-objectives, Pendharkar (2018) utilised a hybrid genetic algorithm and DEA 

framework to solve the multicriterion issue of fixed cost allocation. Wu, Chu, and 

Liang (2016) considered that setting efficient targets by traditional allocation 

approaches is unfair to certain DMUs. Thus, they incorporated DEA and the closest 

target technique in the allocation problem. Some previous works based on efficiency 

maximization principle assumed that all DMUs become efficient after fixed cost 

allocation, such as Li, Yang, Chen, Dai, and Liang (2013). However, Ding, Chen, Wu, 

and Wei (2018) thought the achievement of a common technological level by all 

DMUs is impractical and thus presented a new approach that accounts for 

technological heterogeneity. Most of studies mentioned above regarded the fixed cost 

as a new input for the DMUs, but Li, Yang, Liang, and Hua (2009), Lin and Chen 
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(2017) allocated fixed cost as a complement of other cost inputs on the basis of DEA 

approach, and this method was extended to two-stage systems by Zhu, Zhang, and 

Wang (2019). Zhang, Wang, Qi, and Wu (2018) combined game theory and DEA 

approach to solve the problem of transmission cost allocation. Considering 

competitive and cooperative relationships among DMUs, Li, Zhu, and Liang (2018) 

integrated cooperative game theory and cross-efficiency method to develop a unique 

and fair allocation plan. Studies of this category ignored the internal structure of 

systems by considering them as „black boxes‟ (Yu, Chen, and Bo, 2016). 

Another category is fixed cost allocation for two-stage systems. Operational 

systems usually contain multiple stages. For example, banks usually contain deposit 

and lending processes. The substages of each bank branch use common facilities and 

thus each substage should be obliged to afford fixed cost allocation. So far, a few 

works have considered fixed cost allocation among two-stage systems. For instance, 

Yu, Chen, and Bo (2016) proposed an alternative approach to solve the problem of 

fixed cost allocation, which is based on two-stage DEA models and cross-efficiency 

concept. Ding, Zhu, Zhang, and Liang (2019) dealt with the fixed cost allocation 

problem for a general two-stage network structure, by introducing the concepts of 

satisfaction degree and fairness degree. Zhu, Zhang, and Wang (2019) treated the 

fixed cost as an additional input factor shared in two-stage DMUs and proposed three 

allocation procedures based on different objectives in reality. Chu, Wu, Chu, and 

Zhang (2019) considered the competition between the two stages of DMUs in fixed 

cost allocation issues and regarded all the first stages and all the second stages as two 

unions. Then the allocation plan is calculated by using satisfaction degree bargaining 

model. Considering internal structure, Li, Zhu, and Chen (2019) used DEA 

methodology to determine relative efficiency and allocated costs based on both 

common weights and operation size. To sum up, these works on fixed cost allocation 

in two-stage systems are based on the principle of efficiency maximization and 

neglect the possible relationship between the two stages. 

In this study, we focus on fixed cost allocation in two-stage systems, wherein 

potential conflicts between the two stages arise from intermediate measures (Liang, 
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Cook, and Zhu, 2008). In real life, there are many two-stage systems in government or 

business, and the fixed cost allocation issues commonly encountered when some 

agents (i.e. DMUs) use a common platform. Besides, the cooperation and competitive 

relationships between two stages may exist. Thus, in two-stage systems, assigning 

proper cost to each DMU and its substages considering the relationship between the 

two stages is a crucial problem. Assuming cooperative (or noncooperative) 

relationship between the two stages, we build a cooperative (or noncooperative) 

model for deciding how to allocate fixed cost in an equitable and fair way. The fair 

way means the relative efficiency of each DMU remains unchanged after allocation 

(Cook and Kress, 1999). Why do we keep efficiency invariant? We know that all 

DMUs‟ relative efficiency depends on existing inputs and outputs measures, which 

are out of control of other DMUs, hence the fixed cost allocation plan should be 

implemented based on the current efficiency scores (Li, Song, Dolgui, and Liang, 

2017; Cook and Kress, 1999). In addition, from operation‟s view, the given inputs and 

outputs adequately explain the production function, so the allocated cost should have 

no effect on this function (Cook and Kress, 1999). Therefore, the efficiency should be 

invariable after allocation in a short term.  

Compared with the previous works, the proposed approach in this paper has four 

main differences (some specific comparisons can be seen in Table 1). First, we build a 

DEA-based approach for fixed cost allocation in two-stage systems, which is based on 

the principle of efficiency invariance. Second, our approach studies both cooperative 

and noncooperative relationships between the two stages of systems during fixed cost 

allocation. The former relationship is investigated from a centralized point, whereas 

the latter one is studied from a competitive point. Third, our allocation plan is 

beneficial to the leader stage when the two stages are noncooperative. Furthermore, 

our approach makes the difference between the maximum allocation value and the 

minimum allocation value of DMUs smaller than that of other approaches, which is 

illustrated in our application. 

 

Table 1 
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Comparison among several previous methods and our method 

Authors Allocations 

principles 

Structure Models Approaches 

Mostafaee 

(2013) 

Efficiency 

invariance 

Single 

stage 

The combined 

primal-dual form 

of the one stage 

DEA 

Step 1: Assess the pre-allocation efficiency 

scores of each DMU and obtain the optimal 

intensity variables. 

Step 2: Allocate fixed cost by minimizing 

the gaps among allocated fixed costs based 

on the optimal values of intensive variables 

and the pre-allocation efficiency scores 

obtained from step 1. 

Lin and Chen 

(2017) 

Efficiency 

maximization 

Single 

stage 

One-stage DEA 

model by 

optimizing the 

global 

MAD-efficiency 

Step 1: Evaluating the efficiencies of all 

DMUs based on MAD model. 

Step 2: Allocate fixed cost by minimizing 

the difference between the maximum and 

minimum portions over the minimum fixed 

cost possibly paid by DMUs. 

Ding, Zhu, 

Zhang, and 

Liang (2019) 

Efficiency 

maximization 

General 

two-stage 

network 

Additive 

two-stage 

models  

Step 1: Calculate the efficiency by additive 

two-stage models 

Step 2: Allocate fixed cost by maximizing 

average satisfaction degree  

Khodabakhshi

and Aryavash 

(2014) 

Efficiency 

maximization 

Single 

stage 

One-stage DEA 

model 

Step 1: Determine the minimum and 

maximum and values of efficiency. 

Step 2: Calculate the share of DMU from 

step 1. 

Li, Li,   

Emrouznejad, 

Liang, and Xie 

(2019) 

Efficiency 

maximization 

principle  

Single 

stage 

A cooperative 

game DEA 

model 

Step 1: Define the characteristic function 

Step 2: Allocate the fixed cost based on 

nucleolus solution. 

Yu, Chen, and 

Bo (2016) 

Efficiency 

maximization 

principle 

Two-stage 

system 

Two-stage 

cross-efficiency 

DEA  

Step 1: Calculate the initial values of 𝐸 
  

and 𝐸 
 . 

Step 2: Put the new 𝐸 
  and 𝐸 

  into model 

to obtain next optimal solution until the 

values cannot further increase. 

Step 3: Compute optimal value of cost 

allocation.  

Zhu, Zhang, 

and Wang 

(2019) 

Efficiency 

maximization 

principle 

Two-stage 

system 

Three 

procedures based 

on different 

objectives. 

Step 1: Consider two situations: (1) the 

lower bound of   and   (shared resource 

ratio of stage 1) are zero. (2) the lower 

bound of   and   are positive 

Step 2: Propose three procedures based on 

different objectives to obtain allocation 

plan. 

Li, Zhu, and Efficiency Two-stage Minimize the Step 1: Optimize the allocation plan by 
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Chen (2019) maximization 

principle 

system deviation 

between the 

efficient 

allocations and 

size allocations 

considering the operation size. 

Step 2: Minimizing the maximal deviation 

repeatedly 

Chu, Wu, Chu, 

and Zhang 

(2019) 

Efficiency 

maximization 

principle 

Two-stage 

system 

Satisfaction 

degree 

bargaining game 

model 

Step 1: Propose the leader-follower fixed 

cost allocation approach and the new 

concept of satisfaction degree. 

Step 2: Incorporate the Nash bargaining 

game theory to propose a satisfaction degree 

bargaining game model. 

Step 3: Get the allocation plan. 

The current 

paper 

Efficiency 

invariance 

principle 

Basic 

two-stage 

and general 

two-stage 

system 

Additive 

two-stage 

models and 

leader-follower 

allocation model 

Step 1: Using the additive model and 

leader-follower model to get initial 

efficiency 

Step 2: Deduce efficiency invariance 

condition by models in step 1. 

Step 3: Allocate fixed cost in cooperative 

and noncooperative scenarios. 

 

The rest of this paper is organised as follows. The traditional DEA model and the 

fixed cost allocation approach proposed by Cook and Kress (1999) are briefly 

introduced in Section 2. The two-stage DEA models for measuring the efficiency of 

DMUs before and after allocation, and our fixed cost allocation models are presented 

in Section 3. Section 4 shows the validation of this approach by using a real 

application of 24 nonlife insurance companies. A comparative analysis with other 

allocation methods of two-stage systems is also given in this section. Section 5 

discusses the generalization of the proposed model to the general two-stage system. 

Conclusions and directions for future research are given in Section 6. 

2. Preliminaries 

2.1 Traditional DEA model 

Suppose that there are a set of homogeneous DMUs, and each 𝐷𝑀𝑈  (𝑗 =

1,… , 𝑛) uses I inputs 𝑥𝑖(𝑖 = 1,… , 𝐼) to produce K outputs 𝑦𝑘(𝑘 = 1, … , 𝐾). The 

output-oriented CCR (Charnes, Cooper, and Rhodes, 1978) model is given as follows:  

Min ∑ 𝑣𝑖𝑥𝑖 
 
𝑖    (1) 
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𝑠 𝑡  ∑ 𝑣𝑖𝑥𝑖 
 
𝑖   ∑ 𝑢𝑘𝑦𝑘 

 
𝑘    , 𝑗 = 1,… , 𝑛  

 

 ∑ 𝑢𝑘𝑦𝑘 
 
𝑘  = 1   

 𝑣𝑖, 𝑢𝑘   , 𝑖 = 1, … , 𝐼 𝑘 = 1, … ,𝐾    

where 𝑢𝑘 is the weight appointed to the kth output, and 𝑣𝑖 is the weight appointed 

to the ith input. 𝑢𝑘, 𝑣𝑖 are variables in model (1). The dual of model (1) is as follows: 

Max     (2) 

𝑠 𝑡  ∑    𝑥𝑖 
 
    𝑥𝑖 , 𝑖 = 1,… , 𝐼  

 

 
∑    𝑦𝑘 
 
      𝑦𝑘 , 𝑘 = 1,… ,𝐾  

 

      , 𝑗 = 1, … , 𝑛   

where    and      are variables. 𝐷𝑀𝑈  is called an efficient DMU if and only 

if the optimal objective function value of models (1) and (2) equals one. Otherwise, it 

is called an efficient DMU. 

