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Abstract

In social interactions, each individual's brain drives an action that, in turn, elicits

systematic neural responses in their partner that drive a reaction. Consequently, the brain

responses of both interactants become temporally contingent upon one another through

the actions they generate, and different interaction dynamics will be underpinned by dis-

tinct forms of between-brain coupling. In this study, we investigated this by “performing

functional magnetic resonance imaging on two individuals simultaneously (dual-fMRI)

while they competed or cooperated with one another in a turn-based or concurrent fash-

ion.”To assesswhether distinct patterns of neural couplingwere associatedwith these dif-

ferent interactions, we combined two data-driven, model-free analytical techniques:

group-independent component analysis and inter-subject correlation. This revealed four

distinct patterns of brain responses that were temporally aligned between interactants:

one emerged during co-operative exchanges and encompassed brain regions involved in

social cognitive processing, such as the temporo-parietal cortex. The other three were

associated with competitive exchanges and comprised brain systems implicated in visuo-

motor processing and social decision-making, including the cerebellum and anterior cingu-

late cortex. Interestingly, neural coupling was significantly stronger in concurrent relative

to turn-based exchanges. These results demonstrate the utility of data-driven approaches

applied to “dual-fMRI” data in elucidating the interpersonal neural processes that give rise

to the two-in-one dynamic characterizing social interaction.
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1 | INTRODUCTION

Social interactions unfold as a two-in-one dynamic (Koike, Tanabe, &

Sadato, 2015; Redcay & Schilbach, 2019), whereby each individual's

behavior is simultaneously an antecedent to and a consequence of

their interaction partners' actions. At the level of the brain, this

emerges through an indirect chain of interpersonal neural events; one

interactant's brain responses initiate an action that, in turn, elicits sys-

tematic neural responses in their partner to drive a reaction. In this

light, the particular dynamic of an interaction emerges through a
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reciprocal process of between-brain contingencies, or “neural

coupling” (Hasson & Frith, 2016). Elucidating the patterns of neural

coupling that underlie different forms of social exchange might there-

fore provide an interpersonal neural substrate of interactive behavior,

but this requires the development of new paradigms and analytical tech-

niques for social neuroscience research (Hasson & Honey, 2012;

Schilbach et al., 2013; Zaki, Bolger, & Ochsner, 2008). In response to this,

a new wave of “two-person” or “in situ” social neuroscience has emerged

(Hari, Himberg, Nummenmaa, Hämäläinen, & Parkkonen, 2013; Kasai,

Fukuda, Yahata, Morita, & Fujii, 2015; Redcay & Schilbach, 2019;

Schilbach et al., 2013), whereby the brains of two or more individuals are

measured simultaneously while they interact with one another. Such

“hyperscanning” allows researchers to explore how social interactions

take shape through real-time processes of interpersonal neural coupling.

Hyperscanning has been performed successfully with functional

magnetic resonance imaging (fMRI), electroencephalography (EEG),

functional near-infrared spectroscopy, and magnetoencephalography

(for reviews, see Babiloni & Astolfi, 2014; Scholkmann et al., 2013).

With these techniques, studies have revealed various patterns of neu-

ral coupling elicited during social interaction; while temporally contin-

gent brain responses are observed between interactants during verbal

and non-verbal communication (Ahn et al., 2017; Bilek et al., 2015;

Pérez, Carreiras, & Duñabeitia, 2017), between-brain synchrony or

“alignment” (Hasson & Frith, 2016) is reported during cooperative and

competitive joint-action tasks (e.g., Cheng, Li, & Hu, 2015; Sänger,

Müller, & Lindenberger, 2012; Shaw et al., 2018; Toppi et al., 2016).

Interestingly, brain regions implicated in social cognitive processes

feature frequently in patterns of neural coupling across various types

of social interaction, presumably reflecting the mutual recruitment of

mechanisms that permit the transmission and encoding of social infor-

mation. Within the temporo-parietal junction (TPJ), for example, brain

responses become synchronized and/or contingent between interac-

tants during economic exchanges (Jahng, Kralik, Hwang, & Jeong,

2017; Tang et al., 2016; Zhang, Liu, Pelowski, Jia, & Yu, 2017), verbal

and non-verbal communication (Bilek et al., 2015, 2017; Kinreich,

Djalovski, Kraus, Louzoun, & Feldman, 2017; Rojiani, Zhang, Noah, &

Hirsch, 2018; Wilson, Molnar-Szakacs, & Iacoboni, 2008), and cooper-

ative joint-action tasks (Abe et al., 2019). This is perhaps unsurprising

given the putative role of the TPJ in inferring the intentional and moti-

vational states of others (Bardi, Six, & Brass, 2017; Carlson, Koenig, &

Harms, 2013; Eddy, 2016; Frith & Frith, 2006), a process that is essen-

tial for interacting successfully with others.

