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LATTICE DYNAMICS

Low-frequency properties of the phonon spectra, and low-temperature thermodynamics
of disordered solid solutions

I. A. Gospodarev,a) V. I. Grishayev, A. V. Eremenko, M. S. Klochko, A. V. Kotlyar,
E. V. Manzheliy, E. S. Syrkin, and S. B. Feodosyev

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine,
pr. Lenina 47, Kharkov 61103, Ukraine
(Submitted May 16, 2014; revised June 10, 2014)

Fiz. Nizk. Temp. 40, 1296–1311 (November 2014)

This is an analysis of the properties of quasi-local vibrations, and the conditions of the formation

thereof, in a realistic model of the crystal lattice on a microscopic scale. The evolution of

quasi-local vibrations with an increase in the concentration of impurity atoms, is examined. It is

shown that the formation of boson peaks occurs mainly due to the additional dispersion of

high-velocity acoustic phonons (connected to the atomic vibrations of the main lattice), caused by

the scattering of these phonons by the quasi-local vibrations localized at the impurities. We

demonstrate a connection between the boson peaks in disordered systems, and the first van Hove

singularity, in regular crystal structures. We analyze the manifestation of quasi-local vibrations and

boson peaks, as it relates to the behavior of low-temperature heat capacity, and how it changes with

an increasing impurity concentration. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4901989]

1. Introduction

At low temperatures, vibrational thermodynamic charac-

teristics of ordered and disordered systems, are determined

mainly by the long-wave acoustic phonons, the dispersion

law of which can be assumed to be linear. These phonons,

regardless of polarization, distribute themselves freely along

all crystallographic directions, similar to phonons in acoustic

isotopic environments. Due to the discreteness of the crystal

lattice, the phonon dispersion law deviates from the linear,

as phonon frequency increases. Furthermore, an additional

dispersion of phonons can occur due to the complexity of the

crystal lattice, or the presence of defects. In these cases, little

dispersions of quasi-localized states can occur within the

phonon spectrum, which can scatter high-velocity acoustic

phonons. Moreover, starting from a certain frequency x*,

phonon dispersion of some polarizations and directions,

stops. The frequency x* is called the propagon-diffusion

border (PDB) frequency.1 In Ref. 1 phonons with the fre-

quency x < x* that are freely distributed in all crystallo-

graphic directions, are called propagons, whereas phonons

with frequencies x > x*, that cannot be distributed along

certain directions, are diffusions.

In ideal crystals, the PDB frequency x*, matches the

frequency of the first van Hove singularity, which corre-

sponds to the isofrequency surface transition from closed to

open, along some direction of quasi-momenta, k, in space.2

Of course, the understanding of the quasi-momentum and

isofrequency surface, is applicable only to ordered systems,

at the same time as the understanding of the propagon-

diffusion border is also applicable to systems with a broken

translational symmetry. The PDB manifests itself in the

form of a distinct maximum along the ratio of the phonon

density of states �(x) to the square of frequency. This

maximum, i.e., the abnormal excess of the phonon density of

states in the low-frequency region above the Debye density

of states, is referred to as the boson peak (BP) throughout lit-

erature.3–7 Such maxima were observed in Raman and

Brillouin scattering spectra,8,9 and also in inelastic neutron

scattering experiments.10 They are manifested in the low-

frequency region of the vibrational density of states, in the

frequency range between 0.5 and 2 THz,7,11,12 i.e., far below

the Debye frequency. In Refs. 13–15 it is shown that the BP

in disordered structures form in the frequency interval where

the length of the phonon wave becomes comparable to the

parameters of disorder, particularly with the average distance

between defects (Ioffe-Regel limit). The boson peaks form

distinctly on the temperature dependences of low-

temperature heat capacity, as sharp maxima along the ratio

of the heat capacity to the cube of the temperature (for exam-

ple, see Ref. 16).

For crystals with a simple and highly symmetrical lat-

tice, the dispersion law of low-frequency phonons, i.e., pho-

nons with frequencies below the first van Hove singularity,

is close to the dispersion law of sound xi(k) � si(j)k, (j �
k/k) and the vibrational properties of the ideal systems can

be sufficiently well described within the framework of the

Debye approximation. In the region of low frequencies the

phonon density of states is the same as the Debye density of

states, and therefore at x ! 0, the function �(x) � x2 and

its values, are small. As such, the introduction of defects into

the crystal can significantly enrich the low-frequency region

of the phonon spectrum, and lead not only to quantitative,

but also to qualitative changes in the behavior of low-

temperature vibrational properties.

Quasi-local vibrations (QLV) are the most studied

low-frequency property of a phonon spectrum of a crystal,

containing a point defect. QLV are sharp resonant
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low-frequency peaks along the phonon density of states, theo-

retically predicted17 and experimentally found,18 in the mid-

dle of the last century. However, further analysis at the

microscopic level of their properties, and the conditions under

which they are formed, in addition to the QLV transformation

during the increase in the concentration of impurity atoms, is

still inadequately studied. It is this analysis in particular that

allows us to examine the BP nature, and to describe all low-

frequency properties of the phonon spectra of real crystals

and solid solutions, from one point of view. It should be noted

that the analysis must be done without directly calculating the

quasi-wave vector, the introduction of which into the exam-

ined systems with significantly impaired crystal regularity of

atom arrangement, always requires additional substantiation,

is artificial, and not always correct.

For our calculations, we will use the method of Jacobi

matrices,19–22 which does not use the crystal translational

symmetry in an explicit way, and allows for the calculation

of the local Green functions and local spectral densities,

without calculating dispersion laws and involving the quasi-

wave vectors. These functions are self-averaging quanti-

ties.23,24 The description of the vibrational spectrum of a dis-

ordered solid solution using the given spectral properties is

more correct, especially since the natural form of describing

the localized or quasi-localized states, is their expansion

along the moments, which coincides practically with the

classification of vibrations, adopted in the method of Jacobi

matrices (J-matrices). The basis for this method, in a volume

that is appropriate for reading this article, is presented in

Section 2.

The third section is dedicated to the analysis of the QLV

properties and the conditions for the formation thereof, at the

microscopic level. The evolution of the QLV is studied, with

an increase in the concentration of impurity atoms.

In the fourth section, on a realistic model of the crystal

lattice, it is shown that the formation of boson peaks is

caused by additional dispersion of high-velocity acoustic

phonons, caused by the scattering of these phonons (con-

nected to the vibrations of the atoms of the main lattice) by

QLV, localized around the impurities. We analyze the simi-

larity between BP in disordered systems, and the first van

Hove singularity in regular crystal structures.