2.2 Fixed cost allocation method of Cook and Kress (1999) 

In this section, we briefly present the allocation method of Cook and Kress 

(1999), which can guarantee the efficiency of each DMU invariant after allocation.  

Before the fixed cost allocation, the efficiency of 𝐷𝑀𝑈  can be evaluated by 

model (1) or (2). After the allocation, we assume the allocated fixed cost to 𝐷𝑀𝑈  is 

𝑟 , 𝑗 = 1, …𝑛. Then, similar to the traditional DEA model (1), the efficiency of 𝐷𝑀𝑈  

after allocation can be measured by the following model in which the allocated fixed 

cost is considered as a new input. 

Min ∑ 𝑣𝑖𝑥𝑖 
 
𝑖   𝑣   𝑟   (3) 

𝑠 𝑡  ∑ 𝑣𝑖𝑥𝑖 
 
𝑖   𝑣   𝑟  ∑ 𝑢𝑘𝑦𝑘 

 
𝑘    , 𝑗 = 1, … , 𝑛.  

 

 ∑ 𝑢𝑘𝑦𝑘 
 
𝑘  = 1   

 𝑣𝑖, 𝑢𝑘   , 𝑣     , 𝑖 = 1,… , 𝐼 𝑘 = 1,… , 𝐾    

where 𝑣    is variable which represents the weight of the allocated fixed cost, 

𝑟 , 𝑗 = 1, …𝑛 are constant. Model (3) is a linear programming model. Considering the 

fact that a non-allocation plan is feasible through making 𝑣   =  , we let 𝑣     . 

Its dual programming model is as follows: 

Max   
′   (4) 
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𝑠 𝑡  ∑    𝑥𝑖 
 
    𝑥𝑖 , 𝑖 = 1,… , 𝐼  

 

 
∑    
 
   𝑟  𝑟   

 

 
  
′ 𝑦𝑘  ∑    𝑦𝑘 

 
     , 𝑘 = 1,… , 𝐾  

 

      , 𝑗 = 1, … , 𝑛   

It is important to know “how to set the allocated fixed cost to each DMU that can 

guarantee the efficiency invariable before and after allocation?” Cook and Kress 

(1999) proposed a principle called efficiency invariance principle which means the 

optimal objective function value of model (1) equals to the optimal objective function 

value of model (3) for 𝐷𝑀𝑈 . To realize the efficiency invariance principle, 𝑣    in 

model (3) must be out of the basis in the final simplex tableau (Jahanshahloo, Lotfi, 

Shoja, and Sanei, 2004). To better explain what is “out of the basis”, we give the 

following definition. 

Definition 1. For each 𝐷𝑀𝑈 , 𝑣    remains out of the basis means that the reduced 

cost is nonnegative. That is  

𝐶𝑣𝐼+1  𝑍𝑣𝐼+1   ⇒ 𝐶𝑣𝐼+1  𝐶𝐵𝐵
− 𝐴   ⇒ 𝑟  ∑    

∗ 𝑟 
 
       

⟹ 𝑟  ∑    
∗ 𝑟 

 
    (5) 

where    
∗ (𝑗 = 1,… , 𝑛) are the optimal dual variables of model (3) (Cook and Kress, 

1999; Jahanshahloo, Lotfi, Shoja, and Sanei, 2004).  

To set the value of    and   
′  equal, the second constraint of model (4) must be 

redundant. That is,    
∗  in formula (5) must be the optimal solution of model (2). 

Therefore, 𝑟 , 𝑗 = 1,… , 𝑛  should satisfy 𝑟  ∑    
∗ 𝑟 

 
   . One limitation of this 

allocation is that it is not unique. If the overall fixed cost was distributed in its entirety 

among only inefficient DMUs in any proportion (Cook and Kress, 1999), the DEA 

efficiency scores would not change, and invariance assumption is satisfied. Hence, 

another condition, “the Input Pareto-Minimality” should be satisfied as well. The 

Input Pareto-Minimality is defined as follows: 

Definition 2. The Input Pareto-Minimality of fixed cost allocation plan means that no 

cost can be transferred from one DMU to another without violating the invariance 
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principle (Cook and Kress, 1999). 

 In order to satisfy efficiency invariance and Input Pareto-Minimality principle, 

the constraint 𝑟 = ∑    
∗ 𝑟 

 
    should be satisfied for all inefficient 𝐷𝑀𝑈 . Denote 

𝑆  as the constraints in model (1) corresponding to the efficient reference set for 

𝐷𝑀𝑈 , we have 𝑟 = ∑    𝑟  ∈𝑆𝑑
, because other dual variables equal to zero 

according to complementary slackness. It should be noted that, Lin and Chen (2016) 

subsequently illustrated that this economic explanation “Pareto-Minimality” for the 

equality constraints is not appropriate and they suggested calling it as “practical 

feasibility assumption”. 

 

3. Proposed allocation model based on efficiency invariance in two-stage systems 

Considering the internal structure of each DMU, we propose a fixed cost 

allocation model for basic two-stage systems based on the efficiency invariance 

principle. 

 

 

 

  

 

Fig. 1. A basic two-stage system 

Fig. 1 depicts a two-stage network structure wherein outputs from the first stage 

become the inputs of the second stage. Suppose that we have n DMUs, and each 

𝐷𝑀𝑈 (𝑗 = 1,… , 𝑛)  uses I nonnegative inputs 𝑥𝑖 (𝑖 = 1,… , 𝐼)  to produce M 

intermediates 𝑧𝑚 (𝑚 = 1,… ,𝑀). These intermediates are viewed as the inputs of the 

second stage to generate K outputs 𝑦𝑘 (𝑘 = 1,… ,𝐾). In this paper, analogous to 

Cook and Kress (1999), we regard the allocated fixed cost 𝑟  to each DMU as a new 

input. Let R denote the overall fixed cost of all DMUs, and 𝑟  denote the cost 

allocated to 𝐷𝑀𝑈 . The decision maker of each DMU can freely allocate the cost 

𝑦𝑘𝑗(𝑘 = 1,… ,𝐾) 𝑧𝑚𝑗(𝑚 = 1,… ,𝑀) 𝑥𝑖𝑗(𝑖 = 1,… , 𝐼) 

𝛼𝑗𝑟𝑗  (1  𝛼𝑗)𝑟𝑗  

Stage 1 Stage 2 

𝑟𝑗 
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between Stages 1 and 2. 𝛼 𝑟  is the fixed cost allocated to the first stage of 𝐷𝑀𝑈 , 

whereas the rest of cost denoted by (1  𝛼 )𝑟  is allocated to the second stage of 

𝐷𝑀𝑈  (Chen, Du, Sherman, and Zhu, 2010; Yu, Chen, and Bo, 2016; Cook and 

Hababou, 2001). Chen, Du, Sherman, and Zhu (2010) stated that the value of 

𝛼 (  𝛼  1) is set within a range to balance allocation between the two stages. L 

and U are the lower bound and upper bound of 𝛼 , respectively. In reality, the value 

of L and U are determined by decision makers or branch consultant (Cook and 

Hababou, 2001) based on the actual economic bearing capacity of Stages 1 and 2. 

For each 𝐷𝑀𝑈  under the assumption of constant returns to scale (CRS), the 

efficiency value of Stages 1 and 2 considering the fixed cost can be obtained by the 

following formulae. 

  
 =

∑      
 
  1

∑ 𝑣    
𝐼
  1  𝑣𝐼+1    

  (6) 

  
 =

∑      
 
  1

∑      
 
  1    +1( −  )  

  (7) 

3.1 Cooperative models for fixed cost allocation in two-stage systems 

In many cases, Stages 1 and 2 must work together to optimize overall 

performance. An alternative method to measure the efficiency of two-stage systems is 

to consider them from a centralized perspective and determine the set of the optimal 

weights of 𝑧𝑚. Chen, Du, Sherman, and Zhu (2010) set the overall efficiency by the 

weighted average of the two stages‟ efficiency scores as follows: 

 = 𝑝   
  𝑝   

   (8) 

𝑝  𝑝 = 1   

where 𝑝  and 𝑝  represent the relative importance of efficiency in the first and 

second stages, respectively. One way to identify the relative importance of each stage 

is the proportion of the overall inputs devoted to Stages 1 and 2. Considering the fixed 

cost, the concrete calculation formulae are as follows:  

𝑝 =
∑ 𝑣     𝑣𝐼+1    
𝐼
  1

∑ 𝑣     𝑣𝐼+1    
𝐼
  1  ∑      

 
  1    +1( −  )  

 and  

𝑝 =
∑      
 
  1    +1( −  )  

∑ 𝑣     𝑣𝐼+1    
𝐼
  1  ∑      

 
  1    +1( −  )  

.  
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The denominator represents the total inputs of 𝐷𝑀𝑈 , whereas ∑ 𝑣𝑖𝑥𝑖  𝑣   𝛼 𝑟 
 
𝑖   

represents the inputs of Stage 1, and ∑ 𝑤𝑚𝑧𝑚 
𝑀
𝑚   𝑤𝑀  (1  𝛼 )𝑟  represents the 

inputs to Stage 2 (Chen, Du, Sherman, and Zhu, 2010). 

