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SUMMARY 

This investigation was concerned with the development of a finite 
element facility for the determination of fracture mechanics and general 
stress analysis data in axisymmetric solids. 

The work was carried out in two stages. In the first stage a finite 
element program for solving axisymmetric problems subjected to axisymmetric 
loading was developed. The element used was a six node isoparametric tri- 
angular ring element. An automatic mesh generation scheme was developed 
which reduced the effort of preparing the required input data. A complete 
program incorporating this scheme is described and examples of its 
application are presented which show very good agreement with theoretical 
and other finite element solutions. 

In the second stage the general finite element program was augmented 
to provide a fracture mechanics facility. In order to cater for singular- 
ities in the crack tip region, a singular core, over which an analytic 
solution is used, was embedded into the finite element mesh surrounding 
the crack tip. The modifications to the standard finite element program 
are described and several mode I and mixed mode I and II examples were 
solved to check the influence of mesh design and core parameters. The 
results obtained demonstrate the usefulness and accuracy of the technique 
and compare very well with solutions available in the published literature. 

A complete listing of all the computer programs is presented together 
with their input data instructions. 

CRACKS AXISYMMETRIC SOLIDS FINITE ELEMENTS



ACKNOWLEDGEMENTS 

The author wishes to express his sincere gratitude 

to his supervisor Mr. T. H. Richards, for his continuous 

help and encouragement. 

The author is grateful to Professor K. Foster, the 

Head of the Department of Mechanical Engineering, and to 

Mrs. P. Taber for the preparation of the drawings. 

The author wishes to acknowledge with deep 

appreciation the help and inspiration of his wife Rawa 

throughout the course of this work. 

Finally the author is grateful to the Ministry of 

Oil of the Republic of Iraq for providing him with the 

scholarship.



Ts 
Vd 

si 
mean 

ij 

E, u,v 

Ye O5z 

Ck] 

{tq} 

{Qh, 

[Kk] 

{q} 

{Q} 

San and 

Sy 

{N] 

{J 

/3/ 

[8] 

(c] 

LIST OF SYMBOLS 

Stress tensor 

Direct stress 

Spherical component 

Strain tensor 

Elasticity constants 

Cartesian axes 

Polar coordinates 

Airy stress function 

Element stiffness matrix 

Element displacement vector 

Element force vector 

Overall stiffness matrix 

Overall di$placement vector 

Overall force vector 

Natural coordinates 

Displacement components 

Shape functions matrix 

Jacobean matrix 

Jacobian = det.[J] 

(3-4v) for plane strain 

(3-v)/(1+v) for plane stress 

Strain displacement matrix 

Elasticity matrix



c 

c 

i 

P
o
e
 

or
es

) 
ke
s 

es 

S 

4 
8 
 
@
 

4
 

v(z) ,6(z) 

MF 

riety 833 

Total potential energy 

Strain energy 

Potential energy of applied loads 

Core strain energy 

Core radius 

Weight coefficients 

Integrating points 

Strain energy density factor 

Radius of crack tip plastic zone 

Strain energy release rate 

Compliance 

Core/finite element interface 

Traction vector 

Rice's path independent integral 

Complex functions 

Number of nodes on core/finite element interface 

Ky oKrpoKyry Stress intensity factors 

[1] 

[LJ.(Lye 

Identity matrix 

lower and upper triangular matrices



CONTENTS 

Page 

CHAPTER 1: INTRODUCTION 1 

CHAPTER 2: ESSENTIALS OF ELASTICITY THEORY 5 

2.1 Introduction 5 

2.2 The stress tensor 5 

2.3 The strain tensor 7 

2.4 Hooke's law 8 

2.5 The two-dimensional problem 9 

2.6 Axisymmetric stress distribution 11 

CHAPTER 3: THE FINITE ELEMENT METHOD 14 

3.1 Introduction 14 

3.2 Natural coordinates and shape functions 18 

3.3 The six node isoparametric triangular ring element 24 

3.4 The strain-displacement relations 24 

3.5 Constituitive relations 29 

3.5.1 Introduction 29 

3.5.2 Isotropic material 29 

3.5.3 Anistropic stratified materials 30 

3.6 The variational formulation of element stiffness 32 

and loads 

3.7 Assembly of the overall stiffnesses and loads 35 

3.8 Automatic mesh generation 36 

3.8.1 Introduction 36 

3.8.2 Mesh generation for an axisymmetric structure 37 

3.8.3 Mesh generation around a core 41



CHAPTER 4: 

CHAPTER 5: 

THEORIES OF BRITTLE FRACTURE 

4,1 Introduction 

4,2 The Griffith theory 

4.3 Irwin's theory 

4,4 The strain energy density theory 

4.5 The crack tip plastic zone 

4.5.1 Introduction 

4.5.2 Extension of the Griffith concept 

4.5.3 Extension of Irwin's concept 

METHODS OF DETERMINING STRESS INTENSITY FACTORS 

5.1 Introduction 

5.2 Experimental methods 

5.2.1 Photoelasticity 

5.2.2 Compliance 

5.2.3 Crack tip opening displacement measurement 

§.3 Analytical methods 

5.3.1 Westergaard stress function 

5.3.2 Complex stress function 

5.4 Numerical method 

5.4.1 Boundary collocation 

5.4.2 Stress concentrations 

5.4.3 Green's function 

5.4.4 Integral transforms and dislocation models 

5.4.5 Force-displacement matching 

5.4.6 Alternating method 

5.4.7 Assymptotic approximation 

5.4.8 The finite element method 

45 

45 

46 

49 

52 

55 

55 

57 

58 

61 

61 

61 

61 

63 

63 

64 

66 

66 

67 

69 

1 

73 

76 

79 

79 

79 

80



CHAPTER 6: 

CHAPTER 7: 

MODIFICATION TO THE FINITE ELEMENT FORMULATION 

TO INCORPORATE A SINGULAR CORE 

6.1 Introduction 

6.2 Modification to the finite element formulation to 

include the Hilton and Hutchinson type core element. 

COMPUTER PROGRAM PROCEDURES 

7.1 Introduction 

7.2 Procedure (STRDIS) 

7.3 Application of boundary conditions 

7.3.1 Procedure LOADING 

7.3.2 Procedure BOUNCONST 

7.4 Procedure CONSTREL 

7.5 Evaluation and assembly of the overall 

stiffness matrix 

7.5.1 Introduction 

7.5.2 Procedure ADDARRAY 

7.5.3 Procedure ASSEMBLY 

7.6 Procedure SYMVBSOL 

7.7 Procedure NODSTR 

7.8 Procedure ELESTR 

7.9 Procedure FEINPUT 

7.10 Procedure CCRINPUT 

7.11 Procedure MMINPUT 

7.12 Procedure SBINPUT 

7.13 Procedure CCRM1 

7.14 Procedure CCRMM12 

7.15 Procedure KARBDMMST 

7.16 Procedure KARMIBND 

7.17 Procedure RESIDUAL 

7.18 Procedure EO4AAA 

101 

101 

101 

108 

108 

1 

116 

116 

122 

125 

128 

128 

128 

131 

137 

141 

144 

147 
156 

162 

172 

182 

196 

208 

210 

212 

216



CHAPTER 8: 

CHAPTER 9: 

NUMERICAL EXAMPLES 

8.1 

8.2 

8.3 

8.4 

8.5 

Introduction 

Applications of the genera? axisymmetric program 

8.2.1 Thick cylinder under internal pressure 

8.2.2 Circular plate under uniform pressure 

Mode I fracture problems 

8.3.1 A round bar with a circumferential 

normal edge crack 

8.3.2 A round bar with a normal penny shaped crack 

8.3.3 A round bar with a crack extending from the 

base of an external groove 

8.3.4 A round bar with an internal void and a 

circumferential normal crack 

Mixed mode I and II fracture problems 

8.4.1 A test problem 

8.4.2 A round bar with a conical shaped 

circumferential crack 

8.4.3 A shouldered bar with a circumferential crack 

emanating from its fillet 

The effect of inclusions on the values of stress 

intensity factors 

DISCUSSIONS AND CONCLUSIONS 

oo 

9.2 

953 

Discussions 

Possible topics for further research 

9.2.1 Further developments to the computer programs 

9.2.2 New areas for future research 

Conclusions 

218 

218 

ee 

219 

223 

234 

234 

24] 

243 

249 

251 

251 

257 

262 

268 

274 

274 

279 

279 

280 

285



CHAPTER 10: 

CHAPTER 11: 

APPENDICES 

10.1 Numerical integration formulae for triangles 

10.2 Near crack tip equations for stresses, 

displacement and strains 

10.3 Strain energy of the core region 

10.3.1 Mode I formulation 

10.3.2 Mixed mode I and II formulation 

10.4 Programs Listings and sample problems 

10.4.1 The general axisymmetric program 

10.4.2 Mode I fracture program 

10.4.3 Mixed mode I and II program 

10.4.4 Mixed mode shouldered bar program 

REFERENCES 

288 

288 

289 

296 

296 

297 

299 

299 

328 

347 

370 

392



CHAPTER 1 

INTRODUCTION 

le Introduction 

A fundamental requirement of an engineering structure is to sustain 

the loadings applied to it during its service life without failure. 

However a small percentage of engineering components, although satisfying 

conventional strength analysis conditions, do not fulfil this requirement. 

There are several modes of mechanical failure, [81], among them is the 

mode of fast fracture which involves the unstable propagation of a crack 

in a structure. In this mode, once the crack starts to move, the 

loading system is such that it produces accelerating growth. This 

fracture is often referred to as "brittle", because the instability first 

occurred when the applied stress was less than the general yield stress 

in the uncracked part of the structure. The catastrophic nature of 

failures due to brittle fracture, examples of which are listed in,chad, 

imposed the need to consider the reduction in the fracture strength of 

metals due to the existence of crack-like defects in them. The 

presence of a crack introduces a singularity in the stress field and 

there are several approaches to measure its magnitude. Irwin's approach 

[19], concentrates on a crack tip region and introduces three factors 

which define this magnitude known as the stress intensity factors. 

Although a plastic zone is formed around a crack tip and hence stress 

singularities can not exist, it was found that the tip region is



sufficiently large so that events within a small plastic crack tip zone 

do not cause significant variations in the system's strain energy and 

assuming linearity remain a good approximation, [29]. 

The accurate determination of the stress intensity factors is 

central to the application of this approach to design work, and a brief 

description of the important methods available for this purpose is 

Presented in Chapter 5. The geometries and loadings of engineering 

structures are such that analytic techniques dealing with idealized 

situations are not adequate and approximate numerical methods must be 

resorted to. A very powerful numerical method used extensively in 

structural engineering is the finite element method described in 

Chapter 3, which was used by many authors to calculate stress intensity 

factors. It was seen that its application without catering for the 

singularities at the crack tip required a fine mesh sub-division in 

the neighbourhood of the crack tip for a reasonable accuracy, and 

methods which modify the standard finite element formulation to allow 

for these singularities were more economic and accurate. One such 

method which requires a small modification to the finite element 

formulation and results in the direct evaluation of stress intensity 

factors is the Hilton and Hutchinson method described in section (5.4.8). 
cef$(73]. 

Many important engineering components are solids of revolution, 

and the aim of this project was to evaluate the stress intensity 

factors of axisymmetric cracked solids subjected to axisymmetric loadings 

using the finite element method incorporating a Hilton and Hutchinson 

type core element. To achieve this aim, computer programs were



developed to solve single and mixed mode fracture problems. In order 

to study particular cases of special interest where voids and grooves 

are present, and to be able to obtain better matching with the circular 

core shape, an isoparametric element was chosen to map the curved 

boundaries involved. Due to the existence of stress raisers and cracks, 

the stress field varies rapidly throughout the structure and its 

accurate representation by a constant strain element would require fine 

discretization, while a coarser mesh with a linear strain element will 

produce higher accuracy and be more economical. Therefore the element 

chosen as the basis for the present work, was an isoparametric six node 

linear strain triangular ring element. 

A major Aeeeeneue of the finite element technique is the large 

volume of input data required. Apart from the time consuming task of 

preparing the correct data, small errors may pass unnoticed and give 

wrong results. This chance was eliminated and the effort was cut 

drastically by developing an automatic mesh generation scheme described 

in section(3.8). 

The computer programs developed in this project were found to be 

very effective in the determination of mode (I) and mixed mode (I) and 

(II) stress intensity factors for a variety of crack and geometry con- 

figurations. The effects of inclusions of different material proper- 

ties on the values of stress intensity factors were examined, and the 

angle of crack initiation was evaluated by adopting Sih's strain energy 

density criterion, [25].



The representative examples considered illustrate that complicated 

problems can be tackled with a modest size computer and by relatively 

small modifications to a standard finite element program. However, 

several modifications to the developed programs can still be made, and 

due to lack of time interesting possible areas of research had to be 

left for future work as discussed in Chapter 9.



CHAPTER 2 

ESSENTIALS OF ELASTICITY THEORY 

2.1 Introduction 

The rigorous solutions of the three dimensional problems of elasti- 

city are few. Faced with this, the engineer resorted, in some special 

cases, to acceptable simplifications which reduced the problem to a 

one of two dimensions. As the problems became increasingly complicated, 

approximate numerical methods were sought to solve them. Although the 

analysis procedure is simplified by the introduction of these methods, 

the volume of data and mathematical work required limited their appli- 

cation. With the introduction and wide use of electronic digital 

computers, the limitation was removed, and these methods gained wide 

acceptance and recognition. 

For the convenience of reference, a summary of some of the 

essential results of the elasticity theory is presented in this chapter. 

2.2 The stress tensor 

The state of stress at a point is fully described by nine stress 

components (t..), where i = j = 1,2,3. 
VJ 

Knowing the components of (t;,) with respect to some set of 

cartesian axes (X;). they can be found with respect to some other set 

(X;) by means of:



Tye = ay Las Ty (221) 

or in matrix form: 

Cet) = (ote dee] (2.2) 

This equation represents the transformation of a tensor quantity, 

and it may be shown that a particular choice of (2,;°S) may be found i 

for which the stresses are normal only i.e. principal stresses, [1]. 

For a description of material behaviour (e.g.plasticity, or visco- 

elasticity) it is sometimes useful to introduce the deviator stress 

defined as: 

Ti3 = 4g 7 S45 Tmean ie 
where 

5 
Tmean = 3 (Ty * Tt * T3) (2.4) 

“Gi = 1,2,3) = principal stresses 

Crean a Spherical component 

The stress varies continuously from point to point in a continuum. 

It may be shown that equilibrium requires, [1]: 

coat F; =0 (2.5) 

Ten li5e28 

and Toa ete (2.6) 

iaselacss 

where: 

F, = the components of the body force/unit volume.



The situation is statically indeterminate and the solution requires 

consideration of deformations and constitutive equations as described 

later. 

2.3 The strain tensor 

The deformation at a point with respect to three orthogonal cartesian 

coordinates is completely defined by the components of the strain tensor 

(e;;)- 

Similar to the stress tensor, these components can be found for 

another set of coordinates by: 

e4g Fs Xe €1j (2.7) 

- A chosen set of orthogonal coordinates which causes the shearing 

strains to become zero are called principal axes of strain; and the 

corresponding strains, the principal strains. 

Strains vary continuously in a contunuum and, if a state of 

infinitesimal strain is assumed, they are related to displacements 

by [1]: 

wa eq; = 7 U4,5 + 45,4) (2.8) 

These equations show that six strain components, which are 

functions of position, are functions of only three displacement 

components. Therefore the ej cannot be chosen arbitrarily, but a 

relation between them must exist, otherwise the displacements will not 

be single valued and continuous.



To ensure the compatibility of strains the following relations 

must be satisfied, [2]. 

fijjke * &ke,ig ~ Sik.je 7 Sjn,ik ~ 9 (2.9) 

where: 1 = j = k = 2 = 1,2,3 

This system consists of eighty one equations, some of which are 

identically satisfied, leaving only six equations which are known as 

the equations of compatibility. 

2.4 Hooke's law 

The relation between stresses and strains have been established 

experimentally for a number of materials and it has been found that 

for a practically useful range of materials, the relations are linear. 

This represents a generalization of Hooke's law. 

In the general three dimensional case, it takes the form, [2]: 

eiayy av ff; =oeae E 6.5 (2.10) 
ij ij 

The inverse form is often useful 

Ty > REL $i + 2u ay (2:11) 

where ye TET = Modulus of rigidity 

r vE 
T+v) (T-2v



For certain problems, it is convenient to write the relation in 

terms of the deviator or spherical components: 

a - 
c= 2u £44 (2.12) 

Tepe 3k EK (2.13) 

where k= TLE = Bulk modulus. 

2.5 The two-dimensional problem 

To obtain a solution to the general elastic problem, three 

fundamental steps are taken: 

1. Equilibrium must be satisfied. 

2. The strains implied by the stresses must be compatible. 

3. A relation between stresses and strains is required. 

Analytic solutions are available to only a limited number of 

special problems with simple shapes and loadings, many of which are 

summarised in, [1]. Hence, the need arises to simplify problems so 

that a mathematical solution is possible, yet the simplified problem 

remains close enough to representing the true physical situation. 

Special geometry and loading configurations can reduce the three 

dimensional problem to one of two dimensions. An example of such 

special cases are the plane stress, plane strain, and axisymmetric 

problems. 

The equations of equilibrium for a two dimensional problem are 

reduced to, [1]:



= 10 = 

ee ee ox + By 0 (2.14) 

at ao, 
aoe = ax Oy 0 (2.15) 

And the compatibility equations are reduced to: 

v-(ox + oy) =0 (2.16) 

The traction boundary conditions are given by: 

‘lies Fhe Ws (2.17) 

A method for solving equations (2.15, 2.16 and 2.17) is by intro- 

ducing a function x(x,y) which, if body forces are negligible, has the 

following relations with the stresses: 

o = 2X (2.18) 

o, = 2X (2.19) 

igen (2.20) 

From the definition, stresses derived from (x) automatically 

satisfy equilibrium. The true solution is that which satisfies the 

compatibility relation (2.20). Therefore, the function (x) must 

satisfy the biharmonic equation: 

4 4 4 
a (2.21) 

ax ox ay ay 

> 

(2.22) " °o
 or vx



Si = 

Thus the solution of the two dimensional problem reduces to finding 

a solution of equation (2.21) which satisfies the boundary conditions 

(2.17) of the problem. The function (x) is known as the Airy Stress 

Function. 

2.6 Axisymmetric stress distribution 

Many important problems involve solids of revolution deformed 

symmetrically with respect to the axis of revolution. The deformation 

is symmetrical with respect to the z-axis (Fig.2.1), hence the stress 

components are independent of the angular (8) coordinate. The derivatives 

with respect to (8) vanish leaving (Ens Ts ToT ) as the only non-zero 
YZ 

stress components,[1] 

The strain-displacement relations are: 

@ = meee a J aot = dU, OW 
eriieor o.  -? S25 52> rz | ae Or (2.23) 

For axisymmetric situations, the constitutive relations for linear 

isotropic elasticity can be conveniently expressed in matrix form as: 

o, I-v ov v 0 e, 

9g I-v ov 0) € 
o\. E oN (2124) 

T+) (1-20) 
oD l-v 0) &, 

Symm. 

"pz eel a Yrz 

Several mathematical solutions of axisymmetric problems are 

available, [1]; but, as for the three dimensional problem, they deal 

mainly with simple geometries and loading conditions. Real engineering
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problems are generally complicated, therefore it became necessary to 

resort to numerical methods. A very powerful numerical method, which 

was used throughout the work described in this thesis, is the finite 

element method described in detail in the following chapter.
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CHAPTER 3 

THE FINITE ELEMENT METHOD 

3.1 Introduction 

In the finite element method the body is discretized into an 

equivalent system of smaller units, and approximate solutions for each 

unit are combined to obtain an approximate solution for the body. 

There are three approaches to the method,[3]: 

1. Displacement method: In which the displacements are 

the unknowns. 

2. Equilibrium method: In which the stresses are 

the unknowns. 

3. Mixed Method: In which some displacements and 

some stresses are the unknowns. 

The work presented in this thesis follows the first method and 

it will be the only one discussed from hereon. 

The analysis procedure may be summarized by the following steps: 

1.  Discretization: The process of dividing the continuum into an 

equivalent system of smaller subdivisions (finite element), is called 

discretization. There are some basic guidelines to help in performing 

this operation, but the final decision on type, shape and number of 

finite elements remains with the individual. A solid of revolution is



2 15 « 

divided into axisymmetric ring elements, which can have various cross 

section shapes, (Fig. 3.1); such arrangements are of particular interest 

jin the present work. 

2. Selection of displacement function: It is difficult to select a 

displacement function which can represent exactly the variation of 

displacement in the element. Instead, a function is chosen to 

represent that variation only approximately. Three factors influence 

the choice of the displacement function: 

a) The type and degree of the function (e.g. a polynomial 

of a certain degree). 

b) The displacement magnitudes describing the function 

(e.g. nodal displacements with or without their 

derivatives for some or all nodes). 

c) The convergence requirements to ensure that the 

results approach the real solution. 

These requirements are,[3]: 

i) The function must be continuous within the element, 

and no openings, or overlaps occur between adjacent 

elements, i.e. continuity of displacements is required 

across inter element boundaries. 

ii) The rigid body displacements of the element 

must be included in the function. 

iii) The constant strain states of the element must be 

included in the displacement function.



  

 



zai) = 

3. Derivation of element stiffness matrix: The stiffness CK], relates 

the modal displacements qh, to the nodal forces {Q}, through the element 

stiffness equilibrium relation: 

[KI ,{a}, = (Qh, (3.1) 

The elements of Ck], are derived from the material and geometric 

Properties of the element. They may be obtained by the use of the 

principle of minimum potential energy as will be described later. 

4. Assembly of the overall algebraic equations of the discretized 

continuum: The global stiffness matrix [K], and the global load vector 

{Q} are assembled. The global stiffness equilibrium relation is 

arrived at 

[k]{q} = {Q} (3.2) 

At this stage the equations are modified by the introduction of 

the appropriate geometric boundary conditions. 

5. Solution of the equations: The equations (3.2) assembled in the 

previous step are solved for the unknown displacements 

6. Calculation of strains and stresses: The strains are computed by 

using the relations between them and the relevant displacements. By 

using Hooke's law, the stresses are computed from the strains 

The operations involved in the previous steps for the axisymmetric 

case will be described in detail in the following articles.
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3.2 Natural coordinates and shape functions 
  

A variational principle will be adopted later for the formulation 

of element stiffness and load and will be described. In general, the 

potential energy for a linearly elastic body can be expressed as a sum 

of the strain energy due to internal stresses and the potentional of 

the body forces and surface tractions. By taking the variation of the 

total potential energy with respect to general coordinates, an 

equilibrium equation (3.2) is arrived at. Because the integrations 

involved are awkward, formulation in terms of natural coordinates 

becomes advantageous. 

A local coordinate system is defined for a particular element and 

not for the entire body whose coordinates system is called the global 

system. A natural coordinates system is a local one which specifies 

a point within the element by a set of dimensionless numbers whose 

values do not exceed unity, and hence the point is specified relative 

to the nodes of the element alone and is independent of its orientation 

or position in space. Consequently, element stiffness formulation can 

be carried out without being directly concerned with the global co- 

ordinates or geometry. Finally it is more convenient to carry out the 

computations with coordinates between zero and one, as simple arith- 

metic operations with large numbers alongside small ones tend to 

produce solutions which are not well conditioned. 

A natural coordinates system of a triangular ring element is shown 

in (Fig. 3.2). The three coordinates are uy, Ly and L33 but only two 

of them are independent. Their relation to the global cylindrical
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coordinates system is given by: 

eer ry 03 Ly (3.3) 

This set of natural coordinates can be considered as one of area 

coordinates. Thus the coordinates of point (P) Fig.(3.3) are,[4]: 

A A 
Ee 53 

’ 7) aay L3 cee (3.4) 

It can be seen that Ly, Lo and L3 are not independent but related 

by: 
3 
oie a eal (3.5) 

i=] 

Equation (3.3) can be inverted to yield: 

Lj ae bere 
ll 

Ly == 35 2A3, bo ay n (3.6) 

| 
L's ee Osim as z 

Here, Al, = Areas of triangles whose vertices are the origin of 

the global coordinates system 0 and node i and j Fig.(3.3) and, [3]: 

nist by = 23-2 (3.7) 

(3.8) ie}
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It is required now to assume a function which represents approxi- 

mately the variation of displacements in the element and satisfies the 

requirements described in section (3.1). These functions are called 

displacement functions and a linear model in a polynomial form in the 

two dimensional case is, [3]: 

UF a) + dor + O32 

(3.9) 
Wea, tage + az 

And a quadratic model is: 

U0. + doh + Gal + a4re + aprz + a,2" 
1 2 3 4 5 6 

(3.10) 
Why + gr + gz + ay gh” + 442 + Sok 

Where the (a's) are known as generalized coordinates. Writing 

equation (3.10) in matrix form: 

{u} = [o]{a} (3.11) 

Where: u(r,z) 

{u} = (3.12) 

w(r,z) 

t6,}* 03 
(o] = (3.13) 

tor {9,3 

Gy Cl tee re 2] (3.14) 

fa} = [ory Gg Ogee ev eveee ay 9] (3.15)
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The nodal displacements can be evaluated by substituting the nodal 

coordinates, and the vector of nodal displacements of the nodes for 

the element under consideration may be written as: 

fq} = [A]fa} (3.16) 

: tL where: {q}” = Cu w, UpWo.- +] 

Equation (3.16) is inverted to give: 

{a} = [A]7!{q} (3.17) 

Substituting equation (3.17) into (3.11) gives: 

fu} = Ce]CAI" tq} = NICq) (3.18) 

Examining [N] shows that it has the form of an interpolation 

function matrix, and another direct and more elegant way of generating 

it would be the use of interpolation theory, and thus eliminating 

matrix [A] from the formulation. 

An interpolation function or a shape function is a function which 

has unit value at one nodal point and zero value at the other nodal 

points, therefore it is convenient to express it in terms of natural 

coordinates. 

Beginning with the simple case of linear interpolation over the 

triangular element, prescribed values at three nodes are required, so 

the vertices become the nodal points. Any linear displacement function 

u(r,z) over the element with prescribed nodal values Uy» Up and U3, is 

a linear combination of the three Lagrangian polynomials Ny (Ly sLo,b3) »
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No(Ly ska bg)» and Ng (Ly sbosL3) with scalar coefficients u,, Up, and ug, 

[5]: 

For a three node triangle: 

u(Ly bo sb3)=LN, (Ly sby sL3) No (Ly obo bg) Ng (Ly oly ob3)] uy 

49 
u 
3) 

(3.19) 

For linear interpolation the shape functions are the natural co- 

ordinates i.e.: 

Nj (Ly sbysb3) = Ly (i = 1,2,3) (3.20) 

If u(Ly sbysL3) is interpreted as the radial displacement function, 

a similar interpolating function w(Ly sbosL3) can be written for the 

axial displacement function in terms of nodal values Wy >Wo > and W3. 

For a quadratic displacement function u(r,z), six function values 

must be prescribed. Selecting the triangular element with nodes at 

the vertices and side mid points, the corresponding shape functions 

N; (Ly sbysL3) are: 

Ny = 4y(2Ly.7) 
No = by(2by_1) 

Neen (leg) 3 7 33\*"3-1 (3.21) 
Ng = 4lyLy 

Ng = 4lol3 

Ng = 4bgly
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3.3 The six node isoparametric triangular ring element 
  

An element is said to be isoparametric if both the geometry and the 

displacements of the element are described in terms of the same para- 

meters and are of the same order. The simplest finite element to give 

displacements that converge to the analytic solution must contain 

constant strain terms. As the strains are first derivatives of displace- 

ments, a linear function may be chosen for the displacements. However 

better results can be expected from fewer elements if the strains were 

allowed to vary linearly within the element, [6]. As seen from the 

previous article, selecting the triangle vertices and midside points 

as nodal points and the shape functions of (3.21) yields a quadratic 

displacement function. From the definition of the isoparametric element, 

a coordinate transformation of the form 

{X} = CN]{X,} (3.22) 

is obtained where, [N] is given by (3.21) and {Xt are the element 

natural coordinates. Hence, an element which is straight sided in local 

coordinates terms becomes curved in global coordinates terms. This 

property enables the isoparametric element to represent curved bound- 

aries. The mapping from local coordinates to global ones for the six 

node isoparametric triangular element is shown in (Fig.3.4). 

3.4 The strain-displacement relations 

The relation between the global and local sets of coordinates for 

the six node isoparametric ring element is given by: 

5 
(") = rh 13 %q hs MG a 

a 21 2% 23 24 25 Ze No (3.23)
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Fig. 3.4.
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And the relation between the displacements is: 

Uy Up Uz Ug Us Ue ny) 

wf Hee eee am eG No (3.24) 

ne 

where {N;} j= 1,2,...6 is given by equation (3.21). 

In the axisymmetric case the strain-displacement relations are 

given by equations (2.25) which require derivatives of the form 

Rp and 57 eee etc. 

6 ON. 
du 4. ou: 

Where ae = Ff ee ee ar ya FONG 
(3.25) 

era ese 
9z = az oN, 

etc 

Hence equations (3.23) need to be inverted to give terms like 

oN. aN i 
aye and et 

az 

To be able to do this, two new variables (s) and (t) are intro- 

duced so that: 

L, =s, Lo =t, Lb. = T-s-t (3.26) 1



So 

Now 

as os as or 

= (3.27) 

pl Be be bre ee 
at ot at L oz 

or 

oN, oN. 
1 1 

asa xr) 
| { 

‘ = {u] (3.28) | m| 
ot 8z 

where [J] = Jacobean matrix 

By inverting equation (3.28) we obtain: 

[ or 3s 

  

= fay! / (3.29) 

an at 

where oz Bao zs 
tay"! 1 at as G0) 

Tar or an - 

at 3s 

/3/ = The determinant of the Jacobean matrix and is called simply 

the Jacobian, that is 

jg ooze ar 
Ss at at 

@ N 

(3.31) 

Cy
 wo
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To evaluate the Jacobian, the following relations are used: 

Se Oh a eee 
as j=1 9S ON; 

(3532) 

geo) Pie ar 
3 je 8b N, 

Similarly for 2 and a 

ON. ON. 
= and se are obtained from equations (3.26) and 

ar and 22- are obtained from equations (3.23) and hence by substituting 
aN; ony 

ON. ON. 
in equations (3.29), = and = are obtained, and they are multiplied 

by a and ae which are obtained from equations (3.24) to yield the 

required strains as shown in equations (3.25). Written in matrix form, 

the strain displacement relation is: 

[*] a Sean a eee ey ie aa ip ert Jy 
Wi. 1 

u 

| & r EMM one oe sen Ole tam 2) | ieee alaliUD 
= W, 

ow 2 
in bya eee te stare Ose ee 

du , ow 
i @z * or Pas leaea.2) 04 suede ea mean 

4g 
We 

(3.33) 

or {e} = [B]{q} (3.34)
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3.5 Constituitive relations 

3.5.1 Introduction 

The six components of strain at every point in the general 

elastic problem are functions of the six stress components at that 

point. 

This relation in matrix form is: 

od 7 "12 416 ox 

ey C2 come 296 %y 

zt. ‘ i : * (3.35) 
Yyz : ; "yz 

Yxz - f : Tz 

Yxy S61 620s casts eiaeeG Tyy 

By using the principle of conservation of energy, it may be shown 

that the matrix fa;,J where i = j = 1-6 is symmetric and hence only 

(21) of the (36) coefficients are sufficient to describe any material, 

(7]. The number of elastic constants for any material may be reduced 

further by considering planes or axes of elastic symmetry. Since the 

work presented in this thesis deals with axisymmetric problems, the 

choice of materials is limited to isotropic and anisotropic stratified 

materials only. 

3.5.2 Isotropic material 

In the finite element assumed displacement method, stresses 

are calculated from strains, hence the inverse form of equation (3.35)
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is used. For an axisymmetric problem with linear isotropic material, 

the constituitive relations are given in equation (2.24) which has 

the general form: 

fo} = [c]f{e} (3.36) 

3.5.3 Anisotropic stratified materials 

In this case the constants Ey and Vv, are associated with 

the behaviour in the plane strata which is parallel to r-6 axes, and 

Eos Hos Yo with the direction normal to them which is the z axis 

KE lg -3 50) 

m ] HL 

writing ten and te 
2 

zen (3.37) 
2 

The constituitive relations are 

Tn n(1-mv,") (vy4nv,”)n nvy(1+v;) 0 eR 

G n(1-nv 2) nv,(1+v, ) 0 € 
8 2 2 i 8 

See ee a 
2 (1494) (1-04 -2ny”) 

2 
9, Symm. i 1, 0 e, 

rz m(14v,) rz 

x(1-v)-2nv,") 

(3.38)
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3.6 The variational formulation of element stiffness and loads 

The total potential energy of an elastic body is defined as: 

T= Uo (3.39) 

where U = Strain energy 

Q Potential of applied loads 

The principle of minimum potential energy can be stated as 

follows: of all the possible displacement configurations a body can 

assume which satisfy compatibility and the constraints or kinematic 

boundary conditions, the configuration satisfying equilibrium makes the 

potential energy assume a minimum value, [3]. Therefore 

6m = 6U - bw = 0 (3.40) 

where W = work done by the loads. 

The potential energy for a linear elastic body can be expresses 

as: 

=f ‘Ujdvol - s (R+¥+Z)dvol - s (Tu +T Vv 
vol vol Ss y 

st Tw)ds (3.41) 

where ue = Strain energy/unit volume 

X,¥,Z = body forces 

ye ples Surface tractions 

The strain energy density for a linear elastic body can be written 

jin matrix form as: 

pertotdvol = He} [e]fe}avol (3.42)
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Substituting equation (3.42) into equation (3.41) and writing it 

in matrix form gives: 

m= 4S. (fe}*{cHet -2tu}*tR})dvol - sur*¢nhas (3.43) 
vol 5 

where: 

uy* = [uv wi 
ie = 0k 7 2] 

i {Thr = Eh iF TW 

V = volume of element 

Ss part of the element surface over which tractions 

are specified. 

Substituting equations (3.18, 3.34, and 3.36) into equation (3.43) 

gives: 

m= > f ({q}*(e]*{c][B]{q}-2¢q}*IN]*¢R})avo1. 
vol 

zi {q}*(n]*¢thds (3.44) 

Applying the variational principle: 

csqi*( s [8] *£c]LB]dvol{q} -/ [N]{X}avol. 
vol vol 

Pe [N]“¢T}ds,) = 0 (3.45) 

Since {eq}? is arbitrary: 

vor [8] °LCIEB]4vo1 tq} = i INR dv01 + sn] *eTias (3.46) 
° 5 

or 

[K]efa}, = {Qh (3.47)



3 EL 

where 

[kK], = J. (8]*EcI{BIave1 (3.48) 
vol 

{Q}, = £ INTEX}dvo1 + sEN]*e Tas (3.49) 
\ol 5 

AnddVolfor the axisymmetric ring element is: 

dVol = 2mRdA (3.50) 

where R = the perpendicular distance from the axis 

of revolution to the centre of dA 

dA = drdz (3.51) 

The evaluation of the integrals in equations (3.48, 3.49) in 

closed form for the six node isoparametric ring element requires 

evaluating (21) separate integrals listed in, [6]. As this is a 

cumbersome operation, it becomes more feasible to resort to numerical 

integration which should be performed with respect to global co- 

ordinates. But, as the [B] matrix is a function of local natural co- 

ordinates, it becomes necessary to transform the integral into them by 

applying a standard process using the Jacobian (det[J]), [8]: 

dA = drdz = det[J]dLjdL, ; (3.52) 

Hence equation (3.48) becomes: 
1 1-Le 

EK], = 5 [8] *tcjcejanr det[J]dL,dL (3-53) 
e 00 lisa 

To calculate an integral of the form: 

i= SSF(Ly» Lo, L3)dLydL,, (3.54) 

it is replaced in all methods of numerical integration by the sum:
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l= ae F(Ly4> Loy L3;) (3.55) 

where n = integration points = number of points at 

which the function is to be evaluated 

W. = weight coefficients i 

F(Ly;> Loy L3;) = the function value at the integrating 

point Liye Loy L3;- 

There are several quadrature formulae, [4], but the one chosen is 

the Gauss-Legendre one. Appendix (10.1) gives the details of the 

weighting coefficients and the triangular coordinates. The order of 

integration which effects the computing time and accuracy of the 

solution, was chosen to be quadratic. This choice was guided by the 

experience obtained by Robertson, [9], in solving several two 

dimensional crack problems, and was later justified by the accuracy of 

the results obtained. 

Equation (3.54) in terms of the quadrature formula (3.56) becomes: 

(kl, = aR z w;((B] *[c][s]dettoy (3.56) 
rirtayetgi 

where ((8]*Cc][B]det{J]) means the evaluation of the 
Lig otgplgy 

product in parenthesis at integrating point i. 

3.7 Assembly of the overall stiffnesses and loads 

If the continuum under consideration is divided into (E) number 

of elements interconnected at (N) number of nodes, with two degrees 

of freedom per node; then the total number of undetermined displace- 

ments is (2N) and the order of the overall stiffness matrix is
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[2NX2N]. The assembly of the overall stiffness matrix and load vector 

can be achieved by expanding the element stiffness matrix [kK], toa 

size of [2NX2N] and the element load vector (Qh, to a size of {2N}, 

changing local numbers to global numbers, and locating the coefficients 

in their appropriate positions in the new enlarged matrices. Summing 

up the contributions of all the elements, the overall stiffness matrix 

[K] and the overall load vector {0} are obtained: 

[k]{q} = {Q} (3.57) 

where 
E 

pK zk, (3.58) 
= 

E 
{= F (Qe (3.59) 

ae 

3.8 Automatic mesh generation 

3.8.1 Introduction 

The preparation of an error-free input data for a complicated 

problem is very tedious and time consuming. To minimize this effort 

many authors include some facility for numbering the nodes and elements, 

and computing nodal coordinates. Becker and Brisband,[10], automated 

the input data for special cases of simple geometries. Frederick, Wong, 

and Edge,[11], developed a partially automated method of discretizing 

irregular and non-homogeneous two dimensional continua. A more general 

approach utilizing the concept of natural coordinates in mapping curved 

boundaries was developed also [12,13]. However, all these methods are 

not fully automatic and require some manual instructions through which 

engineering judgement is exercised. An automatic mesh generation scheme 

was developed to help in reducing the input data required for the 

various problems tackled in this thesis. The six node isoparametric 

ring element was chosen for the work and the scheme was based on it.
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3.8.2 Mesh generation for an axisymmetric structure 

By definition, the structure is symmetric with respect to 

the axis of revolution, hence only half of its longitudinal section 

need be discretized. If there is further symmetry with respect to a 

diametral section, then only one quarter of the section is discretized. 