Experimental paradigms employed in hyperscanning studies often

confound multiple forms of social exchange, however, making it impos-

sible to identify the discrete patterns of neural coupling associated with

different types of interactive behavior. In a theoretical framework pro-

posed by Liu and Pelowski (2014), social interaction is suggested to

comprise three distinct dimensions: interaction structure (concurrent or

turn-based actions), goal structure (cooperative or competitive goals),

and task structure (tasks achieved independently or interdependently).

As such, to advance our understanding of how different patterns of

neural coupling give rise to interactive behavior, we must first delineate

among these dissociable dimensions (Konvalinka & Roepstorff, 2012).

Recently, our team adapted for hyperscanning research, an interactive

task capable of such delineation, in which pairs of players either co-

operate or compete with one another in a turn-based or concurrent

manner to reconstruct a geometric pattern (Špiláková, Shaw,

Czekóová, & Brázdil, 2019). Employing this task within a dual-fMRI

hyperscanning study, we revealed brain responses in both interactants

that were contingent upon the immediately preceding behavior of

their co-player. Furthermore, these brain responses dissociated among

discrete dimensions of the interaction; we observed greater inter-

reactive brain responses during co-operative exchanges within regions

implicated in social cognition, while competitive exchanges elicited

stronger brain reactions within neural systems involved in motor plan-

ning and updating. This demonstrated the potential for hyperscanning

to elucidate patterns of interpersonal brain events underlying different

forms of social exchange.

A number of questions emerged from these results; however,

first, in an event-related design, we applied general linear modeling to

identify brain signals in each player that reflected direct reactions to a

specific aspect of their co-player's behavior—namely, the end point of

their preceding action. As such, we observed interpersonal brain–

behavior contingencies rather than brain-to-brain coupling. It remains

to be seen, then, whether patterns of between-brain coupling

between co-players on this task also differentiate between dissociable

dimensions of social exchange. Second, by modeling brain responses

to a discrete, predefined element of the players' behavior, we cap-

tured interpersonal brain–behavior relationships during an isolated

snapshot of the entire social exchange. This offers limited insight into

the interpersonal brain events that unfold dynamically throughout a

sustained interaction, through which the nature of the exchange takes

shape.

Data-driven techniques have been developed to provide an alter-

native way of analyzing hyperscanning data, offering a means to

address these outstanding questions. By evaluating dual-fMRI data in

a model-free, hypothesis-free manner, whereby no a priori assump-

tions are made, these techniques are more appropriate for the non-

linear, unpredictable dynamic of naturalistic social exchange (Nastase,

Gazzola, & Keysers, 2019). Recently, Bilek et al. (2015, 2017) demon-

strated how two such data-driven techniques can be combined

to investigate neural coupling during social interaction. With group-

independent component analysis (gICA), one can extract spatio-

temporal patterns of brain responses from a set of continuous

recordings acquired from multiple interacting dyads. By assessing the

dyad-specific time-course along which a given pattern is expressed, it

is then possible to identify the common element of all exchanges to

which those brain responses are associated; for example, one pattern

might represent brain responses elicited during all instantiations of

co-operative interactions, while another relates more closely to com-

petitive exchanges. With a second model-free analytical technique—

inter-subject correlation (ISC) analysis (Hasson, Nir, Levy, Fuhrmann, &

Malach, 2004)—we can then investigate whether the time-course of

neural signals within these data-defined patterns of interaction-

specific brain responses are correlated, or aligned, between pairs of

interacting individuals throughout a sustained interaction.
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To examine whether dissociable patterns of neural coupling

emerged during different forms of social exchange, in the present

study, we applied gICA-informed ISC analysis to dual-fMRI data

acquired from pairs of interactants performing our interactive task.

Driven by our previous findings, we expected different patterns of

neural alignment to delineate among co-operative and competitive

exchanges. Furthermore, we predicted stronger alignment during

concurrent relative to turn-based exchanges, given that players

must monitor and adapt to their co-players' behavior in real-time

during the former, giving rise to temporally coupled inter-brain

contingences.

2 | METHODS

2.1 | Participants

The analyses presented below were applied to a subset of the data

collected under Špiláková et al. (2019); specifically, 19 pairs of individ-

uals who underwent the exact same dual-fMRI protocol—a necessary

requirement for the analytical procedure. These 38 healthy individuals

were recruited from Brno, Czech Republic. The mean age of this sam-

ple was 22.44 (SD = 1.90) years. Participants were paired into

19 same-sex dyads (11 male–male) matched on self-evaluated hand-

edness (34 right handers), age (mean difference = 5.79 [SD = 4.29]

months) and education (highest qualification). The individuals compris-

ing a pair met for first time at the scanning facility on the day of the

experiment and were instructed together about the task and experi-

mental procedure. The study was approved by the Research Ethics

Committee of Masaryk University, and all participants gave their

informed consent prior to the scanning procedure. Participation was

rewarded with 200 CZK (approximately €8).