Thus, considering the fixed cost, the overall performance of two-stage DMU can 

be evaluated by solving the following model. The efficiency score of the two 

substages is simultaneously calculated by the optimal weights of model (9), 

Max 𝑝 
∑     𝑑
 
  1

∑ 𝑣   𝑑 𝑣𝐼+1 𝑑 𝑑
𝐼
  1

 𝑝 
∑     𝑑
 
  1

∑     𝑑
 
  1    +1( − 𝑑) 𝑑

= 𝐸   (9) 

𝑠 𝑡  
∑      
 
  1

∑ 𝑣     𝑣𝐼+1    
𝐼
  1

 1, 𝑗 = 1, … , 𝑛  (9.1) 

 ∑      
 
  1

∑         +1( −  )  
 
  1

 1, 𝑗 = 1,… , 𝑛  (9.2) 

 𝑣𝑖, 𝑢𝑘, 𝑤𝑚   , 𝑣   , 𝑤𝑀     (9.3) 

 𝑖 = 1,… , 𝐼 𝑘 = 1,… ,𝐾 𝑚 = 1,… ,𝑀   

where 𝑝 , 𝑝  represent the relative weights of efficiency in the first and second stages 

respectively. Constraints (9.1) and (9.2) show that the efficiency scores of Stages 1 

and 2 must not exceed 1. Putting 𝑝 , 𝑝  into model (9), and then it can be 

transformed into the following model: 

Max 
∑     𝑑
 
  1  ∑     𝑑

 
  1

∑ 𝑣   𝑑 𝑣𝐼+1 𝑑 𝑑
𝐼
  1  ∑     𝑑

 
  1    +1( − 𝑑) 𝑑

= 𝐸   (10) 

𝑠 𝑡  (9.1) - (9.3)  

Similar to Chen, Du, Sherman, and Zhu (2010) and Yu, Chen, and Bo (2016), we also 

assume that 𝑣   = 𝑤𝑀  = 𝜔 for all 𝐷𝑀𝑈 , 𝑗 = 1, … , 𝑛 in model (10), because the 

allocated cost 𝛼 𝑟  and (1  𝛼 )𝑟  are the same type of inputs. Then, by applying 

Charnes–Cooper transformation (Charnes and Cooper, 1962), 

let 𝜏 =
 

∑ 𝑣   𝑑
𝐼
  1  ∑   

 
  1   𝑑 𝜔 𝑑

, 𝑣𝑖
′ = 𝜏𝑣𝑖, 𝑤𝑚

′ = 𝜏𝑤𝑚 , 𝑢𝑘
′ = 𝜏𝑢𝑘, 𝜔

′ = 𝜏𝜔 , then 

model (10) is transformed into the following model, 

Max 𝑤𝑚
′ 𝑧𝑚  𝑢𝑘

′ 𝑦𝑘   (11) 

𝑠 𝑡  ∑ 𝑤𝑚
′ 𝑧𝑚 

𝑀
𝑚   ∑ 𝑣𝑖

′ 
𝑖  𝑥𝑖  𝜔

′𝛼 𝑟     
 

 
∑ 𝑢𝑘

′ 
𝑘  𝑦𝑘  ∑ 𝑤𝑚

′𝑀
𝑚  𝑧𝑚  𝜔

′(1  𝛼 )𝑟     
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∑ 𝑣𝑖

′ 
𝑖  𝑥𝑖  ∑ 𝑤𝑚

′𝑀
𝑚  𝑧𝑚  𝜔

′𝑟 = 1  
 

 𝑢𝑘
′ , 𝑣𝑖

′ , 𝑤𝑚
′   ,𝜔′      

 𝑘 = 1,… , 𝐾 𝑚 = 1,… ,𝑀 𝑖 = 1, … , 𝐼 𝑗 = 1, … , 𝑛   

Model (11) is an input-oriented DEA model, similarly, we can obtained the following 

output-oriented DEA model: 

  1 𝑀𝑖𝑛 ∑ 𝑣𝑖
′ 

𝑖  𝑥𝑖  ∑ 𝑤𝑚
′𝑀

𝑚  𝑧𝑚  𝜔
′𝑟 =

 

 𝑑
    (12) 

𝑠 𝑡  ∑ 𝑤𝑚
′ 𝑧𝑚 

𝑀
𝑚   ∑ 𝑣𝑖

′ 
𝑖  𝑥𝑖  𝜔

′𝛼 𝑟     
 

 
∑ 𝑢𝑘

′ 
𝑘  𝑦𝑘  ∑ 𝑤𝑚

′𝑀
𝑚  𝑧𝑚  𝜔

′(1  𝛼 )𝑟     
 

 ∑ 𝑤𝑚
′ 𝑧𝑚 

𝑀
𝑚   ∑ 𝑢𝑘

′ 𝑦𝑘 
 
𝑘   = 1   

 𝑢𝑘
′ , 𝑣𝑖

′ , 𝑤𝑚
′   ,𝜔′      

 𝑘 = 1,… , 𝐾 𝑚 = 1,… ,𝑀 𝑖 = 1, … , 𝐼 𝑗 = 1, … , 𝑛   

The optimal overall efficiency after allocation is denoted by 𝑒 
𝑐𝑜∗, which is 

calculated by model LP1. Besides, the optimal efficiency of each stage after allocation 

is obtained by the optimal solutions (𝑣𝑖
′∗, 𝑤𝑚

′∗ , 𝑢𝑘
′∗, 𝜔′∗). The two divisional efficiency 

after allocation are denoted by 𝑒 
𝑐𝑜 ∗, 𝑒 

𝑐𝑜 ∗.  

Before fixed cost allocation, let 𝑟  equal zero for all 𝑗 = 1, … , 𝑛 in model (12), 

then we can obtain the initial overall efficiency and the initial divisional efficiency by 

solving model LP2. The initial overall efficiency and divisional efficiency are 

explained by Definition 3. 

    𝑀𝑖𝑛 ∑ 𝑣𝑖
′ 

𝑖  𝑥𝑖  ∑ 𝑤𝑚
′ 𝑧𝑚 

𝑀
𝑚  =

 

 𝑑
     (13) 

𝑠 𝑡  ∑ 𝑤𝑚
′ 𝑧𝑚 

𝑀
𝑚   ∑ 𝑣𝑖

′𝑥𝑖 
 
𝑖      

 

 
∑ 𝑢𝑘

′ 𝑦𝑘 
 
𝑘   ∑ 𝑤𝑚

′ 𝑧𝑚 
𝑀
𝑚      

 

 ∑ 𝑤𝑚
′ 𝑧𝑚 

𝑀
𝑚   ∑ 𝑢𝑘

′ 
𝑘  𝑦𝑘 = 1   

 𝑢𝑘
′ , 𝑣𝑖

′ , 𝑤𝑚
′      

 𝑘 = 1,… , 𝐾 𝑚 = 1,… ,𝑀 𝑖 = 1, … , 𝐼 𝑗 = 1, … , 𝑛   

Definition 3. The initial efficiency is defined as the efficiency before allocation. The 

initial overall efficiency (𝐸 
𝑐𝑜 , 𝐸 

 𝑜 ) is the efficiency of two-stage DMU before 
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allocation. The initial divisional efficiency is the efficiencies of two substages before 

allocation, and we denote the initial divisional efficiencies of two substages as 

𝐸 
𝑐𝑜 , 𝐸 

𝑐𝑜  and 𝐸 
 𝑜 , 𝐸 

 𝑜  in two scenarios, respectively. 

How to guarantee the efficiency before and after allocation invariant? Cook and 

Kress (1999) stated that a necessary condition for equitable allocation is that no DMU 

can use new input to improve its relative efficiency. Comparing LP1 and LP2, the 

overall efficiency invariance requires to maintain the variables 𝜔′ of LP1 out of the 

basis. However, achieving the allocation plan through models LP1 and LP2 is 

impossible. We can attempt to impose such a condition by duality theory. The 

respective dual models of LP1 and LP2 are 

DP1 Max     (14) 

𝑠 𝑡  ∑ (   
     

  
   )𝑧𝑚  (1    )𝑧𝑚 ,𝑚 = 1,… ,𝑀  (14.1) 

 
∑    

  
   𝑥𝑖  𝑥𝑖 , 𝑖 = 1, … , 𝐼  (14.2) 

 
∑    

  
   𝑦𝑘    𝑦𝑘 , 𝑘 = 1,… , 𝐾  (14.3) 

 
∑ [   

 𝛼 𝑟     
 (1  𝛼 )𝑟 ]  𝑟 

 
     (14.4) 

 
   
 ,    

   , 𝑗 = 1,… , 𝑛  (14.5) 

 

DP2 Max     (15) 

𝑠 𝑡  (14.1) - (14.3)  

 (14.5)  

To satisfy the principle of efficiency invariance, the optimal value of DP1 and 

DP2 must be equal. Thus, constraint (14.4) in DP1 must be redundant. The optimal 

solution of DP1 must also be the optimal solution of DP2. Denote    
 ∗ ,    

 ∗ as the 

optimal variables of model DP2 when 𝐷𝑀𝑈  is evaluated, then we have 

∑ [   
 ∗𝛼 𝑟     

 ∗(1  𝛼 )𝑟 ]
 
    𝑟 . Evidently, this formula cannot determine 

equitable allocation sufficiently, and then the input practical feasibility principle is 

necessary. Therefore, the efficiency invariance condition becomes 

𝑟 = ∑ [   
 ∗𝛼 𝑟     

 ∗(1  𝛼 )𝑟 
 
   ]. We obtain the allocation plan by solving the 
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following model, 

Min |∑ 𝛼 𝑟  ∑ (𝑟  𝛼 𝑟 )
 
   

 
   |= obj1 (16) 

𝑠 𝑡  ∑ [   
 ∗𝛼 𝑟     

 ∗(1  𝛼 )𝑟 
 
   ] = 𝑟 ,  = 1,… , 𝑛   

 
∑ 𝑟 
 
   =     

    𝛼  𝑈    

where    
 ∗,    

 ∗( = 1,… , 𝑛) are obtained by solving model DP2 n times. Model (16) 

is a nonlinear programming model because of ∑    
 ∗𝛼 𝑟 

 
    and ∑    

 ∗𝛼 𝑟 
 
    in 

certain constraints. In accordance with Chen, Du, Sherman, and Zhu (2010), we let 

𝑏 = 𝛼 𝑟 (𝑗 = 1,… , 𝑛), model (16) can be converted into a linear programming model.  

Min |∑ 𝑏  ∑ (𝑟  𝑏 )
 
   

 
   |=obj1 (17) 

𝑠 𝑡  ∑ [   
 ∗𝑏     

 ∗(𝑟  𝑏 )
 
   ] = 𝑟 ,  = 1,… , 𝑛   

 
∑ 𝑟 
 
   =     

   𝑟  𝑏      

  𝑈 𝑟  𝑏      

In cooperative scenario, decision makers should select one reasonable objective, 

which is similar to the approach of Cook and Zhu (2005). To minimize the deviation 

between Stage 1 and Stage 2, we let obj1 equal 𝑀𝑖𝑛 | ∑ 𝑏 
 
    ∑ (𝑟  𝑏 )

 
   |. The 

linear programming can be solved one time with an objective function obj1 to avoid 

the uniqueness. If there are still several optimal solutions, we can set a second 

objective function, for example, 𝑀𝑖𝑛 ∑ |𝑟  𝑟̅|
 
   , 𝑀𝑖𝑛 

 

 
∑ (𝑟  𝑟̅)

  
   , 𝑟̅ =  𝑛⁄ . 