The method will be described for a simple case shown in Fig. (3.6). 

Lines AB, DC, and all lines parallel to them are called nodal rows, 

while lines AD, BC, and all lines parallel to them are called nodal 

columns. It could be shown that 

The number of nodal rows=(No. of element rows x 2)+1 (3.60) 

The number of nodal columns =(No. of Bienen columns x 2)+1 

The number of nodes/row = nodal columns (3.62) 

The number of nodes/column = nodal rows (3.63) 

It is seen that equations (3.60) to (3.63) are functions of element 

rows and columns, hence they are the only two factors that need be 

specified to generate the mesh in Fig. (3.6). 

The fact that each nodal point is an intersection of a nodal row 

and column is used in numbering the nodes as: 

Node number = (M X N)+d (3.64) 

where 

N = Nodal rows 

M=I-1 

I = Nodal column number 

Nodal row number a "
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O node number 

O element number 

  

  
  

      

G 

35 
2/5 S 46 @) 

EI 
3 (3) 6 

24 me a4 8 
‘ 

3 3 YO © & 
2/3 4,3 

ae © @ Q 
52 32 4,2 @ 

LH A 
© 30 @ 
3 41 

5/5 

va 

532 

  

Fig. 3.6



a 30h 

The coordinates of the nodes, for the special case of a rectangular 

section, are obtained by specifying the starting and finishing global 

r and z coordinates of the structure, i.e. points A, B, and D in Fig. 

(3.6). 

= Yr finish - r start 
ar = element columns x2 (3.65) 

z finish - z start 
AZ = STement rows x2 (3.66) 

Therefore for a point (N) 

r{N) = I-1)ar (3.67) "start * ( 

z(N) = + (J-1)az (3.68) 
2start 

If the section has curved boundaries so that the element rows and/ 

or columns do not have the same length, then the starting and finishing 

r and z global coordinates must be specified for all nodal rows and 

columns. 

To work out the nodal connections in the sequence (i,j,k,%,m,n) 

shown in Fig. (3.7), it was noted that odd number elements and even 

number elements, each follow a similar pattern. In each element 

column, the corresponding nodal numbers increase by two when moving 

from one odd element to the next one, and similarly for even elements. 

When moving from one element column to the next, the numbers of 

corresponding nodes increase by a factor of (2XNodal rows). A computer 

code performing these operations will be described in section (7.9). 

The nodal connections of elements can be specified in such a manner 

that symmetry with respect to a diametral section is obtained Fig.(3.8).
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This will prove very useful in certain fracture problems as will be 

seen in Chapter 8. The computer code for it will be described in 

section (7.9) also. 

3.8.3 Mesh generation around a core 

It will be shown later, how in fracture problems, a mesh is 

generated around a circular or semicircular core. To achieve this the 

nodal rows and columns, which are straight lines, are bent into semi- 

circular, circular, or rectangular shapes as shown in Fig. (3.9). It 

must be noted that even number nodal columns, which represent mid- 

side nodes, cannot be bent arbitrarily, but their shape will be a 

function of that of the columns immediately before and after them. 

The radius of a circular or semicircular nodal column, and the 

coordinates of the vertices and the number of nodal rows intersecting 

each side need to be specified. However, the core size in fracture is 

a function of the crack length, and the number of nodes on the core 

and hence the number of nodal rows is the maximum allowed by the computer 

storage which works out to be the same for a large range of problems. 

Therefore these parameters were built into the scheme and the only 

things which need to be specified were the crack length and the 

dimensions of the discretized section. 

When bending nodal rows and columns, care must be taken not to 

severely distort or overlap elements Fig. (3.10), as this will cause 

the computer program to fail.
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The nodal connections for this case remain exactly as those 

described in the previous section (3.8.2). 

The computer code which performs the operations described in 

this section will be presented in sections (7.10), (7.11) and (7.12).
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CHAPTER 4 

THEORIES OF BRITTLE FRACTURE 

4.1 Introduction 

It has been seen in practice, that although safety requirements 

were apparently satisfied in the design of some engineering components, 

they failed during initial loading or after several load cycles, leading 

in some cases to disastrous results, [14]. Their failure was attributed 

to the initial existence of small cracks or flaws in them. It became 

apparent that designing cross section areas to keep the gross stresses 

below the yield point of the material is not adequate for high strength 

materials which are sensitive to the presence of flaws or cracks, [15]. 

The theory of fracture mechanics was developed to provide an analysis 

which includes the reduction of the strength of the material due to 

that presence. 

The Griffith theory, which was proposed over half a century ago, 

is the starting point. It defined the conditions which make a small 

crack in a solid unstable by adopting an energy balance approach. 

An alternative approach, developed by Irwin, focused attention on 

the mechanical environment near the crack tip and is known as the stress 

intensity factor approach. He noted that the stresses in the vicinity
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of a crack tip are characterized by a special factor (K) called the 

stress intensity factor and used the critical intensity of these 

stresses as a material constant. 

These approaches and the various modes of crack propagation will 

be described subsequently. 

4.2 The Griffith theory 

Griffith stated that unstable crack propagation takes place if 

a small grack growth released more stored energy than that which the 

newly created crack surface has absorbed, [16]. The evaluation of 

energies required by this theory is difficult if considerable plastic 

deformation is associated with the crack extension. To overcome this, 

Griffith directed his attention to hypothetical materials which behave 

in a purely elastic manner prior to crack propagation. The specific 

problem considered was that of a crack of length (2a) embedded in an 

infinite elastic body subjected to direct uniform stresses perpendicular 

and parallel to the crack surface (a, and gy) Fig. (4.1). It could be 

shown that this system is equivalent to a crack of length (2a) subjected 

to a uniform stress (c= oy) perpendicular to its surface Fig.(4.2) 
° 

and that (o,) has no influence on crack stability, [17]. 

The strain energy of the body in Fig. (4.2) is equal to the work 

done in deforming the crack surface and is given by, [18], 

He = mata? (4.1) 

where t 
uniform thickness. 

a " 3-4y » Plane strain 

(3-v)/(1+v), plane stress
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Applying this result to the original system of Fig. (4.1): 

Vannes 
U 2 (etT)marto” 4g (4.2) 
total 

nM 

where 

U = The energy component independent of crack presence. 

The surface energy of the crack is: 

U 2 Gat y (4.3) 
surface 

where 

y = Specific surface energy 

For a crack increment of (26a): 

= (k+l) mato : 
6u total ri 

éa (4.4) 

And 

6U = 4tyéa (4.5) 
surface 

According to Griffith, the crack growth will be unstable if: 

(k+1) rato 2 6a > 4tyéa (4.6) 
qi 

Soritical = 4 V aalerl) (4.7) 

is that gy which causes instability 

or 

where 

critical 

The significance of this theory was the demonstration of the 

existence of a relationship between crack length and failure stress.



=Aben 

  

Fig. 4.1 

    Fig. 4.2
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4.3 Irwin's theory 

Irwin observed three independent basic deformations which are 

sufficient to describe all modes of crack behaviour in the general state 

of elastic stress, [19]. Each one of these movements is associated 

with a particular stress field in the vicinity of the crack, and each 

stress field is characterized by a special factor. The three factors 

are called the stress intensity factors and they define the magnitude 

of the local stress field. 

The three modes of fracture are the opening mode, the sliding mode, 

and the tearing mode; and the stress intensity factors associated with 

them are Kye Kip and rq respectively. The movement of the upper 

and lower crack surfaces with respect to each other for each mode are 

shown in Fig. (4.3). 

It could be shown that the mechanical energy released during 

incremental crack extension is independent of loading configuration and 

that the strain energy release rate is given by, [20]: 

--3U G = 3A (4.8) 

where 

U = Strain potential energy stored 
in the elastic medium. 

A = Crack area. 

The stresses and displacements expressions near the crack tip in 

the plane problem are given by, [21]:



a 
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Fig. 4.3 
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BK pie je neg Kar mag 69) Apis lee (4.9) 

m= I, IL, III 
7 3 Ss my = (Kyr®/u) 904(8) 4 = 1,2 (4.10) 

m= 2, 21, TI 

where 

th 
Ka = stress intensity factor of the m~ mode 

még (9) & m9i6®) = known functions given 

for all modes and cases in Appendix (10.2) 

Irwin, by using virtual work arguments arrived at the relationship 

between the stress intensity factor (K) and the strain energy release 

rate (G), [19]. 

ale. g- Ck (4.11) 

Formally this relation may be generalized to cover the three modes, 

[20]: 

Kt] ee (4.12) 

_ ett Z G2 Ky (4.13) 

and 

Geer = Kye 2/2 (4.14) Tigaaeia : 

However, under the second and third modes, the crack tends to 

extend in a non-planar fashion, hence a criterion for fracture based 

on critical values of (Gy, & G74) becomes difficult to justify, [22]. 

Therefore, the cases governed by this criterion are only those of Mode I.



- 52 - 

Experiments on suitable specimens determine the stress intensity 

factor at the point of fracture (Kye) which is the critical value 

for Ky, and is then regarded as a material property. A means for 

predicting the fracture behaviour of structures is then provided. 

4.4 The strain energy density theory 

In the general engineering problem, loading direction is not 

always perpendicular to cracks or flaws, and hence a mixed mode 

problem is present. A strain energy density criterion for fracture 

may be considered, according to which crack propagation occurs when a 

function of Ky> Kip and Kitr reaches a critical value, [23]. 

FUKps Kyps Kyyy) = fop (4.15) 

A single mode problem will be a special case of the general problem. 

With reference to Fig. (4.4), the stress and displacement 

expressions in the immediate neighbourhood of the crack tip were given 

in equations (4.9 and 4.10), these expressions define the stresses and 

displacements in a small region surrounding the crack tip which is 

considered circular for convenience. As the radius of this region 

(R,) is very small compared to (a) and (R), it can be assumed that 

the conditions of plane strain prevail within it, [24]. 

The cross sectional area of the element shown in Fig. (4.5) is: 

dA = r dédr (4.16) 

The volume of the toroid of cross section (dA) is:
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Fig. 4.5
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dvol = 2n[(R-a)#rcose]dA * (4.17) 

The strain energy stored in this volume is given by, [24]: 

OT eu yeeyUenelav, 
aW = alo, ap + Og(5- + 7 3Q)t 

Uy SUNG ON. 2 
Trg le ag * ar ~ rd 

x [2n[(R-a)+ rcose]dA] (4.18) 

The local strain energy density field can be expressed from 

equation (4.18) in quadratic form as: 

dW _ 2 2 2 
aa mecsy 2ehihta * A208tr * Aa3%irp 7 (312) 

where 

= 2n[(R-a)+ reose] , 1(3_4y-cosa) (1+c0s8)] (4.20) Sis 6u 

ayy = PllRra)* reose] , ¢(2sine)[cose-(1-2v) 1] (4.21) 

ano = Pe [4(1-v) (1-cose)+(1+c0s6@) (3cos6-1) ] 

(4.22) 
ae 2n[(R-a)+ rcosé 
33 4u (4.23) 

(dW/dA) becomes larger as (r) is made smaller, reaching a limit 

at the boundary of the core region (r = Rc). In equations (4.20) to 

(4.23) the term[(R-a)+ rcos@]will become[R-a + R.cos@jand as R. is 

considered very small compared with R and a,this term can be approxi- 

mated to(R-a)only. The intensity of the varying energy field along 

  

+ For a penny-shaped crack: 

dVol. = 2n[a+rcose ]dA
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the periphery of the core is referred to as the strain energy density 

factor (S) and is given by: 

2 2 2 
So ark * 2arpkykay + apakiy * 8gakray (4.24) 

where 

ay7 = [2n(R-a)/16u] x [(3-4v-cose) (1+c0s8)] (4.25) 

aq = [2n(R-a)/16u] x [2sine[cose-(1-2v) ]] (4.26) 

Ayo = [2n(R~a)/16u] x [4(1-v)(1-cosd)+(1+cos8)(3cos8-1)] 

(4.27) 

a33 = [2n(R-a)/4u] (4.28) 

According to the strain energy density criterion for fracture, 

initial crack growth takes place in the direction along which the strain 

energy density factor possesses a minimum value (3 = 0, at which 9=8,)5 

and crack initiation occurs when it reaches a critical value (S = Scr, 

for 6 = 6)), [25]. 

4.5 The crack tip plastic zone 

4.5.1 Introduction 

The material around the crack tip has been assumed so far 

to behave in a linear elastic manner. In practice most of the 

structural materials (especially metals) tend to exhibit a yield stress 

above which they deform plastically. This means that a plastic zone 

exists around the crack tip, and hence stress singularities cannot 

exist. A rough estimate of the size of the plastic zone is simple to 

make. With reference to Fig. (4.6), the magnitude of the elastic stress 

distribution ahead of the crack is plotted. Until a distance (r,) the
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stress is higher than (o yield)? and hence to first approximation, (r,) 

is the size of the plastic zone and is given by, [26]: 

a 
ia ea z (4.29) 

an °vield 

However, the actual plastic zone is larger than (r9) and is not 

circular. A more accurate impression of its shape can be obtained by 

examining the yield condition for different angles at the crack tip, 

[27,28]. 

4.5.2 Extension of the Griffith concept 

Irwin, [29] and Orwan, [30] working independently noted 

that the energy required for crack growth in metals is larger than 

the surface energy to create the new free surface. This was due to 

plastic deformation in front of the crack and hence energy is 

expended in the formation of a new plastic zone at the tip of the 

advancing crack. They suggested that the total potential energy 

becomes: 

T2=u+Q+ Uy (4.30) 

where 

U = Elastic strain energy 

Q = Potential of applied loads 

U, = Plastic work done 

And that the surface energy is modified to: 

Ge oY ¥ een (4.31) 

where 
work done in plastic deformation.



TSS = 

They concluded however, that because of the moderately long range 

(1/Yr) dependence of the stress field (equation 4.9), the elastic strain 

energy density is not highly localized about the crack tip. Hence, 

events within a small plastic crack tip zone are unlikely to cause 

significsnt variations in the system's strain energy; and the values 

of the strain energy release rate obtained by assuming linearity remain 

a good approximation. 

4.5.3 Extension of Irwin's concept 

Irwin argued that the occurrence of the plastic zone makes 

the crack behave as if it were longer than its physical size, [31]. 

The effective crack size is given by: 

a =at+é (4.32) 
eff 

where 

§ = correction due to plasticity 

With reference to Fig. (4.7), the crack (a) is replaced by a 

longer one (a + 6) and the elastic stress distribution is given at the 

tip of the effective crack length. (6) must be large enough to carry 

the load lost by cutting the area (A) from the elastic stress distri- 

bution, hence: 

Area(A) = Area(8) (4.33) 

By assuming (&) to be very small compared to the crack size (a), 

and similar to (r,) in equation (4.29), the distance (X) is given by: 

le 
= o (até) 
ake tear? 5 aa (4.34) 

Ovield
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The area(B) is given by: 

B= vield 6 (4.35) 

Therefore, the requirement B=A will yield, [26]: 

$ = r (4.36) 

And 

= +6= 5 Ro A+té er, (4.37) 

which means that the size of the plastic zone (R,) is twice 

the first estimate (r,). Since 6 = r and according to Irwin's 

argument, it follows that the crack behaves as if its length is 

(a+ ry). The quantity oo is known as Irwin's plastic zone 

correction.
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CHAPTER 5 

METHODS OF DETERMINING STRESS INTENSITY FACTORS 
  

5.1 Introduction 

The determination of the relevant stress intensity factors is 

required when adopting the stress intensity factor approach to crack 

problems. The prediction of failure loads and dangerous flaw sizes 

will depend ultimately on the accuracy of computing these factors. 

The methods of determining them may be broadly divided into experimen- 

tal, analytical, and numerical classes. Following is a brief 

description of the important methods in each field. 

5.2 Experimental methods 

These methods may be divided into two main groups. The first 

involves direct measurements on a model, and the second uses a known 

relationship between the stress intensity factors and a measurable 

quantity. 

5.2.1 Photoelasticity 

This is an example of the first group of methods, and its 

advantage is that it is a well established method in stress analysis, 

especially in calculating stress concentration factors, hence its 

equipment and materials are readily available. However the represent- 

ation of the crack must be done by a slit of a finite root radius, 

therefore equivalent crack lengths must be defined, [32].
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The relationship between the maximum shear stress and the stress 

intensity factors K and Kyy is given by 

c = E(k; sine+2k, ,cose)? + (K,psine)?72 (5.1) 
max 2venr 

where (r) and (8) are polar coordinates centered at the crack tip. 

This relationship is used in two different ways to determine the 

stress intensity factors. 

The first is by measuring (t...) on lines perpendicular to and 
max 

through the crack tip, [33]: 

(Ky? + K,,)? 
Taax * ~elie Ee (5.2) 

2Vemr 

and on a line parallel to the crack: 

= (5.3)   

Ky and Ky can then be determined from equations (5.2) and (5.3). 

The second measures the angle (8), at which a tangent to the iso- 

chromatic fringes is perpendicular to the radius (r), from the iso- 

chromatic fringe pattern near the tip [34, 35]: 

oT. 

ye =0 (5.4) 

K K 

Gy - F (qleotes -y: 0 (5.5) 

This relation together with equation (5.1)are used to solve 

for Ki and Ki



e563) = 

5.2.2 Compliance 

This method is an example of the second group of experimental 

techniques. The strain energy release rate (G) could be written in 

terms of the load (Q) and the rate of change of compliance (C), which 

is the reciprocal of stiffness, with respect to crack area (A) as,[36]: 

2 
o-> (5.6) 

For mode I fracture (equation 4.12) 

2 et, 2. @ ac Bu St = GA (8.7) 

therefore 

2. pe Sue de 
Ky = al dh (5.8) 

or 

k= 20 $63 ag 

The compliance is measured for different crack lengths and a graph 

of compliance verses crack area is constructed. The slope of the graph 

is substituted in equation (5.9) to determine Kr. As discussed in 

section (4.3), this method is not suitable for calculating Kyy or Kyqy- 

5.2.3 Crack tip opening displacement measurement 

The experimental methods discussed previously are related 

to purely elastic situations. If however, the plastic zone is large 

compared to the crack size, linear elastic fracture mechanics do not 

apply any longer. Under conditions of general yield, plastic flow is 

no longer contained, but the plastic zone spreads through the entire 

cracked section. Assuming negligible strain hardening, the stress at 

the crack tip hardly increases after general yield and the fracture
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condition is reached upon the occurrence of a sufficiently large strain. 

A measure of the plastic strain at the crack tip is the crack tip 

opening displacement (CTOD). A criterion first proposed by Wells, [37] 

stated that fracture takes place when critical(CTOD) is exceeded. 

The direct measurement of(CTOD)is difficult. With reference to 

Fig. (5.1) the(CTOD)can be determined indirectly from measuring the 

(COD) by, [26]: 

4a 
CoD = - (5.10) 

  

The equations for crack tip opening which are given in, [38], state 

that: 2 2 

s & ll S (i-v Vstane strain) 
CIOS omen neta (8.11) 

yield yield i 

K 2 
9 I (plane stress) 

EX yield (5.12) 

Various values for (A) have been reported in the literature and 

a review of them is available in, [26]. 

5.3 Analytical methods 

These methods have the advantage of giving explicit expressions 

for the stressintensity factors. They have been applied only to a 

number of ideal (special) situations because of the difficulty of 

tackling the stress analysis boundary value problem for complex geometry 

and/or loading.
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5.3.1 Westergaard stress function 

Several complex forms of the Airy stress function (section 

2.5) may be used for the solution of crack problems. Westergaard 

proposed the function, [39]: 

¥ = Reolz)+Xp1,8(2) (5.13) 

where $(z) = fo(z)dz (5.14) 

O(z) = S6(z)dz (5.15) 

It may be shown that the stress obtained from this stress function 

satisfy equilibrium, compatibility, and stress-strain relationships. 

By examining the boundary conditions of each specific problem and 

selecting the appropriate stress function ($(z)), the stress intensity 

factors of various but somewhat simple crack configurations can be 

obtained,[40,41]. 

5.3.2 Complex stress function 

According to Muskhelishvili's approach, the Airy stress 

function (F) may be written in terms of two complex functions 6(z) and 

v(z) as, [42]: 

Fe Rg[2o(z)+ Sv(z)dz] (5.16) 

Applying equations (2.20, 2.21 and 2.22) to equation (5.16) yields: 

Chas Gyee 4R[o'(z)] (5.17) 

And 

Gyn Gy PAIK = 2[Zo"(z)+v'(z)] (5.18)
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From these relations it may be shown that: 

7 ikyy = 272m bs (vz-Z, 9 (z)) (5.19) 
él 

K. 

This approach differs from Westergaard's since cracks may be 

mapped into holes using a mapping function of the form: 

Z = w(s) (5.20) 

The crack tip z in the z-plane will correspond to a point ¢ in the 

t-plane in Fig. (5.2). 

Equation (5.20) becomes 

Ky ik, = vem Lim fa(c)-w(z,) o 4S (5.21) I II sb ne, Ne ner 

Where 

6(z) = o(w(z)) (5.22) 

(5) = dé(z)/az 

This method, which is known as conformal mapping, is discussed 

in detail in, [43]. 

- 5.4 Numerical methods 

These methods, which involve certain approximations, are unavoidable 

for the solution of problems with complicated shapes and loadings since 

solutions by analytical methods are not possible.
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5.4.1 Boundary collocation 

This method consists in finding certain coefficients of 

the elastic crack solution by satisfying the boundary conditions at 

only a finite number of points along the boundary of the body. The 

process yields a set of equations 

m 
al a4 5X5 = Ri» i=1,2...n (5-23) 

where 

The problem is reduced to solving n linear simultaneous equations 

for the m unknowns (x5). The stress function may be expressed in a 

series form or as a series representation of a complex function. It 

must be noted that there is no general proof that collocation solutions 

will converge by increasing the number of boundary points as that may 

result in making the set of linear simultaneous equations il1- 

conditioned. The accuracy of the solution must depend largely on the 

experience and judgement of the analyst, [44]. 

A) The Williams' stress function: 

This is an Airy stress function which satisfies the conditions 

that the normal and shearing stresses are zero along the crack surface, 

and it is convenient to write it as, [45]: 

a (5.24) 

where 

Xe = even terms 

XS odd terms
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me ECCT A rr cos(n - S)e+ 
n=1 

2n-1 

ae cos(n + 3)6] 

+ (-1)" Aon r™*1 0 cos(n-1)8+cos(n+1)8]} (5-25) 

m7 8 ((-1)""1 By, r™*rsin(n - $)9- sin(ne3)0] 
Ee 

#(-1)" By eT L-sin(n-1)a+ SSF sin(n+1)o] } (5.26) 

It may be shown that the stress intensity factors are, [46]: 

Ky = -A, Ven (5.27) 

ry = 8,20 ; (5.28) 

The solution of the problem is obtained by taking the following 

steps: 

a) The determination of the stress function (F) for the 

uncracked configuration. 

b) Evaluating (F) and (at a number of points around the 

boundary. 

c) Substituting the value of (F) and (f) at each point 

into (x) and (% to yield a set of linear simultaneous 

equations whose solution gives (A)) and (B,) 

The stress intensity factors for a number of edge crack specimen 

have been obtained using this method, [47, 48].
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B) Complex stress function. 

It has been shown how Mushkelishvili writes a stress function in 

terms of two complex functions ¢(z) and w(z) (section 5.3.2). The 

o'(z) and (z) may be expanded in series which automatically satisfies 

the boundary conditions on the crack: 

  

  

Gees, sete Sig (5.29) 
2.2 nao " n=o " 

Zz -a 

- 1 n = n 
w(z) = Be he B Dee (5.30) 

Je-ae n=0 n=o 

A finite number of coefficients c and Dn are obtained by matching 

the prescribed stresses at discrete points around the remaining part 

of the boundary, [46]. 

Results of many problems using this method involving mode I, II, 

and III deformation, interaction between cracks, and cracks in stiffened 

sheets are reported in, [49]. 

5.4.2 Stress concentrations 

With reference to Fig. (5.3), the stress at the apex of the 

major axis of the ellipse (o,) is given by: 

Oy = o(1 + Ee) (5.31) 

The crack configuration may be approximated to a narrow elliptical 

cavity having a radius of curvature: 

be 
p= 4 <<a (5.32)
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Equation (5.31) may be rewritten as: 

z a 29g /2 on 7 oll + 2/2 deo (5.33) 

oa = 0, vb (5.34) 

or 

The stress intensity factors may be obtained from the limiting 

values of maximum stresses at the base of a notch whose radius of 

curvature is allowed to vanish 

Ey
 

K, = SE Lim (o vp) (5.35 
q B20 on"? ) 

If tts the maximum value of Ty then: 

Kir = /T Le (t,72) (5.36) 

ee) : E 
And if t mis the maximum value of Ty then: 

Kory = FF Lim (ogi) (5.37) 

Although relations (5.35), (5.36) and (5.37) are exact, those used 

for on and = themselves are approximate. 

The values of on for a variety of notches can be found in the work 

of Neuber, [50]. 

5.4.3 Green's function 

The stress intensity factors for crack problems involving 

arbitrary surface tractions may be found from those of a known problem.
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With reference to Fig. (5.4) the stress intensity factors for a crack 

having concentrated normal and tangential forces (P) and (Q) is given 

by, [51]: 

ee _ QHP | Kel bra 
K K i Ky sae ae ca ] (5.38) 

Equations (5.38) may be used as the fundamental Green's function 

for generating a solution to a crack problem having surface tractions 

oy (X50) 5 and Tyy (X50). Letting: 

u P =o, dx (5.39) x 

Q= Ty dx (5.40) 

and integrating from (X = -a to a), the Ma and Kry expressions 

for a crack subject to arbitrary loads on the upper surface’ are: 

  
  

  
  

Taye aa ie K, = f 6,,/—— dx + fet 10x (5.41) 
1 ona =a YVa-x anva -a XY 

1 elven 1 : atx 
Ky, = (Sy) fa, dx+ tor —— dx (5.42) 

Th anf ¥* <a 2nfa -a *Y Vax 

If the loads are balanced on the upper and lower crack surfaces, 

then equations (5.41) and (5.42) reduce to: 

i ik 2 atx K = K,-ikK,, = — - — d 5.43 fott wr z toy ityyd aor ( )
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Fig. 5.4 
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Sih, [43], and Erdogan, [52], applied this approach to obtain a 

solution to the problem of a plate with a finite crack with concentrated 

loads (P) and (Q) and a concentrated couple (M) applied at an arbitrary 

point. 

5.4.4 Integral transforms and dislocation models 

The elastic problem is considered as a mixed boundary value 

problem and solved using standard transform techniques. These methods 

reduce to the solution of an integral equation of the form: 

; K(S,X)q(S)dS = L(x) (5.44) 
-a 

L(x) = The known stress along the crack site 

in the uncracked body. 

K(S,X) = known Kernel. 

q(S) unknown function 

The function q(S) is related to the derivatives of the relative 

displacement v(X,0) of the crack face by, [46]: 

aa av(X,0) = q(x) (5.45) 
-v 

Thus, knowing q(x) enables the stress intensity factor to be found 

by: 

Ka = i (axla-x) —— a a 9 (5.46) 
2( ae
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The problem of a star-shaped crack subjected to internal pressure 

was solved by this method using a series expansion of (q), [53]. Radial 

cracks in discs and cylinders were also solved, [54]. 

Another class of problems in which the crack is represented by a 

continuous distribution of dislocation singularities, Fig. (5.5), leads 

to an integral equation similar to equation (5.44). 

The density of this distribution (Di(S)) is related to the 

Berger's vector (b;) as: 

D.(S)ds (5.47) 

where 

S = path around dislocation distribution. 

The crack configuration in Fig. (5.5a) can be modelled by a 

continuous array of dislocations of density (Dy(S)) lying along 

(y = 0), |X|<a, having Berger's vector: 

= 8 by ae dS (5.48) 

These dislocations cause stresses along (y = 0) given by, [46]: 

aD (S)ds 
sag = _2 gy dy ae - Ye ae (5.49) 

And 

Ta = 0) (5.50)
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Applying the boundary conditions on (y = 0), and in order that the 

displacements be single valued in the crack problem, the net Berger's 

vector must be zero, i.e. 

a 

f D,(S)dS = 0 (5.51) any. 

It may be shown that the stress intensity factor can be determined 

from, [46]: 

Kp GI Carn)? D(x) (5.52) 

5.4.5 Force-displacement matching 

This method is used in configurations having different 

materials. The forces and displacements are matched along the 

boundaries joining the materials, It has been used to determine the 

stress intensity factors for cracks in stiffened sheets, [55]. 

5.4.6 Alternating method 

This method uses existing solutions of simple crack 

problems to construct approximate ones to a more complicated range. 

This is done by superposing the known solutions of component problems, 

each satisfying boundary conditions on a portion of the boundary. Its 

application to two dimensional problems has been made by Irwin, [56]. 

5.4.7 Assymptotic approximation 

In some crack problems, solutions can not be found for 

arbitrary values of the physical parameters, although they are 

available for specific values of them. This method relies on solutions
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at both ends of the range of certain parameters such that a satisfactory 

interpolation can be made for intermediate values of them. This method 

has been used to find the stress intensity factors for finite width 

sheets with cracks under tension, [57]. 

5.4.8 The finite element method 

All the methods for computing stress intensity factors 

previously described are appropriate for problems with simple geometries 

and loadings. The finite element method, described in chapter (3), is 

capable of handling the more complicated problems and can easily model 

arbitrary crack configurations. It is convenient to divide the appli- 

cation of the method to fracture problems into two groups. The first 

relies on standard finite element programs and makes no special 

provision for the crack tip singularity. In the second, special crack 

tip finite elements are used, which incorporate the solutions for the 

singular stresses and displacements at the tip of the crack. 

A) Standard finite element computer methods 

i) The stress method: As this method does not make provisions 

for the crack tip singularity, a fine mesh is needed to represent the 

stress field near the crack tip. The appropriate nodal point stresses 

obtained by the finite element method are substituted into equations 

(4.9), and the relevant stress intensity factor is obtained by the 

proper choice of the stress components (955) and the angle (8). For 

example the mode I stress intensity factor may be determined from oy 

at a small distance r from the crack tip and an angle 9= 0. However, 

results obtained by this method were found to be unsatisfactory,[24].
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ii) The displacement method: As the primary unknowns in the finite 

element displacement method are the displacements, while the stresses 

are obtained by differentiating them and applying the relevant 

elasticity relations; it seemed that better results may be achieved by 

using the displacements obtained from the finite element method. The 

relevant stress intensity factor may be obtained by substituting the 

appropriate displacement components (u;) and angle (8) in equations 

(4.10). If these equations and the displacement components (u;) are 

exact, a unique value of the stress intensity factor is obtained. 

However, neither condition is fulfilled, especially that regarding the 

values of the displacement components, which is due to the fact that 

no provision was made for the crack tip singularity. Therefore, instead 

of attemtping to find single exact values for the stress intensity 

factors, several values are evaluated at a number of points close to 

the crack tip and are plotted versus their distance from the tip of 

the crack. Such a curve becomes linear some distance away from the 

crack tip, [24], and by extrapolating the linear portion to the tip 

point, a better estimate of the stress intensity factor is obtained. 

It was shown that the distance from the crack tip at which the 

curve becomes linear decreases as the fineness of the mesh is increased; 

and in the specific problem considered by Chan, [64], a (Ky) value (9%) 

below the theoretical obtained from a coarse mesh was improved to (5%) 

below with a fine one. This method was used to solve mode I problems 

by Chan et al.,[57], mixed mode I and II problems by Kobayashi et al., 

[58], and three dimensional problems by Miamoto et al.,[59]
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The method's accuracy was improved further by adding a second term 

to the leading one in the series expansion of the crack tip displacement 

formulae (4.10). This led to the extension of the range of the validity 

of the formulae, and by calculating (u,) and (ug) displacements at a 

pair of adjacent points (Appendix 10.2) values of Ky, Kqy Oy» and dy 

were obtained. The values for the stress intensity factors obtained 

for several points are plotted versus their distance from the crack tip, 

and were found to exhibit a maximum. This maximum value was found to 

be a better estimate of the stress intensity factor than that obtained 

by extrapolating the linear portion of the curve. In the specific 

problem solved by Oglesby and Lomacky, [24], results were of the order 

of (1 to 5%) below the theoretical value. 

iii) The energy methods: It may prove to be more advantageous to 

calculate the stress intensity factors from energy estimates near the 

crack tip. This way the accuracy of the solution is less dependent 

on the values of displacement or stresses obtained near the tip of the 

crack and a coarser mesh will yield equivalent accuracy. Also there 

will be no need to extrapolate (Ky) curves for which there is no 

theoretical justification. The energy approach may be implemented by 

using the following methods: 

a) Compliance calibration: It has been shown that the energy 

release rate (G) is related to the compliance (C) by equation 

(5.6). The compliance of cracked structure which is the 

reciprocal of the stiffness is calculated by finite elements for 

different crack lengths, [60], the energy release rate dU/dA is 

then calculated, from which (Ky) is evaluated using equation
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(S37) The (ky) values for a centre crack strip problem was 

evaluated using this method, [61] and its value was found to be 

within (5%) of that obtained by boundary collocation. 

b) Crack closure work: This method calculates the amount of work 

required to close successive nodal intervals along a crack,[62]. 

The displacement of the first nodal point along the crack face 

from the tip is calculated with all the boundary conditions 

applied. By applying unit loads to this node, the work required 

to close the crack over nodal intervals can be calculated. A 

graph of the closure work done versus crack area is plotted and 

the strain energy release rate (G) is determined from its slope: 

the (Ky) value is then determined from (G) as in the method 

described previously in (a). 

c) The J-integral method: Rice defined a line integral (J), 

along an arbitrary contour (r) surrounding a crack tip, Fig. (5.6) 

by, [63] 

J=s (Udy - TBs) (5.53) 
YS 

where 

U = Strain energy density 

T = Traction vector along the outward 

normal to the contour. 

u = Displacement vector on an arc 

element (dS) along arc (S). 

Having determined U, T,and ia along the chosen contour by finite 

element, the integral is evaluated in a counter-clockwise direction
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starting at the lower crack surface. He has shown also that (J) is 

equal to the strain energy release rate (G), hence (K;) can be 

evaluated from it. In a mixed mode situation, it was also shown that: 

2 
= a (ee + a plane strain (5.54) a 1 

2 
re ct plane stress (5.55) 

zal 
J= ie (K 

Therefore the sums of the squares of (Ky) and (Ky) can be 

determined, but not Kr and Ky separately. 

The (ky) value for a compact tension specimen was evaluated by 

this method, [64], and was found to be (35%) lower than that obtained 

by boundary collocation. 

B) Special crack tip finite element methods 

All the methods discussed previously use a standard finite 

element program, with a fine mesh near the crack tip, to determine the 

stress intensity factors; and with the energy methods requiring less 

mesh fineness. However, the major disadvantage to these methods, is 

that their monotonic convergence to the true solution is not assured. 

It has been shown that errors adjacent to Points of singularity are of 

the same order as those of the remainder of the elements, hence their 

effects extend over a finite region around these singularities, [65]. 

The large computer storage required, together with the lack of 

accuracy due to extrapolation, plotting, and bad convergence justifies 

the use of another approach with specially constructed elements at the 

crack tip in which the singularity condition. is built into their displace- 

ment functions.
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i) Byskov's element: Bys kov proposed a polygonal element 

containing a linear crack, [66]. The specific shape applied was triang- 

ular with a straight crack extending from one vertex to the interior, 

Fig.(5.7). The displacement terms used for the element were obtained 

from Muskhelishvili's complex stress function in terms of a power series, 

[42]. The number of terms of the series retained is equal to the number 

of degrees of freedom of the element. Although equilibrium conditions 

are satisfied within the element and the crack face is traction free, 

incompatibility along the interface with neighbouring elements exists. 

There can be no control over the influence of this incompatibility, as 

only three conventional elements can surround the Bysokov's one. The 

stiffness matrix of the element is determined numerically and values 

of Ky. Kry and nodal points displacements are obtained directly. 

ii) Tracey's element: In Tracey's approach, the near tip displace- 

ment field is represented with the same accuracy as that away from the 

tip, by using quadrilateral isoparametric elements, [67]. The crack 

tip is surrounded by triangular elements, Fig. (5.8), and to achieve 

this two of the nodes of the quadrilateral element are made to coincide 

Fig.(5.9). The elements in the(x,y) coordinates are mapped to a square 

in the (¢,n) auxiliary coordinates system, Fig.(5.10), by the trans- 

(i , Xn Xe Xe Xp Z(1-n) 

CunD on (5.56) 

(1-2)n 

(1-2) (1-n) 

formation:
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Thus along each edge of the element one of the auxiliary co- 

ordinates is constant and the other varies linearly with respect to 

(X) and (Y). The displacement functions within an element have the 

form: 

uy (Son) = oy] + ooo + ay gn + oy gon (5.57) 

vy (Zn) F Ogg + Gy9d + dogn + dogtn (5.58) 

Where the constants (a; 5) are expressible in terms of nodal 

displacements. 

These displacement functions satisfy the compatibility conditions 

and are continuous across element boundaries. 

The quadrilateral elements are used everywhere except very near 

the crack tip where the special triangular element is employed and whose 

displacement functions are of the form: 

u(En) = By, + Bayt? + By 9c¢n (5.59) 

" 3 3 vy(Son) = Boy + By9d* + Bygoen (5.60) 

Where (855) are determined from nodal values of displacement 

components. The line segment, 5 = 0, in the auxiliary plane corresponds 

to the crack tip. 