2.2 | The pattern game

The pattern game is an interactive task developed originally by Decety

et al. (2004), which we have adapted recently for hyperscanning

research (Špiláková et al., 2019). In this game, two players either coop-

erate or compete with one another over recursive rounds to recreate

patterns made up of blue and yellow tokens. Each player is assigned

the color blue or yellow, which identifies them throughout the entire

game. Prior to each round, players are shown an instruction that allo-

cates one to the role of Builder and the second to either Helper,

Hinderer, or Observer (referred to collectively as Other; e.g., “Blue

builds, Yellow helps”). While the task of the Builder is always to recre-

ate the pattern as fast as possible, the characteristics of the patterns

mean that they can do so more easily with assistance from the Other.

The role assigned to the Other then defined one of three conditions:

during Cooperation rounds, they work with the Builder to help them

reconstruct the pattern; in Competition rounds, they must work

against the Builder and attempt to hinder them from achieving this. In

Control rounds, the Other is instructed to simply observe the Builder

recreating the pattern. Players alternated between the role of Builder

and Other on each round.

Players made their moves by placing tokens sequentially into spe-

cific locations of a playing board. Each round began with one of the

players' tokens presented on either side of the monitor above the

playing board, and using a four-button controller they moved it left-

ward or rightward to a desired columnar location before dropping it

into the lowest empty row. On each round, both players could place

up to five tokens within a time limit of 25 s. The round ended if (a) the

pattern was recreated successfully, (b) both players had placed all of

their tokens, or (c) 25 s had elapsed. The experiment consisted of two

blocks of 48 pseudorandomized rounds: 16 Cooperative, 16 Competi-

tive, and 16 Control. In the first block, participants took turns to place

their tokens sequentially (Turn-Based condition). In the second, players

were free to place their tokens simultaneously (Concurrent condition).

Throughout a round, the Builder's token was always in the lower row,

closer to the playing board; as such, if both players attempted to place

their token at the same columnar position simultaneously, the

Builder's token always dropped to the lowest row with the Other's

token positioned above it. Figure 1 presents an overview of the task,

which was programmed in MATLAB (v2018b, The MathWorks, Inc.)

using the Cogent 2000 toolbox (developed by the Cogent 2000 team

at the FIL and the ICN, and John Romaya at the LON at the Wellcome

Department of Imaging Neuroscience; RRID:SCR_015672).

2.3 | MRI data acquisition

Brain imaging was performed using two identical 3T Siemens Prisma

scanners located within the same facility, both equipped with a

64-channel HeadNeck coil. First, we acquired high-resolution whole-

brain T1-weightened anatomical images (MPRAGE; TR/TE/TI =

2300/2.33/900 ms; flip angle = 8�; field of view = 252 mm × 224 mm;

in-plane matrix size = 252 × 224; slice thickness = 1 mm; 240 sagittal

slices; iPAT GRAPPA accel. factor = 2; phase encoding = A>P; no fat sup-

pression; acquisition time = 317 s). Functional time series were then

recorded in two runs, each containing 570 volumes (approximately

20 min) acquired after four dummy scans—the turn-based block

was always followed by the Concurrent block. Blood-oxygen-level

dependent (BOLD) images were obtained with T2*-weighted echo

planar imaging, with parallel acquisition (i-PAT GRAPPA accel. fac-

tor = 2; 34 axial slices; TR/TE = 2000/35 ms; flip angle = 60�; field

of view = 204 mm × 204 mm; in-plane matrix size = 68 × 68; slice

thickness = 4 mm; 34 axial slices; phase encoding = A>P). Axial

slices were acquired in interleaved order, each one oriented parallel

to a line connecting the base of the cerebellum to the base of

orbitofrontal cortex to ensure whole-brain coverage. A single exter-

nal programmable signal generator (Siglent SDG1025, www.siglent.

com) initiated the acquisition sequence of both scanners to ensure

maximal synchronization (mean asynchrony in volume acquisi-

tion = 1.69 [SD = 0.65] ms). Likewise, a single computer was used to

present synchronized experimental stimuli to both scanners, and to

record the timings of radio frequency pulses.
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2.4 | Neuroimaging data analysis

The pre-processing and analysis of functional and structural brain

images was performed using various utilities within FMRIB's software

library (Jenkinson et al., 2012; SCR_002823). gICA was performed

using the GIFT toolbox for MATLAB (v2.0e; mialab.mrn.org/software/

gift; Calhoun, Adali, Pearlson & Pekar, 2001), and ISC analyses were

performed with in-house scripts written and executed in MATLAB

(v2018b, The MathWorks, Inc.).