3.2 Noncooperative models for fixed cost allocation in two-stage systems 

The models presented in Section 3.1 are based on the cooperative relationship, 

wherein the two stages work together to obtain the optimal system result. In this 

section, we consider the noncooperative relationship between the two stages when the 

fixed cost is allocated to each DMU. Given such a competitive condition, we 
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introduce the Leader-Follower concept to explore the divisional efficiency invariance 

condition. Li, Chen, Liang, and Xie (2012) used the noncooperative approach 

developed by Liang, Cook, and Zhu (2008) to analyse this extended two-stage 

structure, they assumed one stage as the leader and another stage as the follower. The 

leader stage is more important than the follower stage. This leader–follower 

methodology is introduced from the Stackelberg game. For example, the existence of 

a manufacturer and retailer wherein the manufacturer plays a crucial part is called 

leader-follower competition or Stackelberg competition. 

Before fixed cost allocation, we should illustrate the noncooperative model in 

detail. Above all, the leader stage should be identified. Although Li, Chen, Cook, 

Zhang, and Zhu (2018) proposed an approach to uncover the leader stage of two-stage 

system, they assumed the leader stage of each DMU is unknown beforehand. 

However, here we assume the leader stage is known and identified based on expert 

opinions before allocation. In this paper, we assume that the leader is the first stage, 

and the follower is the second stage. Thus, the efficiency of Stage 2 is obtained when 

the leader‟s efficiency remains fixed. Certainly, Stage 2 can also be the leader if it is 

more important than Stage 1 in certain companies.  

The initial efficiency of the first stages of DMUs is obtained by solving model (1), 

here we rename model (1) as LP3. Let 𝑤𝑚
∗  and 𝑣𝑖

∗ be the optimal set of weights, 

and 𝐸 
 𝑜  is the initial efficiency of Stage 1 for 𝐷𝑀𝑈 . The intermediate product 

𝑧𝑚  is the only connection between Stages 1 and 2. Therefore, 𝐸 
 𝑜  should be 

introduced in the next model when the efficiency of the second stage is calculated. 

The optimal efficiency score of Stage 2 (follower) is calculated by maintaining Stage 

1‟s (leader) efficiency score. The model is as follows: 

LP4 Min ∑ 𝑤𝑚𝑧𝑚 
𝑀
𝑚  =

 

 𝑑
     (18) 

𝑠 𝑡  ∑ 𝑢𝑘𝑦𝑘  ∑ 𝑤𝑚𝑧𝑚 
𝑀
𝑚     

𝑘  , 𝑗 = 1,… , 𝑛   

 
∑ 𝑤𝑚𝑧𝑚  ∑ 𝑣𝑖𝑥𝑖 

 
𝑖    𝑀

𝑚  , 𝑗 = 1,… , 𝑛   

 ∑ 𝑤𝑚𝑧𝑚  𝐸 
 𝑜 ∗ ∑ 𝑣𝑖𝑥𝑖 

 
𝑖  =  𝑀

𝑚     
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 ∑ 𝑢𝑘𝑦𝑘 = 1
 
𝑘     

 𝑣𝑖, 𝑤𝑚 , 𝑢𝑘   ,𝑚 = 1,… ,𝑀 𝑖 = 1, … , 𝐼 𝑘 = 1, … ,𝐾   

LP3 and LP4 represent the output oriented CCR (Charnes and Cooper, 1962) 

model. Once we obtain the efficiency of the first stage, the second stage can only 

consider variables 𝑤𝑚 that maintain 𝐸 
 𝑜 = 𝐸 

 𝑜 ∗ (Liang, Cook, and Zhu, 2008). 

Therefore, we consider ∑ 𝑤𝑚𝑧𝑚 
𝑀
𝑚   as the single input to model LP3 that maintains 

the optimal objective value 𝐸 
 𝑜 ∗(Liang, Cook, and Zhu, 2008). 

In noncooperative scenario, we denote the overall optimal efficiency by 

𝐸 
 𝑜 ∗ ∗ 𝐸 

 𝑜 ∗. Using the same method as that used by Cook and Kress (1999), we set 

the condition of the efficiency invariance of Stage 1 as ∑    
∗ 

   𝛼 𝑟 = 𝛼 𝑟 , where 

   
∗  is the optimal variables of DP3 when 𝐷𝑀𝑈  is evaluated. 

DP3 Max   
′ =

 

 𝑑
  1∗  (19) 

𝑠 𝑡  ∑    𝑧𝑖 
 
      

′ 𝑧𝑚    

 
∑    𝑥𝑖 
 
    𝑥𝑖    

    ,   
′   , 𝑗 = 1, … , 𝑛 𝑚 = 1,… ,𝑀   

Similarly, the condition of efficiency invariance for the second stage is as follows:  

∑ [𝜑  
∗ 

   (1  𝛼 )𝑟  𝛽  
∗ 𝛼 𝑟 ]  (1  𝛼 )𝑟 = 𝐸 

 𝑜 ∗𝜂  
∗ 𝛼 𝑟 , 𝜑  

∗ , 𝛽  
∗ , 𝜂  

∗  are 

the optimal variables of DP4.  

DP4 Max 𝜂  =
 

 𝑑
   ∗  (20) 

𝑠 𝑡  ∑  𝜑  𝑦𝑘  𝜂  𝑦𝑘 
 
     , 𝑘 = 1,… , 𝐾   

 
∑ ((𝜑   𝛽  )𝑧𝑚 )  𝜂  𝑧𝑚 
 
    𝑧𝑚 ,𝑚 = 1,… ,𝑀  

 

 
∑ 𝛽  𝑥𝑖 
 
    𝐸 

 𝑜 ∗𝜂  𝑥𝑖   , 𝑖 = 1, … , 𝐼   

 𝜑  , 𝛽       

Li, Yang, Chen, Dai, and Liang (2013) argued that each DMU is selfish to pay the 

minimum allocated cost. In the same way, leader stage (Stage 1) prefers to afford less 

cost than follower stage (Stage 2), so we set the objective function as 𝑜𝑏𝑗 =
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𝑀𝑖𝑛∑ 𝛼 𝑟 
 
   . Obviously, this objective function is non-linear, so we let 𝑏 =

𝛼 𝑟 , 𝑗 = 1,… , 𝑛, and then the allocation plan in the noncooperative scenario can be 

get by model (21). 𝜑  
∗ , 𝛽  

∗ , 𝜂  
∗ , 𝜂  

∗  are obtained by solving model DP4 n times.  

Min ∑ 𝑏 
 
   = 𝑜𝑏𝑗   (21) 

𝑠 𝑡  ∑ 𝜑  
∗ 𝑟  𝑟  ∑ (𝛽  

∗  𝜑  
∗ )𝑏 

 
    𝐸 

 𝑜 ∗𝜂  
∗ 𝑏  𝑏 =  

 
      

 
∑    

∗ 
   𝑏 = 𝑏 ,  = 1,… , 𝑛   

 
∑ 𝑟 
 
   =     

   𝑟  𝑏      

  𝑈 𝑟  𝑏      

Finally, decision makers should select one reasonable objective function obj2 

based on actual situations. If there are several optimal solutions, we can set a second 

objective function, for example, 𝑀𝑖𝑛 ∑ |𝑟   ̅|
 
   , 𝑀𝑖𝑛 

 

 
∑ (𝑟  𝑟̅)

  
   , 𝑟̅ = 𝑟 𝑛⁄ . 

4. Application to insurance companies 

Table 2 displays a dataset to illustrate our developed approach. The dataset 

consists of the operation data of 24 nonlife insurance companies in Taiwan, which 

was firstly shown in Kao and Hwang (2008). Nonlife insurance industries provide 

services to clients to obtain profit. The whole process of nonlife insurance service can 

be divided into two stages—premium acquisition and profit generation—to generate 

profit for insurance companies. The first stage is characterised by insurance services 

and the reception of direct written premiums from clients or reinsurance premiums. In 

the second stage, the acquired premiums are invested in a portfolio to generate profit 

and marketable securities, as well as real estate and mortgage loans. The system uses 

operation (𝑋 ) and insurance expenses (𝑋 ) to generate directly written (𝑍 ) and 

reinsurance premiums (𝑍 ). Then, such premiums are utilised to obtain underwriting 

(𝑌 ) and investment profits (𝑌 ).  

Suppose that the companies intend to build a common platform for information 

sharing by spending one million NT$. Problems may arise that how to allocate the 
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fixed cost allocation between two stages among different DMUs. Following the 

framework proposed in this study, we first calculate the efficiency score of Stages 1 

and 2 before fixed cost allocation through Chen‟s additive model (Chen, Du, Sherman, 

and Zhu, 2010) and Liang‟s (Liang, Cook, and Zhu, 2008) noncooperative model. 

After introducing fixed cost as a new input to each stage, we calculate the optimal 

dual solutions of models LP1, LP2, LP3 and LP4. Finally, we obtain the optimal 

results on the basis of efficiency invariance and practical feasibility principles. 