The displacement functions given in equations (5.59) and (5.60) 

result in compatibile displacements between adjacent triangular elements 

and between them and the quadrilateral ones also.
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The nodal point displacements and stresses are obtained from the 

finite element solution and from them the values of Ky and Ky are 

evaluated as described previously in the displacement and stress methods. 

The problem of a double notched edge plate under tension was solved by 

Tracey using this method. He averaged the values obtained for (Ky) 

from the displacements of the first ring of nodes surrounding the crack 

tip, and the results were within (4%) of the exact value for (248) 

degrees of freedom and (2.9%) for (548) degrees of freedom. 

iii) The singular isoparametric element: Elements which embody 

the inverse square root singularity were developed independently by 

Henshel1, [68], and Barsoum, [69]. Their shape functions N, (on) are 

polynomials and hence, Ge and Gly are non-singular. The strains 

may be written as: 

fe} = (a)'£8(z.n) tu,) "(5.61) 
where 7 

[B(¢.n)] = The strain displacement matrix. 

u; 
fu.} = ("4 = nodal displacements 

} v i 

[J] Jacobean matrix defined in section (3.4) 

The singularity can be achieved by making [J] singular at the crack 

tip, this implies that (det.[J]) vanishes at the crack tip: 

= (x,y) det[J] = oak (5.62) 

For a six node isoparametric triangular element, Fig.(5.11), the 

singularity is investigated along the x-axis, (n = 0).
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It can be shown that, [69]: 

(c? + 2¢ +1) 

“Lief 

The term 3 in the Jacobean is: 

hae (1+) -/k (5.65) 

which makes the Jacobean singular at (X = 0, 5 = -1). 

Xx (5.63) 

P
l
 

Therefore 

  

(5.64) Rat
 1 

Although the strains and stresses in these elements are singular, 

their total strain energy is finite and hence their stiffness. These 

elements satisfy compatibility, continuity, and convergence requirements. 

They also satisfy constant strain and rigid body motion conditions. 

A ring of these elements surrounds the crack tip and the stress 

intensity factors are obtained in the same manner as that followed by 

Tracey in the previous section. The same problem of a double edge 

notched plate under tension was solved by this method, [69], and the 

results for (Ky) were within 1% of the exact value for (700) degrees 

of freedom. 

iv) The hybrid element: Tong, Pian and Lasry, used the hybrid 

element concept and the complex variable technique to construct a 

special super-element at the crack tip, Fig. (5.12). This element



- 93 - 

  

Fig. 5.12 

=X



= Stu 

is used jointly with ordinary elements elsewhere. The super-element 

incorporates the crack tip singularity, and good results were obtained 

from a coarse mesh near the tip, [70]. 

A hybrid functional was defined for a plane problem with tractions 

(7,) over boundary (S,) and displacement (a;) over boundary (S,) as: 

stm Tey ot 

where 

TT, = * (G, - u;)T;ds - f a T, ds 
m o’m 

oo era a) Fie 
m 

where 

= th . 
An = area of the m~ element. 

3A, = boundary of AW 

Si jke = compliance coefficients 

uj and O45 are defined in a 

T, and U; are defined over 3A, 

TD is 
u, =U; over (S,) 

1 

Go.) “m 

(5.66) 

(5.67) 

element surface where tractions prescribed 

Using Mushkelishvili's complex stress function, and to account 

for singularities by choosing proper displacements and stresses for the 

crack element, the following mapping function is introduced: 

2 W(c)e=ir 

or 

eo 

(5.68) 

(5.69)
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Writing the two complex functions required for Mushkelishvili's 

method as: 
N 

o(t) = 2 by O° (5.70) 
oe) 

We ee 3 
v(c) = & [B.(-1)9 +5 b,Je (5.71) 

jel 9 Jj 

It may be shown that, [70]: 

Ky = 72(81) (5.72) 

Kry = ¥2(By41) (5.73) 

This method has been used to solve the problem of plate with edge 

crack and central crack, and the results for the stress intensity 

factors obtained directly by the relation between the displacements and 

(8) stated in, [70], gave good accuracy for a small number of degrees 

of freedom. 

v) Blackburn element: Blackburn developed a trtangular element 

with the (Yr) singularity built into its displacement function which 

is given by, [71]: 

(bye + ban) 
(5.74) 

yc 
u(Zon)= by + 

Which is equivalent to a constant strain triangular element and: 

i (Cog + Can + Cytn) 

Pq 

which is equivalent to a linear strain one. 

u(Zon) = Cy (5.75) 

ete c & n = Area coordinates.
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These elements were inserted into the C.E.G.B. stress analysis 

system BERSAFE and the problem of a rectangular centre cracked strip 

in tension was solved by them. With (4) elements surrounding the crack 

tip, the stress intensity factors were obtained from the displacements 

similar to Tracey's method. The results were found to be very accurate 

compared to those obtained by Paris and Sih, [72]. It was noted that 

these results obtained by using linear strain elements having (1786) 

degrees of freedom were more accurate than those using constant strain 

elements having (480) degrees of freedom, [32]. 

vi) Hilton and Hutchinson method: This method was developed by 

Hilton and Hutchinson to evaluate elastic plastic stress intensity 

factors Ky and Kryy> [73]. Wilson used this method also to evaluate 

the elastic stress intensity factor Kor? [74]. The philosophy behind 

this method is that the assymptotic expansion becomes more accurate 

as the singularity is approached, while finite element approximation 

is accurate everywhere else. Thus a combination of these two tools, 

each in the region where it is most accurate, will yield a good 

solution to the problem. The present work is based on the development 

of this method to solve single and mixed mode fracture problems of 

axisymmetric solid, therefore the method will be illustrated by using 

the axisymmetric problem of a round solid bar of radius (R) containing 

a circumferential crack of depth (C) and subjected to uniform axial 

tension. The specimen geometry is shown in Fig. (5.13). A core of 

radius (R.) is constructed around the crack tip defining a boundary 

(rf), and in view of symmetry, only a quadrant of the upper half of the 

cylinder is shown in Fig. (5.14).
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It is assumed that when the ratio of (R/C) is very small compared 

to the crack depth (C), the conditions of plane strain prevail within 

the core region, [24]. This assumption may be justified by inference 

from the existing analytical solutions for embedded flaws in an infinite 

medium, [75], for the through cracks in finite thickness plates in the 

region close to the crack border on the interior of the plate, [76], 

and from the numerical solutions for surface cracks in finite thickness 

plates, [77]. Another justification can be sought from the numerical 

results of strain components of elastic plastic analysis of a round 

notched bar obtained by Tracey,[78]. 

The displacement components in the core region are given by 

equations (4.10). These equations represent constraints on the nodal 

points of the first ring of triangular elements which fall on (1). 

The potential energy of the upper half of the cylinder is given 

by: 

Rea sEcore = eA SE - / T.udS (5.76) 

where: 

SE core = Strain energy of the core 

By SE = strain energy of all elements outside the core 

fT.udS 
Ss 

Work done by traction vector (T) on the surface 

displacement vector (U). 

The core strain energy is given by, [24]: 

a _ SE — : 945 &45 (5.77) 

= 7 Le) a £(R-c)(Z-2v)tr(g - $)1k,? (5.78)



= o0ee 

Hence, the stress intensity factor (Kk). the rigid body displace- 

ments (Sm), and the nodal displacements vector {u;} become generalized 

coordinates. The governing linear algebraic equations to be solved for 

Kp . 6r and {uj} are obtained from the minimization of the potential 

energy equation (5.76). It must be observed that the problem is not 

a free variation one because of the constraints implied on the nodes 

on (Tf) by equations (4.10). This aspect will be discussed in more 

detail in Chapter 6. Now: 

SPE 
mo (5.79) 

aPe ws 0 (5.80) 

aPe 

wre O 41 = 41,2.00.0N (5.81) 

where: N = total number of unconstrained degrees of freedom. 

The continuity of displacement at the interface (I) between the 

core and the neighbouring triangular elements is not fully satisfied, 

compatibility is assumed only at the nodes, and hence monotonic 

convergence to the exact solution cannot be expected. However, the 

number of nodes on the core, and therefore the number of elements 

surrounding it, can be increased to reduce the discontinuity of 

displacements to an acceptable level. A further improvement may be 

achieved if linear strain triangular elements are used outside the 

core, as in the present work,because their quadratic displacement 

function is closer to the core's than the linear one of the constant- 

strain elements.
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The advantages of this method are: 

1. The simplicity of incorporating the core treatment 

within a standard finite element program. 

2. Separation of Ky> Kip and Kitz for combined mode 

analysis. 

3. The stress intensity factors are obtained directly 

from the program. 

4. Possibility of extension to elastic-plastic, plastic, 

and different material properties. 

This method will be used to solve all the fracture problems 

considered in this thesis and isdiscussed in more detail in the 

following chapters
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CHAPTER 6 

MODIFICATION TO THE FINITE ELEMENT FORMULATION 
  

TO INCORPORATE A SINGULAR CORE 

6.1 Introduction 

In has been shown in Chapter 5 that, even with a fine mesh, the 

application of a standard finite element program to fracture problems 

does not yield accurate results. Incorporating a special crack tip 

element or a core subregion, with the crack tip singularity embedded 

in their displacements functions, will improve the results and reduce 

the number of elements required to idealize the structure. The Hilton 

and Hutchinson method, which uses a special core element around the 

crack tip, was discussed briefly and its advantages over other methods 

were shown in section (5.4.8). This chapter will be devoted to the 

description of the modifications required to a standard finite element 

program to incorporate the Hilton and Hutchinson type of core element. 

There are other methods than the one described for synthesising the 

singular core and finite element mesh: Richards method utilizing 

Lagrange Multipliers is an example, [79]. 

6.2 Modification to the finite element formulation to include the 
  

Hilton and Hutchinson type core element 

Considering a solid circular bar with a circumferential crack 

inclined at an angle (8), Fig.(6.1). The crack tip is surrounded by
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a circular core of radius (R,)- The displacement components in the 

core region are expressed as a series expansion, (Appendix 10.2), in 

the form: 

i " Ky f(r,8) + Kyy g(r.) + ajh(r,6)... (6.1) 

u z = Ky £(r,8) + Kyy m(r,8) +a pn(r.8)... (6.2) 

where: f(r,6)...etc. are given in (Appendix 10,2) 

Writing equations (6.1) and (6.2) in matrix form: 

fut, = IN] fa}, (6.3) 

where: 

{N]. = matrix of functions f(r,@)...etc. 
S (6.4) 

fol, = Vector of unknown parameters, 

Ky, Kiy> PsviossltCs 

Within the core, the strains are related to the vector {a}, 

(Appendix 10.2) by: 

fe}, = [8] {a}, (6.5) 

Using the stress-strain relationship 

fo}, = (C]fe},, (6.6) 

the strain energy of the core is then given by: 

ued ¢ totter av (6.7) CG 2 Caanc F 
NC
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Therefore 

u, = plait “ (e]*(c]te]_dv){a},. (6.8) 
or c 

Uy Seta} Ik)tal (6.9) 
ee -asc ec : 

The shape of the core is arbitrary, but a circular core is chosen 

to simplify the integration required to form [k],- 

The total potential energy of the solid is given by: 

PE =U. 4.5 UL =a (6.10) 
© ee ge 

where 

UE = Strain energy of elements outside the core. 

2 " Potential energy by the traction vector on 

the surface displacement vector. 

Equation (6.10) may be written as: 

PE = tad [k] tod, + Ha} *[k](qh-f4} Ca} (6.11) 

The (a's) and (q's) are not independent because the (q's) on the 

interface (I) are related to the (a's). Therefore, it proves convenient 

to partition {q} into {q,} which corresponds to the nodal displacements 

on (T) and {a9} which corresponds to the nodal displacements of the 

remainder of the mesh. The stiffness matrix [K] and load vector {Q} 

are partitioned similarly, i.e.
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{q,} {Q)} (Kj) [kyo] 

{q} = + he > [K] = 

{99} {Q} [Koy] [Kyo] 

(6.12) 

From equation (3.16), the vector of nodal displacements on (T) 

may be expressed as a function of (a) as: 

{q)} = [Al{o},, (6.13) 

where 

[A] = matrix of function f(r,6)...etc. evaluated 

at the node on (T). 

and 

{q,}° = tatrag® (6.14) 

Substituting back in equation (6.11) yields: 

PE = HadtEk] tad, + Hod taI*Ck,, JAlad, 

+ Harta] "ky ,]lag} + Zap) "tk, IAT Ca}, 

+ Hap) *EKyp lay} - Co3*taI*tQ,} 

- {a9}*a,} (6.15) 

The variation (6(PE)) is found by treating the (a's) and (q9's) 

as free variables which may receive arbitrary independent increments, 

therefore, for equilibrium:
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S(PE)= 0 = {6a}"CK] fo}, + {6a}£(CA]*EK, ICAI) {a}, 

+ Heatttal*[k, Hay) + staal tk, {sap} 

+ Ueqy}{ky HAM}, + Hay}[Kpy IAN Sah, 

+ {6a} *[kyo]ay}-(éabtfal ta, } 
~ {6q,}*CQ,} (6.16) 

As [K] is symmetric so that: 

ikjpl = aikoydes (6.17) 

and matrix products of the type portal tk, »]f6qy} are scalar so that: 

Plad$Cal*Ekyp]t6qy} = (Zta}*LA] "CK, ]{Sap})* 

= Hoq,}*Ek,, JA](a} (6.18) 
2 te 21 fe . 

then, 

6(PE) = 0 CéadtfTkI fa}, + (LACK, IAI) Ca}, 

ae [Al*Kyg]tay? - area)? | 

ie {8q9}"[[Kpp]fap} + [Ky ]LA]a}, 

- a)] (6.19) 

Since {6a}, and {Say} are arbitrary, equation (6.19) yields two 

simultaneous matrix equations of equilibrium:
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[kyp]€qp} + [kp ]IANa}, - {Q,} = 0 (6.20) 

Ik] fot, + (CAI*EK, ,]IA}){a}, + CA]°LK, 519} 

~fa]*(Q,} = 0 (6.21) 

These equations may be written as one re-formed stiffness matrix 

and load vector of the form, 

[k]* fq}* = {Q}* (6.22) 

as 0 

(healt (iy JN {ap} {Q5} 
AS rms pt alli, | fem a | a m8) 
(CATER 91) (CRI ACAT*EK, ICA] | [tod | [car eq, 

Equation (6.23) shows how easy it is to modify a standard finite 

element program to include a "core" element. The overall stiffness 

matrix and load vector are altered as described in the previous steps 

and the solution proceeds normally after that. The numerical implemen- 

tation of the operations described in this chapter will be discussed 

in Chapter 7.
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CHAPTER 7 

COMPUTER PROGRAM PROCEDURES 

7.1 Introduction 

The development of a computer program solving fracture problems 

of axisymmetric solids using the finite element method and incorporating 

the special core element of Hilton and Hutchinson was carried out in two 

stages. The first stage was to develop a general finite element program 

using a six node isoparametric ring element to solve problems of axi- 

symmetric solids subjected to axisymmetric loading. To simplify the 

structure of the program, it was divided into substructures (procedures) 

each performing a stage of the solution. Procedure (STRDIS) formulates 

the strain displacement relations, and the computer code for the 

constituitive relations is given in procedure (CONSTREL). The boundary 

conditions are applied by means of two procedures: (LOADING) which deals 

with the applied loads, and (BOUNCONST) which deals with the prescribed 

displacements. It is noted that a large number of elements is required 

to yield a reasonably accurate solution, hence the computer storage 

needed for the overall stiffness matrix is large also. Jennings and 

Tuff, [82], developed a scheme to store this matrix as a one dimensional 

array, retaining the coefficients between the first non zero term in any 

row and the leading diagonal, as the matrix is symmetric. To achieve 

this a special address sequence is used which allocates the appropriate 

place for each element of the overall stiffness matrix in its two
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dimensional form in the one dimensional form. This sequence was 

Programed and used by Robertson and a detailed description of it is 

available in his Ph.D. thesis, [9]. Robertson's procedure (ADDARRAY) 

was used together with procedure (ASSEMBLY) to evaluate the element 

stiffness matrix by performing the integration required numerically, 

and assembling the overall stiffness matrix as a one dimensional array. 

The set of simultaneous linear equations [K]{q} = {Q} is solved for the 

unknown displacement vector {q} by procedure (SYMVBSOL). The output 

procedures (NODSTR) and (ELESTR) evaluates the strains and stresses of 

nodal points and element centroids respectively. The computer code 

developed for the automatic mesh generation and the specification of the 

prescribed nodal loads and displacements is given in procedure (FEINPUT). 

The second stage of the development of the computer program 

involved augmenting the general program obtained from the first stage to 

incorporate a Hilton and Hutchinson type of core element. This implied 

changing the input procedure to generate a core around the crack tip 

with a specified number of nodes on it and subdividing the remainder of 

the structure in the normal manner. It is noted that in mode (1) 

fracture problems, the structure and loading are symmetric with respect 

to the crack plane, hence only a semicircular core is required; while a 

full circular one is needed for the mixed mode (I) and (II) problem. 

The computer code for the mode (I) input requirements are given in 

procedure (CCRINPUT) and those for mixed mode (1) and (II) in procedure 

(MMINPUT). The shouldered bar problem has a purpose-built input 

procedure similar to that of mixed mode (I) and (II) but accommodating 

the variation in fillet radii required, and is given in procedure 

(SBINPUT) .
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The other change implied by incorporating a core element is the 

modification of the overall stiffness matrix and load vector described 

in Chapter (6). A computer code for these modifications was developed 

by Robertson for two dimensional planestrain and plane stress problems 

and is discussed in,[9]. Two procedures somewhat similar to Robertson's 

were developed for mode (I) and mixed mode (I) and (II) axisymmetric 

problems which are (CCRMI) and (CCRMM12) respectively. 

Procedures (KARMIBND) and (KARBDMMST) check the array bonds and 

expands them if necessary to allow for the modifications of the overall 

stiffness matrix and load vector for mode (I) and mixed mode (I) and (II) 

problems respectively. It will be seen later that the displacements 

obtained from solving the set of simultaneous linear equations may be 

used to check the conditioning of the equations by resubstituting them 

back into the equilibrium equations and obtaining a new force vector 

{Q}*. The computer code to perform this is given in procedure (RESIDUAL). 

Sih's strain energy density criterion will be used later to determine 

the direction of crack initiation. It requires finding the angle which 

minimizes the strain energy density function given by equation (4.24). 

The standard procedure (E04AAA) from the Nottingham algorithm group 

Library is used for this purpose. 

A detailed description of these procedures will be presented in 

the following sections of this chapter, and the programs incorporating 

them together with input instructions and sample problems will be listed 

in Appendix (10.4).
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7.2 Procedure (STRDIS) 

This procedure evaluates the coefficients of the [B] matrix relating 

the strains to the displacements, and the Jacobean matrix [J] and its 

determinant described in section (3.4), at various points within each 

element. The number and location of these points is specified by the 

numerical integration technique and its order chosen to solve the 

problem. In solving the axisymmetric problem by finite elements, 

computational problems arise from the calculation of the hoop strain 

(u/r) for elements with one side coinciding with the axis of revolution. 

The relation between the natural local coordinates and the global ones 

is given by: 

t 
1 {1,3 

3 t ihe r p= {rj} Mtn} 7 = Vy25e.06 (Fe) 

mez \ 

where 

Ni(Ly,Lo,.L3), i = 1,2,...6 are given in equations (3.2.1) 

Therefore 

r= ryNy + rN, + rNg + ryNq + reNs + reNe (7.2) 

For an element with one side coinciding with the axis of revolution, 

the (r;) values of the three nodes on that side are zeroes. The remain- 

ding three terms defining (r) are all functions of one of the natural 

coordinates Lysly or L3 depending on the node numbering sequence of that 

particular element. When the value of this natural coordinate is zero 

for a particular point of integration, the whole value of (r) is reduced 

to zero. To overcome this, the (r) value for such elements is taken as 

a constant and is equal to the average of the six (r;) values of the nodes.
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The following steps are taken to formulate the [B] matrix: 

‘1. The coefficients of the Jacobean matrix [J] are determined 

from equation (3.27), the determinant and inverse of [J] 

are evaluated, and the coefficients of [J] are replaced by 

those of [a]7!. 

2. The shape functions given in equation (3.21) are stated. 

3. A code is introduced to distinguish between hollow and 

solid structures. 

4, The radii values required for computing hoop strains and 

numerical integration are evaluated as described 

previously in this section. 

5. The coefficients of the [8] matrix are evaluated from 

equation (3.33).
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Procedure STRDIS Flowchart 

le 
  

OCT, 1J:=XEN[Z,1]]*(4*L1-1)+ 
X[NLZ,3]]*(4*L1+4*L2-3)+ 
4*L2*X(N[Z,4]]-4*L2*X(N(Z,5]] 
+4*X[N[Z,6]]*1-2*L1*L2) 

JLT ,2]:=Y(NLZ,1]]*(4*L1-1)+Y[NEZ,3]] 
*(4*L144*L2-3)+4*L2*Y(N(Z,4]]. 
44L2*Y(N[Z,5]]+4*Y(N[z,6]] 
*(1-2*L1-L2) 

J[2,1J:=X[N[Z,2]]*(4*L2-1)*x(N[Z,3]] 

*(4*L14+4*L2-3)+4*L1*X(N[Z,4]] 

+4*X(N[Z,5]]*(1-L1-2*L2) 

~4*L1*X(N[Z,6]] 

J[2,2]:=VONCZ,27]*(4*L2-1)+YENEZ,3]1* 
(4*L14+4*L2-3)+44L1*Y[N[Z,4]]+ 
4*Y[N[Z,5]]*(1-L1-24L2) 

| -4*L1+YEN[Z,61] 

! U:=d[1,1]*J[2,2]-J[1,2]*9[2,1] 

CHANGE :=J[1,1] 

J[1,1]:=d[2,2]/U 

J[1,2]:=-J[1,2]/U 

J[2,1]:=-J[2,1]/uU 

J[2,2]:=CHANGE/U 

NL[1]:=L1*(2*L1-1) 

NL[2]:=L2*(2*L2-1) 

NL[3]:=L3*(2*L3-1) 

NL[4]:=4*L14L2 

NL[5]:=4*L2*L3 

NL[6]:=4*L34L1     
] 
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Yes 

  

  

  C:=1 
  

    
C:=(2*ER)+1     

et 

fai cache nw af 
No 

Yes 

    
RMEAN:=(X[{NCZ,1]]+X(N(Z,2]] 

+X(N(Z,3]]+X(N(Z,4]] 
+X[N[Z,5]]+X(N([Z,6]])/6       

  
      

  

  
RAVG:= 0.0 | 
  

| 

| 

| 

| 

poo - et 
| 

(1) 6     
   



  

      

  
  

PLV,I]:= 0.0 
fs eae era ie 

re liz 1, 2 

| 
[ P[T,1]:=d[1,1]*(4*L1-1) 

P[I,2]:=J[1,2]*(4*L2-1) 
| P[I,3]:=J[I ,1]*(1-4*L3) 

+J[I,2]*(1-4*L3) 
| P[I,4]:=4*(L2*J[I ,1}4+L1*J[1,2] 
j P[I,5]:=4*(J[1,2]*L3 
| -L2*(J[1,2]*J[1,1])) 

P[I,6]:=4*(J[1,1]*L3 
| -L1*(J[I,1]}*J[1.2]))       

  

        
  

      

| 
t B[V,I]:= 0.0 
1 | 

fe —---— ss 

| BLT, (1*2-1)]:=B[4, (1*2)]:=P[1,1] 

B[4, (1*2-1) ]:=B[3, (1*2) ]:=P[2,1] 

| BL2, (1*2-1)]:=NL[I]/RAVG 

ES aes eel 
  

END
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7.3 Application of boundary conditions 

The two types of boundary conditions considered are prescribed 

loads and/or displacements. Their directions should coincide with the 

global axes, and hence an inclination in the direction with respect to 

them must be resolved manually and the components in their direction 

are inputed. Non zero as well as zero displacements can be imposed. 

7.3.1 Procedure LOADING 

This procedure deals with the applied load which may either 

be nodal point-loads or distributed loads. In the case of nodal point- 

loads, a code is introduced to distinguish between loads in the (z) 

and/or (r) directions. The value of the prescribed nodal load on a 

node (N) is assigned to row (2N-1) or (2N) in the {Q} vector depending 

on its direction. 

A distributed load is best represented by nodal loads which produce 

equal work on the structure to that by the distributed load. Consid- 

ering a linearly varying force intensity P(E,) acting on face (B) of 

the element shown in Fig.(7.1). The force per unit length is 

(2nrP(&,)). if (Ra) are the nodal loads statically equivalent to 

P(ER), then when virtual node displacements (rg) are produced, the work 

done by these nodal loads must be equal to that done by the distributed 

load P(E,). 

C: os t [R]*trg} = HEP}"irg ds (7.3)



ZA 

  

-117 = 

Px 
k 

Pp - (fe) 

Pm 

t . 
Pi 

j 

> FP   

Fig .7.1
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The distributed load may be resolved into two components in the 

(r) and (Z) directions P (Eg) and P (3) vary as a polynomial of order 

(n), then the values needed to specify it will be (n+1), hence for 

convenience the variation will be assumed parabolic. Therefore, the 

values specified at the (n+1) nodal points (2) and (Pr) are related 

to P(E,) by: 

ic P(E) {oy}° 0 Be 
P(Eq) - : 

P(g) Cha Ue 
z= 

{y,}"(P} (7.4) 

The displacements on face (B) depends only on the nodal points on it, 

hence t u(E,) {gt 0 up 

rp(Eg) = = : 
w(é_) 0 {og} We 

= {yg} "trg) (7.5) 

From equations (7.4) and (7.5): 

RR} =f {ig} {vp} “ds{P} (7.6) 

Hence: 

Roe {og} {¢p}* Pe 
nA ds C27) 

Riel 8 0 — {¢g}{op} P,
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and 
{Ry} t £ {og}e,)" ds Py (7.8) 

{R,} t 
{og}{o,} ds P, (7.9) 

For the side (j-k) in the element shown in Fig. (7.1) 

k 
{Ry} = 2m Ertoghteg} ds P, (7.10) 

If a linear variation of P(ER) is assumed on this side of the 

element: 

op)" = [Lp (1-Ly)] (7.11) 

fog)" = [hp(2Lp-1) »(I-bp) (I-2by Ay (1b) J (7.12) 

r= [L,(1-L5)] rs; | (7.13) “0 
and is a scalar multiplier of every term of {og Mop}, 

Hence, 

L,(2L5-1) 

{Ro }= enh, f r (1-Ly)(1-2L5) (Lp (1-Ly) JdLoP,, (7.14) 

4L,(1-L5) 

Ot -1 5 
Thy rd 

{Ro} = 3 "5 =] T+ rr { eaKg ; (7.15) 

rk
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For the case of a uniform pressure on the face parallel to the 

Z-axis: 

nary and Pay = Pe Pp (7.16) 

Therefore equation (7.15) becomes: 

R, 10 
J Thar P, 

{Ropt 5 Rik - 30 10 

Ran 40 

1 
andar .P 

= de gee = 5 1 (7.17) 

4 

The calculation of equivalent nodal loads is done manually, and 

assigning each load to its appropriate location in the force vector is 

done by the following steps: 

1. Nodes with prescribed displacements in both the (r) and (z) 

directions are bypassed. 

2. A load in the (r) direction on node (N) is allocated to row 

(2N-1) in {Q} and the one with (z) direction to row (2N).
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Procedure LOADING Flowchart 

  

      

1 YES 

NO 

K:= 2*E 

2a A=] 

NO 

  

D[K-1,F]:=D[K-1,F]+B8 
      

A#0 

No         
  
KLAB2:D[K,F]:=D[K,F]+C 

    

NES 

    
  

END 
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7.3.2_Procedure BOUNCONST 

This procedure deals with the prescribed nodal displacements which 

can either be zeroes i.e. the nodal point is fixed in the (r) and/or 

(z) directions, or a specified value. In the special case of zero 

displacements, the corresponding row and column of the appropriate 

degree of freedom are deleted from the system of equations. 

For convenience, the nodal displacement vector {q} may be re- 

arranged and partitioned so that 

{q,} 

{q} = (7.18) 
{qo} 

where 

{q,} = vector of unconstrained nodal displacements 

{qo}= vector of constrained nodal displacements 

The system of linear simultaneous equations [K]{q} = {Q}, is re- 

arranged and partitioned accordingly so that: 

- 
(kK, 4] [Koy] {q,} {Q,} 

2 (7.19) 
[Ko] [Koo] {qo} {Q,} 

Equation (7.19) can be rewritten as: 

Ekg] CO] ffay}) (£0) }-Lky,] "Ca, 
= (7.20) 

(o] 11] Uta, fag}



- 123 - 

The prescribed displacements {qo} are automatically inserted into 

the load vector and the system is solved for the unknown displacements 

{q,}. 

The procedure inserts the prescribed displacement {ay} at the Nth 

degree of freedom into the load vector by: 

1. The column number (CJ) of the first non-zero coefficient 

of row (N) in the stiffness matrix is determined. 

2. The load vector is modified as: 

0,29; - Kin Gy 452° 15252..N (7221) 

and the rows of the stiffness matrix are modified from 

column (CJ) to the leading diagonal as: 

Ku = Kyy = 0 NM ‘MN 

3. A check is carried out to ensure that (CJ) is not greater 

than the degree of freedom being considered (N). 

4. The diagonal term of the stiffness matrix is made unity, 

Kyy = 1 (7.22) 

and the prescribed displacement is inserted automatically 

into the load vector. 

QW = ay (7.23)



Ase 

Procedure BOUNCONST Flowchart 

    

          

START } 

NO 
ihe 

Yes 

CJ:=1 CJ :=N-- (ALN ]-A[N-1])+1 

SaaS Re ae 

2 aa ae K:= (J (1) N 

    
REK,F]:=R0K,F]-AK[A[N]-N+K]*U 

  AK[A[N]-N+K]:=0.0     

  

  

  CJ :=K-A[K]+A[K-1]+1 
    

No 

CU<N 

Yes 
  

REK,F]:=REK,FJ-AKLALK]-K+N]*U 

AK[ALK]-K+N]:=0.0               
AK[A[N]]:=1.0 

4. RON, F]:=U      
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7.4 Procedure CONSTREL 

This procedure generates the elasticity matrix [C] which relates 

the stresses and the strains for the two cases of isotropic and aniso- 

tropic stratified materials discussed in section (3.5). It is called 

independently for each element so that inclusions of different material 

Properties can be included anywhere in the structure. The following 

steps show how this procedure achieves this objective for any element: 

1. A code is read to distinguish between an isotropic or an 

anisotropic stratified material. 

2. The elasticity constants for an isotropic material are 

read as: 

Ey Vs Hy Bs v 

the E and v are read twice to give a regularity of 

presentation with the anisotropic case, and for an 

anisotropic stratified material they are read as: 

Ey> Vis ug a> v2 
3. The elastic constants are outputed. 

4, The [C] matrix for an isotropic material is formulated 

according to equation (2.24). 

5. The [C] matrix for an anisotropic stratified material 

is formulated according to equation (3.38). 

6. Due to symmetry of the [C] matrix only ten coefficients 

are stored in an array Z[1:NMAT,1:10] in which these 

coefficients for any given material are stored in the row 

corresponding to that material's number.
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Procedure CONSTREL Flowchart 

1 CASE :=READ 

  

  

PRINT, HEADINGS   
  

  
  

3. jG PRINT (MATNO,2,0) PRINT(A[1],0,3) 

PRINT(A[4],0,3) PRINT(A[2],1,2)PRINT(A[5],1,2) 

{ 
€14:=C24:=C34:=0.0 
  

      

     
  

No 

Yes 

i C44:=A[3] 
A[3]:=AL1]/ ((1+AL5])*(1-A(5]-2*(AL41/AL1]) 

*A[2]*A[2]) ) 

€11:=AL3]*(1-AL5]*A[5]) 

€12:=C13:=C23:=A[3]*(AL41/AL1]) 

*A[2]*(1+A[5]) 
€22:=C33:=(AL4]/AL1])*0-AL4]/AL1] KAL2 *AL2 ]*AL3] 

| 
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O 
  

  

P:=(1+A[2])*(1-A[2]- 
2*(AL2]*AL5])) 

C1:=A[1]/P 
C11 :=C12:=C*(1-(AL2]*A[5])) 
€12:=C*(A[2]*(A[2]*A[5])) 
€13:=C€23:=(C*A[2])*(1+A[2]) 
€33:=C*(AL1]/AL4]*(1-A[2] 
*A2])) 
€44:=A[4]/(2*(1-A5]))   
      

Z[MATNO,1]:=C 

Z[MATNO,3]:=C 

Z[MATNO,5]:=C 

Z[MATNO ,7]:=C: 

Z[MATNO ,9]:=C   

1 

13 

22 

24 

34 

Z[MATNO ,2]:=C12 

Z[MATNO ,4]:=C14 

Z[MATNO ,6]:=C23 

Z[MATNO,8]:=C33 

Z[MATNO,10]:=C44 
  

  

END 
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7.5 Evaluation and assembly of the overall stiffness matrix 

7.5.1 Introduction 

The overall stiffness matrix is sparsely populated and 

symmetric, hence a big saving in computer space can be achieved by 

storing only the terms between the first non-zero term in each row and 

the leading diagonal as a one dimensional array. This scheme is also 

convenient because the method of solving the set of linear simultaneous 

equations used requires these terms only, as will be seen in section 

(7.6). To achieve this an address sequence was developed,[82], and 

will be used in conjunction with procedure ASSEMBLY which evaluates 

the element stiffness matrices, assembles the overall stiffness matrix, 

and stores it as a one dimensional array. 

7.5.2 Procedure ADDARRAY 

The purpose of this procedure is to determine the coefficients 

of an address array (ADD) which relates the overall stiffness matrix 

coefficients in two dimensional form to their one dimensional form as: 

KCi,j] = K[ADD(i)-i + j] (7.24) 

The size of (ADD) is from zero to the number of degrees of freedom 

of the structure being considered, i.e. to the number of rows of the 

overall stiffness matrix. Each coefficient of (ADD) is the accuma- 

lative number of terms between the first non-zero term and the leading 

diagonal in the overall stiffness matrix in all rows up to and including 

the row corresponding to this coefficient. For a node (A), the 

corresponding (ADD) coefficient is found by scanning the nodal connect- 

ions of the first element containing node (A), and if the lowest node
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number in it is (B), the number of terms between the first non-zero 

and the leading diagonal of that particular row is: 

Number = A- 8B +1 C725) 

If in a later element a larger number was found for this row, it 

will replace the smaller one so that the maximum number is found. These 

numbers are then accumulated to give the coefficients of (ADD). 

The following steps show how this task is accomplished: 

1. For the first element, the nodal connections are compared 

with each other to find the smallest node number, and the 

number of terms between the first non zero one and the 

major diagonal for each node in this element i.e. in each 

row of the overall stiffness matrix, is calculated from 

equation (7.25). 

2. Step (1) is repeated for the rest of the elements, and 

if the number of terms for a node was found to be greater 

than the previously stored one, it will be stored instead. 

3. The coefficients of (ADD) are determined from the numbers 

evaluated by step (2).
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Procedure ADDARRAY Flowchart 

r--- 

    W:=1 (1) NELEMT 

  

    
CH:=NODE[W,1] 
  

  
    

    
  

I:=2 (1) 6 

NODE[W,1] 

Yes 

      
  

Bees (1)6   

No 

  

  
ADDTEMP :=NODELW,1]-CH+1 

    

  

  

ADD[NODE[W,1]*2]:=ADDTEMP 
    
  

  
CH:=2*ADD[2*1] 

W:=24T 
ADD[W-1]:=ADD[W-2]+CH-1 
ADD(W]:=ADD[W-1]+CH    



aisle 

7.5.3 Procedure ASSEMBLY 

This procedure evaluates the element stiffness matrices by 

performing the integration involved numerically using Gauss quadrature, 

then assembles the overall stiffness matrix as a one dimensional array 

using procedure (ADDARRAY). It was shown in section (3.6) that the 

element stiffness matrix is given by: 
1 tela 

[kK], = £6 (8]*[c][B]znrdet[J]dL, aL, (7.28) 

and that 

l= 1 ee 
fd F(Ly slo sb3)dA % 2 Kf WiF(Ly 4 sbo4sb3,) (7.279 

1 

The order of integration, which affects the computing time and 

accuracy of the results, was chosen to be quadratic. This choice was 

guided by the experience obtained by Robertson,[9], in solving several 

two dimensional crack problems. 

Applying the numerical integration to the element stiffness matrix 

formula yields: 

n 
t [Kk], = 2mr = W.(([B]“[C][B])det[u]) (7.28) 

s isle! Lag etog olay 

which implies the evaluation of ((8]'tc][B]) at the integration point 

(i) and multiplying it by the weight coefficient (W;). 

As each node of the element has two degrees of freedom, each co- 

efficient of the element stiffness matrix is a (2x2) submatrix and the 

displacement and force coefficients are (2x1) vectors i.e. for a node(N):
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AN (Qe 
{ay} = and {Qy} = (7.29) 

Nz (nz 

The overall stiffness matrix is assembled by scanning the nodal 

connections of each element and relating the local node numbers, which 

are from one to six, to the global numbers which are fed in via the 

nodal connections. The coefficients of each element stiffness matrix 

are allocated to their appropriate place in the overall stiffness 

matrix determined by their nodal connections. At this stage the 

address array is introduced to store the coefficients of the overall 

stiffness matrix as a one dimensional array. 

These operations are performed by the procedure as follows: 

1. An array W[6x4] is introduced, whose first column 

coefficients are the weight coefficients (W;) and the 

remainder of its coefficients are the integration 

points. 

2. Coefficients of the one dimensional array are set 

to zero. 

3. A loop is constructed to repeat all the remaining 

operations of the procedure for all elements. 

4. Coefficients of the element stiffness matrix are 

set to zero.
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5. A loop for the three integration points is 

constructed. 

6. Procedure (STRDIS) is called to evaluate [B], 

det[J], and the radii required to generate the 

element stiffness matrix. 