2.4.1 | Pre-processing

For each pair, we obtained four time series (two for each participant—

one acquired during the Turn-Based block, the other during the Con-

current block) that were pre-processed independently in the following

manner: First, slice-timing correction for interleaved slice acquisition

was applied to the functional images, and each time-series was

detrended and high-pass filtered across time (Gaussian-weighted

least-squares straight-line fitting; sigma = 50.0 s) and spatially

smoothed with a 5-mm full-width half-maximum Gaussian kernel.

Motion correction was then performed with MCFLIRT (Jenkinson

et al., 2002). To remove any residual motion artifacts, or signal caused

by physiological noise (e.g., heart rate and respiration), we performed

single-session Independent Component Analysis with MELODIC

(Beckmann & Smith, 2004) to identify 50 spatio-temporal components

of the BOLD signal. Artifactual components were identified automati-

cally using the Spatially Organized Component Klassifikator (SOCK;

Bhaganagarapu et al., 2013), and any signals corresponding to these

problematic components were regressed out of the time-series using

fsl_regfilt. Since these artifactual components were orthogonal to the

signal removed previously by the high-pass filter, there was no re-

introduction of noise (Lindquist, Geuter, Wager, & Caffo, 2019). In our

pre-processing pipeline, the components returned by MELODIC that

were identified as artifactual and subsequently regressed out of the

time series (the set of nuisance covariates) were drawn from data

that had been high-pass filtered already. Finally, with FLIRT, the time-

series were registered to a corresponding high-resolution structural

image using Boundary-based Registration, and this, in turn, was regis-

tered linearly to the Montreal Neurological Institute (MNI)-152 tem-

plate (12 degrees of freedom).

2.4.2 | Group-independent component analysis

We performed gICA to identify common aggregate spatial maps

across the entire samples that are expressed through unique time-

courses for each subject. An alternative approach is to allow for

unique spatial maps but common time courses, but this is less appro-

priate for fMRI data (see Calhoun et al. 2008).

The input consisted of 76 functional brain images (38 participants

[19 pairs] × 2 blocks [Turn-based and Concurrent]), each containing

570 volumes. Two data reduction steps were first performed: princi-

ple component analysis (PCA) was applied initially to each individual

time-series, resulting in a set of 68 components from each of the

76 time-series, and subsequently to all the resulting components

concatenated into one matrix. The second PCA resulted in a set of

20 spatially orthogonal principal components. The optimal number of

components to be extracted from each of these PCAs was determined

by computing the minimum description length (MDL). The MDL prin-

ciple is a formal version of Occam's razor, which determines an appro-

priate model complexity by extracting the maximum amount of

information from the data without overfitting (Sammut & Webb,

2016). Next, spatial gICA was performed on these reduced data using

the INFOMAX algorithm to identify group-level components that

were independent of one another (Langlois, Chartier, & Gosselin,

2010). To ascertain the reliability of these spatial components, gICA

was run 20 times and the resulting estimates were compared using

ICASSO: each estimated independent component occupies one point

in the signal space, and if a component is reliable then each run of the

algorithm should produce one point in the signal space that is very

close to the “real” component. Thus, reliable independent components

correspond to clusters that are small and well separated from the rest

F IGURE 1 Snapshots of stimuli during the Turn-based Co-
operation (a) and Competition (b) rounds, and Concurrent Co-
operation (c) and Competition (d) rounds. In all examples, the Builder
is assigned to the same color as the target pattern (i.e., yellow in a and
d, blue in b and c), and scores by placing tokens in locations that
recreate the pattern (indicated by solid red lines). The Other is
assigned to the opposing color (blue in a and d, yellow in b and c), and
scores by placing their tokens in locations that serve to help or hinder
the Builder (dashed red lines); since the latter is achieved by placing
tokens within the pattern space, thereby obstructing the Builder, the
scoring location of Others and Builders are the same in Competitive
rounds (solid red lines) [Color figure can be viewed at
wileyonlinelibrary.com]
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of the estimates. In contrast, unreliable components correspond to

points which do not belong to any cluster. A cluster quality index, Iq, is

then used to evaluate what clusters are the most compact and isolated;

this index is computed as the difference between the average intra-

cluster and average extra-cluster similarities. Eventually, Iq is equal to

one for an ideal cluster (Himberg, Hyvärinen, & Esposito, 2004). This

ICASSO analysis revealed that all 20 components achieved very high

cluster quality indices over all iterations (Iq = .97–.98). This part of the

gICA pipeline is illustrated schematically in Figure 2a.