Table 2 

Inputs (X), intermediate products (Z) and outputs (Y) of the 24 nonlife insurance companies in Taiwan 

Company Operations 

expense 

(NT$0) 

 

Insurance 

expense 

(NT$0） 

 

Directly 

written 

premium 

(NT$0) 

Reinsurance 

premium 

(NT$0) 

Underwriting 

profit(NT$0) 

Investment 

profit 

(NT$0) 

1. Taiwan Fire 1178744 673512 7451757 856735 984143 681687 

2. Chung Kuo 1381822 1352755 10020274 1812894 1228502 834754 

3. Tai Ping 1177494 592790 4776548 560244 293613 658428 

4.China Mariners 601320 594259 3174851 371863 248709 177331 

5. Fubon 6699063 3531614 37392862 1753794 7851229 3925272 

6. Zurich 2627707 668363 9747908 952326 1713598 415058 

7. Taian 1942833 1443100 10685457 643412 2239593 439039 

8. Ming Tai 3789001 1873530 17267266 1134600 3899530 622868 

9. Central 1567746 950432 11473162 546337 1043778 264098 

10. The First 1303249 1298470 8210389 504528 1697941 554806 

11. Kuo Hua 1962448 672414 7222378 643178 1486014 18259 

12. Union 2592790 650952 9434406 1118489 1574191 909295 

13. Shingkong 2609941 1368802 13921464 811343 3609236 223047 

14.SouthChina 1396002 988888 7396396 465509 1401200 332283 

15. Cathay Century 2184944 651063 10422297 749893 3355197 555482 

16. Allianz President 1211716 415071 5606013 402881 854054 197947 

17. Newa 1453797 1085019 7695461 342489 3144484 371984 

18. AIU 757515 547997 3631484 995620 692731 163927 

19.North America 159422 182338 1141950 483291 519121 46857 

20. Federal 145442 53518 316829 131920 355624 26537 

21. Royal & Sun 

Alliance 
84171 26224 225888 40542 51950 6491 

22. Aisa 15993 10502 52063 14574 82141 4181 

23. AXA 54693 28408 245910 49864 0.1 18980 

24. Mitsui Sumitomo 163297 235094 476419 644816 142370 16976 

 

4.1 Scenario 1: Cooperative allocation models in two-stage systems 
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In this Scenario, we assume that all all stages of insurance companies cooperate 

to gain the maximum overall benefit. Thus, we use cooperative models to allocate 

fixed cost. Our proposed method consists of the following steps:  

Step 1: Use model LP2 to calculate the initial efficiency of Stage 1 (𝐸 
𝑐𝑜 ), Stage 2 

(𝐸 
𝑐𝑜 ) and the initial overall efficiency (𝐸 

𝑐𝑜) of 𝐷𝑀𝑈 . 

Step 2: Run model DP2 to obtain the optimal values of variables    
 ∗,    

 ∗, and then 

get the efficiency invariance condition.  

Step 3: Obtain the optimal value (𝑏 
∗, 𝛼 

∗) of model (17) by setting the objective 

function as 𝑀𝑖𝑛 |∑ 𝑏  ∑ (𝑟  𝑏 )
 
   

 
   |, 𝛼  is set between 0.3 and 0.7. 

Step 4: Introduce the value of 𝛼 , 𝑟  (j=1, …, n) into model LP1 to verify whether 

efficiency after cost allocation (𝑒 
𝑐𝑜 , 𝑒 

𝑐𝑜 , 𝑒 
𝑐𝑜)  is equal to the initial 

efficiency (𝐸 
𝑐𝑜 , 𝐸 

𝑐𝑜 , 𝐸 
𝑐𝑜) . The divisional efficiency after allocation is 

obtained by using the optimal solutions of model LP1. 

 

Table 3  

Fixed cost allocation plan in cooperative scenario 

 

Company 
Initial Efficiency Efficiency after allocation Allocation plan 

𝐸 
𝑐𝑜  𝐸 

𝑐𝑜  𝐸 
𝑐𝑜 𝑒 

𝑐𝑜  𝑒 
𝑐𝑜  𝑒 

𝑐𝑜 𝛼 𝑟  (1  𝛼 )𝑟   𝑟  

1. Taiwan Fire 0.9926 0.7045 0.8491 0.9926 0.7045 0.8491 2.5159 1.0783 3.5942 

2. Chung Kuo 0.9985 0.6257 0.8122 0.9985 0.6257 0.8122 3.1946 1.3691 4.5637 

3. Tai Ping 0.69 1 0.8166 0.69 1 0.8166 2.385 1.0221 3.4071 

4. China Mariners 0.7243 0.42 0.5965 0.7243 0.42 0.5965 1.1506 0.4932 1.6438 

5. Fubon 0.8307 0.9233 0.8727 0.8307 0.9233 0.8727 14.4907 6.2103 20.701 

6. Zurich 0.9606 0.4057 0.6887 0.9669 0.4083 0.6887 3.9185 1.6794 5.5979 

7. Taian 0.7521 0.3522 0.5804 0.674 0.4882 0.5804 3.7916 1.6249 5.4165 

8. Ming Tai 0.7256 0.378 0.5795 0.712 0.4268 0.5795 6.841 2.9318 9.7728 

9. Central 1 0.2233 0.6116 1 0.2681 0.6116 2.6039 1.116 3.7199 

10. The First 0.8615 0.5408 0.7131 0.8615 0.5409 0.7131 2.8153 1.2066 4.0219 

11. Kuo Hua 0.7292 0.2066 0.5088 0.7626 0.2169 0.5088 2.9536 1.2659 4.2195 

12. Union 1 0.7596 0.8798 1 0.7596 0.8798 4.2285 1.8122 6.0407 

13. Shingkong 0.8107 0.2431 0.5565 0.7989 0.3009 0.5565 4.6129 1.9769 6.5898 

14. South China 0.7246 0.374 0.5773 0.6548 0.4994 0.5773 2.708 1.1605 3.8685 
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15. Cathay Century 1 0.6138 0.8069 1 0.6361 0.8069 3.7676 1.6146 5.3822 

16. Allianz President 0.8856 0.3615 0.6395 0.9284 0.3786 0.6395 1.9797 0.8485 2.8282 

17. Newa 0.7232 0.4597 0.6126 0.5719 0.6568 0.6126 3.2305 1.3845 4.615 

18. AIU 0.7935 0.3262 0.5868 0.8113 0.3495 0.5868 1.5577 0.6676 2.2253 

19. North America 1 0.4112 0.7056 1 0.4112 0.7056 0.4317 0.1851 0.6168 

20. Federal 0.9332 0.5857 0.7654 0.8256 0.701 0.7654 0.2383 0.1021 0.3404 

21. Royal & Sun Alliance 0.7505 0.2623 0.5412 0.7505 0.2623 0.5412 0.1208 0.0518 0.1726 

22. Aisa 0.5895 1 0.7418 0.5895 1 0.7418 0.0416 0.0215 0.0631 

23. AXA 0.8426 0.4989 0.6854 0.8426 0.4989 0.6854 0.1027 0.044 0.1467 

24.Mitsui Sumitomo 1 0.087 0.5435 1 0.087 0.5435 0.3167 0.1357 0.4524 

 

Table 3 shows the results. The second column in Table 3 presents the efficiency 

value (obtained with Chen‟s additive model) of Stage 1 before allocation. The third 

column refers to the efficiency value of Stage 2, and the fourth column shows the 

overall efficiency calculated by model LP2 before allocation. The next three columns 

present efficiency after cost allocation. The last three columns are the fixed cost 

allocation plans for each substage and DMU. By comparing efficiencies before and 

after allocation, we find that the overall efficiency scores of all DMUs remain 

unchanged. This result is consistent with the principle of overall efficiency invariance. 

However, the divisional efficiency of certain DMUs, such as DMU6, DMU7, DMU8 

and DMU11, has changed. Therefore, our allocation model, which is based on the 

overall condition of efficiency invariance, cannot guarantee that divisional efficiency 

remains unchanged in the cooperative mode. 

The last three columns of Table 3 show that the maximum fixed cost is allocated 

to DMU5. The intermediate products and inputs of DMU5 far exceed those of others, 

thus additional input (fixed cost) is required to maintain the overall efficiency 

invariance. The above phenomenon can also be explained by the size of the input 

scale. According to the allocation plan to each substage, the allocated proportion to 

the first stage is approximately equal to 0.7. This value reaches the upper bound of 𝛼 

and satisfies the objective function obj1. Table 3 shows that DMU9 and DMU17 have 

approximately equal overall efficiency, but the inputs of DMU17 are slightly more 

than that of DMU9, thus DMU17 requires additional fixed cost. Compared with 
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DMU21, the intermediates of DMU23 are more than DMU21. It is supposed that the 

second stage of DMU23 affords many fixed cost, while the results show that the 

second stage of DMU21 (0.0518) bears more cost than DMU23 (0.044). This is due to 

the value of 𝐸 
𝑐𝑜  for DMU21 is lower than DMU23. The DMU with low efficiency 

requires many cost to ensure its efficiency invariant. 

4.2 Scenario 2: Noncooperative allocation model in two-stage systems 

In the proposed framework, we assume that both stages seek to maximize 

personal interest. Thus, we use the noncooperative model to allocate fixed cost. The 

allocation plan is obtained as follows: 

Step 1: Use models LP3 and LP4 to calculate the initial efficiency of Stage 1 (𝐸 
 𝑜 ) 

and Stage 2 (𝐸 
 𝑜 ). 

Step 2:Run models DP3 and DP4 to obtain the optimal dual variables 

   
∗ , 𝜑  

∗ , 𝛽  
∗ , 𝜂  

∗ , 𝜂  
∗ ( = 1,… , 𝑛)  and determine efficiency invariance 

conditions. 

Step 3: Let   =   1 and 𝑈 =   7, and use model (21) to obtain the fixed cost 

allocation of each stage. 

Step 4: Use the value of 𝛼 , 𝑟  (𝑗 = 1,… , 𝑛) to verify whether efficiency after cost 

allocation (𝑒 
𝑐𝑜 , 𝑒 

𝑐𝑜 , 𝑒 
𝑐𝑜) is equal to the initial efficiency (𝐸 

𝑐𝑜 , 𝐸 
𝑐𝑜 , 𝐸 

𝑐𝑜). 

Table 4 shows the allocation plan for the two-stage network systems and the 

efficiency of each stage. 

