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SUMMARY

This investigation was concerned with the development of a finite
element facility for the determination of fracture mechanics and general
stress analysis data in axisymmetric solids.

The work was carried out in two stages. In the first stage a finite
element program for solving axisvmmetric problems subjected to axisymmetric
loading was developed. The element used was a six node isoparametric tri-
angular ring element. An automatic mesh generation scheme was developed
which reduced the effort of preparing the required input data. A complete
program incorporating this scheme is described and examples of its

application are presented which show very acod agreement with theoret1ca1
and other finite element solutions.

In the second stage the general finite element program was augmented
to provide a fracture mechanics facility. In order to cater for singular-
ities in the crack tip region, a singular core, over which an analytic
solution is used, was embedded into the finite element mesh surrounding
the crack tip. The modifications to the standard finite element program
are described and several mode I and mixed mode I and II examples were
solved to check the influence of mesh design and core parameters. The
results obtained demonstrate the usefulness and accuracy of the technique
and compare very well with solutions available in the published literature.

A complete listing of all the computer programs is presented together
with their input data instructions.

CRACKS  AXISYMMETRIC  SOLIDS  FIMITE  ELEMENTS
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LIST OF SYMBOLS

43 Stress tensor
o] Direct stress
;A Spherical component
Eij Strain tensor
Es fav Elasticity constants
X Cartesian axes
o B Polar coordinates
X Airy stress function
[k]c Element stiffness matrix
{q}e Element displacement vector
{Q}e Element force vector
(K] Overall stiffness matrix
{q} Overall diéplacement vector
{Q} Overall force vector
Cin EndL Natural coordinates

152
U,w Displacement components
[N] Shape functions matrix
[J] Jacobean matrix
/d/ Jacobian = det.[J]
K = (3-4v) for plane strain

= (3-v)/(1+v) for plane stress

[B] Strain displacement matrix

[c] Elasticity matrix



I Total potential energy

U Strain energy

Q Potential energy of applied loads
Uc Core strain energy

Rc Core radius

wi Weight coefficients

L11,L21,L31 Integrating points

S Strain energy density factor

Rp Radius of crack tip plastic zone
G Strain energy release rate

C Compliance

B Core/finite element interface

T Traction vector

J Rice's path independent integral

¥(z),6(z) Complex functions

N.I Number of nodes on core/finite element interface

KI’KII’KIII Stress intensity factors

(1] Identity matrix

[LJ,[L]t lower and upper triangular matrices
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CHAPTER 1

JINTRODUCTION

: IR Introduction

A fundamental requirement of an engineering structure is to sustain
the Toadings applied to it during its service 1ife without failure.
However a small percentage of engineering components, although satisfying
conventional strength analysis conditions, do not fulfil this requirement.
There are several modes of mechanical failure, [81], among them is the
mode of fast fracture which involves the unstable propagation of a crack
in a structure. In this mode, once the crack starts to move, the
loading system is such that it produces accelerating growth. This
fracture is often referred to as "brittle", because the instability first
occurred when the applied stress was less than the general yield stress
in the uncracked part of the structure. The catastrophic nature of
failures due to brittle fracture, examples of which are 1isted in, [14],
imposed the need to consider the reduction in the fracture strength of
metals due to the existence of crack-like defects in them. The
presence of a crack introduces a singularity in the stress field and
there are several approaches to measure its magnitude. Irwin's approach
[19], concentrates on a crack tip region and introduces three factors
which define this magnitude known as the stress intensity factors.
Although a plastic zone is formed around a crack tip and hence stress

singularities can not exist, it was found that the tip region is



sufficiently large so that events within a small plastic crack tip zone
do not cause significant variations in the system's strain energy and

assuming linearity remain a good approximation, [29].

The accurate determination of the stress intensity factors is
central to the application of this approach to design work, and a brief
description of the important methods available for this purpose is
presented in Chapter 5. The geometries and loadings of engineering
structures are such that analytic techniques dealing with idealized
situations are not adequate and approximate numerical methods must be
resorted to. A very powerful numerical method used extensively in
structural engineering is the finite element method described in
Chapter 3, which was used by many authors to calculate stress intensity
factors. It was seen that its application without catering for the
singularities at the crack tip required a fine mesh sub-division in
the neighbourhood of the crack tip for a reasonable accuracy, and
methods which modify the standard finite element formulation to allow
for these singularities were more economic and accurate. One such
method which requires a small modification to the finite element
formulation and results in the direct evaluation of stress intensity
factors is the Hilton and Hutchinson method described in section (5.4.8).
ref[13].

Many important engineering components are solids of revolution,
and the aim of this project was to evaluate the stress intensity
factors of axisymmetric cracked solids subjected to axisymmetric loadings
using the finite element method incorporating a Hilton and Hutchinson

type core element. To achieve this aim, computer programs were



developed to solve single and mixed mode fracture problems. In order

to study particular cases of special interest where voids and grooves
are present,and to be able to obtain better matching with the circular
core shape, an isoparametric element was chosen to map the curved
boundaries involved. Due to the existence of stress raisers and cracks,
the stress field varies rapidly throughout the structure and its
accurate representation by a constant strain element would require fine
discretization, while a coarser mesh with a linear strain element will
produce higher accuracy and be more economical. Therefore the element
chosen as the basis for the present work, was an isoparametric six node

linear strain triangular ring element.

A major digadvantage of the finite element technique is the large
volume of input data required. Apart from the time consuming task of
preparing the correct data, small errors may pass unnoticed and give
wrong results. This chance was eliminated and the effort was cut
drastically by developing an automatic mesh generation scheme described

in section(3.8).

The computer programs developed in this project were found to be
very effective in the determination of mode (I) and mixed mode (I) and
(II) stress intensity factors for a variety of crack and geometry con-
figurations. The effects of inclusions of different material proper-
ties on the values of stress intensity factors were examined, and the
angle of crack initiation was evaluated by adopting Sih's strain energy

density criterion, [25].



The representative examples considered illustrate that complicated
problems can be tackled with a modest size computer and by relatively
small modifications to a standard finite element program. However,
several modifications to the developed prdgrams can still be made, and
due to lack of time interesting possible areas of research had to be

left for future work as discussed in Chapter 9.



CHAPTER 2

ESSENTIALS OF ELASTICITY THEORY

2.1 Introduction

The rigorous solutions of the three dimensional problems of elasti-
city are few. Faced with this, the engineer resorted, in some special
cases, to acceptable simplifications which reduced the problem to a
one of two dimensions. As the problems became increasingly complicated,
approximate numerical methods were sought to solve them. Although the
analysis procedure is simplified by the introduction of thesé methods,
the volume of data and mathematical work required limited their appli-
cation. With the introduction and wide use of electronic digital
computers, the lTimitation was removed, and these methods gained wide

acceptance and recognition.

For the convenience of reference, a summary of some of the

essential results of the elasticity theory is presented in this chapter.

2.2 The stress tensor

The state of stress at a point is fully described by nine stress

components (t..), where i = j = 1,2,3.
1]

Knowing the components of (Tij) with respect to some set of

cartesian axes (Xi), they can be found with respect to some other set

(X%) by means of:



T ® L. RBj T4 (2:1)

or in matrix form:

[t'] = [LI*[el[L] (2.2)

This equation represents the transformation of a tensor quantity,

.'s) may be found

and it may be shown that a particular choice of (2a1

for which the stresses are normal only i.e. principal stresses, [1].
For a description of material behaviour (e.g.plasticity, or visco-

elasticity) it is sometimes useful to introduce the deviator stress

defined as:
T3 Y1 e T (2.3)
where
Tmean ~ %'(T1 £ 2 * 13) (2.4)
Ti(i = 1,2,3) = principal stresses
G iy Spherical component

The stress varies continuously from point to point in a continuum.

It may be shown that equilibrium requires, [1]:

Tij,j + F_i =0 (2.5)
i=1,2,3

and Tij = 154 | (2.6)
1. %1.2.3

where:

Fi = the components of the body force/unit volume.



The situation is statically indeterminate and the solution requires
consideration of deformations and constitutive equations as described

later.

2.3 The strain tensor

The deformation at a point with respect to three orthogonal cartesian

coordinates is completely defined by the components of the strain tensor
(Eij)'

Similar to the stress tensor, these components can be found for
another set of coordinates by:

glos L B0 g0z (2.7

- A chosen set of orthogonal coordinates which causes the shearing
strains to become zero are called principal axes of strain; and the

corresponding strains, the principal strains.

Strains vary continuously in a contunuum and, if a state of
infinitesimal strain is assumed, they are related to displacements
by [1]:

4!
ey =7 (U5 *+ Uy 4) (2.8)

These equations show that six strain components, which are
functions of position, are functions of only three displacement
components. Therefore the Eij cannot be chosen arbitrarily, but a
relation between them must exist, otherwise the displacements will not

be single valued and continuous.



To ensure the compatibility of strains the following relations
must be satisfied, [2].

€ij,ke * €ke,ij T Sik,j2 T Sjg,ik - O (2.9)

where: i = j=k=12=1,2,3
This system consists of eighty one equations, some of which are
identically satisfied, leaving only six equations which are known as

the equations of compatibility.

2.4 Hooke's law

The relation between stresses and strains have been established
experimentally for a number of materials and it has been found that
for a practically useful range of materials, the relations are linear.

This represents a generalization of Hooke's law.

In the general three dimensional case, it takes the form, [2]:

B avs S

i
ij E

Vv
T3 F Tkk 613 (2.10)

The inverse form is often useful

Tyg ek aij + 2u €43 (2.11)
where u o= ?TTEGT' = Modulus of rigidity
A vE

1+v)(1-2v



For certain problems, it is convenient to write the relation in

terms of the deviator or spherical components:

~

Tig i]

where k = §TT%EGT'= Bulk modulus.

2.5 The two-dimensional problem

To obtain a solution to the general elastic problem, three
fundamental steps are taken:

1. EqQuilibrium must be satisfied.

2. The strains implied by the stresses must be compatible.

3. A relation between stresses and strains is required.

Analytic solutions are available to only a limited number of
special problems with simple shapes and loadings, many of which are
summarised in, [1]. Hence, the need arises to simplify problems so
that a mathematical solution is possible, yet the simplified problem
remains close enough to representing the true physical situation.
Special geometry and loading configurations can reduce the three
dimensional problem to one of two dimensions. An example of such
special cases are the plane stress, plane strain, and axisymmetric

problems.

The equations of equilibrium for a two dimensional problem are

reduced to, [1]:

= 2u €., (2.12)

(2.13)



-0 .

o] 3T
— Xy =
T + 3y 0 (2.14)
3T 3o
Bl el -
TR T 0 (2.15)

And the compatibility equations are reduced to:

Vz(ox +g0y) =0 (2.16)

The traction boundary conditions are given by:

Vg, 7 Tap N (2.17)

A method for solving equations (2.15, 2.16 and 2.17) is by intro-
ducing a function x(x,y) which, if body forces are negligible, has the

following relations with the stresses:

g =23X (2.18)
g =3X% (2.19)

gt
Txy ~ 3xay (2.20)

From the definition, stresses derived from (x) automatically
satisfy equilibrium. The true solution is that which satisfies the
compatibility relation (2.20). Therefore, the function (x) must
satisfy the biharmonic equation:

4 4

aY . 8% + 9

ax axzayz ay

(2.21)

Bp<
]
=

or Vx = 0 (2.22)



11 =

Thus the solution of the two dimensional problem reduces to finding
a solution of equation (2.21) which satisfies the boundary conditions
(2.17) of the problem. The function (x) is known as the Airy Stress

Function.

2.6 Axisymmetric stress distribution

Many important problems involve solids of revolution deformed
symmetrically with respect to the axis of revolution. The deformation
is symmetrical with respect to the z-axis (Fig.2.1), hence the stress

components are independent of the angular (8) coordinate. The derivatives

with respect to (8) vanish leaving (Tr’ Ty Tz’Trz) as the only non-zero
stress components,[1].
The strain-displacement relations are:
= u o = W = du , 9w
ST 0r B T ¥ ST 57 0 Vi z " ar (2.23)

For axisymmetric situations, the constitutive relations for linear

isotropic elasticity can be conveniently expressed in matrix form as:

Fcr\ ETR v 0] rerﬁ
o] T-v v 0 £
g E 8
|, [~ Tz A e
a, 1-v 0 €,
Symm. 1.5
T -2V Y
L rZ] i il : ri

Several mathematical solutions of axisymmetric problems are
available, [1]; but, as for the three dimensional problem, they deal

mainly with simple geometries and loading conditions. Real engineering
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problems are generally complicated, therefore it became necessary to
resort to numerical methods. A very powerful numerical method, which
was used throughout the work described in this thesis, is the finite

element method described in detail in the following chapter.
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CHAPTER 3

THE FINITE ELEMENT METHOD

3.1 Introduction

In the finite element method the body is discretized into an
equivalent system of smaller units, and approximate solutions for each
unit are combined to obtain an approximate solution for the body.
There are three approaches to the method,[3]:

1. Displacement method: In which the displacements are

the unknowns.

2. Equilibrium method: In which the stresses are

the unknowns.

3. Mixed Method: In which some displacements and

some stresses are the unknowns.

The work presented in this thesis follows the first method and

it will be the only one discussed from hereon.

The analysis procedure may be summarized by the following steps:
1. Discretization: The process of dividing the continuum into an
equivalent system of smaller subdivisions (finite element), is called
discretization. There are some basic guidelines to help in performing
this operation, but the final decision on type, shape and number of

finite elements remains with the individual. A solid of revolution is
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divided into axisymmetric ring elements, which can have various cross
section shapes, (Fig. 3.1); such arrangements are of particular interest
in the present work.
2. Selection of displacement function: It is difficult to select a
displacement function which can represent exactly the variation of
displacement in the element. Instead, a function is chosen to
represent that variation only approximately. Three factors influence
the choice of the displacement function:
a) The type and degree of the function (e.g. a polynomial
of a certain degree).
b) The displacement magnitudes describing the function
(e.g. nodal displacements with or without their
derivatives for some or all nodes).
c) The convergence requirements to ensure that the
results approach the real solution.
These requirements are,[3]:
i) The function must be continuous within the element,
and no openings, or overlaps occur between adjacent
elements, i.e. continuity of displacements is required
across inter element boundaries.
ii) The rigid body displacements of the element
must be included in the function.
i11) The constant strain states of the element must be

included in the displacement function.
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3. Derivation of element stiffness matrix: The stiffness [K]e relates
the modal displacements {q}e to the nodal forces {Q}e through the element
stiffness equilibrium relation:

(Kl fa}, = (O}, (3.1)

The elements of [K]e are derived from the material and geometric
properties of the element. They may be obtained by the use of the
principle of minimum potential energy as will be described later.

4. Assembly of the overall algebraic equations of the discretized
continuum: The global stiffness matrix [K], and the global load vector
{Q} are assembled. The global stiffness equilibrium relation is
arrived at

[K1{q} = {Q} (3.2)

At this stage the equations are modified by the introduction of
the appropriate geometric boundary conditions.

5. Solution of the equations: The equations (3.2) assembled in the

previous step are solved for the unknown displacements.

6. Calculation of strains and stresses: The strains are computed by
using the relations between them and the relevant displacements. By

using Hooke's law, the stresses are computed from the strains.

The operations involved in the previous steps for the axisymmetric

case will be described in detail in the following articles.
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3.2 Natural coordinates and shape functions

A variational principle will be adopted later for the formulation
of element stiffness.and load and will be described. In general, the
potential energy for a linearly elastic body can be expressed as a sum
of the strain energy due to internal stresses and the potentional of
the body forces and surface tractions. By taking the variation of the
total potential energy with respect to general coordinates, an
equilibrium equation (3.2) is arrived at. Because the integrationg
involved are awkward, formulation in terms of natural coordinates

becomes advantageous.

A local coordinate system is defined for a particular element and
not for the entire body whose coordinates system is called the global
system. A natural coordinates system is a local one which specifies
a point within the element by a set of dimensionless numbers whose
values do not exceed unity, and hence the point is specified relative
to the nodes of the element alone and is independent of its orientation
or position in space. Consequently, element stiffness formulation can
be carried out without being directly concerned with the global co-
ordinates or geometry. Finally it is more convenient to carry out the
computations with coordinates between zero and one, as simple arith-
metic operations with large numbers alongside small ones tend to

produce solutions which are not well conditioned.

A natural coordinates system of a triangular ring element is shown
in (Fig. 3.2). The three coordinates are Lys L2 and L,; but only two

of them are independent. Their relation to the global cylindrical
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coordinates system is given by:

2 r, rj L2 (3.3)

This set of natural coordinates can be considered as one of area
coordinates. Thus the coordinates of point (P) Fig.(3.3) are,[4]:
il A A3

L _
Ly ® i L (3.4)

LA 2 o

A et

It can be seen that L], L2 and L3 are not independent but related
by:
3
A T _ (3.5)

Equation (3.3) can be inverted to yield:

i 7]
L, e E R Wl ol )
4 i)
L2 = 3K 2A3T b2 3, r (3.6)
|
e B PR R S
Here, A.. = Areas of triangles whose vertices are the origin of

1J
the global coordinates system O and node i and j Fig.(3.3) and, [3]:

8, % ¥y -1y b2 =25 - 7 (3.7)

mno
=
I
s}
o
1
s 7]
or
=1}
—
o
w
=1}
w
tr

1= azb] - a]b2 (3.8)



Fig. 3.2

-

Fig. 3.3



« s

It is required now to assume a function which represents approxi-

mately the variation of displacements in the element and satisfies the

requirements described in section (3.1). These functions are called

displacement functions and a Tinear model in a polynomial form in the

two dimensional case is, [3]:
u=a + Aol + a3z

W = aa + a5r = asz

And a quadratic model is:

a] & azr =+ a3z + a4r2 + a5rz + a622

<
"

] a? * asr + agz + a]orz 3 3 a1]rz + alzzz

Where the (a's) are known as generalized coordinates.

equation (3.10) in matrix form:

{u} = [¢]{a}
Where: ulr,z)
{u} =
w(r,z)

ERANGE
[e] =

0" {og}°

{¢1}t [1. v i o

(a}t = (o Go  Cgereeennn. a12]

(3.

Writing

(3.

9)

.10)

1)

12)

.13)

.14)

.15)
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The nodal displacements can be evaluated by substituting the nodal
coordinates, and the vector of nodal displacements of the'nodes for
the element under consideration may be written as:

{q} = [Al{a} (3.16)

: Ve
where: {q}" = |:u]w.I u2w2...]

Equation (3.16) is inverted to give:

o} = [A] (g} (3.17)

Substituting equation (3.17) into (3.11) gives:
(u} = [61[A1'{q} = [NI{q} (3.18)

Examining [N] shows that it has the form of an interpolation
function matrix, and another direct and more elegant way of generating
it would be the use of interpolation theory, and thus eliminating

matrix [A] from the formulation.

An interpolation function or a shape function is a function which
has unit value at one nodal point and zero value at the other nodal
points, therefore it is convenient to express it in terms of natural

coordinates.

Beginning with the simple case of linear interpolation over the
triangular element, prescribed values at three nodes are required, so
the vertices become the nodal points. Any linear displacement function
u(r,z) over the element with prescribed nodal values Ups Uy and Uss is

a linear combination of the three Lagrangian polynomials N1(L],L2,L3),
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Nz(Ll’LZ’LB)’ and NB(L],LZ,L3) with scalar coefficients u;, u,, and Uz,
[5].