The fifth section is dedicated to the analysis of the mani-

festation of quasi-local vibrations and boson peaks, in the

behavior of low-temperature heat capacity with an increase

in the concentration of impurities.

2. Fundamentals of the method of Jacobi matrices

We will write down the equation for the harmonic vibra-

tion of the crystal lattice in the operator form

ðL̂ � x2ÎÞ~w ¼ 0; (1)

where x is the natural vibration frequency; Î is the unit oper-

ator, and operator

L̂ ¼ L̂ r; r0ð Þ � Û r; r0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m rð Þm r0ð Þ

p
describes the harmonic vibrations of the crystal (Û(r, r0) is

the matrix of the force constants, corresponding to the

interaction of atoms with the radius vectors r and r0, whereas

m(r) and m(r0) are the masses of these atoms). The L̂ opera-

tor works in a 3N-dimensional (N ! 1 is the number of

atoms in the crystal) space of atomic displacements H, the

vectors of which, ~w are designated with an arrow above the

symbol throughout this article (as opposed to usual three-

dimensional vectors, which are conventionally denoted in

bold font).

Having selected a certain vector ~h0 2 H in space H, cor-

responding to some displacement of a certain atom or group

of atoms (so-called generating vector), we can build the

sequence fL̂n~h0g1n¼0. The linear hull of the sequence of these

vectors, forms the subspace HðiÞ � H invariant relative to

operator’s L̂ cyclic subspace. In the basis f~hng1n¼0, derived

by the orthonormalization of the sequence fL̂n~h0g1n¼0, the

operator L̂
ðiÞ

, induced by operator L̂ in subspace H(i), has a

nondegenerate spectrum and is presented in the basis

f~hng1n¼0 as a tridiagonal (Jacobi) matrix

LðiÞmn ¼ aðiÞn dmn þ bðiÞn ðdm;nþ1 þ dmþ1;nÞ:

In the same basis, the matrix elements of the Green operator

Ĝðx2Þ ¼ ðx2 Î � L̂Þ�1
look like

GðiÞmnðx2Þ ¼ �PðiÞm ðx2ÞQðiÞn ðx2Þ þ PðiÞm ðx2ÞPðiÞn ðx2ÞGðiÞðx2Þ:
(2)

In (2) the function

GðiÞðx2Þ � G
ðiÞ
00ðx2Þ ¼ ð~hðiÞ0 ; Ĝ

ðiÞðx2Þ~hðiÞ0 Þ

is the local Green function, which corresponds to a displace-

ment of one or several atoms* defined by the generating vec-

tor ~h
ðiÞ
0 , and Pm(x) are polynomials that are defined by the

recurrence relation

bmPmþ1ðxÞ ¼ ðx� amÞPmðxÞ � bm�1Pm�1ðxÞ; (3)

with the initial conditions: P�1(x) � 0; P0(x) � 1, and polyno-

mials Qm(x) are defined by the same recurrent expression, but

with the initial conditions Q0(x) � 0; Q1(x) � b0
�1. Up to the

normalization factor
Qn�1

i¼0 b�1
i , the polynomial Pm(x2) coin-

cides with the determinant of the matrix jx2dik � Likjmi;k¼0,

whereas polynomials Qm(x2) coincide with the minor of the

first diagonal element of this determinant. From the construc-

tion of the f~hng1n¼0 basis, and the recurrence relation (3) we get

~hn ¼ PnðL̂Þ~h0: (4)

The eigenfunction ~wðx2Þ corresponding to the eigenvalue k
� x2, looks like

~wðx2Þ ¼
X

n

Pnðx2Þ~hn: (5)

If the band of the continuous spectrum is connected to x �
[0, xm], then the matrix elements of the J-matrix, approach

the following limits as the rank increases:

*Subsequently, the index that numbers the cyclic subspaces will only be

written when it is necessary to differentiate one subspace from another.
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lim
n!1

an ¼ 2 lim
n!1

bn ¼
x2

m

2
: (6)

In practice, it is usually possible to calculate a finite

number for the J-matrix elements of the L̂ operator (for

example, before an and bn�1, inclusive)then, setting the rest

of the matrix elements equal to their limit values (6), we can

write the local Green function G(x2) as a continued fraction,

that folds into the following expression:

G x2ð Þ � G00 x2ð Þ ¼ Qn x2ð Þ � bn�1Qn�1 x2ð ÞK1 x2ð Þ
Pn x2ð Þ � bn�1Pn�1 x2ð ÞK1 x2ð Þ ; (7)

where K1(x2) is the continued fraction, corresponding to

the J-matrix, all elements of which are equal to the limit

values (6)

K1 x2ð Þ ¼ 4

x4
m

2x2 �x2
m þ 2Z xð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx2 x2 �x2

m

� �
j

q� �
; (8)

where

ZðxÞ ¼ iHðxÞHðxm � xÞ �Hðx� xmÞ: (9)

The value

qð
~h0Þ xð Þ � 2xqð

~h0Þ x2ð Þ ¼ 2x
p

lim
c!þ0

Im Gð
~h0Þ x2þ ic
� �

(10)

is referred to as the spectral density generated by the ~h0

vector, whereas the phonon density of states in the cyclic

subspace generated by the vector ~h0, i.e., the value

�ð
~h0Þ xð Þ � 2xgð

~h0Þ x2ð Þ ¼ 2x
p

lim
c!þ0

Im Sp Ĝ
ð~h0Þ

x2 þ ic
� �

;

in accordance to (2), can be written as

�ð
~h0ÞðxÞ � 2xgð

~h0Þðx2Þ

¼ qð
~h0ÞðxÞ lim

N!1

X3N

n¼0

P2
nðx2Þ

¼ 2xqð
~h0Þðx2Þ lim

N!1

X3N

n¼0

P2
nðx2Þ (11)

(all phonon density of states and spectral densities are nor-

malized by one). As follows from expressions (7)–(9), in

expression (10) it is possible to go directly to the limit at c
! 0, and, introducing Green’s function G(x) ¼ 2xG(x2),

for spectral densities (10) and density of states (11) write

down:

qð
~h0Þ xð Þ ¼ 1

p
Im Ĝ

ð~h0Þ
xð Þ;

�ð
~h0Þ xð Þ ¼ qð

~h0Þ xð Þ lim
N!1

X3N

n¼0

P2
nðx2Þ:

(12)

From another side, from the procedure of building the cyclic

subspaces, it follows that the total phonon density of states

of the crystal, is equal to the arithmetic mean of spectral

densities, generated by all linearly independent

displacements.

The Jacobi method does not make explicit use of the

translational symmetry of the lattice, but for an ideal crystal,

the unit cell of which contains q atoms, it is conveniently

written as

� xð Þ ¼ 1

3q

Xq

s¼1

X3

i¼1

q sð Þ
i xð Þ; (13)

where qi
(s)(x) is the spectral density, generated by the dis-

placement of an atom from the sublattice s, along the crystal-

lographic direction i.