Ts [kK], is evaluated from equation (7.28). 

8. Using the address array (ADD) generated from 

procedure (ADDARRAY) and the nodal connections; 

the overall stiffness matrix is stored as a one 

dimensional array.



Procedure ASSEMBLY Flowchart 
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WII, 1]=0, 33333333 
  

  
  

  

WO1,2]:=WL1 ,3]:=WL2,3]:=W[2,4]:=WC3,2] 
:5W[3,4]:=0.5 

WOT ,4]:=W[2,2]:=W[3,3]:=W04,4} :=W[5,2] 
:=W[6,3]:=0.0 

WE4,2]:=W[4,3J:=W[5,3]:=W(5,4]:=W[6,2] 

:=W[6,4]:=1.0 
  

  

    

  

      

--- Uz=1 (1) 3 
STROIS(WLU,2],WLU,3],WLU,4],B,XX 

YY ,DETJ NODE ,Z,ER, SOLID) 

  

        
-—- d:=1() 11 

<7 (2) 1 > 
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I 
  

*(B[1,0]*(CLNODE[Z,7],1]* 

B[1,1J+C[NODE[Z,7],2]*B[2,1] 

+C[NODE[Z,7],4]*B[4,1])+B[2,0]* 

(C[NODE[Z,7],2]*B[1,1]+C[NODE[Z,7],5] 

*B[2,1]+C[NODE[Z,7],7]*B(4,1])+B[4,0]* 

(C[NODE[Z,7],4]*8[1,1]+C[NODE[Z,7],7] 

*B[2,1]+C[NODE[Z,7],10]*B[4,1])) 

*2*3,1415926*RAVG*0. 5*DETJ 

KE[J,1+1]::KE[I+1 0]: :KELI+1 J ]+W(U,1]* 
(BL1 ,J]*(C[NODE[Z,7]3]*B[3, I+1] 
+C[NODE[Z,7],4]*B[4,1+1])+B[2,0] 

*(C[NODE[Z,7],6]*B[3, I+] ]+C[NODE[Z,7],7] 
*B[4,1+1])+B[4,J]*(CLNODE[Z,7],9]* 
B[3,1+1]+CLNODE[Z,7],10]*B[4,1+1])) 
*2*3.1415926*RAVG*0. 5*DETI 
    

O® KE[J ,1]:=KE[I,J]:=KELI,J]+W[U,1] 
| 
\ 

\ 

| 

| 

| 

| 
| 

| 

| 

| 

| 

| 

| 

J2=2.(2) 12 : > 

I:=2 (2) 12 =     

  

KE[U,I]:=KELI,0]:=KELI,J]+W(U,1]*(B[3,0] 
*(C[NODE[Z,7],8]*8([3,1]+ 

CLNODE[Z,7],9]*B8[4,1]+B8[4,0]* 

(C[NODELZ,7],9]*8[3,1]+C[NODE[Z,7],10] 

*B[4,1]))*2*3.1415926*RAVG*O. 5*DETI 
  

I=12 Be 
No 
  

  

KELJ,I +1 ]:=KE[I+1 ,0]:=KE[I+1 J ]+W(U,1] 

*(B[3,J]*(C[NODE[Z,7],3]*B[1,I+1] 

+C[NODE[Z,7],6]*8[2,1+1]+C[NODE[Z,7],9] 
*8[4,1+1]+B[4,J]*(CLNODELZ,7],4] 
*B[1,1+1]+C(NODE[Z,7],7]*B[2,1+1] 
+C[NODE[Z,7],10]*B[4,1+1]) )*2* 

3.1415926*RAVG*0, 5* 
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, CRE ae a 
o> Seamed 
| 

V:= 1,0 

    
SUB1 :=NODE[Z,I]*2-1 

SUB2:=NODE[Z,J ]*2-V 

SUB3 : =NODE[Z,1]*2       

   
SUB1<SUB2 

No 

  

  

K[ADD[SUB1 ]-SUB1+SUB2] := 

K[ADD[SUB1 ]-SUB1+SUB2 ]+ 

KE[I*2-1 ,J*2-V] 
  

   

  
  

SUB3<SUB2 

No 

    
K[ADD[SUB3]-SUB3+SUB2]:= 

K[ADD[SUB3 ]-SUB3+SUB2 ]+ 

KE[1*2,J*2-V] 
  

  
  

Yes 

      

END
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7.6 Procedure SYMVBSOL 

Choleski's method of triangular factorization is used to solve the 

set of variable band width equations stored by the scheme of Jennings 

and Tuff as a one dimensional array,[82]. The method makes use of the 

fact that the zeroes before the first non zero term in any row remain 

zeroes if no row or column interchange is made during reduction by 

Gaussian Elimination. 

Choleski's triangular factorization yields the following equations: 

(LIE = Ck (7.30) 
where 

{L] = lower triangular matrix with 

positive diagonal terms. 

The system of equations to be solved becomes: 

[LICLI*tq} = (9 (7.31) 
Assuming that 

LY] = (L]*tqy (7.32) 
and substituting back in (7.31) yields 

[LILY] = {Q} (7.33) 

The variables in [Y] are modified right hand side coefficients 

after elimination. The back substitution process to complete the 

solution is finding {q} from: 

[LI*¢q} = Cy] (7.34)
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The matrix [L] overwrites [K] in the store by using the following 

relations: 

Lemke, 2 eel! (7.35) 

(7.36) 

for off diagonal terms. 

Equations (7.35) and (7.36) show that only row (i) and column (j) 

need be stored at a time for any coefficient (Ly 5) and hence computer 

back store may be used for a large system of equations. 

No steps to explain the flowchart of the procedure will be 

presented as it was taken as a package from reference, [82].
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Procedure SYMVBSOL Flowchart 

START 

  

      

  

  GisH+]_ P:=S[T]-1 
  

| 
| T:=1+H-S[I]+1 

| 

| a J:=T (1) [-1   
  

Q:=P+] H:=H+] P:=S[J] 

K:=J+Q-P V:sH-P U:=G 

Y:=A[H]       

es 

U:=U+K-T 

atom U:=U (1) H-1 > 

| Y:=Y-L[UJ*L[U-V] 

  

        
  

  

  

  

L[H-V] 

L[H]:=Y 

----rm a 
B[I,M]:=B[1,M]-B[J ,M]*Y 

    
  

  

~<
 BD ~<
 

~ 

  

      

  

      

| Y:=ATH+1] 

| a hm U:=G (1) H > 

Y:=Y-L[U]+2 

    
      oO [ | | | | | 

all
l



= 180) 

NO 

H:=H+1 Y:=SQRT(Y) L[H]:=Y 
  

      

| _— — — — — — — M:=1 (1) R 

  

B[I,M]:=B[1,M]/Y 
      

Sey St ogee ce T:=N (-1) 1 > 
| 

  

      

> wel 
BCI,M]:=B[I,MI/Y 

    
      

  

  
  

          
  

      
  

        

  

FAIL 

  

  

END
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7.7 Procedure NODSTR 

This procedure evaluates the strains and stresses at each node 

of the discretized structure. The strains at nodes which are shared 

by more than one element are evaluated by averaging the contributions 

from the elements sharing the node. 

The coefficients of matrix [B], which relates the strains to 

displacements, are determined at nodal points by calling procedure 

(STRDIS). Having obtained the nodal displacements {q} earlier, the 

strains are evaluated using equation (3.33). The stresses are obtained 

from the strains using matrix [C] of section (7.4) and equation (3.36). 

These operations are performed by the following steps: 

1. Coefficients of array [W] (6x4) are set to the 

natural coordinates of nodal points. 

2. A loop around the sets of forces i.e. for the number 

of load cases, is constructed. 

3. A loop around the number of nodes is constructed. 

4, A loop around the number of elements, takes each one 

in turn and checks if the node considered in step (3) 

exists and if so the strains and stresses are evaluated 

as described earlier. The contribution of other elements 

to the strains and stresses of that node are added and 

the result is averaged. 

5. The averaged result of the strains and stresses is 

outputed.



Procedure NODSTR Flowchart 

-1     Ape 

  

        
  

  

      

WET ,2]:=W[2,3] 
W[4,2]:=W[4,3]:=W[5,3]: = 

W[5,4]:=W[6,2]:=W[6,4]: 

gn ea eee V:=1 (1)     

:=W[3,4]:=1.0 

  
NSETF 

( PRINT HEADINGS ) 

ey ie < U:=1 (1) NNODE > 

  

SIGRR:=SIGZZ:=SI 

:5ERZ:=ERTH:=SIG 

GRZ:=ERR :=EZZ 

RTH:=CNT2:=0.0     

ce —--—--< Z:=1 (1) NELEMT: > 

Vales 

| 

| 

CNT1:=1 

    

ODE?.[Z 

  
(1) 6 

        

sCNT1] No 

Yes 

  

| STRDIS(WECNT1 ,2],W 
B,XX,YY,DETJ,N 

[CNT1,3],WDCNT1,4], 

ODE,Z,ER,SOLID)   
  

qi) 4 -  
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| 

| 
| 

| 

| 
| 

    

  

  

STR[J]:=(BL,1]*Q[NODE[Z,1]*2-1,V] 

+B[J ,2]*Q(NODE[Z,1]*2,V] 

+B[J ,3]*Q[NODE[Z,2]*2-1,V] 

+B[J ,4]*Q(NODE[Z,2]*2,V] 

+B[J ,5]*Q(NODE[Z,3]*2-1,V] 

+B[J,6]*Q(NODE[Z,3]*2,V] 

+B[J ,7]*Q(NODE[Z,4]*2-1,V] 

+B[J,8]*Q(NODE[Z,4]*2,V] 

+8[d ,9]*Q[NODE[Z,5]*2-1,V] 

+B[J,10]*Q(NODE[Z,5]*2,V] 

+B[0 11] *Q[NODE[Z,6]*2=1,V] 

+B[J ,12]*Q[NODE[Z,6]*2,V])       

  
  

J:=NODELZ,7] 
SIGRR:=SIGRR+(CLU,1]*STR[1]+C[J ,2]*STR[2] 

+CLJ,3]*STR[3]+C[d ,4]*STRE4]) 
SIGRTH:=SIGRTH+(C[J ,2]*STR[1]+C[J ,5]*STR[2] 

+C[J ,6]*STRE3]+C[u ,7]*STR[43] ) 
SIGZZ:=SIGZZ+(C[J,3]*STRE1]+C[J ,6]*STR[2] 

+C[J,8]*STR[3]+C[d ,9]*STR[4] ) 
SIGRZ:=SIGRZ+(C[J,4]*STRE1]*C[J, 7]*STRE2] 

+C[J,9]*STRE3]+C[J ,10]*STR[4]) 
ERR:=ERR*STR[E1] ERTH:=ERTH+STR[2] 
EZZ:=EZZ+STR[3] ERZ:=ERZ+STR[4] 

CNT2=CNT2+1   
      

  
  

SIGRTH:=SIGRTH/CNT2 SIGRR:=SIGRR/CNT2 

SIGZZ:=SIGZZ/CNT2  SIGRZ:=SIGRZ/CNT2 

ERTH:=ERTH/CNT2 ERR :=ERR/CNT2 

EZZ:=EZZ/CNT2 ERZ:=ERZ/CNT2     
  

      

  

PRINT(U,2,0) PRINT(ERR,0,4) 

PRINT(ERTH,0,4) PRINT(EZZ,0,4) 

PRINT(ERZ,0,4) 

PRINT(SUGRR 0,4) PRINT(SIGRTH,0,4) 

PRINT(SIGZZ,0,4)PRINT(SIGRZ,0,4) 
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7.8 Procedure ELESTR 

This procedure evaluates the strains and stresses at the centroid 

of each element. The steps performed in it are identical to those of 

procedure (NODSTR) except that the coefficients of array [W] are those 

of the element centroids rather than nodal points, and therefore there 

is no averaging.
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Procedure ELESTR Flowchart 

PRINT HEADINGS 

    

| SIGRR:=SIGZZ:=SIGRZ:=ERR:=EZZ 

:sERZ:=ERTH:=SIGRTH:=0.0 

STRDIS(0.3333,0.3333,0.3333,B,XX), 

  

a6. ha 
  

| 
| YY ,DETJ ,NODE,Z,ER,SOLID) 

| 
| STR[J]:=(BLU,1J*QLNODE[Z,1]*2-1,V] 

| +B[0 ,2]*QLNODE[Z,1]*2,V] 
| +B[J,3]*Q(NODE! Z,2]*2-1,V] 

| +B[J,4]*Q[NODE[ 2,2]*2,V] 
+B[d ,5]*Q(NODE[Z,3]*2-1,V] 

| +B[U ,6]*Q[NODE[Z,3]*2,V] 

+B[J,7]*Q(NODE[Z,4]*2-1,V] 
| +B[J ,8]*Q(NODE[Z,4]*2,V] 

+B[J ,9]*Q[NODE[Z,5]*2-1,v] 
+B[J ,10]*QLNODE[Z,5]*2,V] 
+B[J,11]*Q[NODE[Z,6]*2-1,V]         

| 

| 
| +B[J,12]*Q(NODE[Z,6]*2,V]) 

| 
[aes hee ES ee ae
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J:=NODE[Z,7] 
SIGRR:=SIGRR+(C[J,1]*STR[1]+CLJ,2] *STR[2] 

+C[J 3] *STR[3]+C[U ,4]*STR4]) 

SIGRTH :=SIGRTH+(C[J,2]*STRL1]+C[J,5]*STR[2] 
+C[J,6]*STR[3]+C[J ,7]*STRE4]) 

SIGZZ:=SIGZZ+(C[J ,3]*STRL1] 
+C[J ,6]*STR[2]+C[J ,8]*STRE3] 
+C[J,9]*STR[4]) 

SIGRZ:=SIGRZ+ (CLJ,4]*STRE1]+C[U,7]*STR(2] 

C[J ,9]*STR[3]+C[J,10]*STRE4]) 

ERR:=ERR+STRE1] ERTH:=ERTH+STR[2] 
EZZ:=EZZ+STR[3] ERZ:=ERZ+STRE4] 
  

    
PRINT(Z,2,0) PRINT(ERR,0,4) 

PRINT(ERTH,0,4) PRINT(EZZ,0,4) 

PRINT(ERZ,0,4) 

PRINT(SUGRR,O,4) PRINT(SIGRTH,0,4) 

PRINT(SIGZZ,0,4) PRINT(SIGRZ,0,4) 
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7.9 Procedure FEINPUT 

This procedure generates the mesh required for the general axi- 

symmetric program and evaluates the nodal connections of each element 

as described in section (3.8). The nodes with prescribed loads or 

displacements are read in as data together with the values of the 

components of loads or displacements in the global r and/or z directions. 

The following steps show how the computer code for the automatic mesh 

generation is developed: 

A A code (BSHP) is introduced to specify whether the 

longitudinal section is rectangular or not. 

. If the section is rectangular, the length of its sides 

is determined by reading the r and z coordinates of 

two perpendicular sides. 

The distances between the nodes are evaluated from 

equations (3.66) and (3.62). 

- If the section is not rectangular the r and z 

coordinates of all the main nodal rows and columns 

are read. 

The distances between the nodes are avaluated 

similarly to step (3). 

+ The nodal coordinates of the vertices of the triangular 

section elements are evaluated. 

+ Nodes with prescribed loads or displacements are read 

together with the values of components of the loads and/or 

displacements and a code to distinguish between them and 

their direction.



8. 

9 

10. 

Ws 

25 

135 

14, 

1s5 

16.. 

Bee 

All the material numbers are set to 1. 

If the structure consists of more than one material 

then a loop I is constructed from 2 to the number 

of materials. 

The number of elements in each material portion 

are read for each material. 

The element numbers of these elements are read. 

A loop is constructed around the element numbers which 

specifies the appropriate material number to each one 

as the seventh coefficient of the nodal connections 

array as discussed in section (3.8.2). 

A code (SYM) is read to see if symmetry with respect 

to a diametral plane is required. 

The nodal connections are assembled according to the 

code of step (13). 

The midside nodal coordinates are evaluated from the 

coordinates of the vertices corresponding to each side 

according to the connections obtained from step (14). 

Nodal coordinates together with the code and prescribed 

loads and/or displacements of step (7) and the nodal 

connection of step (14) are outputed.
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Procedure FEINPUT Flowchart     
   

  

    

r--- T:=1_(1) NNODE__> 

Lethe de=1 (1) NSETFS > 

  

  
    

  
  

        
  

BSHP :=READ. 

  

          
     

XS:=READ XF: 

VES 

=READ YS:=READ 

=READ 

rm -< N:=1(1) (ER*2)+1 3 

© 
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o VXS[N]:=XS VXF[N]:=XF 

DELTAX[N]:=(XF=XS)/(EC*2) 

Tr aan Nz=1_ (1) (EC*2)+1 > 

  

      

    
| | VYS[N]:=¥S VYF[N]:=VF 

  DELTAY[N]:=(YF-YF)/(ER*2) 

  

(| VXS[N]:=READ VXF[N]:=READ_ } 

5. DELTAX[N]:=VXF[N]-VXS([NJ/(EC*2) 
SS SSS 

4, po ee 02) (erat 

| 

|   
        

    
  

6. ML2:A:=(ER*2)+1 

ote I:=] (2) (EC*2)+1 > 
| 
| [B:=I-1 

| 

I a J:=1 (2) (ER*2)+1 

      

  

    

  

XX[(B*A)+d] :=VXS[J]+(I-1)*DELTAX[J] 

YY[(B*A)+J]:=VYS[1]+(d-1) *DELTAY[J] | 

=== 4 
 



TI. 

12. 
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( NSPC:=READ ) 

.: — 4 T:=1 (1) NSPEC Ps 

SSS 

  

eee W:= (1) NELEMT 

be MTNO[W]:=1 

i 
e
e
 

  

  

J:=READ 

KODE[J,1]:=READ ULX£J,1]:=READ 

VLY[J,1]:=READ   
  

    
  

NSTEL[I]:=READ 

  

     
Jz=1 (1) NSTEL[I] 

  

STEL[I,J]:=READ 

mr ai W:=1 (1) NELEMT > 

  
  

  

    

  

   

    

  

    MTNO W]:sI 
  

  
  

  
  

 



14, 

= 152 = 

  

  

  
D:=0   
  

  

      

      

    

  
NODE[W,2]:=(2*A)+1+B+D 
NODE[W,3]:=(2*A)+3+B+D 
NODE[W ,4]:=A+1+B+D 

NODE[W,5]:=(2*A)+2+B+D 
NODE[W,6]:=A+2+B+D 
NODE[W,7]:=MTNO[W]     

  

  

L:=L+1 ee Yes — 

D:=D+(2*A) 

No B:=I-((L*A)-A-L+2 
W:=I 

NODE[W,1]:=1+B+D 

l = a % = 
a I:=2 (2) NELEMT 

L:=1 D:=0 aoa sate 
L:=L+] 
D:=D+(2*A)       

  

  
  

    
  

    

  

hE: =T= A)-A-L+3) W:=       

NODE[W, 1]:=1+B+D 

NODE[W,2]:=(2*A)+3+B+D 
NODE[W,3]:=34B+D 
NODE[W,4]:=A+2+B+D 
NODE[W,5]:=A+3+B+D 
NODE[W,6]:=2+B+D 

NODE[W,7]:=MTNOLW] 

     

      

    
        
 



   
  

    D:=D+(2*A) 
  

  

  

    
NODE[W, 1]:=1+B+D 

NODE[W,2]:=(2*A)+1+B+D 

NODE[W,3]:=3+B+D 

NODE[W,4]:=A+1+B+D 

NODE[W,5]:=A+2+B+D 

_ NODE[W,6]:=2+B+D 

NODE([W,7]:=MTNO[W]   

I:=1 (2) NELEMT-1 

  

  
  

  

B:=I-((L*A)-A-L+2 

    

Ke Wi=I 

No Yes 
ya 

  
  

NODE[W,1]:=1+B+D 
NODE[W,2]:=(2*A)+T+B+D 
NODE[W,3]:=(2*A)+3+B+D 
NODE[W,4]:=A+1+B+D 
NODE[W,5]:=(2*A)+2+B+D 
NODE[W, 6] :=A+2+B+D 
NODE[W,7]:=MTNO[W] 

  

  

  

L:sL+] 

D:=D+(2*A)     

  
No 

  

   
L*(A-1)-(A-1)/2 

   
  

   
  

B:=I-((L*A)-A-L+3 

W:sI   
  

  

   

  

 



© 
  

NODE[W, 1]:=3+8+D 

NODE[W,2]:=(2*A)+1+B+D 

NODE[W,3]:=(2*A)+3+B+D 

NODE[W,4]:=A+2+B+D 

NODE[W,5]:=(2*A)+2+B+D 

NODE[W,6]:=A+3+B+D 

NODE[W,7]:=MTNO[W]       
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© 
  

  

NODE[W,1]:=1+B+D 

NODE[W,2]:=(2*A)+3+B+D 

NODE[W,3]:=3+B+D 

NODE[W,4]:=A+2+B+D 

NODE[W,5]:=A+3+B+D 

NODE[W,6]:=2+B+D 

NODE[W,7]:=MTNOLW]     

  

  

  

  

      

    

  

          

  

PRINT(KODE[T,1],3,0)PRINT(ULX[1,1],0,3)PRINT(VLY[J,1],0,3) 

( PRINT(I,3,0)PRINT(XX[I],0,3)PRINT(YY[I],0,3) : 

) 
  

PRINT HEADING 

| PRINT(W, 3,0) 

a; | aha >



  
END
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7.10 Procedure CCRINPUT 

This procedure generates the mesh required for solving mode (1) 

fracture problems by incorporating the core element. Two rings of 

elements surrounding a semicircular core are constructed by bending 

element columns into a semicircular shape as described in section (3.8.3). 

The remainder of the element columns are bent into rectangular shapes 

to match the boundaries of the structure. The steps are as follows: 

1. For the first five nodal columns, i.e. the first two 

element columns, the angle (8)of each nodal point 

measured from the r-axis with the crack tip as origin is 

calculated and hence the nodal points global coordinates 

are evaluated. 

2. For the remainder of the nodal columns, the number of 

main nodes on each side of the new rectangular shape is 

specified, and the position of each nodal columns with 

respect to the structure as a whole is fixed. 

3. The distance between the nodes for each side of each 

rectangle is evaluated. 

4. The main nodes global coordinates are evaluated. 

5. To allow for different material properties, the same 

steps as (7) to (12) of section (7.9) are followed. 

6. In this case only a quadrant of the solid is discretized 

and hence symmetry with respect to the crack plane is 

implied, therefore the nodal connections are assembled 

similarly to step (14) of section (7.9) without the code (SYM). 

7. The same steps as (15) and (16) of section (7.9) are followed.
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Procedure CCRINPUT Flowchart 

   
:=0 (2) NFREE > 

  

  

      XX[I]:=0.00001 
  

  

    
  

  

    

  

        

5 ny tn ag ee a 
= I:=1_(1)_NNODE 

I rc J:=1_(1)_NSETF 

e KODE[I,J]:=0 

-~- I:=1 (1) NNODE 

J — d:=1_ (1) NSETF 

[ ULX[I,J]:=VLY[I,J]:=0.0 L—-—-=-— -| 1. oe ites T=] (1) 5 

‘ B:=I-1  F:=(I+1)/2 

= a d:=1 (1) NI 

| TH:=(J-1)*(3.14159/18) 
XX[(B*N1)+0] :=G-AA-(F*RO*COS (TH) )   YY[(B*N1)+J]:=F*RO*SIN(TH)      



A a eee   
  

YS:=0 

YF2=(4*RO)+(((I-7)/2)*((H-(4*RO) )/4)) 
DELTAY:=(YF-YS)/6 
XX[(B*N1)+J] :=(G-AA-(4*RO) )-(((I-7)/2) 
*((G-AA-(4*RO) )/4)) 
YYE(BANT)+0]:=YS+(J-1)*DELTAY 
  

    

  
XS:=(G-AA~(4*RO) )-(((I-7)/2)*((G-AA- 

(4*RO) )/4)) 
XF:=(G-AA+(4*RO))+(((1-7)/2)*( (AA- 

(4*R0))/4)) 
DELTAX:=(XF-XS)/6 
XX[(B*N1) +d] :=XS+(d-7) *DELTAX 
YY[(B*N1)+d]:=(4*RO)+(((I-7)/2) 

*((H-(4*RO) )/4)) 
  

      YS:=(4*RO)+(((I-7)/2)*((H-(4*RO))/4)) 
YF:=0 

DELTAY :=(YF-YS)/6 

XX[(B*N1)+d]:=(G-AA+(4*RO) )+ 

(((1-7)/2)*( (AA~(4*RO) )/4) ) 
YY[(B*N1)+d]:=YS+(J-13)*DELTAY 
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J:SREAD XX[J]:=READ YY[J]:=READ 

KODE[J,1]:=READ ULX[J,1]:=READ 

VLY[J,1]:=READ 

  

     
¢ NSTEL[T]:=READ 

ere 

| 
| 
(a J:=1 (1 NSTEL[T] > 

| 
( STEL[1,J]:=READ ) 

Se ee ee 

Sale arom ee W:=1 (1) NELEMT > 

| 
| 
| 

| 
| 
| 
| 
| 
| 
| 

  

    
  

    
  

    

6. (i ie ae I:=1 (2) NELEMT-1 > 

:=]_ _D:=0 | 
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l Yes 
            No       

B:=1-((L*N1)-N1-L+2 

| W:=I 

| NODE[W,1]:=1+B+D 
NODE[W,2]:=(2*N1)+3+B+D 

| NODE[W,3]:=(2*N1)+1+B+D 

| NODE[W,4]:=N1+2+B+D 
NODE[W,5]:=(2*N1)+2+B+D 

NODE[W,6]:=N1+1+B+D 

NODE[W,7]:=MTNO[W]   
  

  

  

  

  

  

    

   

  

L:sL+1 

D:=D+(2*n1)         
  

B:=1-((L*N1)-N1-L+3 

W:sI 

NODE[W,2]:=3+B+D 

NODE[W,3]:=(2*N1)+3+B+D 

NODE[W,4]:=2+B+D 

NODE[W,5]:=N1+3+B+D 

NODE([W,6]:=N1+2+B+D 

NODECLW,7]:=MTNO[W]   
  

| 

| 

| 

| 

| 

| 

| NODE[W,1]:=14B4D 

| 
| 

| 

| 

| 
  

  

( PRINT HEADING ) 

me ee Ly ee W:=1 (1) NELEMT. >  



  

    

  

      

  

  

    

      

  | XX[NODE[W,3#11]:=(KXINODE 
YY[NODELW,3+1]]:=(YY[NODE   

CW, 1]+XX[NODELW,1+J]]) /2 

(W,1]+YY[NODE[W,1+0]])/2       

  

(CC PRINT HEADING 

= —— —-< I:=1 (1 ) NNODE BS 

  

PRINT(1,3,0) PRINT(XX[T], 
PRINT(KODELI,1],3,0) PRIN 
PRINT(VLY[I,1],0,3) C 

PRINT. 

W:=1 (1 

0,3) PRINT(YY[I],0,3) 

T(ULX[I,1],0,3) 

HEADING 

)_ NELEMT 

  

PRINT(W,3,0) 

173   
  

)
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7.11 Procedure MMINPUT 

This procedure generates the mesh required for a mixed mode I and 

II problem with the core having a circular shape and the crack is 

inclined with various angles to the r-axis. The first five nodal 

columns are bent into circular shapes around the core and the seventh 

one is bent into a rectangular shape enclosing the circles. The 

remaining columns surround three sides of the rectangle only by trun- 

cating the nodes corresponding to the fourth side to save on computer 

storage and still obtain a rectangular shape. It will be shown later 

that mesh symmetry with respect to the crack plane is required near 

the crack tip, therefore it will be generated for the first three 

element columns. The procedure steps are as follows: 

1. The angle of crack inclination with the r-axis is read. 

2. The number of nodes of the truncated nodal columns is 

worked out. 

3. The nodal coordinates of the first five nodal columns 

are evaluated. 

4. The nodal coordinates for the main modes of the seventh 

nodal columns, which is a rectangle enclosing the 

circular ones, are evaluated. 

5. The nodal coordinates for the main nodes of the 

truncated columns. are evaluated. 

6. Nodes with prescribed loads and/or displacements are 

read and allowance for different material properties is 

made similar to section (7.9)
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The nodal connections are generated with symmetry 

with respect to the crack plane for the first three 

element columns. 

The remaining steps are similar to section (7.9).



Procedure MMINPUT Flowchart 

erode 

  

   
:=0_ (2) NFREE 

  

  

  ADD[1]:=0 | 
  

r= ~< I:=1 (1) NNODE > 

| | 

  

  Xx[1]:=0.000001 
    

T:=1_ (1) _NNODE > 

a J:=1 (1) NSETFS > 

  

  KODE[I,J]:=0 
    

f aK I:=1 (1) NNODE > 

[ee —< dz=1 (1) NSETES > 

  

  ULX[I,J]:=VLY[I,J]:=0.0     

( PHT: =READ )   
  

PHI :=0.0174533*PHI 

NN1:=N1-4 

NELEMT1 :=3*(N1-1) 

NELEMT2 :=NELEMT-NELEMT1     

Psst (W)o5 Za 

  

  BisI-1_F:=(I+1)/2 
    

ENE ee 1  
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*COS(TH) )*COS(PH 

+(((F*RO)*(1-COS   +(((F*RO)*SIN(TH 

TH:=(2*(J-1)*3.14159)/(NI-1) 
XX[(B*N1)+J]:=(G-(AA*COS (PHI) ))+(((F*RO) 

1))+(((F*RO) 
*SIN(TH) )*SIN(PHI)) 

YYC(B*N1) +] :=((AA-(F*RO) )*SIN(PHT)) 
(TH) ))*SIN(PHI) ) 

))*COS(PHT)) 
  

ine J:21,3,5,17 

  

  XX[(B*N1)+J]:=G 
    

  

  
XX[(B*N1 )+J]:=G-((AA+(5*RO))/2) 
  

i__ ~= == aa 
=9 7=9,11,13 > 
  

  

  
XX[(B*N1)+d]:=G-(AA+(5*RO) ) 
  

  

    
  

  

  

        

  

  

 



  

  XX[(B*NN1)+J+132]:=G 
      oa J:=5,7,9 

  

(AA+(5*RO) ))/4) 

XX[(B*NN1) +0#132]:=(4-((1+1)/2))*((G- 

  

  

+5+132]))/2) 

XX[(B*NN1 )+3+132] :=XX[(B*NN1)+11+132] 

2=XX[(B*NNT)+5+132]+((G-(XX[(B*NNT) 

  

Js, 355 

  

YY[(B*NNT )+d+132] 

(AA+(5*RO)) )/4) 
:=AA+(5*RO)+((H> 
*((141)/2) 

  

—_-- J:=9,1 1,13 

  

YY[(B*NN1 )+J+132]:= ~((1+1)/2)*(H/4) 
  

  

YY[(B*NN1)+7+132] 

132]+YY[(B*NN1   2=(YY[(B*NNT)+5 

+9+132])/2 
  

( NSPEC:=READ ) 

ore ae T:=1 (1) NSPEC >   
    

  

  

J:=READ KODE[J,1]:=READ 

ULX[J,1]:=READ VLY[J,1]:=READ 
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ea -< W:51 (1) NELEMT > 

MTNO[W]:=1 
    

    
  

   

  

T:=2 (1) NMAT 

( NSTEL[1]:=READ 

-———- d:=1 (1) NSTEL[T FF > 

( STEL[I ,J]:=READ ) 
(ee ee a 

oe W:=1_ (1) NELEMT. = 

  

    
    

  

    

    MINO[W1:=1       

    

      

  

      
  

  

| LsL+1 
| D:=D+(2*N1) 

Yes 
L*(N1-1)-]             

 



No 
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No 

  

7 
  

B:=I-((L*N1)-N1-L+2) 

Wiel       

Yes 

  
  

  

NODE[W, 1]:=14B+D 
NODELN,2]:=(2*N1 )+1+B+D 
NODE[W,3]:=3+B+D 
NODE[W,4]:=N1+1+B+D 
NODELW,5]:=N1+2+B+D 
NODE[W,6]:=2+8+D 
NODE[N,7]:=MTNO[W]     

NODE[W,1]:=1+8+D 

NODE[W,2]:=(2*N1)+1+B+D 

NODE[W,3]:=(2*N1)+3+B+D 

NODE[W,4]:=N1+1+B+D 

NODE[W,5]:=(2*N1 )+2+B+D 

NODE[",6]:=N1+2+B+D 

NODELW,7]:=MTNO[W] 
  

(ee a ae | 

    
  

  

L:=L+1 

D:=D+(2*N1)       

  

  

    

    

*(N1-1)-(NT-1)/ 

— I:=2 (2) NELEMT] > 

  

  

  

  W:5I 
B:=I-((L*N1)-N1-L+3) 

    

Yes 
  

  

  
  

NODE(W,1]:=3+B+D 

NODE[W,2]:=(2*N1 )+1+B+D 

NODE[W,3]:=(2*N1)+3+B+D 

NODE [W,4]:=N1+2+B+D 

NODE[Y,5]:=(2*N1)+2+B+D 

NODE [¥!,6] :=N1+3+B8+D 

NODE[W,7]:=MTNO[W]   

NODE[W,1]:=1+B+0 
NODE[N,2]:=(2*N1)+34B4D 
NODE[W,3]:=3+B+D 
NODE[W,4]:=N1+2+B+D 
NODE[W,5]:=N1+3+B+D 

NODE[W,6]:=2+B+D 
NODELW,7] :=MTNO[W]   

   



oe eo 

L 
- 

| 
| 
| 
| 

| 
| 

| 
| 

| 

  

L:=L+1 

D:=D+(2*NN1)       
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Lssl+t 

D:=D0+(2*NN1)       

  

NELEMT2~-1 S 

Yes 

    

  

B:=1-((L*NN1)-NN1-L+2 

W:sT 

NODE[W,1]:=1+B+D 

NODE[W,2]:=(2*NN1)+1+B+D 

NODE[W,3]:=(2*NN1)+3+B+D 

NODE[W,4]:=NN1+1+B+D 

NODE[W,5]:=(2*NN1)+2+B+D 

NODE[W,6]:=NN1+2+B+D 

NODE(W,7]:=MTNO[W] 
  

I:=2 (2) NELEMT2 

  
  

  

  

  

B:=I-((L*NN1)-NNT-L+3 

W:sI 

NODE[W, 1] :=1+8+D 

NODELW,2]:=(2*NN1 )+3+B+D 

NODE[W,3]:=3+B+D 

NODE LW, 4] :=NN1+2+B+D 

NODE[W,5]:=NN1+3+B+D 

NODE[W,6]:=2+8+D   NODE[W,7]:=MTNO[W] 
  

ge ae a eee 
 



S17 00 

( PRINT HEADING ) 

eA —-— ~< W:=1_ (1) NELEMT 

  

     AX(NODEGHES eI) Joe ee NO ee =0.00001 

  

    

            
  

  

XX[NODE[W,3+1]] :=(XX[NODE[W, 1] ]+XX[NODE 
| (W,1+0]])/2 
| YYCNODE(W,3+1]]:=(YY[NODE[W, 1]]+YY[NODE 

CW, 1+J]])/2 

( PRINT HEADING ) 

= —- -< T:=1 (1) NNODE > 

| PRINT(I,3,0) PRINT(XX[I],0,3) PRINT(YY[I],0,3) 
| PRINT(KODE[I,1],3,0)PRINT(ULX[I,1],0,3) 
\ PRINT(VLY[I,1],0,3) 

    
      

  

    
  

ae ee 

PRINT HEADING 
 



ie 

——-—-< Wel (1) NELEMT = 

PRINT(W,3,0) 

Ee =ru7 > 
| C PRINT(NODELW,J1,3,0) )   

END
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7.12 Procedure SBINPUT 

It was noted that if procedure (MMINPUT) is to be used for solving 

the shouldered bar problem, its elements are not enough to represent 

the fillet radii with sufficient accuracy and will be severely distorted 

in order to match the boundary shape. A purpose built procedure to 

generate the mesh for this problem was developed, and as it only 

solves this particular problem, it was not left in the main mixed mode 

program but was put on a program of its own. 