 

Table 4 

Fixed cost allocation plan in noncooperative scenario 

 

Company 
Initial Efficiency  Efficiency after allocation Allocation plan 

𝐸 
 𝑜  𝐸 

 𝑜  𝐸 
 𝑜 𝑒 

 𝑜  𝑒 
 𝑜  𝑒 

 𝑜 𝛼 𝑟  (1  𝛼 )𝑟  𝑟  

1. Taiwan Fire 0.9926 0.7045 0.6993  0.9926 0.7045 0.6993  0.5041 3.5244 4.0285 

2. Chung Kuo 0.9985 0.6257 0.6248  0.9985 0.6257 0.6248  0.8366 4.7874 5.624 

3. Tai Ping 0.69 1 0.6900  0.69 1 0.6900  0.4422 2.2849 2.7271 

4. China Mariners 0.7243 0.42 0.3042  0.7243 0.42 0.3042  0.3201 1.5414 1.8615 
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5. Fubon 0.8375 0.8057 0.6748  0.8375 0.8057 0.6748  2.6241 15.9881 18.6122 

6. Zurich 0.9637 0.401 0.3864  0.9637 0.401 0.3864  0.5003 4.2763 4.7766 

7. Taian 0.7521 0.3522 0.2649  0.7521 0.3522 0.2649  0.9068 5.5153 6.4221 

8. Ming Tai 0.7256 0.378 0.2743  0.7256 0.378 0.2743  1.3909 7.3714 8.7623 

9. Central 1 0.2233 0.2233  1 0.2233 0.2233  0.7088 4.8224 5.5312 

10. The First 0.8615 0.5408 0.4659  0.8615 0.5408 0.4659  0.6101 4.1372 4.7473 

11. Kuo Hua 0.7405 0.1675 0.1240  0.7405 0.1675 0.1240  0.4931 3.0602 3.5533 

12. Union 1 0.7596 0.7596  1 0.7596 0.7596  0.4977 4.4789 4.9766 

13. Shingkong 0.8107 0.2431 0.1971  0.8107 0.2431 0.1971  1.0175 5.6744 6.6919 

14. South China 0.7246 0.374 0.2710  0.7246 0.374 0.2710  0.6559 3.7778 4.4337 

15. Cathay Century 1 0.6138 0.6138  1 0.6138 0.6138  0.4732 4.2584 4.7316 

16. Allianz President 0.9072 0.3356 0.3045  0.9072 0.3356 0.3045  0.3038 2.4412 2.745 

17. Newa 0.7233 0.4555 0.3295  0.7233 0.4555 0.3295  0.6573 4.1114 4.7687 

18. AIU 0.7935 0.3262 0.2588  0.7935 0.3262 0.2588  0.4159 2.0684 2.4843 

19. North America 1 0.4112 0.4112  1 0.4112 0.4112  0.14 0.5685 0.7085 

20. Federal 0.9332 0.5857 0.5466  0.9332 0.5857 0.5466  0.0411 0.2633 0.3044 

21. Royal & Sun Alliance 0.7505 0.2623 0.1969  0.7505 0.2623 0.1969  0.0201 0.1234 0.1435 

22. Aisa 0.5895 1 0.5895  0.5895 1 0.5895  0.008 0.0283 0.0363 

23. AXA 0.8501 0.4512 0.3836  0.8501 0.4512 0.3836  0.0214 0.1452 0.1666 

24. Mitsui Sumitomo 1 0.087 0.0870  1 0.087 0.0870  0.1163 1.0467 1.163 

 

The second to fifth columns in Table 4 present the initial efficiency value 

(obtained by Liang‟s (Liang, Cook, and Zhu, 2008) noncooperative model) of 

two-stage systems, respectively. The next three columns present the efficiency after 

cost allocation. The last three columns are the fixed cost allocation plan of each stage 

for DMUs. By comparing efficiencies before and after allocation, we find that the 

efficiency scores of Stages 1 and 2 remain unchanged, which satisfies the principle of 

divisional efficiency invariance. According to the allocation plan to each stage, we 

also know that the cost allocated to leader is less than follower. 

The last three columns of Table 4 show that the highest fixed cost is allocated to 

DMU5 because fixed cost allocation is related to input size. The allocation plan for 

each substages shows that the allocating proportion to the first stage fluctuates 

between lower bound and upper bound. This is because the objective of the allocation 

model is to minimize the sum of allocation to Stage 1 of all DMUs, not minimize the 

allocation to Stage 1 of each DMU. Table 4 shows that DMU8 and DMU14 have 

                  



 26 

similar divisional efficiency, while DMU8 could afford additional fixed cost 

allocation because it consumes more expenses than DMU14.  

 

4.3 Comparison  

Comparison results of different scenarios 

 In reality, cooperative and noncooperative relationship among units are general. 

Different relationships may have different consequences for companies. Hence, 

explaining the differences and the significances of different relationships for real life 

environments is necessary.  

First, the results show that all the overall efficiency of DMUs with a cooperative 

relationship are higher than those of DMUs with a noncooperative relationship. This 

feature verifies the view of win-win cooperation. If substages compete with each other, 

the overall performance of DMU will decrease. For example, if Stage 1 and Stage 2 

are equally important, the decision maker should choose a cooperative working mode 

to improve company‟s overall performance. Second, the results show that allocation 

plan of noncooperative model benefits the leader, because it affords less cost than 

follower. This illustrates, from a personal point of view, the dominant party gains 

more in real life. Decision makers can adopt this strategy when a department (Leader 

stage) has strong profitability. Third, the value of 𝛼  is different. The 𝛼  of each 

DMU achieves the upper bound 𝑈  in a cooperative relationship, but it is diverse in a 

noncooperative relationship. The most likely explanation for these results is the 

different invariance principles. One is based on the principles of overall efficiency 

invariance, and the other one is based on the principle of divisional efficiency 

invariance. This phenomenon shows that, in cooperative scenarios, the allocation 

proportion to substage is related to    and 𝑈 , so the decision makers should choose 

   and 𝑈  carefully. In noncooperative scenarios, the leader stage is unwilling to 

bear many fixed cost, so decision makers should determine the value of    by the 

reality of leader stage.  

Comparison with Lin (2011a) 
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 The proposed method is based on efficiency invariance principle, which is 

defined by Cook and Kress (1999). Some other researchers also extend Cook and 

Kress (1999)‟s method, such as Lin (2011a). However, there are some distinctions.  

First, Lin (2011a) proposed methods for allocating fixed cost or resources among 

DMUs, which ignored the internal structures of DMUs. However, the approach of this 

paper aims at allocating fixed cost to two-stage network systems, and the relationship 

between the two stages is considered. Second, the allocation approach of Lin (2011a) 

is based on efficiency invariance principle, which didn‟t adopt practical feasibility 

assumption. Thus, the approach of Lin (2011a) is more flexible when several other 

constraints are added, and then the allocation plan can be obtained according to the 

reality of enterprises. However, in this paper, the enterprises‟ allocation plan can be 

changed by transforming the objective function of model. Third, Lin (2011a) 

combined the allocation approach with output targets setting. His approach can solve 

the problem of how to set targets among all DMUs appropriately. 

Comparison with existing methods 

 To show the usefulness of the proposed approach over the current allocation 

approaches, we provide a comparative study here. As far as we know, Yu, Chen, and 

Bo (2016), Zhu, Zhang, and Wang (2019), Chu, Wu, Chu, and Zhang (2019), Li, Zhu, 

and Chen (2019), Ding, Zhu, Zhang, and Liang (2019) studied fixed cost allocation 

issues of two-stage network structure. Although Zhu, Zhang, and Wang (2019) studied 

fixed cost and shared resources allocation in two-stage network system, they put more 

focus on shared resource allocation rather than fixed cost allocation, thus their study is 

not comparable to our method. Therefore, here we compare the result with Yu, Chen, 

and Bo (2016), Chu, Wu, Chu, and Zhang (2019), Li, Zhu, and Chen (2019), Ding, 

Zhu, Zhang, and Liang (2019), the comparison results are showed in Table 5. 

 

Table 5 

Comparison results. 

 

Company 
Cooperative model (17) Noncooperative model (21) Li, Zhu and Chen (2019) 

Stage 1 Stage 2 System Stage 1 Stage 2 System Stage 1 Stage 2 System 

1. Taiwan Fire 2.5159 1.0783 3.5942 0.5041 3.5244 4.0285 1.2163 3.8033 5.0196 
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2. Chung Kuo 3.1946 1.3691 4.5637 0.8366 4.7874 5.624 1.6337 4.4202 6.0539 

3. Tai Ping 2.385 1.0221 3.4071 0.4422 2.2849 2.7271 0.5207 3.523 4.0437 

4. China Mariners 1.1506 0.4932 1.6438 0.3201 1.5414 1.8615 0.3798 0.6475 1.0272 

5. Fubon 14.491 6.2103 20.701 2.6241 15.9881 18.6122 5.5688 26.1447 31.7135 

6. Zurich 3.9185 1.6794 5.5979 0.5003 4.2763 4.7766 1.0983 2.2795 3.3778 

7. Taian 3.7916 1.6249 5.4165 0.9068 5.5153 6.4221 1.457 2.8466 4.3037 

8. Ming Tai 6.841 2.9318 9.7728 1.3909 7.3714 8.7623 2.1627 4.3533 6.516 

9. Central 2.6039 1.116 3.7199 0.7088 4.8224 5.5312 1.9935 0 1.9935 

10. The First 2.8153 1.2066 4.0219 0.6101 4.1372 4.7473 1.1608 3.6289 4.7897 

11. Kuo Hua 2.9536 1.2659 4.2195 0.4931 3.0602 3.5533 0.7525 0 0.7525 

12. Union 4.2285 1.8122 6.0407 0.4977 4.4789 4.9766 1.0442 5.5269 6.5711 

13. Shingkong 4.6129 1.9769 6.5898 1.0175 5.6744 6.6919 2.0051 2.1947 4.1998 

14. South China 2.708 1.1605 3.8685 0.6559 3.7778 4.4337 0.9864 1.9797 2.966 

15.Cathay Century 3.7676 1.6146 5.3822 0.4732 4.2584 4.7316 1.4978 5.0607 6.5585 

16. Allianz President 1.9797 0.8485 2.8282 0.3038 2.4412 2.745 0.7685 0.8805 1.649 

17. Newa 3.2305 1.3845 4.615 0.6573 4.1114 4.7687 1.0041 4.3006 5.3047 

18. AIU 1.5577 0.6676 2.2253 0.4159 2.0684 2.4843 0.4585 0.9545 1.413 

19. North America 0.4317 0.1851 0.6168 0.14 0.5685 0.7085 0.1874 0.6297 0.8171 

20. Federal 0.2383 0.1021 0.3404 0.0411 0.2633 0.3044 0 0.5245 0.5245 

21. Royal & Sun Alliance 0.1208 0.0518 0.1726 0.0201 0.1234 0.1435 0.0113 0.0459 0.0572 

22. Aisa 0.0416 0.0215 0.0631 0.008 0.0283 0.0363 0.0032 0.1142 0.1174 

23. AXA 0.1027 0.044 0.1467 0.0214 0.1452 0.1666 0.0312 0.0613 0.0925 

24. Mitsui Sumitomo 0.3167 0.1357 0.4524 0.1163 1.0467 1.163 0 0.1382 0.1382 

SUM 69.9977 30.0026 100 13.7053 86.2947 100 25.9418 74.0584 100 

 

Table 5 (Continued) 

Comparison results. 

