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MEASUREMENT AND PREDICTION OF FREEZING RATES.

PETER BARNES DOCTORATE OF PHILOSPHY 1977.

SUMMARY .

This research has developed an experimental method
to measure frozen phase thickness of liquids, based on
the density differences between the frozen and unfrozen
phases and compared experimental freezing rates with
rates predicted bK theoretical methods, including
those of Planck, Neumann and Goodman.

Freezing rate experiments produced ice thicknesses
from 6 mm to 30 mm of distilled water, grapefruit juice
and 5 and 10 per cent sodium chloride solutions with
initial temperatures between 3.5 and 25 C, coolant
temperatures between -4 and -16 C and with heat
transfer coefficient wvalues of 2000, 1700, 900 and 56.8
W/meC. Accurate values of the heat transfer
coefficient were determined by initial experimental work.

A literature survey, although revealing many
theoretical methods for predicting freezing times of
liquids, alloys and watery foodstuffs, found that only
in a few cases had comparison between theoretical and
experimental resulte been made 2nd in these cases
agreement was generally poor. The theoretical methods
used restrictive assumptions to simplify the moving
boundary and heat conduwetion equations and showed wide
variations (e.g. 100%) in predicted freezing times
which precluded the choice of any as obyviously eccurate.

A finite difference method of Vasil'ev and Uspenskii
wes modified to predict to within 8% the freezing times
of distilled water.

The freezing rates of electrolyte solutions, under
conditions of low freezing rates (0.0012 mm/s), were
found to be less than those of distilled water due to
the formation of a layer of high solute concentration
adjacent to the interface which lowered the solution
freezing point. Incorporation of this effect into the
Vasil'ev and Uspenskii method predicted electrolyte
solution freezing rates to within 15%.

Conduction, phase change, freezing, preservation.






Chapter. Title. Page.
1 Introduction. 1
2 Literature Survey. 12
2= Introduction. 12
2-2 Methods Based on Neglecting

the Heat Transfer Coefficient-
Neumanns Solution and its
modifications. 15
2-% Theoretical Methods with
Initial Temperature Equal
to Freezing Point. 16
2-4 Methods Predicting Time for 21
Freezing stage only.
2-5 Methods that Predict Time 28
for the Complete Freezing
Process with a Constant
Freezing Point.
2-6 Methods that Predict Time 30
for the Complete Freezing
Process with a Variable
Freezing Point.
2-7 Experimental techniques for 33
measuring solidified layers.
3 Experimental Work. G if
3-1 Experimental Apparatus. 37
3-1.1 Heat Transfer Apparatus. 40
3-2 Determination of a Heat 4

Transfer Coefficient.

A i 14— e i e bbb Lo e e B B




Chapter. Title.

3-3% Experimental Procedure
for Freezing Liquids.,

A=l Experimental Results.

4 Analytical and Numerical
Solutions of Freezing
Methods Studied in Detail,

41 Plancks Methods.

4-1.1 Plancks Original Method.

4-1.2 Plancks Modified Method.

4-1.% Nagaoka and Rutov Extensions
to Plancks Method.

4-2 Goodmans Integral Method.

4-7 Neumanns Solution.

-l Vasil'ev and Uspenskii Finite
Difference Method.

5 Discussion of Results for
Distilled Water.

5-1 Comparison of Theory and
Experiment.

5-2 Effect of Heat Transfer
Coefficient.

5=3 Effect of Initial Temperature.

S-4 Effect of Coolant Temperature.

5-5 Temperature Profiles.

5-5.1 Temperature Profiles within
the Body being Frozen.

5-5.2 Effect of Subcooling.

5=54 5 Division of Overall Freezing

Operation into Stages.

Page.

RS

45

817

47
47
49
51

52

55

57

59

68

72

77

77

82
83

el o b LALLM LT



Chapter

Title.

5-6 Conclusions.

6 Discussion of Results for
Aqueous Solutions.

61 Introduction.

6-2 Comparison of Experimental and
Theoretical Freezing Results
for Aqueous Solutions.

6-2.1 Freezing of Grapefruit Juice.

6-2.2 Freezing of 5% and 10%

Sodium Chloride Solutions, and
Soy Bean Curd.

6-3 Experimental Determination
of Solute Rejected from
Frozen Phase on Freezing.

6-4 Theory of Freezing of Electrolyte
Solutions.

6-4.,1 Introduction.

H=l,2 Work on Semi-Infinite Systems
(Terwilliger and Dizio).

6-4,3% Work on Finite Systems (Grange
et al).

6-4 .4 Incorporation of the Work of
Grange, Viskanta and
Stevenson into the computer
program of Vasil'ev and
Uspenskii.

6-4.5 Incorporation of the work of
Terwilliger and Dizio into
the computer Program of Vasil'ev
and Uspenskii.

6-4.6 Vasil'ev and Uspenskii Computer’
Program for Freezing of
Electrolyte Solutions.

6-5 Results.

6-6 Effect of heat gain on

freezing rates.

90

90
92

92
96

103

105

105
107

116

122

124

125

127
130



|

hapter.

Title,

7 Attempt to Represent
Experimental and Vasil'ev
and Uspenskii Freezing
Hate Data as Simple
Correlation.

8 Conclusions and Recommend-
ations for Fubture Work.

8-1 Conclusions.

8-2 Recommendations for Futune
Work.

Appendix. Title.,

A1 Results of Freezing Rate
Experiments Carried Out on
Experimental Apparatus.

A1 Distilled Water Results.

A1-=2 Grapefruit Juice Results.,

A1-3% Five Per Cent Sodium
Chloride Results,

A1-4 Ten Per Cent Sodium
Chloride Results.

A2 Freezing Times of Soy Bean
Curd,

A% Determination of the Heat

Transfer Coefficient
Between Coolant and
Freezing Vessel,

Page.,

133

142
142

147

150

150
162

164

170

173

175




Appendix.

A3-1

A3-2

A3-2,1
A3-2,2
A3-2.3
A3=2 .4

A%5=5
A3-3%.1
A3-3.2

A3-3.3

A3-3.4

ao=205

A3-4
A3-4,1
A3-4,2

A3-4.,%

AB-4 4

Title.

Introduction.

Experiments.

Experimental Apparatus.
Experimental Procedure.
Experimental Variables.

Experimental Results.

Theory.

Mathematical Model.
Solutions to mathematical
model using finite
difference technique.

Explicit finite difference
approximation.

Inmplicit finite difference
approximation.

Theoretical results.

Discussion of results.

Offset values.

Optimisation of heat transfer

coefficients.
Heat gain coefficients.

Accuracy of optimised heat
transfer coefficients.

Page.

Y S

176

177
177
179
179
180

180

180

186

189

191
198

201
201

204
223

224

v e A Al




Appendix,

Title.,

A4 Details of Mathematics and
Computation of Freezing
Rate PFormulas Outlined in
Chapter 4.

A4 Planck's Methods.

A4-1.1 Planck's Original Method.

A4-1.,2 Modified Planck Method.

A4-1,73% Modifications to Planck's
Methods by Nagaoka and
Rutov.

A4=1.4 Computation of Methods
Based on the work of
Planck,

A{-2 Goodman's Integral Method.

A4-2.1 Computation of Goodman's
Method.

AL4-3% Neumann's Solution.

A4-%.,1 Computation of Neumann's
Solution.

A4-4 Vasil'ev and Uspenskii
Finite Difference Method.

Ad4-4 .1 Introduction to the Method.

Ab4-4 .2 Computation of Vasil'ev and
Uspenskii Method.

AS Thermal Properties

A5-1 Physical Properties of Solutions
used for Freezing Experiments.

A5-2 Variation of Thermal Properties
with temperature.

A5-3% Physical Properties of

Foodstuffs.

Page.,

228
2%0
230
234

237

238

259

252
253

260

265
265

&7

298

298

299

301




Appendix.

Title.

A6 Mathematical Statement of
1-Dimensional Freezing
Problem.

A7 Freezing Preservation of
Foods.

A= Introduction.

A2 Freezing of Foodstuffs.

A7-% Storage of Foodstuffs.

A7-4 Thawing of Frozen Foodstuffs.

A8 Tabular Representation of
Comparison of Theoretical
and Exggrimental Freezing
Times for All Liquids.

A9 Dilatometer Calibration and
operation of the Apparatus
for Accurate Measurement
of Ice Thickness.

A9-1 Dilatometer Calibration.

A9-2 Operation of the Apparatus
for Accurate Measurement
of Ice Thickness.

AG-2.1 Temperature Control.

AQ-2.,2 Precautions to Ensure Good
Contact between Heat
Transfer Discs and Freezing
Vessel.

A9-2.,3% Experimental Confirmation
of Uniform Heat Flow through
the Heat Transfer Discs.

A10

Data for Producing Experimental

Page.

706

310
310
311
314
315

319

el
327

333
333

534

335

and Vasil'ev and Uspenskii Results

into Simple Correlation,

References.

327

341



LIST OF FIGURES.

Figures in main text.

Typical time-temperature curves for:
(a) Water (b) Aqueous solutions.

1 - Dimensional freezing.

Idealised systems of ice formation
(London & Seban).

Constant spaced finite difference
temperature profiles (Vasil'ev &

Uspenskii).

Variable spaced firite difference
temperature profiles (Murray and
Landis).

Cocling-freezing-tempering phases
(Bakal).

Plan layout of equipment.
Freezing apparatus in position.
Measurement of ice thickness.

Assumed temperature profile of Plancks
method.

Assumed temperature profile of the
modified Planck method.

Assumed temperature profile of
Goodmans integral method.

Assumed temperature profiles of Vasil'
ev & Uspenskii finite difference
method.,

19

25

27

32

39

4
46

48

50

53

56




Figures in main text.(Continued)

5-1

6-3

Temperature Profiles assumed by the
medified Planck method and calculated
by the Vasil'ev & Uspenskii method.

Qualitative comparison of experimental
and theoretical freezing rates.

Superccoling effect.

Effect of rate of solidification on
solute redistribution (Terwilliger
and Dizio).

Temperature and concentration profiles
used by Grange.

Figures in Appendices.

A3-1

A%-2

Al

A4 -2

Apparatus for heat transfer coefficient.
determination.

Diagram for determination of heat
transfer coefficient.

Assumed temperature profile of Plancks
method.

Assumed temperature profile of the
modified Planck method.

Assumed temperature profile of Goodmans
integral method.

Assumed temperature profiles of Vasil'ev
& Uspenskii finite difference method.

Diagram for Vasil'ev & Uspenskii
me thod.

80

108

ey

118

Page.

178

187

232

235

245

271

275

BT TR S




ices (Continued)

A7-1 Comparison between slow and quick
freezing. 312




NOMENCLATURE.

Symbols used in main text.

Symbol

TA
TI
Te
Tm
Ts
Ta

HG

Term

ambient temperature

initial temperature

coolant temperature
freezing point temperature.
surface temperature
temperature at axis of
symmetry. :

heat transfer coefficient.

heat gain coefficient
ice thickness

time
time step length
distance step length

thermal capacity of frozen
phase.

thermal capacity of unfrozen
phase.

thermal conductivity of
frozen phase.

thermal conductivity of
unfrozen phase.

thermal diffusivity of
frozen phase.

Units.

£} 8 4 K3

W/mzc

W/mgc

J/kegC
J/kgC

W/mC
W/mC

me/s

BTN B L Rl TR RIS o



Symbol.

Term.

thermal diffusivity of
unfrozen phase.

Symbols used in specific sections.

Chapter 7.

Appendix 3.

TD

B

Cp
Appendix

v

W

Units.

/s

frozen density. kg/m3

unfrozen density. kg/m3

thermal diffusivity of m2 s

NaCl.

latent heat. J/kg
Units.

Bulk liquid solute kmol/m’

concentration.

Liquid solute interface v

concentration.

Frozen phase solute i

concentration.

Liquid phase solute 8

concentration.

Steady state heat transfer C

disc temperature.

Final offset temperature C

of aluminium bar.

Specific heat of aluminium.

4-4 (Vasil'ev and Uspenskii method).

Temperature in unfrozen phase.

Temperature in frozen phase.




CHAPTER 1

INTRODUCTION

The aim of the research described in this
thesis was to establish a practical working formula
to predict accurately the position of the freezing
interface in a pure liquid or electrolyte solution
undergoing solidification. This involved solution
of the transient heat transfer equations describing
freezing, and comparison with experiments. The analysis
required prediction of the temperature profiles in the
frozen and liquid phases, and, in the case of freezing
electrolytes, knowledge of concentration profiles set

up ty the advancing interface.

Practical cases involving heat transfer with a
phase change include the casting of metals, freezing
and thawing of soil, preservation of blood and freezing
of aqueous solutions and foodstuffs which this research

concentrates on.

Accurate knowledge about the freezing of food-
stuffs is important to the food industry because the
quality of the frozen product is effected by the rate
of freezing (it is gererally agreed that the faster
the rate of freezing the better the quality ( 86-88 )
and, freezing installations of optimum sizes can only

be built with accurate knowledge of freezing rates. (44)



The overall freezing operation which involves
reducing the initial temperature of the material to
its frozen storage temperature can be split into four

stages:- (see figure 1-1)

i) Precooling,

(2) Subcooling (sometimes referred to as
supercooling in literature ( 70 ).

(3) Freezing.

(4) Tempering.

During the precooling period the temperature of
the material is reduced until its surface temperature
is at its freezing point. The rate of heat transfer
depends on the heat transfer coefficient, area
exposed, temperature difference and time.

The precooling stage, like the subcooling stage,
usually occupies only a small.part (1-2%) of the
overall freezing time. Subcooling of the liquid
phase telow its freezing point occurs to some degree
in all materials and is related to, among other
factors, the rate of crystallisation, The effect

of subcooling is usually neglected in analysis of
freezing problems. (86). Studies of subcooling and

nucleation are given in refererces (73, 74, 100-103).
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Figure 1-1
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Due to the high value of the latent heat of
fusion of water compared to the specific heats of
water and ice the freezing stage occupies the vast
majority of the process time in the overall freezing

operation.

The freezing stage is represented by a plateau
on the freezing curve. It is during this stage that
the frozen-unfrozen interface traverses the body
being frozen and the latent heat of fusion released
at the interface is conducted to the coolant across
an increasing thickness of frozen product. (86).
The rate at which the latent heat can be conducted
across the frozen phase is usually the rate controlling

step in commercial food freezing systems. (88).

The tempering stage reduces the body to the
storage temperature. For foodmaterials the storage
temperature is generally -18 C to -20 C. (89).
(Details of problems encountered with the freezing

preservation of foods are given in appendix 7).

In gerneral a pure liquid freezes at a constant
temperature whilst aqueous solutions and liquid
mixtures freeze over a range of temperatures (see
figure 1-1) givirg solid and liquid phases of
different compositions. With most foods 90% of the

water is frozen by -5 C. (90).



Freezing occurs at different rates at different
positions in a body ( 4). The point cooling most
slowly is referred to as the 'thermal centre' of the
body. The thermsl centre is used by food technologists
to define freezing time es the time for the thermal
centre to fall threough the zone of maximum crystal
formstion (O to -5 C) (88). If this time is less
than two hours, then the term 'commercially quick

frozen' is used

The requirements of a practicelly useful
predictive freezirg method for estimating freezing

times are that ilhe method should :

1. Be quick and practical.

2. Include the effect of the heat transfer
coefficient between the coolant and material
being frozen.

5. Pe able to handle freezing from well above
the freezing point.

4, Be suprorted by experimental results.

5. PBe applicable to materials that exhibit
a freezing point range.

6. Predict the time for the total freezing
operation (i.e. time from initisl temperature
to storage temperature).

7. Apply to irregular-shaped meterials.,



Predictive methods for estimating freezing times
have been studied by many workers ( 1 - 80 )
generally the methods assume the followirg

conditions:

1. Initial uniform temperature of material
being frozen.

2. Constant coolant temperature. .

5. Meaterial has constant thermal conductivity
and specific heat (different for the two
phases).

4., A density which does not vary with
temperature or alter during the freezing
process.

5. A definite freezing point at which latent
heat is liberated.

6. Heat transfer is in one direction only.

7. Heat transfer within the watery solid
is by conduction with a convective
boundary condition. (Convective heat
transfer in the bo%y is neglected).

With the above assumptions we obtain the following
governing equations for a freezing model in which the
subscripts 1 and 2 refer to the frozen and unfrozen

phases respectively.



(The model is diagramatically shown in figure

1-2 and derived in appendix 6).

Conduction equations:-

Phase 1

Phase 2

Boundary conditioms:
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Figure 1 = 2 1 - Dimensional freezing.
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Initial conditions are:

Z(t) = o &t % {1=7)

n
o

Ty = £(x) at t (1-8)

1}
(&)

The set of equations (1-1) td (1-8) has no
general solution, and thus, there is no single
analytical formula that can be used to calculate
freezing rates in all cases. Practical freezing
problems may be more complicated than equations
(1-1) to (1-8) due to the simplifying assumptions

given on page 6,

Since there is no exact analytical solution
to the simplest freezing problems, we are forced
to consider approximate solutions. The approximations
can be split into analytical solutions  in which
temperature profiles in one or both phases are
assumed, and numerical methods which usually require

solution by digital computer.

Chemical Engineering (90,91 and Foodscience
textbooks (92-99only evaluate the simpler analytical
formulas and generally do not compare predicted

freezing times with experimental results.



This research fills this gap in knowledge by:

(1) Evaluation of experimental freezing
rate experiments concentrating on
conditions to promote quick freezing
since these conditions are desirable
in the food industry. The experimental
side of the research is described in

Chapter 3.

(2) Evaluation and comparison of theoretical
formulas from the literature.
A literature review of a wide range of
approximate solutions to the heat
transfer problem with a phase change is
given in chapter 2. Theoretical freezing
methods studied in detail are discussed

in chapter 4 and appendix 4,

(3) Comparison of theoretical and experimental
freezing times of distilled water. This
work is given in chapter 5 along with the
determination of the most accurate

predictive theoretical formula.

10



(4)

(6)

Study of the freezing of electrolyte
solutions. This work is discussed,
both theoretically and experimentally

in chapter 6.

Comparison of theoretical results with
other worker's experimental work
(comparison and discussion given in

chapter 6 and appendix 2),

Development of the most accurate freezing
formula into a simplified formula by the -
use of dimensionless groups (this work is

discussed in chapter 7).

1
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CHAPTER 2.

LITERATURE SURVEY.

2-1 INTRODUCTION,

The aim of the literature survey is to review and
‘classify published theoretical and experimental studies

in the field of heat transfer with a phase change.

Several genersl surveys of methods predicting rates
of freezing and melting exist, including Muehlbauer and
Sunderland (1), Bankoff (2) and Kinder and Lamb (3) on
methods specifically developed for the freezing of foods.
There was however little evidence of any critical review
of a range of theoretical methods predicting freezing

times with corroborative comparison of experimental results.

Temperature distributions during freezing and

thawing processes have been studied by Ede (4) and Malton (5).

Initial study generally revealed a lack of recorded
experimental work, although workers including London and
Seban (25), Charm (6), Komari and Hirae (32), Earle (7)
and Bakal (8) did compare their theoretically predicted
freezing times with results from their own experiments.

Experimental results when published often gave
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insufficient physical properties or system data for

comparison with theory.

This survey classifies the theoretical freezing
rate methods according to whether they include or
exclude the criteria given for a useful predictive
method on page 5 of the introduction. Five classes of
methods were used. (1) Methods based on neglecting the heat
transfer coefficient (section 2-2). (2) Methods based on
neglecting the initial materizl temperature (section 2-3).
(3) Methods calculating time for the freezing stage 6nly
(section 2-4). (4) Methods calculating complete freezing
time with constant freezing point (section 2-5) and (5)
Methods calculating complete freezing time with variable

freezing point (section 2-6).

This classification is shown in table 2-1 which also
indicates whether the method produces an expression from
which freezing times may be obtained readily (i.e.'by

hand calculator).

The requirement that the theoretical method should
account for freezing times of irregularly shaped objects

is mentioned in recommendations for further work (Chapter 8).

Section 2-7 at the end of the literature survey
briefly discusses the various experimental techniques used
to measure solidified layers, by other workers, in the

field of heat transfer with a phase change.



Table 2-1.

14,

Classification of the most important freezing

rate methods.

Criteria in table shows if the methods allow for :

(1) A finite heat transfer coefficient.

(2) Calculation of freezing stage time with TI=Tm only.

(3) Calculation of freezing stage time with TI2Tm.

(4) Calculation of total freezing time (precooling stage
+ freezing stage + tempering stage) with constant

Tm, with TI> Tm.

(5) Calculation of total freezing time, with variable

Tm, with TI> Tm.

(6) Simple evaluation e.g. by hand calculator.

Method Criteria of method Section
Classified
ANALYTICAL in
1 2 4 5

Neumann Y 2-2
Planck ¥  § 2-%
Modified
Planck. Y N 2=4
Rutov, &
Nagaoka. Y b § ¥; 2-4
London and
Seban 1. | b o] 2-%
London and ]
Seban 2. B pid 2-4
Goodman Y il 2=3
Bakal Y N L '  § 2-6
FINITE
DIFFERENCE.
Vasil'ev &
Uspenskii. ¥ b4 2-4
Murray & Landigq Y i s 2—4
Earle & Earle Y Y Y 2=5
Charm Y i X 2-5

Y indicates Yes.

Blank spaces indicates No.

- i e "
e ke e M e il Ay




15.

2-2 METHODS BASED ON NEGLECTING THE HEAT TRANSFER
COEFFICIENT.

The first important solution to the freezing
problem was presented by Neumann in lectures in the
1860's, however publication (9) of the lectures was
not until 1912. Neumann's solution was applied to a
semiinfinite slab with the face at x = O maintained at
a constant temperature. With this latter condition of
an infinite heat transfer coefficient between the
coolant and the surface of the body, the heat flux
boundary condition, equation (1-5) of the mathematical

model is reduced from :

H(Te-T8) = -K,, 'B'I‘,.f

ox p's

I
o

(1-5)

to Te

1

Ts.

The Neumann solution together with the Planck method,
first published in 1913, and discussed in section 2-3,
have become the two best known and most widely used
freezing rate methods. However both, as will be shown,

have serious limitations to their practical applications.

The practical applications of Neumann's solution are

severely limited since generally commercial freezing

i A S U A A A sy . TR
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systems achieve only a relatively low heat transfer
coefficient; the result of this is that the Neumann
method underestimates freezing times. However, for
systems involving very rapid freezing of thin ice

layers (e.g. the case hardening of foodstuffs for
packaging before complete freezing using liquid nitrogen)

the Neumann solution may be applicable.

Further work with infinite heat transfer coefficients
has been undertaken by Luikov (11) for both infinite
cylinders and slabs, while Carslaw and Jaeger (10) gives

an extensive review of Neumann solutions.

2-% THECRETICAL METHODS WITH INITIAL TEMPERATURE EQUAL.
TO THE FREEZING POINT (i.e. TI+Tm)

This group of theoretical methods by assuming that
the initial material is equal to the freezing temperature
excludes the precooling time and the effect of the
thermal capacity of water on the freezing time. The
boundary condition at the frozen-unfrozen interface (1-3%)

is reduced to

- Lpii( -K, [ o1,
it Ox X
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due to no heat flow from the unfrozen phase. Methods
of this type are sometimes referred to as 'Stefan’

methods after one of the earliest workers in the field

12) .,

The effect of omitting the precooling time results
is an under-estimation of the overall freezing time by
the amount of the precooling time (with water based
materials however the precooling stage is very small
compared to the actual freezing stage). Neglecting the
thermal capacity of water leads to serious under-
estimation of tﬁe freezing time when the initial
temperature is well above the freezing point. (i.e. when
the effect of neglecting the thermal capacity is
greatest).

The inclusion, in Neumanns solution, of a convective
boundary condition at the surface of the body together
with the assumption that the rate of freezing is slow
in comparison to the rate at which the temper=2ture can
equilibriate in the frozen material, (so that a linear
temperature profile exists in the ice) produces the

solution independently obtained in 191% by Planck (13).

Goodman (14 and 15) studying the melting of a semi
infinite solid assumed constant uniform temperature

beyond the ice interface. The assumption is analogous
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to the constant velocity or temperature assumptions
outside the boundary layer of boundary layer analysis.
Goodman then used the integral method of boundary
layer analysis to reduce the partial differential heat
equation to an ordinary differential equation as done

in boundary layer analysis by Pohlhausen (16).

The resulting integral quantity, which is proportional
to the total sensible heat of the region, was referred

to as the heat balance integral.

The main disadvantage of the method was the
complicated algebra involved which was increased further
in complexity by Goodman and Shea in considering melting
of slabs initially below the melting temperature (17).
Further applications of integral methods are given

(18-24).

The methods of Goodman, Planck and Neumann are
evaluated (chapter 4, and appendix 4) in detail and
compared with experimental results from freezing

distilled water in chapter 5.

London and Seban (25)used two idealised systems
(see figure 2-1) in which (1) the thermal capacity was
neglected and (2) the capacitance C = C,X, dependent on
the ice thickness, was assumed to be lumped at the centre

of the ice layer,
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Te
|
L H= conductance
(o) Erea v
a) s BOH ool P ai s 4 X
T TR o8 ) T
: Liquid ‘ T2 = Tm = O (Freezing point

datum)

- Lumped capacity Cq

al

Temp. distribution for first system

Figure 2-1 Idealised systems of Ice formation

(London & Seban)
(a) Temperature conditions during ice formation

(b) First idealised system

(c) DSecond idealised system
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Comparison of solutions for the two idealised
systems with (Tm-Tc) up to %20 C gave differences in
freezing times between the two systems of 5 per cent

or less for all ice thkickness.

Krieth and Romie (26), using an electrical
analogue, confirmed the work of London and Seban for
systems where L/C, (Tm-Tc) 7>1. Cochran (27) and
Robertson and Schenck (28) modified the London and
Seban equation for cases when L/C1 (Tm-Tec) approached 1
when they stated that the London and Seban method
overestimated the thickness of the solidified layer
by up to 135 per cent. Robertson and Schenck introduced
a theoretical corrective solidified layer calculated
for a computer program which utilized the 'fictive
specific heat' (i.e. variable specific heat) method

of handling solidification at constant temperature (29).

Cowell (30) produced formulae based on Neumann's
solution, but assuming that TI was equal to Tm, for
infinite heat transfer coefficients and Planck's method
for finite heat transfer coefficients for predicting
freezing stage times (tg) and analytical formula
(Carslaw and Jaeger) for predicting tempering times,

(tt).
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Cowell incorporated the predicted times into the following

expression:

Ttotal = A(ty + t¢)

where A is a factor for the precooling time.
Since no details of the method of evaluation or
numerical value of A were given and since both the
Planck and Neumann methods employ restrictive

assumptions the method was not studied further.

2-4 METHODS PREDICTING TIME FOR FREEZING STAGE ONLY \

These methods calculate the time for the frozen-
unfrozen interface to traverse the body being frozen,
they take no account of precooling or tempering stage
times but include the effect of the thermal capacity
of water. For freezing of aqueous solutions in which
the freezing stage is much larger than the precooling
and tempering stages the exclusion of the precooling

and tempering stages is probably justified.

Extersion of Neumann's solution (10) has centered
on incorporating a convective heat transfer boundary
condition at x = O which produces a time-dependent
surface temperature. Charm and Slavin (31) and Komori
and Hirai (32) have both produced methods with this
extension but their methods have had no corroborative

experimental comparison.
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Planck (33) modified his original formula to
include the sensible heat of both phases in the total
heat that must be transferred to the coolant whilst
retaining the lineer temperature profiles. Extensions
of this work to include the effect of precooling based
on experimental results has teen undertaken by Rutov
(34), Nagaoka (35) and others (30, 36-39). The modified
method of Planck together with the extensions due to

Rutov and Nagaoka are developed in chapter 4,

London and Seban (40) gave experimental confirmation
of their lumped parameter method for infinite cvlinders.
(see figure 2-1(c) - the capacity is lumped at the centre
of the ice layer). Good agreement (differences of
10 per cent or less) between theory and experimental
results was obtained with water buat, with foods less
accuracy (20 per cent error) was achieved. The reasons
given for the reduced accuracy in predicting the freezing
rates of foods were inaccuracies in thermel properties

and changes in the free¢zing point as the interface moved.

Other approximate analytical methods and papers
considering the change of phase heat conduction problem

are given (41-48 & 76-80),
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An alternative to analytical methods for approximating
the heat cenduction problem with a phase change is the

use of finite difference techniques.

The finite difference method divides the body being
frozen into discrete intervals (of equal or varisable
length). The capacity of each section is lumped at
its centre or nodal point, and considered to be uniform

over the section at eesch instant of time.

The main advantage of finite difference procedures
is that they are able to overcome some of the restrictive
assumptions used in the analytical methods, for example,
the need to assume & given form of temperature profile

and the need for a constant initial material temperature.

The main problem of the finite difference procedures
is to represent the method in a convergent form.
The disadvantage of requiring small nodal spacing
and time intervals in order to attain sufficient accuracy,
which leads to many calculations being necessary for each
time step length, is largely overccme by the speed of
operation of computers. An added disadvantage of most
of the finite difference methods is that they have not

been developed into convenient usable forms,
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Essentially the finite difference method
calculates the time for the frozen-unfrozen interface
to advance from a given node to the next, (i.e. from
node 3 to node 4 in figures 2-2 and 2-3). Methods may
use either constant inter-node step lengths or variable

step lengths.

Vasil'ev and Uspenskii (49) developed an implicit
finite difference scheme using constant step lengths.
This method, although sometimes found to predict
negative freezing times for the interface to traverse
one nodal point, was thought to be the simplest and most
adaptable of the finite difference methods and was there-
fore studied further and modified, (see chapters 4,5 and 7

and appendix 4).

Other workers using finite difference methods
with constant step lengths include, Ehrlich (50) who
used the Crank-Nicolson (51) finite difference procedure
witﬂ a three point approximation of the space derivative
on either side of the moving boundary. Dusinberre (52)
used an 'enthalpy-flow temperature' method due originally
to Eyres (53). This method took into account the
latent heat effect to give an additional specific heat
at the fusion temperature. Price and Slack (54)
determined the effect of latent heat on the stability
and accuracy of the solution of transient heat conduction

problems with a moving boundary.
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Murray and Landis (55) used variable step lengths
in both phases to imobilise the moving interface with
respect to the difference scheme (i.e. the position of
the interface is always known). This procedure was
first used by Landau (47) for melting finite slabs
where the liquid formed was immediately removed.

The method of Murray and Landis is represented on

figure 2-3%,

One disasdvantage of the method was that two phases
must always be present. This led to initial errors in
estimating freezing times and the inability to account
for tempering time to reduce the frozen body to its
storage temperature. However, independent analytical
formula, for example from Carclaw and Jaeger (10)
or Rutov (56), could be incorporated into the method

to calculate the tempering and/or precooling time.

As can be seen from figure 2-3 the method initislly
involved very small solid step lengths and correspondingly
large liquid step length. The reverse applied near .
the end of the freezing. Lotkin (57,58) devised a
numerical integration scheme with unequal subdivisions
in both the space and time variables and found gresaster
accuracy with smaller step lengths in both phases near the

interface,
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Further references to finite difference methods

are given (59-64),

2-5. METHODS THAT PREDICT TIME FOR THE COMPLETE

FREEZING PROCESS WITH A CONSTANT FREEZING POINT

Methods in this category predict the time to cool
a body from its initial temperature to its storage
temperature and so estimate the precooling time,
freezing time and the tempering time. The methods
are more complicated than other methods previously
described since they contain formulas to calculate
time for the three stages in the overall freezing

process.

Charm (6) divided finite elabs and cylinders into
sections and calculated the time for the interface to
travel across each section in turn, and formulae to

estimate precoolirg and tempering times.

The results predicted by the Charm method were
compared with experimental fish freezing results and
showed an underestimation (up to 30%) of experimental
freezing times throughout the process. Charm stated
that the discrepancies were due to uncertainties in

the thermal properties of fish.
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A similar method was evaluated by Earle and Earle
(7) for spherical and three-dimensional plane bourndaries
incorporating variable specific heat and thermal
conductivity. The method as presented was complicated
and there seems little point in accounting for the
variation in thermal properties when other workers
(London ané Seban (40) and Charm (6)) conclude that
discrepancies between theoretical =nd experimental
freezirg times were due to lack of knowledge of the

true values of thermal properties.

Lockwood (65) working on fire proofed enclosures
described a numerical method in which the physical
property variation with temperature was again accounted
for. The procedure involved the use of the explicit
finite difference technique, in conjunction with two
integral transformations, based on the methods by
Eyres (53) for variations in physical properties and
Price and Slack (54) for phase change. The method
suffered from the numerical instability associated

with explicit finite difference procedures.