For a three node triangle:

(3.19)

For linear interpolation the shape functions are the natural co-
ordinates i.e.:

Ni(Li,LZ,L3) ik {1 = 1.2,3) (3.20)

If U(L1’L2’L3) is interpreted as the radial displacement function,
a similar interpolating function w(LI,Lz,L3) can be written for the

axial displacement function in terms of nodal values Wy aWo s and W

For a quadratic displacement function u(r,z), six function values
must be prescribed. Selecting the triangular element with nodes at
the vertices and side mid points, the corresponding shape functions

Ni(L L,,L,) are:

jekgels
Ny = L2y ,y)
Ny = Lot2ly )
Ny = Ly(2Ly ) Ty
Ny = AL,L,
Ns = AL,
Ng = dLgly
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3.3 The six node isoparametric triangular ring element

An element is said to be isoparametric if both the geometry and the
displacements of the element are described in terms of the same para-
meters and are of the same order. The simplest finite element to give
displacements that converge to the analytic solution must contain
constant strain terms. As the strains are first derivatives of displace-
ments, a linear function may be chosen for the displacements. However
better results can be expected from fewer elements if the strains were
allowed to vary linearly within the element, [6]. As seen from the
previous article, selecting the triangle vertices and midside points
as nodal points and the shape functions of (3.21) yields a quadratic
displacement function. From the definition of the isoparametric element,
a coordinate transformation of the form:

{X} = [N]{Xn} (3.22)
is obtained where, [N] is given by (3.21) and {Xn} are the element
natural coordinates. Hence, an element which is straight sided in local
coordinates terms becomes curved in global coordinates terms. This
property enables the isoparametric element to represent curved bound-
aries. The mapping from local coordinates to global ones for the six

node isoparametric triangular element is shown in (Fig.3.4).

3.4 The strain-displacement relations

The relation between the global and local sets of coordinates for

the six node isoparametric ring element is given by:
fli e
iy
r}:ﬁ ro 3 rp rg rg N]
N

Z (3.23)

2

LNGJ
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Fig. 3.4.




- 26 -

And the relation between'the displacements is:
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(3.24)

where {Ni} i=1,2,...6 is given by equation (3.21).

In the axisymmetric case the strain-displacement relations are
given by equations (2.25) which require derivatives of the form

au aw

5;-and 37t etc.
6 oN
ou i odu
Where = = LI = =
or juy OF oM,
(3.25)
LR e I
52 j=1 92 9N,
etc
Hence equations (3.23) need to be inverted to give terms like
oN, aN,
i i
Wﬁﬂdﬁ.

To be able to do this, two new variables (s) and (t) are intro-
duced so that:

L] = 8, L2 s v L3 = l-s-t (3.26)
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where [J] = Jacobean matrix

ar
~

By inverting equation (3.28) we obtain:

( ar 3s

= [91"! '
{ N, EEi.J
= at

oz
where 3z 54
: ]_1 1 ot 3s
J = 5
77 g 5
at as

(3.27)

(3.28)

(3.29)

(3.30)

/d/ = The determinant of the Jacobean matrix and is called simply

the Jacobian, that is
Fafie B0 3210 “3r 3z

3s ot ot 3s

(3.31)
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To evaluate the Jacobian, the following relations are used:

R T
as j=1 °s 9N,
(3.32)

gr L o

3t o1 N
Similarly for %E-and %5

My = Lo . .

=t and 5T are obtained from equations (3.26) and
%ﬁ—-and BN are obtained from equations (3.23) and hence by substituting

BN BNi

in equations (3.29), §7r-and g are obtained, and they are multiplied
by %ﬁ—- and %%— which are obtained from equations (3.24) to yield the

required strains as shown in equations (3.25). Written in matrix form,

the strain displacement relation is:

[Er‘ [ Bl M "By ke sl e 0 4
Vi
1
u
| € T ? Hogell 0 O58 (Banay - W osl a0y ya, S0 E N0,
1 > = W
aw 2
2 jE\'E Y SV S e D 83,121.
aw
L"rzj “8'f+ar .1 By Bq g Pas < - 8 1Ry ik
> ¥ = u
LWG
(3.33)

or {e} = [B]{q} (3.34)’
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3.5 Constituitive relations

3.5.1 Introduction

The six components of strain at every point in the general
elastic problem are functions of the six stress components at that

point.

This relation in matrix form is:

(=x 1 [Pnn 212 a1¢] ey

Sy a1 e 326 9y
R S At j )7 ? (3.35)
Yyz . 5 Tyz

Yxz E ; ; Txz

[ Yxy G RIS T Txy

By using the principle of conservation of energy, it may be shown
that the matrix [aij] where i = j = 1-6 is symmetric and hence only
(21) of the (36) coefficients are sufficient to describe any material,
[7]. The number of elastic constants for any material may be reduced
further by considering planes or axes of elastic symmetry. Since the
work presented in this thesis deals with axisymmetric problems, the
choice of materials is Timited to isotropic and anisotropic stratified

materials only.

3.5.2 Isotropic material

In the finite element assumed displacement method, stresses

are calculated from strains, hence the inverse form of equation (3.35)
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is used. For an axisymmetric problem with linear isotropic material,
the constituitive relations are given in equation (2.24) which has

the general form:

{o} = [cl{e} (3.36)

3.5.3 Anisotropic stratified materials

In this case the constants E1 and v, are associated with
the behaviour in the plane strata which is parallel to r-8 axes, and

E2, Hos vz with the direction normal to them which is the z axis

(Fig. 3.5).

22 (3.37)
E—'z m .
2

= n and

l"'llm
-—

writing
2

The constituitive relations are

e e

’gr ] n(1-nv22) (v1+nv22)n nv2(1+v]) 0
o n(1-nv 2) nv,(1+v, ) 0
] 2 2 1
< } 3 e 2
(T+\)] ) (1 V1 -2nv2 )
2
9, Symm. _ ]-v1 0
TrZ m(1+v1)

2.1
x(]-vl-vaz )

(3.38)
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3.6 The variational formulation of element stiffness and loads

The total potential energy of an elastic body is defined as:

I =U+@Q (3.39)

where U

Strain energy

Q0 = Potential of applied loads

The principle of minimum potential energy can be stated as
follows: of all the possible displacement configurations a body can
assume which satisfy compatibility and the constraints or kinematic
boundary conditions, the configuration satisfying equilibrium makes the
potential energy assume a minimum value, [3]. Therefore -

SI=6U-6W = 0 (3.40)

where W = work done by the Tloads.

The potential energy for a Tinear elastic body can be expresses
as:

m=/ Udvol -/ (R+Y+Z)dvol - s (TXU + TV
vol vol S J

+ Tzw)dS : | (3.41)
where Uo = Strain energy/unit volume
X,Y,Z = body forces
T,T Tz= Surface tractions

Xy

The strain energy density for a linear elastic body can be written

in matrix form as:

He}oldvol = Hetlelieldvor (3.42)
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Substituting equation (3.42) into equation (3.41) and writing it

in matrix form gives:

M= g/ ({e3*Cle} -2t} R})dvol - Slutt(Thds
S

vol
where:
©t = [uv W]
Rt =[x 7 2
M=)
V = volume of element

S

are specified.

part of the element surface over which tractions

(3.43)

Substituting equations (3.18, 3.34, and 3.36) into equation (3.43)

gives:

m=1 s ((qreItcIrBItar-20a3 NI ek )avor.
vol

) {qr NIt (ThdS

Applying the variational principle:

(sq3¥( s [BI*[CI[BIdvol{q} =/ [N]{R}dvel.
vol vol

- 7 INI%(Thds,) = 0
s

Since {5q}t is arbitrary:

t
ooy [81°[CI(BIdvor¢q} = J\; 1[N]{X}dm + é[NJt{T}dS
. 0
or

[Klgf{al, = {Q},

(3.44)

(3.45)

(3.46)

(3.47)
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where
[Kl, = / [BI*[CIBldvel
vol '
Q, = [NTXR3dvol + F[NIS(THds
Vol S

AnddVolfor the axisymmetric ring element is:

dVol = 2IIRdA

where R = the perpendicular distance from the axis
of revolution to the centre of dA

dA = drdz

The evaluation of the integrals in equations (3.48, 3.49) in
closed form for the six node isoparametric ring element requires

evaluating (21) separate integrals listed in, [6]. As this is a

(3.48)

(3.49)

(3.50)

(3.51)

cumbersome operation, it becomes more feasible to resort to numerical

integration which should be performed with respect to global co-

ordinates. But, as the [B] matrix is a function of local natural co-

ordinates, it becomes necessary to transform the integral into them by

applying a standard process using the Jacobijan (det[J]), [8]:

dA = drdz = det[d]dL]sz

Hence equation (3.48) becomes:
1 1-L;

(Kl =/ £ [BI[CI[BI2MR det[J]dL,dL,
00

To calculate an integral of the form:

I = fff(L1, Lys L3)dL]dL2,

(3.52)

(3.53)

(3.54)

it is replaced in all methods of numerical integration by the sum:
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n
where n = integration points = number of points at -
which the function is to be evaluated
W, = weight coefficients

j
f(Lli’ Lyso L3i) = the function value at the integrating

point L]i’ L21, Lai'

There are several quadrature formulae, [4], but the one chosen is
the Gauss-Legendre one. Appendix (10.1) gives the details of the
weighting coefficients and the triangular coordinates. The order of
integration which effects the computing time and accuracy of the
solution, was chosen to be quadratic. This choice was guided by the
experience obtained by Robertson, [9], in solving several two
dimensional crack problems, and was later justified by the accuracy of

the results obtained.

Equation (3.54) in terms of the quadrature formula (3.56) becomes:

(K], = ZHRiEIwi([B]t[c][B]det[J:u_ (3.56)

1i°L2isba;

where ([B]t[C][B]det[J]) means the evaluation of the
Lyjobapls;
product in parenthesis at integrating point 1.

3.7 Assembly of the overall stiffnesses and loads

[f the continuum under consideration is divided into (E) number
of elements interconnected at (N) number of nodes, with two degrees
of freedom per node; then the total number of undetermined displace-

ments is (2N) and the order of the overall stiffness matrix is
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[2NX2N]. The assembly of the overall stiffness matrix and load vector
can be achieved by expanding the element stiffness matrix [K]e to a
size of [2NX2N] and the element load vector {Q}e to a size of {2N},
changing local numbers to global numbers, and locating the coefficients
in their appropriate positions in the new enlarged matrices. Summing
up the contributions of all the elements, the overall stiffness matrix

[K] and the overall load vector {0} are obtained:

[K]{a} = {Q} (3.57)
where

E

(K] = E1EK]e (3.58)
e:
E

{Q} = 21{Q}e (3.59)
e:

3.8 Automatic mesh generation
3.8.1 Introduction
The preparation of an error-free input data for a complicated

problem is very tedious and time consuming. To minimize this effort
many authors include some facility for numbering the nodes and elements,
and computing nodal coordinates. Becker and Brisband,[10], automated
the input data for special cases of simple geometries. Frederick, Wong,
and Edge,[11], developed a partially automated method of discretizing
irregular and non-homogeneous two dimensional continua. A more general
approach utilizing the concept of natural coordinates in mapping curved
boundaries was developed also [12,13]. However, all these methods are
not fully automatic and require some manual instructions through which
engineering judgement is exercised. An automatic mesh generation scheme
was developed to help in reducing the input data required for the
various problems tackled in this thesis. The six node isoparametric

ring element was chosen for the work and the scheme was based on it.
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3.8.2 Mesh generation for an axisymmetric structure

By definition, the structure is symmetric with respect to
the axis of revolution, hence only half of its longitudinal section
need be discretized. If there is further symmetry with respect to a
diametral section, then only one quarter of the section is discretized.
The method will be described for a simple case shown in Fig. (3.6).
Lines AB, DC, and all lines parallel to them are called nodal rows,
while Tines AD, BC, and all lines parallel to them are called nodal
columns. It could be shown that

The number of nodal rows=(No. of element rows x 2)+I (3.60)
The number of nodal columns =(No. of elemént columns x 2)+]1
The number of nodes/row = nodal columns (3.62)

The number of nodes/column = nodal rows (3.63)

It is seen that equations (3.60) to (3.63) are functions of element
rows and columns, hence they are the only two factors that need be

specified to generate the mesh in Fig. (3.6).

The fact that each nodal point is an intersection of a nodal row

and column is used in numbering the nodes as:

Node number = (M X N)+J i (3.64)
where

N = Nodal rows

M=1-1

Nodal column number

—
n

Nodal row number

Ca
1}
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The coordinates of the nodes, for the special case of a rectangular
section, are obtained by specifying the starting and finishing global

r and z coordinates of the structure, i.e. points A, B, and D in Fig.

(3.6).
_r finish - r start
Ar = STement columns x2 (3.65)
Az & finish - z start

element rows x2 (3.66)
Therefore for a point (N)

riN) = I-1)ar (3.67)

Potant bt

z(M) = + (J-1)Az (3.68)

Zstart

If the section has curved boundaries so that the element rows and/
or columns do not have the same length, then the starting and finishing
r and z global coordinates must be specified for all nodal rows and

columns.

To work out the nodal connections in the sequence (i,j.k,2,m,n)
shown in Fig. (3.7), it was noted that odd number elements and even
number elements, each follow a similar pattern. In each element
column, the corresponding nodal numbers increase by two when moving
from one odd e1eﬁent to the next one, and similarly for even elements.
When moving from one element column to the next, the numbers of
corresponding nodes increase by a factor of (2XNodal rows). A computer
code performing these operations will be described in section (7.9).
The nodal connections of elements can be specified in such a manner

that symmetry with respect to a diametral section is obtained Fig.(3.8).
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This will prove very useful in certain fracture problems as will be
seen in Chapter 8. The computer code for it will be described in

section (7.9) also.

3.8.3 Mesh generation around a core

It will be shown later, how in fracture problems, a mesh is
generated around a circular or semicircular core. To achieve this the
nodal rows and columns, which are straight Tines, are bent into semi-
circular, circular, or rectangular shapes as shown in Fig. (3.9). It
must be noted that even number nodal columns, which represent mid-
side nodes, cannot be bent arbitrarily, but their shape will be a

function of that of the columns immediately before and after them.

The radius of a circular or semicircular nodal column, and the
coordinates of the vertices and the number of nodal rows intersecting
each side need to be specified. However, the core size in fracture is
a function of the crack length, and the number of nodes on the core
and hence the number of nodal rows is the maximum allowed by the computer
storage which works out to be the same for a large range of problems.
Therefore these parameters were built into the scheme and the only
things which need to be specified were the crack length and the

dimensions of the discretized section.

When bending nodal rows and columns, care must be taken not to

severely distort or overlap elements Fig. (3.10), as this will cause

the computer program to fail,
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The nodal connections for this case remain exactly as those

described in the previous section (3.8.2).

The computer code which performs the operations described in

this section will be presented in sections (7.10), (7.11) and (7.12).
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CHAPTER 4

THEORIES OF BRITTLE FRACTURE

4.1 Introduction

It has been seen in practice, that although safety requirements
were apparently satisfied in the design of some engineering components,
they failed during initial loading or after several load cycles, leading
in some cases to disastrous results, [14]. Their failure was attributed
to the initial existence of small cracks or flaws in them. It became
apparent that designing cross section areas to keep the gross stresses
below the yield point of the material is not adéquate for high strength
materials which are sensitive to the presence of flaws or cracks, [15].
The theory of fracture mechanics was developed to provide an analysis
which includes the reduction of the strength of the material due to

that presence.

The Griffith theory, which was proposed over half a century ago,
is the starting point. It defined the conditions which make a small

crack in a solid unstable by adopting an energy balance approach.

An alternative approach, developed by Irwin, focused attention on
the mechanical environment near the crack tip and is known as the stress

intensity factor approach. He noted that the stresses in the vicinity
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of a crack tip are characterized by a special factor (K) called the
stress intensity factor and used the critical intensity of these

stresses as a material constant.

These approaches and the various modes of crack propagation will

be described subsequently.

4.2 The Griffith theory

Griffith stated that unstable crack propagation takes place if
a small grack growth released more stored energy than that which the
newly created crack surface has absorbed, [16]. The evaluation of
energies required by this theory is difficult if considerable plastic
deformation is associated with the crack extension. To overcome this,
Griffith directed his attention to hypothetical materials which behave
in a purely elastic manner prior to crack propagation. The specific
problem considered was that of a crack of length (2a) embedded in an
infinite elastic body subjected to direct uniform stresses perpendicular
and parallel to the crack surface (ox and cy) Fig. (4.1). It could be
shown that this system is equivalent to a crack of length (2a) subjected
to a uniform stress (o. = o) perpendicular to its surface Fig.(4.2)

Y v
and that (cx) has no influence on crack stability, [17].

The strain energy of the body in Fig. (4.2) is equal to the work

done in deforming the crack surface and is given by, [18],
U= Ig:‘—Haztooz | (4.1)

where uniform thickness.

ct
n

K = 3=4y » plane strain
(3-v)/(1+v), plane stress



o i

Applying this result to the original system of Fig. (4.1):

e S
+1)ma"to
_ (k+1)m #

total ~ 5 i (4.2)
u

U

where

U = The energy component independent of crack presence.

The surface energy of the crack is:

U =4 at vy (4.3)

surface
where

v = Specific surface energy

For a crack increment of (28a):

2
_ (k+1)mato
SUtOtaT = da (4.4)

u
And

sU = 4tysa (4.5)

surface

According to Griffith, the crack growth will be unstable if:

2
(<+1)mato da > 4tyda (4.6)
Iy
or
Teritical 2 4 \/ naiK+!i (4.7)
where

O eitical is that cy which causes instability

The significance of this theory was the demonstration of the

existence of a relationship between crack length and failure stress.
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4.3 Irwin's theory

Irwin observed three independent basic deformations which are
sufficient to describe all modes of crack behaviour in the general state
of elastic stress, [19]. Each one of these movements is associated
with a particular stress field in the vicinity of the crack, and each
stress field is characterized by a special factor. The three factors
are called the stress intensity factors and they define the magnitude

of the local stress field.

The three modes of fracture are the opening mode, the sliding mode,
and the tearing mdde; and the stress intensity factors associated with

them are K KII’ and KIII respectively. The movement of the upper

IS
and lower crack surfaces with respect to each other for each mode are

shown in Fig. (4.3).

It could be shown that the mechanical energy released during
incremental crack extension is independent of loading configuration and

that the strain energy release rate is given by, [20]:

-au
G = A (4.8)
where
U = Strain potential energy stored
in the elastic medium.
A = Crack area.

The stresses and displacements expressions near the crack tip in

the plane problem are given by, [21]:
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= -i i i =
%43 K,r mfij(s) ¥ =12 (4.9).
m= 1, 1F, 11
= é i =
a% = (Kr*/u) 8.(8) 5 1 =1,2 (4.10)
m=1, II, III
where

th

Ky = stress intensity factor of the m™ mode

mfij

for all modes and cases in Appendix (10.2)

(8) & mgi(e) = known functions given

Irwin, by using virtual work arguments arrived at the relationship
between the stress intensity factor (K) and the strain energy release
rate (G), [19].

(4.11)

Formally this relation may be generalized to cover the three modes,

[20]:
+
6 = % KIZ (4.12)
+1
6y = S KIIZ (4.13)
and
Bory SoKoh P rD 4.1
111 = Kppp /2 (4.14)

However, under the second and third modes, the crack tends to
extend in a non-planar fashion, hence a criterion for fracture based
on critical values of (GII & GIII) becomes difficult to justify, [22].

Therefore, the cases governed by this criterion are only those of Mode I.
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Experiments on suitable specimens determine the stress intensity
factor at the point of fracture (KIC), which is the critical value
for KI, and is then regarded as a material property. A means for

predicting the fracture behaviour of structures is then provided.