After visual inspection of the reliable components emerging from

ICASSO, five were identified as artifactual and excluded from further

analyses (e.g., components reflecting heartbeat, white matter, and

cerebrospinal fluid; see Figure S1). Since the remaining 15 components

were extracted from time-series acquired during cooperative and

competitive exchanges, and in both turn-based and concurrent inter-

actions, each one could express all dimensions of interaction equally or a

specific dimension/combination of dimensions independently. To identify

components that reflected brain responses associated with each condi-

tion (Co-operation, Competition, and Control), we used the results of the

PCA data-reduction steps to back-reconstruct each component to the

individual input time-series. This resulted in a time-course for each com-

ponent specific to each subject in each block. Multiple regression analysis

was then computed: For each participant, the explanatory variables

were their subject-specific back-reconstructed time-course for each

independent component, and the outcome variable was their unique task

design for each condition within each block. This resulted in subject-

specific β-values for each of the three conditions during the Concurrent

or Turn-based block (six β-values for each participant for each compo-

nent). These β-values were then compared using paired-samples t-tests

to identify interaction-specific components; that is, components for

which the back-reconstructed time-course for each participant fit their

task design of the experimental conditions more than the Control condi-

tion (βCoop > 0 and βCoop > βCont; or βComp > 0 and βComp > βCont), and

showed greater fit for either the Cooperation or Competition condition.

For components to be selected, this had to be true in both concurrent

and turn-based condition. This procedure, illustrated in Figure 2b, identi-

fied four interaction-specific components.

2.4.3 | Inter-subject correlation analysis

Next, to calculate the degree of neural alignment in each condition

we computed matrices of cross-correlations between the back-

reconstructed time-series of interaction-specific components for each

interacting pair, separately for the Turn-based and Concurrent block

(e.g., correlation between the time-series of component #1 in the Blue

player and component #2 in their Yellow co-player, in the Turn-based

block). For each component, Pearson correlations were applied to the

F IGURE 2 Group-Independent Component Analysis (gICA) pipeline. (a) Two data reduction steps were performed on the pre-processed data:
PCA was first applied to each individual time-series, and then to all the time-series concatenated into one matrix. Next, gICA was performed on
these reduced data using the INFOMAX algorithm, revealing 20 reliable components. (b) After the removal of five artifactual components, the
remaining 15 components were back-reconstructed to the individual input time-series. Applying multiple regression to the subject-specific time-
series revealed four components that were expressed along a time-series aligned with interaction-specific conditions. Note: Magnifying glasses
represent stages of data reduction
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entire back-reconstructed time-series from within each block

(570 volumes). The resulting correlation coefficients were trans-

formed to z-values, and the median was used as a coupling coefficient.

To determine the significance of the resulting coefficients, we

performed a randomization test with 10,000 permutations: in each

iteration, we randomly selected 38 non-interacting pairs (retaining the

role of each participant; e.g., component #1 in the Blue player of one

pair, and component #2 from the Yellow player of a different pair) and

computed a median z-transformed coefficient as above. This produced

a null distribution of correlations among non-interacting pairs for each

interaction-specific component, against which the significance of cou-

pling between each interacting pair was then compared (see Figure 4a).

Pairwise comparisons among the four non-artifactual, interaction-

specific components revealed significantly higher correlations among

interacting compared with non-interacting pairs after Bonferroni

correction (α = .05/42). Finally, to assess whether differences existed in

the strength of neural coupling between the Concurrent and Turn-based

interactions, for each interaction-specific component, we compared the

within-pair correlation coefficients using a Wilcoxon sign-rank test

(e.g., the coefficients calculated for all interacting pairs for Component

#1 in the Turn-based block were compared with those calculated for all

interacting pairs for Component #1 in the Concurrent block). This analy-

sis is illustrated in Figure 3.

While Iq obtained from ICASSO was >0.9 for each cluster (compo-

nent), to ensure that the individual back-reconstructed time-series

were stable even with a slight change in the spatial configuration of

the component, we ran the gICA and subsequent post-processing

analysis five times with the exactly same parameters. In the following

section, we report only the results that were replicated in each of

these five iterations.

3 | RESULTS

gICA revealed one component that was related more strongly to

instances of the Cooperative compared with the Control rounds (com-

ponent 10 in Figure S1; referred to herein as Coop#1), while three

were associated more strongly with Competitive than Control rounds

(components 13, 14, and 18; referred to herein as Comp#1, Comp#2,

and Comp#3, respectively). The spatial pattern of brain regions com-

prising Coop#1 included bilateral precunei, bilateral clusters cen-

tered on the superior temporal sulci (STS) but extending dorsally to

the TPJ and ventrally to the fusiform gyri, bilateral dorso-lateral pre-

frontal cortices, and the cerebellum. Interestingly, Comp#1 consisted

entirely of brain responses localized to the cerebellum. Those

encompassed by Comp#2, however, included right precuneus, right

superior frontal gyrus extending into prefrontal cortex, right caudate

nucleus, right parietal inferior gyrus, and left cerebellum. In Comp#3,

the brain responses were present bilaterally in superior frontal gyri,

anterior cingulate cortex (ACC), anterior insulae (AI), precunei, the

cerebellum, and left precentral gyrus. These results are presented in

Figure 4a.