3. Quasi-local vibrations, their formation, and evolution, with
increasing concentration of impurity atoms

Quasi-local vibrations (for example, see Refs. 17, 25,

and 26) are more commonly referred to as sharp resonance

maxima, occurring in the low-frequency region of the pho-

non spectrum of the crystal, usually under the influence of

small concentrations of defects, leading to an increase in the

number of low-frequency phonons, for example, impurities

that are heavy or loosely coupled to the atoms of the main

lattice. At small concentrations of impurity atoms p� 1, the

vibrational characteristics of the solid solution can be

described using an expression for the density of states of the

crystal with defects, in a linear p approximation, using

J-matrices

~�ðxÞ � �ðxÞ þ p
X

i

DqðiÞðxÞ: (14)

The summation in (14) is over all cyclic subspaces, in which

the operator K̂, describing the perturbation of the lattice

vibrations of an isolated heavy, or loosely coupled substitu-

tional impurity, is other than zero; Dq(i)(x) is the change of

the spectral density in each of such subspaces; ~�ðxÞ and

�(x) are the phonon density of states of the solid solution

and the ideal crystal, respectively.

If in a cyclic subspace H(i) the operator K̂ induces a

regular degenerate operator,27,28 the value Dq(i)(x) can be

calculated using the spectral shift function. Using the expres-

sions derived for this function via the J-matrix method,19,20

we get

Dq ið Þ xð Þ ¼ � dn ið Þ xð Þ
dx

¼ ½q ið Þ xð Þ�2

pq ið Þ xð Þ
� �2 þ S ið Þ xð Þ � Re G ið Þ xð Þ

� �2
	 d

dx
S ið Þ xð Þ � Re G ið Þ xð Þ

q ið Þ xð Þ

" #
: (15)

In (15), the value nðiÞðxÞ is the spectral shift function in the

cyclic subspace H(i); the function S(i)(x) describes the

defect-induced perturbation, and depends on the defect

parameters, G(i)(x) is the local Green function for the ideal

crystal. If in any cyclic subspace (indexes labeling the sub-

spaces will be omitted later) the equation

SðxÞ � Re GðxÞ ¼ 0 (16)
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has the solution x ¼ xk, then in the vicinity of this point, the

frequency dependence (15) obtains a resonance form

� dn xð Þ
dx

¼ 2

p
C

4 x� xkð Þ2 þ C2
;

C � pq xð Þ
d

dx
S xð Þ � Re G xð Þ½ �x¼xk

: (17)

This resonance maximum along the phonon density of states

of the crystal with defects, got the name quasi-local vibra-
tions (QLV).

We will note that Eq. (16) formally matches the Lifshitz

equation, which determines (of course, for other defect pa-

rameters, and therefore, other values of the S(x) function),

the frequencies of discrete vibrational levels, lying outside

the band of the quasi-continuous spectrum of the crystal.27,28

However, the given discrete levels, in contrast to the values

of xk, are the poles of the perturbed local Green function,

but Green functions cannot have poles within the band of the

quasi-continuous spectrum, which follows, for example,

from (2) and (7)–(9). The possibility of determining the

QLV frequencies using Eq. (3) exists due to the fact that at

low frequencies, Re G(x)
 Im G(x), even though for many

real values for the parameters of the defect at x ¼ xk, the

value of the spectral density of an ideal crystal cannot be

considered as being negligibly small.

We will analyze the QLV occurring due to the substitu-

tional impurity, in a FCC crystal with central interaction

with its nearest neighbors

Uik Dð Þ ¼ x2
m

8

DiDk

D2

(D � r� r0 is the difference between the radius vectors of

the interacting atoms). The interaction of the impurity with

the main lattice will also be considered as being strictly cen-

tral, and therefore any displacement it causes will be regular

and degenerating. We will examine two cases: the isotopic

impurity with mass four times bigger than the mass of the

main lattice (i.e., the mass of the defect is E�Dm/m¼ 3

where m is the mass of the main lattice), and also an impu-

rity atom with a mass equal to the mass of the atom in the

main lattice (E¼ 0) but with a coupling to the main lattice

that is four times weaker than the coupling main lattice

atoms have amongst themselves (coupling defect, written as

t ¼ Da/a ¼ �3/4, where a ¼ mx2
m /8, is the force constant

describing the interaction of the atoms of the main lattice).

In the first case, the K̂ operator induces the nonzero operator

only in the cyclic subspace, generated by the displacement

of the impurity atom. The vectors belonging to this subspace

transform according to the irreducible representation s5
_ of

the symmetry group of the examined lattice Oh (designation

from Ref. 29). In the given subspace, the spectral density of

the ideal lattice coincides with its density of states. The func-

tion S(x,E) for an isotopic impurity looks like 19,20

S xð Þ ¼ � 2

xE
: (18)

A solution for Eq. (16) for the given case, is presented in

Fig. 1(a).

In the second case, except for the subspace Hðs
5
�Þ, in

which the function S(x,t), looks like

Sðs
5
�Þ

w x; tð Þ ¼
2

x
þ x2

m

x3

1þ t
t

; (19)

and solutions for Eq. (16) are presented in Fig. 1(b), the

non-zero operators will be those induced by the K̂ operator

in the cyclic subspaces, transformed according to irreduci-

ble representations s1
þ , s3

þ , s4
þ , and s4

� of the same group,

Oh. In all four of these subspaces, the functions S(x,t) coin-

cide with

FIG. 1. Real parts of the Green function and a solution of the Lifshitz equa-

tion in different cyclic subspaces: heavy isotopic impurity (a), loosely

coupled impurity (b), (c).
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S
ðs1
þÞ

w x; tð Þ ¼ S
ðs3
þÞ

w x; tð Þ ¼ S
ðs4
þÞ

w x; tð Þ ¼ Sðs
4
�Þ

w x; tð Þ

� S0w x; tð Þ ¼
16x
x2

mt
:

Fig. 1(c) shows generating vectors of the given subspaces,

and frequency dependences of the real parts of the Green

functions in each of them. For loosely coupled impurities (t
< 0) the function S0w (x,t) � Slim¼�16x/x2

m , and, as seen

in Fig. 1(c), Eq. (16), cannot have solutions in the cyclic sub-

spaces Hðs
1
þÞ;Hðs

3
þÞ, and Hðs

4
þÞ.