4.4 The strain energy density theory

In the general engineering problem, loading direction is not
always perpendicular to cracks or flaws, and hence a mixed mode
problem is present. A strain energy density criterion for fracture
may be considered, according to which crack propagation occurs when a

function of KI, KII’ and Kipp reaches a critical value, [23].

f(KI’ KII’ KIII) = fcr (4.15)

A single mode problem will be a special case of the general problem.

With reference to Fig. (4.4), the stress and displacement
expressions in the immediate neighbourhood of the crack tip were given
in equations (4.9 and 4.10), these expressions define the stresses and
displacements in a small region surrounding the crack tip which is
considered circular for convenience. As the radius of this region
(Rc) is very small compared to (a) and (R), it can be assumed that

the conditions of plane strain prevail within it, [24].

The cross sectional area of the element shown in Fig. (4.5) is:

dA = r dedr (4.16)

The volume of the toroid of cross section (dA) is:
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dvol = 2m[(R-a)+rcosg]dA (4.17)
The strain energy stored in this volume is given by, [24]:
0 She s oy
di= s{o ins tio o o amle
l3u_ 3v _vy
Tre(r 00 5 or r)]
x [2m[(R-a)+ rcos6]dA] (4.18)
The local strain energy density field can be expressed from
equation (4.18) in quadratic form as:
dW _ 1 2 2 2
A = ek * 20K Ky + agKy T +aggK ) (4.19)
where
dq4q = 2n[(R-a)+ rcose] x [(3-4v-cos8)(1+cos8)] (4.20)
11 16u
i ZWE(R;EEI“ rcose] , r(2sine)(cose-(1-2v)1] (4.21)
Ban' ® 2n[(R-a)+ rcose] x [4(1-v)(1-cos8)+(1+cos6)(3coss-1)]
22 Téu
(4.22)
ari 2n[ (R-a)+ rcosé]
33 4y (4.23)

(dW/dA) becomes larger as (r) is made smaller, reaching a limit
at the boundary of the core region (r = Rc). In equations (4.20) to
(4.23) the term[(R-a)+ rcosewill become[R-a + R.coseland as R_ is
considered very small compared with R and a,this term can be approxi-

mated to(R-alonly. The intensitv of the varying energy field along

T For a penny-shaped crack:
dVol = 2n[a+rcos6]dA
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the periphery of the core is referred to as the strain energy density

factor (S) and is given by:

2 2 2

S = anKp ¥ 2agpKiKyg + oKy *+ agaKyyg (4.24)
where
aqq = [2r(R-a)/16u] x [(3-4v-cos8)(1+cose)] (4.25)
a1 = [2n(R-a)/16u] x [2sine[cose-(1-2v)]] (4.26)
a5, = [27(R-a)/16u] x [4(1-v)(1-cos8)+(1+cos6e)(3cos6-1)]
(4.27)
333 = [2m(R-a)/4u] (4.28)

According to the strain energy density criterion for fracture,

initial crack growth takes place in the direction along which the strain

energy density factor possesses a minimum value (%%-= 0, at which e=80);

and crack initiation occurs when it reaches a critical value (S = Scr,

for 8 =6,), [25].

4.5 The crack tip plastic zone

4.5.1 Introduction

The material around the crack tip has been assumed so far
to behave in a linear elastic manner. In practice most of the
structural materials (especially metals) tend to exhibit a yield stress
above which they deform plastically. This means that a plastic zone
exists around the crack tip, and hence stress singularities cannot
exist. A rough estimate of the size of the plastic zone is simple to
make. With reference to Fig. (4.6), the magnitude of the elastic stress

distribution ahead of the crack is plotted. Until a distance (rp) the
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stress is higher than (Gy1e1d)’ and hence to first approximation, (r

o)

is the size of the plastic zone and is given by, [26]:

2
r =‘—J143———7? (4.29)

p
2m cyie]d

However, the actual plastic zone is larger than (rp) and is not
circular. A more accurate impression of its shape can be obtained by
examining the yield condition for different angles at the crack tip,

[27,28].

4.5.2 Extension of the Griffith concept

Irwin, [29] and Orwan, [30] working independently noted
that the energy required for crack growth in metals is larger than
the surface energy to create the new free surface. This was due to
plastic deformation in front of the crack and hence energy is
expended in the formation of a new plastic zone at the tip of the

advancing crack. They suggested that the total potential energy

becomes:

I=U+Q+ Up (4.30)
where

U = Elastic strain energy

Q = Potential of applied loads

Up = Plastic work done

And that the surface energy is modified to:

= Y
R (4.31)

where

work done in plastic deformation.
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They concluded however, that because of the moderately long range
(1//r) dependence of the stress field (equation 4.9), the elastic strain
energy density is not highly localized about the crack tip. Hence,
events within a small plastic crack tip zone are unlikely to cause
significsnt variations in the system's strain energy; and the values
of the strain energy release rate obtained by assuming linearity remain

a good approximation.

4.5.3 Extension of Irwin's concept

Irwin argued that the occurrence of the plastic zone makes
the crack behave as if it were longer than its physical size, [31].
The effective crack size is given by:

Qapp =B 1O (4.32)

where

§ = correction due to plasticity

With reference to Fig. (4.7), the crack (a) is replaced by a
Tonger one (a + &) and the elastic stress distribution is given at the
tip of the effective crack length. (&8) must be large enough to carry
the load lost by cutting the area (A) from the elastic stress distri-
bution, hence: -

Area(A) = Area(B) (4.33)

By assuming (§) to be very small compared to the crack size (a),

and similar to (rp) in equation (4.29), the distance (A) is given by:

02(a46)

A= " G, (4.34)

Gyie]d
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The area(B) is given by:
B = 0yie1q ©

Therefore, the requirement B=A will yield, [26]:

And

which means that the size of the plastic zone (Rp) is twice
the first estimate (rp). Since § = rp and according to Irwin's
argument, it follows that the crack behaves as if its length is
(a + rp). The quantity (rp) is known as Irwin's plastic zone

correction.

(4.35)

(4.36)

(4.37)
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CHAPTER 5

METHODS OF DETERMINING STRESS INTENSITY FACTORS

5.1 Introduction

The determination of the relevant stress intensity factors is
required when adopting the stress intensity factor approach to crack
problems. The prediction of failure loads and dangerous flaw sizes
will depend ultimately on the accuracy of computing these factors.

The methods of determining them may be broadly divided into experimen-
tal, analytical, and numerical classes. Following is a brief

description of the important methods in each field.

5.2 Experimental methods

These methods may be divided into two main groups. The first
involves direct measurements on a model, and the second uses a known
relationship between the stress intensity factors and a measurable

quantity.

5.2.1 Photoelasticity

This is an example of the first group of methods, and its
advantage is that it is a well established method in stress analysis,
especially in calculating stress concentration factors, hence its
equipment and materials are readily available. However the represent-
ation of the crack must be done by a slit of a finite root radius,

therefore equivalent crack lengths must be defined, [32].
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The relationship between the maximum shear stress and the stress
intensity factors KI and KII is given by
)2 (5.1)

] : Ay
T = ——{ (K,sin8+2K,,c0s8)“ + (K;,sin6)“]
max 2‘/2% I T II

- where (r) and (8) are polar coordinates centered at the crack tip.
This relationship is used in two different ways to determine the

stress intensity factors.

The first is by measuring (t___) on lines perpendicular to and

max
through the crack tip, [33]:
(Ki© + Ko Py
- I 11
Tmax - (5.2)
2/2mr

and on a line parallel to the crack:

T = (5.3)

KI’ and KII can then be determined from equations (5.2) and (5.3).

The second measures the angle (8), at which a tangent to the iso-
chromatic fringes is perpendicular to the radius (r), from the iso-

chromatic fringe pattern near the tip [34, 35]:

3T

—= =0 (5.4)
K K

(K%ldz - %—(—%jdcotze - %- = 1 (5.5)

This relation together with equation (5.1)are used to solve

for K| and k”.
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5.2.2 Compliance

This method is an example of the second group of experimental
techniques. The strain energy release rate (G) could be written in
terms of the load (Q) and the rate of change of compliance (C), which

is the reciprocal of stiffness, with respect to crack area (A) as,[36]:
2

e=% & (5.6)

For mode I fracture (equation 4.12)

2
k¥l , 2 _ Q5 deC
TR Gl (5.7)
therefore
212 5 ghg g
he = e (5.8)
or
- B dC43 (5.9)
Ky = 20 [ 3Ad

The compliance is measured for different crack lengths and a graph
of compliance verses crack area is constructed. The slope of the graph
is substituted in equation (5.9) to determine ST As discussed in

section (4.3), this method is not suitable for calculating Kyp or Kppy.

5.2.3 Crack tip opening displacement measurement

The experimental methods discussed previously are related
to purely elastic situations. If however, the plastic zone is large
compared to the crack size, linear elastic fracture mechanics do not
apply any longer. Under conditions of general yield, plastic flow is
no longer contained, but the plastic zone spreads through the entire
cracked section. Assuming negligible strain hardening, the stress at

the crack tip hardly increases after general yield and the fracture
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condition is reached upon the occurrence of a sufficiently large strain.
A measure of the plastic strain at the crack tip is the crack tip
opening displacement (CTOD). A criterion first proposed by Wells, [37]

stated that fracture takes place when critical(CTOD)is exceeded.

The direct measurement of(CTOD)is difficult. With reference to
Fig. (5.1) the(CTOD)can be determined indirectly from measuring the
(COD) by, [26]:

coD = %?— a% - x° 4 £

(5.10)

The equations for crack tip opening which are given in, [38], state

that: . ’
- GI d KI (1-v )(plane strain)
L ® Bo (5.11)
yield yield :
K 2
% I (plane stress)
EATy je1d (5.12)

Various values for (A) have been reported in the literature and

a review of them is available in, [26].

5.3 Analytical methods

These methods have the advantage of giving explicit expressions
for the stressintensity factors. They have been applied only to a
number of ideal (special) situations because of the difficulty of
tackling the stress analysis boundary value problem for complex geometry

and/or loading.
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5.3.1 Westergaard stress function

Several complex forms of the-Airy stress function (section
2.5) may be used for the solution of crack problems. Westergaard

proposed the function, [39]:

b = R6(2)+K,1 5(2) (5.13)
where #(z) = ro(z)dz : (5.14)
3(z) = /5(z)dz (5.15)

It may be shown that the stress obtained from this stress function
satisfy equilibrium, compatibility, and stress-strain relationships.
By examining the boundary conditions of each specific problem and
selecting the appropriate stress function (¢(z)), the stress intensity
factors of various but somewhat simple crack configurations can be

obtained,[40,41].

5.3.2 Complex stress function

According to Muskhelishvili's approach, the Airy stress
function (F) may be written in terms of two complex functions ¢(z) and
p(z) as, [42]:

F = Re[2¢(z)+ fp(z)dz] (5.16)

Applying equations (2.20, 2.21 and 2.22) to equation (5.16) yields:
gy * e 4Re[¢'(z)] (5.17)

And

g Ge SR, = 2[Z6" (2)+v' (2)] (5.18)
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From these relations it may be shown that:

K - Ky = 22 Lin (6 (2)) (5.19)
1

This approach differs from Westergaard's since cracks may be
mapped into holes using a mapping function of the form:

Z = w(z) (5.20)

The crack tip z in the z-plane will correspond to a point ¢z in the

z-plane in Fig. (5.2).

Equation (5.20) becomes

Ky = Koy = 2/28 Lim fo(g)=o(z,) e (5.21)
I 11 e £y 185 lun A

Where
o(z) = olw(z)) (5.22)
6(z) = do(z)/dz

This method, which is known as conformal mapping, is discussed

in detail in, [43].

- 5.4 Numerical methods

These methods, which involve certain approximations, are unavoidable
for the solution of problems with complicated shapes and loadings since

solutions by analytical methods are not possible.
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5.4.1 Boundary collocation

This method consists in finding certain coefficients of
the elastic crack solution by satisfying the boundary conditions at
only a finite number of points along the boundary of the body. The

process yields a set of equations

m

jEI aijxj = Rs» 1=1,2...n (5.23)

where

The problem is reduced to solving n linear simultaneous equations
for the m unknowns (Xj)‘ The stress function may be expressed in a
series form or as a series representation of a complex function. It
must be noted that there is no general proof that collocation solutions
will converge by increasing the number of boundary points as that may
result in making the set of linear simultaneous equations ill-
conditioned. The accuracy of the solution must depend largely on the

experience and judgement of the analyst, [44].

A) The Williams' stress function:

This is an Airy stress function which satisfies the conditions
that the normal and shearing stresses are zero along the crack surface,
and it is convenient to write it as, [45]:

o Ay B X, (5.24)

where

X = €ven terms

Xo odd terms



- 70 -

X. = L {(--])n-'1 A

n+3 3
., r 2[-cos(n - 2)8+

Zn-1

%%i% cos(n + 3)6]

+ ()" A, P cos(n-1)0+cos (n+1)81} (5.25)
Ayt oA (-1 B,y P sin(n - 3)o- sin(n+1)e]

n:

+(-1)" 8, P sin(n-1)6+ '—r:;r-}- sin(n+1)e] } (5.26)

It may be shown that the stress intensity factors are, [46]:
Ky = -A]/?? (5.27)
Kip = B]/EF ‘ (5.28)
The solution of the problem is obtained by taking the following
steps:
a) The determination of the stress function (F) for the
uncracked configuration.
b) Evaluating (F) and (%Edat a number of points around the
boundary.
¢) Substituting the value of (F) and (%%J at each point
into (x) and (%%J to yield a set of linear simultaneous

equations whose solution gives (Al) and (B])

The stress intensity factors for a number of edge crack specimen

have been obtained using this method, [47, 48].
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B) Complex stress function.

It has been shown how Mushkelishvili writes a stress function in
terms of two complex functions ¢(z) and y(z) (section 5.3.2). The
¢'(z) and y(z) may be expanded in series which automatically satisfies

the boundary conditions on the crack:

6'(2) = 21 2 r g+t o1 (5.29)
n=0 n=o
Z -d
_ 1 > n = n
w(z) = Vew. nzo C,Z -nzo D,z (5.30)
Z =-d

A finite number of coefficients Cn and Dn are obtained by matching
the prescribed stresses at discrete points around the remaining part

of the boundary, [46].
Results of many problems using this method involving mode I, II,
and III deformation, interaction between cracks, and cracks in stiffened

sheets are reported in, [49].

5.4.2 Stress concentrations

With reference to Fig. (5.3) the stress at the apex of the

major axis of the ellipse (cm) is given by :

o, = ol + 2%) (5.31)

The crack configuration may be approximated to a narrow elliptical
cavity having a radius of curvature:

b2
grEs L pesa (5.32)
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Equation (5.31) may be rewritten as:
L 3 V.o, /2
o, = a(1 + ZVC:)—ZGJE_ | (5.33)

a/a = %—cm /o (5.34)

or

The stress intensity factors may be obtained from the 1imiting
values of maximum stresses at the base of a notch whose radius of

curvature is allowed to vanish

Ky = ﬁzﬁ l;r; (0./5) (5.35)

If T is the maximum value of Txy then:

KII = VT ETE (Tm/a) (5.36)

And if T . is the maximum value of sz then:

KIII = /T ETE (T'm¢5) (5.37)

Although relations (5.35), (5.36) and (5.37) are exact, those used

for I and (= themselves are approximate.

The values of O for a variety of notches can be found in the work

of Neuber, [50].

5.4.3 Green's function

The stress intensity factors for crack problems involving

arbitrary surface tractions may be found from those of a known problem.
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With reference to Fig. (5.4) the stress intensity factors for a crack

having concentrated normal and tangential forces (P) and (Q) is given

by, [51]:

Ko Koot B SEE  pesl  fohars (5.38)
Equations (5.38) may be used as the fundamental Green's function
for generating a solution to a crack problem having surface tractions

oy(X,O), and TXY(X,O).'Letting:

P=g d :
oy X (5.39)

Q= Txy dx (5.40)

and integrating from (X = -a to a), the KI and KII expressions

for a crack subject to arbitrary loads on the upper surface®are:

1 4 a+x 1 e
Ky = [ o, /J—dx + o . ax (5.41)
L on/a a YVaX 2nva ~a ¥
1 k=1 2 1 2 at+x
Kwe = (=) [ o, dx + [ T, J— dx (5.42)
BE 2k Tt Y 2n/a -4 Y YATX

If the Toads are balanced on the upper and lower crack surfaces,

then equations (5.41) and (5.42) reduce to:

g 1 4 : at+x
E & Kool & i = am d 5.43
gt Sl ;’ Lo, it diss o | (5.43)
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Sih, [43], and Erdogan, [52], applied this approach to obtain a
solution to the problem of a plate with a finite crack with concentrated

loads (P) and (Q) and a concentrated couple (M) applied at an arbitrary

point.

5.4.4 Integral transforms and dislocation models

The elastic problem is considered as a mixed boundary value
problem and solved using standard transform techniques. These methods
reduce to the solution of an integral equation of the form:

a
] K(S,X)q(s)dS = L(x) (5.44)
=g

L(x) = The known stress along the crack site

in the uncracked body.

K(S,X) = known Kernel.

q(S) = unknown function

The function q(S) is related to the derivatives of the relative
displacement v(X,0) of the crack face by, [46]:

E 3v(X,0)
2(]_U2) X

= q(x) (5.45)

Thus, knowing q(x) enables the stress intensity factor to be found

K. = Lim [VZr(a-x) E 3v(X,0) ] (5.46)
a 2 ax
X-a 2(1-v")
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The problem of a star-shaped crack subjected to internal pressure
was solved by this method using a series expansion of (q), [53]. Radial

cracks in discs and cylinders were also solved, [54].

Another class of problems in which the crack is represented by a
continuous distribution of dislocation singularities, Fig. (5.5), leads

to an integral equation similar to equation (5.44).

The density of this distribution (Di(S)) is related to the
Berger's vector (bi) as:
b, =/ D.(S)dS (5.47)
where .

S = path around dislocation distribution.

The crack configuration in Fig. (5.5a) can be modelled by a
continuous array of dislocations of density (Dy(S)) 1yfng along

(y = o), |X|<a, having Berger's vector:

Dy(s) ds (5.48)

by = g

These dislocations cause stresses along (y = o) given by, [46]:

a
Dy(S)dS

O‘ -0 = 1 4

A g X q(l4k)

-a
And

.. =0 (5.50)
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Applying the boundary conditions on (y = o), and in order that the
displacements be single valued in the crack problem, the net Berger's

vector must be zero, i.e.

? Dy(s)ds 2 0 (5.51)

It may be shown that the stress intensity factor can be determined

from, [46]:
SRR i N (CRSLE N9 (5.52)

5.4.5 Force-displacement matching

This method is used in configurations having different
materials. The forces and displacements are matched along the
boundaries joining the materials, It has been used to determine the

stress intensity factors for cracks in stiffened sheets, [55].

5.4.6 Alternating method

This method uses existing solutions of simple crack
problems to construct approximate ones to a more complicated range.
This is done by superposing the known solutions of component problems,
each satisfying boundary conditions on a portion of the boundary. Its

application to two dimensional problems has been made by Irwin, [56].

5.4.7 Assymptotic approximation

In some crack problems, solutions can not be found for
arbitrary values of the physical parameters, although they are

available for specific values of them. This method relies on solutions
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at both ends of the range of certain parameters such that a satisfactory
interpolation can be made for intermediate values of them. This method
has been used to find the stress intensity factors for finite width

sheets with cracks under tension, [57].