 

Company 
Yu, Chen, and Bo (2016) 

Ding, Zhu, Zhang and 

Liang (2019) 

Chu, Wu, Chu, and Zhang 

(2019) 

Stage 1 Stage 2 System Stage 1 Stage 2 System Stage 1 Stage 2 System 

1. Taiwan Fire 1.9945 2.7965 4.7910 1.0368 4.1421 5.1789 0.8367 2.2865 3.1233 

2. Chung Kuo 2.9312 2.9464 5.8776 1.228 4.6304 5.8584 1.1251 2.7501 3.8752 

3. Tai Ping 1.2725 2.9202 4.1927 0.2945 3.8431 4.1376 0.5363 1.0575 1.5938 

4. China Mariners 0.8468 0.3838 1.2306 0.0775 0.682 0.7595 0.3565 0.4402 0.7967 

5. Fubon 9.0287 20.0117 29.0404 3.9046 29.3284 33.2330 4.1987 18.5168 22.7155 

6. Zurich 2.5250 1.0977 3.6227 0.9937 2.4917 3.4854 1.0946 3.2208 4.3153 

7. Taian 2.6280 1.4853 4.1133 0.6955 3.2289 3.9244 1.1998 4.2896 5.4894 

8. Ming Tai 4.2745 2.0199 6.2944 1.3076 4.9285 6.2361 1.9389 7.4133 9.3521 

9. Central 2.7848 1.1935 3.9783 1.5773 0.0845 1.6618 1.2883 1.3567 2.6449 

10. The First 2.0249 2.4530 4.4779 0.4343 4.0724 4.5067 0.9219 3.5628 4.4847 
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11. Kuo Hua 1.8449 0.7907 2.6355 0.5269 0 0.5269 0.8110 2.4341 3.2451 

12. Union 2.5173 4.0280 6.5453 0.9917 6.0322 7.0239 1.0594 3.6730 4.7324 

13. Shingkong 3.4179 1.4648 4.8827 1.3882 2.5584 3.9466 1.5632 6.5785 8.1417 

14. South China 1.8258 1.0955 2.9212 0.4727 2.2359 2.7086 0.8305 2.6878 3.5183 

15.Cathay Century 2.6118 2.9571 5.5689 1.3547 5.6778 7.0325 1.1703 6.9049 8.0751 

16.Allianz President 1.4033 0.6014 2.0047 0.6436 0.9902 1.6338 0.6295 1.5083 2.1378 

17. Newa 1.8455 2.4714 4.3169 0.3909 4.889 5.2799 0.8641 6.4877 7.3518 

18. AIU 1.1841 0.5075 1.6916 0.3601 0.8822 1.2423 0.4078 1.3311 1.7389 

19. North America 0.4383 0.1895 0.6278 0.1921 0.6069 0.7990 0.1282 1.0643 1.1925 

20. Federal 0.1190 0.2758 0.3948 0 0.5618 0.5618 0.0356 0.7733 0.8089 

21. Royal & Sun Alliance 0.0649 0.0278 0.0927 0.006 0.0457 0.0517 0.0254 0.0966 0.1220 

22. Aisa 0.0268 0.0626 0.0894 0 0.1258 0.1258 0.0058 0.1781 0.1840 

23. AXA 0.0736 0.0411 0.1147 0.0265 0.0592 0.0857 0.0276 0.0000 0.0276 

24.Mitsui Sumitomo 0.3465 0.1485 0.4950 0 0 0.0000 0.0535 0.2796 0.3331 

SUM 48.0306 51.9697 100 17.9032 82.0971 100 21.1087 78.8916 100 

 

It is obvious that these approaches generate different results due to the research 

perspectives and efficiency principles. Li, Zhu, and Chen (2019) allocated the fixed 

cost by considering the operation size and the principle of efficiency maximization. 

Yu, Chen, and Bo (2016) introduced the concept of cross-efficiency to allocate the 

fixed cost. Ding, Zhu, Zhang, and Liang (2019) used the concept of satisfaction 

degree and Chu, Wu, Chu, and Zhang (2019) considered the competition between the 

DMUs‟ two stages. These approaches are all based on efficiency maximization 

principle, while our approach keep the efficiency invariant.  

Based on the results of Table 5, we have some findings. First, it is clearly 

observed that the maximal cost is allocated to the DMU 5, who has large operation 

size, this suggests that the allocation plan is highly related with operation size in 

different scenarios. Second, the allocation cost to all stages by Yu, Chen, and Bo 

(2016) and ours are all positive, while in other methods‟ results several substages are 

allocated zero cost because these methods do not have the limits on allocation 

proportion. Third, we find that the allocation plan of Li, Zhu, and Chen (2019) and 

Ding, Zhu, Zhang, and Liang (2019) have a larger fluctuation than other approaches. 

Specifically, the differences between maximum and minimum cost allocated to DMUs 

by our approach are 20.6379 (cooperative) and 18.5759 (noncooperative), while those 
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of others are bigger than ours. Finally, in noncooperative scenarios, our allocation 

plan is beneficial to leader stage. It can be seen from the fifth column where the 

allocation amount of Stages 1 is less than other allocation plan, and the sum of 

allocation to Stage 1 is the least.  

To better compare these allocation schemes, we show the system allocation 

results in the following bar chart. According to Fig. 2, we find that the distribution 

trend among DMUs is similar, that is to say, the allocation results generated by ours 

and other approaches are very closely related. However, there are differences in some 

cases. For example, Fig. 2 shows that the allocation amount of DMU5 calculated by 

our approach is less than that of other approaches (Chu, Wu, Chu, and Zhang, 2019; 

Ding, Zhu, Zhang, and Liang, 2019; Li, Zhu, and Chen, 2019; Yu, Chen, and Bo, 

2016), while the allocation amount of DMU4 (or DMU6, DMU11, DMU14, DMU21) 

calculated by our approach is more than that of other approaches. This is because of 

the different efficiency principle. Compared with allocation plan based on efficiency 

maximization principle (Chu, Wu, Chu, and Zhang, 2019; Ding, Zhu, Zhang, and 

Liang, 2019; Li, Zhu, and Chen, 2019; Yu, Chen, and Bo, 2016), in this research, 

DMUs with small operation size and low efficiency afford much cost to keep 

efficiency invariant. Inversely, DMUs with large operation size and high efficiency 

afford less cost than Chu, Wu, Chu, and Zhang (2019), Ding, Zhu, Zhang, and Liang 

(2019), Li, Zhu, and Chen (2019), Yu, Chen, and Bo (2016). 
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Fig. 2. Comparisons of allocation plan 

 

5. Discussion and generalization 
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 As mentioned before, the proposed approach for fixed cost allocation applies to 

basic two-stage systems. Here we extend it to general two-stage systems using the 

same method. As shown in Fig. 3, the structure of general two-stage system is 

characterized by the exogenous output (𝑦
𝜉𝑗
1 , 𝜉 = 1, … , 𝜙) of Stage 1 and exogenous 

input (𝑥𝑞𝑗
 , 𝑞 = 1, … , 𝑄) of Stage 2. Stage 1 produces exogenous and endogenous 

outputs. By contrast, Stage 2 uses endogenous outputs from Stage 1 and exogenous 

inputs to generate the final outputs. 

 

 

 

 

Fig. 3. General two-stage system 

For DMUs with general two-stage systems, the related procedures of fixed cost 

allocation on the basis of efficiency invariance principle in two different scenarios are 

presented as follows. 

Procedure. First, we should explore the efficiency invariance condition in 

cooperative scenarios. The efficiency of each stage considering fixed cost allocation is 

calculated by the following formula: 

𝑒 
 𝑐𝑜 

=
∑     𝑑 ∑     𝑑

1 
  1

 
  1

∑ 𝑣   𝑑
1𝐼

  1  𝑣𝐼+1 𝑑 𝑑
,  𝑒 

 𝑐𝑜 
=

∑     𝑑
  

  1

∑     𝑑   +1( − 𝑑) 𝑑 ∑     𝑑
  

  1
 
  1

  (22) 

By adopting a unified approach similar to Chen, Du, Sherman, and Zhu (2010), 

we obtain overall efficiency on the basis of the weighted average of the two stages‟ 

efficiency scores. 

𝑒 
 𝑐𝑜

 = 𝑝  𝑒 
 𝑐𝑜 

 𝑝  𝑒 
 𝑐𝑜 

  (23) 

 

=
∑     𝑑 ∑     𝑑

1 
  1

 
  1  ∑     𝑑

  
  1

∑ 𝑣   𝑑
1𝐼

  1  𝑣𝐼+1 𝑑 𝑑 ∑     𝑑   +1( − 𝑑) 𝑑 ∑     𝑑
  

  1
 
  1

  

Let 𝑣   = 𝑤𝑀  = 𝜔, then apply Charnes–Cooper transformation and denote 

𝑥𝑞𝑗
 , 𝑞 = 1,… ,𝑄 

𝑦𝜉𝑗
 , 𝜉 = 1,… ,𝜙 

𝑥𝑖𝑗 , 𝑖 = 1,… , 𝐼 

 

𝑦𝑘𝑗
 , 𝑘 = 1, … ,𝐾 𝑧𝑚𝑗 , 𝑚 = 1,… ,𝑀 

𝛼𝑗𝑟𝑗  (1  𝛼𝑗)𝑟𝑗 

Stage 1 Stage 2 
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𝜋 = 1 (∑ 𝑣𝑖𝑥𝑖 
  

𝑖   ∑ 𝑤𝑚𝑧𝑚 
𝑀
𝑚   ∑ ℎ𝑞𝑥𝑞 

 𝑄
𝑞   𝜔𝑟 )⁄ , 𝑣𝑖

′ = π𝑣𝑖 , 𝑤𝑚
′ = π𝑤𝑚 , 

𝜔′ = 𝜋𝜔, 𝑢𝑘
′ = π𝑢𝑘 , 𝑡𝜉

′ = π𝑡𝜉 , ℎ𝑞
′ = πℎ𝑞, formula (23) become 

𝑒 
 𝑐𝑜

= ∑ 𝑤𝑚
′ 𝑧𝑚 

𝑀
𝑚   ∑ 𝑡𝜉

′𝑦𝜉 
  

𝜉   ∑ 𝑢𝑘
′ 

𝑘  𝑦𝑘 
   (24) 

The optimal value of 𝑒 
 𝑐𝑜

 can be calculated by the following output-oriented 

model. 