In subspace Hðs
4
�Þ, a solution is possible for the impurity,

the force interaction of which, with the atoms of the main

lattice, is at least 50 times weaker than the interaction of the

atoms of the main lattice between themselves, and at this

value, xk will practically coincide with the first van Hove

singularity (the frequency of this singularity will be labeled

as x*). Therefore, in the case of a loosely coupled impurity,

for real values of the t parameter, Eq. (16) can have a solu-

tion only in subspace Hðs
5
�Þ.

In Figs. 1(a) and 1(b), the real part of the Green function

(curves 2 in both panels) crosses the dashed curves 3, which

represent the dependences in (18)—panel (a), and (19)—

panel (b), at points xk. This same figure shows the spectral

densities qðs
5
�Þ(x) of an ideal crystal, which coincide with its

phonon density of states �(x), shown in curves 1 (shaded),

and also the phonon density of states of the corresponding

solid solutions at concentrations p ¼ 5%, in curves 4.

At x ¼ xk, the value of the phonon density of states can-

not be considered negligibly small (�(xk) � 0.1 Re G(xk)).

Therefore, as seen in Figs. 1(a) and 1(b), that even though

frequencies of the maxima on curves 4 are located in prox-

imity to frequency xk, they do not coincide (especially in the

case of a loosely coupled impurity, as shown in panel (b)).

Also, for a loosely coupled impurity, a higher degree of

QLV localization on impurity atoms is likely. Fig. 2 shows

the local spectral densities of the impurity atoms and their

closest neighbors, and also the spectral correlators of dis-

placements of the impurity, with their first coordination

sphere. In the figure, curves 1 are the phonon density of

states of the ideal lattice; curves 2 are local spectral density

of the impurity atoms

~qðs
5
�Þ xð Þ ¼ 2x

p
Imð~hðs

5
�Þ

0 ; ½x2 Î � L̂ � K̂��1~h
ðs5
�Þ

0 Þ: (20)

The data of the dependence has a characteristic Lorentzian

resonance, similar to (16), and contain no van Hove singular-

ities. The frequencies of the maxima on these spectral den-

sities (points xql) differ from the frequency xk. Curves 3 and

4 in Fig. 2 are the spectral correlators of impurity atom dis-

placements, with their first coordination sphere

~qðs
5
�Þ

01 ðxÞ ¼
2x
p

Imð~hðs
5
�Þ

1 ; ½x2 Î � L̂ � K̂��1~h
ðs5
�Þ

0 Þ

¼ P
ðs5
�Þ

1 ðx2Þ~qðs5
�ÞðxÞ; (21)

and the values

~qðs
5
�Þ

11 ðxÞ ¼
2x
p

Imð~hðs
5
�Þ

1 ; ½x2 Î � L̂ � K̂��1~h
ðs5
�Þ

1 Þ

¼ ½Pðs
5
�Þ

1 ðx2Þ�2~qðs
5
�ÞðxÞ; (22)

characterizing the input of cyclic subspaces, in which the

QLV were formed, into the local spectral density of the clos-

est neighbor of the impurity (curves 5). In (21) and (22),
~P
ðs5
�Þ

1 (x2) are polynomials defined by expressions (3) for the

J-matrix of the perturbed operator L̂ þ K̂ in the cyclic sub-

space Hðs
5
�Þ. These polynomials vanish at x ¼ xE, which is

the instein frequency of the given subspace

x2
E ¼

ðxm

0

x2�ðxÞdx � a
ðs5
�Þ

0 :

Therefore, at x ¼ xE, as follows from (3), the correlation

with the first coordination sphere is absent, and the closer

xql gets to xE, the higher the degree of QLV localization. It

can be seen that the xql frequency for loosely coupled

impurities, is approximately three times closer to xE, than

for isotopic impurity, and the quasi-local maximum has a

sharper resonance for loosely coupled impurities, than for a

heavy isotope.

The vanishing of the ~qðs
5
�Þ

01 (xE) and ~qðs
5
�Þ

11 (xE) values is

due to the non-monotonic behavior (i.e., significant deviation

from Debye type) of curves 5 within the proximity of the fre-

quency xql. Such “Non-Debye” behavior on the phonon

spectrum of the closest impurity neighbor, is more noticeable

FIG. 2. The spectral density of the impurity, and its nearest neighboring

atom: heavy isotopic impurity (a), loosely coupled impurity (b).
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in the ratio of these local spectral densities to the square of

the frequency (curve 5’ on the magnified panels of both parts

of the figure).

Fig. 3 shows the phonon density of states of disordered

solid solutions, formed by the introduction of (p ¼ 5%)

heavy (Fig. 3(a)) and loosely coupled (Fig. 3(b)) impurity

atoms ~�ðxÞ. Curves 2 on both panels are inputs into the

given values from the vibrations of impurity atoms �imp(x);

curves 3 are atoms of the main lattice ~�ðxÞ � �impðxÞ, and

curves 4 (curves 1 are the phonon density of states of the

ideal lattice) are compared with the local spectral densities

of the isolated impurity; curves 5 represent the value of

p~qðs
5
�Þ(x) and its closest neighbors; curves 6 are

(1 – p)~�1n(x). The maximums on curves 3 and 5 coincide

with sufficient precision, especially in the case of loosely

coupled impurities. This serves as evidence of strong QLV

localization on the impurity atoms. Therefore, the frequency

xql can be defined as quasi-local, with more justification

than xk. Within the proximity of this frequency, curves 4

and 6 experience similar fractures (at p ¼ 5% the majority of

the atoms of the main lattice of the solution have an impurity

atom among its closest neighbors). Therefore, in close prox-

imity to the quasi-local frequency xql, the local spectral

densities of both the impurity atoms, and the atoms of the

main lattice, lose their characteristic Debye form, which is

noticeably demonstrated by curves 4’ and 6’ in the magnified

panels, showing the relationships of the corresponding spec-

tral densities (curves 4 and 6) to the square of the frequency.

Fig. 4 shows the evolution of the phonon density of

states of the disordered solid solutions, with an increase in

the concentration of heavy isotopic impurity. The figure

shows phonon density of states ~�(x,p) for concentrations p
¼ 0.05, 0.10, 0.25, and 0.5 (solid lines on the corresponding

panels of the figure). Along with these curves on each of the

panels, as a reference, we see �(x) dependences of the ideal

crystal-matrix and also of the ideal lattice, composed of

heavy E ¼ 3 atoms, which, in the description of the solution,

are considered to be isotope-defects (thin dashed lines). The

spectral density of the system q(x), as a self-averaging value

(for example, see Refs. 23 and 24), can be derived by the

averaging of r across all positions, and directions of the dis-

placements i, of the qi(x,r) function, which represents the

spectral densities of cyclic subspaces, generated by atomic

displacement with the radius-vector r, in the crystallographic

direction i. We calculated the spectral densities ~�ðx; pÞ �
h~qiðx; rÞip for different concentrations of the randomly

arranged impurity atoms. For each value of the concentra-

tion, the averaging was done for several thousand random

configurations of impurity distributions, and for each config-

uration, the density of states was defined by the averaging of

several tens of spectral densities, corresponding to the dis-

placements along different crystallographic directions of a

few tens of consecutively arranged atoms.