5.4.8 The finite element method

A11 the methods for computing stress intensity factors
previously described are appropriate for problems with simple geometries
and loadings. The finite element method, described in chapter (3), is
capable of handling the more complicated problems and can easily model
arbitrary crack configurations. It is convenient to divide the appli-
cation of the method to fracture problems into two groups. The first
relies on standard finite element programs and makes no special
provision for the crack tip singularity. In the second, special crack
tip finite elements are used, which incorporate the solutions for the
singular stresses and displacements at the tip of the crack.

A ) Standard finite element computer methods

i) The stress method: As this method does not make provisions
for the crack tip singularity, a fine mesh is needed to represent the
stress field near the crack tip. The appropriate nodal point stresses
obtained by the finite element method are substituted into equations
(4.9), and the relevant stress intensity factor is obtained by the
proper choice of the stress components (Gij) and the angle (8). For
example the mode I stress intensity factor may be determined from cy
at a small distance r from the crack tip and an angle 6= 0. However,

results obtained by this method were found to be unsatisfactory,[24].



Bl -

ii) The displacement method: As the primary unknowns in the finite
element displacement method are the displacements, while the stresses
are obtained by differentiating them and applying the relevant
elasticity relations; it seemed that better results may be achieved by
using the displacements obtained from the finite element method. The
relevant stress intensity factor may be obtained by substituting the
appropriate displacement components (“i) and angle (8) in equations
(4.10). If these equations and the displacement components (ui) are
exact, a unique value of the stress intensity factor is obtained.
However, neither condition is fulfilled, especially that regarding the
values of the displacement components, which is due to the fact that
no provision was made for the crack tip singularity. Therefore, instead
of attemtping to find single exact values for the stress intensity
factors, several values are evaluated at a number of points close to
the crack tip and are plotted versus their distance from the tip of
the crack. Such a curve becomes linear some distance away from the
crack tip, [24], and by extrapolating the linear portion to the tip

point, a better estimate of the stress intensity factor is obtained.

It was shown that the distance from the crack tip at which the
curve becomes linear decreases as the fineness of the mesh is increased;
and in the specific problem considered by Chan, [64], a (KI) value (9%)
below the theoretical obtained from a coarse mesh was improved to (5%)
below with a fine one. This method was used to solve mode I problems
by Chan et al.,[57], mixed mode I and II problems by Kobayashi et al.,

[58], and three dimensional problems by Miamoto et al.,[59].
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The method's accuracy was improved further by adding a second term
to the leading one in the series expansion of the crack tip displacement
formulae (4.10). This led to the extension of the range of the validity
of the formulae, and by calculating (uf) and (us) displacements at a
pair of adjacent points (Appendix 10.2) values of ‘Kys Kyps @95 and oy
were obtained. The values for the stress intensity factors obtained
for several points are plotted versus their distance from the crack tip,
and were found to exhibit a maximum. This maximum value was found to
be a better estimate of the stress intensity factor than that obtained
by extrapolating the linear portion of the curve. In the specific
problem solved by Oglesby and Lomacky, [24], results were of the order

of (1 to 5%) below the theoretical value.

iii) The energy methods: It may prove to be more advantageous to
calculate the stress intensity factors from energy estimates near the
crack tip. This way the accuracy of the solution is less dependent
on the values of displacement or stresses obtained near the tip of the
crack and a coarser mesh will yield equivalent accuracy. Also there
will be no need to extrapolate (KI) curves for which there is no
theoretical justification. The energy approach may be implemented by
using the following methods:

a) Compliance calibration: It has been shown that the energy

release rate (G) is related to the compliance (C) by equation

(5.6). The compliance of cracked structure which is the

reciprocal of the stiffness is calculated by finite elements for

different crack lengths, [60], the energy release rate dU/dA is

then calculated, from which (KI) is evaluated using equation
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(5.7). The (KI) values for a centre crack strip problem was
evaluated usihg this method, [61] and its value was found to be

within (5%) of that obtained by boundary collocation.

b) Crack closure work: This method calculates the amount of work
required to close succéssive nodal intervals along a crack,[62].
The displacement of the first nodal point along the crack face
from the tip is calculated with all the boundary conditions
applied. By applying unit loads to this node, the work required
to close the crack over nodal intervals can be calculated. A
graph of the closure work done versus crack area is plotted and
the strain energy release rate (G) is determined from its slope:
the (KI) value is then determined from (G) as in the method
described previously in (a).

c) The J-integral method: Rice defined a line integral (J),

along an arbitrary contour (r) surrounding a crack tip, Fig.(5.6)

by, [63]
au
r
where

U = Strain energy density

T = Traction vector along the outward
normal to the contour.

u = Displacement vector on an arc

element (dS) along arc (S).

Having determined U, T,and gﬁ- along the chosen contour by finite

element, the integral is evaluated in a counter-clockwise direction
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starting at the Tower crack surface. He has shown also that (J) is
equal to the strain energy release rate (G), hence (KI) can be

evaluated from it. In a mixed mode situation, it was also shown that:

2
= 1Ev (KI2 - KIIZ), plane strain (5.54)

[
I

(KI2 + KIIZ), plane stress (5.55)

mj—

Therefore the sums of the squares of (KI) and (KII) can be

determined, but not KI and KII separately.
The (KI) value for a compact tension specimen was evaluated by
this method, [64], and was found to be (35%) lower than that obtained

by boundary collocation.

B) Special crack tip finite element methods

A1l the methods discussed previously use a standard finite
element program, with a fine mesh near the crack tip, to determine the
stress intensity factors; and with the energy methods requiring less
mesh fineness. However, the major disadvantage to these methods, is
that their monotonic convergence to the true solution is not assured.
It has been shown that errors adjacent to points of singularity are of
the same order as those of the remainder of the elements, hence their

effects extend over a finite region around these singularities, [65].

The Targe computer storage required, together with the lack of
accuracy due to extrapolation, plotting, and bad convergence justifies
the use of another approach with specially constructed elements at the
crack tip in which the singularity condition. is built into their displace-

ment functions.
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i) Byskov's element: Bys kov proposed a polygonal element
containing a linear crack, [66]. The specific shape applied was triang-
ular with a straight crack extending from one vertex tolthe interior,
Fig.(5.7). The displacement terms used for the element were obtained
from Muskhelishvili's complex stress function in terms of a power series,
[42]. The number of terms of the series retained is eqha1 to the number
of degrees of freedom of the element. Although equilibrium conditions
are satisfied within the element and the crack face is traction free,
incompatibility along the interface with neighbouring elements exists.
There can be no control over the influence of this incompatibility, as
only three conventional elements can sﬁrround the Bysokov's one. The
stiffness matrix of the element is determined numerically and values

of KI, KII and nodal points displacements are obtained directly.

ii) Tracey's element: In Tracey's approach, the near tip displace-
ment field is represented with the same accuracy as that away from the
tip, by using quadrilateral isoparametric elements, [67]. The crack
tip is surrounded by triangular elements, Fig. (5.8), and to achieve
this two of the nodes of the quadrilateral element are made to coincide
Fig.(5.9). The elements in the(x,y) coordinates are mapped to a square

in the (z,n) auxiliary coordinates system, Fig.(5.10), by the trans-

J‘x} Xy X3 Xo Xp z(1-n)

a8 Yo Yp Zn (5.56)
(1-z)n

(1-z)(1-n)

formation:
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Thus along each edge of the element one of the auxiliary co-
ordinates is constant and the other varies linearly with respect to
(X) and (Y). The displacement functions within an element have the

form:

UX(C,T]) = a]'] * a]zc + 0-13” 2 &14CT1 (55?)

Vy(Csn) i 32] * szc + a23n + a24Cn (5.58)

Where the constants (aij) are expressible in terms of nodal

displacements.

These displacement functions satisfy the compatibility conditions

and are continuous across element boundaries.

The quadrilateral elements are used everywhere except very near
the crack tip where the special triangular element is employed and whose

displacement functions are of the form:

3 3
3

Ux(can)

3
vy(zsn) = 8py + Bpoz® + Byatn (5.60)
Where (Bij) are determined from nodal values of displacement
components. The line segment, z = 0, in the auxiliary plane corresponds

to the crack tip.

The displacement functions given in equations (5.59) and (5. 60)
result in compatibile displacements between adjacent triangular elements

and between them and the quadrilateral ones also.
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The nodal point displacements and stresses are obtained from the
finite element solution and from them the values of KI and KII are
evaluated as described previously in the displacement and stress methods.
The problem of a double notched edge plate under tension was solved by
Tracey using this method. He averaged the values obtained for (KI)
from the displacements of the first ring of nodes surrounding the crack
tip, and the results were within (4%) of the exact value for (248)

degrees of freedom and (2.9%) for (548) degrees of freedom.

iii) The singular isoparametric element: Elements which embody
the inverse square root singularity were developed independently by

Henshell, [68], and Barsoum, [69]. Their shape functions Ni(;,n) are

aN. aN.
polynomials and hence, (531) and (§ﬁl) are non-singular. The strains
may be written as:
(e} = [317'[8(z,m) Juy) (5.61)

where

[B(z,n)] = The strain displacement matrix.

Elea
{ui} {‘1} = nodal displacements

i

(J]

Jacobean matrix defined in section (3.4)

The singularity can be achieved by making [J] singular at the crack

tip, this implies that (det.[J]) vanishes at the crack tip:
- a(x,y)
det[J] = ﬁg—ﬁy (5.62)

For a six node isoparametric triangular element, Fig.(5.11), the

singularity is investigated along the x-axis, (n = 0).



crack
tip

Fig. 5.1l
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. - = - - = - L
Choosing X1 =0, Xz = X, = X = Ly X=X i

It can be shown that, [69]:

—

(;2 +t2t +1) 7 (5.63)

-1+ 2//§'] (5.64)

The term %%-in the Jacobean is:

%=%(1+;) =./t&— (5.65)

which makes the Jacobean singular at (X =0, ¢z = -1).

X

s

Therefore

i |
n

Although the strains and stresses in these elements are singular,
their total strain energy is finite and hence their stiffness. These
elements satisfy compatibility, continuity, and convergence requirements.

They also satisfy constant strain and rigid body motion conditions.

A ring of these elements surrounds the crack tip and the stress
intensity factors are obtained in the same manner as that followed by
Tracey in the previous section. The same problem of a double edge
notched plate under tension was solved by this method, [69], and the
results for (KI) were within 1% of the exact value for (700) degrees

of freedom.

iv) The hybrid element: Tong, Pian and Lasry, used the hybrid
element concept and the complex variable technique to construct a

special super-element at the crack tip, Fig. (5.12). This element
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is used jointly with ordinary elements elsewhere. The super-element
incorporates the crack tip singularity, and good results were obtained

from a coarse mesh near the tip, [70].

A hybrid functional was defined for a plane problem with tractions

(Ti) over boundary (Sc) and displacement (Gi) over boundary (Su) as:

l'fm = nE'| m (5.66)
where
mo= afﬂ: (’Ji - uy)T.ds '(é : u; T, ds
m o’'m
+ ﬁ [Gij(ui,j + “j,i) - SijkldijokﬂjdA (5.67)
m
where
A th
Am = area of the m™ element.
BAm = boundary of Am
Sijkg = compliance coefficients

u. and Gij are defined in Am

Ti and’;i are defined over aAm

~ -~
u; = u; over (Su)

' -(Sc-)m element -SLi,r""j'a(,'e where trac tions prescribed
Using Mushkelishvili's complex stress function, and to account

for singularities by choosing proper displacements and stresses for the

crack element, the following mapping function is introduced:

- (5.68)

Z=Wz)=¢
or

g o 78 (5.69)
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Writing the two complex functions required for Mushkelishvili's

method as:
N
o(z) = £ by (5.70)
J=i
s T i
W(z) = £ [by(-1)Y + % bz (5.71)
j=1 J J
It may be shown that, [70]:
KI = /2(81) (5.72)
K?I = /2(8N+1) (5.73)

This method has been used to solve the problem of plate with edge
crack and central crack, and the results for the stress intensity
factors obtained directly by the relation between the displacements and
(g) stated in, [70], gave good accuracy for a small number of degrees

of freedom.

v) Blackburn element: Blackburn developed a trtangular element
with the (/r) singularity built into its displacement function which

is given by, [71]:

(b2C + b3ﬂ)

T T (5.74)
Yy i

U(C,ﬂ)= b} +

Which is equivalent to a constant strain triangular element and:

(62: 3 C3n + C4Cﬂ)

u(z,n) = C, + (5.75)

VR
which is equivalent to a linear strain one.

where z & n = Area coordinates.
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These elements were inserted into the C.E.G.B. stress analysis

system BERSAFE and the problem of a rectangular centre cracked strip

in tension was solved by them. With (4) elements surrounding the crack
tip, the stress intensity factors were obtained from the displacements
similar to Tracey's method. The results were found to be very accurate
compared to those obtained by Paris and Sih, [72]. It was noted that
these results obtained by using linear strain elements having (1786)
degrees of freedom were more accurate than those using constant strain

elements having (480) degrees of freedom, [32].

vi) Hilton and Hutchinson method: This method was developed by
Hilton and Hutchinson to evaluate elastic plastic stress intensity
factors KI and KIII’ [73]. Wilson used this method also to evaluate
the elastic stress intensity factor KIII’ [74]. The phiTosophy behind
this method is that the assymptotic expansion becomes more accurate
as the singularity is approached, while finite element approximation
is accurate everywhere else. Thus a combination of these two tools,
each in the region where it is most accurate, will yield a good
solution to the problem. The present work is based on the development
of this method to solve single and mixed mode fracture problems of
axisymmetric solid, therefore the method will be illustrated by using
the axisymmetric problem of a round solid bar of radius (R) containing
a circumferential crack of depth (C) and subjected to uniform axial
tension. The specimen geometry is shown in Fig. (5.13). A core of
radius (RC) is constructed around the crack tip defining a boundary
("), and in view of symmetry, only a quadrant of the upper half of the

cylinder is shown in Fig. (5.14).



Fig. 5.13
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It is assumed that when the ratio of (RC/C) is very small compared
to the crack depth (C), the conditions of plane strain prevail within
the core region, [24]. This assumption may be justified by inference
from the existing analytical solutions for embedded flaws in an infinite
medium, [75], for the through cracks in finite thickness plates in the
region close to the crack border on the interior of the plate, [76],
and from the numerical solutions for surface cracks in finite thickness
plates, [77]. Another justification can be sought from the numerical
results of strain components of elastic plastic analysis of a round

notched bar obtained by Tracey,[78].
The displacement components in the core region are given by
equations (4.10). These equations represent constraints on the nodal

points of the first ring of trianqular elements which fall on (T).

The potential energy of the upper half of the cylinder is given

by:
PE = SEcore ®p SE - Towds (5.76)
EL
where:
SEcore = Strain energy of the core
EL SE = strain energy of all elements outside the core
I/T.udS = Work done by traction vector (T) on the surface
S

displacement vector (U).

The core strain energy is given by, [24]:

ak s
S A 6 945 45 AV (5.77)

1
= 7 380 g [(R-C)(5-20)4r(} - YK, (5.78)
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Hence, the stress intensity factor (KI), the rigid body displace-
ments (8#), and the nodal displacements vector {“i} become generalized
coordinates. The governing linear algebraic equations to be solved for
Ky « ér and {Ui} are obtained from the minimization of the potential
energy equation (5.76). It must be observed that the problem is not
a free variation one because of the constraints implied on the nodes
on (I') by equations (4.10). This aspect will be discussed in more

detail in Chapter 6. Now:

ﬁ: 0 (50?9)
aPe

5 = 0 (5.80)
aPE ]

s-u-'—= 0 g Ty B ees i N (5-8]]

where: N = total number of unconstrained degrees of freedom.

The continuity of displacement at the interface (I') between the
core and the neighbouring triangular elements is not fully satisfied,
compatibility is assumed only at the nodes, and hence monotonic
convergence to the exact solution cannot be expected. However, the
number of nodes on the core, and therefore the number of elements
surrounding it, can be increased to reduce the discontinuity of
displacements to an acceptable level. A further improvement may be
achieved if linear strain triangular elements are used outside the
core, as in the present work,because their quadratic displacement
function is closer to the core's than the linear one of the constant-

strain elements.
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The advantages of this method are:

1. The simplicity of incorporating the core treatment
within a standard finite element program.

2. Separation of KI’ KII’ and KIII for combined mode
analysis.

3. The stress intensity factors are obtained directly
from the program.

4, Possibility of extension to elastic-plastic, plastic,

and different material properties.

This method will be used to solve all the fracture problems
considered in this thesis and isdiscussed in more detail in the

following chapters.
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CHAPTER 6

MODIFICATION TO THE FINITE ELEMENT FORMULATION

TO INCORPORATE A SINGULAR CORE

6.1 Introduction

In has been shown in Chapter 5 that, even with a fine mesh, the
application of a standard finite element program to fracture problems
does not yield accurate results. Incorporating a special crack tip
element or a core subregion, with the crack tip singularity embedded
in their displacements functions, will improve the results and reduce
the number of elements required to idealize the structure. The Hilton
and Hutchinson method, which uses a special core element around the
crack tip, was discussed briefly and its advantages over other methods
were shown in section (5.4.8). This chapter will be devoted to the
description of the modifications required to a standard finite element
program to incorporate the Hilton and Hutchinson type of core element.
There are other methods than the one described for synthesising the
singular core and finite element mesh: Richards method utilizing

Lagrange Multipliers is an example, [79].

6.2 Modification to the finite element formulation to include the

Hilton and Hutchinson type core element

Considering a solid circular bar with a circumferential crack

inclined at an angle (8), Fig.(6.1). The crack tip is surrounded by
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a circular core of radius (RC). The displacement components in the
core region are expressed as a series expansion, (Appendix 10.2), in

the form:

o
u

K; f(r,8) + Kit g(r,e) + a1h(r,e)... (6.1)

u

Y KI 2(r,8) + KII m(r,8) +u 2n(r,a)... (6.2)

where: f(r,8)...etc. are given in (Appendix 10,2)

Writing equations (6.1) and (6.2) in matrix form:

{U}c = [N]C{a}c (6.3)
where:
[N]. = matrix of functions f(r,8)...etc.
¢ (6.4)
{a}c = Vector of unknown parameters,
KI’ KII’ g oia s a BEC,
Within the core, the strains are related to the vector {a}c
(Appendix 10.2) by:
{s}c = [B]C{a}c (6.5)
Using the stress-strain relationship
{0}c = [C]{e}c, (6.6)

the strain energy of the core is then given by:

=
(2]
1]
| —

! {c}g{e}cdv (6.7)
v .
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Therefore
U, = lalt (ﬂ [(B1%[CI[B] AV) (o, (6.8)
or ¢
U, =ala} IK] (o) (6.9)
SR el i :

The shape of the core is arbitrary, but a circular core is chosen

to simplify the integration required to form [K]c.

The total potential energy of the solid is given by:

PE=U_+2 U_-@Q (6.10)
O ULEL &E
where

=
u

£ Strain energy of elements outside the core.

=
"

Potential energy by the traction vector on

the surface displacement vector.