Methods described in section 2-4 could be used
to predict overall freezing times if independent
analytical or finite-difference schemes are incorporated
to estimate precooling and tempering times, into the

method.
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The finite-difference methods seem to offer the
best opportunity to predict accurately freezing rates
in comparison to the analytical methods which contain

rather restrictive assumptions.

2-6. METHODS THAT PREDICT TIME FOR THE COMPLETE FREEZING

PROCESS WITH A VARTABLE FREEZING POINT

The methods surveyed here differ from the methods
in the previous section only by accounting for a
variable freezing point. The methods in this section
lerd themselves to estimating the freezing times of
agueous solutions, in which rejection of the solute
from the frozen phase increases its concentration in

the 1liquid and hence changes the freezing point.

Tein and Geiger (24) working on the melting of
alloys replaced the frozen-unfrozen interface by a
'freezing zone' or a 'mixed zone' separating the solid
phase from the liquid phase. They introduced two
freezing points, an initial freezing point (Tm,, at which
temperature solidification starts) and a final freezing
point (ng, at which temperature the latent heat becomes
insignificant compared to the specific heat), between

these freezing points the 'mixed' phase exists.
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Initial work on systems when the initial
temperature was equal to qu and having an infinite heat
transfer coefficient assumed that there was instantaneous
formation of the three phases, solid, mixed and liquid.
Using Goodman's heat balance integral method
temperature distributions in the three phases were
obtained. The work was extended by Tein and Koump (66)
to include a finite heat transfer cocefficient.

Further studies on alloy solidification exist (67-69).

Extension of the above work by Bakal and Hayawaka
(8) for foodstuffs with initial temperature above Tm2
produced the series of conditions shown in figure 2-4
that could exist during freezing operations.
The significance of their analysis was that under
rapid freezing conditions two interfaces and three
phases could exist at one time (figure 2-4 (f)).
Comparison of this work with experimental results showed
poor relationships for the freezing phase, but more
accurate predictions for the other phases. The reason
for poor accuracy during the freezing stage was
probably the lack of knowledge of the thermal properties
in the mixed phase. Problems were also encountered in
determining the end of the freezing stage and the start
of the tempering stage due to the variation in the

freezing point during freezing.
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Figure 2-4 Cooling-freezing-tempering phases (Bakal)
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Quantitative comparison of Bakal and Hayawaka's
method with experiment appears to be unprofitable
with our present inadequate knowledge of the
thermophysical properties of foodstuffs, and whilst
the simple predictive methods remain largely

untested.

Terwilliger and Dizio (70) and Grange et al (71)
studied solute rejection with finite and semi-infinite
systems of sodium chloride solutions respectively.
They concluded independently that although only a
small proportion (up to 10%) of the solute was
rejected by the frozen phase, the rejected solute
formed a high concentration layer at the frozen-
unfrozen interface which could, especially under
conditions of slow freezing, significantly alter the

freezing temperature of the solution. Other work

incorporated by Terwilliger and Grange is given (72-75).

Chapter 6 discusses the problem of electrolyte

freezing in more detail.

2.7 EXPERIMENTAL TECHNIQUES FOR MEASURING SOLIDIFIED LAYERS.

In the field of metallic solidification, technigues

employed to study rates of solidification include pour-out,

i R v (W i
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thermocouple, dip-stick, tracer, optical and

acoustic methods (81-84),

The pour-out technique which involved removing
the unfrozen phase to leave the solidified layer
proved tedious due to the restriction of obtaining
only one measurement for each experimental run. The
optical technique, developed by Thomas and Westwater
(84) was used for systems where the test material had a
translucent solid phase and a transparent liquid phase.
The use of acoustics is well established in the field
of non-destructive testing where internal defects in a
metallic component may be detected from the reflection
or scattering of the incident sound energy. Bailey and
Dula (81) developed an acoustic method for following
the motion of the solid-liquid interface during the
freezing of water where the heat transfer is
undirectional. They state that the relationship,
X = m/t + a, where m and a are constaht holds for the

freezing of water.

The use of thermocouples for measuring
solidification rates has been extensively used in
food research (4, 6, 7, 25, 26, %2 and 34) as well as
in the field of metallic solidification. The thermocouple
technique measures the position of the solid-liquid
interface by the thermal arrest due to the liberation

of latent heat on the recorded time - temperature profiles.,

ST ST e “‘“l"[ii_




35.

This thermal arrest is most significant in,and the
technique most suitable to)Systems where the latent

heat is much greater than the specific heats of the
material under test (e.g. foodstuffs). The disadvantage
with the thermocouple technique is that several
thermocouples must be used in each experiment to

record the process of the solid-liquid interface,

the introduction nf these thermocouples into the

system can lead to excessive heat loss via the

thermocouple wires.

Dip-stick methods have been employed with the
freezing of liquid materials. The technique is simple
and gives direct readings, but suffers the major
dissdvantage of disturbing the system when each’

measurement is taken (85).

The type of experimental method for measuring
the solidified layers of liquids in the experiments
carried out in this research was chosen by considering
the requirements that the apparatus should be
inexpensive, reliable, give direct continuous readings
if possible and not disturb the system when taking the

measurements.

The physical properties of the liquids to be frozen

were studied in order to find a property that varied
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greatly between the solid and liquid phases but
remained compar@tively constant in each phase over
the temperature range used in the experiments,

and was easily measured. The density was chosen

as the property to be measured since it has a
variation of 9% between the two phases but remains
constant in each phase., (See appendix V).

An experimental apparatus was designed (see chapter 3)
based on the dilatometry principle in which the
variation of volume due to ice formation was directly

converted into ice thickness,
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CHAPTER 3. 57.

EXPERIMENTAL WORK.

The experimental side of the research involved

The design, construction and commissioning of
a laboratory scale apparatus enabling
accurate determination of freezing rates of
liquids for a range of known coolant
temperatures and heat transfer coefficients

between the coolant and the freezing liquids.

Freezing rate experiments with distilled water,
aqueous solutions of sodium chloride and fruit
Juice 3o provide experinental data for
comparison with theoretical results from the

methods described in Chapter 4.

EXPERIMENTAL APPARATUS.

In order to supply the coolant under given

conditions and to accurately measure frozen thicknesses

of ice the apparatus consisted of the following items

(see figure 3-1).
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Coolant btank (capacity approx. 20 litres).

Coolant pump.

Three cooling units.

Heater (2 kilowatts), contact thermometer and

relay switch,

Temperature recorder, (Honeywell type Electronik

15), and copper constantin thermocouples.

Stirrer.

Rotameter.

16 cm. diameter Dewar flask.

Clock.

Travelling telescope (Precision Tool and

Instrument Co.).

Freezing apparatus-freezing vessel, heat transfer

discs and coolant reservoir.
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The coolant used was a 50% wt. solution of
methanol (freezing point -55 C). Due to the
poicpnous nature of methanol vapour, the apparatus

was designed to fit inside a fume cabinet.

Copper pipework was used to transport the coolant
around the apparatus. The pipework was heavily lagged
with ashestos fibre. Two short butyl rubber tubes
connected the heat transfer equipment to the copper
pipework to absorb vibration from the coolant pump

carried along the copper pipe.

%2.,1.1. Heat Transfer Apparatus.

The heart of the apparatus was the freezing
equipment which consisted of a coolant reservoir, heat
transfer disc and freezing vessel arranged as shown
in figure 3-2. 1In experiments the freezing equipment
was enclosed in a Dewar flask and all external surfaces
were lagged to reduce heat gain from the surroundings,
(see figure %-3), The heat transfer equipment permitted
a heat flow from the freezing vessel to the coolant,
via the heat transfer disc. The coolant surfaces of the
heat transfer discs and freezing vessel are machine

smoothed to help achieve good contact.
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Five interchangeable discs made of copper, brass,

stainless steel, copper plus polythene and perpex

were used to provide a range of resistances to the

heat flow between the freezing chamber and the

coolant.

The dimensions of the discs and coolant reservoir

are shown in figure 3-2.

A thermocouple was positioned

in the reservoir to monitor bulk coolant temperature.

The contact surfaces of the freezing chamber and

heat transfer discs were machine smoothed (to achieve

good surface contact) and tested for flatness. The

thicknesses of the discs after machine smoothing are

given in table 3-1.

TABLE 3-1.

Heat Transfer Thickness of Disc Heat Transfer

Disc. (A 1n fi 3-2) Coeff301ent
o W/

Copper 4.22 2000.0

Brass e [ K 1700.0

Stainless

Steel 10.79 900.0

Copper + 4,22 (8)

Polythene + 0.96 (p) 350.0

Perpex P 56.8
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The principle of the method of determining ice
thickness in the freezing chamber was based on
dilatometry. The concave design of the freezing
chamber top (figure 3-2) ensured that when the
chamber was fif{led with liquid and the top screwed up
tightly the liquid was forced up the dilatometer tube
(figure 3-2). As freezing started at the chamber base,
the volume increaseddue to phase change (the frozen
phase formed was always less dense than the liquid
phases for all liquids frozen, with water there was
approximately a 9% increase in volume on freezing)
forced the liquid further up the dilatometer tube.

The liquid height was directly related to the ice
thickness. However the change in height in the dilato-
meter tube for a given thickness of ice depended on

the difference in phase densities. The density
difference was dependent on the solute and its
concentration, the freezing chamber had therefore to

be calibrated for solutions of different concentrations.
Details of the calibration of the freezing chamber are
given, along with further details of the operation of
the apparatus for accurate measurement of the ice

thickness.,in appendix 9.



3.2 DETERMINATION OF A HEAT TRANSFER COEFFICIENT.

Theoretical methods (except those based on
Neumanns'exact' solution, see chapter 2, section 2.1)
contain the heat transfer coefficient between the
coolant and the freezing liquid. Determination of
numerical values for this coefficient was therefore
required for evaluation of these formulas. In our
equipment this coefficient was variable according to

the freezing chamber base used.

The method of determination of the coefficient
under experimental freezing rate conditions (see table
3-2) for all five heat transfer discs is given in
appendix 3. The results of the determination are given

in table 3%-1.

3.3 EXPERIMENTAL PROCEDURE FOR FREEZING LIQUIDS.

Constant temperature was attained in the
coolant reservoir of the heat transfer equipment
(monitored by thermocouple). A thin layer of oil was
smeared over the contact surface of the heat transfer
disc. Good contact was made between the dilatometer
vessel and heat transfer disc, the stop clock started,

and the liquid miniscus height in the dilatometer
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tube measured by the travelling telescope to an
accuracy of 0.05 mm (see figure 3%.3). Height
measurements of the liquid in the dilatometer tube
were read at frequent intervals until the desired
frozen layer thickness had formed. (Appendix 9
contains details of the conversion of dilatometer

readings to ice thickness).

TABLE 3-2. EXPERIMENTAL SYSTEM CONDITIONS.

Heat Transfer Coolant Initial Liquid
Coeffjicient Temperature (C) Temperature
(W/m= C)
2000, 1700, between between
900, 350 & -4 and -16 3 and 25
56.8

3.4 EXPERIMENTAL RESULTS.

Reproducible results were obtained for all the

liquids frozen under the range of experimental conditions

given in table 3-2., A full 1list of results is given in

Appendix 1.

Comparison of experimental results and theoretical

predictions of freezing rates is given in Chapters 5,

6 and 7 and Appendices 8 and 10,
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Figure 3-3 Measurement of ice thickness.
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ANALYTICAL AND NUMERICAL SOLUTIONS OF FREEZING

PROBLEMS STUDIED IN DETAIL

The solutions studied are the analytical
approximations of Planck (13,%3), Goodman (14,15)
and Neumann (10) in which the temperature profiles
in the solid and liquid phases are represented by
linear expressions (Planck), polynomials (Goodman)
and error functions (Neumann), and the finite
difference method of Vasil'ev and Uspenskii (49)
The methods were chosen as being the most important
theoretical methods developed for solving the heat.
transfer problem. Derivation of the equations

given in this chapter are shown in appendix 4.

&= Planck's Methods

4-1,1 Planck's Original Method

This is the simplest and most widely used

freezing formula.

The method assumes that the thermal capacities
of the frozen and unfrozen phases are negligible
and therefore that ¢T/9X is constant in each phase,

since from equation (1-1) :-
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Figure 4-1 Assumed temperature profile
of Plancks method.
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et qu . (1+1)

With the further restriction of the unfrozen
phase temperature initially being equal to the
freezing temperoture the resulting formula
representing the time (t) to freeze a thickness

(X) of material is:

e LE(2KX & HX®)

42
EK,l H (Tm-Tc) b )

(the assumed temperature profile is shown in figure

dtl s

4-1,2 Planck's Modified Method

Planck, retaining linear temperature profiles
(see figure 4-2), extended his original method to
include the sensible heat of both phases in the
total hest that must be transferred from the frozen-

unfrozen interface to the coolant.
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Figure 4-2 Assumed temperature protile of
the modified Planck method
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The specific heat is assumed to be concentrated

at the interface. The heat flux to freeze unit
mass of material changes from L (neglecting
specific heats) to the total enthalpy term;

Ca (Tm—Ts)/2+L+02(TI—Tm)/2 when the specific heats

Cq and 02 are included.

The dependence of t on X for this method is

derived to be:

t = Lp X2 C, (Tm-Tc) 2K,1+’1 1+02-(TI-Tm)
+ —— | | (4-3)
2K, (Tn-Te 2 gt - 2

4-1,3 Nagaoka & Rutov Extensions to Plancks Method.

Nagaoka (35) and Rutov (34) independently
proposed further modifications to Planck's equation
(4-3) to take into account precooling time.

Their modifications (essentially heuristic) take

the form:
tp = (1 + & (TI-Tm)) (4-4)
where tp = freezing time predicted by equation 4-3%
tp = total freezing time, i.e. for precooling
plus freezing time,
A = constant :- 0,008 according to Nagaoka

and 0.0053% according to Rutov.
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4-2 Goodman's Integral Metkod

This method assumes a polynomial form of
the temperature distribution in the frozen phase,
see figure 4-3%, which uses a quadratic function and
uniform temperature in the liquid phase. In the
derivation (appendix 4) the unfrozen phase
temperature is taken as being equal to the freezing
temperature to simplify otherwise very complicated
equations, Goodman (15,17) The temperature variation
in the cooling mass is therefore confined to a

distance d (t).

The method with the above assumptions has the
same restrictive assumptions as the Original Planck
method and involves more complicated calculation
but attempts to account for the specific heat of water

by the curved temperature profile in the frozen phase.

The method consists of determining the constants
2 and b in:
T, (x,8) = a(x-§) + b(x-d)2 (4-5)

from the boundary conditions of the problem.

The resvlting equation for t in terms of X is:

5 = K,| miK

Do | 1 (m 7 m2 db a m da dm (4-6)
a(qH 0 H 2 6b dB 2b 4b dm

t is determined by numerical integration 2fter evaluation

of B, b, m and =a.



Figure 4-3 Assumed temperature profile of
Goodmans integral method.
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4-3 Neumann's Solution

An analytical solution can be obtained if we
assume (1) that Ts is constant, which corresponds
in practical cases to the assumption of a wvery
high heat transfer ccefficient i.e. Ts=Te, and
(2) that the unfrozen region is large compared
to the frozer region for all times of interest,

so that we may write:
T, + I as x ) oo
The solution for X as a function of t is then:
X = 2)\(,,{115)1/2 (4-7)
Where A is defined by the equation:

exp (=2°) [K,24; |2 II-Tm exp(-oly 22/,
erf A\ K EGL Tm_TSerch\EJ-,[,élg)‘}

o
A1 172
Cq(Tm-Ts)

(4-8)

The temperatures and physical properties are
substituted into (4-8), and A found by trial and

error.

This method predicts the thickness of the frozen
layer to be proportional to the square root of time.
By contrast Plonck's equation (4-2) requires that X
is proportional to the square root of time only if

HER 2 7 K, X i.e. for large X or high H values.

i sk s b N s it L e e Rl
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4-4 Vasil'ev and Uspenskii Finite Difference Method

The method used is an implicit, fixed distance
step length and variable time - step approximation

based on that discribed by Vasil'ev and Uspenskii.

The basis of the method involves substituting
finite difference operators into the heat conduction
equations (1-1) and (1-2) to evaluate temperatures

at each step length (see figure 4-4).

The temperatures calculated at nodes

and T

i T B LN L n+ 1'n

are then used
to predict the time, t , for the interface to

advance from node n-1 to node n by the equation:
2
b =-Tph™/(Kq T 4 ) + K5 Tpq 5 ) A=9)

Equation (4-9) results from direct finite
difference substitution into equation 1-%3, the heat

balance boundary conditions at the interface.

Two sdditionel implicit finite difference
schemes are incorporated into the method to account

for preccoling and tenpering times.
sov ) e |
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Figure 4-4 Assumed temperature profiles of Vasil'ev &
Uspenskil finite difrerence method

!L‘ -

interface

I'm

;I : unfrozen
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CHAFTFR 5

DISCUSSICN OF RESULTS FOR DISTILLED WATER

The theoretical freezing rate methods discussed
in chapter 4 are evaluated and found to differ in
their predicted freezing times. The theoretical
results are then compared with experimental results
obtained from experiments performed using the procedure
described in chapter 3, with the following range of

system variables:

System Variabvle Range of System Variables

Heat transfer coefficient(H) | 2000, 170C, 900 & 56.8 W/mac
Initial temperature (T1) between % & 25 C,
Coolant temperature (Tc) between-4 & <16 C.

Only the Vasil'ev and Uspenskii finite difference
method and the Goodman integral method (if the initial
temperature is near the freezing temperature) show

reasonable comparison with experimental results.
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The ccolant temperature is shown to be tke most
important factor effecting freezing rates although
the thermal capacity of ice is found to be relatively
urimportant. However the thermal capacity of water
and the heat transfer coefficient play significant
roles in determining freezing rates and should be
included in theoretical methods predicting freezing
rates. The requirement of including these latter
two factors into freezing rate formulas seriously
limit the applicability of the Criginal Planck
and Neumann methods. Modificetions to Planck's
method fail to accurately prediét freezing rates
due to their assumption of linear temperature

profiles in the liquid phase.

Comparison of temperature profiles obtained by
the Vasil'ev and Uspenskii method and by experiments
reveal that the assumption of neglecting convection
effects in the transfer of heat through the body

being frozen is supported and that the vast majority

of the overall freezing time is occupied by the freezing

stage.

T R T TE e



5-1 Comparison of theory snd experiment

59.

In chapter 4 a range of metheds for predicting

freezing rates was discussed.

predicted times tc freeze a 10 mm layer of water

Table 5-1 compares the

initially at 20 C with a coolant at =10 C through

a surface heat transfer ccefficiert of 2000 N/mEC.

TABLE 2-1
Predictive Formulation Freezirg | % Deviation
Method Time from Vazil'ev
& Uspenskii
Planck t=.11%107X+,48x107X° 911 44
Modified Flanck | t=.12x107X+.56x10/X° | 1050 -32
Rutov t=.13%107X+.62x10/%° | 1161 -25
Nagoaka t=.14x107%+.65%10X° | 1218 ~21
Neumann t=.8%x10°%° 431 72
Goodman corputed value 1256 -19
Vasil'ev & computed value 1550 (=)
Uspenskii

—

The wide differences of predicted freezing times

result from the distinct assumptions of the several

methods, and preclude the choice of any of the methods

as obviously accurate.
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In order toc esteblish the accuracy of the methods
comparison with experimental freezing results was
needed. The experiments carried out were described

in chapter 3.

As discussed in chapter 3 the important
experimental variables were; heat trsnsfer coefficient
(B), coolant temperature (Tc), and inritial material

temperature (TI).

Graphs 5-1 to 5-6 show experimental freezing curves
and corresponding predicted freezing curves by the
following methods. (a) Neumann, (b) Planck,

(¢) Modified Planck, (d) Rutov, (e) Goodman and
(f) Vasil'ev and Uspenskii for the experimental

conditions in table 5-2.

TABLE_5-2
Graph |System | Heat Transfer | Iritial Coolant
Coefficient Temperature | Temperature
W/mgc C C

5-1 1 2000 D e -10,0
5-2 2 2000 20.0 -10.0
5-3% 3 2000 25.0 -10.0
5-4 4 2000 20.0 -15.0
5-5 9 500 20.0 -10.0
5-6 & 900 20.0 -15.0
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Graphs 5-1, 5-2 and 5-3 show variations in freezing
times due solely to changes in TI, graphs 5-2& 5-4,
5-5 and 5-6 show variations in freezing times due
to changing Tc. Changes in freezing times due to
altering H are shown by graphs 5-2 &5-5, 5-4 and
5-6. (Tabulated values for these experimental

conditions are given in Appendix 8).

Graphs 5-1 to 5-6 show that theoretical methods,
with the exception of the Vasil'ev and Uspenskii
method and in one case the Gocdman method, under-
estimate freezing times. Table 5-3 shows the
percertage variation between the experimental and
theoretical freezing times in freezing 10 mm of ice

for the six system conditions in Table 5-2.

TABLE 5-3%
% Range between experimental and
theoretical freezing times using
SYSTEM | (a) (b) (e) (a) [(Ce) (f)
Neumann|Planck|Modified |Rutov |Goodman|Vasil'ev &
Planck Uspenskii
1 - 67 - 22 =17 =14 +12 2
2 -235 - 62 -40 | =21 =17 2
3 -386 - 97 -67 -28 -4% - 8
4 -242 - 70 -45 -25 -20 - 7
S 400 -102 -76 -54 -52 -22
6 -390 ~-102 =75 -51 -50 =27
L

(minus sign indicates theoretical under-estimation
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of experimental freezing times and positive sign

overestimation).

The results obtained from Nagaoka's method
(see p51 ) are not shown since they. always lie
between the freezing times of Modified Planck and
Rutov, both of which always underestimate experimental

freezing times.

Graphs 5-7, 5-8 and 5-9 show further comparison
between experimental and theoretical Vasil'ev and
Uspenskii freezing times for different values of H.
From the graphs 5-1 to 5-9 and table A8-1 in appendix
8, the most accuraste theoretical method can be seen to

be that of Vasil'ev and Uspenskii.

A discussion of the effects of the system
variables H, TTI and Tc along with the determination
of temperature profiles, subcooling effects and
division of the overall ccoling process into the

various stages in the overall freezing process.follows.

5-2 Effect of Heat Transfer Coefficient (H)

In all experiments undertaken the heat transfer

coefficients have finite values (see table %-1 p42 )
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The lower the value of H, the greater the error in
the predicted freezing times by Neumanns method

(see table 5-3). Accurate knowledge of numerical
values of H becomes increasingly important the lower
the value of H. This can be illustrated by the

following example.

Using the Modified Planck forwula, a 100 per cent
decrease in the value of H between the values 1700
and 850 WATEC'huneamm the freezing time for 10 mm
of ice by 450 s. or nesrly %%. In contrast, with
the same Tc and TI, varying H between 500 and 250
W/m20 increases the corresponding freezing time by

1000 s. or 27%.

This effect is seen because a2t low H values the
major resistance to heat transfer (i.e. 1/H) is
between the freezing veessel and the coolant whereas
at higher H values the resistance of the ice layer
predominates. Any change in the major resistance cr
rate controlling resistance, will be more significant

than in a non rate controlling resistance.

5-% Effect of Initial Temperature ({°T)

—_

If the heat transfer coefficient (H) and the
coolant temperature (Tc) remain constant, the freezing

rate of water decreases with increasing liquid temperature.
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The effect of neglecting the thermal capacity

of water can be shown by calculating the heat load

to reduce the initial temperature

0 C and then freeze it.

When the

(02) is neglected only the latent

be removed, however, inclusion of

heat load to (L + 02 (TI-Tm)).

of the water to
thermal capacity
heat (L) needs to
C, changes the
Table 5-4 tabulates

heat loads for the two cases with TI = 25 and 3.5 C.

TABLE 5-4

water temperature,

Calculation of heat loads toe reduce

temperature to 0 C,
and freeze it

Heat load required to reduce
1 kg of water from its initial

(J)

(TI-Tm) (TI-Tm)

25 C.

3.5 C

% change in heat
load due to vari-
ation in (TI-Tm)

Including thermal

capacity|.54x10° . 24x10° 56
Excluding thermal 6 ‘ 6
capacity|.33x10" ,.33x10 0
o change in heat
load due to inclusion
of thermalcapacity 63 4

The results from table 5-4 show the importance of

TI and C2 in determining the heat load and the errors

in predictive methods that ignore TI and 02 can be seen

in table

5=2'
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TABLE 5-5 Effect of TI on predicted freezing times.

Freezing Times

Method Freezing Times (s) " |% Difference

T1=25,0C {T1=20.0C |PI=3.5C| due to ATI
(25-3.5C)-
Experimental 1800 1475 4315 61
Vasil'ev & Uspenskii 1715 1507 1099 B2
Modified Planck 1078 1050 954 13
Nagaoka 1294 1250 981 24
Rutov 1143 1192 967 18
Planck 911 911 911 0
Goodman 1256 1256 1256 0
% Range in ag 65 18

Table 5-5 shows that the smaller the temperature

difference between initial and freezing (Tm) temperatures

is, the more the experimental and theoretical freezing

times agree. This is because the error caused by

excluding the thermal capacity of water is reduced.

Since most freezirg operations involve a temperature

difference between TI and Tm of at least 15 C inclusion

of the thermal capacity of water is required to

accurately predict freezing times.

With this require-

ment the Original Planck and Goodman methods became

inapplicable. However it should be noted that the

Goodman method shows reasonably accurate prediction

of freezing times when TI-Tm is small (see table

5-% gystem 1 and Graph 5-1).
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Goodmans method can therefore be used when the effect

of the thermal capacity of water is small, Table 5-5
also shows only small changes (13-24%) in freezing
times due to alteration of TI for the Planck, Modified
Planck, Nagaoka and Rutov method compared to 61% change
in experimental freezing times indicating that the
assumption of linear temperature profiles in the
unfrozen phase is inadequate (see section 5-5.1 for
further discussion on this). Only the Vasil'ev and
Uspenskii method predicts the experimental variation

of freezing time with TI.

5-4 Effect of Coolant Temperature (Tc)

The most important factor affecting freezing rates
is the coolant temperature driving force (Tm-Tc).
Table 5-6 shows the effect on experimental freezing
times of increasing Tm-Tc by 50% for two values of

the heat transfer coefficient.

TABLE 5-6 Variation in freezing times by changing Tc.

Temperature Experimental Freezing Times (s)
Driving Force
8= H = 2000 W/m°C H = 900 W/m°C
Ti= 20,0 € TI= 20,0 C
10 1475 2040
15 10%0 1500
% decreasein
freezing times +Z 6




All freezing methods take into account the

76.

coolant temperature and, except the original Planck

method, include terms for the thermal capacity of

ice. Table 5-~7 shows the time to generate 10 mm.

of ice for a range of Tc and H values.

TABLE 5-7
H=900 W/m20 % diff- H=2000W/m20 % diff-
L = 20 .0 erence.| TI=20C erence.
Ta' (C): Te (C):
METHOD L <1 e 48
Freezing Times Freezing Times
Modified Planck 1277] 859 48 1050 708 | 48
Goodman HWZ0[ 997 | 47 1256 853 | 47
Vasillev & Uspenskii 1843 1174 | 56 1507 %9%1| 56
Planck 43 742 50 21 607 | 50
Fxperimental 2040| 1500 26 1475 1030 43

In table 5-7 the calculated change in freezing

time resulting from the change in Tc agrees fairly

well with the experimental change, even for Plancks

original method.

ice thermal capacity compared to the latent heat

The relative unimportance of the

appears in table 5-8 which gives the specific enthalpy

of water measured from a datum temperature of -25 C.

o Aoe anmet Bl Mo o o o
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TABLE 5-8
Water Enthalpy measure from -25 C
Temperature -25|{=20 [-15|-10 |-5 0 21 10f 19
Specific Enthalpy| ©]10.5]| 21|31.5|42 (387|392 (397|402

The table shows that the ice thermal capacity
contributes only (52.5-21) / (397-21) or &% of the

total enthalpy removed in freezing water from 10 C

o =15 C.

5-5 TEMPERATURE PROFILES.

Two thermocouples were positioned in the freezing
vessel, one at the coolant surface, to measure the
degree of subcooling, and the other 15 mm from the
coolant surface, to obtain temperature profiles within
the body of the fluid being frozen. Both thermocouples

were connected to the Honeywell temperature recorder.

J1
1

J
N

Temperature profiles within the body being frozen.

Table 5-9 compares experimental and theoretical
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(Vasil'ev and Uspenskii method) times for the iemperature,
at a distance 15 mm from the coolant surface, to be

reduced to 15, 10, 5 and O C for three system conditions.

TABLE 5-9.

METHOD SYSTEM CONDITIONS TIME (S) FOR LIQUID TO REACH

S5 €4 10 € Sig 0C

Vasil'ev & 5
Uspenskii H = 2000 W/m“C 550 1000 1710 3065

Q2

Experimental] TI1=20 C TC=-10 480 940 | 1720 | 3100

Vasil'ev & 2.

Uspenskii H = 2000 W/m“C 500 810 1280 1982

Experimental| TI=20 C TC=-15 C 420 720 1180 1380

Vasil'ev & -
Uspenskii H = 2000 W/m~C 880 1300 2050 3350

Q

Experimental| TI=25 C TC=-10 720 1100 1850 3250

Table 5-9 shows fair agreement between experimental
and theoretical coaling times. Since the Vasil'ev and

Uspenskii method is based solely on conduction heat
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transfer through the body of the water the assumption
of neglecting convection, as assumed by all the
predictive methods, is supported. The applicability
of the Vasil'ev and Uspenskii method to provide fairly

accurate temperature profiles is also shown.

Figure 5-1 is a comparison of temperatures
predicted throughout a body (40 mm in length, 10 mm
frozen) using the Modified Planck and Vasil'ev and
Uspenskii methods. The figure shows close agreement
with linear temperature profiles in the frozen phase
but no agreement in the predicted unfrozen temperature
profiles. The result of the variation in the

temperature profiles is that in equation (1-3)

Lpadx K, [o0,)\_ K, (2T,

at d x d x (1-3)

the term -Kg(.sz calculated by the Vasil'ev and
Ox

Uspenskii method is much larger than the value obtained
by the modified Planck method using the linear

temperature profile. If "KQE(BTE is too small with
Ox

the Planck method then dx 1is too large and hence t,

at

the freezing time too small (from equation 1-3).
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The authors by comparing their own
experimental and theoretical freezing times attempted
to fit their own correction factor to the Modified
Planck method on the same basis as Rutov and Nagaoka
but found that no one value could be used for all the
experiments performed. This was due to increased
inaccuracy with high TI values caused by the assumption
of linear temperature profiles. Table 5-10 compares
experimental and theoretical results from the Modified
Planck method for freezing 10 mm ice by varying TI

but maintaining Tc and H constant.

TABLE 5-10
Modified
Experimental Planck
Freezing Freezing
TI(C) | Times (s). Times (s8)| % Error
Te = =10 C 3.5 1115 954 =17
H=2000 W/m°C | 20.0 1475 1050 40
250 1800 1078 -67

From these results a correction factor in the

formula:

0

£ = tp (1 + A(TT - Tm) (4-4)
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would have values ranging between 0,048 and 0.0268.
Apart from the range of values of A needed these
values are greater than the values postulated by

Rutov and Nagaoka by a factor of 4 to 10.

5-5.2 Effect of Subcooling.

Experimental subcooling and precooling times were
found to be approximately equal (see table 5-11). The
degree of subcooling, although generally small, was
found to increase with slower freezing rates. Table
5-11 shows a greater degree of subcooling for the System
with the low héat transfer coefficient and low oversall

freezing driving force.

TABLE 5-11 Precooling and Subcooling Stages.

System H = 900 W/m°C H = 56.8 W/m°C
Gbnditions | Mo = ~A00 BT = 200 & By » =A% O 9T = 20 .0

Precooling
time 40 s 1920 s
Subcooling
time 30 s 1440 s

Degree of
Subcooling -2.0 C -3.4 C




85,

Figure 5-2 is a qualitative comparison of
experimental freezing rates, including the precooling
and subcooling periods, with the curves predicted by
Vasil'ev and Uspenskii method. The figure shows that
the Vasil'ev and Uspenskii method (along with the
other theoretical methods) does not include the
subcooling effect adequately. The describing
equations (1-1 to 1-8, Chapter 1) do not take the
effect into account. The result of this was that the
theoretical freezing stage commenced earlier than the
experimental freezing stage. With experiments all the
experimental freezing times, except when the stainless
steel heat transfer disc was used, converged and crossed
the theoretically predicted freezing times of the Vasil'ev
and Uspenskii method. The important factor was the
total enthalpy removed from the system. The absence of

crossover with the stainless steel disc was unexplained.
However as can be seen from table 5-11 the pre-
cooling and subcooling stages together occupy only a

very small proportion of the overall freezing time.