F IGURE 3 Inter-subject correlation (ISC) pipeline. For the seven non-artifactual interaction-specific components resulting from gICA, ISCs
were computed for interacting pairs and compared with those between non-interacting individuals. Finally, for each component, the ISCs
between interacting pairs were compared between the Turn-based and Concurrent blocks
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For each of these components, ISC analyses revealed that the back-

reconstructed time-courses were correlated more strongly between

interacting than non-interacting pairs after (p < .05, Bonferroni

corrected; see Figure 4b). Furthermore, this measure of neural alignment

between interacting dyads was significantly stronger during the Concur-

rent relative to the Turn-based block for Coop#1 (mean coupling coeffi-

cient: CN = .31 [range = −.05–.51] vs. TB = .14 [range = −.02–.27];

W = 187, Z = 3.70, p < .001), Comp#1 (mean CN= .13 [range =−.01–.30]

vs. TB = .03 [range =−.07–.15];W = 161, Z = 2.66, p = .008) andComp#3

(CN = .35 [range = .04–.45] vs. TB = .25 [range = .01–.40]; W = 176,

Z = 3.26, p = .001). For Comp#2, however, neural coupling did not differ

significantly between blocks (CN = .29 [range = .03–.48] vs. TB = .33

[range = −.15–.44]; W = 54, Z = -1.65, p = .09). These results are illus-

trated in Figure 4c, and detailed further in Table S1.

4 | DISCUSSION

To investigate whether different patterns of neural coupling between

individuals emerge during dissociable types of interaction, we analyzed

F IGURE 4 Results of gICA-informed ISC analyses. (a) Spatial maps of four components identified by group-Independent Component Analysis
(gICA), which were expressed in individual brains along time-series that corresponded to instances of cooperative or competitive interactions. (b) The
randomization test revealed that the back-reconstructed time-series for each component were correlated significantly more strongly (p < .05,
Bonferroni corrected) between interacting compared with non-interacting players. Histograms show the null-distribution of median correlation
coefficients across all non-interacting pairs—the frequency (y-axis) with which correlations of different strengths (x-axis) were identified across all
permutations. The red line presents the median correlation coefficient across all interacting pairs. (c) Comparisons between the correlation coefficients
(y-axis) for all interacting pairs between the Concurrent (CN) and Turn-based (TB) blocks. Note: Components emerging from gICA are overlaid onto the
Colin27 template (Holmes et al., 1998) in MNI space [Color figure can be viewed at wileyonlinelibrary.com]
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dual-fMRI “hyperscanning” data acquired from dyads engaged in a vari-

ety of interactions using a combination of two techniques: a data-

driven gICA and subsequent ISC. This gICA-informed ISC analysis

revealed a distinct spatio-temporal pattern of brain response that

followed a time-course associated with co-operative exchanges, and

three independent patterns that corresponded more closely to com-

petitive interactions. More importantly, the time-courses of all these

components were correlated significantly between pairs of interac-

tants, and these distinct patterns of interpersonal brain-to-brain

alignment delineated among concurrent and turn-based exchanges.

These results demonstrate the utility of data-driven approaches

applied to hyperscanning data in elucidating the interpersonal neural

processes that give rise to the two-in-one dynamic characterizing

social interaction.

Appreciating fully the ability of gICA-informed ISC analysis to dis-

tinguish among different dimensions of interpersonal interactions

requires an evaluation of the analytical process: The inputs were time-

series acquired during both cooperative and competitive conditions,

and in both turn-based and concurrent interactions. As such, compo-

nents emerging from the gICA could express all interaction dimen-

sions equally, or a specific dimension/combination of dimensions

independently. Indeed, multiple regression applied to the back-

reconstructed time-series revealed that only four of the 15 non-

artifactual components were specific to either cooperation or compe-

tition. By examining correlations in the time-series of these patterns

across all players—both interacting and non-interacting pairs—we

were then able to identify patterns of neural alignment that were both

specific to real interactions and distinguished between co-operative

and competitive exchanges performed in a concurrent or turn-based

manner.