Equation (6.10) may be written as:

PE = »{a}F[K] fa}, + 2a}PIKICq}-(q} Q) (6.11)

The (a's) and (g's) are not independent because the (q's) on the
interface (') are related to the (a's). Therefore, it proves convenient
to partition {q} into {q1} which corresponds to the nodal displacements
on (T') and {qz} which corresponds to the nodal displacements of the
remainder of the mesh. The stiffness matrix [K] and load vector {Q}

are partitioned similarly, i.e.
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(ay) Q,] T gl
(a) = GE , [K] =
{qz} {Qz} [KZTJ [Kzzlj
(6.12)

From equation (3.16), the vector of nodal displacements on (T)

may be expressed as a function of (a) as:

{a} = [Al{al, (6.13)
where

[A] = matrix of function f(r,8)...etc. evaluated
at the node on (T).

and

{a}" = {a}[AT" (6.14)
Substituting back in equation (6.11) yields:

e o, o, + ortalto T,

+ el SIATTK 00,0 + 20y} Ky, IATCa),

gt %{qZ}t[Kzzj{qz} i {Q}EEA]t{Q]}
- {g,1%10,} (6.15)
The variation (8(PE)) is found by treating the (a's) and (qz's)

as free variables which may receive arbitrary independent increments,

therefore, for equilibrium:
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5(PE)= 0 = {a}*[K] {a}, + {8a}([AI°[K;{1(AD) (a},
+ LsadbraTt K. o 10a, + darb[ATCIK, L 1080,
et 124197 T i, 1241°9

+ 180,} [y, JATCa} _ + Ha,3[Kyy JTATCS0D

+ (80, Ky, 1{a,}-{8a} TAT %10 }
- {80,310} (6.16)

As [K] is symmetric so that:
[Kyp] = [K21]t, (6.17)

and matrix products of the type %{a}g[A]t[K12]{5q2} are scalar so that:
o} TAI[K ,1060,} = (3HadCAT*(K,160,1)"
= 1160, 1t 1K, 1[AT{a} (6.18)
2 e 21 £ 3

then,

S(PE) = 0

{6a}§[lK]C{a}c + ([A]t[K1]][A]){a}C

+

[AI°[K,,](a,} - [A]t{Q1}]

+

(89,3 [ [Kyp10a,3 + [KppI[ATC},

- {02}] (6.19)

Since {Ga}c and {dq,} are arbitrary, equation (6.19) yields two

simultaneous matrix equations of equilibrium:
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[Kyp1{a,} + [Ky I[ATMal, - {Q,} = O (6.20)
[K] o}, + ([AI[K;1AD e}, + [AT*[K),]Mq,)
-[A1%0,3 = 0 | (6.21)

These equations may be written as one re-formed stiffness matrix

and load vector of the form,

[K]* fq}* = {Q}* (6.22)
g4 =
(K] (IR, J0AD) 1 [tay (0,1
o P e ot R Ll SR O —— ) = (= = =\ (.23)
([AT*TKy 1) :([K]C+[A]t[1<”][ﬂ«] (ah, | |(TA1%Q)M

-

Equation (6.23) shows how easy it is to modify a standard finite
element program to include a "core" element. The overall stiffness
matrix and load vector are altered as described in the previous steps
and the solution proceeds normally after that. The numerical implemen-
tation of the operations described in this chapter will be discussed

in Chapter 7.



- 108 -

CHAPTER 7

COMPUTER PROGRAM PROCEDURES

7 i | Introduction

The development of a computer program solving fracture problems
of axisymmetric solids using the finite element method and incorporating
the special core element of Hilton and Hutchinson was carried out in two
stages. The first stage was to develop a general finite element program
using a six node isoparametric ring element to solve problems of axi-
symmetric solids subjected to axisymmetric loading. To simplify the
structure of the program, it was divided into substructures (procedures)
each performing a stage of the solution. Procedure (STRDIS) formulates
the strain displacement relations, and the computer code for the
constituitive relations is given in procedure (CONSTREL). The boundary
conditions are applied by means of two procedures: (LOADING) which deals
with the applied loads, and (BOUNCONST) which deals with the prescribed
displacements. It is noted that a large number of elements is required
to yield a reasonably accurate solution, hence the computer storage
needed for the overall stiffness matrix is large also. Jennings and
Tuff, [82], developed a scheme to store this matrix as a one dimensional
array, retaining the coefficients between the first non zero term in any
row and the leading diagonal, as the matrix is symmetric. To achieve
this a special address sequence is used which allocates the appropriate

place for each element of the overall stiffness matrix in its two
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dimensional form in the one dimensional form. This sequence was
programed and used by Robertson and a detailed description of it is
available in his Ph.D. thesis, [9]. Robertson's procedure (ADDARRAY)
was used together with procedure (ASSEMBLY) to evaluate the element
stiffness matrix by performing the integration required numerically,
and assembling the overall stiffness matrix as a one dimensional array.
The set of simultaneous linear equations [K]{q} = {Q} is solved for the
unknown displacement vector {q} by procedure (SYMVBSOL). The output
procedures (NODSTR) and (ELESTR) evaluates the strains and stresses of
nodal points and element centroids respectively. The computer code
developed for the automatic mesh generation and the specification of the

prescribed nodal loads and displacements is given in procedure (FEINPUT).

The second stage of the development of the computer program
involved augmenting the general program obtained from the first stage to
incorporate a Hilton and Hutchinson type of core element. This implied
changing the input‘procedure to generate a core around the crack tip
with a specified number of nodes on it and subdividing the remainder of
the structure in the normal manner. It is noted that in mode (1)
fracture problems, the structure and loading are symmetric with respect
to the crack plane, hence only a semicircular core is required; while a
full circular one is needed for the mixed mode (I) and (II) problem.

The computer code for the mode (I) input requirements are given in
procedure (CCRINPUT) and those for mixed mode (I) and (II) in procedure
(MMINPUT).  The shouldered bar problem has a purpose-built input
procedure similar to that of mixed mode (I) and (II) but accommodating
the variation in fillet radii required, and is given in procedure

(SBINPUT).
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The other change implied by incorporating a core element is the
modification of the overall stiffness matrix and load vector described
in Chapter (6). A computer code for these modifications was developed
by Robertson for two dimensional plane strain and plane stress probleﬁs
and is discussed in,[9]. Two procedures somewhat similar to Robertson's
were developed for mode (I) and mixed mode (I) and (II) axisymmetric

problems which are (CCRMI) and (CCRMM12) respectively.

Procedures (KARMIBND) and (KARBDMMST) check the array bqﬁds and
expands them if necessary to allow for the modifications of the overall
stiffness matrix and load vector for mode (I) and mixed mode (I) and (II)
problems respectively. It will be seen later that the displacements
obtained from solving the set of simultaneous linear equations may be
used to check the conditioning of the equations by resubstituting them
back into the equilibrium equations and obtaining a new force vector
{Q}*.  The computer code to perform this is given in procedure (RESIDUAL).
Sih's strain energy density criterion will be used later to determine
the direction of crack initiation. It requires finding the angle which
minimizes the strain energy density function given by equation (4.24).
The standard procedure (E04AAA) from the Nottingham algorithm group

Library is used for this purpose.

A detailed description of these procedures will be presented in
the following sections of this chapter, and the programs incorporating
them together with input instructions and sample problems will be listed

in Appendix (10.4).



et

7.2 Procedure (STRDIS)

This procedure evaluates tEe coefficients of the [B] matrix relating
the strains to the displacements, and the Jacobean matrix [J] and its
determinant described in section (3.4), at various points within each
element.  The number and location of these points is specified by the
numerical integration technique and its order chosen to solve the
problem. In solving the axisymmetric problem by finite elements,
computational problems arise from the calculation of the hoop strain
(u/r) for elements with one side coinciding with the axis of revolution.

The relation between the natural local coordinates and the global ones

is given by:
- .
] {1.3F
2 t i
ro= {ri} {Ni(L1,L2,L3)} § = 132,..:0 (7+1)
z | {Zi}t -

where

Ni(L1,L2,L3), i=1,2,...6 are given in equations (3.2.1).

Therefore

e roNy + 1Ny + raNg + roNe + reNg (7.2)

For an element with one side coinciding with the axis of revolution,
the (ri) values of the three nodes on that side are zeroes. The remain-
ding three terms defining (r) are all functions of one of the natural
coordinates L1,L2 or L3 depending on the node numbering sequence of that
particular element. When the value of this natural coordinate is zero
for a particular point of integration, the whole value of (r) is reduced

to zero, To overcome this, the (r) value for such elements is taken as

a constant and is equal to the average of the six (ri) values of the nodes.
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The following steps are taken to formulate the [B] matrix:

* 1. The coefficients of the Jacobean matrix [J] are determined
from equation (3.27), the determinant and inverse of [J]
are evaluated, and the coefficients of [J] are replaced by

those of [J]'1.
2. The shape functions given in equation (3.21) are stated.

3. A code is introduced to distinguish between hollow and

solid structures,

4, The radii values required for computing hoop strains and
numerical integration are evaluated as described

previously in this section.

5. The coefficients of the [B] matrix are evaluated from

equation (3.33).
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Procedure STRDIS Flowchart

12

JLT,11:=XINLZ,1T]*(4*L1-1)+
XIN[Z,3]]*(4*L1+4%L2-3)+
4*L.2*X[N[Z,4]]-4*L2*X[N[Z,5]]
+4*X[N[Z,6]]*1-2*L1*L2)

J[1,27:=Y[NLZ,111*(4*L1-1)+Y[N[Z,3]]
*(4%[1+4*2-3)+4*L2*Y[N[Z,4]].
4*L2*Y[N[Z,5]]+4*Y[N[z,6]]
*(1-2%L1-L2)

J[2,1]:=X[N[Z,2]]*(4*L2-1)*X[N[Z,3]]
*(4%L1+4%.2-3)+4*L1*X(N[Z,4]]
+4*X[N[Z,5]]*(1-L1-2*L2)
-4*L1*X[N[Z,6]]

J[2,2]:=Y[N[Z,2]]*(4*L2-1)+Y[N[Z,3]]*
(4*L1+4*L2-3)+4*L1*Y[N[Z,4]]+
4*Y[N[Z,5]1*(1-L1-2*L2)
-4*1+Y[N[Z,6]]

'U:=d[1,11%[2,2]-9[1,2]*%3[2,1]

CHANGE :=J[1,1]

J[1,11:=d[2,2]/U
J[1,2]:=-d[1,2]/U
J[2,1]:=-0[2,1]/U
J[2,2]:=CHANGE/U

NLL1]:=L1%(2*L1-1)
NL[2]:=L2*(2*L2-1)
NL[3]:=L3*(2*L3-1)
NL[4]:=4*L1*L2
NL[5]:=4*L2*L3
NL[6]:=4*L3*L1

l




= T8

No

SOLID=0

Yes
C:=1 C:=(2*ER)+1

|
\ No

SOLI%

Yes

RMEAN:=(X[N[Z,1]]+X[N[Z,2]]
+X[N[Z,3]]+X[N[Z,4]]
+X[N[Z,5]1+X[N[Z,6]1])/6

— o — o — —

— = = <sU:z:=C (1) eLeMr >

RAVG:= 0.0




P[I,1]:=d[I,1]*(4*L1-1)
P[1,2]:=d[I,2]*(4*L2-1)
P[1,3]:=0[I,1]%(1-4*L3)
+J[1,2]%(1-4*L3)
PLI,4]:=4%(L2*J[1,1]+L1*J[I,2]
P[I,5]:=4*(J[1,2]*L3

PLI,6]:=4%(J[1,1]*L3
-L1*(9[1,1]*J[1,2]))

&

|

l

I

|

l

| -L2*(J[1,2]*J[1,1]))
|

s

- -< N it e
1.2 .4 >

_]
|
|

/\

|
i B[V,I]:= 0.0
I

mtudolley TN IET I TV B

| BTT, (1%2-1)1:=B 4, (1*2)1:=P[1.1]
B[4,(I*2-1)]:=B[3, (1*2)]:=P[2,1]

I B[Z,(I*Z-T)]FNL[IJ/RAVG

i o T

END
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7.3 Application of boundary conditions

The two types of boundary conditions considered are prescribed
loads and/or displacements. Their directions should coincide with the
global axes, and hence an inclination in the direction with respect to
them must be resolved manually and the components in their direction

are inputed. Non zero as well as zero displacements can be imposed.

7.3.1 Procedure LOADING

This procedure deals with the applied load which may either
be nodal point-loads or distributed loads. In the case of nodal point-
loads, a code is introduced to distinguish between loads in the (z)
and/or (r) directions. The value of the prescribed nodal load on a
node (N) is assigned to row (2N-1) or (2N) in the {Q} vector depending

on its direction,

A distributed load is best represented by nodal loads which produce
equal work on the structure to that by the distributed load. Consid-
ering a linearly varying force intensity P(gB) acting on face (B) of
the element shown in Fig.(7.1). The force per unit length is
(ZwrP(EB)). If (Rp) are the nodal loads statically equivalent to
P(gB), then when virtual node displacements (rB) are produced, the work

done by these nodal Toads must be equal to that done by the distributed
Toad P(gB).

t < t
[R 1 trg} = J(PY{rg}ds (7.3)
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The distributed load may be resolved into two components in the
(r) and (Z) directions Pr(EB) and PZ(EB) vary as a polynomial of order
(n), then the values needed to specify it will be (n+1), hence for
convenience the variation will be assumed parabolic. Therefore, the

values specified at the (n+1) nodal points (Pr) and (PZ) are related

to P(EB) by:

Tt
P(Eg) CRAN P
P, (25) 0o to3f Lp

Z

{wp}t{p} (7.4)

The displacements on face (B) depends only on the nodal points on it,

hence

t
u(&g) {og} 0 Uy
rg(&g) = = :
w(EB) 0 {¢g} Wo
= { t

From equations (7.4) and (7.5):

R} = 1 (g Hup} Cds P} (7.6)
Hence:
Ror (6} {¢P}t 0 P
o . ds (7.7}
sz B 0 {¢B}{¢P} i
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and

{R -t

t
o} = £ loghlog)t ds P (7.8)

R}

t
é {¢B}{¢p} ds P, (7.9)

For the side (j-k) in the element shown in Fig. (7.1)

’
(R} = 2 gr{¢3}{¢p}t ds P_ (7.10)

If a linear variation of P(gB) is assumed on this side of the

element:
(03" = [L,(1-L,)] (7.11)
(g3 " = [Ly(2L,=1),(1-L,) (1-2L, ) 4L, (1-L,)] (7.12)
r = [L2(1-L2)] rj‘} {7.13)
e

and is a scalar multiplier of every term of {¢B}{¢p}t.

Hence,
. L2(2L2-1)
(R3= 2mty [ v 1(1-Ly)(1-2Ly) | [Ly(1-Lp)1dLP.  (7.14)
g5 =1 .
niT rd
{Rpr} = 30 rJ =1 1] + rk 1 9 2 (7.15)
rk
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For the case of a uniform pressure on the face parallel to the

z-axis:

rj = r, and Prj = Prk = Pr (7.16)

Therefore equation (7.15) becomes:

— - . -

ot 10

J ﬂzir.Pr
{Rpr} g Rrk 3 30 10
Crm 40

1

2nl.r.P
- ]5 r 1 (7.17)
4

The calculation of equivalent nodal loads is done manually, and
assigning each load to its appropriate location in the force vector is

done by the following steps:
1. Nodes with prescribed displacements in both the (r) and (z)

directions are bypassed.

2. A Tload in the (r) direction on node (N) is allocated to row

(2N=1) in {Q} and the one with (z) direction to row (2N).
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Procedure LOADING Flowchart

s YES

K:= 2*E

NO

D[K-1,F]:=D[K-1,F]+B

A#0 YES

No

KLAB2:D[K,F]:=D[K,F]+C

END
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7.3.2 Procedure BOUNCONST

This procedure deals with the prescribed nodal displacements which
can either be zeroes i.e, the nodal point is fixed in the (r) and/or
(z) directions, or a specified value. In the special case of zero
displacements, the corresponding row and column of the appropriate

degree of freedom are deleted from the system of equations.

For convenience, the nodal displacement vector {q} may be re-
arranged and partitioned so that
{qy}
iqr = (7.18)
{ag,}
where
{q1} = yvector of unconstrained nodal displacements

{q2}= vector of constrained nodal displacements

The system of linear simultaneous equations [K]{gq} = {Q}, is re-

arranged and partitioned accordingly so that:
t :
[Kiq]  [K,q1%] flag} (Q,}
= (7.19)
Kyl [Kppl | Uay) (Q,}
Equation (7.19) can be rewritten as:

Thq1  [OT] [lag}] [ 0g3-[Ky1%a,)
» (7.20)
1 [1]] Lgy {q,}
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The prescribed displacements {qz} are automatically inserted into
the Toad vector and the system is solved for the unknown displacements

{ql}.

The procedure inserts the prescribed displacement {qN} at the Nth

degree of freedom into the load vector by:

1. The column number (CJ) of the first non-zero coefficient

of row (N) in the stiffness matrix is determined.

7 The Toad vector is modified as:

Q; = Q; - Kiy 9y i@ 1,2,0..N {7.21)
and the rows of the stiffness matrix are modified from
column (CJ) to the leading diagonal as:
=

Kupy = K

NM MN

3. A check is carried out to ensure that (CJ) is not greater
than the degree of freedom being considered (N).
4.  The diagonal term of the stiffness matrix is made unity,

K = 1 : (7.22)

NN

and the prescribed displacement is inserted automatically

into the load vector.

Qu = 9y (7.23)
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Procedure BOUNCONST Flowchart

| CJ:=1 CJ:=N-- (A[NJ-A[N=1])+1

|

9 = ey --'<:;E}= CJ (1) N ::>

RLK,F]:=R[K,F]-AK[A[N]-N+K]*U
AK[A[N]-N+K]:=0.0

— — — — — — — —

Yes

N+1>NEQ
No

- — =< k=W1(1) NEg D>

CJ :=K-A[KJ+A[K-1]+1

No

CJ<N

Yes

RLK,F1:=RK, FI-AK[ALK]-K+N]*U
AK[A[K]-K+N]:=0.0

L e A

: AK[A[N]]:=1.0
4, R[N,F]:=U
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7.4 Procedure CONSTREL

This procedure generates the elasticity matrix [C] which relates
the stresses and the strains for the two cases of isotropic and aniso-
tropic stratified materials discussed in section (3.5). It is called
independently for each element so that inclusions of different material
properties can be included anywhere in the structure. The following

steps show how this procedure achieves this objective for any element:

1. A code is read to distinguish between an isotropic or an
anisotropic stratified material.

2. The elasticity constants for an isotropic material are
read as:

B, vy B BV

the E and v are read twice to give a regularity of
presentation with the anisotropic case, and for an
anisotropic stratified material they are read as:

Eps Ypr jige s ¥

3. The elastic constants are outputed.

4. The [C] matrix for an isotropic material is formulated
according to equation (2.24).

5. The [C] matrix for an anisotropic stratified material
is formulated according to equation (3.38).

6. Due to symmetry of the [C] matrix only ten coefficients
are stored in an array Z[1:NMAT,1:10] in which these
coefficieﬁts for any given material are stored in the row

corresponding to that material's number.
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(_ CASE:=READ )

Procedure CONSTREL Flowchart

Fo- o< NIl >
(aciy:=remp )

MATNO=1

Yes

C PRINT. HEADINGS )

'y PRINT (MATNO,2,0) PRINT(A[1],0,3)
PRINT(A[4],0,3) PRINT(A[2],1,2)PRINT(A[5],1,2)
l
C14:=C24:=C34:=0.0

No
CASE=0
Yes
4. C44:=A[3]
AL3]1:=A[11/((1+A[5])*(1-A[5]-2*(A[41/A[1])
*A[2]*A[2]))

C11:=A[3]*(1-A[5]*A[5])
C12:=C13:=C23:=A[3]*(A[4]/A[1])
*A[2]*(1+A[5])
C22:=C33:=(A[4]/AL1])*(-A[41/A1] FAL2I*A[2]*A[ 3]

@ |




()

P:=(1+A[2])*(1-A[2]-
2*(AL2]*A[5]))
C1:=A[1]/P
C11:=C12:=C*(1-(A[2]*A[5]))
C12:=C*(A[2]*(A[2]*A[5]))
C13:=C23:=(C*A[2])*(1+A[2])
C33:=C*(A[11/A[41*(1-A[2]
*Al21))
C44:=A[4]/(2*(1-A[5]))
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Z[MATNO,1]:=C

Z[MATNO,3]:=C
Z[MATNO,5]:=C
Z[MATNO,7]:=C
Z[MATNO,9]:=C

11

13
22
24
34

Z[MATNO,2]:=C12

Z[MATNO,4]:=C14
Z[MATNO,6]:=C23
Z[MATNO,8]:=C33
Z[MATNO,10]:=C44

END
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7.5 Evaluation and assembly of the overall stiffness matrix

7.5.1 Introduction

The overall stiffness matrix is sparsely populated and
symmetric, hence a big saving in computer space can be achieved by
storing only the terms between the first non-zero term in each row and
the leading diagbna] as a one dimensional array. This scheme is also
convenient because the method of solving the set of linear simultaneous
equations used requires these terms only, as will be seen in section
(7.6). To achieve this an address sequence was developed,[82], and
will be used in conjunction with procedure ASSEMBLY which evaluates
the element stiffness matrices, assembles the overall stiffness matrix,

and stores it as a one dimensional array.