5-5.3 Division of overall freezing operation into stages.

Table 5-12 compares the experimental and theoretical

(Vasil'ev and Usvenskii) times for the precooling and
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subcooling and freezing stages for two systems.
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The

table shows underestimation of the experimental pre-

cooling and subcooling stage by the Vasil'ev and

Uspenskii method and slight overestimation of the

experimental freezing stage.

The variation in the

time occupied by the various stages is very marked.

Table 5-12 Comparison of theoretical and experimental

precooling and subcooling stages.

System Conditions

Stage

Experimentalli Theoretical

Time (s)

H=2000 W/m°C

Precooling &

|

|

I

I

_ [
TT = 25 C Subecooling 75 i 49

Te = -10 C ‘

Ice thickness = ]
14 mm. ' Freezing 3050 | 2967

I

|

|

H=56,3 W/mgc Precooling & |
T = 19 C Subcooling 3000 | 1069

Te = <13 C |

Ice thickness = |
20 mm. Freezing 14760 | 15322

|
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Comparison of the overall freezing time (from

initial temperature to storage temperature) between

theoretical and experimental results was not possible

since experimental measurements did not record

tempering times. The Vasil'ev and Uspenskii method,

however, for all the experiments carried out

predicted that the freezing stage occupied about 9%

of the overall time and the tempering stage about 3%.

5-6 Conclusions.

Heat transfer in the body being frozen is
by conduction, convection can be neglected

(section 5-5a).

The heat capacity of ice can be neglected
(it represents only 8% of the total
enthalpy removed in freezing water between
15 C and -10 C). Temperature profiles in
the frozen phase can be taken to be linear

(section 5-4),

The heat capacity of water should be
included in theoretical formulas (section

5-%). Thus the original Planck and Goodman
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methods incur serious errors when TI-Tm
is large. The Goodman method however,
shows good agreement with experimental

result when TI-Tm is small (see graph 5-1).

Temperature profiles in the frozen phase

are not linear. This leads to inaccuracies

in predicted freezing times from the Modified
Planck method and the Nagaoka and Rutov
extensions to the Modified Planck method since
these formulas assume linear unfrozen temper-

ature profiles (section 5-5.1).

The heat transfer coefficient in all
experiments has a finite value. This leads
to very large errors in the freezing times
predicted by Newman's solution (section 5-2

and graphs 5-2 to 5-6).

The vast majority of the overall freezing
time (about 95%) is taken up by the freezing
zone (section 5-5.3). The subcooling phase
plays little part in the overall freezing
time (about 1-2%) and although underestimated
can be accounted for by the Vasil'ev and

Uspenskii method, (sections 5-5.2 and 5-5.3).

Arreb MR e b iy
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Pie The Vasil'ev and Uspenskii method is the
most accurate theoretical formula and is

the only predictive method to :

a) Be supported by experimental results
in predicting freezing rates of

distilled water.

b) Accurately predict temperature

profiles of distilled water.
The method can be applied to systems :

a) Involving freezing from high initial
temperatures (25 C) to low coolant

temperatures (-15 C).

b) With a wide range of heat transfer

coefficients (2000 to 56.8 W/m2 &5

In chapter 6 comparison is made between the
experimental freezing times of aqueous solutions and
theoretical predictions mainly using the Vasil'ev
and Uspenskii method (as modified by the authorl gee
Appendix 4) since this method is the most accurate in

predicting experimental distilled water freezing times.
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In Chapter 7 an attempt is made to produce a

simple formula representing predictions,




CHAPTER 6. 0.

DISCUSSION OF RESULTS FOR AQUEOUS SOLUTIONS.

T
=

INTRODUCTION.

The aim of this cha?ter is to compare the
freezing characteristics of aqueous solutions with
those of distilled water and if necessary to extend
predictive methods to account for the freezing of

aqueous solutions.

The freezing temperature of an aqueous solution
is dependent on %be liquid interface solute concentration
which may steadily increase during freezing due to
solute rqﬁBCiion from the solid
The increase in liquid solute concentration will lower
the freezing point of the remaining liquid solution
resulting in the solution freezing over a temperature

]
range.

Experimental freezing experiments on solutions of
different concentrations namely, grapefruit juice, 5
per cent sodium chloride and 10 per cent sodium chloride
were carried out under varying system conditions (H, Tec

and TI) to determine whether the solute rejection




.

significantly changed the freezing rate.

Measurements of solute concentrations in both
liguid 2and frozen phases were carried out ta

determine the actual amount of solute rejected.

The experimental studies were accompanied by an
attempt to make a theoretical allowance for the
freezing point variation caused by the solute
concentration profile set up in the liquid phase by
the rejection phenomenon, and to include this freezing
point correction factor in the Vasil'ev and Uspenskii

prediction of freezing rates.

The effect of heat gain on the freezing rates of
the aqueous solutions was considered but found not to
alter the freezing times significantly. The effect

is briefly discussed at the end of the chapter.

The subcooling effect, although slightly greater
with aqueous solutions than with distilled water, was
ignored since it represented only a minor proportion
of the overall freezing time. The freezing stage
occupied the vast majority of the overall freezing

time ( as for distilled water).
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6-2 COMPARISON OF EXPERIMENTAL AND THEORETICAL

FREEZING RESULTS FOR AQUEOUS SOLUTIONS.

6-2.1 FREEZING OF GRAPEFRUIT JUICE.

The experimental freezing results of grapefruit
juice (origin 104) were found to be very similar to
distilled water results with the same system conditions

(Te, TI and H).

The grapefruit freezing point was measured to be
-1.0C, the ionic concentration to be equivalent to 1%
sodium chloride and the density equivalent to 5% sodium
chloride. The other physical properties of gfapefruit

were taken to be those of distilled water.

Experimental freezing results were compared with
the Vasil'ev and Uspenskii and the Modified Planck
methods., The results are shown on graphs 6-1 and 6-2

and tabulated in appendix 8, table A8-2.

The results show that the Modified Planck method
underestimates freezing times. For the results
presented, for freezing 10 mm of frozen layer, the
underestimation ranges between 10 and 100%. The Vasil'ev
and Uspenskii method has its temperature scales, in

both phases, adjusted by 1C +to bring the freezing
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point back to OC.

95.

Comparison of experimental and Vasil'ev and

Uspenskii results show good agreement (see table 6-1).

TABLE 6-1 FREEZING OF GRAPEFRUIT JUICE.
SYSTEM Experimental| Modified % Vasil'ev %
Freezing Planck error and error
Time (s) Uspenskii
(s) (s)
Te=-11C,
TI=15 © >
H=900 W/m~ C 1740 1249 -39 1711 -2
Te=10 C,
H=2000 W/m"C 1182 1074 =10 1278 +8

There is the same convergence and crossover of the

experimental and theoretical freezing curves as

experienced with distilled water with H=2000 W/m20 while

with H=900 W/m°C

underestimate freezing times.

the theoretical predictions slightly

a




%.

For the grapefruit juice it can be concluded
that the effect of reducing the freezing
temperature by a constant value of -1.0 C can
adequately account for its freezing times for all

experiments.

6-2.2 FREEZING OF 5% AND 10% SODIUM CHLORIDE SOLUTIONS

AND SOY BEAN CURD.

Comparison of experimental and theoretical results
from the Modified Planck and Vasil'ev and Uspenskii
methods are given in graphs 6-3% and 6-4 and tabulated
in appendix 8, tables A8-% and A8-4.

In the Vasil'ev and Uspenskii method adjusted
temperature scales are used in order to maintain the
freezing temperature at 0 C. (For example for % NaCl
the initial and coolant temperatures are defined as
TI = T 4 3,0 and Pe = Tc + 5.0 since =%.,0 € is the
freezing point of 5% NaCl. For 10% NaCl the temperature

scale is changed by 6.6 C).

Analysis of these results shows a marked difference
in the degree of agreement between the experimental and

theoretical results depernding on the rate of freezing.
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One group of experiments compared the freezing times
of distilled water, 5 per cent sodium chloride and 10
percent sodium chloride under conditions of identical
temperature differences. This entailed adjusting the
initial and coolant temperatures so (Tm-Tec) and (TI-Tm)

were the same for the three liquids.

Table 6-2 shows the initiai and coolant temperatures
used for the three liquids in order to obtain the
temperature differences (Tm-Tc) equal to 10 C and (TI-Tm)
equal to 20 C,

Under these identical temperature driving forces
(Tm-Tc and TI-Tm) with system conditions for a fast
freezing rate of .005 mm/s distilled water, 5% NaCl and
10% NaCl froze at the same rate (see table 6-2 and graphs
6-5 and 6-6).

TABLE 6-2.
SOLUTION
SYSTEM CONDITIONS | DISTILLED WATER | 5% Nacl | 10% NacCl
H (W/m° C) 2000 2000 2000
(Tm-Tec) (C) 10.0 10.0 10.0
TI (C) 20.0 19.0 13.5
(TT-Tm) (C) 20.0 20.0 20.0
ICE THICKNESS (mm) FREEZING TIME (8)
2.0 182 189 192
6.0 690 700 710
10.0 1475 1470 1500
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Under these freezing rates agreement between
theoretical and experimental results was of the same
order as with distilled water and grapefruit Jjuice
and the Vasil'ev and Uspenskii method can be said to
predict the solution freezing rate adequately by

adjustment of temperature scales.

When the sodium chloride solutions were frozen at
a slow freezing rate of .0012 mm/s the Vasil'ev and
Uspenskii method significantly underestimated (up to
40%) freezing times (see graphs 6-3 and 6-4) and
adjustment of temperature scales no longer was
sufficient to account for the freezing of the aqueous

solutions.

A comparison was made between the experimentally
determined freezing rates of Soy Bean Curd, published
by Komari ( 32 ), and the theoretically predicted
freezing times calculated by the Goodman, Modified
Planck, Nagaoka and Vasil'ev and Uspenskii methods,

The results are tabulated, for two systems in Appendix 2.
The results show that all the theoretical  methods
underestimate the experimental freezing times with the
Goodman and Vasil'ev and Uspenskii methods being the
least inaccurate of the predictive methods. (It should
be noted that the initial temperature of the soy bean

curd in the experiments performed was equal to the freezing
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point or 4 C above the soy bean curd freezing point).
The freezing point of the soy bean curd was quoted

as O C by Komari.

The discrepancies between experimental and
theoretical freezing times for the electrolyte
solutions and soy bean curd may have been due to the

watery solutions freezing over a range of temperatures.

Experiments to show the amount of solute rejected
are given in the next section. Theoretical work on
the effect of solute migration in the freezing of

electrolyte solutions is then discussed in section 6-4.

6-3 EXPERIMENTAL DETERMINATION OF SOLUTE REJECTED

FROM FROZEN PHASE ON FREEZING.

A conductivity bridge was used to determine
solute concentrations of the initial solution and
frozen phase. (After an experimental run the unfrozen
phase was poured off, the frozen phase allowed to thaw
and its conductivity then measured). Calibration of
the conductivity bridge permitted direct conversion
of the readings in mmho/cm to concentrations (moles/

litre). Table -3 shows concentration results from
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experiments using heat transfer coefficients of 2000

and 250 W/nE G. with T = 170 & a58' Te = -A3.0 Lor

5% NaCl.

TABLE 6-%,

Heat Transfer| Bulk Initial | Frozen Phase| Coo-C, Ice

Coefficient conc. gCan). conc. gcq) kmol}ﬁﬁthickness
kmol/m2. kmol/m?. .’K,| (mm)

%50 .72 .62 +30 10
350 .74 .65 .09 12
350 el .4 .07 13
2000 .82 .79 .03 20
2000 .84 . 81 .03 1%

The results from table 6-3% show that the amount of
rejected solute was small in all experiments but t?e
amount was greater the slower the solution froze (i.e.

H = 350 W/m2 C). The amount of solute rejected seemed to
be independent of the ice thickness. The range of
values of Gw-C, from table 6-3 (0.1-0.03 kmol/m’) may be

compared with the figure of 0.085 kmol/m? for‘éh—aq, when
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Coo= 1.0 kmol/m’ and C, = 0.915 kmol/m>, given by

Grange etal, see section 6-4.3,

6-4 THEORY OF FREEZING OF ELECTROLYTE SOLUTIONS.

6=-4.1 Introduction.

A solution originally ccntaining a homogeneous
distribution of a solute, experiences a redistribution of
this solute on solidification resulting from the difference

in solubility of the solute in the solid and liquid phases.

Rejected solute will distribute itself completely
throughout the unfrozen phase if the thermal driving
force is small enough to allow equilibrium solidification
to occur. However, in practice,true equilibrium
solidification is seldom approached. This is due to the
thermal diffusivities of water and ice being respectively
approximately 100 and 1000 times greater than the diffusion
coefficient of NaCl in water. .As & result, solute rejected
at the advancing frozen-unfrozen interface cannot undergo
infinite diffusion into the bulk unfrozen phase, but forms
a8 solute-rich region of layer in the unfrozen phase
adjacent to the interface., The existence of & solute rich
layer has been reported by Grange, Viskanta and Stevenson (70)
and Terwilliger and Dizio (71) for freezing of finite and
semi-infinite systems respectively of sodium chloride

solutions.
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The conclusions to be drawn from both studies

are

1. A small proportion only of the solute
is rejected by the frozen phase. Solute
remains in the frozen phase due to bulk
entrapment.

2. The solute rich liquid layer, X, is

3
very small, its thickness being inversely
related to the thermal driving force and
directly related to the frozen layer

thickness, Xq.

3. The freezing temperature is dependent
on the liguid interface solute concentration,
Ci.Since X1f7X§ a small decrease in the
solid solute concentration can greatly

affect Ci.

4. The concentration gradient in X3 is very
steep and can be represented by an

exponential curve.

5. BSolute concentration in the frozen layer
was found to be constant for semi-infinite

systems but variable for finite systems.
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6-4.2 Work on Semi-Infinite Systems (Terwilliger & Dizio).

Terwilliger and Dizio state that the enriched
solute boundary layer may lead to supercooling. The
phenomenon of supercooling was first described by
Rutter and Chalmers (105) to explain the solidification

of alloys when an impurity was present.

Owing to the very steep concentration gradient in
the melt at the interface, the solidification
temperature of the melt increases sharply from a wvalue
corresponding to the interface concentration Gi, to one
corresponding to the bulk concentration, Ceo. Within
this region however, the actual temperature distribution
may lie below the solidification temperature profile

and account for supercooling, (see figure 6-1).

If supercooling occurs, an unstable situation may
develop. Tiller etal (106 ) concluded that the inter-
face crystal morphology changed to reduce supercooling,
This principle was extended by Terwilliger and Dizio
who produced the following expression for the critical
interface concentration, Ci*, above which supercooling

will oceur :
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interface
0

o
T 4 8 actual temperature
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concentration ~ melting point

temperature
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=~ concentration

Figure 6-1 Supercooling effect
(Subcooling)
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(The term w in equation 6-1 is a dimensionless

density correction factor 1-,/p,).

Terwilliger and Dizio stafe that the system will
always try to return to the stable situation of Ci*.
Evaluation of equation 6-1 involves substitution of the
interfacial temperature Ti by Tm-mCi and determination
of the unknown constant . & is determined from a
Neumann type expression relating the ice thickness and

time as

,(6) = va2dt ) (6-2)

Terwilliger and Dizio define an effective ;
distribution coefficient, Ke = Es/ac19to describé solufq
redistribution. There is considerable disagreement
about Ke being a function of freezing rate. Johnson
(107) found Ke to be a constant for all runs. Adams
(108) found Ke to be directly proportional to freezing

rate in the freezirlg of sea water, while Weeks (109)

reports the quantity 1n ((1/Ke)-1) to be directly




5 i {19

proportional to the freezing rate. Terwilliger and
Dizio conclude from their own experiments that Ke

is only an indirect functicn of tre freezing rate and
cen be taken to be constant. They also state that
there is greater purification at low thermal driving

forces than at high thermal driving forces.

The explanation of greater purification with slow
thermal driving retes can be shown by the following
example. Consider two solutions, having the same
initial concentration and temperature, being frozen
at different thermal driving forces. At a given
freezing rate, the boundary layer thickness will be

uniquely determined.

If the same value of Ci is present in both systems,
(assumed from equation 6-1) the same amount of excess
solute will be contained in the two boundary layers at
a freezing rate common to both systems. But the amount
of ice already formed when the interface reaches the
same particular velocity will be less at the lower
driving force. Consequently, the solid phase depletion
must necessarily be greater. Figure 6-2 illustrates

this principle.
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Figure 6-2 Effect of rate of solidification on
solute redistribution (Terwilliger & Dizio)
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Figure 6-2(a) shows the solute distribution for
the system being frozen at the higher driving force.
Figure 6-2(b) represents the same for the lower
driving force. In both systems, the interface is
moving at the same velocity. All four cross-hatched
regions, then, are equal. But since less ice has
been formed in the system represented by figure 6-2(b),

the solid phase concentration is also lower.

Terwilliger and Dizio conclude that the values Ci*
and & (dependent on thermal driving force) are the two

main factors controlling redistribution.

The calculation of the constant ¥ in equation 6-2
can be tnale experimentally from the slope of the
graph of frozen thickness against time. Graphs 6-7
and 6-8 show that linear relationship between X and\fg
exist for 5% and 10% sodium chloride., (Similar
relationships were found to exist for distilled water
and grapefruit juice). The values of ¥ obtained from
the four systems of 10% sodium chloride are shown

in table 6-4.
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TABLE 6-4 Freezing rates of 10% NaCl
X Freezing

SYSTEM 5 rate
(mm™/8) (mm/s)
(1) Te=-16 C TT= 14 C H= 2000 W/m~C 1.67 .005
(2) Te=-14 C TI= 19 C H= 2000 W/m°C 1.09 .009
(3) Te=-15C TI= 21 C H= 900 W/m°C 1.16 .008
(4) Tc=-10.6 TI= 16.5 C H=2000 W/m3C 0.76 .012

The values of & for systems (1) and (4) in table
6-4 compare reasonably with Terwilliger and Dizio values
of & = .0106 mm/s for freezing rates of 4.0 to 0.8 mm/s
and & = .00%6 mm/s for freezing rates of 0.4 to 1.2 mm/s.

For the system H = 2000 W/m°C, TI = 16.5 C and
Te = -10.6 C for 10% NaCl the value of & = 0,76 mm/s was

substituted into equation 6-1

2 ARG Sl R S
(: K—(‘I_IV.J " '.‘ .I |“ ; r.‘;“l F"'r’ t
AN o B\ TR, L (AR
C'i = Ceo -+ "_2?_*_» 2 o . i
(T-T). o e )i
(1-w) Y m erfc ( X () ) 2 |
J 2D 2o v 3l : i
(1-w) = .083 g

to evaluate Ci* as
Ci* = T + .009 (TI-T1)
substituting ™ by T™m - m 71

and letting R = .0094
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Gi* k C P 5 L 4 RTm
(1-Rm) (1-Rm) (1-Rm)
Ci* = ~1.79% AP .08
Ci* = 2.04 mol/litre (kmol/ma).
and the interface freezing temperature = -7.7 C.

This calculation shows a constant depression of
the freezing point of 10 per cent sodium chloride of

161 € (@8 747 0.6 C)s

A similar calculation for the faster freezing rate
system of 10 per cent sodium chloride (H=2000 W/mEC,
T = 14 C and Tec = =16 C), on substituting &= 1.67 mm>/s
into equation 6-1, produces a freezing point of -6.9 C.
The depression of freezing point in this case being 0.3 C

(89 C' = 8.6, ).
The two calculations indicate greater freezing point

depression the slower the rate of freezing and support

the theory diagramatically shown in figure 6-2.

6-2.2 Work on Finite Systems (Grange et al).

Grange, Viskanta and Stevenson used the physical
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model shown in figure 6-3 for the study of finite
systems. In their procedure the temperature and

liquid conecentration distributions are approximated

by polynomials with coefficients which are functions of
time using the integral method of Goodman. The solid
concentration being a function of solidification rate
and interface morphology had to he specified from
experimental data. They derive the following
expression for the high solute concentration layer
(here the difference in the phase densities has been

omitted) :

¥q =" 3D/ X,

at (6=3)

This expression supports the statement of Terwilliger
and Dizio that at a given freezing rate, the boundary

layer thickness is uniquely determined.

Verification of equation 6-3 can be made by
predicting theoretical X5 thicknesses from the equation
and comparing the results with experimental X§ thicknesses
published by Terwilligo and Dizio ( 70 ). Table 6-5

compares the results.




Figure 6-3 Temperature and concentration 4
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TABLE 6-5.
rTheoretical
Results Experimental Results
ax, x 10° X1/

X X it X - Coo
) L Cai) (kmol/m”)
.066 .090 40.6 26.8 298 .005
. 562 . 350 745 116.9 334 .005
.062 . 060 4%.,9 iR 452 .105
+ 558 . 300 8.0 Rz 3290 .105
274 .200 12.6 2149 159 .005
<718 .680 27 81.0 119 .005
.203% . 190 12, % 30.% 159 . 105
.690 . 580 5.9 80.6 139 <105

The results from table 6-5 show (a) Good agreement

between experimental and theoretical X3 thicknesses and

so verifies equation 6-3% as being able to accurately

predict the thickness of the high solute concentration

layer and (b) The thickness of X% is very small compared

to the frozen thickness Xq.
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However their derivation of an expression for
the interface temperature is mathematically wrong

since their basic equation expressed as
Ti = Tm (1-mCi)
should be of the form :
Ti = Tm-mCi (used by Terwilliger) (6-4)

The resulting expression for Ti taking into

account solute rejection should be : (a's.'.s‘.lmixclgff?,1 =f92)

Ti = Tm - mC® -4 m X, A dXq (G0 - C,) (6-5)

5 D dt

and not as printed (110 )

Ti = Tm (’|-1’ﬂ35‘3 s L_’I: .IE. .X,] - dX,] . (COQ ;- 01) ')
9 D at

As can be seen from equation 6-5 the freezing
temperature, Ti, is calculated from the following

three terms

YY) Pme. By equation 6-4, Tm, for

aqueous solutions is defined

m

as being equal to O C.
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(2) mCoo. This term represents the
depression of the freezing
point due to the original
bulk solute concentration
(CoP) and the molar freezing
point depression constant (m).

L X dxq,_(CCFD- cq).

(). =

W | F
=

dt
This term represent the
depression of the freezing
point due to migration of

solute.

Grange etal conclude that the main differences
between the salt rejection phenomena in finite and semi-
infinite systems is that in finite systems, (a) the
liquid interface concentration is not constant but
increases with time due to increased solute rejection
and (b) the assumption of a constant solute distribution
coefficient, Ke, utilised in semi-infinite domains is

invalid for freezing in finite regions.
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6-4.4 TIncorporation of the work of Grange, Viskanta

and Stevenson into the Computer Program of

Vasil'ev and Uspenskii.

The effect of the solute rejection was incorporated
into the Vasil'ev and Uspenskii program in a subroutine.
This involved correcting the freezing point by the
equation :

i =T - mﬁod A X’i A d-Xa] " (560 - c.a]) (6-5)

= &
5. B dt

In the computer program for the freezing of
solutions the temperature scale has already been re-
adjusted in the main program so that mCoo = O (see section
6-4.6). The evaluation of equation 5-5 produced a value
of Ti which varied for each step length and therefore
the temperature scale had to be re=djusted (by the value

of Ti) for each step in order to bring Ti back to O.

This process was éﬁhieved by the variable WT in
the program. The freezing temperature over the first
step length was taken to be the stated literature value
for the concentration of solution used, i.e. WI=0. From
the freezing rate predicted over this first step length

(qu/dt), the frozen thickness (Xq), and using an
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arbitary value of (aqf’— 61) within the range 0.01

and 0.09 kmol/m’ the value of Ti was evaluated. Wt was
made equal to Ti and the temperature readjusted so

that Tec = Te + WI and TI = TI - WT. This temperature

scale was used for freezing over the second step length.

Once dX,/dt had been determined for the second
step length Ti was re-evaluated according to the new
freezing conditions and the temperature scale again
readjusted with WT being equal to the new Ti. This
process was continued over the whole length of the body

being frozen.

The program was run for values of (Ecm - éq)
ranging from 0.01 to 0.09 kmol/m5 in inerements of 0.0
kmol/m5. The results of this work for CeP - 61 equal to
0.01, 0.02 and 0.03 kmol/m’ along with the corresponding
changes in freezing temperatures are given in table 6-6,4
(p 128).

In conclusion this modification can approximately
account for the freezing of electrolytes at low
freezing rates but has the disadvantage that (ano'w 61)
must be arbitrarily chosen and have a constant wvalue

although the work suggests C., to be a variable quantity.
ﬁl
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64,5 Incorporation of the Work of Terwilliger and

Dizio into the Computer Program of Vasil' ev

and Uspenskii.

As with the work of Grange et al the effect of
solute rejection described by Terwilliger and Dizio
was incorporated into the Vasil'ev and Uspenskii
program in a subroutine. However, unlike the work of
Grange et al, the freezing temperature was reduced to

a constant value, calculated from equation 6-1

e

Ci* 7 Cao + (TI-T1i) (6-1)

(1-W) . Yy + m.erfc v/*};_ (1-W)
| 2D 24 5

and therefore the temperature scale only had to be

ad justed once.

The value of § used for the system freezing 10 per
cent NaCl with H = 2000 W/m°C, TI = 16.5 C and Te = -10.6 G
was taken from table 6-4, the results are given in table

6"'6 .

B U N i e e LI i (1 At



6-4.6 Vasil'ev and Uspenskii Computer Program for

Freezing of Electrolyte Bolutions.

The listing of the Vasil'ev and Uspenskii program
for predicting freezing rates of distilled water is
given in appendix 4-4. The additional steps to
incorporate the effect of solute rejection by Grange

et al are given in the listing on p.726

The listing shows that the freezing point of the
solution, TF (equivalent to mCao), is inputted into the
program as & positive value and that WT is also
calculated as a positive term. The use of positive
values for these terms which appear as negative terms
in equation 6-5 in order to allow easy adjustment of

the temperature scales.

The temperature scale is adjusted in the main
program for freezing over the first step length by the

value TF.

Subroutine SOLUTE shows that the temperature scale
is adjusted independently to account for solute rejection

at each step length, hence the preceeding value of WT
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Listing of Addltlonal Steps for nlectrolyte breezlng

to Vasil'ev and Uspenskii Frogram (Grange etal)

QOGO

£2CS

& e i ol

(e’

In the main program

HH = DISTANCE STEP LENGTH

CC2= INITIAL SOLUTE CONCENTRATION

CC1= SOLID SOLUTE CONCENTRATION

XM = MOLAR FREEZING POINT DEPRESSION CONSTANT
DD = DIFFUSIVITY COEFFICIENT

T¥ = FREEZING POINT OF AQUEOUS SOLUTION

HH1= THICKNESS OF ICE LAYER

WP = CONSTANT

WwT =0

HH1=

AUJUSTHLNT OF TEMPERATURE SCALh OVER
FIRST STEP LENGTH

1 = 1 + TF

TC = TC + TF

Ian Subroutine Solute

SUBROUTINE SOLUTE
comMON TF¥, D, XM, TF, CC1, CC2
COMMON ZNEW, HH, NMAX, HH1

DO 5I = 1,NMAX
T(I)= 1(I) - WT
TC = TC =WT

CALCULATION OF FREEZING POINT DEPRESSION KFOR
NEXT S1¥P LENGTH

WP =(4./3.)*(X1/DD)x(HH1 HH/ZNEW)x(CC2-CC1)
HH1 = HH1+HH

ADJUSTMENT OF TEMPERATURE SCALE OVER

NEXxT STEP LENGTH

DO 6I =1,NMAX

T(I) =T(I) + WT

70 =PC + WT

RETURN
END
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is subtracted from the temperatures before the
addition of the new value of WT calculated for the

freezing over the next step length.

With the solute rejection phenomenon described by
Terwilliger and Dizio the interface concentration is
calculated from equation 6-1, and hence the interface
temperature TF is obtained. The temperature scale is

then adjusted once in the program by the statements

DO 5 I =1, NMAX
5 T(I) = T(I) + TF
TC = TC + TF

Results from the Vasil'ev and Uspenskii programs
incorporated the work of Grange and Terwilliger are

given in table 6-6 and graph 6-9.

6-5 RESULTS.

Table 6-6 and graph 6-9 show that there is
reasonable agreement between experimental and theoretical
times for the semi-infinite systems and for the finite

systems using an arbitrary figure for B = Eq of 0.0% kmol/m?,

Y v iz g Al h oot L S L




(2§

DG o8 0¢LeL = AL = 0 6°0 =
M0+ 38 WILw o Of 38 WINZ i Of 38 WLV Ul O 28 UL
oL 0089 0089 6258 ¢'L 22el, $6° 9409 7S *
3 0045 0025 7185 Lol 961 &g ” S¢ Lt LG *
9 084¢% 03514 9¢5¢ Q'L #00% 08* 824 0s°
7 892¢ oLoe 9¢81L #ih LS L 08° AL otr*
g 233 008 L2d O~ L 309 ol oS 81°
() (8) (s) (s) (0) (s) (0) (8) (0)
SWTT QWL SWTL, SWTJ QU]
Sutzssag Butzesag Sutzedag L IR v/ Butzesag L Wl v Butzeasag 0y
0 2°L = ULy ¢0°0 = “p -5 20°0 = “p - @) L0°0 = Yp -9
WILSXS .
ILINIANI W/TOWY “p - %))
TNES SWALSES ALINIJ
SSENJOIHT * STTINETY EEEELEELEES eates
01 TYINIWINEIXT SITASEY TYOILIHOTHI
‘0 9°0L- = °J pue 9L = Ik ,oma\z 000C = H SUOT3TpUOD Wa3sAg °*TDBN %0l JO Julzealq 9-9 I3Tqe]




1 1
Q2% 0007 000¢ 00ce G20« 8

23}

1

W)

,:E'

3

X

th

~—

w

S

o)

B

)

4
N\
U

i e D R

FHECET T LRSS + SLTHESWEGRD 92 ASyEToE i W
2 T A -~
Sl - LLABUELH ¢ Ay T TLoR] 1 e
~
.
~ <
- p oy
> ks
P P S
Fd <= AS .
- Le8Z0oIR
\ -
e =
-~ -
=
=
-~
-
-
-~ -
fadl> < ]
\ ﬂ.-ll-\ = hv“-.‘\ H' =
-
- oo S P, =
> e, £3r o
.
= \-U)..\I = s ZuN T
L — : WAL s ; -
- y - . P
= SUCELTTELEON TEaisae

4
3
<2
1
o’
v
vt
(8]
4
-
1
iy
R4
b |



130,

The table also shows what the theoretical
freezing points would be at 40 mm of frozen thickness.
It can be seen from these temperatures that the greater
the ice thickness the larger the freezing point

depression is for the finite system.

The value of Co@- 51 = 0.03 kmol/m?J is well within
the range of experimental values obtained for solute

rejection, (see table 6-3),

It can be concluded that solute rejection can
account for the increase in freezing times for electrolyte
solutions compared with distilled water. The precise
mechanism of how the solute rejection phenomenon works
however, is still not completely understood. The effects
of concentration, temperature gradients and crystal
morphology must be fully studied before the solute

rejection phenomenon at the interface can be explained.

6-6 Effect of Heat Gain on Freezing Rates.

A second reason for longer freezing times of solution
compared with distilled water was thought to be heat gain

to the system. Heat gain to a system will be more
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pronounced when the coolant temperature driving force
(Tm-Tc) is small. The conditions of a small coolant
temperature driving force are more commonly met with
aqueous solutions than distilled water because Tm
decreases with ionic concentration. The heat gain effect
on the system will be proportionally greater the smaller

the factor (Tm-Tc)/(TA-Tm) becomes (TA=ambient temperature).

Table 6-7 gives both theoretical and actual
experimental temperature differences to illustrate the

above point.