We will note right away, that by p ¼ 0.05, the crystallo-

graphic regularity of the atomic arrangement was sufficiently

impaired, and in describing the quasi-particle spectra of such

a solution it is no longer possible to use the understanding of

“the first Brillouin zone.” At the same time, the function

~�(x,p) in proximity of the frequency x*, qualitatively

changes its behavior not only when p ¼ 0.05, but also at

p¼ 0.1, but this change is fully analogous to the changes in

the behavior of the phonon density of states of the ideal crys-

tal, in proximity to the first van Hove singularity. We will

also remind you that the first van Hove singularity (for

example, see Refs. 25 and 26) corresponds to the changes in

topology of isofrequency surfaces, i.e., to a transition from a

closed surface (at x < x*) to open, along a certain direction

in reciprocal space (at x > x*). Such a transition occurs due

to contact of the isofrequency surface with the boundary of

the first Brillouin zone, and in the absence of a crystal trans-

lational symmetry, we cannot discuss it.

In the following section, the connection between the

group velocities of the acoustic phonon modes, and the van

Hove singularities, will be analyzed in more detail. Here we

will note that the localization of phonons with certain polar-

ization along some directions, occurring at specific frequen-

cies, is not directly related to crystal translational symmetry,

but will be inherent for disordered systems. In the case of an

ideal crystal, the frequencies at which the “braking” of the

next phonon mode occurs, are the same for the entire sample,

and manifest themselves in the phonon density behavior as

singularities, the form of which is determined by the lattice

dimensions. For a structure with broken translational sym-

metry, each “braking” occurs within a certain frequency

FIG. 3. Comparison of the phonon density of 5% solid solutions (2) and

inputs into its system from vibrations of impurity atoms (3) and atoms of the

main lattice (4) with spectral densities of the isolated impurity atom (5) and

local spectral densities of the nearest neighbor of the impurity (6). Curves 1

are the phonon density of states of the ideal lattice. The magnified panels

show the relationship of the contributions to the phonon density of solutions

from the main lattice atoms (4’), and local spectral densities of the nearest

neighbors of the isolated impurities (6’), to the square of the frequency. A

heavy isotropic impurity (a), and a loosely coupled impurity (b).
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interval and the corresponding singularities will be ironed

out.

Already at p ¼ 0.1, the quasi-local peak has a certain

structure that bears a remote resemblance to the phonon den-

sity of states of the FCC crystal, determined by using a small

number of moments in the J-matrix of rank 3–5,19 which is

due to the formation of impurity clusters of a corresponding

size. The left slope of the peak becomes parabolic, and the

quasi-local frequency becomes the new boundary of the

propagon zone. At the same time, it’s already possible to

identify the high-frequency main lattice van Hove singular-

ities, on the phonon density. With increasing concentration,

the size of the impurity clusters grows, and the boundary of

the propagon zone becomes more distinct. At p ¼ 0.25 this

boundary already has a fracture, analogous to the first van

Hove singularity in a regular crystal. At p ¼ 0.5, the trans-

formation of the quasi-local maximum into the spectrum of

the lattice of heavy atoms, is substantially complete. Two

boundaries are clearly visible: the first separates propagons

from diffusions, and another, above which the phonons prop-

agate very slowly (locon region). In this region, the form of

the curve ~�(x,p) is reminiscent of a fractal (similar to one

obtained in Ref. 30 for a one dimensional solid solution). It

is clearly seen (see inset in panel p ¼ 0.5) that the spectrum

ends with an exponential damping of vibrations, which is

characteristic of disordered systems.23,24 The fact that the

maximum frequency of the spectra shown in Fig. 4 differs

from the so-called natural boundary (in this case, the maxi-

mum frequency of the main lattice) is explained by the rank

of the J-matrices calculated by us, being finite (n ¼ 76), and

not allowing for an arbitrarily large cluster of either the main

lattice atoms, or impurity.

Thus, a condition for the existence of QLV in the propa-

gon zone, is the existence of a solution to Eq. (16) in this fre-

quency range. The frequency of the quasi-local vibrations is

determined by the frequency of the maximum on the imagi-

nary part of the local Green function for the impurity atom.

The arrangement of the quasi-local vibrations occurs at very

small velocities, and can be represented in the form of

diverging waves. At finite concentrations of the impurity p,

scattering of quasi-planar acoustic waves occurs on the latter

diverging waves, and already at p � 10% the quasi-local fre-

quency becomes the top boundary of the propagon region of

the solution’s phonon spectrum.

4. The interaction of acoustic phonons with the quasi-
localized vibrations; van Hove singularities and boson peaks

We will now analyze in more detail, the connection

between the phonon dispersion, and the van Hove singularity

in the phonon spectrum of an ideal crystal, and similar pho-

non spectra properties with broken crystal regularity in terms

of atomic arrangement. For any solid body (both crystal and

those not possessing translational symmetry of atomic

arrangement) there exists a low-frequency range, in which

the phonon dispersion law is acoustic x(k) ¼ s(j)k, (where k
is the k wave vector modulus; j � k/k is the unit vector in

the direction of wave propagation, and s(j) is the velocity of

FIG. 4. The evolution of the phonon density of states of a disordered solid solution, with an increase in the concentration of a heavy isotropic impurity.
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sound as a function of direction). The phonon density of

states in this range has the Debye form �D(x) ¼ 3x2/x3
D.

Here 3x�3
D ¼ V0

P3
i¼1 s�3

i =6p2, and values of si are obtained

from the values of s(j) by averaging over all directions

si ¼
þ

sðjÞdo=4p:

With an increase in the value of k, the phonon dispersion law

increasingly deviates away and down from the linear, and

the real density of states deviates up and away from the

Debye form.

Boson peaks as maxima along the relationship of

�(x)/x2, should only be examined for x < x*, since a maxi-

mum along this relationship, corresponding to the first van

Hove singularity (x ¼ x*), always exists. In the given fre-

quency interval (propagon zone) the phonon density can be

approximated by a certain parabola, and its deviation from

the Debye density �D(x) can be expressed in terms of the

frequency dependence on the value of xD, i.e., the phonon

density can be written as

� xð Þ ¼ 3x2

x3
D xð Þ

: (23)

Therefore, using the definition of xD (for example, see Ref.