It is identical to procedure (MMINPUT) described in section (7.11) 

except for generating the truncated nodal columns. Instead of 

surrounding the three sides of the rectangular mesh, they extend out- 

wards to generate the sroulder with the facility of having variable 

fillet radii. All the steps are similar to those of section (7.11) 

but the ratio of the shouldered bar diameters and the fillet radii 

required for any example are read and the mesh is generated accordingly.
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Procedure SBINPUT Flowchart 

START 

[7 — —< I:=0 (2) NFREE E 

eK a ae ane 
( PHI: =READ ) 

  

    
  

  

    
  

J:=1 (1) NSETFS > 

  

ULX[I,J]:=VLY[I,J]:=0.0 
    
    
  

  

PHI:=0.0174533*PHI 

NNT :=N1-4 

NELEMT1 :=3*(N1-1) 

NELEMT2 :=NELEMT-NELEMT1-(NN1-1) 
  

I:=1 (1) 5 > 

  

[_8:=1-1_F:=(1+1)/2 
    

J:=1 (1) NI   
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1 

TH:=(2*(J-1)*3.14159) /(N1-1) 

| XX[(B*N1)+d]:=(G=(AA*COS(PHI)))+ 

| (((F*RO)*COS(TH) )*COS(PHI) )+ 

| (((F*RO)*SIN(TH) )*SIN(PHI) ) 

| YY[(B*N1)+J]:=( (AA-(F*RO))*SIN(PHI) )+ 

(((F*RO)*(1-COS(TH) ))*SIN(PHI) )+ 

| (((F*RO)*SIN(TH) )*COS (PHT) )       

  

      

  

  

  

(Re ge ee 

Per ee < GEIL Ie=7 

| B:=I-1 

| 
| ia —_— Oieleas05 1e 

| XX[(B*N1)+d]:=G 
ey eee ee 

faa —-~< J:=7,15 > 

| XX[B*NT) +0] :=G-((AA+(5*RO) )/2) 
Li emer 
pos J:=9,11,13 

| XXL (B*N1 +0] :=G-(AA+(5*RO))       
p oe J2=1,13,15,17 > 

YY[(B*N1)+d]:=0.0 

  

      

lias J:=3,11 

  

| 

! 

| 

| 

| 

| 

| | 2k, “ae Coenen 

| 

| 

| 

| 

| 
  

[oo oy ee ae coe eee t 

ee pr eA 
YY[(B*N1)+d]:=AA+(5*RO) 
      
      

    
 



Bore 

  

| ( YY[(B*N1)+3+132]:=READ_) =READ 

< dea)soos ee | 

YY[(B*N1 )+0+132]:=READ 

  

a 

wr ee 

+132]:=READ ( XX[(B*N1)+d ) 

No 

  
  

YY[(B*N1)+d+132]:=AA+ 

(5*RO)+( (H-(AA+(5*RO) ) )/4) 
*((1+1)/2) 
XX[(B*N1)+J+132]:=(2*G)- 
((((2*G)-(4-((1+1)/2)) 
*((G-(AA+(5*RO)))/4))/4) 

*((J-1)/2))       
——— 
YY[(B*N1)+d+132]:=AA+ 

(5*RO)+((H-(AA+(5*RO) ) ee
pe
st
ad
) 

    *((1+1+/2) 
  

  

  XX[(B*N1) +3+132]:=6     

SS J3=9,   11,13 > 

  

| XX[(B*N1)-+d+132] :=(4-((I+1)/2))* 
      

| ((G-(AA+(5*RO)) )/4)
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| 
XX[(B*N1)+15+132]:=XX[(B*N1)+13+132] 

+((G-(XX[(B*N1)+13+132]) )/2) 
  

    
ae J3=13,15,17 S aa 

See 
  

  

  

YY[(B*N1)+11+132]:=(YYL(B*N1 )+9+132] 

| 

t 

| 

| 

a YY[(B*N1)-+J+132]:=-( (I+1+/2)*(H/4) 

| 

? +YY[(B*N1)+134#132]) /2     
  

a 
p-- <a 
| / J:=READ KODE[J,1]:=READ 
aaa ULX[J,1]:=READ VLY[J,1]:=READ 

--— W=1 (1) NELEMT >     
MTNO[W]:=1 

      

  

p---<cmo= > 
| (Casein) 
| (cee J:=1_(1) NSTELET]___ > 

| | Camirra@—) 
fF - -- <a 

Ji=] 
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oN 
or Yes 

| No 

| J:=d41 MTNO[W]:=1 

| Yes 

ioe ee ew a Be ee NG 

Res, ee Fie jet T:=1 (1) NELEMTI-1 > 

L:=1_D:=0 
— 

Lr=L+1 
D:=D+(2*N1) 

  

  W:=I 

B:=I-((L*N1)-N1-L+2 

  
  

No q 

    
NODE[W, 1]:=1+B+D 

NODE[W,2]:=(2*N1) +148 

NODE[W,3]:=3+B+D 

NODE[W,4]:=N1+1+B+D 

NODE[W,5]:=N1+2+8+D 

NODE[W,6]:=2+B+D 

NODE[W,7]:=MTNO[W] 

+ o 

  

Yes 

    
NODE[W,1]:=1+B+D 
NODE[W,2]:=(2*N1)+1+B+D 
NODELW,3]:=(2*N1)+3+B4D 
NODE[W,4]:=N1+1+B+D 
NODE[W,5]:=(2*N1)+2+B4D 
NODELW,6]:=N1+2+B+D 
NODE[W,7]:=MTNO[W] 

  

ee roeen sees 

NELEMTI S 

  

  D:=0       
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| 

| B:=I-((L*N1)-N1-L+3) 

| 

| 
No Yes 

        

| NODE[W,1]:=3+B+D NODE[W,1]:=1+8+D 

| NODE[W,2]:=(2*N1)+1+B+D NODE[W,2]:=(2*N1)+3+B+D 

| NODE[W,3]:=(2*N1)+3+B+D NODE(W,3]:=3+B+D 

NODE(W,4]:=N1+2+B+D NODE[W,4]:=N1+2+B+D 

| NODE[W,5]:=(2*N1 )+2+B+D NODE[W,5]:=N1+3+B+D 

| NODE[W,6]:=N1+3+B+D NODE(W,6]:=2+B+D 

NODECW,7]:=MTNOLW] | NODE(W,7]:=MTNOLW]           

  

  
  

B:=I-((L*NN1)-NN1-L+2) 

W:=1+48 

NODE[W, 1] :=1+B+D+106 

| NODE(W,2]:=(2*NN1)+5+B+D+106 

NODE[W,3]:=(2*NN1)+7+B+D+106 

| NODE[W,4]:=NN1+1+B+D+106 

NODE[W,5]:=(2*NN1)+6+B+D+106 

| NODE[W, 6] :=NN1+2+B+D+106 

NODE[W,7]:=MTNO[W] 

Coo 

| 
| L:=1 Ds=0 

| 
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L:=1 D:=0 

B:=I-((L*NN1)-NN1-L+3) 

W:=1+48 

NODE[W,1]:=1+B+D+106 

NODE[W,2]:=(2*NN1)+7+B+D+106 

NODE[W,3]:=3+B+D+106 

NODE[W,4]:=NN1+2+B+D+106 

NODE[W,5]:=NN1+3+B+D+106 

NODE[W,6]:=2+B+D+106 

NODE(W,7]:=MTNO[W] 
  

=1 (2) NELEMT2-1 = 

  

      

  

| L:=L+1 

      

D:=D+(2*N1) a 
| No Is 

L*(N1-1)-     

  

B:=I-((L*N1)-N1-L+2 

W:=1+60 

NODE[W, 1]:=14+B+D+132 

NODELW, 2] :=(2*N1)+1+8+D+132 

NODE(W,3]:=(2*N1 )+3+8+D+132 

NODE[W, 4] :=N1+1+B+D+132 

NODE[W,5]:=(2*N1)+2+B+D+1 32 

NODE[W,6]:=N1+2+B+D+1 32 

NODE[W,7]:=MTNO[W] 
  

I:=2 (2) NELEMT2 > 

L:=1_ D:=0   

  

 



| 
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L:=L+1 
D:=D+(2*N1)          

  

Yes     
B:=I-((L*N1)-N1-L+3 

W:=1+60 

NODE[W, 1]:=1+B8+D+132 

NODE[W,2]:=(2*N1 )+3+B+D+1 32 

NODE[W,3]:=3+B+D+132 

NODE(W,4]:=N1+2+B+D+132 

NODE[W,5]:=N1+3+B+D+132 

NODE[W,6]:=2+B+D+132 

NODE[W,7]:=MTNO[W]       

( PRINT HEADING ) 

eed W:=1 (1) NELEMT >   
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XX[NODE[W, 3+1]]:=(XX(NODE[W,J]] 
| +XX[NODE[W, 1+0]])/2 

| YY[NODELW,3+1]]:=(YYLNODELW,J]] 
+YY(NODE[W, 1+0]]) /2 

    
    

  
  

PRINT HEADING 

> --<ED > 
| 

| 
  

PRINT(I,3,0) PRINT(XX[I],0,3) 

PRINT(YY[I],0,3) PRINT(KODE[I],3,0) 

PRINT(ULX[I,1],0,3) PRINT(VLY[I,1],0,3)   
  

I Sra ame W:=1 (1) NELEMT > 

| PRINT(W,3,0) ) 

| 
— J:=1 (1) 7   
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7.13 Procedure CCRM1 

This procedure performs the modifications described in Chapter 6 

to the overall stiffness matrix and load vector to include the special 

core element for a mode (1) fracture problem. . In this case there is 

only one rigid body displacement of the crack tip (ér) in the r- 

direction. The near tip displacement components may be written as: 

U. =O KF (r,8) (7a?) 

v K7g(r,8) (7.38) 

where f(r,6) and g(r,9) are given in Appendix (10.2). 

It has been shown in Chapter 6 how the overall stiffness matrix 

[K] is modified to [K]* and the potential energy of the system is 

minimized with respect to Ky, on and uj which are the unconstrained 

nodal displacements. 

It is convenient to number the nodes on the core/finite element 

interface from (1) to(N1) as such a numbering sequence will result in 

making the nodes of the first ring of elements surrounding the core 

contribute stiffness matrix coefficients connecting nodes on the inter- 

face with the remainder of the nodes only. By performing the parti- 

tioning suggested in equation (6.12), the set of equations will have 

the form shown in Fig. (7.2). The reassembled stiffness matrix [K]* 

will have the form shown in Fig. (7.3) 

Tt was shown in equation (6.13) that: 

{qj} = [Al{a}, (7.39)



NG-2N, 
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Fig. 7.3 

            

Ki Kia ° wi as, 

Kai 

K 22 

° 

Na OS 
Fig. 7.2. 

tah Pe = 

Kia" 

KII|* 

° 

* ée ° 

Kai Keo Lk, J oO] 
aN,
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where 

o
a
 

e
s
 

u
N
 
—
 

ue {q)} = (eh (7.40) 

8 
fol, = (>| (7.41) 

[A] = ( ree (7.42) 
o. 9(R, +8) 

) 

and the functions F(R. 58) and 9(R. 28) are given in Appendix (10.2) and 

wirh r = R. (core radius) and 9 = the angle between the positive r-axis 

and the particular node on the interface. 

From Appendix (10. 3) 

[k] (7.43) 1 nm
 

0 HE (2«-1)
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It is now necessary to write the matrix operations of equation 

(6.23) in a form suitable for programming: 

2Ny-1 2N.-1 

KSo[1,1] = K [1,1] + 2 z KCi.g] (7.44) 
; 121,3,5 j=1,3,5 

kgo[1,2] = kSp[2,1] 

2Ny-1 2N, 

k.[2,1] + z Be Kit eo lus (7.45) 
1=1,3,5 j=1,2,3 J 

2N, 2N, 
kx,[2,2] = «.[2,2] + = = KLi,jJu,u, (7.46) 
a ¢ 421,2,3  j=1,2,3 3 

2Nq-1 
Keo[1,d] = = KLi,g + 2N] (7.47) 

i=1,3,5 : 

or from the symmetry of [K] equation (7.47) may be written as: 

2Ny-1 
kK¥(1,5] = z K[j + 2N, 51] j = 1,233...4N (7.48) 
ie i=1,3,5 1 1 

2Ny 
k¥,[2,5] = = K(j + 2N,,iJu, j=1,2,3...4N (7.49) t2 jo. ilu; 1 

kt) C405] = KA + 2Nyo5 + 2Nj] 4,491,2,..NG-2N, (7.50) 

{Q,}* = {0} (7.51)
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And 

Qy*Li] = QLi + 2N,] i,J-1,2...NG-2N, (7.52) 

where 

uy = FR,» O54) 5-04 (7.53) 

uy = (Ro o(})) j-even (7.54) 

In calculating the values of the coefficients of the (ky* matrix 

according to equations (7.44) to (7.50), it must be noted that only the 

lower half of the original stiffness matrix [K] was stored. Therefore 

by using symmetry, for a given row (i) the terms K[i,i+1] to K[i,2N] 

are replaced by K[i+],i] to K[2N,i] respectively. As the stiffness 

matrix coefficients stored were those between the first non-zero co- 

efficients and the major diagonal only, the first non-zero coefficient 

(j) in row (i) must be found. This will reduce the terms K[i,1] to 

KLi,i] to be only K[i,j] ¢o KLi,i]. Similarly some of the coefficients 

K{it+],i] to K[2Ng i] may be zeroes before the first non-zero coefficient 

of their row and hence not stored. Therefore the first non-zero 

coefficient of these rows must be calculated also and if any term is 

smaller than its corresponding row first nonlzero coefficient, it must 

be dropped from the summation. For ease of programming each summation 

is divided into two as: 

Ee 2) + Ly (7.55) 

where N 

P= Teese] (7.56) 

2=] 

4 
ne 2 KLi,2] (7.57) 

2=j
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and ON 

tp = z K[2,i] 

The steps taken to translate the operations described in this 

section to a computer code are as follows: 

1. The coefficients of array CM[1x2] which are the 

elastic constants E and v for the material in the 

immediate neighbourhood of the crack tip are read 

and G is calculated from them. 

2. Equation (7.46) is evaluated by: 

i) A loop I from (1) to (2N,) is constructed. 

ii) Integer IA distinguishes between odd and even 

I values which correspond tor and z displacement 

components respectively, so that the appropriate 

8; and F(R, 28;) or 9(R. 284) is calculated as 

shown in equation (7.42). 

iii) The first non-zero column number (J) of row 

(1) is determined. 

iv) The sign of the radial displacement component is 

checked and changed if necessary to match the 

global r-direction. 

v) A loop (J) is constructed from the first non-zero 

coefficient in row (I) to (2N,) and the summations 

in equation (7.46) are per formed as shown in 

equations (7.57) and (7.58). 

vi) Steps (ii) to (iv) are repeated with (J) instead 

of (I). 

(7.58)



3. 

= 7188 = 

vii) The summations of equation (7.45) are 

performed similarly to (v). 

Equations (7.44), (7.48), and (7.49) are evaluated 

similarly. 

« Equation (7.50) is performed which implies the 

elimination of rows and columns (1) to (2N,) from 

[K] and replacing then by Koos and the address 

sequence is modified accordingly. 

Equation (7.52) which reassembles the load vector is 

carried out. 

Equation (7.51) is implemented and address coefficients 

for the last two rows of [K]* are calculted. 

2 The coefficients of [K]* which have been calculated are 

allocated to their appropriate positions.



Procedure CCRMI Flowchart 

eo 

ii) 

© 

| 

| 
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| a CMEI]:=READ _) 
= 
  

G 

  

2=0.5*CM[1]/(1+CM[2]) 
MU:=CM[2]   
  

|- —< J:=3 (1) 4*n142 

  

      

  

  

  
  

KT11:=(2*KAP-1 

3.145942) *RO*2 

*AA/(16*G)   

  

)*(( KT11:=(2*KAP-1)*(( 

3.14159) +2) *RO*2 
*CR/(16*G)   

  
  

  

  

  KT12:=0.0 
  

< 231 (1) 2*N1 >         TA:=1-2*ENTIER(I/2) 
 



iii) 

@ = 190 - 

© 
  

  

THETA:=(1+1)/2-1)*3.14159/ 
(N1-1) 
UI:=(2*RO) +0. 5*( (2*KAP~1) 
*COS( THETA/2)=COS(1. 5*THETA) } 
/(8*G)     

THETA:=(1/2-1)*3.14159/ 

(N1-1) 

UI:=(2*RO) +0. 5*( (2(KAP+1) 

*SIN(THETA/2)-SIN(1.5* THETA) ) 

/(8*G) 
  

    

  
  

    
  

    
      

  

    
  

  

  
    

      

  

  

  
  

        

  

    

  

T 

C1:=1-ADD[1]+ADD[I-1]+1 

No . Yes 

UIT:=UI UIT:=-UI 

[ I 

_—_—— J:=CI (1) 2*N1 a 

dgl Yes 

No DI:=1 

DJ:=J 

CJ:=J-ADD[J]+ADD[J-1]+1 

Yes   

 



  

@) Slee © 
  

THETA:=((d+1)/2-1)+ 

3.14159 (N1-1) 

Ud:=(2*RO)+0.5*((2* 

KAP~1)*COS( THETA/2) 

-COS(1.5*THETA) )/(8*G)       

THETA:=(J/2-1)*3.14159/(N1-1) 

UJ:=(2*RO) +0.5*( (2*KAP+1) 

*SIN(THETA/2)-SIN(1.5* 

THETA) )/(8*G) 

  

  

  
  

  

  
KT11:=KT11+UIT*UJ*K[ADD[DI ]-DI+DJ]     

  
TA=1 

Yes 

No 

      
KT12:=KT12+Ud*K[ADD[DI]-DI+DJ]       

  

  

KT22:=0.0 
  al 
  

  

  
:=1 (2) 2*N1-1 = 

  

  CI:=1-ADD[I ]+ADD[I-1]+1 | 
IA:=CI-2*ENTIER((CI/2)     

No 

Yes 

  

CIs=CI+1 
          

      J:=CI (2) 2*NI-1 

  

DI:=1 

DJ:=J       

 



@ oz = 

CJ:=J-ADDLJ]+ADD[J-1]+1     

    

   DI:=d 

DJ:=1     

  

  

  

  KT22:=KT22+K[ADD[DI]-DI+DJ]     

— = — <_d:51424N1_ (1) 64NT 

  

CJ:=J-ADD[J]+ADD[J-1]+1 | 

fs 

| 

a —-— -< T:=Cd (1) 2*N1 

    

  

    

  

    
  

  C1:=I-ADD[1]+ADD[I-1]+1 
    

  

                 
  TA:=1-2*ENTIER(1/2) 

      



O© 

    

= 4193°5 
w @ 
  

  

THETA:=((I+1)/2-1)* 
3.14159/(N1-1) 
UI:=(2*RO) +0. 5*((2* 
KAP-1) *COS(THETA/2) 
-COS(1.5* THETA) )/(8*G)     

THETA:=(1/2-1)*3.14159/ 
(N1-1) 
UI:=(2*RO)40.5*( (2*KAP 
+1) *SIN(THETA/2)-SIN 
(1. 5*THETA) )/(8*G) 

  

Yes 

   No 

  

  UIT:=-UI 
        

  

KT[1,J-2*N1+2) :=KT[1 ,J-2*N1+2 UI 
*K[ADD[DI]-DI+DJ]     

  ie 

[ 

| 

  
®® 

ee 

— << ds1424n7 (1) 6*N1 

CJ:=J-ADD[J]+ADD[J-1]+1 
JA:=CJ-2*ENTIER(Cd/2) 

    
      

     
CJ:=CJ+1 

  

    

  

  
Id 

—_——_—=_— —< I:=CJ (2) 2*N1-1 

Yes 

  

No DI:=J 
  

  CI:=I-ADD[I]+ADD[I-1]+1 DJ:=1     
  
  

  

Yes 

No 
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DI:=I 

DJ:=J     

    

  

  

  
KT[2,J-2*N1+2] :=KT[2,J-2*N1+2]+ 

    

  

    

K[ADD[DI]-DI+DJ] 

T:=1 (1) NG-2*N1 > 

CI:=1+2*N1-ADD[1+2*N1] 
+ADD[1+2*N1-1]+1 

    
      

  

  CI:=2*N1+1 
  

  

  

  
  

  | -CI+ADD[I- 

  

ADD[1]:=1+2*N1 ADD[1]:=1 
      

  1]+1 
    

J:=CI (1) 1+2*N1 

  

K[ADD[ 1 ]-1+J-2*N1]:=K[ADD[1+2*N1 ] 

-1-2*N1+J0]     

oo -—<0st:=1 (1) NG-2*N1 S   
J:=1 (1) NSETF 

  

  QLI,J]:=QC1+2*N1 J] 
    

I:=1_(1) NSETF 

  

  
QLNG-2*N1+1,1]:=Q(NG-2*N1+2,1] 

:=0.0      
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| 
  

ADD[NG-2*N1+1 ]:=ADD[NG-2*N1 ] 

+NG-2*N1+1 

ADD[NG-2*N1+2] :=ADD[NG-2*N1-1] 

+NG-2*N1+2       

    
K[ADD[NG-2*N1+1 ]-NG+2*N1-141] 

:=0.0 

K[ADD[NG-2*N1+2 ]-NG+2*N1-2+1] 

320.0 

oe -_-— I:=1 (1) NG-2*N1 > 

| 
[ 

      

  

K[ADD[NG-2*N1+2]-1]:=KT12 

K[ADD[NG-2*N1+1]]:=KT22 

K[ADD[NG-2*N1+2]]:=KT11       

— I:=3 (1) 4*N1+2 >     
K[ADD[NG-2*N1+1 ) -NG+2*N1 

+I-3]:=KT[2,1] 

K[ADD[NG-2*N1+2]-NG+2*N1 

+1-4]:=KT[1,1]      
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7.14 Procedure CCRMM12 

This procedure is similar to (CCRM1) but deals with mixed mode I 

and II problems. In this case the rigid body modesof the core element 

are the two rigid body displacement components 6. and 6, and a rigid 

body rotation term. Failure to include the rotation term will result 

in imposing constraints on the core, hence the physical situation will 

not be accurately represented. With reference to Fig.(7.4), the 

displacement components obtained from a rotation of w® are: 

-wRs ine (7.59) i " 

wRcosé (7.60) = u 

The near tip displacement field may be written as: 

< qi = F)(Ros8)Kp +94 (R, 8) Ky y+5 thy (R98 )w (7.61) 

Wy = F(R, »8)Ky#99(R 98) Ky 748, #9 (R58 )w (7.62) 

Where Fie fo. 9, and Jp are given in Appendix (10.2) and, 

hy (Ro 98) = -R,sine (7.63) 

ho(R..8) = R.cosd ‘ (7.64) 

In this case the potential energy is minimized with respect to 

Sy. S55 Ws Krys Kiy> and uj. As the crack plane is inclined to the 

global axes the components of equations (7.61) and (7.62) must be 

resolved to correspond to them, hence, 

se 1 u,cosa - w sina (7.65) 

<=
 u,Sina + w,cosa (7.66)
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t
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Therefore equations (7.61) and (7.62) become: 

une F1 (Ro 58) Ky #6, (R58) Kp 7 #8 ,cosa-5sinatH, (R, 8 )w (7.67) 

Wea F(R. 98) Ky +G5(R 8) Ky 1 +6,SinatdcosatH,(R. »8)w (7.68) 

where 

F, = fycosa - f,sina (7.69) 

Fo = f)sina + focosa (7.70) 

G, = g,cosa - gosina (7.71) 

G, = g)Sina + g,cosa (7.72) 

Hy = hycosa - hysina (7.73) 

Hy = hysina + hycose (7.74) 

The same principle in node numbering on the interface as that of 

the mode I case is used with the only difference being that the core is 

a full circle. 

The {q,t vector of equation (6.13) is the same as (7.40) but the 

ROT 3 { ve Ss now 

fal. = ° (7.75)
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and [A] is: 

HOR 284)) “sincl| fcoso) (6)(R,.2,) ia) 

Ho(R,281)) {cosa} {sina G(R, 284) J [Fo(R, 287) 

ae 1 (Res89) [-sina cosa} (,(R.+8)] {Fy (R,»8) 
Ho(Ros85 J {cosa} (sina} [Go(R..e)) [Fy (R,.89) 

Hy (Rey me cosa} eel 2 
Ho(Ro »8y7) { coso| sina G(R, 28y7) F5(Ro28y7) 

From Appendix (10. 3) the core stiffness matrix may be written as: 

(7.76) 

0 0 0 0 0 

0 0 0 0 0 

[a= /0 0 0 0 0 (7.77) 
2 

rR 
9 9 8 4 (342) 0 

R 1 Oona 0 Ome tc 
Sa (RR) 

The appropriate coefficients of [K]* may be obtained from 

equation (6.23) with 

TI = NG - 2N1 (7.78) 

as follows: 

2N)-1 2Nj-1 

K*[TI+2,Tl4m]=K[2,m]+ 7 2 Ki. IME2IMEm] (7.79) 
4=15359' J=15030
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2N, 2Ny 

K*(TI+2,TI4+m]=K_[2,m]+ y = KCLi,GIN(2IN(m] (7.80) 
. 152,4,6 j=2,4,6 

And due to symmetry: 

K*(TI+2, TL+m]=K*(T1+m,TI+2] (7.81) 

And 2N,-1 

Keitiiee vias 2 K[J+2N, 57 ]MCe] J=1,2,3...4N) (7.82) 
i=1,3, 

aN, 

K*(TI+2,j]= = K[J+2N, INCL] J=1,2,3...4N) (7.83) 
j=2,4, 

where 

L=m=1, 2,3, 4,5 

tut 

tnyt 

(H, cosa sina G, Fo] (7.84) 

[Hy -sina cosa & Fy] (7.85) 

As the nodes on the interface are free from external loading 

{Q)}* = {0} (7.86) 

Similar to the mode I case the partitioning will imply: 

KLi.g]* = K[i+2Ny ,j+2Nq ] (7.87) 

QLi}* = Qfi+2n J (7.88) 

where i,j = 1,2....NG-2N, 

The steps of the procedure are similar to those of section (7.13) 

except for step (6) where there will be five rows instead of two at the 

bottom of [K]* corresponding to {a},
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Procedure CCRMM12 Flowchart 

  

( CM[I]:=READ ) 

  

G:=0.5*CM[1]/(1+CM[2]) 
MU:=CM[2] 

( ALPHA:=READ ) 

ALPHA:=0.0174533*ALPHA 
SN:=SIN(ALPHA) 
CN:=COS (ALPHA) 

I:=1 (1) 5 E 

J:=1 (1) 4*N1+5 > 

KT[I,J]:=0.0 

      

  

      

  

          
  

KAP :=3-4*MN 
KTL1,1]:=2*RO*CR*( (3.14159) +2) 

*(2*KAP-1)/(8*G) 
KT[2,2]:=2*RO*CR*( (3.14159) 42) 

*(3+2*KAP) /(8*G)     

T:=1 (1) 2*N1 > 

IA:=1-2*ENTIER(I/2) 
    

      

Yes
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© © 
  

  

THETA: =-3.14159+2*(I | THETA:=-3.14159+2*((1+1) 

/2-1)   *3,14159/(N1-1) /2-1)*3.14159/(N1-1) 
  

FI0:=( 

G10:=( 

FI}:=( 

GI1:=( 

HI0:=- 

HI1:=RO*COS (THETA) 

C—________1 

RO/2)+0.5*((2*KAP-1)+COS (THETA/2) -COS 

(1. 5*THETA) )/(4*G) 

RO/2)+0.5*( (2*KAP+3)*SIN( THETA/2)+SIN 

(1. 5*THETA) )/(4*G) 

RO/2)+0.5*( (2*KAP+1) *SIN(THETA/2)-SIN 

(1. 5*THETA) )/(4*G) 

RO/2)+0.5*C(2*KAP-3) *COS ( THETA/2)+COS 

(1. 5*THETA) )/(4*G) 

RO*SIN( THETA)     

Oe       

  

FIO:=F 
GI0:=6 
HIO:=H 
T2:=SN 

IO*SN+FI1*CN 0:=FIO*CN-FI1*SN 

I0*SN+G11*CN 0:=GIO*CN-GI1*SN 

10*SN+HI1*CN HIO0:=HIO*CN-HI1*SN 

T4:=CN T2:=C(N T4:=-SN         

oe 
    

  

  

  CI:=I-ADD[I]+ADD[I-1]+1 
          

et 

Se J:=CI_(1) 2*N1 
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DI:=1 

DJ:=J 
  

    

        

  

No Yes 

{ cd:=d-ADD[J]+ADD[J-1]+1 Cd=1 

Yes Cu>I 

No 

DI:=J 
Dd:=1               

JA:=J-2*ENTIER(J/2) 
      

No Yes 

        

  

THETA:=-3,14159+ 

2*(J/2-1)*3.14159 ((J+1)/2-1)* 

    /(N1-1) 3.14149/(N1-1) 

THETA:=-3.14159+2* 

      

      FJO:=(RO/2)+0.5*( (2*KAP=1) *COS 

(THETA/2)-COS(1.5*THETA) )/(4*G) 

GJO:=(RO/2)+0.5*( (2*KAP+3)*SIN 

(THETA/2)+SIN(1.5*THETA) )/(4*G) 

FJI:=(RO/2)+0.5*( (2*KAP+1 ) *SIN 

(THETA/2)-SIN(1.5* THETA) )/(4*G) 

GJI:=-(RO/2)+0.5*( (2*KAP-3)*COS 

(THETA/2)+COS(1.5* THETA) )/(4*G) 

HJO:= -RO*SIN( THETA) 

HJ1:=RO*COS (THETA) 
Se,   

      

  

No Yes 

FJO:=FUO*SN+FJ1*CN FJO:=FJO*CN-FU1*SN 

GJ0:=GJ0*SN+GJ1*CN GJO:=GJO*CN-GJ1*SN 

HJO:=HJO*SN+HJ1*CN HJO:=HJO*CN-HJ1*SN 

T1:=CN T3:=SN T1:=-SN -T3:=CN       

Se aa ae 
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| 
  

  

TEMP1 :=ADD[DI]-DI+DJ] 

KT[1,1]:=KT[1,1]+FIO*FJO*K[TEMP1 J 

KT[1,2]:=KT£1,2]+G10*FJO*K[TEMP1 J 

KT[2,2]:=KT[2,2]+G10*GJO*K[TEMP1 ] 

KT[1,4]:=KTL1,4]+FI0*T1*KCTEMPT J 

KT[2,4]:=KT[2,4]+GIO*T1*KETEMPT J 

KT[3,4]:=KT[3,4]+T2*T1*KCTEMPT J 

KT[1,3]:=KT[1,3]+T3*FIO*K[TEMPT ] 

KT[2,3]:=KT[2,3]+T3*GIO*K[TEMP1 J 

KT[3,3]:=KTL3,3]+T3*T2*K[TEMPT ] 

KT[4,4]:=KT[4,4]+T4*T1*K[TEMPT J 

KT[1,5]:=KT[1,5]+FJO*HIO*K[TEMP1 ] 

KT[2,5]:=KTL2,5] +GUO*HIO*K[TEMPT J 

KT[3,5]:=KT[3,5]+T3*HIO*K[TEMPT J 

KT[4,5]:=KTL4,5]*T1*HIO*K[ TEMP J 

KT[5,5]:=KT[5,5]+HJO*HIO*K[TEMP1 ]     

  

| 

- J:=6 (1) 44N145 > 

  

CJ:=J+2*N1 -5-ADD[J+2*N1-5] 
+ADD[J+2*N1-6]+1     
  

jae a I:=CJ (1) 2*N1 

| 
| 

| 
| 

| 

© 

    
  

IA:=1-2*ENTIER(I/2)     

No Yes 

    
THETA:=-3.14159+2* THETA:=3.14159+2* 

(1/2=1)*3.14159/ ((1+1)/2-1)* 
(NI-1) 3.14159/(N1-1)       ae. ia 

 



FIO: 

GIO: 

FI1:=(RO/2)+0.5*( (2*KAP+1 ) *SIN(THETA/2) 

GI11:=-(R0/2) +0. 5*( (2*KAP-3) *COS ( THETA/2) 

=(RO/2) +0. 5*( (2*KAP-1)*COS( THETA/2) 

=(RO/2)+0. 5*( (2*KAP+3) *SIN(THETA/2) 
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| 

-COS(1.5*THETA) )/(4*G) 

+SIN(1.5* THETA) )/(4*G) 

~SIN(1.5*THETA) )/(4*G) 

+C0S(1.5* THETA) )/(4*G)     

      

  

HI0:=-RO*SIN( THETA) 

HI1:=RO*COS (THETA) 

No Yes 
IA=1 

FIO:=FIO*SN+F11*CN FIO:=FIO*CN-FI1*SN 

GI0:=GIO*SN+GI1 *CN 

H1I0:=HIO*SN+HIT*CN 

T1:=SN 

G10:=GIO*CN-GI1*SN 

H10:=HIO*CN-HIO*SN 

T2:=CN Tl:=CN _T2:=SN           

(Sait ony St ears Se) 

  
  

TEMP1 :=ADD[J+2*N1-5]-J-2*N1 

+541 

KT[1,0]:=KTL1,0]+FIO*K[TEMP1 ] 

KT[2,00:=KT[2,J]+GIO*K[TEMP1 ] 

KT[3,0]:=KT[3,J]+T1*K[TEMP1 ] 

KT(4,0]:=KT[4,0]+T2*K[TEMP1 J 

KT[5,0]:=KT[5,J0]+HIO*K[TEMP1 ]     

  

  | TI:=NG-2*N1 

< Teel (1) > 

  

  

  

  
C1:=1+2*N1-ADD[1+2*N1 ]+ADD[I+ 

2*NI-11+1    
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CI:=2*N1+1 

ADD[I]:=1+2*N1-CI+ADD[I-1]+1 

| 
| 

— =e —< J:=CI (1) 1+2*N1 > 

  

      

n
e
 

  

| K[ADD[1]-I+d-2*N1 ) :=K[ADD[I+2*N1 )-1-2*N1+J] 
    

iPrary, I:=1 (1) 5 

  

  

1 
1 Hootie shoot eet eTiet 

et I:=1 (1) TI | 
| 
ie sears J:=1 (1) NSETF > 

QL1,J]:=Q01+2*N1 J] 

    

  

    

2 = aE
 4 a re
 

fas
} i ° ° 

  

  

  | K[ADD[TI+J]-TI-J+I]:=0.0 
    

lisa — << ate SS 

pcan ges 
| 

K[ADD[TI+I ]-I+J]:=KT[6-1,6-J] 

5 ==> 
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— —< J:=1 (1) 5 > 
    

© bs 
| 

  K[ADD[TI+6-J]-TI+J+I-11]:=KT[J,1] 
    

ee aes
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7.15 Procedure KARBDMMST 

In order to declare the correct size array for storing the stiffness 

matrix coefficients, this procedure calculates the number of coefficients 

in [K]* and compares it with [K] and fixes the size according to the 

larger one for the mixed mode I and II problem by the following steps: 

1. After eliminating rows and columns (1) to (2N, ) from 

[kK], the number of remaining coefficients is calculated. 

2. Coefficients in rows NG-2N, +1 to NG - 2N,+5 are added 

to those steps (1) and the result is called BAND. 

3. The new size is declared K[1:BAND].
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Procedure KARBDMMST Flowchart 

  

= :=NFREE-2*N1 

    a in oO
 

  

    
  

J:51+2*N1-ADD[1+2*N1 ]+ADD[1+2*N1-1 ]+1 
      

  

        
  

  

  

  

Yes 

J:=2*N1+1 

No I=1 Yes 

BAND :=1+2*N1]-J+K+1 BAND: =         
  

      

        
  

    
  
  

  

  

    
3. BAND: =ADD[NFREE] 

        
END
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7.16 Procedure KARMIBND 

This procedure is similar to (KARBDMMST) of section (7.15) 

but is for mode I problems. The only difference between them is in 

step (2) where only coefficients of rows NG-2N1+1 and NG-2N1+2 are 

added.



-2 

Procedure KARMIBND Flowchart 

11 - 

  

  

V:=NFREE-2*N1 

K:=0     

  

  

ie ee See 
  

  v3 pec es 1]+1 
  

  

  J:=2*N1+1 
      
  

  

  

    BAND: ee ed -J+K+1 
    
oe 

    

      

    
  BAND:=1 
  

  

  
  

  

  

BAND: =AD 
  DCNFREE] 

          
END 
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7.17 Procedure RESIDUAL 

It will be shown later in section (8.4.1) that the conditioning 

of aset of linear simultaneous equilibrium equations may be checked by 

resubstituting the displacement vector {q} obtained from the solution 

to evaluate a new load vector {0}' which is compared with the original 

{Q}. Also by examining {0}', any constraint applied by mistake to the 

structure can be spotted. It must be noted that for this purpose the 

original overall stiffness matrix and load vector before modification 

are required, therefore the back store of the computer is used to store 

them in their original form and they are recalled before calling this 

procedure. This was done to avoid having to store both versions of 

the stiffness matrix and load vector at the same time and hence not 

leaving enough room for the solution of the problem. 

The procedure steps are as follows: 

1. A loop I on the rows numbers from 1 to number 

of degrees of freedom is constructed. 

2. The column number (CI) of the first non-zero 

coefficient of row I is calculated. 

3. If CI<I then the stiffness coefficient is stored 

and matrix multiplications are carried out to 

evaluate a . 

4, If CI>I then symmetry is used in the same way as 

shown in section (7.13) to obtain the appropriate 

stiffness matrix coefficient.
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5. Coefficient of the new load vector {Q}' are outputed 

for nodes N1+] to number of nodes of the structure 

as the core nodes are free from external loading.



Procedure RESIDUAL Flowchart 

aie 

    I:=1 (1) NFREE 

J:=1 (1) NSETF > 

  

      

Z:=1 (1) NSETF = 

I:=1 (1) NFREE 
  
  

  CI:=1-ADD[I]+ADD[I-1]+1     

aa < J:=CI_(1) NFREE > 

    
Yes 

d<I ’ 

~~ No 
Dis 

CJ:=J-ADD[J]+ADD DJ: 
  

    
  

{J-1]+1       

CJ>1 

No   
  

    Di:=J_Ddz=I 
  

  

  

FLI,Z]:=F[1,Z]+ QCd,Z]+K[ADD[DI] 

-DI+DJ] 
      [eee eee eats 

( PRINT HEADING ) 
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ps pe —<Ooes NSETF 

j-— < J:=1 (1) NFREE/2 = 

| 
  

   
PRINT(F[2*J-1],0,5) 
PRINT(F[2*J,1],0,5)       
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7.18 Procedure EO4AAA 

This is a standard procedure from the Nottingham algorithm group 

library to minimize a function. It is used to minimize the strain 

energy density function given in equation (7.24) and finds the corres- 

ponding angle which pccording to Sih's criterion is the angle of crack 

initiation. With reference to Fig. (7.5) the method used basically 

works by fitting a quadratic through (8, ,y(8)). (85.y(85))> (83,y(83)) 

of the form: 

Y=atbo+ cee (7.89) 

It finds the point where Y' = 0 and calls it 84 and operates again 

using 855 835 84 to find Beaeee etc. The procedure requires specifying 

8, a range where the minimum value is expected, and the maximum number 

of iterations to be done. This procedure is stored in a precompiled 

form and no flowchart or listing is available for it.
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>   

& & 6, 

Fig. 7.5
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CHAPTER 8 

NUMERICAL EXAMPLES 

8.1 Introduction 

The various procedures needed to build up a finite element program 

to solve axisymmetric problems subject to axisymmetric loading, and 

those required to include a singular core element for the calculation 

of mode (I) or mixed mode (I) and (II) stress intensity factors have 

been presented in Chapter 7. The general finite element program was 

developed to form the basis for the fracture analysis programs, and its 

results were tested against known analytical solutions and others 

obtained by finite element methods using constant strain elements or 

linear strain ones formulating the elements stiffness matrices by 

explicit multiplication and term-by-term integration. The comparison 

between the results was used to draw conclusions about the superiority 

of the linear strain element and the accuracy of the numerical inte- 

gration technique adopted. The fracture programs were tested by 

solying problems whose solution by other methods was available. The 

confidence gatned in the program cleared the way to the solution of 

interesting fracture problems which have never appeared in the published 

literature. Among them were those investigating the effects of grooves, 

voids and inclusions of different material properties on mode (I) and 

mixed mode (I) and (II) stress intensity factors.
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The complete programs, with input data instructions and results of 

sample problems, are presented in (Appendix 10.4). 