TABLE 6-7. Temperature driving forces.
Theoretical Systems
Solution TA Tec Tm TA-Tc Tm - Tec| Tm - Te
(C) (¢) (C) (©) () |Ta - Tc
Distilled
Water 20 -10 0 20 10 + 50
% NaCl 20 -10 -5 23 7 .30
10% NaCl 20 =10 -6.5 26.5 DD 1%
Actual Freezing|System
10% NaC1l 16+ -10.5| -6.5 2% a8 e
10% NaC1l 14 -16 -6.5 30 9.5 .32

B |
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Table 6-8 compares the theoretical freezing times
of both the Vasil'ev and Uspenskii programs for no
heat gain and heat gain at x = L. The value of the heat
gain coefficient (HG) incorporated into the program to
account for heat gain was that evaluated in Appendix 3
for the heat transfer coefficient. (In this case
HG = 9.6 w/m2 C since this value corresponds to a value
of H = 2000 W/m2 C). The percentage increase in
theoretical freezing times due to the incorporation of
heat gain compared to no heat gain was only 5 per cent
for freezing 10 mm of NaCl. The theoretical freezing
times still underestimated experimental freezing times
and heat gain alone cannot account for the freezing of

electrolyte solutions.

TABLE 6-8,

SYSTEM CONDITIONS H 2000 W/m® C Te = -10.6 C

non

TI 16.5. 'C.
Vasil'ev & Uspenskii Experimental Ice Thickness
Freezing Times Freezing (mm)

No Heat ' Heat Gain Times
Gain 'oatx = 1

;
497 f 507 882 2
1083 , i i 2268 4
1974 i 2113 3780 6
3108 | 2311 5400 8
441 i 4621 7100 10

I

R T R LR I LR e o ST



CHAPTER 7.

ATTEMPT TO REPRESENT EXPERIMENTAIL AND
VASIL'EV AND USPENSKIT FREEZING RATE
DATA AS SIMPLE CORRELATION.

THE METHOD.

The method consisted of four stages

(1) Representation of data from experiments

as X(t) vs /%.

(2) Derivation of parameters m and a in the

expression :

Xl | &' W/t 4 A

(3) Examination of the accuracy of this

expression of experimental results.

(4) Comparison of equation (7-1) with

computed values,

135,

(7=
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7-2_  EXPERIMENTAL DATA PLOTTED AS X(t) VS /%.

Appendix 10-1 shows the experimental data for

H = 2000, 1700, 900 and 56.8 W/m°C.
Graph 7-1 shows X(t)'vsv/g for most of the results
in appendix 10-1. As can be seen from graph 7-1

reasonable straight lines result.

Table 7-1 gives the least squares values* of m

and a in equation 7-1 for all deta sets in appendix 10-1.

Found by CBM 3R 5190 R preprogrammed function.

TABLE 7-1

SET 1 2 3 4 5 6 7 8 9
Symbol

on x o ® ? 4 " ®
graphs

H 2000 (2000 (2000 (2000 |1700 |1700 | 900 900 56.8
TI 20 20 %45 25 23 18 20 20 19
e 15 10 10 10 10 10 15 10 13
m 0.40310.32%|0.356(0.297|0.30%|0.314| 0.368|0.301 |0. 341
a -2.91(-2.39|-1.90|-2.50| -2,02|-2.08| ~3.97|-4.08 |-21.41

e o | L i cm S i At Nt
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) PARAMETERS m and a in terms of H, TI and (-Tc¢c).

7=-%.1 Parameter m.

If X(t) =m/%t + a
£ = (X(t)-a)°

m2

Comparison with Planck

t = LP (X/H + XQ/EKA)/(Tm—Tc)

(rearranged equat. 4-2).
suggests that m L V-T¢c with Tm = O

From table 7.1 taking sets 1 and 2

m = 0.403 with -Te = 15 55
=nL (-Tc)*
m = 0.323% with =T¢ = 10
set 7 and 8
m= 0.%68 with -Te¢ = 15
= m g (-Te)**P
m = 0.301 with -Te = 10

Thus, we assume that m L J-Tc.



-

The effect of TI on m is small. Take m = ¢ J-TC/TI?

From table 7.1

]

Sets 2, % and 4 =TI = 20, m = 0.323

TI = 3.5,m = 0.3564 mec TI O-078
L = 25, n = 0,297
Sets 5 and 6 — TI = 23, m = 0,303 Yy
; n o 070+ 145
TI = 18, m = 0,314

Take k = 0.1 (for small values, accuracy not vital).

The effect of H on m is probably negligible, as
table 7-2 shows.

TABLE 7-2
SET 1 2 2 4 5 6 7 8 9
H 2000 |2000 {2000 [2000 |1700 [1700 | 900| 900 |56.8
I 260 200 3. 5] o5t ozl vel 208 26 1 49
~Tc 151 10| 10| 10| 10| 10| 15| 10| 43
m?1°* | 0.140[0.138] 0128|0130 | 0.131]0.133 |0.128 [0 428 | 0.127
J-Te
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Table 7-2 shows m TIO‘q/ -Tc to be substantially
constant. A least squares fit of 1n (H) versus
(n m TIO'q/\/—Tc gives a slope of 0.014, taken to be

negligible.

Thus m = 0.13 (1) (-T¢)? (r1)~1/10 (7-2)

=3.2 Parameter a

Parameter a is the extrapolated intercept of the
X(t) versus \/E least squares fit, and is subject to
greater error than m, particularly for H = 56.8 WVmEC.

Examination of a values in table 7-1 shows (1) no
clear effect of TI or Tc on a, (,2) H = 1700 W/mgc
values may be anomolous,

Graph 7-2 shows 1n (-a) versus 1n (H), where (-a)
is the arithmetic average for each H value. Ignoring
H = 1700 W/mgc the expression :

a = -2508 ~0-609 (7-3)

results, and expression (7-1) becomes
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(7-4)

7-4 COMPARISON OF EXPRESSION (77-4) WITH ARBITRARILY

SELECTED EXPERIMENTAL SETS.

TABLE 7-3,
i PL, Mo - 6 10 14 20
SET 2 2000 20 Expt t= 182 | 680 | 1475]| 2570 -
-10 (7-4)t= 208 | 753 | 1637| 2862 | 5335
SET 6 1700 18 | Expt t= 170 | 660 | 1480 2640 =
=11 (7-4)t= 227 | 782 | 1669| 2889 | 5%41
SET 7 900 20 Expt t= 245 | 730 | 1500( 2425 | 4150
-15 {7=4) = 250 699 | 1374 | 2277 | 4054

as X increases) between predicted and experimental times.

Table 7-3 shows a fair agreement (% 20%, improving
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Comparison of Expression (7-4) with Vasil'ev and

Uspenskii Computations.

Appendix 10-2 summarises the available X(t) versus
t data produced by the Vasil'ev and Uspenskii program
for distilled water, and includes comparisons with

equation (7-4) for some data sets.

The comparisons show that equation (7-4) usually
predicts a higher t value than computed, with largest
differences for small X(t) values and low H value (up to
40% difference), but usually the difference is below 10%.
A difference in shape of the formula and computed X(t)

curves is evident from the variation of error with X(t).
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CHAPTER 8.

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK,

8-1 CONCLUSIONS.

8-1.1

Freezing of Distilled Water.

T

Comparison of the theoretically
predicted and experimental freezing

times has shown that :

(a) The most accurate theoretical
freezing rate method over
the range of experimental
variables used was the modified
Vasil'ev and Uspenskii method,
with a maximum divergence of
27% for all experiments and 8%
error if results with H = 900

w/mzc were neglected.

(b) The results from the integral
method of Goodman showed good
agreement with experimental
freezing times when the initial

water temperature was near O C,.

e s S L ™ T L S TEL S B My e e T P
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The commonly used methods of

Neumann and Planck together with
their various modifications all
underestimated the experimental

freezing times by 22% to 400%.

2. Experimental work has shown that :

(a)

(b)

(¢)

The experimental procedure
provided a simple, inexpensive
and accurate method for the
determination of planar ice

thickness in liquid materials.

A linear relationshiﬁ existed
between ice thickness and the
square root of time, this
expression also held for the
freezing of electrolyte solutions.
The expression X(t) = m/t + a
for the freezing of distilled

water was evaluated as

X(t) = 0.13 /=me (11)~9*7_2508~0-67

Three system variables; the heat

transfer coefficient, coolant
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temperature and initial liquid
temperature significantly
changed the freezing rates of

the liquids.

(d) The effect of neglecting the
thermal capacity of ice was
insignificant but the thermal
capacity of water was an
important factor in determining

freezing rates.

(e) TFor all the liquids frozen; the
subcooling and precooling stages
occupied very little of the
overall freezing time, the sub-
cooling effect was small and the
vast majority of the overall
freezing time was taken up by the

freezing stage.

8-1.2 Comparison of Freezing Distilled Water and Electrolyte

Solutions.

(1) The freezing curves of grapefruit juice
were very similar to distilled water,
reasonable comparison between predicted

freezing times by the modified Vasil'ev and
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Uspenskii method and experimental
freezing times obtained by readjustment
of the temperature scales by the value
of the freezing point of the juice.

The freezing point was only a problem
if it varied during the freezing

process.

(2) The freezing rates of distilled water and
5 and 10 per cent solutions of sodium
chloride were found to be the same under
conditions of fast freezing rates (.005
mm/s) but different when slower freezing
rates (.0012 mm/s) were used, Under
these latter conditions the electrolyte
solutions froze more slowly than the
distilled water with the result that the
theoretically predicted freezing times of
the modified Vasil'ev and Uspenskii method
underestimated the experimental freezing

times.

8-1.3 Freezing of Electrolyte Solutions(5 and 10 per cent
Sodium Chloride).

(1) The difference in freezing times between

distilled water and the sodium chloride
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solutions under conditions of slow
freezing were explained by the migration
of solute from the frozen phase to the
unfrozen phase reducing the freezing
point of the solution during the
freezing process and hence the freezing

rate.

(2) The degrée of solute migration although
found to be small in all experiments

was higher at slower freezing rates.

(3) Experimental evidence supported the theory
that a thin lasyer of high solute concentration
was formed in the liquid adjacent to the
advancing frozen-unfrozen interface, its
thickness was inversely proportional to
the freezing rate. The freezing temperature
and hence the freezing rate of the solution
was dependent on the liquid solute

concentration at the interface.

(4) Incorporation of the solute effect into the
modified Vasil'ev and Uspenskii method
improved the prediction of the freezing
rates of the sodium chloride solutions to

within 1% (for H = 2000 U/mac).
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8-2 RECOMMENDATIONS FOR FUTURE WORK.

This thesis has provided both an experimental
and a theoretical basis for research into the freezing
rates of aqueous solutions. Further areas of work

for possible future research include

1. Development of the Vasil'ev and
Uspenskii finite difference method
into a readily useable and simple

form.

2. B8tudy of solute migration in the
freezing of electrolyte solutions,
concentrating on determining the
effects of the solute profiles in
both the unfrozen and frozen phases
particularly near the unfrozen-

frozen interface.

3. Btudy of how the cellular structure
of foodstuffs effects solute migration
and determination of thermal properties

of foodstuffs in order to be able to
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APPENDIX 1

RESULTS OF FREEZING RATE EXPERIMENTS

CARRIED OUT ON EXPERIMENTAL APPARATUS

Freezing times are given in minutes.
Frozen thicknesses are given in centimetres.
Temperatures are given in degrees C,

Heat transfer coefficients are given in U/m?C.

APPENDIX 1-1 Distilled Water Results.

Run No. 47 Run No. 48
Coolant temp. - 15.0 Coolant ‘temp. =10.0
Initial temp. 20.0 Initial temp. 20.0
Heat trans.coeff.20C0 Heat trans.coeff.2000
Time Ice Thickness Time Ice Thickness
1.0 0.05 140 0.05
240 615 2.0 0.12
2.0 0.24 4,0 0.26
5.0 0.37 7.0 0.41
9.0 0.66 9.0 0.49
15.0 0.90 1535 0.77
20.0 QA 4| 20.0 0.90
28.0 1,36 30.0 1.16
Be kD 1.48 43.0 1.42
52.0 1.57
6.0 1.66

P L e e R N
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Run No. 12 9.0 L
e 2o 7
Heat trans.coeff.2000 15,0 .82
18.0 «93
21.0 1.0%
Time Ice Thickness 24,0 T:43
4.0 » 35 27.0 122
9.0 .64 33.0 1.39
12.0 « 78 326.0 1.46
15.0 .89 42.0 1.60
18.0 .98 47.0 1.70
21.0 1.08 51,0 1.77
24.0 1,16 55.0 1.83
28.0 1.25 61.0 1.9
30,0 1.50 65.0 1.97
33.0 Vs 3% 72+.0 2.06
36.0 1.43 80.0 2.16
39.0 T 50
42.0 1.58
45,0 1.62 Run No. 49
9.0 169 G g
52.0 i Heat trans.coeff.2000
56.0 1.82
60.0 1.89 Time Ice Thickness
2.0 19
55 45
Run No. 9 9.0 65
e
Heat trans.coeff.2000 18.0 101
22.0 195
Time Ice Thickness 2755 1,28
G ) .24 30.0 1.34

6.0 A3 e B 2 %, 1.42
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570 191
61.0 1799
Run No., 50

Coolant temp. -10.0
Initial temp. Big
Heat trans.coeff.2000

Time Ice Thickness
1% .16
.0 .29
6.5 .53

125 .80

15.0 .89

20,0 103

2740 1.23

4%.0 1.61

52.0 1.80

Run No. 51

Coolant temp. -10.0
Initial temp. 25.0
Heat trans.coeff.2000

Time
2.0
4.0
8.0

12,0

15.0

Ice Thickness
.08
se
39
«3
+ 62

Bl by e v Ak

24.0 +86
35.0 1.1
43,0 Tey
5.0 1.41
59.0 1..52
67.0 1.62
86.0 1.81
9%5.0 1.88
Run No. 46

Coolant temp. -15.0
Initial temp. 20.0
Heat trans.coeff.2000

Time Ice Thickness

1,0 .05
2.0 .15
3.0 .25
5.0 «39
9.0 .68
15.0 .89
20.0 1.12
28.0 1.36
32,0 1.48
35.0 1,58

152
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51.0 1.49
Run No. 28 60.0 1.66
AR R 5.0 1.7
Heat trans.coeff.2000 72.0 175
Time Ice Thickness
50 . 24 Run No. 80
Cooaga fou gt 0
16.0 eyl Heat trans.coeff.2000
P 6 1.09
25.0 1«20 Time Ice Thickness
30.0 1. 34 4,0 .26
36.0 1.48 e A4
40.0 157 13%.0 .71
45.0 1.68 18.0 83
50.0 1.78 25.0 1,01
55,0 1.88 30,0 1,95
60.0 1.98 25:0 1.24
40,0 1,355
45,0 1.43
Run No. 29 50.0 e
I e 5.0 1.6
Heat trans.coeff.2000 61.0 1. 75
68.0 1.86
Time Ice Thickness 5.0 1.94
4,0 .26 81.0 2.07
8.0 45
13.0 .63
18.0 .78
25.0 e N
28.0 163
3%.0 g
42,0 1.34

B A il kbt 1t e i AR R O it e
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Run No. 11 Run No. 10
Coolant temp. -10.0 Coolant temp. -10.0
initial tewp.:. 20.0 Initial temp. 20.0
Heat trans.coeff.2000 Heat trans.coeff.2000
Time Ice Thickness Time Ice Thickness
B0 23 3.0 .19
6.0 .39 6.0 «35
9.0 553 9.0 49
1240 . 64 1250 .61
150 7 150 Y29
18.0 .83 18.0 .80
2140 .92 21.0 .89
24,0 1.00 24,0 «97
27,0 1.08 27,0 1.05
30.0 1.15 30.0 12
53,0 48 52,0 1.19
36.0 1.29 36.0 1:26
39.0 1.34 39.0 151
42.0 1.39 42,0 L i
46.0 1.45 45,0 1.42
50.0 1.53 48,0 1.46
570 1.60 60.0 1.61
60.0 1.64 70.0 1.75
65.0 1.70 75.0 1+79
70.0 1575
76.0 .82
89.0 1.89

BRI 52 oo o e R bt S O SR — e
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10.0 .68
Run No. 23 i « 85
s e 1,2/ ke
Heat trans.coeff.1700 29.0 1.37
38.0 § M S5
Time Ice Thickness 43,0 175
Ao . 04 837 1.95
2.0 2
Dl 2D
539 2 D5 Run No. 22
7.0 42 o b
1%e? .61 Heat trans.coeff.1700
14.0 .68
1720 .76 Time Ice Thickness
25.0 .97 240 .09
%57 <0 410 3.0 .20
%6.5 188 4.5 o9
42.0 6 SO By 40
48,0 1.4 8.0 47
54.7 1. 52 160 Y
60.0 1.6 1545 .68
65.0 1.69 19.0 .84
22.0 « 93
28.0 1.08
Run No. 24 38,0 1.29
S i et 4.0 147
Heat trans.coeff.1700 54.5 1459
5877 1.66
Time Ice Thickness 65.0 1.76
2yl .20 68.0 1.80
3.0 .28 ;
5.0 42

7.0 « 4

# ot e e R e M i)
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Run No. 27 Run No. 25
Coolant temp. -10.0 Coolant temp, - 6.0
Initial temp. 6.0 Initial temp. 16.4
Heat trans.coeff.1700 Heat trans.coeff.1700
Time Ice Thickness Time Ice Thickness
1.7 o7 b .00

3.0 5 4.5 .09

5.0 45 el .18

) .59 Cns e

10.0 .70 10.0 55

T e o] 12.7 45

16.2 «96 eHeD ' 72

19.2 4506 X 27.2 .79
2%.0 1.17 45.7 1.09
2750 1.29 G157 i i

2200 1.41 5% 5 i [P

60.0 el

Run No. 28 Run No. 26

Coolant temp. -14.0 Coolant temp. -6.0
Initial temp. 15.4 Initial temp. 5.0
Heat trans.coeff.1700 Heat trans.coeff.1700
Time Ice Thickness Time Ice Thickness
2.0 .19 %40 i

20 .29 4.7 e

5.0 Wi} = 6.5 .50

i, 2D 1.0 49

10.0 o P 18.5 72

15.0 . B4 23,5 . 84

19.0 g P 30.0 97

32.2 T1.45 35.0 1.07

42,2 - g B
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B2 .0 1.28
Run No. 3 41,0 1.48
L .0 159
Heat trans.coeff. 900.0 52.0 1.69
60.0 1483
Time Ice Thickness
0D, 3
6.0 .30 Run No. 5
5.0 e Copiant o100
12.0 + 54 Heat trans.coeff. 900.0
15:0 .64 .
18.0 B s Time Ice Thickness
215 . 82 5e0 <18
25.0 .94 7.0 .
30.0 1.07 9.0 40
350 1.82 12.0 + 51
40,0 1,27 15.0 .64
50.0 1 44 20.0 77
56.0 1.54 25.0 I
65.0 gD 30.0 1,05
%55.0 J.12
40,0 1.20
Run No. 4 45,0 1.28
Lo 9.0 147
Heat trans.coeff. 900.0 65.0 1.54
750 1.65
Time Ice Thickness
6.0 RRIviE
9.0 «59
12.0 o]
16.0 .85
18.0 .92
22.0 1.04
25.0 1.2

28.0 1.19

SN Al et A bl et L AR ALK




Run No. 6

Coolant temp. -10.0

Initial temp.

Heat trans.coeff.

Time Tce Thickness

3.0
7.0
10.0
13.0
16.0
19.0
22.0
26.0
30.0
35.0
40.0
46.0
54 20
55.0
60.0

Run No. 7

Coolant temp. -15.0

.26
45
«59
« 70
.79
.88
.96
107
1.16
1.23
37
1,49
1.59
1.66
W9

Initial temp.

Heat trans.coeff. 900.0

Time Ice Thickness

5.0
6.0
9.0
12.0
15.0

.20
.37
.53
.67
.79

158

18.0 .91
210 1.02
25,0 416
27.0 1423
30.0 G P, 2
550 1.41
36.0 1.48
39.0 1.54
42,0 1.60
48,0 1472
52.0 1.79
56.0 186
60.0 1,95
Run No. 8

Coolant temp. -13.5
Initial temp. 15.5
Heat trans.coeff. 900.0

Time
3,0
6.0

12.0

18.0

21.0

2740

33.0

39.0

45.0

51:0

55.0

60.0

£5.0

RV T e LT T

Ice Thickness
.20
<37
o4
.87
.98

Y37
1.34
1.46
1. 58
1.68
o [
1.82
1.90
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Run No. 1 Rur. No. 35
Coolant temp. -10.0 Coolant temp. -10.0
Initial temp. 7.0 Initial temp. 20.0
Heat trans.coeff. 900.0 Heat trans.coeff. 900.0
Time Ice Thickness Time Ice Thickness
2D 19 5.0 17
6.0 e 14,5 A48
125 +B5 19.0 .58
1760 .81 30.0 . 84
27.0 ARO7 5%3.0 «90
34,0 1.24 39.0 1.02
41.0 1.39 45,5 1.14
5245 heet 70.0 Ve 5
60.0 175
Run No. 2 Run No. 34
Coolant temp. -10.0 Coolant temp. -10.0
Initial temp. 20.0 Initisal temp. 20.0
Heat trans.coeff. 900.0 Heat trans.coeff. 900.0
Time Ice Thickness Time Ice Thickness
9.5 2D 2.0 .02
15.0 49 3.0 .07
34.0 1.01 1.0 o 4
42,0 1,18 80.0 1.62
57 .0 1.29 91.0 1.76
55 .0 1:35 9.0 18
81.0 1.64
95.0 1.78

103.0 1.85



Run No. %1

Coolant temp. -15.0

Initial temp.

Heat trans.coeff. 900.0

Time Ice Thickness

Run No. 32

Coolant temp. -15.0

07
4
.24
« 56
v 52
.67
.84
.98
25
P I
1.75
2.12
2420

Initial temp.

Heat trans.coeff. 900.0

Time Ice
2.0
3.0
5.0
8.0
10

Thickness

.09
o7
28
43
.56

16.0 .75
41.0 1.48
50.0 1.64
64.0 1.90
70.0 2.00
Run No. 33

Coolant temp. -15.0
Initial temp. 20.0
Heat trans.coeff. 900,0

Time Ice Thickness

2.5 .09
75 .38
14,0 .67
18.0 .81
23%.0 «97
55.0 1.69

160
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APPENDIX 1-2 Grapefruit Juice Results.

Run No. 74 Run No. 77

Coolant temp. -10.0 Coolant temp. =12.5

Initial temp. 16.0 Initial temp. 10.0

Heat trans.coeff. S00.0 Heat trans.coeff. 900.0

Time Ice Thickness Time Ice Thickness

10.0 .26 5.0 « 51

20,0 B 8.0 .70

25.0 + 77 1%.0 +95

30.0 .89 18.0 TeID

350 «99 2%.+0 153

40.0 110 28.0 1.47

45,0 Ay 20D 33,0 1.62

55.0 1.40 38.0 1.75

60.0 1.49 4%.0 1.88

6€.0 1.60 51.0 2.06

710 1.68 58.0 2.23
60.0 2.27

Run No. 75

Coolant temp. -11.0
Initial temp. 15.0
Heat trans.coeff.2000

Time Ice Thickness

9.0 .35
15.0 59
21.0 .78
26.0 .01
34.0 1,44
41.0 1.26

48,0 1.40
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46,0 1.05
Run No. 72 95410 1.21
et gl - gialg s
Heat trans.coeff., 2000 66,0 [0
72J0 453
Time Ice Thickness 82.0 9O
7.0 4 90.0 1.82
11 .0 o D7
15,0 e53
20.0 70 Run No. 71
ot i ¥ 00
30.0 1.00 Heat trans.coeff. 900
36.0 116
40,0 127 Time Ice Thickness
45.0 1+39 16.0 16
SO0 150 20.0 <33
5540 S £25.0 49
60.0 4 30.0 65
35.0 e 73
40.0 .85
Run No. 73 45.0 .92
ool 0.0 1.01
Heat trans.coeff. 900.0 60,0 117
70.0 1.39
Time Ice Thickness 80.0 151
9.0 .14 90.0 1.67
14,0 .36 101.0 1.83
19.0 .49 110.0 1.96
22.0 .60 12%.0 2.14
26.0 .69
31.0 .80
£95.9 .88
40.0 o F7

A7 RNy e et s s R A A S T b it R e R




APPENDIX 1-3 Five Per Cent Sodium Chloride Results

Run No. 54 Run No. 52

Coolant temp. -13%.0 Coolant temp. -13%.0
Initial temp. s Initial temp. 17.0
Heat trans.coeff. 2000 Heat trans.coeff. 2000
Time Ice Thickness Time Ice Thickness
2.0 17 2.5 o o)

4,0 32 4.0 s

10.0 .65 6.0 A

16.0 « 90 1.0 o

21.0 i e = 170 .68

3%.0 1.41 2%.0 «85

44,0 1.66 52.5 120

50.0 181 41.0 1,20
60.0 2,10 45,0 1.39

5020 1,51

Run No. 55 Run No. 53

Coolant temp. -13.0 Coolant temp. -13.0
Initial temp. DD Initial temp. 17.0
Heat trans.coeff. 2000 Heat trans.coeff., 2000
Time Ice Thickness Time Ice Thickness
TeB 13 2,0 «10

4.0 e 5.0 + 5

70 .49 12.0 e O

179 0.98 25,0 .98

22.0 ‘A1 44,0 V.32

30.0 1253 50.0 1.45
40,0 1461 58.0 1262
60.0 2.02 65.0 V576

80.0 2.00
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Run No. 18 Run No. 17
Coolant temp. -13.0 Coolant temp. -13.0
Initial temp. 17.0 Initial temp. 17.0
Heat trans.coeff. 2000 Heat trans.coeff. 2000
Time Ice Thickness Time Ice Thickness
4,0 .28 6.0 .34
6.0 A3 9.0 42
10.0 + 572 15.0 .62
12,0 .64 20.0 76 {
150 7 25.0 .88
18.0 .80 30.0 T 05
21,0 .88 250 430
26.0 .99 40.0 1.21
1.0 1:,10 45,0 1430
35.0 1.19 50.0 1.40
40.0 1.28 56.0 1.50
45.0 1,56 61.0 153
50.0 1.45 65.0 1.65
55.0 1.6 72.0 1.76
62.0 1:65 80.0 1.88
70.0 e FE 86.0 1.96
75.0 VLB 93.0 2.06
8%.0 1.96 102.0 218
91.0 2,07 110.0 2.25
100.0 2.19 115.0 2.%4
120.0 2.45
130.0 2:57
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Run No. 19 Run No. 20
Coolant temp. -13.0 Coolant temp.-13.0
Initial temp. 17.0 Initial temp. 17.0
Heat trans.coeff. 900.0 Heat trans.coeff. 900.0
Time Ice Thickness Time Ice Thickness
520 .04 %.0 .04
6.0 e 6.0 .18
9.0 .28 9.0 .28
12,0 « 39 12.0 G
15,0 A48 5.0 45
19.0 .59 18.0 «53
22,0 .66 21.0 .60
25.0 .4 25.0 .68
30.0 .85 30.0 «79
35.0 +96 %5.0 .88
41.0 1.08 40,0 .97
45.0 145 45.0 1.06
50.0 1.24 50.0 115
558 1,352 55.0 1.24
60.0 1.40 60.0 1:32
65.0 1.48 65.0 1.41
70.0 1.56 70.0 1.49
75.0 1.6 790 9%
80.0 L7 80.0 1.66
85.0 177 85.0 1.73
90.0 1.85 90.0 1.81
100.0 1.99 100.0 1.97
110.0 211 110.0 2,10
120.0 2423 120.0 2.25

A~ b I M o A 5 i R R LA U St LS S i3



Run No. 45

Coolant temp. -13%.0
Initial temp. 17.0
Heat trans.coeff. 900.0

Time Ice Thickness

7.0 12
120 « 37
21 .0 .60
2545 .70
45,0 Yo%
47,0 Tad7
58.0 T30
60.0 1.43
75409 1.62
Run No. 44

Coolant temp. -13%.0
Initial temp. 17.0
Heat trans.coeff. 900.0

Time Ice Thickness

o D 07
6.0 15
2.0 .26
14.0 41
18. % ol
24,0 +65
29.0 77
37.5 .93
43.0 1.04
50.0 1.174

54.0 T2

75.0 1.56

Run No. 43

Coolant temp. -14.0
Initial temp. 18.0
Heat trans.coeff. 900.0

Time Ice Thickness

345 .01
S .16
8.0 .50
12+:0 A7
18.0 .68
24.0 .85
510 1.02
38.0 1.22
44,0 Vo 52
50.0 1.46
60.0 1.67
95.0 2439
109.0 2.65
T12.0 2770
Run No. 42

Coolant temp. -14.0
Initial temp. 18.0
Heat trans.coeff. 900.0

Time Ice Thickness

2¢5 .03
4.0 sy
QoD .25
12.0 41

167
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Coolant temp. -13.0
Initial temp. 17.0
Heat trans.coeff. 350

.‘.'
i

P 4 e
L N
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APPENDIX 1-4 Ten Per Cent Sodium Chloride Results

Run No. 56

Coolant temp. -16.0
Initial temp. 14.0
Heat trans.coeff. 2000

Time Ice Thickness

2.0 .08
4,0 25
6.5 <39
16:5 « 77
20.0 .86
24.5 .98
39.0 1:28
43,0 1496
Run No. 57

Coolant temp. -16.0
Initial temp. 14.0
Heat trans.coeff. 2000

Time Ice Thickness

165 .08
4.0 .28
7.0 o435
1%3.0 .64
210 « 8D
29.5 Y12

Run No, 58

Coolant temp. -14.0
Initial temp. 14.5
Heat trans.coeff. 2000

Time Ice Thickness

2.0 .05
4,0 16
740 w27 ’
2.0 40
18.0 L
28.5 72
25.5 « 5%
45,0 «95
50.0 ARl
Run No. 59

Coolant temp. -13.0
Initial temp. 14.5
Heat trans.coeff., 2000

Time Ice Thickness

2.0 .06
4.0 .16
41.5 .92
9%4.0 1.67
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Run No. 60 Run No. 66
Coolant temp. -14.0 Coolant temp. -15.0
Initial temp. 19.0 Initial temp. 13.0
Heat trans.coeff. 2000 Heat trans.coeff. 2000
Time Ice Thickness Time Ice Thickness
3.0 .09 6.0 .29
70 el 22.0 A
14,0 42 28.0 .90
18.0 49 35.0 1 0%
22.0 . 56 47.0 1.27
29.0 .67 70.0 1.68
350 . T4 83.0 1.92
40.0 .82 86.0 1.97
45.0 .88
Run No. 61 Run No. 67
Coolant temp. -14.0 Coolant temp. -10.6
Initial temp. 19.0 Initial temp. 16.5
Heat trans.coeff.2000 Heat trans.coeff. 2000
Time Ice Thickness Time Ice Thickness
B O e 12 10.0 + 15
8.0 ;28 42.0 45
4.0 . 26 49,0 48
170 47 63.0 .58
5%5.0 o 72 75.0 «69
62.5 Nait S 82.0 73
96.0 : .85
100.0 .89
41 i (080 0 « 97
120.0 1.04

o | e b7 e A e
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Run No. 62

Coolant temp. -15.0
Initial temp. 21.0
Heat trans.coeff. 900.0

Time Ice Thickness

4.0 .02

6.0 .07

10.0 16

14.0 e .
29.0 . 50
Run No. 63

Coolant temp. -15.0
Initial temp. 21.0
Heat trans.coeff. 900.0

Time Ice Thickness

4.0 .02
6.0 .08
14.0 27
20.0 « 36
26.5 &7
36.0 .61
42,0 .70
51.5 .87
56.0 3

66.0 1.09
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FREEZING TIMES OF SOY BEAN CURD.

Comparison of experimental freezing times obtained

by Komori ( 32 ) and predicted freezing times from

four theoretical methods discussed in Chapter 4,

bean

System conditions and physical properties of soy

curd :-

% moisture
K, (W/m C)
K, (W/m C)
C, (J/kg C)
C, (J/kg C)
L (J/kg)

H (W/z° C)
e ()

T C )

T™m ( C)

¢ (kg/m’)

System 1.

83.0
1,22
0.42

20% 4 4
3591.6
.27795x10°
1402, 3
-28.0
4.9
0.0
1000.0

System 2.

89.2
1,22
0.42
203 4 .4
3687.9
.33488x10°
3662.7
-15.0
0.0
0.0
1000.0
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RESULTS.
Time to freeze frozen layer (h )

Frozen Vasil'ev
Thickness Modified and
(mm) Experimental | Goodman | Planck | Nagaoka | Uspenkii
System 1

14 0.9 0.2 0.3 0.3 0.4

21 2.0 0.7 0.6 0.6 0.8

37 4,0 2.0 1.8 1.9 N

47 6.0 L I 2.9 3.0 5.3

62 9.0 Dat 5 5.2 5.5
System 2

15 0.9 0.7 0.6 0.6 8

21 2.0 1.4 157 . 1.4

32 4.0 L, PO 2.8 2.8, L

40 6.0 4.8 4.% 4.% 4.6

54 9.0 8.4 7.8 7.8 8.1
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APPENDIX 3.