7.5.2 Procedure ADDARRAY

The purpose of this procedure is to determine the coefficients
of an address array (ADD) which relates the overall stiffness matrix

coefficients in two dimensional form to their one dimensional form as:
K[i,j] = K[ADD(i)-1 + j] (7.24)

The size of (ADD) is from zero to the number of degrees of freedom
of the structure being considered, i.e. to the number of rows of the
overall stiffness matrix. Each coefficient of (ADD) is the accuma-
lative number of terms between the first non-zero term and the leading
diagonal in the overall stiffness matrix in all rows up to and including
the row corresponding to this coefficient. For a node (A), the
corresponding (ADD) coefficient is found by scanning the nodal connect-

ions of the first element containing node (A), and if the lowest node
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number in it is (B), the number of terms between the first non-zero
and the leading diagonal of that particular row is:

Number = A - B + 1 (7.25)

If in a later element a larger number was found for this row, it
will replace the smaller one so that the maximum number is found. These

numbers are then accumulated to give the coefficients of (ADD).

The following steps show how this task is accomplished:

1. For the first element, the nodal connéctions are compared
with each other to find the smallest node number, and the
number of terms between the first non zero one and the
major diagonal for each node in this element i.e. in each
row of the overall stiffness matrix, is calculated from

equation (7.25).

2. Step (1) is repeated for the rest of the elements, and
if the number of terms for a node was found to be greater

than the previously stored one, it will be stored instead.

3. The coefficients of (ADD) aredetermined from the numbers

evaluated by step (2).
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Procedure ADDARRAY Flowchart

F-—-<_"t2 06 >
I
|
|
|
|

—Q:ﬂ (1) NELEMT >

CH:=NODE[W,1]

NODE[W,1]
<CH

Yes

CH:=NODE[W,1]

¥ S U AP L

I

— — — — — —

 No

ADDTEMP :=NODE[W, 1]-CH+1

ATTEMP >

No

DD[NODE[W,I]*2

ADD[NODE[W,I]*2]:=ADDTEMP

T

CH:=2*ADD[2*1]
W:=2*]
ADD[W~1]:=ADD[W-2]+CH-1

ADD(W] :=ADD[W-1]+CH

e e e
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7.5.3 Procedure ASSEMBLY

This procedure evaluates the element stiffness matrices by
performing the integration involved numerically using Gauss quadrature,
then assembles the overall stiffness matrix as a one dimensional array
using procedure (ADDARRAY). It was shown in section (3.6) that the

element stiffness matrix is given by:

1 1-La
[Klg = £ ¢ [B]t[C][B]an‘det[d]dL]sz (7.28)
and that
' S5 '
I= Kﬁ J f(LysLysLs)dA ™ 151 WiF(Lysskosslsy) (7.27)

The order of integration, which affects the computing time and
accuracy of the results, was chosen to be gquadratic. This choice was
guided by the experience obtained by Robertson,[9], in solving several

L

two dimensional crack problems.

Applying the numerical integration to the element stiffness matrix

formula yields:

-

L (7.28)

(K], = 2mr I wi(([B]t[C][B])dEt[J])L1 .

=1 i*baye

which implies the evaluation of ([B]t[C][B])at the integration point

(i) and multiplying it by the weight coefficient (wi),

As each node of the element has two degrees of freedom, each co-
efficient of the element stiffness matrix is a (2x2) submatrix and the

displacement and force coefficients are (2x1) vectors i.e. for a node(N):
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{qy} = and {Qy} = (7.29)
Nz Lqu

The overall stiffness matrix is assembled by scanning the nodal
connections of each element and relating the local node numbers, which
are from one to six, to the global numbers which are fed in via the
nodal connections. The coefficients of each element stiffness matrix
are allocated to their appropriate place in the overall stiffness
matrix determined by their nodal connections. At this stage the
address array is introduced to store the coefficients of the overall

stiffness matrix as a one dimensional array.

These operations are performed by the procedure as follows:

T. An array W[6x4] is introduced, whose first column
coefficients are the weight coefficients (Ni) and the
remainder of its coefficients are the integration

points.

2. Coefficients of the one dimensional array are set

to zero.

3. A Toop is constructed to repeat all the remaining

operations of the procedure for all elements.

4, Coefficients of the element stiffness matrix are

set to zero.
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5. A loop for the three integration points is

constructed.

6. Procedure (STRDIS) is called to evaluate [B],
det[J], and the radii required to generate the

element stiffness matrix.
r e [K]e is evaluated from equation (7.28).

8. Using the address array (ADD) generated from
procedure (ADDARRAY) and the nodal connections;
the overall stiffness matrix is stored as a one

dimensional array.
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1. (== e o] RPITE

[ W[I,1]=0.33333333

Procedure ASSEMBLY Flowchart

W[1,2]:=W[1,3]:=W[2,3]:=W[2,4]:=K[3,2]
:=W[3,4]:=0.5
W[1,4]:=W[2,2]:=W[3,3]:=W4,4] :=W[5,2]
:=W[6,3]:=0.0
W[4,2]:=W[4,3]:=W[5,3]:=W[5,4]:=W[6,2]
:=W[6,4]:=1.0

—— —C 1:=1 (1) ADD[NFREE] _:3>

K[1]=0.0

______ < =1 Q) NELEMT >

-

‘. g - 1= () 12 >

| e Ry R T) R
| | KE[I,d]:=0.0
BoRp et e =
R P ST,
6. | STRDIS(WLU,2],WLU,3],WLU,4],B,XX

YY,DETJ,NODE,Z,ER,SOLID)

R T T
|
S W i fZ) o
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|

KE[J,I]:=KE[I,d]:=KE[I,J]+W[U,1]

*(B[1,d]1*(c[NODE[Z,7],1]*
B[1,IJ+C[NODE[Z,7],2]*B[2,1]
+C[NODE[Z,7],4]*8[4,1])+B[2,J]*
(C[NODE[Z,7],2]*B[1,1]+C[NODE[Z,7],5]
*8[2,1]+C[NODE[Z,7],7]*B[4,1])+B[4,d]*
(C[NODE[Z,7],4]*8[1,1]+C[NODE[Z,7],7]
*B[2,I]+C[NODE[Z,7],10]*B[4,1]))
*2*3,1415926*RAVG*0, 5*DETJ

KE[J,I+1]::KE[I+1,d]: :KE[1+1,d]+W[U,1]*

(B[1,d3]*(CINODE[Z,7]3]*B[3,1+1]
+C[NODE[Z,7],4]1*8[4,1+1])+B[2,J]
*(C[NODE[Z,7],6]1*B[3,I+1]+C[NODE[Z,7],7]
*B[4,1+1])+B[4,J]*(CLNODE[Z,7],9]*
B[3,I+1]+C[NODE[Z,7],10]*B[4,1+1]))
*2*3,1415926*RAVG*0. 5*DETJ

— — =< 52 (2) 12 .:)>

1:=2 (2) 12 S

KE[J,1]:=KE[I,d]:=KE[I,d]+W[U,1]*(B[3,J]

*(C[NODE[Z,7],8]*B[3,I]+
C[NODE[Z,7],91*8[4,1]+8[4,J]*
(C[NODE[Z,7],9]*B[3,1]+C[NODE[Z,7],10]
*B[4,1]))*2*3.1415926*RAVG*0. 5*DETJ

I=12 1es

No

KE[J,I+1]:=KE[I+1,d]:=KE[I+1,d J+W[U,1]

*(B[3,J]*(CINODE[Z,7],3]*B[1,1+1]
+C[NODE[Z,7],6]*B[2,1+1]+C[NODE[Z,7],9]
*B[4,1+1]+B[4,J]1*(C[NODE[Z,7],4]
*B[1,1+1]+C[NODE[Z,7],7]*B[2,1+1]
+C[NODE[Z,7],10]*8[4,1+1]) ) *2*
3,1415926*RAVG*Q, 5*DETJ




SUB1:=NODE[Z,I]*2-1
SUB2:=NODE[Z,J]*2-V
SUB3:=NODE[Z,I]*2

SUB1<SUB2

a

No

K[ADD[SUB1]-SUB1+SUB2]: =
K[ADD[SUB1]-SUB1+SUB2 ]+
KE[I*2-1,J%2-V]

susagg;gg‘*

Yes

K[ADD[SUB3]-SUB3+SUB2]:=
K[ADD[SUB3]-SUB3+SUB2 ]+
KE[1*2,J*2-V]

END
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7.6 Procedure SYMVBSOL

Choleski's method of triangular factorization is used to solve the
set of variable band width equations stored by the scheme of Jennings
and Tuff as a one dimensional array,[82]. The method makes use of the
fact that the zeroes before the first non zero term in any row remain
zeroes if no row or column interchange is made during reduction by

Gaussian Elimination.

Choleski's triangular factorization yields the following equations:

[LICLI® = (K] (7.30)
where
[L] = Tower triangular matrix with

positive diagonal terms.

The system of equations to be solved becomes:

[L10L1%aq} = Q) (7.31)
Assuming that

[Y] = [L1%q} (7.32)
and substituting back in (7.31) yields

[LI[Y] = {q} (7.33)

The variables in [Y] are modified right hand side coefficients
after elimination. The back substitution process to complete the

solution is finding {q} from:

[L1%q} = [Y] (7.34)
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The matrix [L] overwrites [K] in the store by using the following

relations:

ik (7.35)

(7.36)

for off diagonal terms.

Equations (7.35) and (7.36) show that only row (i) and column (3)
need be stored at a time for any coefficient (Lij) and hence computer

back store may be used for a large system of equations.

No steps to explain the flowchart of the procedure will be

presented as it was taken as a package from reference, [82].
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Procedure SYMVBSOL Flowchart

START
H:=0
***** R T e
T:=1+H-S[1]+1
G:=H+1 P:=S[T]-1
i < R TES  E T S

Y:=A[H]

Q:=P+1 H:=H+1 P:=S
K:=J+Q-P V:=H-P U:=G

[J]

5

U:=U+K-T

No

r— == U:=U (1) H-1 >

| Y:=Y-L[UJ*L[U-V]

e S

Y:=Y/L[H-V]
L[H]:=Y

(1) R

i

B[I,M]:=B[I,M]-B[J,M]*Y

[H+1]

(1) H

—

|
|
I Yi=Y-
I

L[u]+2




(%:) ¥<0 Yes
l
|

A0 e

NO

H:=H+1 Y:=SQRT(Y) L[H]:=Y

Yes

J:=
P:=S[I-1]

e RV BT >

J:=J-1 Y:=L[H]

l
B[J,M]:=B[J,M]-B[r,M]*Y

B
|
|
o e T BRI B
l
|

— — e—— m—— am— e — — —

END
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7.7 Procedure NODSTR

This procedure evaluates the strains and stresses at each node
of the discretized structure. The strains at nodes which are shared
by more than one element are evaluated by averaging the contributions

from the elements sharing the node.

The coefficients of matrix [B], which relates the strains to
displacements, are determined at nodal points by calling procedure
(STRDIS). Having obtained the nodal displacements {q} earlier, the
strains are evaluated using equation (3.33). The stresses are obtained

from the strains using matrix [C] of section (7.4) and equation (3.36).

These operations are performed by the following steps:

1. Coefficients of array [W] (6x4) are set to the
natural coordinates of nodal points.

2. A loop around the sets of forces i.e. for the number
of load cases, is constructed.

3. A loop around the number of nodes is constructed.

4. A Toop around the number of elements, takes each one
in turn and checks if the node considered in step (3)
exists and if so the strains and stresses are evaluated
as described earlier. The contribution of other elements
to the strains and stresses of that node are added and
the result is averaged.

5. The averaged result of the strains and stresses is

outputed.



Procedure NODSTR Flowchart

Wl1,2]:=W[2,3]:=W[3,4]:=1.0
W[4,2]:=W[4,3]:=W[5,3]: =
W[5,4]:=W[6,2]:=W[6,4]:=0.5

I
Ui s o w0 Fi T Y INSERE s

(_ PRINT HEADINGS )

|
|
|
3.| _____ < U:=1 (1) NNODE >
|

SIGRR:=S1GZZ:=SIGRZ:=ERR:=EZZ
:=ERZ:=ERTH:=SIGRTH:=CNT2:=0.0

|
s, ey = =< 7:¢1 (1) NELENT- >
bRt — < Nm:=1 (1) 6 >
| : |
l | <« No—
I
Yes

STRDIS(W[CNT1,2],W[CNT1,3],W[CNT1,4],
B,XX,YY,DETJ,NODE,Z,ER,SOLID)

1 === J:=1 (1) 4 o
066 @




(:;) s 1f3 -
STR[J]:=(B[J,1I*Q[NODE[Z,1]*2-1,V]
| +8[J,2]*Q[NODE[Z,1]*2,V]
l +8[J,3]*Q[NODE[Z,2]*2-1,V]
| +B[J,4]*Q[NODE[Z,2]*2,V]
| +B[J,5]*QINODE[Z,3]*2-1,V]
+B[J,6]*Q[NODE[Z,3]*2,V]
I +B[J,7]*QINODE[Z,4]*2-1,V]
| +B[J,8]*Q[NODE[Z,4]*2,V]
| +8[J,9]*Q[NODE[Z,5]*2-1,V]
] +B[J,10]*Q[NODE[Z,5]*2,V]
| +8[J,111*Q[NODE[Z,6]*2=1,V]
[ +B[J,12]*Q[NODE[Z,6]*2,V])

SIGRR:=SIGRR+(C[J,1]*STR[1]+C[J,2]*STR[2]
+C[J,3]*STR[3]+C[J,4]*STR[4])
SIGRTH:=SIGRTH+(C[J,2]*STR[1]+C[J,5]*STR[2]

| +C[J,61*STR[3]+C[J,7]*STR[43] )
| SIGZZ:=SI1GZZ+(C[J,3]*STR[1]+C[J,6]*STR[2]

+C[J,8]*STR[3]+C[J,9]*STR[4] )
SIGRZ:=SIGRZ+(C[J,4]*STR[1]*C[J,7]*STR[2]

| J:=NCDE[Z,7]
|
|

ERR:=ERR*STR[1] ERTH:=ERTH+STR[2]
EZZ:=EZZ+STR[3] ERZ:=ERZ+STR[4]
CNT2=CNT2+1

I

| +C[J,9]*STR[3J+C[J,10]*STR[4])
[
|io% ]
I

— — — — — — o w— c—

I SIGRTH:=SIGRTH/CNT2 SIGRR:=SIGRR/CNT2
SIGZZ:=SIGZZ/CNT2  SIGRZ:=SIGRZ/CNT2
l ERTH:=ERTH/CNT2 ERR:=ERR/CNT2
EZZ:=EZZ/CNT2 ERZ:=ERZ/CNT2

PRINT(U,2,0)  PRINT(ERR,0,4)

| PRINT(ERTH,0,4) PRINT(EZZ,0,4)

| PRINT(ERZ,0,4)

1 PRINT(SUGRR,0,4)PRINT(SIGRTH,0,4)
| PRINT(SIGZZ,0,4)PRINT(SIGRZ,0,4)




- 144 -

7.8 Procedure ELESTR

This procedure evaluates the strains and stresses at the centroid
of each element. The steps performed in it are identical to those of
procedure (NODSTR) except that the coefficients of array [W] are those
of the element centroids rather than nodal points, and therefore there

is no averaging.
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Procedure ELESTR Flowchart

= e a 3 < vi=1 (1) NSETF s

|
|

B

— — — — —

C

|
PRINT HEADINGS i

Z:=1 (1) NELEMT i

SIGRR:=SIGZZ:=SIGRZ:=ERR:=EZZ

+=ERZ:=ERTH:=SIGRTH:=0.0
STRDIS(0.3333,0.3333,0.3333,B,XX),

YY,DETJ,NODE,Z,ER,SOLID)

—--<

STR[J]:=(B[J,1]*b[NODE[Z,1]*2-1,V]

+B[J,2]*Q[NODE[Z,1]*2,V]
+B[J,3]*Q[NODEl Z,2]*2-1,V]
+B8[J,4]*Q[NODE[ Z,2]*2,V]
+B[J,5]*Q[NODE[Z,3]*2-1,V]
+B[J,6]*Q[NODE[Z,3]*2,V]
+B[J,7]*Q[NODE[Z,4]*2-1,V]
+B[J,8]*Q[NODE[Z,4]*2,V]
+B[J,9]*Q[NODE[Z,5]*2-1,v]
+B[J,10]*Q[NODE[Z,5]*2,V]
+B[J,11]*Q[NODE[Z,6]*2-1,V]
+B[J,TZJ*Q[NODE[Z,G]*Z,V])

R T R e
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J:=NODE[Z,7]
SIGRR:=SIGRR+(C[J,1]*STR[1]+C[J,2]*STR[2]
+C[J,3]*STR[3]+C[J,4]*STR[4])
SIGRTH:=SIGRTH+(C[J,2]*STR[1]+C[J,5]*STR[2]

+C[J,6]*STR[3]+C[J,7]*STR[4])
SIGZZ:=5162Z+(C[J,3]*STR[1]
+C[J,6]*STR[2]+C[J,8]*STR[3]
+C[J,9]*STR[4])
SIGRZ:=SIGRZ+ (C[J,4]*STR[1]+C[J,7]*STR[2]
C[J,9]*STR[3]+C[J,10]*STR[4])
ERR:=ERR+STR[1] ERTH:=ERTH+STR[2]
EZZ:=EZZ+STR[3] ERZ:=ERZ+STR[4]

PRINT(Z,2,0) PRINT(ERR,0,4)
PRINT(ERTH,0,4) PRINT(EZZ,0,4)
PRINT(ERZ,0,4)

PRINT(SUGRR,0,4) PRINT(SIGRTH,0,4)
PRINT(SIGZZ,0,4) PRINT(SIGRZ,0,4)
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7.9 Procedure FEINPUT

This procedure generates the mesh required for the general axi-
symmetric program and evaluates the nodal connections of each element
as described in section (3.8). The nodes with prescribed loads or
displacements are read in as data together with the values of the
components of loads or displacements in the global r and/or z directions.
The following steps show how the computer code for the automatic mesh

generation is developed:

1. A code (BSHP) is introduced to specify whether the

Tongitudinal section is rectangular or not.