This chapter is divided into four sections. The first is devoted 

to non fracture problems by the general finite element program while 

the second is for mode (I) fracture problems, and the third for mixed 

mode (I) and (II) fracture problems. In the fourth section, the 

influence of inclusions of different material properties on the values 

of the stress intensity factors in single and mixed mode fracture 

problems are studied. 

8.2 Applications of the general axisymmetric program. 

8.2.1 Thick cylinder under internal pressure 

This example was solved to demonstrate the accuracy of the numeri- 

cal integration technique used, and the superiority of the linear strain 

elements. The Lame solution for the calculation of stresses in the 

thick cylinder are, [6]: 

a2p be 
sore +S) (8.2) 

where: a = internal radius 

b = external radius 

P = internal pressure 

Meek and Carey, [6], solved this problem using constant strain 

elements and linear ones with explicit multiplication and term-by-term 

integration to formulate the elements stiffness matrices.
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In order to be able to draw conclusions regarding the accuracy of 

the numerical integration technique, the descretization used in solving 

this problem was the same as that used by Meek and Carey for their 

linear strain element, and is shown in Fig. (8.1). 

Table (8.1) shows that the results obtained using linear strain 

elements and numerical integration are very close to those using term- 

by-term integration, and much closer to the theoretical results than 

those obtained from a constant strain element.



(
e
s
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27, 

‘2 a 8 
See tl 26 
201408 

2.0 4.0       

Fig. 8.1



  

  

  

  

Axisym.F.E. prog. M&C C.S. element M&C L.S. element Theoretical (Lame) 
oO. 

5% on oO o, 0 o. 9% o. 

2 25.569 -18.606 26.21 -14.98 25.34 -18.7 as -20 

ie 16.855 -11.877 16.10 -14. 38 16.79 -12.32 16.9 -11.9 

8 12.69 -7.009 12.03 -8.68 12.64 -6.89 12.8 -7.5 

VW 9. 8642 -4.7782 9.53 -5.49 9.82 -4.92 9.846 -4.846 

14 8.1793 -2.9762 7.89 -3.52 8.17 -2.94 8.125 -3.125 

7 6.9468 -1.9207 6.77 -2.21 6.93 -1.97 6.94 -1.94 

20 6.1184 -1.0436 5.96 -1.29 6.12 -1.03 6.1 -1.1 

23 5.4734 -0.4678 5.35 -0.63 5.47 -0.49 5.475 -0.475 

26 5.008 -0.029 4.84 -0.31 5.02 -0.08 5.0 0       

TABLE (8.1) 

= 
de

e 
~
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8.2.2 Circular plate under uniform pressure 

This problem was solved to study the effect of approximating the 

radius, for elements which have one side on the axis of revolution, to 

avoid computational problems arising from the calculation of the hoop 

strain (u/r) which was discussed in section (7.2). 

In the physical situation, the applied pressure is uniformly 

distributed over the upper surface of the plate. When Meek and Carey, 

[6], solved a similar problem, they noted that distributing the load 

on the centroidal plane gives better agreement with theoretical solution 

obtained from plate bending (small deflections) theory than that on the 

upper surface. They concluded that this indicates that the simple 

mechanics solution is not a particularly accurate representation of the 

physical situation. 

The problem of a simply supported circular plate under uniform 

pressure was solved with mesh (1) of Fig. (8.2) and the loads distributed 

on jts upper and centroidal plane. The results are shown in Table (8.2), 

where it is seen that the values for the centroidal plane deflection and 

the hoop and radial stresses of the lower surface are very close for 

the two loading situations. The values however of the hoop and radial 

stress of the centroidal plane are different. When the centroidal plane 

ts loaded, they are very small compared with the lower surface ones and 

therefore it can be assumed that the centroidal plane stresses are 

approximately equal to zero. But when the upper surface is loaded, the 

stresses of the centroidal plane are not very small and cannot be assumed 

to equal zero.
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AZ 

° 

Bs [OxO% 

mesh |. 

} mesh 2 

mesh 3 

' 

tT 

LO 

mesh 4   
  Fig. 8.2 

  

 



  

  

  

      

« * a * * 

nee Snid.pl. Snid.pl. °6 surface % surface °r surface oF surface % mid.pl, [6 mid.pl. °r mid.pl. °r mid.pl. 

(in) 

ea -4 “6 Z| -6 -2 0 2.69x10"* 2.68x10 -1.35 -0.96 4,39 4.58 3.76x10.© 1.10x107! 2. 89x10" 5. 05x10 

1 2.66x10"* 2.66x107* == 236 236 191 191 6.90x107° 1.43x107' 630x107 1. 56x10! 

4 -4 G el -6 aT 2 2.56x10°* 2.56x10 122 122 120 120 4.six1o"° —1.35x107' 549x107 1. 40x10 

4 -4 EG “i -6 a) 3 2.40x10™*  2.39x10 117 117 112 12 3.97x10© 1.36x107' 2. 16x10" 1.37x10 

-4 -4 -6 =I -6 = 4 2.18x107* 2. 17x10 ne ne 103 103 3.14x10°© 1,36x107! ~—1.29x107 1. 37x10 

-4 -4 (5 ey ey =i 5 1.90x107* 1. 89x10 106 106 92 92 2.52x10°© 1.36x107! -1.19x1077—1.37x10 

6 1.58x107* 1.57x1074 99 | 99 79 79 1.50x107° = 1.37x107! —-8.10x1077_ 1.37x107! 

7 1.21x1074 1. 12x1074 91 91 63 63 9.56x107 1.37x107' = -1.61x107© -1.37x107! 

8 8.25x10™>  8.23x107° 81 81 45 45 5.07x107 1.37x107! ~—-2.17x107 135x107! 

9: ae = -8 5 “6 -1 .15x107° 4.1410 70 70 24 24 5.80x10® 1.31x107! ~—-2.91x107© 1.52x10 

10 0 0 58 59 4 4 -2.08x10"® §2,21x107! ~—-6. 99x10 3. 73x107! 

* denotes surface loading 

TABLE (8.2) 

- 
G
7
7
 =



= 2261 

Due to this the centroidal plane loading situation is closer to 

the elementary theory which assumes that plane sections remain plane. 

The deflection of centroidal plane nodes obtained from the finite 

element solution are plotted with the theoretical values in Fig. (8.3). 

Two things are seen in this figure, the first is that the deflection 

curve of the finite element solution is lower than the theoretical one, 

and the second is that this difference is limited to the nodes near the 

axis of revolution after which very good agreement is obtained between 

them. It is thought that the first is possibly due to the fact that 

the centroidal plane nodes are under the direct influence of point 

loads simulating a uniform pressure and hence the deflections obtained 

are expected to be on the larger side of the theoretical values. The 

second is due to the effect of approximating the radius for elements 

on the axis of revolution. The influence of the mesh design on the 

accuracy near the axis of revolution due to approximating the radius 

was studied by solving the same problem with another four meshes 2 to 

5 of Fig. (8.2). The results obtained are shown in Table (8.3) where 

it can be seen that they are very close with better results obtained 

from meshes with elements of the same size (1, 4 and 5). 

The yalues of the radial and hoop stresses of the lower surface 

of the plate obtained from mesh (1) were plotted with the theoretical 

ones in Fig. (8.4). It is again seen that good agreement is obtained 

after a small distance from the axis of revolution.
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Distance Centroidal plane deflection (in x 1074) 
fron ¢ 

(in) mesh(1) mesh(2) mesh(3) mesh(4) mesh(5) 

0 2.690 2.716 2.716 2.681 2.637 

1 2.667 2.684 2.682 2.655 2.614 

2 2.566 2.582 2.581 2.50) 2.526 

3 2.403 2.418 2.417 2.396 2.369 

4 2.180 2.194 25193 2.175 2.151 

5 1.904 1.914 1.914 1.899 1.879 

6 1.580 1.588 1.588 1.577 1.560 

7 1.217 1.223 1.222 1.215 1.202 

8 0.825 0.829 0.828 0.824 0.815 

9; 0.415 0.416 0.416 0.415 0.410 

10 0.0 0.0 ; 0.0 0.0 0.0       

TABLE (8.3) 
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The problem of a circular clamped plate under uniform pressure 

Fig. (8.5) was solved and the results of the centre plane deflection 

and the radial and hoop stresses of the lower surface were plotted 

with the theoretical ones obtained from, [80], in Figs. (8.6) and 

(8.7) respectively.
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8.3 Mode I fracture problems 

8.3.1 A round bar with a circumferentia’ normal edge crack 

This problem was used to check the influence of core Parameters, 

namely the core radius (R,) and the number of nodes on the finite element/ 

core interface (Ny), on the value of (ky). The geometry of the round 

bar is shown in Fig. (8.8), with 

h/R 

c/R 

1.4 

0.5 

The results were compared with a solution by finite elements to 

the same problem with (Ny = 21) and the total number of nodes (297) 

by Hilton and Sih,[49], and another solution by Benthem and Koiter, 

[51]. 

Due to symmetry only half the bar need be considered and hence the 

core's shape is a semicircle. As ring elements are used, the mesh is 

generated for one quarter of the longitudinal section of the bar. The 

core radius was taken as (R, = 0.02 C) and the number of nodes on the 

core (Ny = 19). Two circular rings of elements surrounded the core 

with radii (2R.) and GR.) after which the element distribution was 

changed to rectangular to match the boundary shape of the solid as shown 

in Fig. (8.9). The results for the dimensionless stress intensity 

factor (Ry), 

oi R “aE (8.3) 
9, (2R) 

where: o, = the stress in the neck section 
0
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are shown in Table (8.4); where it could be seen that although (Ny) 

was less than that used by Hilton and Sih and the total number of nides 

was only (285), the results have good accuracy. 

The problem was solved again with the same core radius but with 

(Ny = 15) and (Ny = 9), and total number of nodes (225) and (135) 

respectively. This had the effect of increasing the distance between 

nodes on the finite element/core interface, thus increasing the dis- 

Placement incompatibility on the interface. To be able to assess the 

effect of the incompatibility the core radius in both cases was reduced 

in two stages to a value which made the distance between the nodes on 

the interface equal to that of (Ny = 19) and (R, = 0.02C). Therefore, 

the core radii for (Ny = 15) were (R, = 0.0178C) and (R, = 0.0156C); 

and for (Ny = 9) were (R, = 0.0145C) and (R, = 0.009C). 

The value of (Ry) obtained in each case is compared to that of 

Benthem and Koiter in Table (8.5), and it is seen that the best agree- 

ment was obtained from the solution with (Ny = 19) and (Ry = 0.02C). 

It could be concluded that although the displacement incompatibility at 

the interface affects the accuracy of the results, there are other 

factors involved which are the strain energy in the core and the back-up 

mesh expressed as the total number of nodes used. 

It is noted that as the core radius decreases, the one term 

displacement expansions under estimates the strain energy in the core 

region resulting in large values for the stress intensity factor, [49]. 

The overall mesh should also be fine enough to filter through the effects 

of representing the distributed load by nodal forces and the effect of 

approximating the radius at elements on the axis of revolution.
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RES. Foes Benthem 

Program Hilton & Sih & Koiter 

Dimensionless 

R 0.22774 0.235 0.237 

% 

Accuracy - 3.11 4.0 

TABLE (8.4) 
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The total number of nodes which could be used depends on (Ny) and 

is limited by the computer store. Therefore, in order to stay within 

the capacity of the available computer, all the mode (I) problems solved 

had the parameters (Ny = 19) and a total number of nodes of (285).
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N Ro Ky Percentage 
discrepancy 

0.009C 2477 +16% 
9 0.145C 2492 +17% 

0.02C 2504 +17.8% 

0.0156C 2311 +8.7% 
15 0.0178C 2405 +13% 

0.02C 244] +14.8% 

19 0.02C 2050 -4% 

  

TABLE (8.5) 
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8.3.2 A round bar with a normal penny shaped crack 

This example consists of a bar similar in dimensions to the one 

in (8.3.1) with (R, = 0.02C) but having a penny shaped crack, Fig. 

(8.10); and was solved also by Benthem and Koiter,[51]. The dimen- 

sionless stress intensity factor (Ky). 

u 
: o(2R)2 (8.4) 

I 
  

where: ao = the uniform stress remote 

from the crack tip. 

was found to be (0.34569) which is within (0.5%) of (0.34390) calcu- 

lated by Bentmem and Koiter.
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8.3.3 A round bar with a crack extending from the base of an 

external groove 

Cracks, when initiated, are often removed by cutting a groove in 

their place. A study was carried out to examine the results if a 

small part of the crack was left, or it initiates again from the base 

of the groove for various groove geometries. Another interesting 

example is the effect of a groove on a propagating crack. The 

different groove geometries studied, with reference to Fig. (8.11), 

were: 

a/b = 0.0315, 0.063, 0.25, 0.5, 1, 2 and 3. 

with c/b = 0.28 

The bar was subjected to a uniformtensile load remote from the 

crack plane of (500 psi) and the (Ky) results obtained are shown in 

Fig. (8.12). The two asymptotes in this figure represent the limits 

of the variation of (Ky). The upper one is the (Ky) value of a 

crack of length (c + b) in a bar of radius (R), and the lower one is 

that for a crack of length (c) in a bar of radius (R - b). The 

results show that (ky) values are insensitive to small grooves and a 

reduction in them is not significant unless the groove opens up to an 

(a/b) ratio greater than unity. 

For the example of a propagating crack from the base of a groove, 

a semicircular groove was chosen. The values of crack to groove ratio 

considered, with reference to Fig. (8.13), were: 

c/b"= 0°08, 0.09, 0.11, 05195) 0.14, 0.2,.0.28,, 0,34, 0545 

and 0.44.
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Fig. (8.14) shows the percentage reduction in the value of (Ky) 

of a crack of length (c) due to the existence of a semicircular groove 

of radius (b), from that of a circumferential normal crack of length 

(b + c) in a solid bar. 

The results show that when ( > 7) this percentage reduction in 

(Ky) value is very small, while if (F< 1) the reduction is large and 

is affected by very small changes in the (c/b) ratio. 

An important general conclusion may be drawn from these results 

which is: if a crack is propagating from a groove whose (a/b) ratio is 

less than unity or it has propagated from any groove to a distance 

which is large compared to the groove depth, then a conservative 

estimate of (Ky) would be that of a crack of a depth equal to the sum 

of the depths of the groove and the crack in a solid bar. Such (Ky) 

values are available in charts and formulae and the need to resort to 

complicated numerical methods is eliminated.
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8.3.4 A round bay with an internal Void and a circumferential 

normal crack 

A problem complementary to that in section (8.3.3) is of a bar 

containing a circumferential normal crack, but the geometric disconti- 

nuity is an axisymmetric void, Fig. (8.15). Here, the existence of 

the void reduces the net section further and thus elevating the local 

stress field near the crack tip. For the case of: 

o = 500 psi, where o = uniform stress remote 

from the crack tip 

c/R = 0.5 

a/b d/b = 0,09, 

the (Ky) value was found to increase by (52%) due to the existence of 

the void.
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8.4 Mixed mode I and II fracture problems 

8.4.1 A test problem 

To the knowledge of the author, a mixed mode (I) and (II) axi- 

symmetric fracture problem has not been solved previously and an 

example was not found in the published literature to be used as refer- 

ence. In order to check the mixed mode (I) and (II) program, the 

mode (I) problem of section (8.3.1) was solved using it. In mixed 

mode problems there is no symmetry with respect to the crack plane to 

exploit, and hence the whole specimen is considered and the core's 

shape is a circle. However, as ring elements are used, half the 

longitudinal section need be discretized only. The new discretization 

of the problem required a redistribution of the elements both remote 

from and around the core, which implied either increasing the overall 

number of elements or reducing the number of nodes on the core/finite 

element interface. As the program was nearly occupying the full store 

of the available computer, the first alternative was’ not possible. 

Therefore, the nodes on the core/finite element interface were reduced 

to (Ny = 17) and the total number of nodes became (289). It will be 

seen that this alteration did not affect the accuracy of the results 

obtained. 

The problem was first solved using the discretization shown in 

Fig. (8.16) and the results obtained were compared with those for the 

same problem solyed by the mode (I) program. 

Ky (mixed mode) 
Ky (node Ty = 0.9497 
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and 

Ky (mixed mode) 

Ky (mixed mode) ~ Geel 

They show that some influence in the mesh design exists leading to 

a small (Kp7) value. It was noted that the mesh discretization was not 

symmetric with respect to the crack plane, therefore the problem was 

solved again with the discretization arranged symmetric in order to 

simulate isotropy as well as possible, Fig. (8.17), and the results 

obtained were: 

Ky (mixed mode) 
. RK tmode I] * 0.9956, 

which shows very good accuracy, and the ratio of the values of (Ky 1)/ 

(Kp) which should be zero, was found to be: 

Ky 1 (mixed mode) 

Kr (mixed mode) ~ p06! 

This result was assumed to be acceptable. The small ty value 

obtained, which is the consequence of generating some asymmetry in the 

discretization, is thought to be due to small errors resulting from 

the various numerical approximations in calculating the core displace- 

ment components and the nodal coordinates of the finite element mesh. 

The accuracy of the value of (m) used and the various angle functions 

which are calculated from series expansions are examples of these 

approximations. When inclined crack problems were solved, this 

symmetric discretization was limited to the neighbourhood of the crack 

tip (the first three element rings around the core). 
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The program was subjected to another test to check the conditioning 

of the equations. 

The equilibrium equations are solved, 

[K]{q} = {Q} (8.5) 

for the displacement {q} given by: 

{q} = Ck" !403 (8.6) 

If the numerical values obtained for displacements from (8.6) are 

substituted in (8.5), they will yield a new force vector {0}*. The 

new force vector should theoretically be the same as the old one {Q}, 

however due to the approximations involved in the solution process 

some difference exists 

Substituting {Q}* in equation (8.5) will give a new displacement 

vector {q}*. The difference between {q} and {q}* may be used as a 

measure for the conditioning of the equations 

This iterative process was repeated three times giving three 

displacement vectors {q}, {q}*, and {q}**, and by comparing the three 

sets of stress intensity factors obtained as Part of the displacement 

vector, it is seen from Table (8.6), that the difference between them 

is very small indeed indicating that the equations are well-conditioned. 
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Ist. iteration 2nd. iteration 3rd. iteration 

  

2028.0818 2028.0820 2028.0819 

  

  II   13.70564 13.70566 13.70564 

  

TABLE (8.6) 
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8.4.2 A round bar with a conical shaped circumferential crack 
  

The problem is that of a round bar with a conical shaped edge 

crack inclined at an angle (68) to the plane perpendicular to the axis 

of revolution, Fig. (8.18), with the ratios: 

L/R = 2.4 and c/R = 0.1 

The cases studied were for angles: 

@ = 15°, 30°, 45°, 60° and 75° 

The bar was subjected to a uniform tensile end load of (500) psi, 

and the values for (Ky) and (Kry) obtained are shown in Figs. (8.19) 

and (8.20). In the mixed mode situation, the direction of initial 

crack growth is not known beforehand, hence Sih's strain energy density 

criterion may be applied to find it, [25]. Fig. (8.21) shows the 

variation of the initial crack propagation angle (8) with the inclina- 

tion of the crack. 
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8.4.3 A shouldered bar with a circumferential conical crack emanating 

from its fillet 

The influence of different shoulder fillet radii on the Ky and 

Ky values for various inclinations is studied in this problem. The 

range of possible geometries is infinite, and only a few representative 

situations were examined which are with reference to Fig. (8.22). 

D/d = 2, c/D = 0.1, a/d = 0.125, L/D = 2.4 

p/d-= 05055 051:,.0.155) 052, 0c 25.end| 0.3 

8 15°, 30°, 45° and 60° 

The results are shown in Figs. (8.23), (8.24), (8.25), and (8.26) 

for a tensile load of (500) psi applied to the end with diameter (D). 

In the cases of non-symmetric geometries or loadings the crack 

angle representing a pure mode (I) situation is not identified and 

curves such as those shown in Fig. (8.26) may be used to find it. LO 

is seen from Fig. (8.24) that for the range of different fillet radii 

examined, their effect on (Ky7) values is very little. 
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8.5 The effect of inclusions on the values of stress intensity factors 

To illustrate the versatility of the present method for evaluating 

stress intensity factors, the mode (I) and mixed mode (I) and (11) 

fracture problems of axisymmetric composite bodies were examined. Two 

cases were chosen to represent mode (I) fracture problems. The first 

was that of a thin ring inclusion with its centre at the axis of 

revolution, Fig. (8.27), and the second was of a cylindrical inclusion 

around the axis of revolution, Fig. (8.28). For the mixed mode (1) 

and (II) fracture problems, the three cases of thin edge normal ring 

inclusions above, below,and both above and below a conical edge crack 

inclined with an angle of (30°) to the plane perpendicular to the axis 

of revolution were examined, Fig. (8.29). 

The ratio (E,/E) was taken as: 

3 fl -1 
E/E = 105,105.10 , and 107° 

where 

m " Modulus of elasticity of inclusion 

m
o
 

" Modulus of elasticity of the remainder of the body. 

Table (8.7) shows the ratio of the stress intensity factors 

obtained with the presence of the inclusions (K') to those obtained for 

the same problem with one material only (K). 

It can be concluded that the effect of the inclusions on the values 

of (Ky) and (Ky7) can be characterized by the influence of the inclusions 

on the stress field in the neighbourhood of the crack. Hence, the
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inclusion's geometry, its location with respect to the body, its 

distance from the crack tip, and its material properties are the 

factors which will ultimately effect the stress intensity values 

obtained.



  

  

  
  
  
  
      

Mode I Mode IT Mixed Mode Mixed Mode Mixed Mode 
ring cylind. 

inclusion inclusion ring below crack ring above crack ring above & below crack 

COVE RT ES A STs TST sth Kiy/Kyy et Kry/ ®t 

10° 0.92 0.36 1.08 1 1.14 1.22 1.16 1,23 

10 0.93 0.59 1.07 0.91 1.04 1.08 bats 1.18 

107! 1.03 1.09 0.56 0.77 0.79 0.41 303 46 

10°® 1.11 lz 0.17 .03 0.10 0.36 (-.04)* (-.06)*   
  

+ The negative sign implies a crack closure situation for which no special provision is made 

TABLE (8.7) 
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CHAPTER 9 

DISCUSSIONS AND CONCLUSIONS 

9.1 Discussions 

A finite element computer program has been developed to solve the 

problem of axisymmetric solids subjected to axisymmetric loading and 

certain problems were solved to test it and assess its accuracy. This 

program was later modified to incorporate a special "core" element to 

provide a facility for determining data relevant to problems in linear 

fracture mechanics. 

All the programs were divided into Sub structures (procedures) 

each performing part of the solution. In addition to the simplifi- 

cation of the program structure, this method of programming enables 

corrections and alterations to be used to any procedure without 

affecting the main flow of the program. 

The program's facilities are: 

a) Several loading sets for a given structure may be solved 

tn one run. 

b) Several constraints sets per each loading set may be solved 

in one run. 

c) Each element can have different material properties which can 

either be isotropic or stratified orthotropic. 

d) Input facilities include:



- 275 - 

i) for the general axisymmetric problem, the structures can 

have an arbitrary boundary shape (provided it is axisymmetric), 

it may or may not have symmetry with a diametral plane, and it 

can either be hollow or solid. 

ii) for the mode (I) fracture case, the mesh is generated 

automatically by specifying the radius and half the length of 

the specimen, the crack length, the core radius, and the number 

of nodes on the core/finite element interface. Any grooves 

or voids are introduced by reading the coordinates of the nodes 

describing them together with those which have prescribed loads 

or displacements and hence overriding their previous values 

calculated by the mesh generation scheme. 

iii) for the mixed mode (I) and (II) problem the angle of 

crack inclination with the r-axis measured from the direction 

of the crack tip is specified together with the parameters 

in (ii), and subsequently the mesh is generated automatically 

with symmetric discretization with respect to the crack plane 

in the neighbourhood of the crack tip. 

e) Output facilities include: 

i) for the general axisymmetric program, nodal displacements 

together with a choice of nodal and/or element centroidal values 

of stresses and strains 

it) for the mode (I) program, nodal displacements of un- 

constrained nodes with the value of Ky and the tip displacement 

in the r-direction. 

iii) for the mixed mode (I) and (II) programs, nodal displace- 

ments of unconstrained nodes together with values of Ks Kip tip 
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displacement in r & z direction, rigid body rotation of the core 

element, angle of crack initiation, and the new force vector 

{Q}* resulting from resubstituting the obtained displacements 

into the equilibrium equations. 

The choice of the isoparametric six node triangular ring element 

was shown to be a good one. The isoparametric concept enabled the 

mapping of curved boundaries which is particularly useful when matching 

the core circular shape. The economy achieved by using a linear 

strain element can best be illustrated by the example of a mode (1) 

situation solved by the mixed mode program. Seventeen nodes scurting 

a circular core gave results within (4%) of those obtained by Sih using 

twenty one nodes scurting a semicircular core of the same radius with a 

constant strain element, [49]. 

The solution was simplified by the use of numerical integration 

in evaluating the elements stiffness matrices instead of explicit multi- 

plication and term by term integration which requires the solution of 

twenty one separate integrals. Although the order of integration 

chosen was quadratic, the results compare very well with those obtained 

by the term-by-term integration. 

In solving the axisymmetric problem by finite element, some method 

of approximating the radii used in calculating the hoop strain (u/r) 

for elements on the axis of revolution must be used as a zero r value 

will cause computational problems. One possible method is to average 

the radii of nodal points of all elements on the axis of revolution, 
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which can give a high average value if the elements are large. Another 

method is to insert a hypothetical axial core by giving the nodes on the 

axis of revolution a small r-coordinate value. Both these methods 

affect all the nodes on the axis of revolution, however the method 

chosen distinguishes between elements with a side coinciding with the 

axis, which requires approximation, and others with only one node on it 

which do not require special consideration and thus limits the approxi- 

mation to where it is needed only. 

A considerable saving in computer storage is achieved by assembling 

the overall stiffness matrix as a one dimensional array and making use 

of symmetry by storing only the coefficients between the first non-zero 

one and the leading diagonal of each row, compared with a normal banded 

storage scheme. In the method used, the assembly is not penalised by 

bad nodal. connections of some elements resulting in increasing the band 

width of the whole overall stiffness matrix. 

The automatic mesh generation scheme developed relieved the user 

from the formidable task of preparing the large volume of input data 

required. It provided error free data for several crack configurations 

without the need for checking the mesh for every run. 

It was seen that the solution of idealized situations in fracture 

mechanics problems may be obtained by powerful analytic techniques, but 

the complex geometries and loadings of real engineering problems forced 

the analyst to resort to numerical methods. The finite element method 

is an approximate numerical method which can easily model these shapes 
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and is widely used in structural analysis. However it was found that 

its direct application to fracture prpblems required a very fine mesh 

in the neighbourhood of the crack tip and its convergence to the right 

results is not guaranteed. A modified finite element formulation was 

suggested where the crack tip is surrounded by elements with the 

singularity condition built into their displacements functions. From 

the number of approaches possible, the idea of the singular core 

embedded in a normal finite element mesh was developed. It was chosen 

because it requires a little modification to the overall stiffness 

matrix and load vector only and enables the direct evaluation of stress 

intensity factors 

The computer programs developed using this method were tested by 

solving simple configurations to which analytical or other numerica 

solutions are available. Although the work was carried out on a 

modest size computer and the most complicated shape considered was 

represented by (578) degrees of freedom only, the results compare very 

well with the published alternatives. The range of axisymmetric 

fracture problems is very wide and hence only a number of problems of 

special interest were chosen to demonstrate the power of the technique. 

Among them are the problems of cracks extending from grooves, mixed 

mode (I) and (II) problems where the angle of crack initiation was 

calculated by Sih's strain energy density criterion, and shouldered 

bar problems with varying fillet radii and crack angles. The effects 

of inclusions of different material properties on the values of stress 

intensity factors was also examined for several illustrative examples. 
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The technique of Hilton and Hutchinson has been successfully 

further developed to solve a wide variety of axisymmetric crack con- 

fogurations and results for problems previously untackled were obtained. 

However there still remains scope for further development of the 

technique to deal with areas other than those considered in this work 

which will be discussed in the following section. 

9.2 Possible topics for further research 

The topics which require further research and will be suggested 

may be divided into two groups. The first group consists of develop- 

ments to the computer programs to increase their efficiency and improve 

their accuracy, while the second suggests different areas of problems 

which can be tackled by the technique. Following are the topics of 

each group. 

9.2.1 Further developments to the computer programs 

a) Improving the mesh generation scheme: 

The scheme as it exists considers the structure as a whole and is 

purposely built for the various fracture problems. More flexibility 

in representing very complicated geometries, without risking over 

distortion of the elements due to bending element columns, may be 

achieved by dividing the structure into sub sections and making use of 

the isoparametric concept. The structure is represented by a 

rectangular shape divided into rectangular subsections whose number 

depends on the fineness of mesh required, in the auxiliary ¢-n plane. 

These rectangular shapes are later mapped to curved shape required in 

the r-z plane by using shape functions whose order can be chosen to 

give the best matching possible. 
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b) Improving the overall stiffness matrix storage scheme: 

The variable bandwidth storage scheme can be improved further by 

using a more complex addressing system storing only the non zero co- 

efficients between the first one and the leading diagonal of each row, 

together with a corresponding equation solving routine. However, the 

advantages gained from this reduction must be weighed against the dis- 

advantages of complicating the storage procedure which will be reflected 

also on the re-assembling to incorporate the core element. 

c) Developments to the core element: 

There are two possible developments to the core element which can 

be incorporated: 

i) To develop an elastic/plastic core element which takes 

into consideration the small plastic zone at the crack tip 

by including the plastic flow in the displacements field 

near the crack tip,[21]. 

ii) To develop a core element capable of solving problems 

of material anistropy. Stratified orthotropic materials 

to which crack tip displacement fields are already 

available, [21], and cracks along the interface between 

two dissimilar materials are examples, 

9.2.2 New areas for future research 

a) To study the effects of core Parameters and the back-up mesh: 

The core's size, shape, number of nodes around it, and the back-up 

mesh of the remaining structure were determined by comparing the results 

obtained from each combination with known results, or by guidance from 
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the experience of other authors. In solving problems which were not 

tackled previously much judgement and testing is required to determine 

these parameters. It is desirable that any user and not just the 

expert is able to operate the computer program, therefore a criterion 

for the choice of these parameters needs to be developed. 

The core in its present form is circular and centered around the 

crack tip. This was chosen to ease the integration required to 

evaluate (U,). However, if numerical integration is used, this 

limitation can be eliminated and the core can have any shape with the 

crack position in it arbitrary. Hence the crack can extend within 

the core and its propagation path can be studied without having to 

change the mesh everytime. To offset the reduction in accuracy of 

the near tip displacement functions when the core is enlarged, more 

terms of the series expansions can be retained. 

b) To include mode III fracture: 

Wilson, [74], developed a computer program using the same 

principles as those employed in this research to evaluate Kory for 

axisymmetric solids. As Kiry is uncoupled to Ky or Kry> this program 

can be added as a package to provide the calculation of all three 

stress intensity factors by one program. 

c) To extend the method to solve axisymmetric problems subjected 

to non-axisymmetric loading: 

Separation of variables may be used to represent a three dimensional 

Problem by a two dimensional discretization by expressing the solution 

in one direction as a Fourier series. The orthogonality of the 
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trigonometric functions makes the Fourier series particularly valuable 

because it reduces the coupling of the simultaneous algebraic equations 

to be solved. For asymmetric loading the displacement vector is given 

by: 

ui inj} tor® 03" {un} 

{u,} ={{v,} core tny3* 03" {an} 

Ww} me oF Ne a3 

= [NIfa,} (9.1) 

where: 

ny} = vector of shape functions given 

by equation (3.21) 

o E fe 
{qint ...etc. = (us, Voges Yen = 

vectors of nodal points displacements. 

The strain vector is: 

+ 

{eq} i levy Son ©2n Yren Yezn Yernd (9.2) 

and is related to displacements by 

{e,} = [8,]{4,} (9.3) 

Similar to the case of axisymmetric loading and by the application 

of the principle of minimum potential energy, the equilibrium equations 

are: 

[k ]tq,} = {0,3 (9.4) 
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In equations (9.1) to (9.4) n = 0,1,2...Ne, where Ng is the 

number of terms in the Fourier series expansion necessary to represent 

the loading and is the number of independent sets of algebraic 

equilibrium equations resulting from the uncoupling obtained by making 

use of orthogonality. 

Unlike the plane two dimensional problem, where there is an 

independent core for each of the two tips of a crack, the axisymmetric 

fracture problem core element is a circular ring and hence the same one 

for both crack opening and closure in a non-axisymmetric loading 

situation. Therefore the near tip displacements functions must be 

expressed as Fourier series as well. There are other difficulties 

associated with crack closure. One of them is the possible overlapping 

of crack surface resulting from assuming the crack nodes free to 

displace as dictated by the displacements of the discretization system 

given by the finite element method. Another difficulty is that 

concerning the frictional force due to closure of mode II fracture for 

which no theoretical solution is available. 

d) Including thermal stresses: 

These stresses can be included by assuming that initial strains 

(e,) exist in each element of the solid due to thermal expansions. 

They are called thermal strains and are variable within the element. 

However, for convenience they are assumed to be constant: 

(9.5)  
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For an isotropic material: 

ad 

e 

fe } = (9.6) 

where 8° is the average temperature rise in the element and a is the 

coefficient of thermal expansion. e° may be obtained by assuming a 

temperature distribution through the structure or by finite elements. 

The stresses in the element due to external loading giving 

strains {e} and thermal expansion giving strains {e,} is given by: 

{o} = [C]({e}-fe,}) (9.7) 

where [C] is the elasticity matrix. 

The element stiffness matrix is the same as that with no initial 

strains. The force vector {Q} is constructed by the superposition 

of external nodal forces (Qh, and nodal forces due to thermal strains 

{Qh . The element nodal forces due to thermal strains {Q}¢ are 

even by: ‘ 

{QHE = -2n 1) Cele, rdrdz (9.8) 
° 

This equation is similar to that for evaluating the element 

stiffness matrix and can be evaluated by a similar numerical 

integration technique. Therefore including thermal stresses is re- 

duced to modifying the force vector by superposing the vector (Qh. 3 
° 
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In applying this technique to fracture problems, the crack will have 

some effects on the temperature field in its vicinity, the extreme case 

being that of a completely insulated crack. A more realistic boundary 

condition is that of radiation across the crack proportional to the 

local discontinuity in temperature, [83]. In the embedded singularity 

method, the part of the crack enclosed in the core and including the 

tip is not subjected to the thermal stresses which is not an accurate 

representation of the physical situation. 

9.3 Conclusions 

The embedded singularity technique has been adapted to solve mode 

I and mixed mode I and II fracture problems of axisymmetric solids 

subjected to axisymmetric loading. 

Computer programs incorporating a singular core element in a 

linear strain finite element mesh were developed from which results 

for a variety of crack configurations were obtained. 

The method requires relatively little modification to a standard 

finite element program and is capable of tackling very complicated 

problems using a modest size computer with a core storage limit 

available to the user of (100K). 

The computing time for typical runs with various degrees of freedom 

using an ICL 1904S computer and their cost according to the University 

Computer Centre costing system are shown in Table (9.1). 
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Type of problem DLOLF, Computing Cost 
time (pence) 
(sec) 

General axisymmetric 578 982 2202 

Mode I fracture 570 594 1344 

Mixed mode fracture 446 470 1082 

Shouldered bar mixed 502 573 1306 
Imode fracture   
  

TABLE (9.1) 
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Due to the development of an automatic mesh generation scheme, a 

change of some of the parameters of a run examples of which are the 

core size, crack length, crack inclination, fillet radius, and 

different groove geometries, require changing one card of the input 

data only. 

Approximately 40% of the job time is spent on generating the mesh 

automatically which shows a great saving compared with a manual system 

requiring one to two working days per job.
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CHAPTER 10 

APPENDICES 

10.1 Numerical integration formulae for triangles 
  

  

  

Order Fig. Error points Triangular Weights 
coordinates Wy 

linear R=0(h?) a bs 55 35 0.5 

  

I
A
T
A
 

  

  

quadratic R=0(h°) a 4, 3, 0 z 

4 2 
10, t 

cubic R=0(h*) a 33,4 

b © 3.4 

Cin Cars 

<a d 4003 
A e T5050 

g 0, 0,1 

quentic R=0(h®) Saal aie 0.1125 

d B1, 81,01 

e G2, Bo, Ba 

  

b ot1 Br, 82 

c 81,01, 81 0.066197075 

£ Ba, 2, Bo 0.06296959 

g Ba, Ba, de 

where: a; = 0.05971587 

8, = 0.47014206 

de = 0.79742699 

B2 -= 0.10128651 
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10.2 Near Crack tip equations for stresses, displacements and strains 

According to Muskhelishvili, [42], an Airy stress function for 

the plane problems of isotropic elasticity may be written in terms of 

two complex functions, 4(z) and w(z). The components of stresses and 

displacements associated with them for cartesian coordinates, Fig.(10.1) 

are given by: 

9, # oy = 2lo'(z) + 47(2)] (10.1) 

Crete 2ityy = 2[26"(z) + y'(z)] (40.2) 

Zulu, + juy) = «6(z) - 26°(2) -0(z) (10.3) 

and for polar coordinates, Fig. (10.2) are given by: 

O, + og = 2[o'(z) + o'(z)] (10.4) 

GoleeG,, fieyt pq = 2 271 z4"(z) +y"(z)] (10.5) 

2ulusiydoe ?Lee(2)-2CE z)-o'(z)1] (10.6) 
where: 

u = Modulus of rigidity 

c= 3-4) for plane strain, 

(3-v)/(1+v) for plane stress 

The prime denotes the derivatives with respect to z and the bar 

indicates the complex conjugate number. To constcuet'(z), the 

derivative is obtained by: 

é'(2) = £ (6(z)) (10.7) 
and the result is converted to the conjugate. 
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The Goursat functions are taken as suitable forms for $(z) and 

v(z), [21], as: 

o(z) = z Az (10.8) 

v(z) = z Be (10.9) 

where the A's and B's are complex constants to be determined from the 

boundary conditions and the A's are real eigenvalues. 