DETERMINATION OF HEAT TRANSFER COEFFICIENT

BETWEEN COOLANT AND FREEZING VESSEL.

NOMENCLATURE OF VARTABLES USED IN APPENDIX 3.

Physical properties of aluminium :

= thermal diffusivity.

K = thermal conductivity.

Cp = specific heat.

¢ = density.

Temperatures

TA = ambient Gtemperature.

i = initial temperature
of aluminium bar.

Te = coolant temperature.

TB - temperature of
aluminium bar at t = O

TD # final offset temperature
of heat transfer disc
at t =00

H = heat transfer coefficient.

HG =  heat gain coefficient.

k = time step length.

h = distance step length.
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A3-1. INTRODUCTION.

The aims of appendix 3 are firstly to describe
the evaluation of heat transfer coefficients,
associated with the heat transfer discs used in the
freezing rate experiments, for substitution into the
theoretical methods described in chapter 4 and,
secondly, to evaluate the accuracy of the optimised

values of these coefficients.

The method of evaluation of the heat transfer
coefficients used the same heat transfer apparatus as
that used for the freezing experiments except that the
freezing vessel was replaced by an aluminium bar.
Determination of the coefficient was made by measuring
the temperature transient in the aluminium bar brought
into sudden contact with the coolant via the heat
transfer disc and comparison with the heat transfer

equation using a least squares minimization method.

The heat transfer coefficient to be determined was
the coefficient between the coolant and the base of the
aluminium bar. This coefficient was equal to the
reciprocal value of the overall resistance between the
base of the aluminium bar and coolant (which was equal
to the sum of the coolant film resistance, disc resistance,

and contact resistance between the disc and aluminium bar).
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A3-2, EXPERIMENTS.

A3-2.1. Experimental Apparatus.

The essential elements of the apparatus were the
coolant reservoir, heat transfer discs and aluminium
bar. The coolant reservoir is described in Chapter 3,

PP 40 -42.

The properties of the heat transfer discs are given

in table A3-1 p 202

The aluminium bar, diameter 7.0 cm and length 5.08 cm,
had the lower end machine smoothed to give good contact
with the heat transfer discs. Two thermocouple holes
were drilled to the axis of the aluminium bar at 0.63%5
and 3.18 cm distances from the smoothed surface of the
bar. A copper-constantin thermocouple was inserted into
each thermocouple hole and connected to the Honeywell

temperature recorder.

All external surfaces of the apparatus were lagged.
Figure A3-1 shows the elements of the heat
transfer apparatus. For experiments the apparatus was

surrounded by a Dewar Flask.
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Figure A3-1 Apparatus tfor heat transfer
coefficient determination,

thermocouples to temperature
recorder

P W NP 0 6
Vo

BRSO

heat transfer disec

ey
’ s coolant reservoir
SN t\\\\\\

AR 2
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A3-2,2 Experimental Procedure.

With the aluminium bar and coolant at steady
temperatures the bar was quickly brought into good
thermal contact with the heat transfer disc, by
pressing and turning the bar against the disc, and the
temperature transients of the thermocouples in the bar
recorded. Duplicate experiments with the two thermo-
couples interchanged minimized effects of thermocouple

calibration errors.

A3-2.3 Experimental Variables.

Experiments were undertaken varying :
1. Coolant temperature between -3.6 C & -16.0 C

2. Initial aluminium bar

temperature between 5.6 C & 26.4 C
5. Heat transfer disc : DNumber of experimental runs.
Perspex 10
Stainless steel 15
Copper & Polythene 5
Brass 20

Copper 20
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A3-2.4 Experimental Results.

Reproducible results were only obtained when a
good contact between the aluminium bar and heat
transfer disc was made. Graphs A3-1 to A3-5 gives
typical transient cooling curves of the aluminium bar for

all five heat transfer discs.

Dimensionless temperatures : (T-Tc¢/TI-Tc),
(where T = aluminium bar temperature at a

given time)

were used to eliminate differences in time-temperature
profiles due to variation in coolant and initial bar

temperatures.

For comparison of experimental and theoretical
results the temperature profiles obtained from the
thermocouple in the lower thermocouple position were used
for each disc. The temperature profiles obtained from
the experiments with each disc were smoothed to obtain

the most accurate time temperature profiles.

A3-3. THEORY ,

A3-%.1 Mathematical Model.

The assumptions of the model were : (see figure

A3-2a),
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no radial heat flow (lagging and Dewar
flask greatly reduced heat gain from the

surroundings).
heat gain at x = L only.
constant physical properties.

L}

Then the heat conduction equation becomes

2T A OPp

5t - 552 (where k= K ) . (43-1)

P

with initial condition : T (x,t) = TI 0£x<L

and boundary conditions

at x = 0 for t >0, heat conduction to zoolant :

-K (%) x=0 = H(Tc-T(o,t) ) (A3-2)
at x =31 for tR0, -X (‘aT = HG(T(L,t)-TA))(A3-3)
dx/ x=L

A3-3.2 Solutions to the Mathematical Model using Finite

Difference Techniques.

For the solution of the mathematical model a fixed

distance finite difference network was employed. The



Figure A3-2

(a)

(b)
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Diagrams for determination of heat transfer coefficient

TA
f/ - f'/ x=3 L
v
i - T(x,t) A
3 aluminium <
,/, bar 7
rals A
A s
il X =
‘// T A, X=0
disc
ic
2.0 x=L
8 1.75
g 145
6 : 1.25-(3.18cm)
o T = 1.0
7 V. <715
3 5
A
2 1 4 | .25=(.635cm)
1 .0 X=0
(nodes) (inches)
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distance step length (HH in the computer programs)
was fixed at 0.635 em (0.25 in). The network involved
Ieight steps (see figure A3-2b) covering the length

of the aluminium bar (5.08 ¢m or 2.0 in) and nine nodes.

(A network involving sixteen step lengths was
found to give no significant improvement in predicted
aluminium bar temperatures compared to the eight step

length network).

The temperatures at the nine nodes were calculated
at each time step length. The theoretical temperatures
calculated at node 2 (the lower thermocouple position,
A in figure A3-2b) and node 6 (the upper thermocouple
position, B in figure A3-2b) can be compared directly

with experimental temperatures.

The finite difference approximation is now evaluated
in detail both explicitly and implicitly with the
differential coefficients dT/Ot, OT/0x and 32’.[‘/5:4:2

defined as

éE 4 Tn,m £ 1 = rIlnlm
ot k
?E & Tn + 1,m = n,m
ox h
2
é—% = Eg + 1,m - 2Tn,m + Tn - 1,m
ox 2
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A3-3%3.3% Explicit Finite Difference Approximation.

The heat conduction equation in 1 direction is

2T _ K p%n
dt e’ Ox° (A3-1)

which can be expressed using an explicit finite

difference approximation as

T T

n,m+ 1 - "n,m K

k e’p h

n+ 1,m- 2Tn,m + Tn—ﬂ,m

(A3-4

where k = time step length
h = distance step length.

Equation A3-4 can be rearranged to give the
relationship between the temperature at time step (m+1)

and three temperatures at time step (m)

Tn,m_+ 15 = By T i # (q_EB)Tn,m + BTn—1,m (A3-5)
where B = kK
¢ ph

Equation (A3-5) is used to calculate temperatures

at all internal step length positions or nodes.
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At x = 0, boundary condition equation (A3%3-2) can be

expressed as

-K (T2 oo (T-']) ) H(Tc-T(o,t) )

2h

By elimination of (T-q), a fictitious node, the boundary
equation at x=o0, with N = 2hH  becomes

K

Tq,m = 2BT2’m 3 (1-2B)T1‘m N B(N(Tc—Tq,m)) (A3-6)

At Ziwmoin boundary condition equation (A%3-3) can be

expressed as

K (P T.)
Wetar T e (To-TA)

2h

By elimination of (qu), a second fictifious node, the

boundary equation at x = L, with NA = 2h HG/K becomes

Tgm +1 = 2BTg p+ (1-2B)Tg . - B(NA(Tq ,-TA)) (A3-7)

Since the temperatures for all values of n at zero
time (initial temperatures) are known, the temperatures at
successive time step lengths can he computed by

equations A3-5, A3-6, and A3-7.



191

With the explicit finite difference procedure
the stability criterion of no negative coefficients
must be tested. 1In the above set of equations A3-5,
A3-6 and A3-7 the value of B must comply with the

following factor :

B 12 (/K qq) )

The flowdiagram and program listing are given on the

next pages.

A3-3 .4 Implicit Finite Difference Approximation.

Starting with the heat conduction equation (A3-1)
in the following form :

Tn,m s YT Tn,m e (Tn +1,m + 1~ 2Tn,m + 1 +Tn—ﬂ,mm)
k % h®
rearrangement with B = kK produces
R
h™e’p
Qliit Tam " Ta s ame+ 1~ ke + 148 Tn,m + 1 (A%-8)

as the general form of the implicit finite difference

solution.
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i
(STAR}
S, -
/READ initial temp. of the /

/ aluminium bar and parameters
/_of heat conduction equation_

7= 0.0]
|

=2 +1.0]

>

C. Calculatio%}of new temps

|T(1)= 2.B.R(1)+(1-2.8-B.N)R(2)+BNIC

T(I)= B.R(I-i-‘l)1-(1—2.5)&\1)-!-5.“(1_1)

N
[#19)= 2.5R(8)4(1-2.5)R(9) |

C. 4= counter for Lutput of results

-
o o A

| R(I)=1(1)]

| R(I)=T(I) |

ra

7

<
\ ;_. —
&#§9¢_//;;:ezing\\\ - /Print temperatures

_ _ 0of aluminium bar
cnmplit/efl/ / and cooling time
| :
NYes ) i
X

-

P
- *
tnd ot - S
b -

|
é&d%‘
Nt

¥lowdiagram for expicit finite \
difference solution

FR I s R Lo w R e N
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Computer program for explicit finite difference
method for determining heat transfer coeftficient

PROGRAM NAME(CINPUT,QUTPUY, TAPE1I=INPUT, TAPE2=0UTPUT)
PIMENSTON RR(9D)
NIMENSTONRC(O)Y,T(D)
READ(T,220) XK, P, CP
220 FORMATCSFI0,.4)
READ(1.60) T137C

&0 FORMATC2E10,4)
WM =)
MHR= 0

§$20 . pO 150 1=1,9
RET)=T1T

150 CONTINUE

READC1,29%0) YKK,H,HH

230 FORMATCF10,7,F10,4,F10,2)
TA=68.0
AA=XK/(prCD)
BUSYKK/H*w? ; SRS
R=AA*BRA = e
YXMN=2, 0anlel /XK ;
REALT=0,0
URITE(Z2,62)YKK ,H, HH S :

42 FORMATCINT 20X, *TIME STEP LFNGTH IS, 15X, FB. 63X, *HARS " 720X, 'pIST
1CE STEP LENGYTH IS, 14X, k6, 6,5X,"FT' /20X, "HEAT YRANSFER COEFFICI
2HT 185" JAXeFE 13X, "RTU/ M ,F FTan2"/ /) /)

L8 URITE(2,52) -

737 FORMAT (X, "TTHF* 25X, *DIMENSTONLFSS TFMPPR#TURFS'! 3?0'(§EC81'
i G AT POINTS 1 TO 9t//) :

a6 A 2=0.0

5% 7=24+1,

RER[T-RFth+(YKV*§6nﬂ 0)

837 TCI)=24AaR(2)+ (1~ zannuuvxw)ﬁu(1)+ VXN2R®24 0
) B00 t=2,8
TAI)SRARCE+1)+(1=22R)#R(T1)+B*R(I=1)

RO0 CONYTINUE
TCY)=2 0#BARCR)+ (], 0=2,0uR)*R(D)
TE{2.E0,50 .0 &G0 10 &50 . A

777 ne 7 y=1.9 ; FEanes -

RCY)=TCE)
7 CONY TMUE
GO TO "5
450 DO 57 131,9 : ity
HRCI)=(T(I)=TCY)L(TI=TC) o '
57 (ORTINUVE
HHIYI(?.WU)RFnIT.HH(?} RRCG )
50 iuhnnT(zfoH BaON,FO .S, 2% ,F6.5,5X,F6,.58)
Ry7 Ll s IS (-1 [ e
RCIY=TC1)
9 CONTIHUE

IF(RFALT.LEF.RADO ) GO TO S2N0n3%
GO TO 5206

5203 CONTINUE

' GO TO ASE6E

FNp
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The boundary condition equations are solved,by

eliminating fictitious boundary temperatures, in the

same way as for the explicit approximation to produce

at :-
X = 0. e T8 Tq

ST Te,m # 7

,m

{2 % 1/B + N)Tq,m+1 + NTC

(A3-9)

where BA= 2 + 1/B + AN
and AN = HG2h

K

Equations (A3-8), (A%-9) and (A3-10) with the following

substitutions

BB = 2+ 1/B + N
RR = 1/B Tq,m - NTe
RB = 1/B Tn‘m

- = 2 ¥7/B

are used to determine the temperatures at the first time

step length from the initial conditions and parameters

of the equations

The process of evaluation of the



unknown temperatures involves calculating the
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parameters BB and C and the variables RR and RB and

incorporating them into the two dimensioneal array

given below
-BB 2 0 0 0 0 0] 0 0 -RR
1 -C 1 0 0 0 0 0 0 -RB
0 1 -C 1 0 0 0 0 0 -RB
O 0 i ~-C 1 0 0 0 0] -RB
0 0 0) 1 ~C 1 0 0 0 -RB
0 O_ 0 0 1 -C 1 0 0 -RB
0 0 0 0 0 1 -C 1 0 -RB
0 0 0 o) 0 0 1 -C 1 -RB
0] 0 0] 0 0 0 0 2 -C -RB

The above array can be incorporated into the

following tridiagonal matrix equation for the temperatures

Tﬂ, T2, ......Tn
By .Ca
85 B2 C,
a5 b5 C3

n-"1

Tn

a, | (a3-11)

a, | (a3-12)

dz (A3-13)
i
..dn_J

L A A st e e b el e
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The method of solving the temperatures in the
tridiagonal matrix is one of elimination followsd by
back-substitution. The elimination process uses the

following method :

Elimination of a, T, from (A3-12) by multiplying
equation (A3-11) by 85/b, and then subtracting (A3-11)

from (A3-12) produces :

equation (A3-12) becomes : PoTs + 02T3 = cf;

The process is continued for equations (A3-12)

and (A3-13),
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BT, + CoTy = 52 (A3-12)

aT2+bT + C,T = d

3 573 g 5 (A3-13)

to produce P %.0= N [ for equation (A3-12).
55 Do .

In general BT, K + C.T, = C{r—

et B = b " and cfo = 4o

Therefore Po 2, byte vl O i
Pn-1

and [n = de -~ 8 ag_q

At the end of the elimination process, by the
above rearrangements equation n becomes ﬁn Tn = {n,
thus Tn can be found.

By back-substitution the values T _, to T, can be

calculated
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Pn—"l Tn—"f i) cn-—-’1 Tn = 5‘—’1

therefore T 4 = 5'_1 A cn-ﬁ,Tn

Po-

for.n = 1y n=l o Bm2e " 0 i
This process is continued for future time steps.
The flow diegram is given on the next page, the

program listing is incorporated into the optimisation

program in subroutine FUNC (see pp2l0 =2/2)

A%-3, Theoretical Results.

In order to ensure correct results by the finite
difference approximations comparison with an analytical
solution (Carslaw and Jeager (10)) was made for the

case of no heat gain (i.e. HG=0).

Graph A3-6 shows the time temperature profiles
calculated at the lower thermocouple position in the
aluminium bar, for various values of the heat transfer
coefficient. The dotted lines represent the temperature

profiles calculated by the explicit and implicit finite
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Flow diagram for implicit finite difference
computer pro.ram
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difference methods and the continuous lines show

the temperature profiles calculated by the analytical
solution. The predicted profiles obtained by both
finite difference methods and by the analytical
solution can be seen to agree well for all values of

the heat transfer coefficient.

The difference in the theoretical cooling profiles
between the two cases HG = O and HG £ O was that the
cooling profiles did not attain steady state at the
coolant temperature, but remained at a permanent offset
temperature above the coolant temperature, when there

was heat gain (i.e. HG # 0).
Comparison of the finite difference solutions when

HG # O produced good agreement for the same values of

the heat gain coefficient.

A3-4, DISCUSSION OF RESULTS.

A3-4 .1 Offset Values.

Experimental aluminium bar cooling curves did not

attain steady state at the coolant temperature but
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remained,
permanent
expressed
(Where TB

lists the

offset values.

final state bar temperature).

offset wvalues.

The offset values were

as with theoretical curves when HG# 0 at

by the dimensionless term (TB-Tc)/(TA-Tc)

Table A3-1
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TABLE A%-1 - Resistances and Offset Values of Heat
Transfer Discs.
TYPE OF DISC
POLY- | STAINLESS
PERSPEX | COPPER + THENE STEEL BRASS | COPPER
(C) (P)
Thickness
L (mm) 2.25 4,22 0.96 10,72 11.45 4,22
Thermal
conductivity
K (W/mC) 0.19 BB, 0.46 15.9 96.9 |287.7
Dise
resistance
x 10-2 17.1 .011 + 2.098 .68 115 0.011
L/K (m°C/W) - 2.109
Offset
Value
(dimension- ]
less) .08 .05 .05 .02 .02
b

T T T e L



The magnitude of the offset value was dependent

on the heat transfer disc used. Using an electrical

analogue of the system : - (see figure A3-4),
where R,1 = resistance of aluminium bar
(constant value for all
discs).
and R = registance of disc

the following formula was obtained :

TB - Tc TA - Tc

R1 + R3

which on rearrangement produced

TB = (TA - Te) 33

R

TB

203

R4

Ry

Figure A3-4

(A3-14)

Fquation (A3-14) shows that the smaller R5 (Disc

resistance) is, the closer TB will be to Tec.
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A3-4,2 Optimisation of Heat Transfer Coefficients

To obtain the most accurate values of the heat
transfer coefficient between the base of the
aluminium bar and the coolant the theoretical
cooling curves obtained from the solution of the
mathematical model were compared with experimental
cooling curves using a least squares optimisation
program. The program used was a Nelder and Mead

optimisation routine (111).

The objective function to be minimised was:

BY(I) = (EX(J) - EXPER(I,J)) **2

where 2Y(I) was the sum of squares function to be
minimised over 10 points. The values of the array
EXPER(I,J) were the experimentally recorded results
for the temperature of the lower thermocouple position
of the aluminium bar. Array EX(J) stored the
calculated theoretical temperstures for the aluminium
bar at the node corresponding to the lower thermocouple
position from the finite difference solution in the
mathematical model., Values of the heat gain and heat
transfer coefficients were changed independently in
the program to obtain theoretical cooling curves for

comparison with the experimental results.

g R B g e D e 2 S —————— e



The optimised values of the coefficient are

given in table A3-2,

TABLE A3%-2,

Comparison of the optimised
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Heat Transfer Heat Transfer Heat Gain
Disc Coefficient Coefficient
(W/m<C) . (W/m2C).
Perspex 56.8 2.7
Copper & Polythene 5500 5e
Stainless Steel 900.0 9.6
Brass 1700.0 9.6
Copper 2000.0 9.6

theoretical results are shown on graphs A3-7 to

A%3-11 and tables A%-3 to A3-7.

The Flowdiagram and

listing of the optimisation program are given after

the graphs and tables.
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'

- Nelder and Mead (NELDER ALGORITHM) Logic Diagram (771)
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Optimisation (Nelder « Mead) program incorporating

implicit finite aifference method for determining
heat transfer coeifficient in

101

1n2

o111

130
120
130

1043

1v4

1ub

14n

subroutine FUNC.

(171)

PROGRAM NAME CINPUT, OLTPUT, TAPELSINPUT, TAPEZ220UTPUT)

NELDER AND MEAD h[m]wlznrluw

INTECER W

DIMENSIUN "X(302) s KUENC3»2) o XKEF (352) o XCUNCS,2) g XEX(3,2),2(3)

DIMENSION EXPER(IV, 10)
COMHON EXPER
COMMUON KZK

KLh=W

KAAJ = o

READ(L,111) NpITHMAX, IPKRIN]

FURMAT(BTI1W)
NP1 =N #1
HEADCL,112) ALFA,
FORMAT (8F1v,0)
READCL,102)

BETA,

KAAJ = KAAJ + 1

READ(1,511) (CHXPERCI, W) g W=1,2),J%1,10)

FORMAT(2 Fluw,u)

GAM,

(X(1lad)pdml,yN)

ALLC,

QB S(A/NS(2,%2,0))2( (N1 )% Dml,)

P om(A/NE(2n% D)) x ((NO1)AR HeNm],)

MaNe

D IN 122, 4

AP= L,

DO 12w Jd=y N

AP =AP# 1

IF CY.EU APY GO TO
X(Ipd) aX(1ed)4Q
G TU 124
XCIpd)Ex(lad) P
CONTINUE
CONTINUE

139

IFCALFAEU W, ) ALFA =
IF(BETA,EQ,1n,) BETA =
IF(GAN  EQ,B,) GANM =2,
IF(ALC,EQ,0,) ALL =, 0001

1o
oD

WRITE(Z2,103)

FORMATCIHL 210X, 28HNELDER AMD

WRITE(2,104)

FORMAT (/72X LUHPARAME TERS)

WRITE (2,185)
FORMATL /Z2XpShhke
lE1B 44X, "BLTA =
DO 14y lL=j1,NP]

NegACLoALFA,

BETA,GAM
e 124X, YALLCUKAL Y=
Vb1 4,4, TGANMA =1 ,E10,.4)

WRITE (2,1306)CLsdaX 0L ) ad=tsN)
186 FUORMAT(/2(2X» 20X (o121 Hy 2 12,4H) &

CUNTINUE
ITReR

MEAD OPTIMIZATION)

Veb1®,4 7/ 2%, 'ALFHAS !,

1 1PEL2,9))

i i s e s SR e
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1bb

154
108

100

1049
162

165
1/

175
18u

185

194

200

2uH

207

208
210
215
221

208

DO 165 1=§.,NPL

CALL FUNCCI, X, Z,N,NPL)

CONTINUE

ITR=S 1TR +}

IFCITR,GE, ITMAX)IGO TO 145
IFCIPRINT) 198,102,158

WRITE(2,148) ITR

FPORMATC(/Z/72Xe VITERATION NUMHEH' 133
DD 16KW J=1,NPY

WRITE (el100)‘;1;1;x‘d,1,;1:1,hl]
WRITE(2,109)(1,2(1),151,NP1)
FURMAT(/3(2Xp2MF (p12,4H) = ,F16,8))
ZHI =AMAXL (2(1)s£4(2)44(3))

L0 mAMING €Z201),2¢2),4(3))

DO {65 = §,NP1

LE (2T ke20E)) 6u T 1724

CONTINUE

k=1

EnN=N

DD 18w J=1,N

SUM= b,

DO 175 1=1,NP1

IF(K,EQ,I) GO TO 175 -
SUM =SUM #X(1,J)

CONTINUE

XCEN(K:J)= SUM/ZEN

I=K

CALL FUNC (I.xttw,z NsNP1)

ZCEN =/4(1)

SUM =1,

DO 185 la31,NPt

IF(R,EQ,T) GU TO 14b

SUM= SUM +(Z(I1)=ZCEN)A(ZCI)=~ZCENI/EN
CONTINUE

EJ =SURT(SUM)

IF (L LT JACC) GO TO 998

DO 19V J=1,N

XREF(Kp J)SXCENCK,J) +ALFAX(XCEN(K J)=X(K,J))
CONTINUE '

1=K

CALL FUNC (XI,XRFF,Z,N;NP1)

ZREF =2(1)

DO 200 I=1,KNP1

IF(ZLO,EQ,2(1)) GO 10 2u¥5

CONTINUE

L=1

IFC(ZREF L LEL,Z(L))GO TO 240
DO 207 I=1,NP1

ITECIREE JLTLZEL) Y GO 10 218
CONTINUE

GD TO 2158

DO 210 Jsi,N

X(Kpd)= XREF(K,J)

GO TO 154

DD 228V J=1,N

XCOMNMCK, J)SXCEN(KaJ)+BETAR(X (K, d)mXCENCK,J))




225

234
235

249
245

112
113
3ou
114
3n
40

31
41

a2
42

J3
43

34
44
36
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1=K .
CALL FUNC (L1, XCUN,ZyNy,NPT)
ZCON =2(1)

IF(ZCONGLT,Z(K)IIGO TN 230
DO 225  Jd=1;N

DO 225 I=1,NP)

XCIpJd) SCX(IpJd)eX(L,d))r2,

GO 10 1bwe

DO 235 J=1,N

XCKed) SXCONC(K,J)

GO TO 190

DO 245 (=) ,N

XEX(KpJ)=XCEN(KpJ) #GAM A(XKEF(RpJ)=XCEN(K,J))
I=K

CALL FUNC (I,XEX,Z,N,NP1)

ZEX =42(1)

I CEERGSLT, 200 )60 TU 258

DO 254  J=1,N

X(KaJd) SXREF(K,J)

GO 10 154

DO 26w J=i,;N

X(Ked) =XEX(KgJ)

GO TO 150 e

WRITE (2,111) ITMAX

FORMAT(/Z//14X, 'D1ID NOT LONVERbE INT, 15, '"ITERATIONS!)
WRITE(Z2,112) ZL0O

FORMAT (/72X 'OPTIMUM VALLUE UF FSt, E16,8)
WRITF(2,113)

FORMATC/Z/72%, 1OPTIMUM anU&b OF VARIABLES!)

DO 40Y I=1,.,N

WHITF(2,114) 1,X{(NP1,1])

FORMAT(/2X,2HX(,42,4H) = s1PF10,8)

GO TO (3n,31,33,34,32), KAAJ
WRIITE(2,40)

FORMATC(Z'COPPER DISC 1)

GO TO 36

WRITE(2,41)

FORMAT(/'HBRASS DISL!)

GO TO 3o

WRITE(2,42)

FORMAT(/'STAINLESS STEEL DISC!)
GO TO 3o

WRITFE(2,43)

FORMAT(/YCOPPER + POLYTHENE DISC!')
GO TO 36

WRITE(2,44)

FORMAT(/I'PERPEX DISC!)

CUONTINUE

IF (XKAAJ,GY,5) GO T0 3

b T 0 T 4

STOP
END
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SUBROUTINE FUNCCIpXsZ,NA,NPY)
REAL KKpK,NN, INPUT(1WV,10) e INNNN(L1®V,10)
INTEGER W
DIMENSIONX(NP1,NA),Z(NP]1)
DIMENSION EX(104)
DIMENSION FE(L1U,110)
DIMENSIUN EXE(1d,10) ,EXPER(1O,10)
DIMENSIONXR(1¥,109) e lY(10)
DIMENSIUN RNC1W,10) )
DIMENSTION ECIV),1(10)
COMMON EXPER
COMMON KZK
REALT=W,
XX=1,
YYYSO,
NMAX=]10
IF(KZKNEB) GO TO H12
READ(1,10) KK, HH,P,K,SF
FORMAT(F18,7,4F10,4)

C COOLANT TEMPERATURE 1S5 1F

b
683
512

92
91
644

94
93

81

b2

READC(L1,30) CCINNNNCN,M) ,MS1,10) NS1,9)
FORMAT(1UF5,2)

WRITE(Z2,683) ((EXPER(WaN) ,N=1,2), W=k, NMAX)
FORMAT(Z1UX,2F10,3,9%X,'EXPER!'/)

KZK=1

DO 91 M=1,9

DO 92 N=1,14

EXE(MyN)SINNNN(M,N)

CONTINUE t
CONTINUE ‘
TF=wld,

Tr=24,

TA=08,

TlsoH,

W=1

DO 93 M=1,9

DO Y94 N=1,10

INPUT(M,N)SEXE(M,N)

CUNTINUE

CONTINUL

TT=(TF+TI)/72,4

Has KAKK/(SPAPAHHAX2)

NN=2 ,2#X(1,1)xHH/K

RRSL ,W/0ATTHNN2TF

XX=U, 4

Cs 2,4 #1,0/8

BB =2,1 +1,8/B+NN

KB =1,0/8B 7]
INPUT(1,1)==BY
INPUTC(1,10)=eRE

bu Bl M=2,9

INPUT(M,100)==RA

CONTINUE
ANZ=(2,*HHAX(1,2))/K
WRITE(2,682) ANpgNN,X(Lls1)aX(1,2)
FUORMAT(/10X%, 'VARS! ,aF15,72/7)




i

HAZ (AN+2,0¢1,0/8).
Do B2 M=2,9
INPUT(M, M) zw(
82 CUNTINUE
INPUT(9,9)z=lA
DO 673 M=1,9
DO 674 N=1,9
FE(NsM)ZINPUT(N,M) r
674 CONTINUE j
673 CONTINUE
IF (XX EQ B, 8B)60 TO 7v
618 122=0,
617 DO 727 M=1,9
DO 78 WNu1,9
INPUT (N, M)=EE (N, M)
78 CONTINUE
77 CONTINUE
INPUT(1,10)==(1,0/B5T(1)+NNATF)
DO 12 N=2,8
INPUT(Np1B)=w]l ,U/HAT(N)
12 CUONTINUE
INPUT(9p i) =m (), B/8%T(9)+ANXTA)
70 XxX=1,8 g
REALT=REALT+1W,
DUBY N=i,10
RNCL e N)SINPUT(L,N)
89 CONTINUE
DY 22 Mz1,8
O 23 Nz1,10
XR(MgNISRN(M, N) A INPUT(M41 M) ZHN(M, M)
RNCM+L,N)SINPUT(MeLaN)=XR(M,N)
23 CUNTINUE
22 CONTINUE
DO bl M=1,9
DO 62 NS1,10
INPUT(MeN)IRN(M,N)
62 CONTINUE
61 CUNTINUE
Mzg
T(MISINPUT(M,M+1)ZINPUT (MpM)
DO 14 J=1.8 Y . 4
NEMe,J :
TON)S(INPUTINgM#1)wT(N®L1 D*INPUT(NsN#1))/ INPUT(N,N)
14 CONTINUE
DO 71 N={,9 4
E(N)=T(N)
71 CONTINUE
IFCABS(REALT=EXPER(W,1)),LT,0,02) GO TO 22
GU Tu617
822 EX(2)s(E(2)=TF)/(TI=TF)
IY(W)S(EX(2)=EXPER(W,2) ) %%2
YYYSYYY+ZY(W)
WRITE(2,601) EX(2) s REALT W ZYC(W)HYYY +E(2)
66} FURMAI(//IMX,!VALUtSF,2X.2F1M,b,Ib,dX,2F1B,5,1UX,FIB.4//)
CEAVES |
IF(w,GT,10) GO TO 85H9
GO YO 618

: ’
e A A NS




859  CONTINUE " :
2en)=yyy . | -
WRITE(2,667) Z(1)

667 FORMAT(//18X, ' Z(1) 1 s5XF14,5/7) e

ﬂg? U&“ | | ‘ . '.:‘l. N . Rt ._'., g
END RS . e

*
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Table A3=3

Copper Disc

Optimised heat transter coefficient =

Dimensionless temperatures

Theoretical

« 760
« 383
<197
.106
.062
.040
.029
.024
.022
«203
. 020
.019

Experimental

. 760 :
.400
.236
+140
.080
.050
.031
.023
.021
.020
.020
.020

L e e Sl e ] K BT
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2000.0 W/m° ¢

( .