2. If the section is rectangular, the length of its sides
is determined by reading the r and z coordinates of

two perpendicular sides.

3. The distances between the nodes are evaluated from

equations (3.66) and (3.62).

4. If the section is not rectangular the r and z
coordinates of all the main nodal rows and columns

are read,

5. The distances between the nodes are avaluated

similarly to step (3).

6. The nodal coordinates of the vertices of the triangular

section elements are evaluated.

7. Nodes with prescribed loads or displacements are read
together with the values of components of the loads and/or
displacements and a code to distinguish between them and

their direction.
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10.

il
12.

13,

14,

15

16,
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A1l the material numbers are set to 1.

. If the structure consists of more than one material

then a Toop I is constructed from 2 to the number

of materials.

The number of elements in each material portion

are read for each material.

The element numbers of these elements are read.

A loop is constructed around the element numbers which
specifies the appropriate material number to each one
as the seventh coefficient of the nodal connections

array as discussed in section (3.8.2).

A code (SYM) is read to see if symmetry with respect

to a diametral plane is required.

The nodal connections are assembled according to the

code of step (13).

The midside nodal coordinates are evaluated from the
coordinates of the vertices corresponding to each side

according to the connections obtained from step (14).

Nodal coordinates together with the code and prescribed
loads and/or displacements of step (7) and the nodal

connection of step (14) are outputed.



- 149 -

Procedure FEINPUT Flowchart

—— =< 1m0 (2) NFREE >

:=0 |
— — —<__ T 0] Wnope___ >

= ==
| [ xx[11:= 0,00001 ]
L e .

s el (1), N0 2

I
o
o
s
r—
i

]

|
E S20 1N e J:=1 (1) NSETFS >

|
| RODE[1,d]1:=0
|

— — —<C__Te=T (1) woDE T
1
L o W 1) NSETES £

| LXTT,d]:=VLY[I,J]:=0.0

— — — — — —

s e [:=1 (1) NMAT
. < ) >

TSI oo o= 5 b
l
CLI,J]:=0.0 l
| iy e e Y E
(0 BSHP : =READ )
1. BSHP=2 Yes
No

XS:=READ XF:=READ YS:=READ
2. YF:=READ

o i N R S

@ @




— . e e e e

w150 «

VXS[N]:=XS VXF[N]:=XF

= R iR

‘ VYS[N]:=YS VYF[N]:=YF
DELTAY[N]:=(YF-YF)/(ER*2)

i Mt ol ey
Yes Q-IPﬂ

No

P 7 M=l (2) (R*2)H1 >

(" VXS[N]:=READ VXF[N]:=READ )

DELTAX[N]:=VXF[N]-VXS[N]/(EC*2)

—— — — S— — —

e —N:=1(2) (EcR2)+1 >

(CVYS[NI:=READ VYF[N]:=READ )

DELTAY[N]:=(VYF[NI-VYS[N])/(ER*2)

ML2:A:=(ER*2)+]
|
P SR TN

[ B:=I-T

SRR A TR TI TR IR

|
XX[(B*A)+J]:=VXS[J]+(I-1)*DELTAX[J]
YY[(B*A)+d]:=VYS[I]+(J-1)*DELTAY[J]

e



10,

I B

12.

13s
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C

NSPC:=READ

x

I:=1 (1) NSPEC

——- <

P

J:=READ

|
[ KODE[J,1]:=READ ULX[J,1]:=READ
| VLY[J,1]:=READ

W:= (1) NELEMT >
]

o

I MTNO[W]:=1
188 NMAT=
No
R I1:=2 (1) NMAT >
| (" NSTEL[I]:=READ )
| ]._._.—< J:<1 (1) NSTEL[I] >
[
l I i STEL[I,J]:=READ )
| === =
s —< W=l (1) NELEMT >
l E ;=1 '
I A=STEL[I,J j8s
| No
' J:=d+1 | MTNO[W]:=I
Yes
| J$NSTEL[ I
S T i _\_ No
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Yes
14, SYM=1
No
T e —< I:=] (2) NELEMT-1 >
| L:=1 D:=0
l |
| L:=L+1 4
| D:=D+(2*A)
68 B:=I-((L*A)-A-L+2

I W:=I
| NODE[W,1]:=1+8+D
| NODE[W,2]:=(2*A)+1+B+D

NODE[W,3]:=(2*A)+3+B+D
| NODE[W,4]:=A+1+B+D
| NODE[W,5]:=(2*A)+2+B+D

NODE[W,6]:=A+2+B+D
| NODE[W,7]:=MTNO[W]
l__ e e s e — - =
| —< 1:=2 (2) NELEMT >
| C=L+] Yes

D:=D+(2*A) K L*(A-1 [

| BT=I=((L¥A)-A-L+3) W:=1]

NODE[W,1]:=1+B+D
NODE[W,2]:=(2*A)+3+B+D
NODE[W,3]:=3+B+D
NODE[W,4]:=A+2+B+D
NODE[W,5]:=A+3+B+D
NODE[W,6]:=2+B+D
NODE[W,7]:=MTNO[W]
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es

\\\\IF/E//,

— — — — =< I:=1 (2) NELEMT-1 >
z
=1 ; D:=0 ]
l
L:=L+1 Yes
_D+(2*A) I‘L*(A""-] )"] [
B:=I-((L*A)-A-L+2
W:=I
|
No Yes
NODE[W,1]:=1+B+D NODE[W,1]:=1+B+D
NODELW,2]:=(2%A)+1+8+D NODE[W,2]:=(2*A)+1+B+D
NODE[W,3]:=3+8+D NODE[W,3]:=(2*A)+3+B+D
NODE[W,4]:=A+1+B+D NODE[W,4]:=A+1+B+D
NODE[W,5]:=A+2+B+D NODE[W,5]:=(2*A)+2+B+D
_NODE[W,6]:=2+B+D NODE[W,6] :=A+2+B+D
NODE[W,7]:=MTNO[W] NODE[W,7]:=MTNO[W]
1 ]
- — — = ===
— — — =X 1:=2 (2) NELEMT >
1
[ L:=1 D:=0 '
|
Li=L+] 163 ,
D:=D+(2*A) B:=I-((L*A)-A-L+3

W:=I

No

L*(A-1)-(A-1)/2
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NODE[W,1]:=3+B+D NODE[W,1]:=1+B+D

NODE[W,3]:=(2*A)+3+B+D NODE[W,3]:=3+B+D
NODE[W,4]:=A+2+B+D NODE[W,4]:=A+2+B+D
NODE[W,5]:=( 2*A)+2+B+D NODE[W,5]:=A+3+B+D
NODE[W,6]:=A+3+B+D NODE[W,6]:=2+B+D

NODE[W,7]:=MTNO[W] NODE[W,7]:=MTNO[W]

NODE[W,2]:=(2*A)+1+B+D NODE[W,2]:=(2%A)+3+B+D

| |

@), ) QAT

& PRINT HEADING )
e < W= (11) NELEMT >

— I:=1 (1) 2 >

| XX[NODELW, 3+111:= (XX[NODE[W, 1 JJ#X<[NCDELW, T+I1])72
| YY[NODE[W,3+I]]:=(YY[NODE[W,I]]+YY[NODE[W,1+J]])/2
i

— — —— —

)

|

( PRINT HTEADING )
T — < I:=1 ;(1) NNODE >
, PRINT(I,3,0)PRINT(XX[I],0,3)PRINT(YY[1],0,3)

PRINT(KODE[I,1],3,0)PRINT(ULX[I,11,0,3)PRINT(VLY[J,1],0,3

e -

C PRINT HEADING )
e W= (1)I NELEMT >
| ( PRINT(W,3,0) )

®
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|

< e ()3

i

( PRINT(NODE[W,J],3,0)

)

END
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7.10 Procedure CCRINPUT
This procedure generates the mesh required for solving mode (I)

fracture problems by incorporating the core element. Two rings of
elements surrounding a semicircular core are constructed by bending
element columns into a semicircular shape as described in section (3.8.3).
The remainder of the element columns are bent into rectangular shapes

to match the boundaries of the structure. The steps are as follows:

1. For the first five nodal columns, i.e. the first two
element columns, the angle (8)of each nodal point
measured from the r-axis with the crack tip as origin is

calculated and hence the nodal points global coordinates

are evaluated.

2. For the remainder of the nodal columns, the number of
main nodes on each side of the new rectangular shape is
specified, and the position of each nodal columns with

respect to the structure as a whole is fixed.

3. The distance between the nodes for each side of each

rectangle is evaluated.
4. The main nodes global coordinates are evaluated.

5. To allow for different material properties, the same
steps as (7) to (12) of section (7.9) are followed.
6. In this case only a quadrant of the solid is discretized
and hence symmetry with respect to the crack p1ané is
implied, therefore the nodal connections are assembled
similarly to step (14) of section (7.9) without the code (SYM).
7. The same steps as (15) and (16) of section (7.9) are followed.
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Procedure CCRINPUT Flowchart @

o 1:=0 (2) NFREE >

— — — — — — —

T = = e ) HNODE” - o>
|
|

< Eeel (1) NGRS
Doy e J:=1 (1) NSETF >

KODE[I,Jd]:=0

(e et I:=1 (1) NNODE >

o J:=1 (1) NSETF >

' ULX[I,d]:=VLY[I,J]:=0.0
Y " i
% ek - I:=1 (1) 5 -

|
B:=I-1 F:=(I+1)/2
N o W ot o

s — J:=1 (1) NI B

| TH:=(J-1)*(3.14159/18)
| XX[(B*N1)+J] :=G-AA- (F*RO*COS (TH))
YYL(B*N1)+J]:=F*RO*SIN(TH)

s i
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Sl

;=7 (2) 15 >
I B;=]-1 il
J:=1,3,5 >
YS:=0

YF:=(4*R0)+(((1-7)/2)*((H-(4*R0))/4))
DELTAY:=(YF-YS)/6

' XX[(B*N1)+J]:=(G-AA-(4*R0))-(((1-7)/2)

*((G-AA-(4*R0))/4))

I YYD (B*N1)+J]:=YS+(J-1)*DELTAY

— — — —

J:=7 (2) 13

e

(4*R0))/4))

(4*R0))/4))

DELTAX:=(XF-XS)/6
XX[(B*N1)+J]:=XS+(J-7)*DELTAX
YY[(B*N1)+J]:=(4*R0)+(((1-7)/2)

*((H-(4*R0))/4))

XS:=(G-AA-(4*R0))-(((I-7)/2)*((G-AA-

XF:=(G-AA+(4*R0))+(((I-7)/2)*((AA-

P

¥YS:=(4*R0)+(((1-7)/2)*((H-(4*R0))/4))
YF:=0
DELTAY:=(YF-YS)/6
XX[(B*N1)+J]:=(G-AA+(4*R0) )+
(((1-7)/2)*((AA-(4*RO))/4))
YY[(B*N1)+J]:=YS+(J-13)*DELTAY

C

NSPEC:=READ

5

==

I:=1 (1) NSPEC

o
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J:=READ XX[J]:=READ YY[J]:=READ
KODE[J,1]:=READ ULX[J,1]:=READ
VLY[J,1]:=READ

(L NSTEL[I1]:=READ )

N
|
!

e el (LY NSTELITY >

C STEL[1,J]:=READ )

I
| i L I 7
‘“'" = el WY NELEMDT >
] | J:=1 el
I ‘ Yes
|
| No
| [ Jd:=d+1 ] [ MTNO[W]:=1]
1 fes WEL[I
ot S s, - (e DR No
R S o e S L A

(f:) L:=1 D:=0 |
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[ Yes
L:=L+1 [

D:=D+(2*A)
l No

B:=I-((L*N1)-N1-L+2

I W:=1I

| NODE[W,1]:=1+B+D
NODE[W,2]:=(2*N1)+3+B+D

I NODE[W,3]:=(2*N1)+1+B+D

| NODE[W,4]:=N1+2+B+D

NODE[W,5]:=(2*N1)+2+8+D

NODE[W,6]:=N1+1+B+D

NODE[W,7]:=MTNO[W]

L = = L o~

s < T:=2 (2) NELEMT >

B:=I-((L*N1)=N1-L+3
W:=I

NODE[W,1]:=1+B+D
NODE[W,2]:=3+B+D
NODE[W,3]:=(2*N1)+3+B+D
NODE[W,4]:=2+B+D

NODE[W,6]:=N1+2+B+D
NODE[W,7]:=MTNO[W]

|

|

|

|

|

|

|

1

l

| NODE[W,5]:=N1+3+8+D
l

|
=

|

( PRINT HEADING )

————— < W=l (1) NELBMT I8 2>




7 XX[NODE[W, 3+1]]——10
" N\_:=00001 <~
' Yes
0 Ves
j
No J:=1
l_ | Yes [=2
J:=2 No
l I J:=0
i XX[NODE[W,3+1]]:=(XX[NODE[¥, I J+XX[NODE[W,1+d]])/2
YY[NODE[W,3+I]]:=(YY[NODE[W,I]+YY[NODE[W,1+J]])/2
1 —
C PRINT HEADING )
e — I:=1 (1) NNODE >

| PRINT(KODE[I,1],3,0) PRINT(ULX[I,1],0,3)

| <L PRINT(I,3,0) PRINT(XX[I],0,3) PRINT(YY[I],0,3)
PRINT(VLY[I,1],0,3)

)

(C___PRINT HEADING )

= = W:=1 (1) NELEMT >
(__ PRINT(W,3,0) )

e ] B )

e 150

(__PRINT(NODE[W,J],3,0) )
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7.11 Procedure MMINPUT

This procedure generates the mesh required for a mixed mode I and
IT problem with the core having a circular shape and the crack is
inclined with various angles to the r-axis. The first five nodal
columns are bent into circular shapes around the core and the seventh
one is bent into a rectangular shape enclosing the circles. The
remaining columns surround three sides of the rectangle only by trun-
cating the nodes corresponding to the fourth side to save on computer
storage and still obtain a rectangular shape. It will be shown later
that mesh symmetry with respect to the crack plane is required near
the crack tip, therefore it will be generated for the first three

element columns. The procedure steps are as follows:

1. The angle of crack inclination with the r-axis is read.
2. The number of nodes of the truncated nodal columns is

worked out.

3. The nodal coordinates of the first five nodal columns

are evaluated.

4. The nodal coordinates for the main modes of the seventh
nodal columns, which is a rectangle enclosing the

circular ones, are evaluated.

5. The nodal coordinates for the main nodes of the

truncated columns . are evaluated.

6. Nodes with prescribed loads and/or displacements are
read and allowance for different material properties is

made similar to section (7.9)
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The nodal connections are generated with symmetry
with respect to the crack plane for the first three

element columns.

The remaining steps are similar to section (7.9).
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Procedure MMINPUT Flowchart

1:=0 (2) NFREE >

=
o
o
[ |
—
el
1]
o

!

I:=1 (1) NNODE >

XX[I]:=0,000001

I:=1 (1) NNODE >

J:=1 (1) NSETFS >

KODE[I,J]:=0

e— o — e——— e - —re

I:=1 (1) NNODE >

J:=1 (1) NSETFS >

ULX[I,d]:=VLY[1,J]:=0.0

PHI : =READ )

PHI:=0.0174533*PHI
NNT:=NT1-4

NELEMT1 :=3*(N1-1)

NELEMT2 :=NELEMT-NELEMT]1

el e
e
I
——=<
S
I
L
1. (‘_
e
N e B

I:=1 (1) 5 >

B:=I-1 F:=(I+1)/2

6____{ O
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5 -

TH:=(2%(J-1)*3.14159)/(N1-1)
XX[(B*N1)+9]:=(G-(AA*COS(PHI)) )+ (( (F*RO)
*COS(TH) )*COS(PHI ) )+( ( (F*RO)

|
|
|
| *SIN(TH) ) *SIN(PHI))
I YY[(B*N1)+J]:=( (AA-(F*RO))*SIN(PHI))
| +(((F*R0)*(1-COS(TH) ) )*SIN(PHI))
r +(((F*RO)*SIN(TH) )*COS (PHI) )
= e e Tl |
I‘—- = _Q I:=7 >
] [ B:=I-1 |
l — = < J:=1,3,5,17 >
|

: XX[(B*N1)+J]:=G
BEAR TN v -
| e J:=7,15 -
| ; XX[(B*N1)+J]:=6-( (AA+(5*R0))/2)
| = =< Jped 1igg =
|
| : XXL(B*N1)+J]:=G~(AA+(5*R0))
| ' g RN T A
l : YY[(B*N1)+J]:=0.0
| - ==

T J:=3.11 B
| |
| 4 YYL (B*N1)+J]:=(AA+(5*R0) ) /2
B B e J:25,7.9 >

YY[(B*N1)+J]

:=AA+(5*R0)

— — — e e




+J+132]:=G

57 39

B

' (AA+(5*R0)))/4)

XXC(B*NNT)+3H132]:=(4-((I+1)/2))*( (G-

— o — —

__+

XX[(B*NNT)+3+132] :=XX[ (B*NN1)+11+132]
:=XX[(B*NN1)+5+132]+( (G- (XX[ (B*NN1)
+5+1321))/2)

- - - =<

YYL(B*NN1)+J+132] :=AA+(5*R0)+( (H-
(AA+(5*R0)))/4)*((1+1)/2)

J¢=9,11,13

—

YY[(B*NN1)+J+132] :==( (1+1)/2)*(H/4)

YY[(B*NN1)+7+132]:=(YY[(B*NN1)+5
1321+YY[ (B*NN1)+9+1327)/ 2

3

NSPEC :=READ

=

JER A '<::

I=1001)

NSPEC

=

J:=READ KODE[J,1]:=READ
ULX[J,1]:=READ VLY[J,1]:=READ

)
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S —< W=l (1) NELEMT >
: MTNO[W] :=1
e < Ti=2 (1) NMAT -2
C  NSTEL[I]:=READ )
= — -< =1 (1) NSTEL[T] B2
‘ . STEL[I,j]:=READ %)
_L:- £ —_‘<'_ ;:;(1) NELEMT >
J:=] w

J:=J+] MTNO[W]:=T1

Yea

WL LIRS =, __\i:i\tl No

e = & Tim1(2) NELENTISY

a
!
1
1
|
o
|
l
|
|
|
|
l
I
I
—

i
| L:=L+1

| D:=D+(2*N1)

Yes

L*(N1-1)-1

No
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2

B:=I-((L*N1)-N1-L+2)
W=l

No

Yes

NODE[W,1]:=1+B+D
NODE[W,2]:=(2*N1)+1+B+D
NODE[W,3]:=3+B+D
NODE[W,4]:=N1+1+B+D
NODE[W,5] :=N1+2+B+D
MODE[W,6]:=2+B+D
NODE[W,7]:=MTNO[W]

NODE[W,1]:=1+B+D
NODE[W,2]:=(2*N1)+1+B+D
NODE[W,3]:=(2*N1)+3+B+D
NODE[W,4]:=N1+1+B+D
NODE[W,5]:=(2*N1)+2+B+D
NODE[",6]:=N1+2+B+D
NODE[W,7]:=MTNO[W]

[

I
|

'— a—

No

—— —_— —_—

—_—— —— — 1:=2 (2) NELEMT1 >

*(N1-1)-(N1-

s Is Yes
- L*(N1-1) r
Slatiiteu ’ B:=1-((L*N1)-N1-L+3)
W:=I
=
Is Yes

1)/

NODE[W,1]:=3+B+D
NODE[W,2]:=(2*N1)+1+B+D
NODE[W,3]:=(2*N1)+3+B+D
MODE[W,4]:=N1+2+B+D
NODE[¥,5]:=(2*N1)+2+B8+D
MODE[Y,6]:=N1+3+B+D
NODE[W,7]:=MTNO[W]