34), the relationship of the phonon density to the square of

the frequency, can be expressed through the dispersion of

the sound velocities si(x)

� xð Þ
x2
� 3

x3
D xð Þ

¼ V0

6p2

X3

i¼1

s�3
i xð Þ;

where V0 is the unit cell volume. Thus, the occurrence of the

maximum along the �(x)/x2 ratio, is due to the additional

dispersion of sound velocities, caused by structural inhomo-

geneities, which are the source of quasi-local vibrations

(defects, rotational degrees of freedom of the lattice nodes,

etc.), and also the complicated structure of the unit cell.

In an ideal crystal, where the dependence x(k) is a peri-

odic function, and k is a quasi-wave vector for some value

k¼ k*, the group velocity of phonons of some transverse

acoustic modes, for one of the crystallographic directions,

vanishes. Typically, this direction coincides with the direc-

tion of one of the axes of symmetry in the k-space, and the

value of k* corresponds to the boundary of the first Brillouin

zone in this direction. Therefore, the transition from closed

isofrequency surfaces to open, occurs at the frequency

x*¼x(k*), and the value x* is the frequency of the first

van Hove singularity (for the model examined in this study,

the frequency of the FCC crystal lattice is x* ¼ xm/2).

In Fig. 5(a), we see the density of states of the FCC crys-

tal lattice, with central closest-neighbor interaction, and

dependences on the frequency of the group velocities of lon-

gitudinal and transverse phonons, along highly symmetric

crystallographic directions CX, CL and CX (one octant of

the first Brillouin zone of the FCC crystal is shown on the

right, for convenience). The Debye density of states �D(x) ¼
3x2/x3

D, coincides sufficiently well with the true density of

sates �(x) at x � 0.25xm. At x � xm/4, the curve �(x)

starts to deviate upward from the �D(x) curve. The first van

Hove singularity corresponds to the vanishing of the group

velocity of transverse mode phonons, propagating along the

direction CL (the given dependence is presented in the figure

by the thicker line). At x � x* the character of the phonon

dispersion changes significantly. Along with rapidly spread-

ing phonons, the dispersion law of which still resembles the

linear (the s(x) dependence for other branches and propaga-

tion directions, as seen in the figure, at x � x* is relatively

small), localized states appear, and transverse phonons no

longer propagate along the direction CL. If for x � x*, the

average group velocity of phonons decreases smoothly as

frequency increases, then at x ¼ x* it decreases abruptly,

and the spread of transverse-polarized phonons stops in eight

FIG. 5. Frequency dependence of group velocities (a) of the phonon mean

free path over the oscillation period (b) and the classification of acoustic pho-

nons in ordered and disordered structures (c). On (a) we see the first octant of

the first Brillouin zone of the FCC crystal lattice, and designations of high-

symmetry directions. The values: s0 ¼ axm/4; l ¼ 2pjs(x)/xj; l0 ¼ a/
ffiffiffi
2
p

.
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directions [61, 61, 61]. We will note that the phonon dis-

persion law presented here, as a variable of the frequency of

the velocity of their propagation si(x), is more naturally gen-

eralized to disordered systems than the x(k) dependence, as

it contains no explicit dependence on the quasi-wave vector.

The frequency of the first van Hove singularity x*, is

the interface between the fast and slow phonons, or propa-

gons and diffusions, in an ideally ordered crystal. Using the

terms from Ref. 14, it can be examined as an analogue of the

Ioffe-Regel crossover in a regular crystal system. At x¼x*,

the average wavelength is greater than the interatomic dis-

tance. Let us examine the distance that a phonon with

the frequency x, covers during its vibrational period l(x)

¼ 2pjs(x)j/x. The frequency dependences l(x) are presented

in Fig. 5(b). Already at p ¼ 1%, the value l(x) is greater

than the average distance between impurity atoms, and at

such concentrations of the impurity, the scattering of acous-

tic phonons on the quasi-local vibrations will have Ioffe-

Regel properties, and express itself in the behavior of the

spectral densities, in a form similar to the shape of the first

van Hove singularity in an ideal crystal. We will also note

that at x**, or the frequency of the highest-frequency van

Hove singularity, which corresponds to the transfer from

open to closed isofrequency surfaces, the value l(x) for the

longest wavelengths of vibration, or longitudinal oscillations

propagating along the CL direction (isolated in the figure

with a thick line), becomes equal to the distance between the

closest neighbors, l0 ¼ a/
ffiffiffi
2
p

. As in, for x > x**, the pho-

nons can be examined as quasi-local states. This frequency

range has the name locon zone, and phonons with the fre-

quency greater than x** are referred to as locons (for exam-

ple, see Ref. 1).

In Fig. 5(c), we have the division of the frequency range

into the propagon, diffusion, and locon regions, for the ideal

FCC crystal, and a disordered solid solution of the type

A0.5B0.5, the phonon density of which is shown in Fig. 4(d)

(isotopic solution of atoms with mass ratio 1:4). As noted ear-

lier, for an ordered crystal, the propagon zone (GU) corre-

sponds to the frequency interval [0, x*]. In this interval, the

phonon density of states has a parabolic (quasi-Debye form),

which corresponds to the phonon propagation of all polariza-

tions, along all crystallographic directions. For a disordered

solid solution A0.5B0.5, the phonon density of states also has a

quasi-Debye parabolic form, but in the interval [0, xql]. As

in, the propagon zone becomes more narrow. This almost

free dispersion of phonons, at first glance, in a completely

disordered solution, can be explained by the fact that for the

lighter atoms of the solution at these frequencies, phonon dis-

persion is small. Practically, these are acoustic waves, which

can be freely dispersed in completely disordered environ-

ments. In addition, since in our model the “crystal core” is

totally preserved (all atoms are located at the nodes of the

FCC crystal lattice, and only the atom type is random),then

practically any solid solution can be presented as a certain

ordered solution (more complex, than the initial) as long as

there is a sufficiently small concentration of defects, such as

“atomic transitions from one sublattice to another.”

The frequency xql is the top limit of the propagon zone

of the solid solution (xpr–diff), which is very noticeable with

its increasing concentration. Let us examine the appearance

of boson peaks and the Ioffe-Regel crossover in the phonon

spectra of solid solutions. In Fig. 6 we see the evolution of

the �imp(x) value with an increasing concentration of impu-

rity; it is the contribution to the phonon density of states

from displacements of the impurity atoms, in comparison to

the values of p~qðs
5
�Þ(x) (curves 3 and 4 on the left panels of

the figure). We also see evolution of the ~�(x) – �imp(x)

value, or the contribution due to the displacement of atoms

in the main lattice, in comparison to the value (1 – p)�1n(x)

(curves 5 and 6 on the right panels) with increasing concen-

tration. In all panels: curves 1 are the phonon density of

states of the ideal main lattice; curves 2 are the phonon den-

sity of states of the solution.