Time

10

60

110
160
210
260
310
360
410
460
510
560
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Table A3-4

Brass Disc

Optimised heat transfer coefficient = 1700.0 h’/m2 C

Dimensionless temperatures Time

Theoretical Experimental -9}
. 185 . 7185 . 10
<435 «435 60
.242 © se6e 110
. 140 176 160
.086 «3213 210
.056 .090 260
.040 .069 310
.032 .058 360
027 .042 410
.025 .038 460
.024 .029 510
.023 .024 560
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Table A3%-5
Stainless Steel Disc

Optimised heat transfer coefficient = 900.0 w/m2 C

Dimensionless temperatures Time

Theoretical Experimental (.‘s )
.860 861 10
«612 +615 60
-442 - 1s455 110
. 321 360 160
«236 .280 210
& 5 + 228 260
136 . 180 310
+ 107 .148 360
. 087 «120 410
.073 .093 460
.063 079 510
.056 .064 560
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Table A3%=6

Copper and Polythene Disc

Optimised heat transfer coefficient = 3% .0 W/m2 C

Dimensionless temperatures Time
Theoretical Experimental £ 32)
« 955 .958 10
s 722 Rhy 110
«549 - 950 210
421 +428 310
« 325 «538 410
254 265 510
.201 .220 610
. 161 .180 710
132 .140 810
« 710 330 [ 910
.094 .100 1010
.082 .084 1110
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Table A3-7

Peraspex Disc

Optimised lLeat transfer coefficient = 56.8 W/m2 C

Dimensionless temperatures Time

Theoretical Experimental . 7 )
«950 +951 - 100
« 157 w180 600
. 604 . 620 1100
. 486 « 507 1600
«393 412 2100
<321 ; « 338 2600
«265 .278 3100
o221 «228 3600
.187 «192 4100
.160 .168 4600
139 . 149 5100
» 10D 131 5600
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A3-4,3 Heat Gain Coefficients

An explanation of higher heat gain coefficients
with the copper, brass, and stainless steel discs
compared to the copper plus polythene and perspex
discs could be found from stating that the initial
assumption that all the heat gain was at x = L
was, although adequate, not true, and that heat gain
may also have occurred at the discs. The radial heat
transfer in the discs would increase as the disc
conductivity increased, i.e. as the H value increased,
and therefore be more significant with the metal

discs.

It should be noted that the effect of the heat
gain coefficient was very small compared with the
‘heat transfer coefficient between the aluminium bar
and coolant, and did not significantly alter the
latter value. The heat gain coefficient explained
the final offset values of the aluminium bar but had

very little effect during the initial cooling period.



A%-4 .4 Accuracy of Optimised

Heat Transfer Coefficients.

The heat transfer conductance, H, for each
disc depended on two quantities (1) the resistance
of the disc, R, and (2) the coolant film and contact

resistances Re.

We may write

1
= = R + Re

H

At constant coolant rate Rec should be constant

and independent of the disc used. Changes in H

resulted therefore from changes in R,

A check on the accurancy of the measurements of
H was provided by a comparison of the Rc values from
the runs with different discs. Rc was calculated
from (A3-15) using the optimised H values (table
A%-2) and the disc resistances (table A3-1),

Table A3-8 contains the values of 1/Rec found

in this way.
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(A3-15)



TABLE A%-8
Heat Transfer Disc Film and Contact
Conductances (1/Re)
(W/m°C)
Perspex 1996
Copper & Polythene 1370
Stainless Steel 2326
Brass 2110
Copper 2049

From table A3-8 values of (1/Re) for the discs,
omitting the copper plus polythene disc, can be seen
to lie within a 16% range. With the latter disc
the low conductance value was probably due to the
extra resistance between the copper and polythene
strip. The mean of (1/Re¢) for the four discs
(neglecting the copper plus polythene disc) was
2120.25. Using the t distribution for three degrees
of freedom the 95% confidence limits of the mean

were calculated to be:

2353 € mean < 1890

225
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Using these confidence limits a confidence

interval for the heat transfer coefficient for each

disc was calculated.

Table A3-9 compares the

confidence limits for the coefficient with the

optimised values for each disc.

TABLE A%-9

Heat Transfer
Disc

95% confidence limits
of heat transfer

Optimised heat
transfer coefficients

coefficient(W/m2C) "H' (W/m2C)
[Perspex 55600 Bl 56.8
Stainless Steel 826.0 - 909,0 900.0
Brass 16565.0 = 1869.0 1700.0
Copper 1852.0 - 2294.0 2000.0

The error introduced by the variation of the film

and contact resistances leading to uncertainties in

experimental H values, in freezing formulas can be

shown by predicting freezing times by the Modified

Planck method.
in table A3%-10.

Times to freeze 1 cm. ice are given
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TABLE A3-10

Heat Transfer Heat Transfer | Freezing |Percentage
Disc Coefficient times difference in
(W/m2¢C) (secs) freezing times
Perspex 55.6 = 4972 1.4
51 4900
Stainless Steel 379.0 - 901 3.6
395.0 869
Brass 1565.0 - 762 3.8
1869.0 734
Copper 1852.0 - 693 B
2294.0 671 !

The maximum error in predicted freezing times

can be seen to be small (4% for freezing 1 cm. ice).

The maximum effect of the variation of Rc on H,
(however caused) produced no significant error in the
freezing formulas since the discrepancies between
theoretical formula and experimental freezing rates
lie outside these limits, and were not explained by
errors in the values of the heat transfer coefficients
used, i.e. the coefficients have been determined

accurately enough.
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APPENDIX 4.

DETAILS OF MATHEMATICS AND COMPUTATION OF
FREEZING RATE FORMULAS OUTLINED.
IN CHAPTER 4.

The assumptions used in the derivations of the
freezing rate formulas outlined in chapter 4 and given in

this appendix are :-

1. Initisl uniform temperature of material

being frozen.

2. Constant coolant temperature.

3. Material has constant thermal conductivity
and specific heat (different for the two

phases).

4. A density which does not vary with
« temperature or alter during the freezing

process.

5. A definite freezing point at which latent

heat is liberated.
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©. Heat transfer is in 1-direction only.

7. Heat transfer within the watery solid
is by conduction, with a convective

boundary condition.

The governing equations of the mathematical model
with the above assumptions are (see also chapter 1

and appendix 6)

Conduction equations:

CE %1,
o SR (1-1)
21, 7 o,
ST (1-2)

Boundary conditions: at frozen-unfrozen interface,

= = XY,

ey el 3”1\ o
dt C)

(1=-3)

)
e
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P = T2 = 'Pii (1-4)
at coolant surface, x = 0.

H(Te - Ts) = --Ti{,1 am

dx x=0 (1-5)
at the axis of symmetry, x = a.

0T,

—— =0 1-6
S (1-6)

Initial conditions

]
o

X(tY =70  at 't (1-7)

il
o

T, = f(x) at t (1-8)

This appendix now derives in detail each theoretical

formula outlined in chapter 4 in turn.

A4-1., PLANCK METHODS.

A4-1.1 PLANCK'S ORIGINAL METHOD.

The method assumes that the thermal capacities of




the frozen and unfrozen phases are negligible so that
the unsteady conduction equations (1-1) and (1-2)

reduce to the steady state equatioas

o1, b, and P> Ty by

—— =

D x 2

where b,F and b, are independent of x.

Inspection of figure A4-1 shows that :

by

1}

0 (as T2 = Tm for all t)

and b, =/ 0T, Tm - Ts

Py X (t)

The resulting boundary condition equation at x=X(t)

on substituting (aTq/JX) and (JTg/éx) into equation
(1-3) is :

-Le dx K,] Tm - Ts

at X (A4-1)

At x = O the boundary condition equation on substituting

(E)Tq/f)x) into equation (1-5) becomes

231
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Figure  A4-1 Assumed temperature profile
o1 Plancks method.
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X

H(Tc - Ts) = -K, (Tm - Ts)
(A4-2)

Elimination of Ts from (A4-1) and (A4-2) gives

Lp ax H(Tm - Tc) / (1 + HX/K,) (A4-3)

dt

Integration of equation (A4-3) between the limits
X =0toX=2X(t) and t = 0 tot = t.

X = X(t) t = %
ax (1 + ux J H (Tm - Te) dt )
K ” Le
¥ =0 L t =0 e
X + HX® H (Tm - Te)t
2K,] LE
LE(2K,X + HX®) = 2KH (Im - Te)t
whence

2

t = LP(2K,X + HX2)

2K1H(Tm-Tc) (4-2)
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A4-1,2 MODIFIED PLANCK METEOD.

Equation (4-2) which gives the time t to form
a frozenrn thickness X will be most accurate for systems
in which the sensible heat can reasonably be neglected.
(i.e. when the initial liquid temperature is near the
freezing point and the coolant temperature is not much
below the freezing point). For higher initial temperatures,
and lower coolant temperatures, the method can be
improved by including the sensible heat to be removed as

follows

Let TI equal the original (uniform) temperature of
the unfrozen solid and assume, for the purpose of
calculating the heat supply to the solid, that the

temperature profile during freezing is as in figure A4-2,

If we take T = O as the reference temperature for
enthalpy, the enthalpy per unit mass of the frozen phase,
whose average temperature is (Tm + Ts)/2, is €, (Tm + Ts)/2.
The enthalpy per unit mass of the unfrozen phase,
whose average temperature is (TI + Tm) /2 is
Cp Tm + L + Cy ((TI + Tm)/2-Tm), where the first two terms
are the enthalpy of the liquid at it's melting point,
referred to as T = O, and the third term is the enthalpy

above the melting point, Tm,
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"Figure A4-~2 Assumed temperature profile of
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When the frozen-unfrozen interface is at X,
the total enthalpy of a block of unit area normal to the

x-direction, extending from x = O to x = a is

XpCq (Im_+ Ts) | (a-X)p (C,Tm + L + Cp(Im+TI-Tm) )
2 >

When the interface is at X + dX, the total enthalpy

per unit area is

(X + ax)pC,; (Im_+ Ts) | (a-X-dx) @ (C,Tm+L+Co(Tm+ TI-Tm))
2 2

The total enthalpy supply, when the interface

advances dX is thus

f ax (Cq(Tm + Tg) _ C, Tm-L-C, ((Tm + TI) - Tm))
2 Ve 12

=PdX (C; (Tm - Ts) + L + C, (TI_- Tm))
2 2

The heat flux required to freeze unit mass thus
changes from L when the specific heats are neglected

to Cﬂ (Tm - Ts) + L + Cy (TI - Tm) when the specific heats
2 2 i
are included.

PR T P T R T A, b itnd L e B e i 4 el
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The corresponding equation to (A4-1) by the first

Planck method at X = X(t) becomes :

-(C,; (Im-Ts) , L + C, (TI-Tm)) fp(g5)= K, (Tm-Ts)
2 2 dt X

(A4-4)

Elimination of Ts between (A4-2) and (A4-4) and

integration as with the previous method produces :

k )
t = (DX C, (Tm-Te) £ 1+2Kq +02(TI—Tm))

(Tm-Tc)2 K, 2 HY 2

A4-1.,3 MODIFICATIONS TO PLANCKS METHODS BY NAGAOKA
AND RUTOV.

Nagaoka ( 35 ) and Rutov ( 34 ) studying independently
the freezing of fish and meat respectively, extended the

Modified Planck method to account for the overall freezing

time.

Their modifications take the form :

tp = tp (1 + A (TI - Tm) ) (4-4)

BT R U S S @ MW TL] (a7 wemrarg Ty e ey
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where tp = freezing time predicted by the
Modified Planck formula (4-3),
tT = total freezing time.
A = constant.

Rutov, like many Russian workers, developed the
use of standard dimensionlegs groups (i.e. Fourier
number,;,Lt/X2 and Biot number, HX/K,) for unsteedy state
heat transfer along with the Kossovitch number
(L/C, (Tm-Tc)) for phase change. From experimentation
he evaluated the correction factor, A, in equation 4-4 to

be 0.005% (4-4a).

Nagaoka working from the expression for the total
enthalpy change over the whole process introduced his
correction factor to take into account the precooling
time and the density change on phase change. Nagaokas
correction factor in equation (4-4) is given as 0.008.

(4-4b).

A4-1.4 COMPUTATION OF METHODS BASED ON THE WORK OF
PLANCK.

The main advantage of the methods of Planck, Rutov

and Nageoka is their ease of evaluation. The calculations
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performed in the following computer program could

quite easily be carried out on a hand calculator.

The program requires the input of the physical
properties of the material being frozen and system
conditions only. Evaluation of the extension to the
method by Rutov and Nagoaka just require one extra line

of calculation each.

A flowdiagram, listing and sample output are given

on the next pages.

A4-2 GOODMAN'S INTEGRAL METHOD.

According to this method, the transient disturbance
is assumed to have penetrated a distance X into the
solid in question, and beyond X the original temperature
persists. The original temperature is taken as being

equal to the freezing temperature.
The method, with the above assumptions consists of

. : : 2
(a) Multiplying equation 7 aT,I 3 o 1 5 T4

2  Ox

by dx and intezrsting it from x = 0 to x =dF to give
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START

C. Input of‘required data

READ PHYSICAL /
PROPERTIES
b By K1, €3, €

SR

READ SYSTEM
VARIABLES
_H, TC, TM, T

C. 1Initial ice thickness

v

Y

b
>

EVALUATION OF PLANCKS METHOD (equat. 4-2)

EVALUATION OF RUTOV METHOD (equat 4~4a)

EVALUATION OF NAGAOKA METHOD (equat  4-4b)

EVALUATION O MODIFIED PLANCK METHOD (equat 4-3)

o C. Output of| Results

v

OUTPUT OF FREEZING///
TIME & ICE THICKNESS

b 5
X=X + ,005

C. Has m%}erial been completely frozen

“No X =XMAX

Yes

L Yes ANY MORE

LUNS
No

Flow diagram for the evaluation of Plancks method
and extensions to the method.

C. Increase ice thickness by given increment

P R T
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KEAL Loy

FREFZING RATES PREDICTED BY PLANCKIS METHUD AnL HY
MODJFICATIONS TO THE METHOD
i *
DEFINITION OF VAKIABLES

LATENT MHEAT
SPECTIFIC MEA!
BDENSTITY
THERMAL CONPDUCTIVITY
HEAT THANSFER COEFFICLENT
T CONLANT TEMPERATURE
T FRYFZING TEMPERATURE
L Tl = INITIA| TEMHERATURE : .

x v Yy
aHn 8aan

H

n u o

NCEO

ik

READ ¢ 1,1000) ,P,x,C1,Cc2
100U FURDAT (S5H10,0) :
Ixlsye
b0 4uh x1=21,1xl
READC1,1010) HeTCoTM, 11
1070 PUKMAT C4F10.0)
L
g
WRITEC(Z2,3005) M,1L,TM,TI1 !
S0UD BUKNATCANY /7771 ¢uX, " FREFZING RATES PREDICTED RY',qx,
1'PLANCRS APPROXIMATIONS! // 20X, "HEAT TRANSEER CGEFFICY .
e LENRY BV, EO N 2K "W/ Mew 2wl 1 /20%, Y CUOULANT [FMPERATIRE =
Seb 002X, (0)V/ /UK, VFREEZING TEMPERATURE =9 ,F7,1,2x,
GVECYY/) 20X, VINTYLIAL TEMPERATURE E)aFl et dh, VLYY Y

MOENT«9

MRTTE(2,H38) :
B33 FURMAT(// 20Xs 'EKEEZING OF DISTILLED WAYERY //7)

. WKITE(Z,3445) A
3642 FORNATC 19X,V THICKNESS Of TLEY  BX ,"PLANCKY, 5K,
1'"MOP, PLANCKE ,5X ¢t TRUTOV Y o BX, "NAGUAKA ' /20X, (cmdt’
el SK, " CHRSD Yy BX # ' CHRS) Yy 9% oV (HRS) ' oYX o' (HRSIY /)
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X0
X=X+, 008
EVALUATION OfF PLANLKTS ME THOD

R I_.iP*(?,-it)(-!-H‘x‘tt‘J} (Z.tlina(TM-IL))
1% e %2

EVALUATION OF MOPIEIED "PLANCK'S METHUD

T3= pnx¢-2fc(Tv-iL)¢g_oy}
Tas C1-% (Th=T0)/ &,

155 9, «2.%k/ (HxX)
TOSLeC2*(TI=TM) /¢

TYE 15 «(Th «(T5%76))

Y = 1%

FEVALYATTON OF RUtuv's MgghuD
1K = TY&(1,¢, 0053007 =TM))
EVALYATION OF NAGAUKA'S METHOD

Th o= (Ya(l,+ 00HetT]1=TM))

OuTPT OF RESULTS

X1 = X#100,0
T & T2/8%60U0,
1A TR 4600,

1 0

TF = TN/SHUO,
TRaT2/ 3600,
TeaT1/ 3600,

WKITEC2,3515) X1 TP, TBoTAWTF

FORMAT (2UX, Fhe20 AN FS (X kB, 2))
TF(X, LT, . 65%F=01) LD YO %0

CONTINUE .

STUpP

END
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fo?

(v)

J @
T,] dx+'l‘,1 (C{)({ =9L,|

Assuming that the temperature T,t
can be approximated by a polynomial
in x. This procedure uses a

quadratic equation :

T, (x,t) = a (x —cr) + b (X—J)e

244

Ox/d \ 0 x

(4-5)

A quadratic polynomial was used instezd of a linear

one so that the effect of the thermal capacity of ice

could be taken into account by the curved temperature

profile,

Goodman alsoc used cubic polynomials

(15). The

choice of a quadratic polynomial was based on the fact

that since by experimentation, the thermal capacity of

ice was found to be a relatively insignificant factor

in the freezing process the temperature profile in the

frozen phase could be adequately described by a

quadratic polynomial. (See figure A4-3),
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Figqure A4-3 Assumed temperature profile of
Goodmans integral method.
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The values of 'I'1 and aTq/Dx from equation (4-5)
were substituted into (A4-7)to give an equation that
can be integrated directly when constants a and b in

(4-5) were known.

We fournd a and b from the boundary conditions at
X = O and x = Cr. Following Goodmen :

At x = 0 (7. = Ts)

1

Se /0 (1-5)

ox J ©
Tm - aJ + bJE = Te + K,I/H (a + EbJ-) (A4-8)

Atx:cr_ L ax + Ky 21, - Eof T,

a-3)
dt ox | X Ox | X

by the assumption that the liquid temperature T2 was

equal to the freezing temperature, this boundary

condition was reduced to
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Lp ad R
{t dx | d (A4-9)

Again following the arguments of Goodman, this

last boundary condition was transformed as follows

Writing T, = fn (x,%)

a1, = aTq dx + [ 7, at
Ox Ot
if x = fn(t) we may write
ary - [ 0%} & [ 9%
at Ox at dt

and when x(t) J(t) with T, (J,t) =0

T, o, ad T,

200 el W ol vl 6 v

substituting (£>T1/bt) from equation 1-1, we

obtained

of Ay () ][0,
Vx° O

X

at (A4-10)
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Combining A4-9 and A4-10 we obtained :

A a%) . aﬂ 2

K, axg dx
Which on substituting values from 4-5 gave

AR (2) = - (&)@ (A4-11)

K4

i.e. the second boundary condition at x = Cr.

Letting n =k, LP /K, in equation (A4-11) we

obtained the relationship between a and b as :
2
b = -a“/2n (A4-12)

Rearrangement of (G-3A) with m = H({qu together

with (A4-12) gave a and b as

Hn 1 +. 1 1 =2m Te (2 + n)
A% A 1| (A4-13)
Kym \2 +m n (1+ m)
Hgn 1% n 2 1 -m(2 + m) Te _|1 - 2m(2+m)Te
K, 8 > >
Km=\2 +m n (1 & i) n (1 + m)

(A4-14)
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In equation (A4-7) we substituted from (4-5)

(1) 4 @) (t)

d
T, dx = j ( a (x-J)+b(x-J)2 ) dx =
0 0

(K’i 2/21{2) anr. & (K, Z"/Zwlia)me.

@ v, (NHd = md

(3) (amq) ]
o )&~

|
&
A
=
=N
o’
B

whence :

t = K, [Kq Wi mT db ~'% ~®. Mda] am
——— — — _} — R — —— . — ——
J\,TH ARLE 2 6b 4B 2b  4b dm
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Equation (4-€) gives t in terms of m, hence of d-
and thus expresses the movement of the frozen-unfrozen

interface with time.

To evaluate the integral in equation (4-6) we
required values of a, b da/dm and db/dm for various
values of m, and in particular at m = O, The derivatives
were found from the values of a and b. At m = O, a and b
are indeterminate, so we considered the limiting values

as m— 0.

m—0, a — Hn /'1-431'1‘0 -1

2qu n
= Hn 1 =« 2 Ten A
2K1m n
= - HTe
. = ao
K,
by ~H°n 1 - 2Tem  [1 - 4Tcm
4K42m2 n n
s <B%n 2 2
ol 1 = 2Tem 4 2Tcm 2Tc™m™ ..
Z & —_ -+ +
4K1 o n n n2
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I

——
2K1 n

- 802/2n = b0

L}

The numerical integration procedure consisted,

essentially of the following steps

(a) calculate the values of a and b at

m = ml

(b) dincrease m by a suitable arbitrary

step A m.

(¢) calculate a and b for the new value of

m = mAm,

(d) approximate da/dm and db/dm at m by
la(m + 4 m) - a(m)]
[b(m + A m) - b(m)]

Am and

*|e

A m respectively.

e]=

(e) evaluate the integral I(m) equation
(4-6) at m from the values of a, b,
de/dm, db/dm and m.

(f) repeat the calculations for m = m + A m

to give I(m + A m).

ot A # 1L 14t add T Ll i b e e L i e et Rt e



252

(g) integrate by the trapezoidal approximation,
to give: t(m +Am)-t(m) = 3 (I(m + Am)

+ I(m) ) x (&amn).

(h) continue this procedure over the range
m = O (where a and b equal ao and -aog/En

respectively) tom = m a predetermined

max’
upper limit.

(i) tabulate t(n.am) against m = n.A m.

(j) as a check on the accuracy of the numerical
integration procedure, repeat the
calculations with a new increment of m,

m = m/2., Repeatedly halve the increment
and recalculate until sufficient accuracy

is obtained.

A4-2.1 COMPUTATION OF GOODMAN'S METHOD.

In the computer program reduction of the increment
value below X = .001, using the trapezoidal approximation,

was found not to give improved accuracy. Since this
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step length value of 10 mm (equivalent to x = .001)
provided a useful incremental value for the ice
thickness the use of other integration formulae such

as Simpsons methods were not considered necessary.

The flowdiagram on the next page shows that the
evaluation of the variables in the integral is
carried out in subroutine JAWS. A sample listing and

output are given on the pages after the flowdiagram.

A4-3 NEUMANN'S SOLUTION.

Neumann's solution assumes that the surface
temperature (Ts) of the body being frozen is constant
which corresponds in practical cases to the requirement
of a high transfer coefficient, i.e. that Ts = Tc and
most importantly that the unfrozen region is large
compared to the frozen region for all times of interest,

so that we may write

T, — TI as x —) oo

With the above restrictions equation (1-1) can be

written as
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Flow diagram for Goodmans method

g
C. Read in requlred data
Vs inﬁ"”“”:;y'
‘,;_K.‘l 2 :I'K_I‘l L_L’____p

"REED
H, ™M, TC _

(& Calculate\F&B as X gzero

X= .00001
M= H*X/K1

N= L*PK1%*P/K1

A= H¥TC/K1

B= H**2XTC**¥2/ (27K1%%2%N

-
WI= K1/ (T&1%*H)|

C. IncreaseM toM m by increasing

X by X
W
[x=_.001 |
A i\
CALL JAWS (II) |-
s
tgk\‘
C. Evaluation of integrand at .
m=m ;ﬂaUBROUTINb JAWS (1J)]
[IX= II%*wI| ,/" Evaluation of variables
F in integral at m=m
. : A&B
__—;-——DLjii__EHJ il and approximation

of daA/dM & dB/aM

|caLy JAWb (ax) |

C. Evaluation of integrand
at m=m+Am
l
[dX= IK*WI |
C. Evaluat{fn of time interval by trapezoidal approximatio:

T= ,5% (JX#—IX) * (H* .001/K1)|

[ s Uutput of results

[[x=gx | OUTPUT of FREEZING :
TINME (T) ICE THICKNESS(X)

c. Has complete material been frozen

No e
——< X > XMAX >
‘-—-h\\ -

T

v Yes

e —
<~ Yes fﬁﬁy;;ﬁ%xﬁhr__wg”§ﬁ_swd§

~QRuns _ ' -
=
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PROGRAM NAME (INPUT,0UTPUT . TAPELI®INPUT,TAPE230UTPUT)

C
¢ FREEZING RATES PREDICTED BY GOODMAN INTEGRAL METHOD
€
REAL MyN,K1,L,NNEW,MNEW, TI,T11,1J,1K,IX ,JX ,MM
COMMON Hy X, TC,TM s MM
COMMON H. NJKIILINNEN; HNEHlﬂg B' ANEH.BNE“
(o .
C DEFINITION nF VARIABLES
C
E X = ICE THYCKNESS
c K1 = THERMA; CONDUCTIVIYY OF ICE
C L= & LATENT MEAT
c P = DENSITy
& TM =3 FREEZING TEMPERATURE
C TC = COOLANY TEMPERATURE
c YK1= THERMA; DIFFUSIVITY OF ICE
C H 3 MEAT TRANSFER COEFFICIENT
C

RE&D(l.lBBB) Kl;TKilLlp
1000 FORMAT(4F10' @)
DO 2113 1P ={,NC
KEAD(1,1001y H,TM,TC
1001 FORMAT(3F10" @)
c
c
c

WRITE(2,211¢1 ) H,TM,TC
2111 FORMAT(LIHY ,//7 20X, 'FREEZING RATES PREDICTED BY!, 11X,
2'GOODMANS INTEGRAL MEYHOD!/// 20X, 'HEAY TRANSFER!',1X,
3ICOEFFICIENY 3! ,FB,1,2X,'(W/Max2C)! //20X, 'FREEZING',
41X, VTEMPERATURE ®1,FB8,1,2X,1(C)1// 20X, 'COOLANT!,1X,
4'TEMPERATURFE B ,F6,1,2X,'(C)V//7)
C
105 WRITE(2,250nm) :
2500 FORMAY (/20x,'FREEZING OF GRAPEFRUIY JUICE!'/)
WRITE(2,211 )
211 FORMAT(/ 32y, !TIME',6X, ' ICE YHICKNESS!/
222X, 'V (SECS!, 10X, 1 (HRS)!,10X,"'(CM8)'/)

VALUES OF VARIABLES A AND B AS ICE THICKNESS (X)
APPROACHES 7ERD

x o= 00001

XN=0,

M=z HaX/ K1i

MM=M

Ne [=TKiwrP/ K|

OO0

A AND B EVALUATED AS A0 AND BO

ahasNal

A eHeTC / K1
B eHAR2aTran2 / (2, *Kiwu2aN)
Wwls K1/7(TKlaH)

1720,




PROGKAM NAME

2

aNeNe g oooOn (g ] onon alelal

o Mo

ooOooOO0on

500

2000

999
2113
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76776 OPTe] TRACE FTN 4,5+420

INCREASE X AND MENCE M

XeX+, 001

CALL JAWS (11)

EVALUATION nF INTEGRAL AT M =M

IX=lIaw]
A =ANEW
B =BNEW
MMEMNE W

XEX+, 001 .

CALL JAWS(Ik)

EVALUATION nF INTEGRAL AT M ®&M +DM
JXSTK* W]

EVALUATION nF TIME FOR ICE THICKNESS TO INCREASE BY
ONE STEP LENGTH « CALCULATED BY TRAPEZOIDAL APPROXIMATION

TIME 2 Q5% ¢JXeIX)n(H*, 001/K1)
TTeTT+TIME

OUTPUT OF TYME AND ICE TYHICKNESS
XNaXN¢, 01

XZZ=XN%*100,

TYP & TT/36m0,

WRITE(2,200p) TT,TYP,Xx22

FORMAT (20X, F10,3,10X,Fb,3,10X,FB,1)

EXCHANGE OF VARIABLE VALUES FOR EVALUATION OF TIME OVER
NEXT STEP INTERVAL

ASANE W

B=BNE W

MMEMNE W

Zx=x

IXsJX

IF(X,6GT,0,04) GO TO 999
GO TO 50a

CONTINUE

CONTINUE

END



z2lelal

o000

SUBROUTINE yAWS(1J)
SUBROUTINE jJAWS FOR EVALUATION OF VARIABLES IN INTEGRAL

REAL MoN KL, L, NNEW, MNEW, TT,111,1J,1K,21X ,JX o MM
COMMON H, X, TC,TM , MM

COMMON MoNsk1oL g NNEW, MNEW, A, B, ANEW, BNE W

MNEW &  HaX, Ki

MIMNEW

EVALATION OrF NEW VALUESOF & AND B A8 ANEW AND BNEW

ABE HaNx(Me o)/ (KLaM%(Me2,) )

ACZSORT ((1 w2, aYCaMa(Me2) / r~nch1.)--21:3-|.
ANEWE AHRAC

BC= -Ht-aaN.(H+1.)--QI(KItn2-Htt2-tH¢2.)-t21
BOE TCoMA(Me2,)/ (Nw(Metl, )nu2)

BEs 1.°8D=8qRT(],=2,%8D)

BNEWs HCapF

APPROXIMATIAN OF OERIVATIVES DF A AND B

AM 2 (ANEW=AY/ (MNEW=MM)

BM = (BNEW=BY)/ (MNEWwaMM)
MaMM

RI 8TM/(2,*MaBaK])%H

XI SM/2,4M%02/(6,%t)28M

YI 2 «A/(2,4B)eM/(4,2B)%AM
IJ = K1/HaXyeYI+R]

RETURN

END
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FREEZING RATES PRFDICTED BY GOODMANS INTEGRAL METHOD

HEAT TRANSFER COEFFICIENT = 000,08 (W/Mrw2e()
FREEZING TEMPERAT\RE = 1,8 (C)

COOLANT TEMPERATURE = =i¥,B (C)

FREEZING OF GRAPEFRUIT JUICE

TIME A ICE THICKNESS

(SECS) (HRS) (CHS)
520,705 145 o1
607,115 169 | o2
714,003 198 \3
843,432 234 o4
996,042 0277 .5
1172,135 326 .6
1371,880 381 o7
1595, 366 ,443 .8
1842,726 512 .9
2113,953 587 1,0
2409,106 669 11
2728,216 758 1,2
3071, 304 853 4o
3438, 391 955 1,4
3829,492 1,064 149
4244,619 1,179 1,6
4683,783 1,301 2
5146,993 1,430 1,8
5634,256 1,565 1,9
6145,580 1,707 2,0
6680,969 1,856 2,1
7240,428 2,011 2,2
7623,963 2,173 2,3
8431,576 2,342 2,4
9063,272 2,518 2,5
9719,052 2,700 2,6
10398,921 2,889 2,7
11102,880 3,084 2,8
11630,932 3,286 2,9
12583,078 3,495 3,0
13359, 320 3,711 3,1
14159 ,660 3,933 3,2
14984, 100 4,162 3,3
15832, 641 4,398 3,4
16705,284 4,640 3,5
17602,0830 4,889 3,6
18522,881 5,145 3,7
19467,836 5,408 3,8
20436,899 6,677 3,9
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where A is a constant

(A4-15)

For the unfrozen section a standard solution is
given by :

‘I‘2 = TT - B erfec X
2(dst) 2

where B is a constant

(A4-16)

Substituting (A4-15) and (A4-16) into (1-4) a

boundary condition at x = X(t) we obtain :

A erf o TI - B erfec X

Tm (A4-17)
20,1 L ;a({,LE,t)'ar i’

As this has to be true for all values, both

X X
O s and —_—
2(A, 1) ? 2CA5t) 3 must be equal to a constant

SO we may write :

X =2 A (&ﬂt)% (A4-7)

where \ is defined by the following equation obtained
from (1-3) (A4-17) and (4-7).

B B e o T T et o o ey ——



- exp(- x2) %25‘1’332 e C-pl.,,)@ 5

orf (K °p)  (tm ~Ts)erte (Ned, /ol )

AL T}

TR <1 (0 1240y 227 4 0y 1) mP(AD)

(a4-18)
' R

S

R | LE
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where A = first estimate of the error coefficient. o Sy
A= 34802
'ﬁ'."fﬂ —.09‘337 i : i .