The collection of brain regions expressing interpersonal neural

coupling during co-operative exchanges, Coop#1, encompassed bilat-

eral precunei, STS, TPJ, and the cerebellum. A substantial body of

research has shown that the precuneus, STS, and TPJ comprise a net-

work of brain regions co-activated during experimental tasks requiring

the attribution of mental states to others, such as desires, intentions,

and beliefs (Bardi et al., 2017; Carlson et al., 2013; Eddy, 2016). Based

on its engagement during visuo-spatial mental imagery (e.g., Ghaem

et al., 1997; Hanakawa et al., 2003), and both implicit and explicit

metalizing (for meta-analytic reviews, see Schilbach et al., 2012; Wolf,

Dziobek, & Heekeren, 2010), it is believed that the precuneus is

involved in the representation of others' perspectives (Cavanna &

Trimble, 2006). Similarly, the TPJ responds when individuals are

required to infer another person's perspective when it differs from

their own (e.g., Dumontheil et al., 2010; Mazzarella et al., 2013); that

is, when distinctions must be made between self- and other represen-

tations (Lamm, Bukowski, & Silani, 2016; Uddin, Molnar-Szakacs,

Zaidel, & Iacoboni, 2006).

Since co-operative interactions require both individuals to act

in line with a common goal and in a manner that complements their

interaction partner's behavior (Sebanz, Bekkering, & Knoblich,

2006), it is perhaps unsurprising to observe neural alignment

throughout these brain systems; both individuals must attempt to

predict their co-player's intentions and expectations in order to

modify their own actions accordingly (Hampton, Bossaerts, &

O'Doherty, 2008; Jara-Ettinger, Baker, & Tenenbaum, 2012;

Kestemont et al., 2015; Kestemont, Vandekerckhove, Ma, Van

Hoeck, & Van Overwalle, 2013). Indeed, brain-to-brain synchroni-

zation within the TPJ and STS has been reported during economic

exchanges (Jahng et al., 2017; Tang et al., 2016; Zhang et al.,

2017), cooperative joint-action (Abe et al., 2019), and communica-

tive tasks (Hirsch, Zhang, Noah, & Ono, 2017; Kinreich et al., 2017;

Rojiani et al., 2018; Wilson et al., 2008). What is surprising, how-

ever, is the ability of a data-driven analysis to identify spatio-

temporal patterns of brain response that delineate among social

interactions along the goal dimension, and within which the

strength of neural alignment differentiates between exchanges

along the interaction dimension.

The first pattern of neural responses elicited during competitive

exchanges, Comp#1, consisted exclusively of the bilateral cerebellum.

An expansive corpus of research into the functions of the cerebellum

points to its primary role in sensory prediction and the formation of

expectations through interactions with the environment (Leggio &

Molinari, 2015; Nixon, 2003). Within this pattern, neural alignment

was significantly stronger during concurrent than turn-based competi-

tive interactions. We suggest this reflects greater inter-brain contin-

gencies in visuo-spatial processing mechanisms during real-time

interaction, whereby each player must simultaneously predict and

adapt to the behavior of their partner.

The second spatio-temporal pattern of brain responses elicited

during competitive exchanges that were aligned between interacting

players, Comp#2, comprised brain regions localized primarily to the

right hemisphere, including lateral prefrontal cortex, caudate nucleus,

inferior parietal cortex, and precuneus, but also the left cerebellum.

The inferior parietal cortex is considered a higher-order brain area

involved in the visuo-spatial control of motor behavior (Culham,

Cavina-Pratesi, & Singhal, 2006; Gallivan & Culham, 2015). Given the

abovementioned putative role of the cerebellum in similar motor-

related spatial processing, this pattern of neural alignment might index

temporally coupled dependencies in visuo-motor processes during

competitive interactions. Interestingly, the caudate nucleus has been

implicated in response switching (Grahn, Parkinson, & Owen, 2008),

and the concerted engagement of the precuneus and the caudate

nucleus has been observed during the planning and generation of stra-

tegic moves during competitive interactive games (Wan et al., 2011).

Taken together, interpersonal neural coupling within this collection of

brain regions might reflect the mutual recruitment of processes

involved in the monitoring of a co-players behavior and subsequent

updating of one's own motor actions to allow for flexible co-adaption

during competitive interactions. Importantly, while all spatio-temporal

patterns were relatively unresponsive during the control condition, in

which participants simply viewed the actions of their co-player, within

this collection of brain regions we observed no significant differences

in the strength of inter-player neural coupling between concurrent

and turn-based competitive exchanges. This might reveal a pattern of

alignment common to both forms of competitive interaction, allowing
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individuals to plan their next move on the basis of their co-player's

preceding action.