The functions of �imp(x) differ from zero only in prox-

imity to the maximum on curve ~qðs
5
�Þ(x) (frequency xql).

Therefore, the QLV can be presented as waves that are

slowly diverging from the impurity, analogous to spheres.

Curves 5 and 6 for high concentrations of impurity, have a

typical ironed-out kink at x � xql, similar to the form of the

first van Hove singularity. For frequencies smaller than xql,

the frequency dependences ~�(x) – �imp(x) have a typical

parabolic shape, with little differentiation from the quadratic

(Debye) form. The Debye behavior of the solution’s phonon

density inputs from the atoms of the main lattice at x < xql,

is even more noticeable along the behavior of the frequency

functions [~�(x) – �imp(x)]/x2, which are shown on the mag-

nified insets in the left panels of the figure. This confirms the

earlier conclusion that at x�xql, the spread of atomic vibra-

tion of the main lattice is practically acoustic in character

(they propagate in waves that are almost planar). The frac-

tures along curves 2 and 5 correspond to the transition from

fast spreading phonons (propagons) to slower (diffusions),

due to the scattering on the QLV.

One could argue that even the ironed-out kinks at

x�xql on curves 2 and 5 in disordered solutions, and the

first van Hove singularity in the ordered structures, have a

common nature, such that they are both caused by an abrupt

change in the average group velocity of phonons, and are

manifestations of the Ioffe-Regel crossovers.

With further increase in the concentration of a solid so-

lution, there is formation of impurity clusters that are suffi-

ciently large, in which it is possible to identify different

crystallographic directions. The frequency of the first van

Hove singularity at p ¼ 100% is ~x
<xql, which corre-

sponds to the vanishing group velocity of the transverse

polarized phonons in the given clusters, along the crystallo-

graphic direction CL. The evolution of the low-frequency

parts contributing to the phonon density of states from the

impurity atoms, is shown in Fig. 7. The concentration p
changes from 50% to 100%.

We will note that with an increase in the concentration

of impurity atoms from p ¼ 0% to p ¼50%, the disorder of

the solution increases, which leads not only to a decrease in

the width of the propagon zone, but also to a decrease in the

“specific share” of the propagons in the phonon spectrum,

i.e., the value

ðxpr–diff

0

~�ðxÞdx �
ðxql

0

~�ðxÞdx:

With continued increase of the impurity concentration,

the solution can be examined as a solution with the
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FIG. 6. Evolution of the contributions to the phonon density of states of a solid solution, from vibrations of impurity atoms (on the left) and vibrations of atoms

of the main lattice (on the right), with an increasing impurity concentration.
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concentration 1 – p < 50%, with a light impurity in a heavy

matrix, the degree of disorder of which decreases against an

increase in p, which leads to an increase in the specific share

of the propagons in the phonon spectrum. At p ¼ 100%, the

lattice is completely ordered, and the specific share of the

propagons in its phonon spectrum is the same as it is in

the phonon spectrum of the initial crystal. It is obvious that

the performed expression is

ðx

0

�ðxÞdx ¼
ð~x

0

~�p¼100%ðxÞdx:

As such, the influence of heavy atoms, or impurity atoms

that are loosely coupled to the atoms of the main lattice, on

the phonon spectrum and the vibrational properties, is mani-

fested both in the formation of quasi-local vibrations, due to

the natural oscillations of the impurities themselves, and in

the scattering by these vibrations, of fast acoustic phonons

that are generated by atomic oscillations of the main lattice.

5. Manifestation of quasi-local vibrations and boson peaks,
in the behavior of low-temperature heat-capacity

Measurements of low-temperature heat capacity over a

course of many years, are one of the most important sources

of information about the behavior of low-frequency vibra-

tional spectra of solids, thanks to its high accuracy, and also

relative (in comparison to neutron diffraction studies of the

phonon spectra), cheapness, and simplicity. In particular,

due to various defects, the enrichment of the low-frequency

region of the phonon spectrum, is noticeably visible due to

the changes of the temperature dependence of the specific

heat, under the influence of these defects. A textbook exam-

ple of this influence is the formation of a sharp maximum

along the relative change of the low-temperature heat

capacity of a crystal, with the introduction of heavy impur-

ities, or impurities that are loosely coupled to the atoms of

the main lattice, when QVL are being formed in the phonon

spectrum.17,18,32 In these references, we consider the cases

of small concentrations of impurity, when changes to the

phonon spectrum by way of impurity, can be described in

the linear concentration approximation (14). For the heat

capacity of the crystal with an impurity concentration p, we

can write down

~CVðTÞ � CVðTÞ þ pDCVðTÞ; (24)

Here, as was the case in (14), symbols with the tilde are for

the perturbed system, and those without the tilde, are for the

ideal; DCV(T) is the change in the heat capacity of the crys-

tal, upon introduction of one impurity atom. The sharp maxi-

mum along the DCV(T)/CV(T) curve in this case, is almost

completely caused by the impurity vibrations.

This section is an analysis of the behavior of the low-

temperature heat capacity, at large concentrations of impur-

ities, when the linear concentration approximation is not

justifiable. As the concentration of the impurity atoms

increases, there is an increase in contribution to the changes

of the low-temperature heat capacity, by the impurity-

induced changes of the vibrational spectrum of the atoms of

the main lattice, i.e., due to the scattering of fast acoustic

phonons on the QLV, associated with the fluctuations

of these atoms. This leads to a significant deviation of the

low-temperature heat capacity from its Debye form.

Manifestations of the contribution to the scattering of propa-

gons on the QLV, is most clearly visible along the tempera-

ture dependence of the expression CV(T)/T3, and the

temperature dependence of the Debye temperature. This

dependence can be found from the transcendental equation

Cv Tð Þ ¼ CD Tð Þ � 3R D
HD

T

	 

�HD

T
D0

HD

T

	 
� �
; (25)

where

D xð Þ � 3

x3

ðx
0

z3dz

ez � 1

is the Debye function, and the heat capacity Cv(T) is deter-

mined experimentally, or through microscopic calculation

via (for example, see Refs. 25 and 26)

Cv Tð Þ ¼ 3R

ðxm

0

�hx
2kT

	 
2

sh�2 �hx
2kT

	 

� xð Þdx; (26)

which expresses the vibrational heat capacity through the

phonon density of states of the system �(x).

Fig. 8, for solid solutions of differing concentrations of

heavy isotopic substitution impurity in the FCC lattice, with

a central interaction of the closest-neighbor, shows the fol-

lowing temperature dependences between: the relative

change of the phonon heat capacity in the top panel; the rela-

tionship between heat capacity and the temperature cubed in

the middle panel, and the Debye temperature in the lowest

panel.