P o LAT047 | a3 m

2= /(1 4 PrA)
'“‘_.:I,’_"fj" = ot _f
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<§T§E€)

READ
PHYSICAL PROPERTIES

W

/  READ
/VARIABLES TC, TI, TM

la= Initial guess|

L'

A

Calculate ERFA

from equat (A4-18)

hence ANEW from
equat (4-8)

./f'r-i\. T
__—IANEW=A]| ¢ accuracy

. " - required —— N°"*&:_EEEEL
N

Yes

14
C calculate time

N
xS

]mu x**z]/(4*A*2Tx1)|

W

A Output
time /ice thickness

[E§X+Jxl

No sl : Yes
It X S ENANE e STO
‘--Hx"‘*--"'/”X/-/ @

Flow diagram for Neumanns method

\1/




PRAGRAM NAME (INPUT,@UTPUT, TAPEIRINPUT, TARPE2BAUTPUT) 207

C NEUMANN'S S@QLUTION Tu FREEZING PRUBLEM « INFINITE HEAT TRANSFE
C * COEFFICIENT e TS aTC
c

REAL L,K!l,Kk2

READ(1,1000) K1,K2,TK1,TK2,L,P.Ct
1000 FORMAT(10F10,0)

IP ®10

Dy 8 1Z =1,1P

READ(1,1010) TC,TI,TM
1010 FORMAT(10F10,0)

DEFINITION OF VARIABLES

K1 & THERMAL CPONDUCTIVITY @OF ICE
K2 8 THERMAL CWUNDUCTIVITY @F WATER
TK13 THERMAL DIFFUSIVITY 4F ICE
TK23 THERMAL DIFFUSIVITY UF WATER
L ® LATENT HEAT

C1 & SPECIFIC HEAT BF ICE
Pa CUNSTANT

TM & FKEEZING TEMPERATURE

YI % INITIAL TEMPERATURE

TC = CUUBLANT TEMPEKRATUHKE

ocoOoOOOOONOODOOO0OnNnoOOOn

WRITEC(2,2510) TC 1 T1,TH
2510 FORMAT(IHY /// 20X,'FREEZING RATE AS PREDICTED BY NEUMANNS!
§1ISULUTIVBNY /7 20X, 'CAWLANT. TEMPERATURE at,Fo,2,2X,'(C)Y //
220%, ' INITIAL TEMPERATUKE &1,F6,2,2X,'(C)1//20%,
J'FREEZING TEMPERATURE =',F5,2 ,2X,'(C)'///)
c
c
c
WRITE(2,2525)
2626 FORMAT( 36X, 'TIME!',21X, 'THICKNESS OF ICE' / 24X,'(HRB)',15X,
{V(SECS)!',106X,'(CM8) /)
c
Am, 05
PY %,47047
B0 TZ &1,/(1,¢PY%A)
- AAB SORT(K2amr2aTK1 / (Kiar2rTK2))
ABS EXP(wTKi%A®R2 /TK2) % (T] e ™)
ADeTM=T(C
At EXP(=Awn2)
AFa L®aSQRT(P)
AGs Cisx(TMeT(C)
Al =, 34802
A2 Bw, 09587
A3 u,74785
ACBSQRT (A%a28TK1/TK2)
YZZ31,/(1,4PY*AC)
ERFACE | (@ (AL RTZZ4APATZZan24AINTZZun3)REXP(wACRR2)
ERFAS] w(ALRTZ ¢A2xTZn42 ¢AIATZNAI)WEXP (wAnn2)

ANEW B AG/AFw(AE/ERFA =(AArAB/ (ADa(]l ,=ERFAC))))



L= o
IF(ABS(ANEN-AJ.LE.0.0DDU!J GAd Te 200
ASANEW
Go T 50

200 Xxs,001
ASANE w
250 TIME 5 Xaw2 / (dowAnn2aTK1)

X1ax =100,
TT= TIME /3600,
WRITE(2,2530) TY,TIME, X}

2530 P@RMAT(20x.FIU,J,1Ux.Ftn.5.1ux,F10,2)

XzXx +,001
IF(X,GE, ,03) GO 1@ 600
Gk Tu 250
600 CONYINUE
8 CAONTINUE
§1@p
END

FREEZING RATE AS PREDICYED BY NEUMANNS SOLUTIUN
COALANY TEmpénArunE s=18,00 (C)
INITIAL TEMPERATURE = 20,00 (C)
FREEZING TEMPERATURE = 0,00 (C)

TIME THICKNESS w©F IcC

(HRS) (SECS) (CHS)
001 3,07317 10
,0n3 12,29269 - » 20
, 008 27,65855 , 30
,014 49,17075 | .40
LU21 76,82930 450
031 110,63419 W ,60
,042 150,58542 : 070
L 055 196,68300 .80
, 069 244,92692 090
L, 085 307431719 . 1,00
,103 371,85379 . S T
123 442,53675 1490 °
144 519,36604 o - 1,30
W167 602,34168 1,40 .
, 102 691,46367 , 1,50
0210 L 786,73200 ¥ 1,60
247 858,14667 1,70
\277 . 995,70768 \ L fe D
, 308 1109,41504 1,90
J341 1229,26074 o 2,00
376 1355,26679 . 2410
,A13  1487,41518 : ' 2,20
452 1625,70791 2,30
,492 1770414699 2 2,40
,534 1920,73241 2,50
677 2077,46418 2,60
522 2240,34228 2,70
669 2409,36674 2,80

v 2684,53753 2,90 -

g e T R L S

T R R s e ki S el e
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A4-4 VASIL'EV AND USPENSKII FINITE DIFFERENCE METHOD

A4-4) Introduction to the method

This section first discusses the principle of a backward- difference
finite difference approximation to the heat conduction equation, and
then gives details of, and extensions. to, the Vasil'ev and Uspenskii
method to the moving boundary problem of one-dimensional freezing which
include finite difference approximations to calculate the precooling

and tempering stages of a freezing process,

The finite difference methods are based on substituting finite

difference approximations into the heat conduction equations (1-1) and

(1-2).

With the differential coefficientsdT/dt, 0T/d x and 32T/ dx°
approximated by

T N !

o7
ot 2n
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(in the case of boundary conditions, eg. equation
A4-22 p.268 dT/dx may be approximated over two distance

step lengths eg.

the conduction equation 3

o =a(32m
dt 312

on substitution of the differential coefficients becomes :

Lt Pt = (75 it = %y +Ti-—1,n)
A
Zn h

(44-19)

equation A4-19 on algebraic manipulation forms two sets of
implicit finite difference equations for the frozen and unfrozen
phases of the form : . -

T (2 +-1-) o *T

i ,Il—1 = Ti + 1 ,Il 1-1 ’n
B

wl -

1w 12 e B (A4-20)

where B =0<

Bl
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Boundary conditions for one dimensional freezing problem

The boundary conditions to be considered are at

(i) the limit of the liquid (furthest from the coolant surface),

(ii) at the coolant surface and (iii) at the interface.

(i) At the limit of the liquid (i = N for computation)

Alternative conditions are considered. The first condition assumes
that there is no .heat flow ie JT/&: =0, In this case the temperatures
TN-ot;r1 and TN-f,n' in equation (A4-20) are assumed to be equal, the

resultant boundary condition equation is

T = 2Ty 5 = (2 +%) T ,n (A4-21)

The alternative condition at the limit of the liquid assumes that there
is heat gain to the system, characterised by the heat transfer coefficient,

HG, between the liquid and its surroundings.

The boundary condition

JT - -
< () = HG (T - TA) (1-6Db)
(dx)x =a
where T, = temperature at limit of liquid

N
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is written in finite difference form as :

'K_(_Tg P R 1,n) =He (T, = Ta) (a4-22)
2h

Evaluation of the fictitious boundary node TN + 1.
’

in (A4-22) produces :

Ty 4 1,0, = =20EG (D, - TA) + N4 n (44-23)
K

Substitution of equation (A4-23) into (A4-20)produces the alternative

boundary condition at the limit of the liquid as :

-1 T

R = =(AN +2 + 1

B

LS

N-1,n + ANTA

N,n

(A4-24)

where AN = 2hHG

(ii) At_the coolant surface (i = 1 for computation)

By an identical procedure to that used to produce equation A4-24

the boundary condition equation is :
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- PIC
"1 i1 = T2 (2"'-15*“) it
(44-25)
where P = 2nH
K

(iii) At _the interface (i = n for computation)

In the method of Vasil'ev and Uspenskii the freezing point, Tm, is
defined to be zero., The interface temperatures in both phases, by
equation (1-4) are defined T, =

'.[‘2 = Tm as equal to Oy

The boundary equation at the interface :

-L o X X, %af.q +K;y (a1,
] X ‘ x
&

dt ( Ox
can be approximated in finite difference form as :

i X (1-3)

-L ¢ _1'1_ = % (Tn,n = T ,n) + & (Tn 4 Tom. = Tn,,n)

h

n 5 h :

(A4-26)
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But since 'I'}1 h for both the frozen and unfrozen
Kty

phase ies equal to O equation (A4-2¢) reduces to

(AL4-27)

2 X
-5 P :[_'1“ = K/1 ( Tn_ﬂ ,Tl) = 1{2 (Tn +7,!‘1 J
Zn

Equation (A4-27) can be rearranged to give Zn as

Zn = -L(;n:@/a{,| (Tn_q,n) + Ky (T ) (A4-28)

n+ 1,n

Equation (A4-28) is used in the computer program
to calculate the time intervai for the interface to
travel from node n-1 to node n, (see figure A4-4) in
place of equation (A4-53) as proposed by Vasil'ev and

Uspenskii (see p. 282)
Extensions to Vasillev & Uspenskic Method

The implicit finite difference scheme outlined above
requires a starting tempersature profile for initial
conditions. This temperature profile is supplied by
incorporating a second finite difference scheme to
calculate the precooling time. The precooling time in
this case is taken as the time required to reduce the
terperature, at the first internal node (i.e. i = 2) of
the body being frozen from its initial temperature to 9/0.
The temperatures calculated at the end of the precooligé time
are then used as the initial conditions for the freezing

period. The freezing period starts by calculating

the time for the unfrozen-frozen interface to traverse
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Figure Ad-4 Assumed temperature profiles of Vasil'ev &
Uspenskii finite difierence method

tj‘\

=
J
F )

{ A
interface —
ab n-=1 ~
>

=

"W

unfrozen
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the first step length with the material being at 0', but unfrozen, at
the first internal node, The first estimate of the time for the inter-
face to traverse the first step length is obtained from equation (A4-54)
p 284, Using this estimated time the temperature profiles in both phases
are calculated for the end of the Sstep length and the time recalculated
by equation (A4-28). Recalculation of the time interval is continued
iteratively by recalculation of temperature profiles until successive
times agree to within the required accuracy., The process is continued
across all the distance step lengths until the material is completely
frozen. At the end of the freezing period of third finite difference
scheme calculates the time to reduce the temperature of the thermal
centre of the body to its storage temperature,

The procedure used for the additonal finite difference schemes, which
were worked out implicitly, was the same as that used to determine the
temperature profile of the aluminium bar in the determination of the heat
transfer coefficient given in appendix 3 (section 43-3.4).

For the materials not having a freezing point of 0, the temperature
Scales must be changed to bring the freezing point back to O, Thus for
5 per cent sodium chloride the temperature scales must be adjusted by

3 C, (freezing point of 5% NaCl is -3 C). Further details of the use
of the Vasil'ev and Uspenskii program for the freezing of electrolyte
solutions is given in Chapter 6, section 6-3,
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The method of Vasil'ev and Uspenskii is now given.,

According to this method we divide the region 0 /4

x 4 a into (N-1) equal parts with points x;, such that

x{ = ih, for i = 1,2 ....N, Here h equals the spacing
between adjacent points. The basic computation of the
method calculates the time interval, Zn, required for
the frozen-unfrozen interface to advance from x; to
Xi + 1. Denoting the temperature at the mesh point i
at time n by wi,n in the frozern phase, and Vi,n in

the unfrozen phase, the implicit iterative finite

difference scheme is

Il
(1%}
"N

LR I'l-/l

n>p2 (A4-29)

i9! g &

do g ) =4y dxx CAINY

(,(t (Vi,n) :sz (5'}(){ (vi,n)i it 0 &t 0¥ 2y N=1
Nn<N-. (A4 -30)

_Ieh K dx (Wy_q ) - K Jx Wy ) (A4-31)
£n i )
COGR S el e (A4 -32)
RN IES SR (A%-53)
-ap (t,_4) = Ky x Quy_y ) (A%-34)

R e 8 S BES D S cte , N (A4-35)
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Where the differential coefficients J%,(f%X,:f;

are deiined by :

! s 7

do- g o= Ly -y

dx O 3= L G e
1m h L i,n

oL |
C(Xx (wi,n) o 7;2 <wi—’l,n N Ewi,n i wi . 1,n)

The numbers of equations(A4-29) to (A4-35) correspond
to the analagous equations (1-1) to (1-8) of the
original problem (Sce appendix 6). Note that, acccrding
to equation (A+32) the melting point of the solid is
defined as Tm = 0. Fquations (A4-33) and(A4-34) are less
specific than the corresponding equations (1-5) and (1-6)
with the heat fluxes q, and qQ, yet to be defined, It
will be appreciated that equations(A4-29)and (A4-30)each
represent a set of equations one fer each mesh point,
and that the number of points to which each applies
changes as the freezing interface advances (see figure

A4-5),

When we have computed the temperatures at time n-1

(W and V. q) we determine the urknowns, W.

i,n-"1 i,n- = b

Vi,n and Zn as follows:
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Figure A4-5 Diagrams for Vasil'ev & Uspenskii method

(a) Region Osx<a divided into 10 sections:

=h

——> x direction

(b) Situation when interface is at 4th node:
interface Tm=0

2 by Y
three equations eight equations represent
represent solid unfrozen region
region

(c) Situation when interface is at 7th node:

interface Tm=0

J
|
i

| S S L

W R A
six equations five equations
represent solid region represent

unfrozen region
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(o)

(I) Make a first estimaste of n as Zn

(s) (o)

(II) Substitute Zn =210 in the

finite difference scheme :

Se L Tl Bhye L (A5 36)

Jt (Vi,n (5)) "’LzJXX(Vi,n(S)) (A4-37)

Wi (02 L N : (A4-38)

=q4 (tn-—ﬂ) = K, crx (wi HCS_)) (A4-39)

Lgn G = K el (i 5 S S A R,

L 2 G Yy ) (A4-41)
e el ) £€+§_}3_(5)[ @]3 (A4-42)

?7 (tn—?')“‘iz (tn—i) : h
(s) (5)

where & = 91 (&, 1) - 95 (Z‘,,_;) + /55 {xl‘/n—i,n _ K3 dx KL/’J
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(ITI) Compute the values of wi n(S)
9

and V. (8) in equations(A<4-36.
R ¢ )

A4 37, A4-38 , A4°39 and A4-40

and A4-35 when n = 2) and

o
hence determine Zn(“ o X

(IV) Besubsbitute Zalii, #0854 o
(8) (8)

com W.
recompute Fo n

and V.
X i
(3 %9

hence Zn again.,

(V) Continue until Zn8) o zn(8 + 1)

to the required accuracy.

A4-lt,2 Computation of Vasil'ev and Uspenskii Method.

The computations of step (III) require the solution
of two sets of linear algebraic equations, A4-36,A4-38
and A4-39 amiﬂé—é;,ﬁ4—38 and A4-40. The following
pages describe‘a Fortran program to calculate the
rate of progress of the freezing interface and discusses
the method of incorporating the heat fluxes Q4 and a5

into the boundary conditions.
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Equation (A4-36) gives, on expansion, a set of

algebraic equations of the form :

(8) - (8) (8) (s))
s 35 wi,n—ﬂ -%1 (wi-ﬂ,n : f'2h%g1 +wir1,n

1,0
=n'®) B2
(8) 2 s e (8)
or wi—’i,n = 2 4 /0{,1 Zn ) = (h /OJ,ffn )wi,n—ﬂ
Porid be DR AN sy (A4-43)
Similarly, (A4-37)gives :
(s) 2 () (s) | (e
Tih o =2+ B /42 Zn )Vi,n T -
2 (8)
(o 20700 v,
for s ¥l 000k 20 e , N=1 (A4~-4%4)

In these equations, the 1 suffixes refer to points
in space, the n suffixes to points in time, the superfix
S to variables to be calculated in the ecurrent

computation.

At 1 =1, and 1 = N, there are additional equations
(A4-39and(A4-49). At i = 1, writing -q, (6, 1) as

(W, n(sz—wcj, where WC is the external coolant
?
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temperature ,(A%-39) becomes

(8)
(Kq/h Wy 2700y

or (1 + Hh/K,) W, (S)-wg (8) _ (Hh/K,)WC (A4-45)

n 3

At i = N, we use the no heat Plux eondition
at the bovndary :

vN-‘l,n i VN + 1,n equivalent to Qs = 0 in

k.
to give, from

< vN-’i,n(S) - @ + 0/l 5 E’“(Sbvw,n - (0% Z“(S))VN,M

(A4-46)

A second boundary condition at i = N takes into
account the effect of heat gain. Equation (A4-23) has

evaluated the fictitious temperature node as

T dn N Rl = T Ve (A4-23)

where AN ~-2h HG/K

1l

This temperature is substituted into (A4-37)to give

S BX_ e+ 12 20 & aw Vy, o +ANTA

= - (llg/o(EZn(S))VN,n_q (A4- 47 )
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Finally, the interface condition, (A4-36)is,

with the melting point = 0,

W = V =0 (A4-48)

At the Sth iteration of nth

time step, the
temperatures W, and Vi are thus found by solution of

the following two sets of simultaneous algebraic

equations. (From which the suffix . (n) and superfix (S) are

dropped for simplicity).

(I) Phase 1. TEquations: (A4-43) (A4-45) & A4-48)

W, (1 + Hh/K,) - W, = (Hh/K,l) We (1 = 1)
(A4-49)

o
Wy - (2 + b/ L &)W, + W

et

~AHEL A EnIN : (3= 2
g Zn 2,n-1 l(A4-50)

Wy - (2‘+ h?/A Zn)Vy + W, -

-2/l 4 Za)Vy g (i = 3)

—— . . o — — —

2
Woyq =2 + b5/l BO)W, + W, + 1 =

(hg/a!\,I EMWi 1 (1 = 1)
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wn_g = (2 o+ hg/gL’] Zn)wn_q %
_(h‘—/al1 Zn)wn—-’],n—’l (i=n-1)
s | (i=n)

(II) Phase 2 equations (A4—44), (A4-46),
(A4- 48) ,

V. =0 : (i=n)

. : .
~{2.+ h /q(e.-:'fn)vn . +. Vi s s

2
~(h /GL.?ZN) LN Ay 1=T (i=n+1)

i — . S — — ——— —p——

2
Vioqg =@ + b%/d, Zn)V, v, 1

21

2
—(h /012 Zn)Vi’n_q (i=i) (A4-51)

2 Vy_q =(2 + b2/d, Zn)vy -

> _
-(h®/c , En)VN,n_q _ - (i=N) (A4-52)

The method of solution of these equations is the

same as used for the evaluation of the implicit finite
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difference scheme for the determination of the heat
transfer coefficient between the coolant and tase of

the aluminium bar. (See appendix 3, section A3-3.4).

When we know wn_1 and Vn+1 from the procedure ‘
outlined in appendix 3, we can apply equation (A4-42) to

recalculate Zn, as follows in (A4-42):

—qq (t,_4) = H(wq,n - WC)

K, dx (W ) =K

n-1,n | n,n
= (-K;/B)W__, . since W =

3 ,n

(W - W
0

K1 ((X (wn,n) 5 (KE/h)wn +1,n

hence, in (A4-42)

2 (B41) _ (hIp -+ an(S)(H(wc_wq,n(S))—(K,]/h)Wn_,I,n(S)_(Kg/h)Vn-f’IJ}(S

(S)

H(WC - wq,n

)
(A4-53)

Fquation (A4-53)isas given vy Vasil'ev una Uspenckii but
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was found on computation to sametimes give negative
. . (8+1) ; ;

times for Zn . The reason for negative freezing

times is that the numerator attains a positive value

under certain freezing conditions while the denominator

H(WC-W, n(s)) always retains a negative value.
’

ModiFications o Vasilevy & (/speﬂséta Method.

An alternative to (A4-53) results from a direct

application of equation (1-3).

G5 0 X ox /X (1-3)
whose finite difference approximation written as':

-LP h PR & dx (wn_11n(s))+32<5x(vn,n(s))

S+

Zn

produces on arrangement : (see abo;TZ7Q)

(s+1) _ > (®) (s)
Zn = =L@ h~/(K W, _4 st Ky vn+‘1,n ) (A4-28)
Equation (A4-28) was used in place of (A4-53) in
all computations. The corrected value of Zn, from

(A4-53), is substituted back into equations (A4-#43),

(Ab-44), (A4-45) and (A4-46), and the computations’
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repeated. We evaluate wn_1 and wn+1 for resubstitution

(5+1) agrees with zn(s) to a

into (A4-28). When zn
sufficient accuracy we evaluate all the temperatures and
proceed to the next grid point setting wi‘njiwi‘n_ﬂ,

for use in equations (A4-43), (A4-44), (A4-45) and

(A4-46),

For the firet estimate of chs),.ZH(O) we use an

approximation of equation (1-3) at the first mesh point

-I.p dx Q4 + Q5

—— =

dt

where q, = —H(w,i 4 - WC ) and a5 = 0

to give
_Zn(o) = L‘oh/H(S.w._f_,1 4 — WC ) ('A'?-—S"f-)

In the'eafly and late staées of the computation,
when n = 2 or 3 and n = N or N-1 the method'bf solution
of the linear sets of equations outlined in appendix
5-3.4 is inefficient since the solid and liquid phases
respectivity are represented by one or two equations

only. Instead the equations, with the following substitutions:
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Bl =1 + B/E,

ART = Hh/K,

81 = b (ol i)

X9 = =2 + h2/(aL,|Zn)
02 = -2 + B/ 5Zn)

used to determine new temperatures are, firstly, in

the =so0lid phase

(I) when n = 2 equation (A4-49)is rvearranged

to give

Weq.ny = ART WC/B1 (A+-55)

(II) when'n = 3 equations (A4-49) and (A4-50)

I

are rearranged to give

W(Q,n) = (51 w(g,n_q)“AR1 WC/B1)/XT1+1/B1)

w(ﬁ,n)

and secondly in the liquid phase :

(ART WC + W(p .. 4)/B1

(I) When n = N-1 equations (A4-51)and(A4-52)

are rearranged to give

4
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Wy, = 8200 (g g nq) = Wy pq) /A2
(x12 - 2/X12)
Wlgad o= Bl ) Se B )

XT2 X712

(II) when n = N equation (A4-52) is rearranged

to give :
“(n,n) = S2 H(N’“) / XT2

A flow diagram, computer and sample output, for the program for

freezing distilled water, are given on the next pages.

In the program it is assumed that there is no heat gain from the

surroundings, The frozen ice is reduced in temperature to -5 C.

For details of extension of Vasil'ev and Uspenskii method to account
for the freezing of materials with freezing points not equal to O U

see Chapter 6.
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FKAGKAM NAME 70//0 wPTIsl TRACE FInh 4,64433
l
PRULGKAM NAME (INPUT,UTFUT,, TAFELSINPUT, TARPEZ=BUTPUT)
PROGKAM FOR SoOlLUTIYN UdF FREELZING PkoBLEMS USING
VASIL'EV AND USPENSKII FINITE DIFFEKENLE ME [HWD

DEFINITIOUN wF VAK]ABLES

Ynh = 1ImE OGTEP LENGTH

HH = DISTANCE STEV LENGITH

K = THERMAL CaonwDUCTIVITY

TR = ITuekmal DIFFUSLIVITY

P & DENSITY

C = LPECIFIC HEA|

= LATENT HEAT

11 = [m1TlAal pauvyY TEMFERATUKE
) i @ = (WdLANT TEMPEKATURE

H HEAT THRANSFEK CobFFLCIENT
SUBSLRIPT | KEbERS ¥ FKROZEN PHASE
SUBSCKIPT 2 KEFEKS Tv UNFHROZEN PHASL

AAAARRRRAAARARRARAR

INTEGER w
KEAL InCual ,L,h1 R, hN;thUIlbU Su)ICE(HU,50L)
KEal LIWUILU(SBU,5U)
DIMENS TN Sul (HU0, 5u},6kL1u(hu YU) ,WATER(HU,50)
DIHENSLAN UNERAZ(S5UDU) KR (H0) R (DU), T(D0)
DIMENS LN ah(bﬂj,wv(bUJ,lvlbu]
CalMdb TY, NMAX, N, wATER
Commun JJdiJd
READ(L1,1000) WL, P, L1, YRK,HH
1000 FURMAL(DFLO,0)
READ (1,102U) K2,L.C2
1UZ20 FOKMAT (SF10U L)
HEAU(L1,4111) NMAX
alll FUKRMALC(LLIUY)

C
Th2=h2/7(P2C2) '
TRI=EK1/7(PxC1) -
Ix1=5b
by 2630 1ZIP s1,1x}

G

C
I$=-b.

C

C

C

! hl'_ﬂl}(l.l”l“) ﬂ'TL;;il
1010 FUKMAT(3FL10,0)
C
WRITE(2,9001)
90Ul FukkMAT(LIHYI/ZZ/Z/ 2UX, TFKREEZING KATES USING VASIL EV AND?,
PIXp VUSPENSKIT FINLITEV/Z3DX, 'DIFFERENCE METHODI1//)

KRITE(2,2500)



- i‘.l e [_j
PHUGKAM NAME /0/706 VWPI=] TKRALE FIN a,0¢439

2
[

2500 FURMAT (/ 20X, '"FNEEZINGL DISTILLED wATEK!'/)
TZ = 11
PZ = JC
C 2
WRITE(2,90038) TZ,TS,PZ,H
YUUS FukMAT (/7 20x, VINIIIAL TEMPERATURE =',F0,1,2X,'(C)) /7
22UX, 'STURAGE TEMPERATURE SV, Fkb,) 02X,V (C) 12/
J2UXp Tl ANT TEMPERATUKRE S0 ,F0,1,2X,0(C)V 207/
A2Ux, "HEAT THANSFEK CObFFICIENT St F7 142X, ' (w/Max2aC) 1)

he=,1
NP LS

INITTAL SECTIuN (v PKEDICT PRECUOLING ZoNE TIME AND Tu
PROVIUE A TEMPERATUKE PRUFILE FOK START WF FREEZING
AT STAKT vk FREEZING o USING EXPLICIT FINITE DIFFERENCE SCHE!

el ol ol el o

Jddd = U
il s 0,
REALT = U,
G
WRITE(Z2,3005)
00D FowmAT(///777 35K, VINITIAL CUOLING PERIVWLIYZ/7)
a1 TE(Z,50010)
DULL FUIRMAT(Z20X, ' TEMPERATURE PROFILEN 10X, YTIMEY 7/
Libae b CLDNGSX 20 )t o 3K, Y TE31), AX, VT camax)y !
2 /7 11X, 0!, ax, 11 5CHl, 3X,13(M!',Dx, 'MAX(.MY,
JAx, '"TUTALY, oa ,'PrELAVLING!/
Aa3x, " T1Imbk ), 7x, VIIMEY /7))

ek ol 5

Dy 150 I=],NMAX
R(I)=T]
1950 CoNTINUE

AAE | K2
HH= YRK /HHARZ .
B =AAxHO
YXN =2, *HHAH/ K2
S0 T(1) =2,xHaR(2)+ (1ygw2 xbmBAYXN)AR(L)+ YXNRB®TC
JLZSNMAX=]
Db d0O0 1=2,J22
TCL)= BaR(I+1)4 (1,2, %b)aK([)+BaR(I=~1)
U0 CWNTINUE
TChmAX) =2 xbhak(NMAX®]) ¢(1,*2,AB)xK(NMAX)
KEALT & KEALT + YRR
KZK = REALT
IFCI(2).,LT,0,U1) Ly T HBU
IF(NPL,EWG100) Go 1w /Y
G TV 748
79 wWkITE(2,200U0) T(1)sTC10),T(31),T(NMAX), KEALT,KZR
20U0 FUKMAT( BX FbOa1s3(2XoF0,1),2X0F741,5%,F5,1)

NPZ = |
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PROGKRAM NAME /6778 wPT=s]l THACE FTN 4,04¢433
3

C
7 NPZ & NPL ¢+ 1
Dy 7 1=1,NMAX
RELIBTELY
7 CuNTINUE
Gvw TV bHu
C
BU WRITE(2,2000) TC1),TC16),T(31),TC(NMAX), KEALT , KRZKR
L
C
C
C SECTIWN FaK VDETERMINING ACTUAL FREEZING TIME
C

wKITE(2,3000)
JU0b FUKRMAT(////7739%, 'FREEZING PERIVDY///7)
WRITE(2,300U9) Y
JUO0Y FORMAT (15X, ! TEMPEKATUKE PROFILEY, 138X, TIME Vo7X,
1V LCEY/ 12X, ' T(1) Y, 3%, ' T(1067,3%Xp1T(31)",2X,1T(NMAX)!
25X VTUTALY 42X "FREEZING! ,7Xy "LAYER! /)
wRITE(2,3999)
3YYY9 FUKMAT(OX,FA,]1,3%,Fa,1,3X,Fa,1,3XeFa,1,10X,!(SECS)?,
1 d4a,'(CA8) /7))

7
C
C INITIAL GUESS Fur |1ME
C
C
EAR = T
L = nHaLxpP/(Ha(T(1)=1C))
C
C EVALUATLIAN vE CoNSITANTS In BWTh PHASES
g
€

NE 2

400 U] & | tHANR/R]
ARL1= HaHH/n]
S$1 & wHHAAZ2/(TK14Z)
X115 = (2, ¢HHAA2/ (TRIAL)) -
X125 w(2,+HHar2/ (TR2u 7))
S22 = wiiiend/ (TK207)

DB 351 I= 1,NMAX
KKK 2 NMAX¢1
Do 352 J =1 ,KKRK
LIoUIDC(I,J) =0, #
UNFHBZ(L,J) =0,
WATER(L,J) =0,
SULLD(L,Jd) =0,
ICEUL4d) 50,
- SuLk(l.Jd)=0,
Jh2 CuNTINUE
351 CunNTINUE
IF(NMAXeN,GT,2) Lo T 207
IF(NMAX=N_EU,2) LU Tw BUY
[F(NMmAXaN EW, U) GY T 1100

TY(NMAX) = S2xT(NMAX)/XT2



PROGKAM NAME 70/76 aPTs] TKACE

29
FTIN 4,64433

4
GO TV 201
1100 TY(N+1) =0,
GO Tw 203
009 TY(NMAX®])=Z(S2% (T(NMAX®]1)eT (NMAX)/XT2))/(XT2=2,/X12)

zEgRalal ol

o o

OO0

2u7

70

71

/2

73

A
74

201

20106

TY(NMAX) & 92427 (NMAX) IXTEm2 , %TY(NMAX=]l)/X ]2
G Tvw 2U1

CALCULATE TEMPEKATUKRES IN LIGUID PMASE

CaONTINUL
LIuuib(l1,2)=2,
LIGQUIDC(L,1)= xT2
LLL & NMAX=N

D 70 M =22,LLL
LIwUID(M,m)=xXT2
LIGUID(M,M=1)=1,
CunNT INUE

NNN & ANMA Xwiw] 4
U 71 M m2,NNN

L[uulu(m,ﬁ+1}=1,

CONT InUE

(D IS AN (I S B E
S5(1) = T(NMAX+]1=])a§2
LIWUIDCL, NMAX®wNEL) =55(1)
CunN) IHNULE

JJ.J SNMAX=N+]

1 S, 1 G 5 o I
RATEKRC(L,LL) = L1wulDCL,LL)
CUNTINUE

DB 74 n=g, NNN
D 75 LL=1,JJd :

UNFKAZ(K,LL) = WATER (K LL)ALIWUID(K+1,K) /WATER(K,K)

WATER(R+1,LL)S LIWUID(A#1,LL) = UNFRBZ(K,LL)
CUNT INUE .
CONTINUE

TY(N#1) = WATER(NMAX®=N, NMAX#N#1)/WATER (NMAX®N, NMA XeN)

CALCULATE TEMPERATURES IN FKUZEN PHASE

CONTINUE

IF(N,EQ,2) LW TV 20106
IP(NEG,3) G TV 2u2
GV Tw 203

TY(1)& ARLI=TC/B]

GYw Tw 204
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PRAGKRAM NAME /b/70 WPT=] THACE FIN 4,6¢433
5

2U2 T1Y(2) S(S121(2)w ARLI*TC/HL)/Z(KT1+41,/b1)
TY(1) S(ARIATC ¢ TY(2))/B)
Gy Tv 2u4q

203 NYP =nNel
b ol 132,NYP
WY(L) = Si1=71(1)
o0 CunTINUE
WY(l)SAR]I=T(

be vl 1=),nNYR
SUl ILCL,N) = wY(])
61 CuNTINUE

SBLID(1,1)

SALIn(1,2)

NXAEN=]

D 02 M =2,NxX

SULID(M,M)= XTI

SuLlDiM,M=1)=]1,
62 CUNTINUE

JRL ==

b o5 m=2,Jnl

SuL Ll (M, Met) =1,
63 CanTlnuk

31
=1,

LARN = N#|

Ly o4 J=1,N

ICEC1,d) =SvLln(l,J)
64 Cunl]InNUE

Da ob K31,JnL
by ob J=1,N
SUL(RyJ) = JICE(R,J)*SuLIDIK+L,K)ZICE(R,K)
ICE(Re1,J) SSULID(ReLsJ) = SUL(K,J)
66 CANTINUE
6b CuUNTINUE