By considering the boundary conditions of the crack configuration 

shown in Fig. (10.2), it can be shown that, [21]: 

= 8 i 8: Tg = a nice zt a, (3siné)cos 7] 

+ ay (1 - cos26) (10.10) 

aal 2. el\sin = oy ae [a,(3-cosé)cos 5 - a,(3cose-1)sin 5 ] 

+ 2a, (1 + cos20) (10.11) 

oe : 8 8 eae oe [a,sinécos >i ay (3cosé-1)cos x1] 

~2a,sin2e (10.12) 

where ay and ay are related to the stress intensity factors Ky and Kry 

by: 

ay + ta, = _ (K,-iK, 4) (10.13) 

This relation is sometimes expressed in the form: 

ay + tay = K(k, - ik;,) (10.14) 
lee | 
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which leads to some confusion. However, most authors list the 

equations of the rear tip stresses and displacements used by them, and 

in this work, the form given in equation (10.13) is used. It yields 

the following stress and displacement components around the crack tip 

for the polar coordinates system: 

  

i 8 sO) o, = —— [K,(3-cos8)cos + + K,,(3cos6-1)sin > ] 
v ov I a rT 2 

+20, (1+cos28) (10.15) 

ss [K,(1+cos6)cos Oak (3siné)cos 2 J 
8 2/ar I 2 II Z 

+4o,sin?6 (10.16) 

Wn = 1 [K,sinécos $+ Ky 1(3cos8-1)cos 3] 
2v2r 

2a, Sin’s (10.17) 

K 3 
ae w ®) [ (2-1) cos 3° cos 2 ] 

K 3 
= a5) [(2«-1)sin 5 - 3sin ~ ] 

+ a4 (g2)(«-142c0s28) (10.18) 

K 3 
us 7 = G) [sin ¥ - (1#2«)sin 51 

K 3 
- a (5) [(2«+1)cos $ = 3cos 2 ] 

a (5) sinze (10.19) 8 

The strains are obtained from the displacements and are given by: 
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€. = = {K,[(2e-1)cos 8 _ cos By 
°  gu/ir 2 

  

Ky l(2e-1)sin $ - 3sin FJ] } 

9 (ge) (e-142c0828) (10.20) 

{Kk is cos # tle - 3)cos 3]   

3 
- Kry [k- B)sin B+ 3 sin Pay 

ta (Fe) («-1-2c0828) (10.21) 

[k; (sin $ + sin » + Ky (cos $ + 3cos *)]   

re” ai 

- oy (Z)sinze (10.22) 

For a cartesian coordinate system, the stresses, displacements, and 

strains components are given by: 

Oy 7 Fe [kyoos 3 (I> -sin $ sin 3 ) 

-Kyysin > (2+cos & > cos 9) (10.23) 

30 
o, = —= [Kk,cos 5 (14sin § sin > ) 
ve a gen? 

* Kyy(sin $ cos $ cos Es )] (10.24) 
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eee o ain 38. Ty > m [k; (cos 7 sin 5 cos 

+ Kry cos = (1-sin = sin 3) 

@ 2a, (1-sinecosé) 

= Lo) MK, Leeteos 8 3 Uy = Fy (g) {Ky [(2e-T)cos 5 - cos 

+ Ky L(2«#3)sin $ + sin 7 } 

tay (z) («#1 cose 

  

  

3 
uy = E 3) {k, [(2e+1)sin 3 -sin # i 

- Ky1L(2«-3)cos $+ cos Py } 

+a, (2) (c-3)sine 
Aen 

6, = ! {Ky[(2e-3)cos $+ cos Py 
Xx guvor 

~ Kyy[(ac#1)sin $ - sin $1} 

+ ay (ge) (+1) 

] - 9 56 
Sree {K-[(2«-1)cos = - cos = J] 
y 8uv2r T 2 2 

~ Kypl(2e-5)sin 3 - sin 321} 

# oy (go) (e-3)   

(10.25) 

(10.26) 

(10.27) 

(10.28) 

(10.29)
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5 ii ee) 8 cos 58 x = —— [k,(sin 7 7 sing )+Kky ,(3cos x 7 COS 5 )] (10.30) 
xy 4u/2r 

For axisymmetric problems, the radial and axial displacements are 

the same as (10.26) and (10.27) for the plane strain case, [49]. The 

radial displacement component uy. is the same as uy given by equation 

(10.26) for the case of a penny shaped crack. For a circumferential 

crack Oma The angle 6 is always measured from the r direction x 

ahead of the crack tip.
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10.3 Strain energy of the core region 

10.3.1 Mode I formulation 

The core strain energy is derived from the strains, displacements, 

and stresses relationships derived from linear elastic fracture mecha- 

nics, and is given by: 

U, = f SED dv (10.31) c 
Vo 

where: ve = Core volume 

: YT ee 
SED/unit volume = B44 (10.32) 

mal 
SED = > (o,¢,, + Ope + Tatra! (10.33) 

With reference to Fig. (10.3), equation (10.31) becomes: 

nt "o 
U, = mR f f (oe, + TeEq + Trg¥pg)Pdrde (10.34) 

The stresses are obtained from equations (10.15, 10.16 and 10.17) 

by setting Kip and Oy to zero: 

K. 
ae 8 

o, = — —— (3cos6)cos (10.35) 
a: E 

Si a 
dg = —— (1+cos6)cos > (10.36) 

aver 

K 
I : 8 

Tig = —— sinécos = (10.37) 
re ve ‘ 
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Similarly for the strains: 

  

  

  

K 
e, = — [(a-1)cos $= cos 32] (10.38) 

vr guv2r 

K 3 
fy * a 7 cos 2 +(k - P)cos 2] (10.39) 

97 nt [2sinecos $ ] (10.40) 
4uv2r 

By substitution and performing the necessary integrations in 

equation (10.34) the core strain energy is obtained: 

Ky?r T 
an (2x-1)] (10.41)   Ue 2nR[ 

where: R = distance from the axis of revolution 

to the core centroid 

radius of the core <4 " 

10.3.2 Mixed mode I and II formulation 

The core strain energy for the mixed mode I and II situation 

is given by: 

an “o 
(are UE =7 oa { (oe, + O9€, + Trg¥pe)rdrde (10.42) 

The stresses and strains are obtained from Appendix (10.2) by 

setting a to zero only, and the rest of the evaluation is similar to 

that of section (10.3.1). The core strain energy obtained is: 

e 27 oT Saat ETi Slo e UL = 2m [FeO (2e-1) + HP (342K)] (10.43)   
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Fig. 10.3 

  

  
Fig. 10.4 
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10.4 Programs Listings and sample problems 

The complete program flow charts and listings will be presented 

in this section using the procedures described in Chapter 7 together 

with input data instructions and a sample problem for each type. 

10.4.1 The general axisymmetric program 

I) Program flow chart 

  

Procedure 

  declaration 
  

(C_Na0B:=READ ) 

—— — — contest (1) 0 

NELEMT: 

  
     
     

   

NNODE: 

      
   

NSETFS:=READ PRINT:=READ 
   

SOLID:=READ     
   

NMAT :=READ 
   

EC:=READ ER:=READ     

  

NSETC:=READ 

  

| 
—_ —_ — ~1—< S:=1 (1) NSETC > 

© 
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     =READ 

=READ 

— —<CT:=1 (1)_NNENC> | Procedure ADDARRAY 

  

Procedure FEINPUT 

          

  

   

  

J:=READ Ss MATNO:=1 (1) NMAT>>— 
KODE[J,1]:=READ | 
ULX[J,1]:=READ [Procedure CONSTREL | 
VLY[J,1]:=READ / ene el 

ee, <Ctist (1) weree > 

ie eee err eer 
| QU1,J]:=0.0 

Le Sa 

    

  
  

  

  

        
  Procedure LOADING 

  

( NSPEC:=READ ) 

< J:=1 (1) NSPEC > 

K:=READ KODE[K,1I]:=READ 

ULX[K,I]:=READ VLY[K,1]:=READ 
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Procedure LOADING 

Procedure ASSEMBLY 

      

Procedure BOUNCONST 

  Procedure SYMVBSOL 
  

  

      output nodal displacements 

  

Procedure NODSTR     
  

  

  

     PRNT=2or3 

  

Procedure ELESTR         

  

END
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II) Program listing 

  

1 PROGRAM! ¢ Ble 
  

EPNPUT! OR CR’ 

  

  
LOUTPUT! Os Lea 
  

  

  
  
  
  
  

  
  
  
      

  
    

Se 
'BEGIN' "COMMENT! THIG Pog Sire THe Ts0P Ara terel? 

ip ts A Side ODF pri ayGtey im 

  

  
    
  

  

Seguden chase St 
sD-eUEr: INE Cy pGit     
  

  
  
  
  
  
  

  
  
  
  
  

  

  
  
  
  

  
  

  
  
  
  
  

  

  
  
  
  
  
  

  

  
    
  
  
  

  
  

  
    
  

  

  

        
  
  

  

          
    
  
  

  

  
  
  
  
  

  

  

  

  

  

KN lt Ue NSeETe ps NEtIC eS 
= a 

JINTEGER' IeVi es 
FREALI= CHANGE, OF Ss 

= 

JREAL*tARRAVU E12 2,12 21 ite Pit 2 Tis tt 

COMMENT TH PS PROGe ee = = 

a AND ST HE STRATED TS Oe ARR EY. 

SEER Se ee = = = 
Zed lehex tuts sljeCesel 

Se = a 

- <x pa ee 

iqeoe yeas lias fut) 6192 
—— See   

  

  

170) 
  
  
  
  

    
  
  

  

  
  
  

  

  
  
  

  wUts21:5-J014 21/3 
  

  

S=5£ $a a5 

W202]: = CHANGE/UE 
COMME! =F   

NEEM] :2b4~(2"1191)i 
  

  NETZ Fe Lo eee 
  

  

NLC3) 25, 3" (2+L3—1)3 

EES Soe     Eee 
NLCS] ss4eL2*L3; 
NUCO]:S4eL3eL15 
  wlle' Solrps0 'THEN' Oe ne Wie gach SIN atte 
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  =RAVGT=0=0 

SUEORUL Eg SR ad atpot 
  

  

  

  

  

    

  

      
  

  

rot BEV, 1) 320,93     

    

  

    

  

  

  

  

  

  

  

  

  

  

  

Pier each (EetRSe == 
PLEND UE 
SEeoR Eres Stee 
  

  

  

  

'p0' g{V, plied 0; 
==       

  

  

_'REGIN' 
  

  

  SCE EC Ee 
Bl4,(ie2nt)): 2803, (le2)}:2al2,113 
=e tee tat EE en EE}. 

"END? : aE 

  

  

  

  

  

  

  

  

  

        

    tT   SEPROCEDURE = 80UN: 
a UsNNEGCEL 

        

  

  

  
  

uh NTEGERt NONEQUF? 
SFARRAY = 2 AK, = 
"INTEGER! "ARZAY' Aj 

SEBEGEN- ESE 
fTe' Net 'THEN' CJyr=4 'else? Corse CAtndenliny dat: 
Sepa Ser= SES 
BEGIN! 

  

  

  

  

  
  

  

  

  
        

  

    

  

    

  

    
    
  =feND => 

‘TE! Net 'GT! NEQ 'THEN! et UALS 
SEFOR=eshet = 
'BEGIN' cyr=K=(ALK]= ret 

ey 

‘BEGIN! 

  
  

  
  

  

  

  

    
  

¥, = 

AKCALK]-Keul ree 
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  =EPRO CEDURE pont} 84ers 

VALUE' A, Br C,ErF; 
SEEINTEG ER a 6S 
"REAL' 8,0; 
"ARRAY! 0; 
REGIN! 

a 
“FINTEGER' Ki- = 
pel Ags ‘THEN! GOTO" Ki sg13 

  

  

  

    

  

  

  

  

  

KA et 
  

  
  
  
  

  

  

JPROCEDURE!' SYMVBSOL(A, LoS, BOs slo issu RJCAT Lee exlTs(FATID? 
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SSeS EERE 

eee Via EL eV SO Ea ee ve 
SSS aS ee == 
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EN 

YisALHel)i 
S=ERORE =G= 

YisYeaLrCult2: 
aS = == 

HiSH+1; Yiss@rt(y); 
j-pSsy 
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SFeete ae ——— 
——END! 15 
COMMENTER EDUC Tian = 
VEORY = peeN  STER Yat tty es 
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  SS REGING === a a 
  

    
  

  

  
  

  

  
  
  

  

  

"BEGIN! it 
Fs ia =u —_ 
"SOR' Mist "STEP? 4 NTL! 7 1p0) 

= eee == 
"END! He 

SSS 
COMPLETE: 'END' I: 
SFEND Saves = 
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'BEGINI 
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III) Input data instructions 

A) Number of jobs to be solved. 

B) For the first job: 

1. The job name followed by end of title. 

fF 
w
n
 

10. 

Number of elements. 

Number of nodes. 

+ Number of sets of forces!!), 

Type of BuTpUEe 

. Type of the solid of revolution), 

. Number of materials. 

- Number of element columns. 

ce Number of element rows. 

Number of sets of constraints. 

C) For the first set of constraints. 

Tis 

ine 

35 

- Type of mesh! 

Number of sets of forces 

Type of boundary shape‘4) , 

r and z coordinates for the boundary shape), 

Number of specified nodes ‘© , 

For each specified node. 

a) Node number 

b) Kode'7) 

c) Value of displacement or load in r direction 

d) Value of displacement or load in z direction 

IF number of materials >1 then: 

a) The number of elements with different material properties for each 
differential material. 

b) The element numbers of these elements. 

8) 
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8. For each material: 

a) Type of material paorereyon 

b) Elastic constants( 19), 

9. If the number of sets of forces for this set of constraints 

is >1 then: 

a) Number of sets of forces. 

b) For each force set: 

Node number 

- Kode 

value of prescribed load in r direction 

- value of prescribed load in z direction 

D) For subsequent sets of constraints: 

1. Number of new constraints. 

2. Number of sets of forces in this set of constraints. 

3. For the first set of forces in the new set of constraints 

input C-9(b). 

4, For subsequent sets of forces input C-9. 

E) For the next job repeat from B.
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Notes 
(1) The number of sets of forces is the maximum for any set of 

constraints. 

(2) Input 1 if nodal point stresses and strains are required. 

2 if element stresses and strains are required. 

3 if both 1 and 2 are required. 

(3) Input 0 if the structure is a hollow axisymmetric solid. 

1 if the structure is a solid 

(4) Input 1 if the boundary shape is a square or a rectangle. 

2 any other shape 

(5) If boundary shape is 1 input 

a. r coordinate of the bottom left-hand corner 

b. r coordinate of the bottom right-hand corner 

c. Z coordinate of the bottom left-hand corner 

d.z coordinate of the upper left-hand corner 

If boundary shape is 2 input 

a. left and right hand r coordinate of each main nodal row 

b. lower and upper z coordinate of each main nodal column. 

(6) The specified nodes are those with prescribed loads and/or 

displacements. 

(7) Input 0 for prescribed loads in both r and z directions. 

1 for prescribed displacement in r and load in z directions. 

2 for prescribed load in r and z displacement in z directions. 

3 for prescribed displacements in both r and z directions. 

(8) Input 0 if no symmetry with respect to a centroidal plane is required. 

1 for a mesh symmetric with respect to the mid centroidal plane. 
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(9) Input 0 for isotropic material 

1 for a stratified orthotropic material. 

(10) Input E v yp E v for an isotropic material. 

5 Vy Up ES Vy for a stratified orthotropic material.
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IV Sample problem: 

The input data required to solve the problem shown in Fig. (10.5) 

is: 

] 
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ReKK



  

  

  

  

  

  

      
        

z 

o 
A 

|           

ig. 10.5  



  
  

  
      

      
          
      

  
  
    
          
  

  

  
        

  

  

              
  
  
  

  

  
  

  

        
    
  

  
                
  
  

      
          
  

      
              

    

  

    
      

  

=bISp £=pise— 
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STRATHS 

=NOot ER = = 

4{__*9 68054 =7 0,0000% 9 8.41044 "5 BL 3499% AY 
SSS = = 
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=n = 22 ae 
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=" ~FOSS te= = S Tx 
  
            

  

  
  

  
  
  
  

       



= 327 - 

                                    

        

  

                
    

                                

                        
            

                                

                                    
                                  

        
              

                        
                
                          

— SS== 

ERR =ETTH BZZ ERZ 
tg es tr S= 
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10.4.2 Mode I fracture program 

I) Program flow chart 

  

  
[Procedure declaratioms 

( NJOB :=READ ) 

ee ge << coUNT:=1_(1)_NJ0B 

| 
| 

| 

  
  

  
   

  

NELEMT :=READ NNODE:=READ 

NSETF:=READ NMAT:=READ 

N1:=READ G:=READ H:=READ 

AA:=READ RO:=READ NSETC:=READ 

CASE :=READ 

         

  

     | 

2 eae Si=1 (1) NSETC > 
No 

| Yes 

| NNENC:=READ ~S 

Procedure CCRINPUT 

i Procedure ADDARRAY 

Procedure KARMIBND 

i | J:=READ KODE:=READ 
| ULK:=READ VLY:=READSNATNO:=1_ (1) NNAT>— — = 
Lie I 

| Procedure CONSTREL] 4 

| fe ae an —<C_=1 (1) _NFREE > 

J:=1 (1) NSETF > 
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Boe eee 
O@ QL1,J]:=0.0 

> ~<a 
ea Procedure LOADING 

  

          

aa NSETF>1 

es 

-—~< I:=1 (1) NSETF > es 

| ( NSPEC:=READ 
Se AEST peer 

i J:=1 (1) NSPEC > 

K:=READ KODE[K,1]:=READ 

ULX[K,I]:=READ VLY[K,1]:=READ 

  
    

  

    
    
    
  

  Procedure LOADING 

( HND:=READ ) 

Procedure ASSEMBLY 

      
  

    

    

   

  

      

Procedure BOUNCONST 

Procedure CCRM1   Procedure SYMVBSOL       

  
Qutput Results
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II) Program listing 

‘PROGRAM! CAXKX) 
  Erupts 
'QUTPUT'O=1P0__ 
  

  

  

EXTENDED! 
  

RCE 
  

"BEGIN! 

  

    

  

  

SEINTEGE R= NEL SN To 3S 
fe eee {De NAT HATE 

  

  

  

  

Teepeewuae! STROUS (LI Los sete Xol Ue ty 20g 
AYVACGE     eS   

TINTEGER' Ze 
  

  RES   

YINTEGER! 'ARRAY' NG 
  SRRRAS SE Se 

"BEGIN! 
  
  STEGES EA   

‘REAL! CHANGE? 
  
    
  

  

  

  
  

RE 5 3d = 

YCOMMENT!. THIS PROCEED IRE 2VALUATES THE JACOSITAN J _o17S nETERMINAN 

AND Es       
  

sft eI :sxinl2Z,111~(o~ Feat en tales tlle Cariieee: 225) +oe) 2eK(nlZ Alin 
  

  

  Shee ee = 
  

“Jite21:svintz. V1 dehy tatye¥CitZse tl] Cheb ieee: Rad) eau 2*V Cn £2,41)- 
  

bese e   
aAt2,1122X(NCZ,21]=(oni 2m Kitz, I1)+ arisen 2-3)wow 1*X(N0Z,41)+ 
          

  

Rrewsrernte 2) Tw (oe at oVEulZe SLI HCG Liede 2e3ywse  aeviniZ,4))+ 
  

  mat Ciebiae 
  

‘COMMENT! U REPLACES DETJ; 
  

  
  2Eaee Sa Se =   

CHANGE: SJi1 043i 

  

  => Eee =     

Atte 2] peas C1, 29/0; 
  
  aa eee 

  

ee 
EES   

ALE2Liat22 (20222101 
  

  Sete tee 

NLtel peoul thei 
  
  
  

  

NC tS Ppsten Set —= 
  

"NLE61: shot Stilt i 
  

  

  

  

  

  

  

    
  

      

  

  
  

      
  
    

SRUEANSS =e 

XUNCZsS)1#x(NZ161])/oi 
ER Sa ——— =e 

RAVG;=RMEA 

= = = —— =   

"BEGIN! 
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RAVG;=0.0: 
'ror! 
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  = di SS = 
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_‘E£OR' Lisi WSyept 4 iNT) 9 1900 
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Blip (le2-1) lisslar(te2)rSatiere 
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=p See Se 
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ca 
aS es ee 
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—pa 2A 

ADD CWel]isAdniueds i 
GF s a = = 

TEND'; 
ae a= 
VpROCEDURE' AOUNCINST Ci, i 2eAbNEo er ade 

SS Sree 

—RRALY Uy 
= NE aS 

YARRAY' 2+ AK} 
SFENTEG ERS "ARS 
UREGIN' tInTEGER" jteK, Cli 

“Ep piss’ THE =— r= a 
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RIK@FILSR EK Fie AK TAl eile ele 
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EPROCEDU 
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$re! asd 'THEN' ‘'60Tn? Laas 

Krse= : 
Ste) Asi 'THEN' "HoT! «Lase: 
  
  

      

ioe) A 'NE' 0 'THEN' "Goth KLABte 

  

  
  EAS = 
  

KLABL: ‘'END' OF LOADINGS 
  

          
  
  

  
  

    
  
  
  

  
  
  

  
    
  

  

      
      

GE Sao 

"VALUE" N,Ri 'ARRAY' Arpeuy 'INTECER' "ARRAY! §? tynTegeR! Ayre 
= 

BEGIN! 
EGER = 

JREAC OS 
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CROR?  Pieg STEER TF MNT TES 8 VOt 
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  SSS eee     

  

  
      
  
  
  

  
  
  
    
  
  

  
  
  
  
  
  

  
    
  
  
  

    
  

  
  

  

      
      
  

  

  

  

  
      

  
  

  

  
        
  
  

  
    
    
  
  

    

  

  
  
  
  

  

Epp e Giek Th ' eaile eet 
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Yr sot CUleLOU=VI; 

== A: 

—= 

Veont Mined "STEP? § 'unTi Ey Rt Bot 
Erle Sos 

= 

"END' Je 

Tw lnat 

TEATS 

aoe Ses. ——=. = Se —— 

BUI;M]:=8CI.md/y 
'END' 13 ie 

I COMMENT! REDUCT In ¢ 

oa Se = = 

!BEGIN' = — = 
==VrSseey = = Es 

PeOa usa) USTED es rel menos 
Gt h=tls ae 

yyet lal 'rHEeN! 'GNTO' coOMPLeETE 
      2S 

1fOp' wisHat "STEP" =4 

  

sJeoii Yr2lCuls 
      cs   

BOI sMiseRCy Hiab fp tev 
    

_HisPE 
  

  se   

JENO' SYMvaSOi? 
        PROCESS tee SS   

TVALUE' NI;RO,NGeISETF Cas 
  
    TEESE 5   
AREAL Ro,CRsAAG 
  
    
  
  

  
    
  
      
  

  
        
      

  
  

Ex! 
= 

TREAL' 'agRAy! Kr, Cig 

TeEGE ErEeES =F == 
WREAL! Uy, UJ .xTILKI%2, F722, THETA, KAP, Goll sUET? 

SERRRA 
tear’ 1:r21,2 "pot 

CHEEESSE 
  
      
  

Gis0.5aCMi11/ 26) £21i ject 2g 
    
  
    
    

  
                

  
      
    

WEEE TEXTES See == 

STIFFENES SUMAT2IXZEOR LA As GLEUTIPUUUDERANIDEI dADINGtC'2ct)! 

NUMBERZOF=NOD = Se 

PRINT(NT, 3540) Lut 

SRE SS == 
    
  

MRITETEXT(' CIC Ct) tpi keds PLOIORZCRACKRTLOMSR OD") pektnT Hips SIE 
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V Swited Vat CrCly piso. Ue 
SEpet aS eae = = 
'Te' HND=1_ PTWEN® 

Pas == 

AREGIN' [Ars 1e2¥EUTLE Mets 2)? = 
+ asd Ete = 

THETAL=(1/ 2-1) 97 1415S / tet) 
i = Se ae Cet —       

  

  

  

  
    

  = aed    UL: 3 2*R0) 10. SoC (Dek A Fat) #005 (HHETA/2) C08 (1, Se THETA) / (dwn) EG 
  eer 

  

  

ee 4i+4    
      
  
      
  

  

  

  

  
  
    

  
    
  

  
  
  
  
  
  

  
  
  
  

  
  

  
    
  
  
  
  

epee Seer z 
"FOR" JrSCt igtzp! 1 Vet Ey wnt tha! 

Sere Ee— = 
REGIS! Nise]: plsss2 

<P 3 

‘END' "ELSE! 
— == 

eo TEN GTN ETHER tGor ote EM! 

'END'; i 
  
  

  
  95 ee = 
  

"TR! JasO "THEN! 
"BEGIN' THETASS(J/2=1) "5.144597 (N199)2 
dra( 2220) 90,56 ((2Qwiapes PeStNCTHETA/2 SCT (4s SwtHETay)/(B*0)? 
    
  
  
  
  

  

  

  
    
  

  

tenn 

§BEGIN' THETALS((J41)/2=4) 3 14959/ (104 DF 
ete S55 st 

VEND': 
  

  

  
  == Spas 

KT11: 2K T1leult© Lee CATAL notes tii 
  
  EP ——S = 

MSH23; TEND! ; 
  
  
  

kr22:50 OF 
  

  

  

SBEGIN"' CI sSTmaDOfL]eanb lint ]+t} 
  

  

  

  “PAYS OY = eee eee 

  
  

    
  
  
  

"ye! TA=4 'THEN' 'GOTO! Noi YELSet CysSCys1j 
SSM = = 
"BEGIN! '1F' j "Le? ITs! "REGTA! DESI? Dies: "Gord MSA: teyo? 
  
  
  
  

  

L 
SESE = =a 
pes oy Gres ETHeENt 'Sord! vse, 
      
  “OrrSi,— ners! ==     

-~ASM6; _Ky22rakT22sxk(sonidii=orend iy 
  

  
  4 Ey 
  

at END': 

 



  
  

    

  

  

  

  

  

  
  

  
  

ClrSlHAdn iL denpdtint7+ 
  
    
  
  
  

  

  
  

  
    
  
  

    
  

  

  
  

  

  

55528 See Se SSS 
DIF; oJ i2J7 

SSH == 
yet LA=0_! UTHEN! PSEGIN" TETAS Cr 7 ons 4S 161591 Opt ps 

_VEND' "E, SE! aes " 

STHETATES CCE = = 
  
    
  
  

  

UL: ra (2¥Ro) 40, 5+ ((Qek ape! DwhOSCTHEYAS2V@COS (1. Sa THE TAY / CSG )3 
  

  

  
  
  

  
  
  
  
    
  

  
  
  
  
  
  

  
  
  
  

  
  

  

  

        
  
  

  
  
  
  

  
  

  
  

"TE" WNDa2 "AMD" TAS4 "THER" Uprseul: 
SOLE rs =e 

MSM9; 'END'? 
SFEne SS 

VEOR' Jcsiveent '5TER! 4 UNTIL 6484 '09! 
=FREGE 

CUrSJ-A0ne J)+ad0lJ=i1=4; 
SEArEG ee e25 TE = 
re! JAS) 'THEN! 'G0TO! 15 VEUSES ns Sh Jes 

SH SMO = Eeeret =e = 
BEGIN’ 'IF' T'LE! J true! "PEGI" DirSJz Odsslzs MOTO" NOMI1e 
Eee = 

  

  
  

  
  

  

  

  

  
  

  

      

  

  

  

  

  
  
  
  
  

    
    
  
  
  

  
  
  
  
  
  

Ppercy 8 GT hy Sepa ENs tetra liiiem fay: 
SEES ae = 
MSM11: KT(2eJn2eNt42)] :akTi 2 Jm2eited eK lApolDy -Dievdy? 
MSMED = feat = 
YEND'; 

TBEGIN' Clr=l+2eNim(arntleorit l-ApDlls2*itet])el) 
cETR. === —— 

‘pp! pat ' THEN! ADDELI:=4 “ELSE* dpste2enieCiraAnatiatlei; 
  
  
  
  FEAR 
  

KCADD C1] =f ede2ent 122K Tad 

  

Bente ts2enleuli 
  
  
  
  

  

  

Qllsd]i#Ql1*2*N1, 137 
  See =   

QLNG=2*N141 +1) :=Q0NG= 
ADDUING=2ei141132A00 

    

peel +t G=2an1 +43 
~ADDING=2eu1*2]:SAnnigede. #1 [eiGaZniiae? 
  
  
  

    
  

  

  

  
  
        
  

  
  
  
        

  
  
  
  
    
  

    

ae See —— — 

ACADDINGR22N1211=iGe2euiate11sktan TL Go eye? [oho eee 241):20,03 

SKEABD * E = 
KEADDING=2*Nte1]]:2K7> 

SKEADD TN Ow SE 
TEOR" Pees "STEP! 9 "UNTIC! gebiee !' Dot 

S08 eh. ee seats 

_TeoOR' teed "STEP" 1 "UnTTL! Awntw? "Dut 

“KEAD NG=eSeN Te 23835" = 
  
      
  
  

END’ OF PROCEDURE CCRi1E 
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1G us     
eT eats "Re altg -AeAaean 

    

       

   

        

  

    
      

merry 
    
          
  
  

  

    
  
        

KRY Lee ey F 
EPSTEGERYT = 

IREALIXS  XFsV¥S7VE BEI TAX DAL TV, 6 TH? 
SEFOR EES Eee =             

x OGE 'hOt AXE 12-0 0500s 
  

  
  

  

  

'USETE toon  KonEtr J)eed; 
  

  
  

  

E13C141)/23 
a =   

    
    
        
  

    
      
    

        
  
    

  
  

      
  
  

  

  
  

    
      
  
  
  

REGIN' 
¥orso- = = = 
YVE2S(C4wRO)+(((1979/2) eC Ce 909) 4)? 
SSS Se 

XXUMBeNTyetl2s (Gerad (eens yo Cl (te / 2) 6 (Ce Adn (6409) ) 142) 8 
SY EC Ret espera 

    
  

    
  

  

  

   hs ee 
BEGIN' tl 
XS FECG= Ads Coes == 
ME2S(GeAA+ (420) + (Cin 2) 2) Caden C42 9))/6)); 
DEES SLE = 
AXE (BeN1)+J 13 =XS+ (J 7 pe DEL TAN: 

    

    
  

  

  
  
  

                          
  

  
                  

      
              
  
  

            

Set Chew) tees SSS SSS 
JEND': i 
SFr = — 
'REGIN! 

MS rethw Ras + CCCP aE 
YE:30; 
SDEETAV ES p= os     
        

AXLCR¥N1) +) De (GR AAY Coe5 CCT A / 2) we Caan eB 0)0/6))E 
SEE CEN Ss         
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NSPEC:=READ; 
VFOR® [tat \STEP' 4 Suerin? Yapee noAd 

> BEG! 

    
  

? Shs R EAD Se = 
= KODE 1 ADE) UNE TiveheADE Vivtd qin ZEAD? 
  

  

      
4 SPENDS 

  

=e FOR great USTEo* Seuyur ry PELENT Haut 
  
    
=HTNHO CLEP rs 

"BEGIN! 

  

  
8 Sep Sa ees 
  "GOTO" RWAS 

  
  

+9 oh 

                

  

  

  
    

  

“step! 1 UNTipt STEELS) 1 p08 

      
‘SSE Le raRES == 

'FOR' Wis} "STEp! {_URTT | HEUENY 'DQt 

  
SSSR eee 

  
ott 1i 
    20SRWA TEE EPI GaST EL Gt 
    !GOTO' RwA2 

  

                        

  

GOTO" Rwat 

      

@ 

  _1GOTO' RWA3; 

  
  

° TRADE EES 
  -RUAS: "END"? 

          
SEEN 

END! : 
    
      

SRHAA RE 
FOR! Lisi "STEP! 2 Vert! NeLeMeed #00 
        

    
        

0: 
  TALES UTE! TONLE Ore Gent) at EE 

=EgEe4 

  Bsral= (Chand eN19b 42); 

        
ae 
NODELW, 1} :=148 +0; 

  NOREG 21 = Qe 
NODE CU, 31:5 (2eN1) a1 4b-d; 

  
SS ere 
    

NODETE 
NODE Ci, 51:23(20N1) 2*f en; 
      
NODEEL pS a 

  

NODECU,7):=MTNOCUT; 
ey 

  ELSE! 
  

        bish+1; 
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SEFOR EE? =: 

        

  

    
  

  
        
      

      
  
    
  
  

  

  
  

  

  

NODECU, (2A psden+0; 

NODECW, 3); BC QENT a3e0en; 

    
          
  

  
  

  

  

    
  

  

“BEGIN! 
  
  SSeS = 
Desde(2ent) i oe   
  

    =e 
  
  END": | 
  SENDS;       

MAYTETEXT CC? C20") tinal eO0 kor OlSEHAVEXAFENRGPADIND; 
  
  serge SS re 

SFOR' Jisi 'STee' 4 Sunrise: 3 fpr   
  
    SEE GE te exes ee 
  

  

      
  
            
  
  

  
          
                
  

  
  
  
  
  
  

  

        
    
  

2S See = 3 3 XXCNODELW, S417 12S ( XN CODE TIUI+XXENODE LW Tey II)/23 = : 

TEND"; 
Ee = 

WRITETEXT(' CU" €120') "ODA YPOTNTS ATA! ("2048") NODE T(1SS*) IRXCOORD 
CESS 75 COCR EEE 5 == : 

  

    
  
  

ORZLOAD'('4S')"ORMLOAD') Ty: 
  oR =f te 

REGIN' NEWLINE(1)? space(3)3 
ASR = 

PRINTCXXL1),9,3) 
  REE 

PRINTCKODELT,»11,5,0): §2ACE(2)3 hE 

PRINTCVLYEL 11.8 a2 
    

  

  
  

MWRITETEXT(! (81 ("40") VEL EN ENTYDATAUC'S ON) tELEMeNT I cCHtag tat 
            

  

  
          
  

  

  

  

      
  

  
  

  
  
      

  

    

  

          
  

5 
YFOR' Wied "STEP! 4 “URrTi 1 Yerei™ thot 
“EBEGEN SEE 
PRINTGW23,0)4 “SPACE (a)? eee 
  

        
    

  

    

‘BEGIN!     PRINTCNODECU,J),7,5); 
  
    
  

  

  

  

  
        

—pROCEDURE Coats DUT.     
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      SBRINTCAL 21 07e 2 : &     
-PRINT(ALG1,0,6)3 wRryeTe rc! CUTCUSS Hy IN 2a ety tig 
      
    

SPRENT CAL Sa = = = 
PRI TALS, 04 SLi     
        

  

    

      

            
  

  

= == 

Littl) CeleAl23) Aled; 
    

  

        

  

      

  

ZEMATNOL 3) 
2UMATNOr Sj 
-2{MATNO17) 

    

          
   
  S2tMAT ee 

OF 2ROCEDURE CO\sT2=      
    

  

ROCEDU RS ss ERS =     
= INTEGER * NELEMT_ IREAL' DETI,TUPCKE 
        
        
  

Lid sled VeSiinesgUb4 , SUB 3: 
  
          
  
  J UNTI LS 6 NO" WEE 1) a0, 333355 35— 

== —=— 

  

  
  
    
  Se 

Lise S SLs as 4] 51759 2725476733:20 08       
  SS - =F     
4_*UNTI1" ADDER SQEET "Do! Krr):20.0; 
  

      
  

            

  

  

  

YSTER! 4 VUNTYY 125 OOF KET Td mou oP 
                            

  

  
  

  
                          

oe = S= 
AONE DINE'S1OHal ASRAY 
THESLOD E == Soe :       

  

'goR' Uret "step! 4 tuy7t,' 3 too: See 
      WOU, ST Euro dey KAP VV DET Sy HODE, 2) 

  

          
  

  

    

   

  

ere 
“WeOR' Liza 'STEs 
    

2 UTS fa Boy! 
=FREe 

KECU LIZ SKECL JIPSKEL lie tie att Jin (CONnnetz, 7), 1)erci,yj+ 
    
  SCONODEEZ Fee eat 
        
  

Bl2sdlaCeINOdElZ» 7) ,2iwt it, lect indi, 7),519at2,77   
        
              

        

      
      

              
            

  

            

        

S6 Ee 

“BibrJ]e(CONODELZ» 7] ehivnit, LiecfindEtz,7),7) 9p (2,7) 
SeCENOH Et Ptient = == SS 
ECU 1411: SKEf14+1,y): SVEL I+ Ves 1*I ist iw (Bl ie diwletyudelzZ 2J+35) e835, 144 S+CERODE ES SBE pet ——— z sit) 
Al2edle(ctnODElZ,7ledlebit, 1-* Jeo uddELZ, 2107 iw8 04,144) + 
Shere OEE eS = SSE =                 

#203, 1415926#2AVG40, Se DET 
    Stenpe   
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ede ET al 
=== = = 

eae == z = =       
  
  
  “CINODELZ,71/91*8[4,11)< 
  
      
  =Bthed ee = 

#203 ,1415926 «2 AVGHI. 5edET UG 
SEpeb=pe— "tee — 
RECU THU Di KE Ciel Jl skel pet ute ltt ie iss Ji (CtyUde (2,7) +S]ent1, 1+ 

  

  

      
  

      
  

  
  

  
  

  

              

  

  
  
  
  
  
  

a ‘Opet ara eee eet =e SS 
Blacdle(cinGdElZe7  h]eils 184 lel Ove 2,2 )17 wal, 1444 
SeCCNOD EC 2S 7 ro ee aa = SSS = = 
-L6: "END'; e 
SFEND 

COMMENT! ASSEMBLY OF oY STLERUESS IATRIEX AS a 

  

      
  SER OTE   
    
  
  

  
    

  
  

  

        
  

       

  

  
  
  

      

      
        
    
    
  

  

  
  

  

Ur sus 32 “UTHENt ' LAB AR =e 
KAD SUgt =sestesues =: = = FG == 

'Te' Sus3 HLT Sub2 'GOTu!t LAnB? 
B ae —————E ESE = 
    
  
  

  
  

  

    
  
    

"BEGIN! 
SUR ETETEX Cae C2 ~ 
  

      

“COBYTEXT(' C'ENDKOFETIVIET TD] 
FEL EHTS SRE A ore == 
WRITETEXTC! (Ct (12¢6') | OUOseELeigivggenent)1)y 
PE NEE St 
SURLTETERT CUCHEEC! 261 700 
RTOS Ss 
ANERERL SNNIDE®2: JHAT 2 BRE ADE 
=FSEE EGE 

REAL" "ARRAY" XX YV{tsHuneT ULK VEYCTIN DOR, 1:NSETED 
“CPEENHA we 

INTEGER! 'ARQAY' NODEC4:uELer, 121, VOVEPTENNODE, 1tNeeTE] 
“ADD CON ERERI STS a _ 
<NI:SREAD: Gr2READ? HievE Ad: AaranEAy;: RO: SRE in: 
SES EEC READ ser 
TEOR! $24 "Sree" 4 Viurts 8 sere pas 
Stree — ee = - 

BEGIN! 
SCOR ERBEECADD eRe = +5: a 
ANSTEL,STEL,ULX,VIVANELEUT NOUE,U9 Ged, AA pu)? 