The third pattern of brain responses expressing neural alignment

between players engaged in competitive interactions, Comp#3,

encompassed the superior frontal cortices, ACC, AI, precuneus, and

cerebellum. This converges with the findings of Wilson et al. (2008),

who report ISCs of brain function during verbal communication within

the ACC, lateral frontal cortices, and the precuneus. A network of

frontal activations incorporating the dorsal ACC and AI constitute the

so-called salience network, which is thought to be responsible for

identifying behaviorally relevant stimuli. In a previous study, we

observed a similar pattern of neural alignment within the dorsal ACC

and AI between players involved in an interactive game of economic

exchange; more specifically, inter-brain alignment in these regions

was associated with the degree of reciprocity expressed between

players (Shaw et al., 2018). We interpreted this to reflect the mutual

effort of players to modify their own behavior according to that of

their opponent, a process necessary to compete successfully in an

inter-dependent context. In this light, stronger alignment with a neural

saliency-detection system during concurrent compared with turn-

based competitive exchanges might index a greater effort of both

players to process and react dynamically to their opponent's moves;

during concurrent exchanges, each player's actions present a continu-

ous flow of salient information to their opponent, demanding more

flexible co-adaptation.

Interestingly, all but one of these patterns shared a common

feature—neural alignment within the precuneus. This brain region is

connected reciprocally to many other parts of the brain, and is consid-

ered a member of the so-called “rich club”—a group of neural hubs

that are interconnected among themselves (van den Heuvel & Sporns,

2011). Our results suggest that the precuneus plays a central role in

various forms of inter-dependent social exchange; it may provide a

channel through which social information is transmitted interperson-

ally and relayed to other brain systems to permit adaptive responses

during social interaction. It is also interesting that no pattern.

These distinct patterns of brain coupling provide unique insights

into the interpersonal neural processes that unfold during dissociable

forms of social exchange. In three of the components identified by gICA

(Coop#1, Comp#2, and Comp#3), ISCs between interacting pairs were

strongest during concurrent exchanges. This converges with the results

from neuroscientific investigations that have employed dual-EEG to

investigate patterns of between-brain alignment during unconstrained

interpersonal behavior (Dumas, Martinerie, Soussignan, & Nadel, 2012;

Dumas, Nadel, Soussignan, Martinerie, & Garnero, 2010); greater inter-

brain coherence is reported among interactants engaged in self-initi-

ated, spontaneous interactions compared with exchanges that are

guided externally by an experimenter—a distinction paralleling that

between turn-based and concurrent exchanges. Importantly, these

results do not simply reflect the degree of similarity in motoric- or

sensory-related brain responses: First, inter-brain covariance was signif-

icantly stronger between pairs of interacting co-players compared with

pairs of non-interacting players selected at random. Second, such

interaction-specific between-brain covariance was observed in both

concurrent and turn-based exchanges—this index of neural coupling

was present even when individuals took turns to observe the actions of

their co-player before making a reactive response, but more so when the

players reacted to one another concurrently. Third, we only extracted

this index of neural coupling from within spatio-temporal patterns of

brain response that followed a time-course aligned more with experi-

mental than control rounds. During control rounds, one individual (the

Builder) recreated a pattern without any help or hindrance from the

Other, while the Other observed the Builder passively. Hence, ISCs were

extracted from patterns of brain response elicited during inter-dependent

interactions, whereby the moves of each individual were mutually

dependent upon their co-player's actions. As such, stronger ISCs during

concurrent compared with turn-based exchanges presumably reflects

greater interpersonal neural alignment as both players monitor, evaluate,

and adapt to the behavior of their co-player in real-time.

It is important to acknowledge that the results of the present study

must be reproduced in larger samples before we can evaluate properly

the utility of gICA-informed ISC for hyperscanning research. A more rig-

orous evaluation of this analytical technique also requires the present

results to be reproduced with other interactive paradigms, and with

designs that overcome any potential limitations of the current study. For

example, dyads in our experiment always performed a block of turn-

based interactions before a block of concurrent exchanges; since the

concurrent condition added a level of complexity to turn-based interac-

tions, our intention was to minimize fatigue and maximize motivation

between the first- and second-half of the procedure. In doing so, how-

ever, we may have introduced order effects, and so our results require

reproduction in other procedures for which such influences cannot exist.

Future research should also examine whether the interaction-

specific patterns of neural coupling revealed here extend to more real-

world social situations. Hyperscanning permits social neuroscience to be

conducted in ecologically valid contexts; Toppi et al. (2016), for example,

used dual-EEG to investigate inter-brain events among aircraft pilots dur-

ing flight simulations, revealing patterns of between-brain coherence that

differentiated between various cooperative scenarios. It would be inter-

esting to see whether the same patterns of neural coupling that we have

observed with our interactive experimental task delineate among social

exchanges with real-world implications. Studies should also investigate if

the patterns of interaction-specific coupling observed in the present

study are modulated by characteristics that have been shown to alter

between-brain events; should they truly reflect the social aspects of

interpersonal exchanges; they should be influenced by the sex of interac-

tants (Cheng et al., 2015) and the language used during verbal interaction

(Pérez et al., 2017).
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