TY(Nel) =ICE(N=]1,N)/ICE(N=],Ne])
DV 8 1 = 2,NYH !
AFPH sS]ICE(N=],Ne]) -
IYLN-1)={1Cth-1,NJ-TT(N-Iol)tICt(N-I.N-I+1J)/ APH
8 CuNTINUE
204 CuUNTINUL
c DETEKMINATION wF ACCURACY WF TIME FUR FREEZING

INEW & w| 2P aHHx%2 /(K12TY(Nw]) +# ReeTY(N®]))

oD

IF (ABS(LwINEW) LI,1,) Gu Tw 298
2 =INEwW
G Twv 400

298 CwNTINUE
IF((NAAXaN) JLE,2) LW TV 171
CALL JAWS
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PROGRAM NAME ’6/76 wE1=1 [HACE FIN a,0+439
o}

5171 CuNTINUEL
REALT = KEAL1+Z
2L slL+d
TY(N) =U,
Dy bUU l=1,NMAX
2 IF i ) S
60U CONTINUE

WHITE (2,2002)T1(1),T1(15),T(23)pT(NMAX)  REALT, 22,12
QUU2 FORMAT(IUX,Fb,1,3(2X,F0 1), S3(3x,H/7,1))

HZEHZ4 ]

N=N+1

IF(N,GT ,NMAX) G Tw 401
LW T aul
olL3 KL = L
401 CuNTINUE
PAA z=u,
wWRITF(2,0001})
bUUL FuRMAT(///Z735X%, VIEMPERKING PERIVDY//7)
WhITE(2,0110)
0110 FAORMAT(ZOX, "TEMPERATURE PRAFILEY, 10X ,'TIME) 727
PEAXp ' TOL) Y edxe v I(10) Y, IXe0T(31)0,3X 'TE(NMAX)!, 9X
2 /7 11X, VULMY,aX, 1] ,5CMY, 38X ,13CmM!,ax ,'MAXCMI
e/ %, VIVWTALY, Ox LV IEMPERING!/
445X, 'TIML Y, /2%, VIIMEY 27)
Ci=pha|n]
CXbz=2, attHati/n ]
ZUu3 DY B4 1=1,HNMAX
Ry 1)
sua CunlINUE
7004 T(1) 5 2,802*K(2) ¢(), =2 ,*%L2eCZaUXN)AK(L) +CXN 2CZ21C
Da BO2 [=32,d21
TOL)s CLARCI®L)® (1 ,%2,402) » H(1) +Clxk(l=l)
Y02 CuNITINUE
TINMAX ) & 2,A0LZaR(NMAX=]) +(1,%2 aL2)%RK(NMAX)

L
RLUHBEKGE+ L
PAASPAA¢YRK
KEALTSKEALT+YKK
C

IF(RGH EQ,100) LY 1w q09
DY 2005 Is1,NMAX
700 H(I)=TC(1)
G Tw /004
AU9 wRITE(2,2009)T(1),1(16),T(31),1(NMAX),KEALT, PAA
2009 FBRMAT( OXp POl p3(RX PO 1) )7 Xeb741s0%XF5,1)
Kins U
IF(T(NMAX) LLGTS) LU Tu QU3
; Gy T 720049
4035 CUNTINUE
C
26010 CunNTINUE
END
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SUBKAUTINE
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70n/76 BPT=1 TRACE

SUBKAUTIME JA4S

DIMENSION TY(BN) ,WATER(S0,50)
COMMUN TY,NMAX, N, WATER

Chamnin JJdJJd

o 0 ] - U
NhNN B NMAXeJJ)J+1
LLL = NMAXsN

DR A I=2,LLL
TIT = WATER(NNNNe]le] , NMAX®N+])
TIT & wfyY(Nelet)as WATER(NNNNe@Iof , NNNNel)

TY(N&T)S(TIT +77T7)/ waTER(MNANNw el ,NNNN w]=1l)

CanTInNUE

\

KETURN
END
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FREEZING KATES USING VAS[L EV AND USPENSKIL FINDIE
DIFFEKENCE METHUD

FREEZING ULISTILLED wATER

INLTIAL TEMPERATUKE

20,0  (C)

STARAGE TEMPERATUKE 0,0 (C)

CUMLANT TEMPERATURE = «lU0,0 (C)

HEAT TKRANSFER CUbFFICIENT & 900,0 (w/Mex2x%()

INITIAL CuwlLING PEKI1WD

Tt e AT UKE PrAFILE I 1Mt

T(1) T(1o) T(31)  T(NMAX)

UCm 14000 RINL MA XL M TwlaL PRECWOL ING

TIME TIME

=2,4 20,0 2040 20,0 1u,0 10,0

4,3 20,U 20,0 2U,U 19,9 19,9

b, 2 20,U U, 20,0 29,4 29,8

wb, 8 20,0 20,U 20,0 39,7 39,7

0,2 20,0 20,0 20,0 ay,0 49,0

“b,J 2U,U 20,0 2QU,U Ve, 52,06

FREEZING PEK]LD

TEMPEKATUKE FRoOFILE TImME j1EE

ol 3 1 T(lo0) T(S1) TCNMAX) TUTAL FREEZING LAYEH
w2,9 19,06 19,9 20,0 124,06 2.0 ol
“d,5 18,5 19,7 20,0 222,4 169, 4 02
b, 5 16,9 19,1 20,0 d44,0 291,4 .
mb, 2 14,9 18,2 20,0 488,48 436 ,2 o4
wb,? 12,9 10,9 20,0 056,06 04,0 oS
“/,1 10,9 19,5 U 647,3 794.7 2 O
/44 9,0 14,0 19,7 1061,0 1008,4 o7
w/ .0 205 LD 19,4 1297 ,4 1244, 4 A
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TEMPFERING PERIWD

TEMPERATURE PRuFILE

T(10)

1y50M
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6,5
wh,0
=bH,b
»b,5
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T(31)
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«d, 5
s e
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APPENDIX 5,

THERMAL PROPERTIES.

This chapter shows the temperature variation of
the important physical properties of water and ice.
The unfrozen thermal properties can be seen to remain
largely constant over the temperature range O C to 30 C
while the frozen thermal properties vary only slightly
(maximum of 9%) between O C to -30 C. It seems that
variation in thermal properties is more important in
systems involving large temperature differences and in
non aqueous solutions where there is greater physical

property variation with temperature.

A5-1 Physical Properties of Solutions Used for Freezing
Experiments.

A Freezing temperatures (Tec, (C) ) (725)

5% NaCl 10% NaCl Grapefruit Juice
‘3-0‘1 “'6-56 -1.0

(2) Thermal properties ( 90, 124, 125).

Latent heat, L = ,330292 x 10° (I/kg)
Thermal conductivity
ice, K, = 2,215 (W/mC)

PR T L s o e S e S e e



299

Thermal conductivity,

water, K, = 0.5112 (W/mC)
Specific heat, ice,

C4 = 2093.4 (J/xgC)
Specific heat, water,

02 = 4186.8 (J/kgC)

These properties were used for distilled water,

5% and 10% NaCl and grapefruit juice.

(3) Densities (p (kg/m?) )

Distilled 5% 10% Grapefruit

Water NaCl NaCl Juice
€, (Perpy 125) 997 1036 1073 -
01 (expt) 997 1027 1073 1035
po (expt) 906 Gov. 05y 975

AS5-2 . Variation of Thermal Properties with Temperature.

(1) Density (@ (kg/m’) )
Published data ( 125 ) shows only a negligable
percentage decrease in water density between

O C and 30 C.

A maximum increase in ice density of 4% between

-30 C and O C was reported ( 128).



(2)

(3)

(4)
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Specific heat (C (J/kxgC) )

Water specific heat is quite constant between

0O C and 100 C ( 90, 125, 124).

Ice specific heat decreases steadily with
temperature, a 10% variation between -30 C

and O C ( 128).

Thermal conductivity (K (W/mC) )
Water thermal gonductivity remains quite constant

over the temperature range O C to 50 C.

Ice thermal conductivity decreases with
temperature. Thermal conductivity values of
ice must however be accepted with some caution
since agreement between reported values is
rather poor. The largest variation (Jacob

and Erk) gives a variation of 9% between O C

and -30 C (129).

The most important point to note with the
thermal properties is their change in value

on phase change.
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Phase 1 Phase 2 Ratio

(frozen) (Unfrozen) phase 1/phase 2
K(W/mC) 2.5 SN2 A4
C(J/xgC) 2093.4 4186.8 0.5
A(me/s) A x 10™0 .12 x 10~° 9-10

A5-3 PHYSICAL PROPERTIES OF FOODSTUFFS.

(1)

(2)

Freezing temperature,

Freezing points of foods decresse with increase in
soluble solid content. Table A5-1 give freezing

points of selected foods.

Thermal trends of properties.

There is, as with water, a marked difference
between unfrozen and frozen values of specific
heat, thermal conductivity and thermal
diffusivity. Table A5-2 gives specific heats of

selected foods,
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Table A5-1 Freezing Temperatures of Selected Foods.

Temperature

(C)
a .,

-5.0 -

"‘705 =

-,IOaO .

Material

water
lettuce

carrots

lamb
veal
bannanas

walnuts

peanuts

Table A5-2 Specific Heats of Foods (J/kgC)

Food Specific Heat Specific Heat
above freezing below freezing
Cy Cq
Liver i [P 2, 0.40
Apples o 0.39
Carrots 0.87 0.47
Eggs 0.76 0.40
Milk 0.90 0.46

e | i e o e R e R SO s R T
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Specific Heat,

Many of the published lists ( 130 ) of specific
heat values are calculated rather than observed.
An equation with the following general form is

frequently used for calculating specific heat

5 .2
£ = % 80 Cp + 8, Cy + S5Cz..... 8, Cy
where Z = the calculated specific heat

of the food.

S = the specific heat of a food
component.

C = +the mass fraction of a food
component.

n = the total number of components
being considered in the
calculation.

The accuracy of this method is obviously heavily
dependent on knowing accurately the individual

specific heats of all the components.

A second, simpler formula for estimating specific

heats is given as : (87)

C

0.005M + 0.2

where M % by wt of water in the foodstuff.

Il
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Latent heats of foodstuffs are usually calculated

by Woolrich's and Siebal's equation (87).

b) Latent Heat.
Lf =
where Lf =
IJH20 =
M =
c) Thermal conductivities.

latent heat of food
latent heat of water

% by wt of water in
the foodstuff.

Earle (132 ) gives two correlations for determining

thermal conductivities, one for the frozen phase

and one for the unfrozen phase.

In Btu/hr ft F

above 32 F K = 1.4M .15 (100-M)
_+. ——
100 100

below 32 F K = 0.32M N .15  (100-M)
100 100

Maxwell (1904) and Eucken (1940) ( 131 ) have

developed a formula for estimating frozen thermal

conductivities of heterogeneous materialsgs:
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kd

ke ) P

E = ke 1= (1=a

1 % (a=1) b

| o

where K = +thermal conductivity
of the heterogeneous
material.

k¢ = thermal conductivity
of continuous phase.

kd thermal conductivity

of the dispersed phase,

such as ice crystals,

fat etc,

1l

2ke

2ke + kd
vd
Ve + Vd

va volume of the dispersed

phase.

Ve = volume of the continuous
phase.

Charm (127 ) gives a method for calculating

the thermal conductivity of frozen foods and

the heat transfer coefficient associated with
freezing systems employing the heat penetration
curve. Charm states the calculated values by

his method lie within the range of values found
in the literature. Further references on thermal

properties of foodstuffs are given (133-135),
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APPENDIX 6,

MATHEMATICAL STATEMENT OF 1-DIMENSIONAL

FREEZING PROBLEM.

(Subscript 1 refers to the frozen phase, sub-

script 2 to the unfrozen phase).

In general, the physical properties of the solid
differ from those of the unfrozen liquid so that the
conduction equations for the two phases are not the
same. As heat transfer proceeds the unfrozen phase
shrinks and is replaced by frozen solid. Calculation
of freezing rates thus involves the simultaneous

solution of two conduction equations with a moving

boundary.

The conduction equations in 1 direction are :

2
Phase 1 aT,1 OZ a T,
Dt .V A2 (1-1)
Phase 2 OT '32‘1‘
2 2

A ==a<2 e
31; éxE (1-2)



The rate of advance of the frozen-unfrozen inter-
face is found as follows : Let the interface be at
X(t). When the interface advances a distance dx the
quantity of latent heat absorbed per unit interfacial
area is —prdx (The use of this equation assumes that
the density of the frozen and of the unfrozen phases
are the same, and for this reason@ has no suffix. If
there is a significant change in density on freezing,
the freezing interface may move as a result of the
expansion or contraction and may even be broken up.
When this effect becomes significant analysis becomes
impossible). If the time for this advance is dt, then
the rate of heat supply to the interface becomes

- LFJ%%. This rate for heat supply equals the net flow

per unit area to the interface by conduction :

hfe PR o 1A v K, (éfg
dat a'x X
\
Equation 1-3 is a boundary condition at x=X(t).
A second boundary condition at X(t) is that the

temperature of the two phases is the same

307

x| X (1-3)

dee, Ry = T2 = Pm 8t x = X(H) (1-4)
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The remaining boundary conditions necessary for

the solution of equations (1-1) and (1-2) are :

(a) The value of the surface temperature Ts.
This temperature may be known and fixed
-as for example in plate freezing -or,
more generally, may be expressed in
terms of the surface heat transfer
coefficient, H, by equating the heat
fluxes on either side of the solid

boundary to give

H(Te - Ts) = -K, [ a2,

5;- x=0 (1-5)

where Tc is the temperature of the
coolant when H is large we may simplify

(1-5) %o :

Tg = Pe (1-5a)

b) At the axis of symmetry we have no

heat flow, i.e. T,
- = 0'2%f xea (1-6)
X
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and

309

A second boundary condition at the
axis of symmetry takes into account
heat gain from the surroundings. By

L]

equating the heat fluxes on either

side of the boundary we derive

-K bTa

e = HG (Ta - TA) (1-6Db)
ax X =82

where Ta is the temperature at the

axis of symmetry.

The initial conditions are :

; ool 4 T R o P & B S N < (1-7)
T, = f(x) at £ = 0 (1-8)
Equation (1-7) states that the solid

is wholly unfrozen at the start of

the freezing operation, and (1-8)

defines the temperature distribution

in the unfrozen solid.
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APPENDIX 7.

FREEZING PRESERVATION OF FOODS.

A7, INTRODUGCTION

Storage in cold places has been a traditional
method of preserving foods since ancient times. It was
not however until 1930 when Clarence Birdseye in the
U.S.A. developed the fast freezing process, which was
subsequently introduced to the U.K. after the second
world war, that the process of freezing as a method of
food preservation really started to be of commercial
importance. The food freezing process is now one of the
three main methods, with canning and dehydration, of
food preservation. All three preservation methods have
the common objective of reducing microbiological spoilage
of the foodstuff. 8Since bacteria generally require
water and air (except anaerobes e.g. clostridium botulinum)
as basic necessities for life and are temperature
sensitive the preservation processes aim to reduce
bacterial growth by (a) elimination of water (dehydration),
or (b) elimination of air (vacuum packaging of
dehydrated foods and canning) or (c) application of,high
temperatures (sterilization in canning causes the death
of the bacteria e.g. clostridium botulinum)or, low
temperatures (freezing prevents multiplication of

bacteria) ( 87, 88 ).
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Freezing to date has largely concentrated on
meat, fish, fruit and vegetables, all of which have
a high water content (113). TFruits and vegetables
tend to suffer less from the attack of micro-organisms
than from the continuation of their own life processes
after harvesting. These life processes can be slowed

down by reduction of temperature (112).

In order for freezing to compete commercially
with canning and dehydration as a preservation process
the product must have a shelf life of at least 6 months
(88). Thus in order to produce an edible product the
freezing process not only involves correct freezing
procedure but good storage and thawing techniques as

well. The three processes are now counsidered in turn.

A7-2. TFREEZING OF FOODSTUFFS.

It is generally agreed that the final quality of the
frozen foodstuff is improved by increased freezing rate
(88 ). It is during the freezing stage that structural

damage may occur to foodstuffs. See figure A7-1. (The
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Figure A7-1 Comparison betwecen slow and
- quick freezing.
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length of the freezing stage is dependent on the rate
the frozen interface traverses the body being frozen).
The damage is due to the rupturing of cell walls by
large ice crystals formed during slow freezing
operations (86 ) causing water loss or 'drip' on
thawing, while under fast freezing conditions smaller
crystals form either within or between cells and

cause little cell rupture.

Experiments by Kalruhe on green beans (88 ) showed
improvements in colour, flavour, texture and vitamin
C content with quick freezing (air blast freezer)

compared to slow freezing (still air) operations.

Specific problems encountered with predicting the
freezing rates of foodstuffs are found due to the

following factors

1. The lack of knowledge of the thermal

properties of foodstuffs (6,8 ).

2. The marked variability in the thermal
properties of individual foodstuffs
resulting from varietal differences,
agricultural practices, seasonal

variations and growth locations (112 ).
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3. The existance of unfreezable or
'bound’' water produces difficulties
in determining the end of the
freezing stage and the beginning of the
tempering stage. With meat, for
example, about 10% of the water
content does not appear to freeze
even at -40 C, and it is generally
assumed to be too tightly bound to
protein, while the remaining 90% of

the water is readily freezable. (126).

A7-%.  STORAGE OF FROZEN FOODS.

For many years -10 C was specified as the 'safe'
temperature for storage of frozen foods even though
it was recognised that the quality of the product

gradually deteriorated at this temperature.

During storage with temperatures fluctuating around
-10 C the size of the ice crystals gradually increases and
textural damage may occur causing drip on thawing.
Apart from the textural changes, the loss of water

caused by drip reduces the weight of the final product
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and reduces the margin of profit to the processer

(M2).

With the advent of quick freezing lower storage
temperatures wsre advocated. Generally -18 C is
now recommended although with fish, which have a
natural low temperature environment, lower storage
temperatures may be needed since the bacteria they

support may still reproduce at 48 C. (115).

Gortner et al (116) stored pork roasts, strawberries,
beans and peas for 12 months at -17.7 C and -12.2 C.
Results showed that the quality of the foods stored at
-17.7 C was definitely superior to that of the foods
stored at -12.2 C and therefore supported the evidence
of better quality with storage temperatures of about

""q8 Ca

A7-4. THAWING OF FROZEN FOODSTUFFS.

Industrial thawing processes must be carried out
under specified and controlled physical conditions
otherwise there is a risk of appreciable bacterial

growth, weight loss and deterioration in appearance (114).
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Thawing takes pléce in three stages
a) Temperature rise to melting point.
b) Melting.

¢c) Rise in temperature to ambient

temperature (88 ).

There is still considerable argument about the
optimum conditions for thawing although the principle,
given on commercial frozen food packages, of slow
thawing for relatively thick articles ( e.g. chickens)
and no thawing before cooking for small items (e.g.

peas) is fairly well established.

The experimental apparatus used for carrying out
freezing experiments could not be adapted for thawing
experiments. No comparison between experimental and
theoretical thawing rates was therefore possible.
However, for the thawing of water the freezing rate
formulas, by just inter-changing the position and
properties of the frozen and unfrozen phases, can in

theory be used for predicting thawing rates.

For the thawing of electrolyte solutions study



317

of solute migration should be investigated to find
out how it affects the thawing temperature and hence

thawing rate.

s The thermal diffusivity of ice is approximately
nine times, and the conductivity four times, that of
water. The result of these differences in physical
properties between ice and water is that the time-
temperature profiles of freezing and thawing systems,
under identical system conditions, differ, with

thawing overall being a slower process.

The result of the variation in physical properties
is shown in figure A7-2. The temperature rise to
melting point in the thawing process will be faster ,
than the corresponding precooling phase in freezing
systems since heat is being transferred to the

coolant via ice instead of water as in freezing systems.

However, the melting stage and rise in temperature
to ambient stage in thawing processes take substantially
longer than the corresponding freezing and tempering
phases since the heat released at the interface must
be transferred across a water layer instead of an ice
layer as in freezing systems. Further references on food

preservation are given (117-123),
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APPENDIX 8.

COMPARISON OF EXPERIMENTAL AND

THEORETICAL RESULTS.

Table A8-1

Table A8-2

Table A8-3

Table A8-4

Units.

Ice thicknesses
Freezing times:

Heat transfer
coefficient :

Freezing points of 1

Freezing results for
distilled water.

Freezing results for
grapefruit juice.

Freezing results for
5% sodium chloride.

Freezing results for
10% sodium chloride.

mm

8

'vJ/rn2 G

iquids.

Grapefruit juic

5% Sodium chlor

g =1

ide -3C

10% Sodium chloride -6.6C
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TABLE A8-1 (Continued)
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Ice
Thickness | Experimental Theoretical
Modified Planck |[Vasil'ev & Uspenskii
System conditions Te = -13 TI = 19 H = 56.8
2 4800 1031 3066
6 6300 3252 6269
10 8520 5687 9133
14 12120 8335 11878
20 14760 12706 15322
System conditions Tec = -10 TI = 23 H = 1700
2 180 - 164
5 525 - D
8 1100 - 1130
12 2150 - 2252
16 3525 - 3672
System conditions Te = =10 TI = 18 H = 1700
e 170 - 144
6 660 - 643
10 1480 - 1498
14 264.0 - 2685
18 4080 - 4118




324

TABLE A8-2 FREEZING OF GRAPEFRUIT JUICE
FREEZING TIMES

Ice
Thickness |Experimental Theoretical
Modified Planck |Vasil'ev & Uspenskii
System conditions Tec = =10 TI =22 H = 900
2 1020 132 278
6 1700 630 1027
10 3000 1440 2209
14 4250 2561 3746
20 6840 4826 6365
System conditions T¢c = =11 TI = 15 H = 2000
2 300 114 201
6 900 547 786
10 ‘ 1740 1249 L4 &
14 2880 2222 2953
20 - 4188 -
System conditions Tec = =10 TI = 16 H = 900
2 540 128 241
6 1146 610 923
10 2088 1393 2001
14 3300 2477 3428
16 3960 ] - 42%%
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TABLE A8-% FREEZING OF FIVE PER CENT SODIUM CHLORIDE.
FREEZING TIMES.
Ice
Thickness |Experimental Theoretical
Modified Planck | Vasil'ev & Uspenskii
System conditions Te = =13 TI = 3,5 H = 2000
2 130 66 96
6 528 391 486
10 1100 972 1159
14 1920 1808 2113
20 3505 3543 4016
System conditions Te = -13 TI = 17 H = 2000
2 189 71 141
6 700 422 641
10 1500 1050 1513
14 2640 1953 2729
20 5040 3827 4967
System conditions Tec = =13 TI = 17 H = 900
2 350 117 201
6 1150 559 854
10 2400 1277 1850
14 5550 2272 58175
20 6040 4282 5527
System conditions Te = =15 TI = 18.5 H = 900
2 260 99 187
6 930 471 714
10 1785 1077 1550
14 2880 1916 2676
15 3090 - 2995




TABLE A8-4 FREEZING OF
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TEN PER CENT SODIUM CHLORIDE

FREEZING TIMES

Thigiiess Experimental Theoretical
Modified Planck | Vasil'ev & Uspenskii
System conditions Tec = =16 TI = 14 H = 2000
2 200 76 152
4 430 224 369
6 7225 445 687
8 1080 740 1103
10 1500 1107 1618
System conditions Tc = =14 TI =19 H = 2000
2 336 98 254
4 792 291 547
6 1450 578 1007
8 2354 959 1608
10 3060 1434 2341
System conditions Tc = =15 TI = 21 H = 900
2 720 143 338
4 1295 371 708
6 2100 683% 1208
8 2804 1080 1834
10 3520 1561 2575
System conditions Tec = -10.6 TI = 16.5 H = 2000
2 882 176 477
s 2268 522 1083
6 3980 1035 1974
8 5400 1717 3108
10 2190 2568 4411
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APPENDIX 9,

DILATOMETER CALIBRATION AND OPERATION OF THE

APPARATUS FOR ACCURATE MEASUREMENT OF

THE ICE THICKNESS.

AG9-1. DILATOMETER CALIBRATION.

The bore of the dilatometer tube was measured to
be 4.28 mm. From this measurement a graph of tube

volume against length of tube was drawn (Graph A9-1).

Since the volume difference obtained from the
phase change depends on the difference in densities of
the two phases independent density determinationsusing
specific gravity bottles,were performed to obtain
densities of all freezing solutions in both the frozen
and unfrozen state. The results, with values from

Perry (125) are given in table A9-1.

The thickness of ice, X, calculated from the
dilatometer rise (/A\ ) and the liquid and solid densities
(P2 anﬂf%) by the expression :

T = Bt A, L[ 82

Rv< Pe-p’y (A9-1)
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where Rv

Rt

]

i

radius of freezing chamber

radius of dilatometer tube.
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was compared with the visual measurement of the frozen

layer using the travelling telescope.

TABLE A9-1 DENSITIES (Kg/m>)
Experimental Results Literature
liquid frozen Densities
SOLUTION (15 C to 20 C) (=10 C to 15 C) | Liquid (20 C)

Distilled
Water.

% NaCl
10% NaCl
Grape-

fruit
Juice

997
1037
1073

1035

906
977
1037

975

997
1036

1073

The continuous lines on graph A9-2 represent,

for distilled water, theoretical relationships between

thickness of ice and increase in length of fluid in the

dilatometer tube for assumed ice densities of 900, 920,

%0 and 960 Kg/m>.
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Graph A9-2 Comparison of height of distilled water

in dilatometer tubeawith varying theoretical
ice densities (kg/m”) ana experimental
visual observations.

800

gexperimental
line
600

neight of water in
dilatometer tube (mm)

(4)

400

V-
’/// thickness of ice (mm)

10 20 %0
(X)
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The dotted line on graph A9-2 represents the
best fit straight line through the experimental points
obtained from measuring ice thicknesses by the
travelling telescope under experimental conditions.
The dotted experimental line lies between the theoretical
densities of 900 and 920 Kg/m5 and agrees closely with
the independent ice density determination of 906 Kg/m3
(see table A9-1). From the slope of the dotted line the
'dilatometer scale factor’,éﬁS/X, was calculated. The
dilatometer scale factor related the increase in liquid
tube height to frozen layer thickness. The frozen
thickness was equal to the change in height of the
liquid in the dilatometer tube divided by the dilatometer
scale factgr. Similar calibrations were carried out
for all the. liquids frozen and the dilatometer scale

factors are given in table A9-2.

Todetermine whether the dilatometer scale factors
changed according to the density change (€>2~€H) the
experimental dilatometer scale factors were compared
with the theoretical scale factors calculated by the

following procedure

In the freezing vessel

Mass of ice in thickness X = X1THV2FH (A9-2)
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Mass of ice

in thickness X = }("i“f‘Rvglp,I (A9-2)
Mass of 1liquid >

in thickness X = X T Rv P2 (A9-3)
Therefore mass

displaced by >

change of phase = X Rv® (P2-P1) (A9-4)

Volume of
displaced mass

X 7TRvC (€2-01) = V =TTARt?

P2
(A9-5)
(A9-5) can be rewritten as :
¥ seE T s
RvS P 21 (A9-1)

The displaced volume of liquid increased the liquid
height in the dilatometer tube. The increase in height
in the dilatometer tube was obtained directly from

graph A9-1 or by the expression :ZCX= v
ey £ON (A9-5)
T Rt

TABLE A9-2
Experimenta 1 Theoretica 1
Dilatometer (P2"FH) Dilatometer
SOLUTION Scale Factor g2 Scale Factor
Water 23.6 .0913% 23.3
5% NaCl 13.9 cOB7E 14.6
10% NaCl 8.0 +08355 8.5
Grapefruit
Juice 13,7 . 0580 13.2




333

Table A9-2 compares the theoretical and
experimental dilatometer scale factors and shows close
agreement between the results for all the liquids,
therefore, the dilatometer scale factors can be said %o
have changed according to the density change (P2-1).
The slight variation in the results (up to 6%) between
the theoretical and experimental dilatometer scale
factors was probably due to the experimental ice
densities determined by the specific gravity bottle
experiments, which were used in the theoretical
dilatometer scale factor determination, being slightly
different to the ice densities formed in the freezing

vessel.

A9-2 OPERATION OF THE APPARATUS FOR ACCURATE MEASUREMENT

OF THE ICE THICKNESS.

A9-2.1 Temperature control.

Maintaining the coolant at a constant temperature.

A controlled variable of the freezing experiments
was the coolant temperature. This temperature was
regulated by the three cooling units, the heater, contact

thermometer and relay switch to an accuracy of + 0.2 C,
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Temperature recording and calibration of thermocouples.

The copper-constantin thermocouples used in all
experiments were calibrated over the range of
experimental temperatures to an accuracy of 0.05 C.

The Honeywell temperature recorder, with a twelve point
72 second cycle, was used to record the thermocouple

temperatures.

A9-2.2 Precautions to ensure good contact between

heat transfer discs and freezing vessel.

To ensure reproducible results in the freezing
experiments, and in the heat transfer coefficient
measurements, it was essential to bring the heat
transfer disc into consistently good thermal contact

with the freezing vessel or aluminium test bar.

As mentioned (pp40,471) the contact surfaces of
the heat transfer discs and freezing chamber were machine
smoothed to help achieve good contact. In all
experiments a thin layer of oil was smeared over the
disc and a rotating motion, turning the freezing vessel
over the disc which was firmly held, produced a satisfactory

contact.
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A9-2.3 Experimental confirmation of uniform heat flow

through the heat transfer discs.

Uniform heat flow through the heat transfer discs
was essential for providing an even temperature driving
force and hence conditions for even ice formation.
(With the dilatometer method of measuring ice thickness

error due to uneven ice formation would be undetected).

A second copper heat transfer disc with three
axial thermocouple holes drilled into it was used to
determine uniform heat flow through the disc. As can be
seen from figure A9-1 the thermocouple holes reached
different depths into the copper disc. By rotating the
copper disc (by use of the four screws, figure A9-1) by
90degrees the thermocouples recorded their temperatures
at different positions relative to the inlet and outlet
pipes of the coolant. This process of rotation by 90
degrees was carried out three times. 1In all cases the
same temperatures were recorded in the copper disc thus

providing conditions for even ice formation.
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Figure A9-1

Thermocouples in Copper Disc

gcrew hole

A ="' 25.4mm

B = 38.1mm
C = 12.7mm

ST P e
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APPENDIX 10-1.

237

DATA FOR PRODUCING EXPERIMENTAL AND VASIL'EV AND

USPENSKII RESULTS

INTO SIMPLE CORRELATION.

TABLE A10-1 FREEZING OF DISTILLED WATER.
Thickness Vasil'ev & FREEZING TIMES (8)
of ice Uspenskii.

(mm) Experimental (Experimental)ar
SET 1 H = 2000 W/m“C TI = 20 C Te = =15 C
2 88 150 12,2
6 405 480 21,4

10 961 1030 22,1
14 1751 1750 41,8
20 3299
SET 2 H=2000 W/m°C TI = 20 C Te = =10 C
2 141 182 13,5
6 639 680 26,1
10 1507 1475 38.4
14 2719 2570 50.7
20 4949
SET 3 H=2000 W/m°C TI = 3.5 C Te = =10 C
2 89 120 11.0
6 457 480 21.9
10 1088 1115 23,4
14 1980 2020 44,9
20 3787 3750 61.2
SET 4 H=2000 W/m°C TI = 25 C Te = -10 C
2 161 215 14,7
6 705 850 29.2
10 1655 1800 42,4
14 2967 3050 55,2
20 5293

e e L e i i SR S it
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Thickness Vasil'ev & FREEZING TIMES (S)
of ice Uspenskii.
(mm) Experimental (Experimental)%
SET 5 H=1700 W/m°C TI = 20 C Te ==15 C
> 164 180 13.4
5 537 525 22.9
8 1130 1100 33,2
12 2252 2150 46 . 4
16 3672 3525 59. 4
SET 6 H=1700 W/m“C TI = 18 C Tc =10 C
> 144 170 13.0
6 643 660 25,7
10 1498 1480 38,5
14 2685 2640 51,4
18 4118 4080 63.9
SET 7 H= 900 W/m°C TI = 20 C Te = 15 C
> 128 245 1547
6 538 %0 27.0
10 1172 1500 38,7
14 2041 2425 49,2
20 3683 4150 64 .4
SET 8 H= 900 W/m°C TT = 20 C Te = =10 C
> o3y 375 19.4
6 851 1180 30,4
10 1843 2250 47,4
14 3163 3500 59.2
SET 9 H =56.8 W/m°C TI = 19 C Te = -13 C
> 2066 4800 69.3
6 6269 6300 79,4
10 9133 8520 92.3%
11 11878 12120 110.1
20 15%22 14760 121.5
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