The relative change in the heat capacity (top panel) char-

acterizes only the enrichment of the low-frequency region of

the phonon spectrum, by the introduction of heavy impurity

atoms into the crystal, which is characterized by the forma-

tion of a low-temperature maximum along the given curve.

As can be seen in Fig. 6, the phonon density of states of a

solid solution, have maxima at the frequency x � xql. With

FIG. 7. The contribution of impurity atoms, to the low-frequency phonon

density of states of solid solutions, with a high concentration of impurity.
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an increasing concentration of impurity, the magnitude of

this maximum grows in proportion to the magnitude of the

concentration. Thus, there is a slow “pumping” of vibra-

tional states from the frequency interval x > xql into the fre-

quency interval x � xql. As a result of this, the maximum of

the relative change of heat capacity grows with the increase

in the impurity concentration, and its temperature decreases

slowly.

The maximum along the heat capacity/temperature

cubed curve (middle panel), forms due to the divergence of

the temperature dependence of heat capacity from its low-

temperature limit. The given value characterizes not only the

enrichment of the low-frequency region of the phonon spec-

trum, but, to some extent, the additional deviation of the

phonon spectrum from the acoustic, as well as the phonon

density of states from the quadratic Debye form, both caused

by this enrichment. Therefore, as can be seen in the middle

panel of Fig. 8, the temperature of the given maximum, with

an increase in the concentration, decreases much faster, than

the temperature maximum along the relative change of heat

capacity. In a number of references (for example, see Ref.

16) the maximum along the C(T)/T3 curve is directly identi-

fied with a boson peak.

More complete information about the deviation of the

phonon spectrum from the Debye form, is contained in the

temperature dependence of the Debye temperature, pre-

sented in the bottom panel of Fig. 8. Deviation of the phonon

dispersion law from the acoustic, is caused by the discrete-

ness of the crystal lattice (for example, see Ref. 33), and the

scattering of the acoustic phonons by the quasi-localized

states.14,15 This deviation leads to a significant dependence

of the value HD on the temperature, particularly in the low-

temperature region, and the formation of the HD(T) function

of the low-temperature minimum.33,34 The temperature of

this minimum, as shown in Ref. 34, is determined by the fre-

quency of the first van Hove singularity, in which the inhibi-

tion of a number of acoustic phonons occurs (see Fig. 5(a)).

The formation of a quasi-local maximum on the phonon den-

sity of states, which, as was shown in the previous section, is

analogous to the one examined in Refs. 14 and 15, deter-

mines the deepening of the minimum along the HD(T) curve,

and the lowering of its temperature. With the increasing of

concentration p, from 0% to 50%, the minimum deepens

even more (against the background of the general lowering

of the Debye temperature) and its temperature falls. At p
¼ 50% the solution is the most disordered. At a continued

increase in concentration, as noted in the previous section,

the disorder of the solution decreases, and clusters of heavy

atoms are formed, the size of which increases with the

growth of p. Therefore, at further decreases in the Debye

temperature, the minimum on its temperature dependence

flattens out, and its temperature increases slightly to a value

equal to the temperature minimum on the HD(T) curve of the

initial lattice, multiplied by the square root of the mass ratio

(in our case, this is 1/2). The curves for p ¼ 0% and 100%

are similar HD(T)p¼0 ¼ 2HD(2T)p¼1.

6. Conclusion

This is a study of the common nature of van Hove singu-

larities, Ioffe-Regel phonon crossovers, and boson peaks,*

as anomalies of the phonon spectrum, occurring because of

additional dispersions of group velocity fast-propagating

phonons (propagons) on slow quasi-particles. Propagon, dif-

fusion, and locon frequency intervals are defined for crystals

and disordered solid solutions, and it is found that in ordered

crystal structures, the role of the propagon-diffusion border

is played by the first (and lowest-frequency) van Hove singu-

larity. The formation of boson peaks during the scattering of

acoustic phonons on quasi-local vibrations, in a disordered

solid solution, is analyzed at a microscopic level. It is shown

that in the propagon zone of the vibrational spectrum of

disordered solid solutions, additional singularities, such as

FIG. 8. Evolution with an increasing concentration of heavy impurity: rela-

tive changes in the heat capacity (a); the ratio of heat capacity to the cube of

the temperature (b) and the temperature dependence of the Debye tempera-

ture (c).

*Reference 2 makes the assertion that there is experimental proof of the sim-

ilarity between the nature of BP occurrence in glasses, and van Hove singu-

larities in crystals.
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fractures analogous to the first van Hove singularity, form

along the phonon density of states, in ideal crystals.

The enrichment of the low-frequency region of the pho-

non spectrum is done not only by the formation of quasi-

local states, but also by the decreasing rate of propagation of

long-wavelength acoustic phonons, due to scattering by

these same states. In order for the results of this slow-down

to be clearly manifested in the form of maxima along ratio

of the phonon density of states to the square of the frequency

(boson peaks), or additional singularities such as Ioffe-Regel

crossovers in the propagon zone, it is necessary to fulfill sev-

eral conditions. First, the frequency of the scattering quasi-

local states must be sufficiently low, such that the “power of

the defect” would be large enough. Second, the size of the

defect cluster must be sufficiently large (no less than twice

the interatomic distance) for which a sufficiently high p �
15%–20% concentration of defects is required. The second

condition signals for the appearance of another parameter

within the system, the length l, which is the mean free path

of the phonon over the oscillation period, the value of which

must exceed the interatomic distance. In our case, l plays the

role of the disordering parameter. When the given condi-

tions are fulfilled, as noted in Refs. 14 and 15, the continuum

approximation becomes inapplicable even in describing the

long-wavelength phonons.

We analyzed the influence of the formation of quasi-

local vibrational states and their scattering of fast acoustic

phonons, on the low-temperature heat capacity. We demon-

strate a connection between the position of the propagon-

diffusion border of the temperature, and the value of the

maxima on the temperature curves of the relative change of

heat capacity, and the relationship of the heat capacity to the

temperature cubed, as well as to the increase in the tempera-

ture dependence of the Debye temperature.

We will note, that the quasi-local vibrations, on which

the scattering of the fast acoustic phonons takes place, can

be anharmonic (for example, see Ref. 16). However, as can

be seen from the results of this study, which were obtained

in a strictly harmonic approximation, the anharmonicity of

the vibrations is not the cause of the boson peaks, or the

deviation of the vibrational characteristics from the Debye

form, or the appearance of the HD temperature dependence.

The authors are grateful to K. A. Chishko for the fruitful

discussion.
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