LPG1 Min ∑ 𝑣𝑖
′𝑥𝑖 
  

𝑖   ∑ ℎ𝑞
′ 𝑥𝑖 

 𝑄
𝑞   ∑ 𝑤𝑚

′ 𝑧𝑚  𝜔
′𝑟 

𝑀
𝑚  =

 

 
𝑑
     (25) 

𝑠 𝑡  ∑ 𝑤𝑚
′ 𝑧𝑚  ∑ 𝑡𝜉

′𝑦𝜉 
  

𝜉   ∑ 𝑣𝑖
′𝑥𝑖 
  

𝑖   𝜔′𝛼 𝑟   
𝑀
𝑚      

 
∑ 𝑢𝑘

′ 
𝑘  𝑦𝑘 

  ∑ 𝑤𝑚
′ 𝑧𝑚 

𝑀
𝑚   ∑ ℎ𝑞 

′ 𝑥𝑞 
  𝜔′(1  𝛼 𝑟 )   

𝑄
𝑞     

 
∑ 𝑤𝑚

′ 𝑧𝑚  ∑ 𝑡𝜉
′𝑦𝜉 
  ∑ 𝑢𝑘

′ 𝑦𝑘 
 = 1 

𝑘  
 
𝜉  

𝑀
𝑚     

 
𝑣𝑖
′ , ℎ𝑞

′ , 𝑤𝑚
′ , 𝑡𝜉

′ , 𝑢𝑘
′   ,𝜔′   , 𝑗 = 1,… , 𝑛   

 𝑖 = 1,… , 𝐼 𝑚 = 1, … ,𝑀 𝜉 = 1,… ,𝜙 𝑘 = 1, … , 𝐾 𝑞 = 1,… ,𝑄   

The dual model of LPG1 is as follows: 

DPG1 Max    (26) 

𝑠 𝑡  ∑    
 𝑥𝑖 

  𝑥𝑖 
  

   , 𝑖 = 1, … , 𝐼   

 
∑    

 𝑥𝑞 
  𝑥𝑞 

  
   , 𝑞 = 1,… , 𝑄   

 
∑ [(   

     
 )𝑧𝑚 ]  (1    )𝑧𝑚 

 
   , 𝑚 = 1,… ,𝑀   

 
∑     

 𝑦𝜉 
    𝑦𝜉 

    
   , 𝜉 = 1,… , 𝜙    

 
∑     

 𝑦𝑘 
    𝑦𝑘 

    
   , 𝑘 = 1, … ,𝐾   

 
∑ (   

 𝛼 𝑟     
 (1  𝛼 )𝑟 )  𝑟 

 
      

 
   
 ,    

   , 𝑗 = 1,… , 𝑛    

By using the same method as that used by Cook and Kress (1999), the overall 

condition of efficiency invariance is ∑ [   
 ∗𝛼 𝑟     

 ∗(1  𝛼 )𝑟 ] = 𝑟 
 
   ,    

 ∗,    
 ∗ 

represents the optimal variable of model (27). 

Max   
′   (27) 

𝑠 𝑡  ∑    
 𝑥𝑖 

  𝑥𝑖 
  

   , 𝑖 = 1, … , 𝐼   
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∑    

 𝑥𝑞 
  𝑥𝑞 

  
   , 𝑞 = 1,… , 𝑄   

 
∑ [(   

     
 )𝑧𝑚 ]  (1    

′ )𝑧𝑚 
 
   , 𝑚 = 1,… ,𝑀   

 
∑     

 𝑦𝜉 
    𝑦𝜉 

    
   , 𝜉 = 1,… , 𝜙    

 
∑     

 𝑦𝑘 
    

′ 𝑦𝑘 
    

   , 𝑘 = 1, … ,𝐾   

 
   
 ,    

   , 𝑗 = 1,… , 𝑛    

Second, the condition of efficiency invariance in noncooperative scenarios can be 

derived by the same way. The following models refer to the divisional efficiency of 

each stage after allocation. 

Leader Stage 

Min ∑ 𝑣𝑖𝑥𝑖 
  

𝑖   𝜔𝛼 𝑟 =
 

 
𝑑
   1  (28) 

𝑠 𝑡  ∑ 𝑤𝑚𝑧𝑚 
𝑀
𝑚   ∑ 𝑡𝜉𝑦𝜉 

  
𝜉   ∑ 𝑣𝑖𝑥𝑖 

  
𝑖   𝜔𝛼 𝑟      

 
∑ 𝑤𝑚𝑧𝑚 
𝑀
𝑚   ∑ 𝑡𝜉𝑦𝜉 

  
𝜉  = 1   

 
𝑗 = 1,… , 𝑛, 𝑤𝑚 , 𝑣𝑖, 𝑡𝜉   ,𝜔    

    

 

 
𝑚 = 1,… ,𝑀 𝑖 = 1,… , 𝐼 𝜉 = 1,… ,𝜙   

Follower Stage  

Min ∑ 𝑤𝑚𝑧𝑚  ∑ ℎ𝑞𝑥𝑞 
 𝑄

𝑞   𝜔(1  𝛼 )𝑟 =
 

 
𝑑
    

𝑀
𝑚    (29) 

𝑠 𝑡  ∑ 𝑤𝑚𝑧𝑚 
𝑀
𝑚   ∑ 𝑡𝜉𝑦𝜉 

  
𝜉   ∑ 𝑣𝑖𝑥𝑖 

  
𝑖   𝜔𝛼 𝑟      

 
∑ 𝑢𝑘𝑦𝑘 

  ∑ 𝑤𝑚𝑧𝑚 
𝑀
𝑚   ∑ ℎ𝑞𝑥𝑞 

 𝑄
𝑞   𝜔(1  𝛼 )𝑟   

 
𝑘     

 
∑ 𝑡𝜉𝑦𝜉 

  
𝜉   ∑ 𝑤𝑚𝑧𝑚 

𝑀
𝑚   𝑒 

  𝑜 ∗(∑ 𝑣𝑖𝑥𝑖 
  

𝑖   𝜔𝛼 𝑟 ) =    

   

 

 
∑ 𝑢𝑘𝑦𝑘 

  
𝑘  = 1   

 
𝑗 = 1,… , 𝑛, 𝑣𝑖, 𝑡𝜉 , 𝑤𝑚 , ℎ𝑞, 𝑢𝑘   ,𝜔      

 
𝑚 = 1,… ,𝑀 𝑖 = 1,… , 𝐼 𝜉 = 1,… ,𝜙 𝑘 = 1, … , 𝐾 𝑞 = 1,… ,𝑄  

To satisfy the principle of efficiency invariance, the following formula must be 

established ∑    
∗ 𝛼 𝑟 

 
   = 𝛼 𝑟 , ∑ [𝜑  

∗ (1  𝛼 )𝑟  𝛽  
∗ 𝛼 𝑟 ]  (1  𝛼 )𝑟  
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𝐸 
  𝑜 ∗

𝜂  
∗ 𝛼 𝑟 =  .    

∗  is the optimal variable of model (30) when 𝐷𝑀𝑈  is 

evaluated, and 𝜑  
∗ , 𝛽  

∗ , 𝜂  
∗  are calculated by model (31). 𝐸 

  𝑜 ∗
, 𝐸 

  𝑜 ∗
 represents 

the efficiency of two substages. 

Max   
′ =

 

 
𝑑
   1  (30) 

𝑠 𝑡  ∑    𝑧𝑚    
′ 𝑧𝑚 

 
       

 
∑    𝑦𝜉 

    
′ 𝑦𝜉 
  

      

 
∑    𝑥𝑖 

  𝑥𝑖 
  

      

    ,   
′      

 𝑗 = 1,… , 𝑛 𝑚 = 1,… ,𝑀  𝜉 = 1,   , 𝜙   

 

Max 𝜂  =
 

 
𝑑
      (31) 

𝑠 𝑡  ∑  𝜑  𝑦𝑘 
  𝜂  𝑦𝑘 

    
   , 𝑘 = 1, … , 𝐾    

 
∑  𝛽  𝑦𝜉 

  𝜂  𝑦𝜉 
  

     , 𝜉 = 1,… , 𝜙   

 
∑ (𝜑   𝛽  )𝑧𝑚  𝜂  𝑧𝑚  𝑧𝑚 ,
 
   𝑚 = 1,… ,𝑀   

 
∑ 𝛽  𝑥𝑖 

  
    𝐸 

  𝑜 ∗
𝜂  𝑥𝑖 

   , 𝑖 = 1,… , 𝐼   

 
∑ 𝜑  𝑥𝑞 

  𝑥𝑞 
  

   , 𝑞 = 1, … ,𝑄   

 𝜑  , 𝛽    , 𝑗 = 1, … , 𝑛   

The allocation plan can be obtained easily in accordance with the condition of 

efficiency invariance. When the exogenous inputs and outputs are 0, the general 

two-stage structure transforms into a basic two-stage system. 

6. Conclusions and direction for future studies  

Numerous DMUs, such as banks, hospitals, universities or corporations, have 

two-stage network structures. Previous DEA-based models for fixed cost allocation 

usually treat DMUs as a “black box”. In this work, we aim to open the “black box” of 

DMUs and investigate their internal structure. Therefore, we extend Cook and Kress 
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(1999)‟s model to two-stage systems by considering the relationship between two 

subtages of DMUs. We also combine cooperative and noncooperative models with 

Cook and Kress (1999)‟s approach to explore the condition of efficiency invariance. 

The cooperative model applies to the case when two substages work together to 

obtain the best overall system performance. By contrast, the noncooperative model is 

suitable for network systems whose substages compete with each other. This study 

fills in the gap left by previous studies on the model of fixed cost allocation, which 

combines the two-stage system with the gaming concept. 

We prove that when the two stages work together, the overall efficiency of all 

DMUs remain unchanged after fixed cost allocation by using our approach. Moreover, 

when the two stages are noncooperative, we provide an allocation scheme that 

maintains the divisional efficiencies of two stages of all DMUs. It is found that the 

allocation results are related to input size and efficiency. If two DMUs‟ inputs are 

similar, DMU with low efficiency affords more cost than the other because the DMU 

with low efficiency requires more cost to ensure its efficiency invariant when the input 

sizes of two DMUs are the same. Meanwhile, if the efficiency scores of two DMUs are 

similar, DMU with large input affords more cost than another DMU. These results 

indicate that our allocation has a direct relationship with efficiencies and the input 

size of each stage. 

This work can be extended to several directions. First, investigating the fixed cost 

allocation of two-stage systems with cooperative relationships on the basis of the 

principle of divisional efficiency invariance remains interesting and crucial. Next, our 

proposed models are based on the principle of efficiency invariance. Therefore, 

developing an approach that is based on the principle of efficiency maximization to 

solve this problem is critical. Finally, the leader-follower relationship between two 

stages are given and identified based on enough priori knowledge in our 

noncooperative scenario. However, sometimes the leader stages of two-stage systems 

are unknown in the absence of priori knowledge. Extending our approach to this case 

is an important and interesting work in the future.  
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