      
    

    

   
  

  
  
      

  

    
  

  

  
      

  

SRODAR RAY CVELES: Git at       

ZKARMIBND (il NEREE, ADD Hala): 
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  FFRORISNATSG rs Soh 3 3-5 Ss eee Sets See 4 —————     

  

  

  

  

  

  
  

  

  

  

  

  

       
    

  
    
  
  
  

So ORU BREEN amo!) ') 
  

  BRENT SATE   
  

  

  
  
  
  
  

HSETE PNM! VET sO os 
  

  

  

  

KEL CAT VER 4 td 

  

    

  

  

  
  
    

  

  
  
  
  

  
  

CEUSETarnoe')1)} 
       
  PRET CEE 

WRITETEXT('C'C'2¢') tHNperC'Ss") 'syPZ! (1559) tye Oop C1558") t ¥en rsp 
=o eat === 

"FOR! Jrst "STEP! 4 TUNTT ! Hoek UDO! 
Sse — == = 

KisREAni KODERKeL]ssRE Ade ULXtK,T)s3zEAD: VivlkK, Ji:=READ? 

SSC ADS Gan eee 
NEWLINE (2); 
PRINT (Kid) Ss =: 

PRINTCKONECK,1],9,4); S2,CE(7)7 
SPRINTCULKES 
PRINT(VLY!Kr11,0-4)3 
SENDA; 
JEND' 
a 
NEWLINEC6)? 
"BEGIN! 
YINTEGER' NG,HND? 

=EREA ARRAY 
NG:SNFEREE? 
SEND =R EAD 
ASSEMBLY (NELEMT/K,XA,YV,2ETI OE Ce THICK, ADD)? 
=EC6! NET 3h 

SH 

PEORU Pest MSTERs 4 UNTIL ppd e 00% 

SSRE@ 
Pye" KODeElI» 1150 "THEN! "GoTu! X03 

ae =< 

BOUNCONSTCULXE I pI] e2eletpo ke FREE eT ANU); 
“FFOR' = Jre2 Stee ELS 
‘re! Kodettsij21 "THEN! MhoTO' Kor? 
[E62 OUNEON S ECE ET; 

‘POR! Jis2 ‘step! 4 
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-SYMVBSOL (eK, ADD D,UGarwiger, gets 
2. SHEWETH & C43   

  

mpgs 

  

   1 uth is 
                

                  

                  

            

                

            

  

              

              

              

              

WRITETEXTCNC'! (tact) gon BOT SOLACEHEL TS¥enkZenRCes SET!) ! 
=> Eeé 

WRITETEXTCE CE (§3egt) Moe C1681) they TREC TIOUI(lag")! 
“J=DERECT Beres 
Z=DIRECTION')')3 

: {Freee 

Fore" Jss2 "step! 2 1uurre? ov tpat 
TRES EGE = See = 

ORINT(Z=1,3,0); SPAne(2is pRIitdatveti,13/0,807 
ae 

2 PRINT(Z-+3,0); —$>4CE(2); TaTGalve4,1),008)2 
At 

Leno 
Ee 
"BEGIN! NEWLIHEC2)¢ PRIHTC MODSmWT, 3009) SDACR (2); 

—_ Ea zs 
PRINT CQ(V=1, 1729, G2 73210202) eR TIT (Qtr 1) Uae Bae = = 
  

  

  

INZRODRECTIONS') 1); 
EEE hee ee == 

WRITETEXTC*C'! Cent) Wonks ns CINTENSITYAP SCTOR, KIS")? ) 
EATERY, = 

  

4 nu T nw “a 
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III) Input data instructions 

A) Number of jobs to be solved. 

B) For the first job. 

1. The job name followed by end of title. 

ny
 

Number of elements. 

Number of nodes. 

Number of sets of forces. 

Number of materials. 

Number of nodes on the singular core 

The radius of the specimen) 

Half the length of the specimen?) , 

Crack length. 

oC
 

0 
O
N
 

D
D
 

FF
 

Ww 

Singular core radius 

. Number of sets of constraints. 

lz case! 3), 

C) For the first set of constraints 

1. Number of specified nodes 

2. For the specified nodes: 

a) The node number 

b) The node r coordinate 

c) The node z coordinate 

d) Kode 

e) Value of prescribed load or displacement in r direction. 

f) Value of prescribed load or displacement in z direction. 

3. If number of materials >1 then: 

a) The number of elements with different material properties 

for each different material. 

b) The element numbers of these elements. 
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5. IF the number of sets of forces for this set of constraints 

is >1 then: 

a) Number of specified forces. 

b) For the number of specified forces 

Node number 

- Kode 

Value of prescribed load in r direction 

Value of prescribed load in z direction. 

6. Direction of crack tip!) 

7. Elastic constants E and v of near tip material. 

D) For the subsequent sets of constraints: 

1. Number of new constraints 

2. Number of sets of forces for this set of constraints 

3. For the number of new constraints. 

a) Node number 

b) Kode 

c) value of prescribed load or displacement in r direction. 

d) value of prescribed load or displacement in z direction. 

E) For the next job strat from B. 

Notes 

(1) Dimension G shown in Fig. (10.6) 

(2) Dimension H shown in Fig.(10.6) 

(3) Input 1 for all cases. 

(4) Input 1 for a circumferential crack 

2 for a penny shaped crack. 
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IV) Sample problem 

For the problem shown in Fig. (10.6), the required data is as 

follows: 

1 
CCRS1 END OF TITLE 
126,285,1,19,10,14,5.0,0.1,1,1 
29 
20, 1592259225050 

394% 39223952,0,0 

267,0.0,0.0 3,0,0 

279,10,14,0,0,14540 
30000000,0.3,12000000,30000000,0,3,1 
30000000,0.3 
eK
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x 

  

1
4
.
0
"
 

H 

  

    2x Re       G 

Fig. 

AA= 5.0" 

=10.0”   
10.6
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10.4.3 Mixed mode I and IT program 

I) Program flow chart 

  

Procedure declarations 

NJOB:=READ ) 

COUN STOR 

NELEMT:=READ NNODE:=READ 

NSETFS:=READ NMAT:=READ \ 

N1:=READ G:=READ H:=READ | 

AA:=READ RO:=READ 

NSETC:=READ  CASE:=READ 

$:=1 (1) NSETC 

      

     

   
   
   

  

      

       

       

  
NNEWC: 

NSETF:    NSETF:=READ 

Procedure MMINPUT 

Procedure ADDARRAY 

J:=READ x Procedure KIRBDMMST 

KODE[J,1]:=READ 
a A cs >—- — ULX[K,1]:=READ < MATNO:=1 (1) NMAT 7 

VLY[J,1]:=READ / | 

Procedure JUN. LE ate al 

i mei T:=)_(1) NEREE 

Se er Re 
r I 

     

   

  

  

      
  
  

    
    
  Q{I,J]:=0.0 
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T:=1 (1) NNODE 

Procedure LOADING 
  

Ng ASETF>1 

es 

| 
( NSPEC:=READ ) 

NSPEC 

     

      

  

K:=READ KODE[K,1]:=READ 

  

Procedure LOADING 
  

  

Procedure ASSEMBLY 

Procedure CCRMM12 
  

  > Arra 

ULX[K,I]:=READ VLY[K,1]:=READ 

I:=2 (1) NSETF > 

  

    
     

[K*] and [ADD*] are   

Procedure BOUNCONST 

Procedure SYMVBSOL 

Procedure EO4AAA 
  

— 

Procedure RESIDUAL 

Arra 
        

    
END 

copied to magnetic 
tape on computer 
back store 

[K*] and [ADD*] are 

recalled to core
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II) Program listing 
<IPROGRAN! CAXX%) 
  

  
  

    

  

  

  
  

  

  

  

  
  

  

  

  

  

  
  

  

  

    

  

  

  

  

  

  

       

  

mY TEGERE™ Nake tana iy’ 268 
—- === — 

  

& <= 

VALUE' Ni ‘INTEGER' H,K2 'ARBAY' Ad MEATSRNAL NG 
R= RR ESCRS == = 

"VALUE! Alpes 
SEINTEGER E73 —— 
REAL! L4i,L2,137U; 
SEaTtEG 
'ARRAY' X,Y¥s8; 

SSSEGTH = = = = 
INTEGER' 111 ji 
— = CyeetE— = 

        
  

  
  

  
  

  

  

  
  
  
  

  

  

  

  

  

  

  

at = SSS SS 

AND THE ST RaliieasP ARR 87 
S5P Ree EES = 
GeL2eX(N(2Z,S]leeex City: i = 5EE te vee = ——— = = aS 
AwlAuV(N(z,S)ledeylile olieitez i Stee nee = = 

  

  

  
      

  

  

  

  

  
  
  

  

  
= 22s = 

“QavINe?/s)1*(islhagelcyeeniiaytnt P2615 
SECOMBENT =U 25 PLA = 
Virad l(t tiesC2,2)-s01, AI wl l21 i 

  

  

  
  
  

  

  

taghieedite2i/ui 
sees ae a Saat 

N12 221: 5CHANGE/U; 
SNE CH sit (2a 
NUC2]:sL2* (2a 291 
NLC3]:5L3*(2"L 3-1 
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  SERS 73S" op ae eee — 
-RAVG;=RHEAN 
  

BEGIN! 
RAVGTEOy 
PeGa’ vad eUSTER. 4 UPI bo eae 

SRAVG: SRAVCHE KEN CZ Tee = 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
      

   

  

  

  

  

  

  
  
  

TEND! ; 
=ECOHH ENT: HES tee 

= 

EPORT Viste USTee! 4 TONT IT? 6. Mpa! 

a SS 
"FOR! Lists2 too? 

= 

SEREGE r= = 
  

  

  

JLLe2]w (Spent 7 
a = == 
  

  

  

  
  

  
  
  

  

      
  
    
  
  
  

  
    
  
  

ry ov Da LET tei ted to 7 ys ast 
= eee 

Pllr6]isbu(Jil p11 cetitat RPE eS 21901 
SS = 
TEOR' Irsl 'STEP' 1 tUnTli' te tant 

SEpoR Vests = = 
  
  

Jat USTeP Sey T Tee POG     
  
      

  

  
  

Bri, (Le2—t))rsplar(ie2yiisr(t, Vi 
  
  
  
  

Bl2,(1s2= SSPETINASIETUTY        

-'END' OF STRDIS? 
  

  

  

PROCEDURE' BOUNCONST(CU,N 2,AN HED, Fa Ad? 
SEVALUEE Peas :       
  
  

    
  

  
    
  
  

  
      
  
  
  
  

    
  
    

    
  

  

  
  
    

      
  
  

    
  
  
  
  
  

    

TREAL' U: 
SEENTEGE 2 = 
"ARRAY' RAKE 

SPENTEGE =n 

"BEGIN! "INTEGER MeK,CJE 
=p a = f p= = 

VEOR' KiaCl "STEPt 1 MUTE ON Nb 
SESECEE 

QikKsFL SRK FIRAR ALY aiiee ye; 
ARCA GT AH 

TEND!; 
aa SE ast   
  
  
  
  

VEOR? Keah+d USTEDS t Vue f 
SEREGER eae = 

WE Cd LEON Tent 

  

    
  

  
  
  

REKsPI:aR (Ke F]eARiackjenei]*U; 
    A 

fEND' "Else! 
  
  SEEN 

“LZ: AKCAtN]];21.0; 
  RE B= 

AJEND' OF BOUNCONST; 
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‘INTEGER! ArE, FE   
  

        
ARRAY 
"BEGIN! 
VINTEGER! Ke 

fy 

a as. a= 
Z 

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

    

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    
  

  

  

  

  

  

  

  

  

  

  

  

    

  

  

  

  

eA = $= Fre EHS : z: 

SFpROCEDURE = SvH#Vi 
= 

S'VALUE' NcRi ARRAY" Ap trpt "1NTene2! VageaV! $3 MIN TeGER" ApR? 
“SEPAB EL =Fa Et 
_'BEGIN! : 
-SEENTEG ERE-§ He be ed = 

REALYEN? 
Seat 

— 

= 

_VeOR' [281 "STEP! 1 "UNTIL Hota 

FREGIN = 
BleHeSfljels Greh+13 

SSpiegeete a= = 
Jo URORU Uy aT USTED 4 uns pie pad tt 
  

    

  

REGEN —————— 

QrePei; Hr sHe4? 

SSS SE eae 
VisHeP? Us=Gt 
¥yaAr= 

"ye" Ko "GT! T THEN ysileket: 
SS eae 

= 

YoaVot (UlelL(URv): 

aoe 
"EOR' Miz4 'STEP' 4 “iiTEL! Q thor 
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CE UR 

  

    
  

  

  
  

  

    
        

"PROCEDURE? FUNCT (TH, SS)} 
4 ES 5 

TREALT YH,.SS7 
SS sesaa>s TE Cer Fetitears SSCS y+= 
(Ca#k 44K 2) ¥CONWC2*SIN(TH)) #(COS(TH) "44 2eMU) © 
Et et 

    
  

  
        
            

            

  
          
  

  

                  
    

      
  

    
  

BRC Ga et earn 6S Se ae NJOpreRBAn? 
“ Oe Ss = 

"BEGING   

      
   

           i 

INTCNELEMT, 

  

     PRINT CNNODE,    

  

   

’ 

      
Ce SESS 

A NSETEING NG? 
  ’   

         

    

      

(Ty avy    



Eas 

      
  

  
    

  
    

  

AMES es SN EREY Sete = 

VINTRGER' TARRAV? NODECTINELENTs 13 71 /KODEL1 :NNODEr 1 :NSETFS), 
Sao FREE Seer eSeresss=s2s EES Ek 

NTYESREAD? G:SREAD; Kr=READ? AA:SREADZ ROPSREAD; 
SSNS ET Gee R EADS = C81 SG=AR = = 52: - 

  

  
  TFOR? S,af tSTEPT f TUNTILY NSFTC "DOr 

= 8   
    
    TTF’ S24 tTHEN’ 'TREGIN' 
NSE aes 
MMINPUTCADD «© XXs VYIN NER EEUNNODE GSE Ee ROD EUNSEE COE UES NEAR Ca 

SNSTEG STE EEE = 
~ ADDARRAY(NELENTsNNODE, ADD, aODETT 
SNErsyFREeE 

HARD CHMSTICNEREEW AAS EAND CADDIE 
ie A= Lee TEE & 

~ CONSTREL(C«MATNOVA)3 
=e = 2 = —— 

PRINTCNFRER,3,0)7 
SSeSe = 

TENO' TeLsel 
SESE CEN Eps Rk At 

NSETE:SREAD; 
= = ER EE = 

  

  

  

  
  

  

  

      

"REGIN' J:aREAD} 
OneEt             

  

  

      
      

              

    
        

  
      
    

    
        

      
          

    
    
    

              

      
          

        
    

    
        

              

            

  
  
        

SSEA sea =e = 
TEND! ; 

See 

VFORY Yraq 'STEPY ¢ TUNTIL! NFREE "DOr 

= at SS = = 

— VFORY Tyaq PSTEPY fT TUNTIL' NNODE fOr 

VYFV NSETF (GT? { 'THENT 
ze = 

.  TROR? fya2 "STEP! 4 "UNTIL! NSEYF DOr 
Ee 

NSPEC: READ; 
WRETETEXT $a ee 
PRINTCT, 3,0)7 ao 

SWRETET z BLESS ae = as 
VOTCATST) TQRRLOAD CTés "IT oRXLQAD' DD; 
FL sre iE ECS Ea 
TREGING 

=READ = BRE ES EP PSkee 2p 
LOADING CKODECK.TI],UCXTKs I] +VUYUK+11+G, Kil); 

SNEWEENE 

PRINTCK,3,0)% SPackC2y7 
SSReEeeeone SRACELZ 
PRINT (ULX (Kel 31004)3 

Ee 

~ TENDS 

VENDT; 
SFENDE 
NEWLINE (Oye 

TRE GEN: ETEGER: a eS       
    
    “TREAL! UARRAY! KU1,8AND]} 
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S=ASSEMD-EVEVELE Ete == 
NEWLIN®C6)9 

RMMED ENTER Tee ASTSEE 

—CREATESTORE(10,"('ED') 1," ('KAFILEST')',1,60000)3 
NAR EE 
  
  

PUTARRAY (10, NVABY cy 
SSPUPEAR RAY Cy 0 EAR 
  
  
  

  
    

Bi ae INTROD UeTTon OF KINEMATIC CONS ISRENISE 

Stem SA Oe 
    
  

  
  
  
  

a 7raTeNnty 

PRSKopepeet=t= 
SST oROOET ys TIsT=T YW ENT TCOTOTKC 
  
  

  

      

  

    

  

  
  

  
    
    
  
  
  

  
  
  
  

  
  

SOU NOT ee ei sana ee = = 

——TFORT Jt:a2 "STHP? Tf TUNTIL® NSETF "DOT QTY, Jy :eQCt, 137 
cere Ae 

“KOZ: BOUNCONST(VLE yl 72,17 ,241,9, ae NGecewnt45,1, ape 

Seo = i 
Ket; ‘ENDT; 
=a ve ee       
  

  
  

  
  

  

    

  
  

——THOR’ frat ‘STEP? ft TUNTIL'T NSeTF ‘DOF 
    

      

  

    

  

          
  
  

    
  
  

  
  
  

  
  

    
  

  
  

  

  

  
  
  
  

  

  
  

  
  

  
  
  
  

  
  
  

  
  
  

Step WepTeTE 4 Epa ASS SSPE eos = 
~ PRINT(1,2,0)3 
See eee 

Sit OIG aE CT 
Sera aaais HE — 

FOR’ gr:s2 "STEPY 2 TUNTIL? U 'oat e 
SSE ENE = — 

Zialenti 
= TACeE SEER = ALS 

PRINTCQIV,1J,0,8):SPACE(13)#PRINT(Z,5,0); SPACE (2); 

= PEERS ae ES sis 
TEND t; 

t   rate x SPE 
— 

TBEGINT NEWLINE C2)? PRINTCNNODERNT1 5,007 SpACE(2)7 
Pps Fae 

PRINT (Q[Veqslyr0r3)3 SPACE (2); PRINT (UcVsl Jr078)3 

  

  

  

  
  
  

  

  

  
  
    
  
  

    
  

  
  

  

  

  

  
  

  
  

  

    
  

: = 
ViaNGr2eN13 
Fe TREE RAL ACEMESS HERAT ER a 

PRIN SCOT ye3,1],0,10)7 
‘a EPESE 2 AG SPEEME = ee = 

PRINTCQECVs2,17.0,70)9 
SWEET ET EEE & ESS EN EET et 5 = 
  
  
  

PRINTCOEV4+5,13,0+10)3 
ITeteyte fb EOD ES 4S RES See eee Get 

PRINT CCQ (VOGrTy¥O=1)).0010)7 
WR ETE TRIE TSO ee 

PRINTCQEV#4 s+ T].0/10)7 _ 
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i552. 55————— 
= MUracMr2y; 

      
      

              
      
  

ree 
CON? = (3.14159264CR)/(A¥GG)} =e vas 
        
    

                    
      

  
  

2c hie 
TH13=1.5707963; 

SpEERe 
          
      

Hem: 
_ABSACC1 80 01 Cay 

E26 
en Aaa 20) 

ThE SS+ABSACC/RELACC«XSTEP, FUNCT, MAXFUN, TFATUY; SIGE GS tet WAT TETEXT ENC HTN TEES 
SRT 

Mh SU 

WABT at 

  

  

  

                

    
  

  

  

  
  

    
    

            
  

      

                

          
    

              
  
        
  
        
      
        
  

“GETARRAY (40, NVABY, ADD) ? 
SRESEMEEECY Bais; eS SETS 

= TENDT; 

co 
VENDT;   
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III) Input data instructions 

A) Number of jobs to be solved. 

B) For the first job. 

1. The job name followed by end of title. 

2. The number of elements. 

3. The number of nodes. 

« Number of sets of forces. 

. Number of materials. 

. Number of nodes on circular core 

4 

5 

6 

7. Radius of the specimen. 

8. Half the length of the specimen. 

9. Crack length. 

0. Singular core radius 

11. Number of sets of constraints. 

12. Case 

C) For the first set of constraints. 

1. Angle of inclination of crack ce) 

2. Number of specified nodes. 

3. For the specified nodes: 

a) Node number 

b) Kode 

c) Value of prescribed load or displacement in r direction. 

d) Value of prescribed load or displacement in z direction. 

4. IF number of materials >1 then: 

a) The number of elements with different material properties 

for each different material. 

b) The element numbers of these elements. 

5. Elastic constants. 
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6. If the number Of sets of forces for this set of constraints 

>1 then: 

a) Number of specified forces. 

b) For the number of specified forces 

- Node number 

- Kode 

- Value of prescribed load in r direction. 

Value of prescribed load in z direction. 

7. Elastic constants E and v of near tip material. 

8. The angle (180-8) 

D) For the subsequent sets of constraints: 

1. Number of new constraints. 

2. Number of sets of forces for this set of constraints. 

3. For the number of new constraints. 

a) Node number 

b) Kode 

c) Value of prescribed load or displacement in r direction. 

d) Value of prescribed load or displacement in z direction. 

E) For the next job start from B. 

Notes 

(1) The angle 6 is shown in Fig.(10.7)
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IV) Sample problem 

For the problem shown in Fig.(10.7), the required data is as 
follows: 

1 
MODE END OF TITLE 
96,223,151/51751051231,0.02,151,1530 
13 
211,0,0,19634 

216,1,0,0 

223,0,0,-19634 
30000000,0.3,12000000,30000000,0.3 
30000000,0.3 
150 
ee



  

  

  

    
      

Zz oo 

A 

a 

= Pea 
¢ 
N 

uw 

cE 

N 

a 

Gi= 10.0" 

o 

AA = 1.0" 

|
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10.4.4 Mixed mode shouldered ‘bar program 

This program is identical to the mixed mode program presented in 

section 10.4.3 except that procedure (SBINPUT) is used instead of 

(MMINPUT). The input data instructions are also the same except that 

the coordinates of the nodes specifying the fillet radius are inserted 

between C(J) and c(2) of the instructions for section (10.4.3)as will 

be seen in the sample problem. 

I) Sample problem 

For the problem shown in Fig.(10.8) the required data is as 

follows: 

1 
SBCRACK END OF TITLE 
10852512 Velied7 10,1251 002,110.45 
20.0,4.25 
13.0,4.25 
11.5,3.848 
9.0,3.848 
3.848 
17 
235,0,0,11435 

244,1,0,0 

251,0,0,-19634 
30000000 ,0.3, 12000000, 30000000,0.3 
30000000,0.3 
135 
kK



  

D = 20.0" 
  

  

2
4
.
0
"
 

2H
 

  

  

    
Fig . 

= 10.0"   
10.8
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II) Program listing 
  

  

  
  

  TINPUT! ORCRO 
  

  

  

  

  

  

  

TEXTENSDED DATA 
Ee 

TERACE (2 

  
  
  

  

  

  

  

  

  

  

  

  

  

TINTEGER” NELENT NTE ,NSETRS, PREETI, Je Kr VoUsl Case, Siti yHNRUC 
cs 2 =e = 

REALT DELTA DETY, THICK AAVU;RPEAN, 5S, TRyASSACT,? 
ae 

  
  

  

  

  

  

  

  
  

  THRUCENURE’ CREATHSTURE NT, 59 TrUrl)? 
  

  

  

    
  

  

  

  

Sea = 
PROCEDURES THSTURECe, Sel, OF 

See 
  

  

  

  

  TORUCEDURET PUTARSAY Ua RrAD? 
  
  

  
  
  

  PROCEDURE? GETARHAT ish ade 
zs   
    ae 
BROTEDURET STROISC(LI,LerLoeas,KiVrUINs2iy   
  
  
  

  
  

  

TINTEGERT ZF 
  

  
  
  
  
  

  
  
  
  

  

  

  
  
  
  

    
  

: 
THTEGER® taneay? a7 =] 

REGTN = 
eure = 
REAL’ CHaAlGey a 
  
  — =e i == 
TOPRERT THIS PROCEDURE EVALUATES THE JACUDIAN J Ils DelerRtl tant 
  

  
  
  
  
  
  UCT TIsektutcr tiie CoeL ity Atos SII ¥ COL TFS LPH ST SSELEMR TTS 

5s £ ep et   
  
  

  
  
      
  

TEV 2USVONCZ AL] eCow Lat eV On (Ze Fl lw Caw lt eee 2a 3) bow eaV (N74) = 
  
      
  

SUS T Ts SX0UT Ze JT Te CGF ST) HAL oe TIP C GEL OoL mS) HOLT RRTATD, GlIe 
-S= SS SSS = 

UUS + 2TPSVTN TZ aT Ie Cae eatery C Ze STIR CG LT tol a) eowLT*VINI AT IT+ 
se = === See 
TCONMENTYT U REPLACES DETJ; 

= et ea = 

TCOWMMENTY THE CUEFFFS OF {Jl ; 

  

  

  
  
  
  

  

  
  

    
  

  
  

  

te REPUACED BY Thuse OF CJJ=1; 

  

  

    
  
  
  

  SUT TT 2st2. 217; 
    

  

  
  
  
  Stee 2ss iter; 
==       
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LiwCe*LIntie 
re == 
Tera yes toe Cera" 0F 
=e Hp 

FLUS J: s4ecextei 
= 3 

HEAH TECRINC Se Tli<klatzrelutArneeessuev teers) Ie 
    
  
  
      TINY gai0a "ited 
  
          

      

          
      

        
      
  

TSTEP TUN Poe Ue 

  
        

    
    
            

  

        
    

    
      

  

  

  

            

        
      

            
    

  
    
            
    

  

z= 
TSTEP’ 7 TURMTIL’ 6 "OU" 

= == SSS 

Wetec De 

BTlees: Trroletbelent)i 

SE 

Pllpolpsor(Lewdel,1i*eiasttresye 
= aa See 

7 STTolieowCIt + Tiel o@L Tw CsCl ti ea tle yyg 
—_ — 

on Lisi oleh i Unt te, DOT 

ae SESS 
FOR’ tial ‘sTer’ 1 ‘UNTIL™ @ TOOT 

SE         
  

BUteviwertyissnc orci vay Is srcr etl? 
A z 

   
Torti wenTI 1s tLe li snavar 
        
    

END? OF STROIS? 
  
  
  

SRICEDURE STUN UO NS TCU) Tra sAnr EU I de 

    
    
  
  

  
  
    
  
  

                  
  

    
    
    
  

see 
TEAT UF 

a 
TRRRAY! ReAKy 

seegtts 
TREGTIHY TINITEGER Mek CIF 

ae ae c = 

ToroR? ty tSter ache ea OO 
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RIK FIsegiK FPRASTAC Haven dels 

55555555 zy 

= 

TEND'G 

aHORT Kise) "Siar 1 TOHiTloy sea sue 

=SESee 
=         
    

. Tiree co Tue’ 4 THES! 
                
        

ATR EI EEALA PP Im RL ACR IMA® Tyee 
  

      

  

      
  

  
  

Teno’ VELSE™ 
  

  

  
        

=lyr AKUAUHTIIeT. UF     
  

  

—TEHDY GF HOUNCNHISTS 
  
  

  

  

TPROCEDURE™ TAU iGCA,drurDrerr? 

ters 

ATEGERT AvEs Fe 

  

      

      
    

~TARRAY! 03 
SSSEee 

TINTEGER’ Ke 

  

  

        
      
  

  

[Ft Ags ‘THEN GOTO" RLAT 
      
      

  

    

= Net 'THRTY PHOTO! KLAGSE 
= 

                  
        

  

    

  

    

a 

TTR’ A TNE 0 THEN” 'GUTO! KUAST? 

=e =Eat ee                   
                  
KLABT: “END* OF LOAVING? 

TFATLD 
    

  
      
    

        
PRUCEDURE? oT NVHSULt peearol el TETSIUT SS CaN D FAILURE ens 

  
    

    

LABELY FAIL? 
        
  

SFTNTEGER? Grlisledrhreredelsdr? 
      

      
    
  

TBEGIN'’ 

Sa See 

PrestTi-Te 
a 

TREGTHT 
Sa == === 

Prestdds Ksevenre 

SS tee 
Visaliity 

      
  

    

  

    

      

  
      

  

  

      

    
   



a5 

  THOR UssU “STEP 1 TUNTILY Nad my 
  
  
  
  
  

  

  Yrave bie wia Lenser 
  
  

  

GUGM eFC eR Conve 

  

  

Yrsalh*tye 
  

  

  
  
  
  

BYeLTNIT; 
5 = 

  

  

1473 VeRS0RTCVIG    
  
    

  

  
  
  
  

fFORt Neel AS Tee! 1 SUNT Reto g* 
  
  
  
  
  

  
  
  
  
  =TFON’ [isn "STEP’ ©1 TUNTIL’ 7 ‘Dut 
  
  
  
  
  
  

  
  
  

  
  

BUTT S801 75 
  
  
  
  
  

     
  
  

  
  
  
  

  
  

  
  
  
  

  
  
  
  
  

===> 

Streit 7: = 
— = = = 

TSEGT TT = 

= = 

TEOR Msst “STEP” T TJHtru™y KR Tour 

= = 

TENDY He 
  

  
  
  
  

  
  

COMPUETE: “END Ty 
  

  
      
    
  

TRROCEDURET ANDARRAVCTV ECE (Te NNODE, ADD, NUD=)e 
  
  =e   
  

    
  
  
    
  
  

  

GT THTEGER” Werle le aDuTenes 
  

  =e 
  

  

  

“*REGIN® CHISNODELUr Ie 
  
  
  
  

  

  

  TTF’ NODEtWe1T) Clon ‘THEN CHiShuELurliy 
  = = 
  

TSEGIN® ADUTENPTSNUOEL Yel I*Cnets 
  

  
  
  TEND ns 
  
  

  
  

  

  

STEP” tf gril k hhuve Tuo
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SHES 2a 

SoNtIeTigaano we) sone ls = 

= == = 

Eno'> 

Bhar E : 
“TWALUE? WTpaGsndrSelrytAoerl ilUReCss “TYleGEn it, TaeNSaiFaCAne? : 

=e 
  

  

  

THREGIN' 'CUNPENT® FUDITPICATIO] UF OVEGALL STITRVESS “alittle fue Tar 
  

  — 
  

  

“TYTHTEGERT TATE Cl OL DIC Ie SAG 

  

  

  

  

  

  

ST,Cherdlgtdtsntletdte tl oeadOrGerliys 
  

  = 
  

  

  

Sipe oo Uwe 

  

Serer   
  

  

  

Grpeu low Chl TI eur te ye 
  SHrreree   
  ~ ALPHATSREAD? 
  

  

  

  

  

MODIFIES THE se VERALLUSTIFPFNESOMUATRIA FUR SITABNATIDESPRSC TUDE, STV Les 
  

  
  
  
  

  

PRITTCALPHA, OFS) F 
  
  

  
  

  RIRTCT; 30003 

  

  
  Steep a= 

  

  

  

  

WRITETEXTC' Ch ' C8268) NODULUSKOFSRIGIDITY GK2E')')3 PRINT(G,0,473 
VeESe Set a   
  ALPHA 20, 017493 5"aLPIal SNTSSTNCALPHAD? Co CUSCALPHAY; 

  

  
  
  

     
  

  

  

  
  
  
       
  

  
    
    
  
  
  

  
  
  

  
  
  

  

    

    
  
  
  

   
  
  
  
  
  
  

    
    
  
  
  
  

    
  
    
  
  
  

  
  
  
  
  

  
  

TEORY Jia? “STEP 7 "UNTIL" Swit?S “On” RTCIpalian,0F 
ee == “p= eee — = TRTUTs 1 ]izoeP aOR (3, 14139) TA) wa WKAP RTD] CAPE ETHICR 

= 2 See Se SSSSS== 
= FOR’ fi=? ‘STEP’ 7 UNTIL” eet "HU 

= = SSS —TTEY Taal THEN? THETAI==3, 191 57FC Cet (I #1 )/2=1)¥5, 14199) 7 OiT=1)) 
“pt SSS PSS eS 

FIUSSCROJ2AI EO, 24 CCe eR aral) eCOSCTHETAS2ZI=C ISU), DH TRE TO) Caea)? 
= = eos ee aS s 

FIT ER CRUSAI TT eC CeMRAP YT) STN OTHE IAT ZI =5INGT, O¥THETADIT Caw) T 
— 2a Bg 

HIOTs=RUeSTICINE TA) AIT S#RNeCUSt THE TAD: 
= = =e ss 

GIs =GTIeCn=0lTaoNe : = 

Tosatti TH SeShe 
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Eqn TELgrr 
  
  
  
  
  
  

  

  
  
  
  
  
  

  

  
  
  
  
  
  

    
  

  

  
  
  
  

  

<== = 
UPyisaldesnrnl 1G “= 

= — 

iy ST Th SUa: ‘i 

ATE Teip TINE CTss) TELSe CrislenD (I JeArOLIn ll] ety. 
ss — = == 

THEGINY CIR a) Calan tem 
ae a 
  

  

  
  
  
  

TOTO ASAT 
  
    

  
  

  

  

THEGIN? (LF dst teu vase He coe 
  

OPTS hs 

  

  

  

Wot: JArsdwexrer Trex Cd cde 
phe 

ELSE’ THETA 

  

  

  

moe ToT are late CLS eyaT Tes, THIS PII Cate 

  

  
  
  
  
  
  

  

  
      
  
  
  

  
  
  
  

  

  

  

= ee 
IOP SCR T7 ZITO, SHU EWEN PR) OT ICT IETAT 2) FSINGT, STF SI)/ (see) i 

= = 

TOTESE CURT a) Pe 9 CVS FAP HS) MPUS (THETA 2) SCUSC1« DHT ARTA Cae) 
— = raat 

= TERT JAST THE OP aTa Pods =F UFC MPI TeSuy 
  
  

== = 

HJO SHOR Cr aa Tests 
  
  

  
  
  

  

TED geueiLSeY 
  

  

  

  

  

  

  TJor=a)0¥5 sadTwU Ty 
  

  

  

  

  

  

THrsthy  Tarss? 
  

  

  

  

  

  

TENPT SSADD COT Teulsbds7 
  

  

  

  

RYUT 2] ssKTtt ed     TUwp JUee 
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FE = = — 

pale dentate Pde a. 

<= >= 
= 

GES stizcte siete 
i 

CESS ESEEE 
SS 

Aone, TENDS 
ns 

== 

+rORT Ties ree 1 UNTITLED Gales) vl 
i 

c= ae = SSS E === 

FrURT Ttecu Ser De OnIE gent ‘DUT 

c= Eee = 
== 

mTIe > beToT Is Kate toe 

ry: TAS eet THETAT EAD TeT ase ccew Cle i dy     
      
      565 Se       PetCo ikl Vi2P tC ts SHTHETAD IT Coeur 

        

  

      
            
  

      

  

    
          

TTUTEUNG7 aI TU. T OC ETRA 

ae 
== = 

Se = SSS SS: 

AETAT aT eCUS TT De taE AIS CRIT       

  

  GTTTBeCRUT
 eT Tds ae (cee NP e ar eho 

            
        

  

  
    

          

    
  

  

      
  

              
  

    
              

THEN vei FIrOssrryeG T=FTT es 7; 

= 
Sa = 

TTT SAT PON I Tes te 

= 
=== 

- Ep abs” 

TITECT IST en TeC Ts Te 
ee 

oe +     
          
  

      
      
  

  

      
    E=s=s-===— ES 

=SxTlo,Jivro*n teil?      

  

  

      

            

  
        

GLpelecrn eA OCI F WUTPPAD ILL Sees Tate? 

ae SER = 

  

    

=FyOUI I al eee stm cr eADULI~TIFTe 
Sten Se 

SCCADDTT T= Ted sc Pen AUD eee sar ea ta ye 
ee 
    

Kei ADHNUTIFITISNDULIInicT I+) (+t? 
      

STEr T Tt Lot wor ke AD Trtediveugireceteddy 

      

SORT Tei eee i UNTIL me cmt ey wnt Pe ee 
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     TEORY Jeet USTRe’ TT unrty 9 out Kian ti edieTi=aett: 
        
        
    
  

  

  
  
  
        

oe 

ee pS 
FOR Niat. Slo ie evi ht al OO ment tL loatsidt tall sates ie 
SESS = 

FORT J Stew Ft TC 2 TOU Ke tapet i ro=dI-T Teor ia=tTitesTta, Tit 
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