NODE[W,1]:=1+B+D
NODE[W,2]:=(2*N1)+3+B+D
NODE[W,3]:=3+B+D
NODE[W,4]:=N142+B+D
NODE[W,5]:=N1+3+8+D
NODE[W,6]:=2+B+D
NODE[W,7] :=MTNO[W]
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|
!— s < I:=1 (2) NELEMT2-1 s

|
o
3
|
|
|
|
|

|
|

—— E—— as—

L

L L:=1 D:=0
[
L:=L+] .
D:=D+(2*N1) whealallp
No

— — —

-

Yes

Br=I-((L*NNT)=-NN1-L+2
W:=I

NODE[W,1]:=1+B+D
NODE[W,2]:=(2*NN1)+1+B+D
NODE[W,3]:=(2*NN1)+3+B+D
NODE[W,4]:=NN1+1+B+D
NODE[W,5]:=(2*NN1)+2+B+D
NODE[W,6]:=NN1+2+B+D
NODE[W,7]:=MTNO[W]

J

o s
— — — =< :=2 (2) NELEMT2 >

|
L:=L+]
D:=D+(2*NN1)

L*(NN1-1)

Yes

B:=I-((L*NN1)-NNT-L+3
W:=I

NODE[W,1]:=1+B+D
NODE[W,2]:=(2*NN1)+3+B+D
NODE[W,3]:=3+B+D
NODE[W,4]:=NN1+2+B+D
MODE[W,5]:=NN1+3+B+D
NODE[W,6]:=2+B+D

NODE[W,7]:=MTNO[W]

i |
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I
e PRINT HEADING 3)

T PR - W:=1 (1) NELEMT >

-_—-— << I:=1.(1) 3 S

XX[NODE[W,3+1] No

<0.00001

Yes

XX[NODE[W,3+I]] :=(XX[NODE[W, I]]+XX[NODE
| [W,1+d]1])/2
| YY[NODE[W,3+I11]:=(YY[NODE[W,I]]+YY[NODE
(W,1+J]11)/2
B S o e - e
(" PRINT HEADING )
e oy T:=1 (1) NNODE >

| PRINT(I,3,0) PRINT(XX[I],0,3) PRINT(YY[I],0,3)
; PRINT(KODE[I,1],3,0)PRINT(ULX[I,1],0,3)
| PRINT(VLY[I,1],0,3)

j——- —_— —_— —_— — —

q PRINT HEADING )

l
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1 -

ol b =< W:=1 (1) NELEMT >
|
I (__ PRINT(W,3,0) Ty
I
e it - &7 J:=1 (1) 7 55

W,d1,3,0) )

END
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7.12 Procedure SBINPUT

It was noted that if procedure (MMINPUT) is to be used for solying
the shouldered bar problem, its elements are not enough to represent
the fillet radii with sufficient accuracy and will be severely distorted
in order to match the boundary shape. A purpose built procedure to
generate the mesh for this problem was developed, and as it only
solves this particular problem, it was not left in the main mixed mode

program but was put on a program of its own.

It is identical to procedure (MMINPUT) described in section (7.11)
except for generating the truncated nodal columns. Instead of
surrounding the three sides of the rectangular mesh, they extend out-
wards to generate the sroulder with the facility of having variable
fillet radii. All the steps are similar to those of section (7.11)
but the ratio of the chouldered bar diameters and the fillet radii

required for any example are read and the mesh is generated accordingly.



s

Procedure SBINPUT Flowchart

START

o

—— —~< 1:=0 (2) NFREE

ADD[1]:=0
- = __<_ T a) NNODE___ >
[ xx[1]:=0.00001 |
l____(_ _I;m)NNonE T
e T () eEtes >

.

|_ s .._< I:=1 (1) NNODE

e rod _( J:=1 (1) NSETFS >

[
l
l

ULX[I,Jd]:=VLY[I,J]:=0.0

TTRA WS N RS el

s PHI: =READ

)

PHI:=0.0174533*PHI
NNT:=N1-4
NELEMT1:=3*(N1-1)

NELEMT2 :=NELEMT-NELEMT1-(NN1-1)

S —— I:=1 (1) 5

>

| B:=I-1 F:=(I+1)/2

(5_—< J:=1 ([1) N] e




(:;) o 178 o
I
TH:=(2%(J-1)*3.14159) /(N1-1)

| XX[(B*N1)+J]:=(G-(AA*COS(PHI)) )+

| (((F*RO)*COS(TH) )*COS(PHI) )+

| (((F*RO)*SIN(TH))*SIN(PHI))

| YY[(B*N1)+J]:=( (AA-(F*R0))*SIN(PHI))+
(((F*RO)*(1-COS(TH)))*SIN(PHI))+

| (((F*RO)*SIN(TH))*COS(PHI))

SR o i G
v e 1:=7 >
L B:=I-1 !

eat < J:=1,3,5,17 P

| XXL(B*N1)+J]:=G

e ey i o

= — < J:=7,15 b

| [Txxfeenn) +ad:=6-((AA+(5%R0))/2)

L L T e

ol J:=9,11,13 o5

| XX[ (B*N1)+d]:=G-(AA+(5*R0))

r— —<__J=1,13,15,17 s

— — — — — —




s ]?5 by NO

Yes

= - J:=1,3,5,7 P

( XX[ (B*N1)+J+132]:=READ )

I
: YY[(B*N1)+J+132]:=READ

— — — — — —

i — =< J:=9 =
I

C YY[(B*N1)+J+132]:=READ )

< J:=1,3,si7 S>—_-—— m

YY[(B*N1)+J+132]:=AA+ l
(5*R0)+( (H-(AA+(5*R0)))/4) |
*((1+1)/2)

XX[(B*N1)+J+132]:=(2*G) - l
((((2*6)-(8-((1+1)/2)) I
*((6-(AA+(5*R0)))/4))/8) ||
*((J-1)/2)) |

<  Ji=9 > st
I

YY[ (B*N1)+J+132] : =AA+ l
(5*%R0)+( (H-(AA+(5*R0)))/4) | |
*((I+1+/2) |

e —< J:=17 o5

|—— — —— — —

= —< J:=9,11,13 >

| XXL(B*N1)+d+132]:=(4-((1+1)/2))*
| ((G-(AA+(5*R0)))/4)

¥
|
|
|
|
|
|
l
l
|
l
l
|
l
|
I
|
|
ki | XXL(B*N1)+J+132]:=G
|
|
|
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I

XX[(B*N1)+15+132] :=XX[(B*N1)+13+132]
+((G=(XX[(B*N1)+13+132]))/2)

ke W diel3,16.07 -

YY[(B*N1)+11+132]:=(YY[(B*N1)+9+132]

|

f

l

|

i [YYE(B*N1)+3+132] =~ ((1+1+/2) *(H/4)
L

: +YY[(B*N1)+13+132])/2

——  —— — — — — —

( NSPEC:=READ )
o o N i s
| T 3r=ReR0 xovELd,11:=READ )

P ULX[J,1]:=READ VLY[J,1]: =READ

&

ST s T S YN

- — < W=l (1) NELEMT >

: MTNO[W]:=1

Yes
No

e e — 1:=2 (1) NMAT o
l[ (___ NSTEL[1]:=READ )
| i —<_J:=1 (1) NSTEL[I] >
l
I I (__STEL[1,0]:=READ )

b s L et B T N T
P o = < Niew’ (1) NEGENT >
l

J:=1
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~
@ 4 Yes
W=STEL[I,0]
| No
I J:=J4] MTNO[W]:=1
[ Yes *
[ NSTEL[I
I sl i &
L el e i Aol VY NELENTIS]
1 L:=1 D:=0 |
=
Li=L+]
D:=D+(2*N1)
No /
L*(N1-1)-1
B:=I-((L*N1)-N1-L+2
W:=I
No < Yes
NODE[W,1]:=1+B+0 NODE[W,1]:=1+B+D
NODE[W,2]:=(2*N1)+1+8+D NODE[W,2]:=(2*N1)+1+8+D
NODE[W,3]:=3+B+D NODE[W,3]:=(2*N1)+3+B+D
NODE[W,4]:=N1+1+B+D NODE[W,4]:=N1+1+B+D
NODE[W,5] :=N1+2+8+D NODE[W,5]:=(2*N1)+2+B+D
NODE[W,6]:=2+B+D NODE[W,6]:=N142+B+D
| NODE[W,7]:=MTNO[W] NODE[W,7]:=MTNO[W]
I {
ST A
T rEe i LI F o e

|

©

L:=1_D;=0
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(L*N1)-N1-L+3)

L:l+]
D:D+(2*N1)
No
B:=I-(
W:=I
No
o

Yes

NODE[W,1]:=3+B+D

NODE[W,4]:=N1+2+B+D

NODE[W,6]:=N1+3+B+D
NODE[W,7]:=MTNO[W]

NODE[W,1]:=1+B+D

NODE[W,2]:=(2*N1)+1+8+D NODE[W,2]:=(2*N1)+3+B+D
NODE[W,3]:=(2*N1)+3+B+D NODE[W,3]:=3+B+D

NODE[W,4]:=N1+2+B+D

NODE[W,5]:=(2*N1)+2+B+D NODE[W,5]:=N1+3+B+D

NODE[W,6]:=2+B+D
NODE[W,7]:=MTNO[W]

L

LR e

Y2 amez, o >

L:=1
B:=I

NODE
NODE
NODE
NODE
NODE
NODE
NODE

-((L*NNT)=NNT-L+2)
W:=1+48

D:=0

[W,1]:=1+B+D+106
[W,2]:=(2*NN1)+5+B+D+106
[W,3]:=(2*NN1)+7+B+D+106
[W,4]:=NN1+1+B+D+106
[W,5]:=(2*NN1)+6+B+D+106
[W,6]:=NN1+2+B+D+106
[W,7]:=MTNO[W]

N — — — —

— -

2 (2) NN1-1 G

AT A
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L:=1 D:=0
B:=I-((L*NN1)-NNT-L+3)
W:=1+48

NODE[W,1]:=1+B+D+106
NODE[W,2]:=(2*NN1)+7+B+D+106
NODE[W,3]:=3+B+D+106
NODE[W,4]:=NN1+2+B+D+106
NODE[N,S]:=NN1+3+B+D+]06
NODE[W,6]:=2+B+D+106
NODE[W,7]:=MTNO[W]

I:=1 (2) NELEMT2-1 >

B:=I-((L*N1)-N1-L+2

NODE[W,1]:=1+B+D+132
NODE[W,2]:=(2*N1)+1+B+D+132
MODE[W,3]:=(2*N1)+3+B+D+132
NODE[W,4]:=N1+1+B+D+132
NODE[W,5]:=(2*N1)+2+B+D+132
NODE[W,6]:=N1+2+B+D+132
NODE[W,7]:=MTNO[W]

(e Sl R O S
= ==
I
—

[ L:=L+]

D:=D+(2*N1)
l | No
!
|
[ W:=1+60
l
|
|
I
Pl 5 . B B e e

1:=2 (2) NELEMT2 >

L:=1 D:=0 |




(Dn i
| L:=L+1
’ D:=D+(2*N1)
l

l
[ No
l
|
|
|
i
|
[
[
ji e s

C
W i
G ey
|
|
|
|
|
|
|
I

J:i=2

B:=I-((L*N1)-N1-L+3

W:=I+60
NODE[W,1]:=1+B+D+132
NODE[W,2]:=(2*N1)+3+B+D+132
NODE[W,3]:=3+B+D+132
NODE[W,4]:=N1+2+B+D+132
NODE[W,5]:=N1+3+B+D+132
NODE[W,6]:=2+B+D+132
NODE[W,7]:=MTNO[W]

PRINT HEADING )

W:=1 (1) NELEMT >

I:=1 (1) 3 >
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© |
XX[NODE[W,3+I]7:=(XX[NODE[W,J]]

| +XX[NODE[W,1+d1])/2

| YY[NODE[W,3+1]]:=(YY[NODE[W,J]]

+YY[NODE[W,1+J]])/2

— — — — — — —

(" PRINT HEADING i

[_ — =< L:i=(1) NNODE >

I PRINT(I,3,0) PRINT(XX[1],0,3)
[ PRINT(YY[I],0,3) PRINT(KODE[I],3,0)
PRINT(ULX[I,1],0,3) PRINT(VLY[I,1],0,3)

(" PRINT HEADING )

— — —~ M=l (1) NELEMT - = >

| g PRINT(W,3,0) b
[

s J:=1 (1) 7 L

( PRINT(NODE[W,J1,3,0) )
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7.13 Procedure CCRMI

This procedure performs the modifications described in Chapter 6
to the overall stiffness matrix and load vector to include the special
core element for a mode (I) fracture problem. . In this case there is
only one rigid body displacement of the crack tip (8r) in the r-

direction. The near tip displacement components may be written as:

UY‘

S KIf(r,e) (7.37)

Y

Kig(r,8) (7.38)

where f(r,8) and g(r,8) are given in Appendix (10.2).

It has been shown in Chapter 6 how the overall stiffness matrix
[K] is modified to [K]* and the potential energy of the system is
minimized with respect to KI’ 5r and us which are the unconstrained

nodal displacements.

It is convenient to number the nodes on the core/finite element
interface from (1) to(N1) as such a numbering sequence will result in
making the nodes of the first ring of elements surrounding the core
contribute stiffness matrix coefficients connecting nodes on the inter-
face with the remainder of the nodes only, | By performing the parti-
tioning suggested in equation (6.12), the set of equations will have
the form shown in Fig. (7.2). The reassembled stiffness matrix [K]*

will have the form shown in Fig. (7.3)

It was shown in equation (6.13) that:

{ay} = [Al{a}, (7.39)
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Fig.: 7.3
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(A1 =

{q1} =
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A i petenid
)

(7.40)

(7.41)

(7.42)

and the functions f(Rc,e) and g(Rc,e) are given in Appendix (10.2) and

wirh r = Rc (core radius) and 8 = the angle between the positive r-axis

and the particular node on the interface.

From Appendix (10, 3)

(K]

C 0

(7.43)
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It is now necessary to write the matrix operations of equation

(6.23) in a form suitable for programming:

ZN]-I 2N1-1

K$,[1,11 = K [1,1] + 2 L K[1,4] (7.44)
' - 1=1,3,5 j=1,3,5

kg,01,2] = K3,[2,1]

2N1-1 2N,

K.[2,1] + z T K[i,j]u. (7.45)
i=1,3,5 j=1,2,3 J

2N, 2N
Kx,[2,2] = K [2,2] + z z K[i,j]u.u. (7.46)
22 c i=1,2,3 3§=1,2,3 L
2Ny -1
K?Z[T,j] R K[i,j + 2N] (7.47)
i=1,3,5 :

or from the symmetry of [K] equation (7.47) may be written as:

2N, -1
K*,[1,3] = z K[j + 2N;,3] § = 1,2,3...4N (7.48)
i i=1,3,5 ! .

2N,
K*,[2,j] = T K[j + 2N,,iJu. j=1,2,3...4N (7.49)
12 i=1.2.3 1 i 1
K¥y [3,3] = K[i + 2N15d + 2N,] i,3=1,2,. .Ne-2N, (7.50)

{Q,}* = {0} (7.51)



- 106~

And
Ql*[i] = Q[i + 2Nl] i,J=1,2...NG—2N] (7.52)
where
uj = F(R 0(L5)  j-odd (7.53)
Uy = g(Rc, 8(%)) j-even (7.54)

In calculating the values of the coefficients of the fK]* matrix
according to equations (7.44) to (7.50), it must be noted that only the
lower half of the original stiffness matrix [K] was stored. Therefore
by using symmetry, for a given row (i) the terms K[i,i+1] to K[i,2N]
are replaced by K[i+1,i] to K[2N,i] respectively. As the stiffness
matrix coefficients stored were those between the first non-zéro co-
efficients and the major diagonal only, the first non-zero coefficient
(j) in row (i) must be found. This will reduce the terms K[1,1] to
K[i,i] to be only K[i,j] ¢o K[i,i]. Similarly some of the coefficients
K[i+1,i] to K[2N,i] may be zeroes before the first non-zero coefficient
of their row and hence not stored. Therefore the first non-zero
coefficient of these rows must be ga]cu]ated also and if any term is
smaller than its corresponding row first nonlzero coefficient, it must
be dropped from the summation. For ease of programming each summation

is diyided into two as:

L = z] + I (7.55)

where 2N1
.= Tookli,2) : (7.56)

2=1

:i.
L= 5 oK[i.2]) (7.57)

2=3
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The steps taken to translate the operations described in this

section to a computer code are as follows:

1. The coefficients of array CM[1x2] which are the

elastic constants E and v for the material in the

immediate neighbourhood of the crack tip are read

and G is calculated from them.

2. Equation (7.46) is evaluated by:

i)

i1)

111)

vi)

A Toop I from (1) to (ZN]) is constructed.
Integer IA distinguishes between odd and even

I values which correspond tor and z displacement
components respectively, so that the appropriate
8, and f(RC,Bi) or g(Rc,ei) is calculated as
shown in equation (7.42).

The first non-zero column number (J) of row

(I) is determined.

The sign of the radial displacement component is
checked and changed if necessary to match the
global r-direction, |

A loop (J) is constructed from the first non-zero
coefficient in row (I) to (2N1) and the summations
in equation (7.46) are per formed as shown in
equations (7.57) and (7.58).

Steps (ii) to (iv) are repeated with (J) instead
of {1).

(7.58)



3.
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vii) The summations of equation (7.45) are
performed similarly to (v).
Equations (7.44), (7.48), and (7.49) are evaluated

similarly.

. Equation (7.50) is performed which implies the

elimination of rows and columns (1) to (ZN]) from
[K] and replacing then by Kyp» and the address

sequence is modified accordingly.

Equation (7.52) which reassembles the load vector is

carried out.

Equation (7.51) is implemented and address coefficients

for the last two rows of [K]* are calculted.

. The coefficients of [K]* whigh have been calculated are

allocated to their appropriate positions.
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1. s — 1:=1,2 o
| e CM[I]:=READ )
N
6:=0.5*CM[11/(1+CM[2])
MU:=CM[2]
¥ - 1:=1.2 B
I— — < 3:=3 (1) 412 .
| KT[1,J]:=0.0
g R e o TR
[ KAP : =3-4*MU
e No Yes
KT11:=(2*KAP-1)*(( KT11:=(2%KAP-1)*(
3,145942)*R0*2 3.14159)42)*R0*2
*AA/ (16*G) *CR/(16*G)
1
| KT12:=0,0
i) | & =1 (1) 221 >
| IA:=1-2*ENTIER(1/2)
i)




ii1)

| (N1-1)
UI:=(2*R0)40.5%((2*KAP-1)

I *COS(THETA/2)-C0S(1.5*THETA) )

/(8*G)

GP e ek ®
THETA:=(I+1)/2-1)%3.14159/ THETA:=(1/2-1)*3.14159/

(N1-1)
UT:=(2*R0)40.5*((2(KAP+1)
*SIN(THETA/2)-SIN(1.5*THETA))

/(8*G)
T

l CI:=I-ADD[IJ+ADD[I-1]+1

No

’

Yes

HND=2

UIT:=-UI

No DI:=I
DJ:=J

CJ:=J-ADD[J]+ADD[J-1]+1

Yes

CJ>I

No

DI:
DJ:

I
[ =

I
—

JA:=J-2*ENTIER(J/2)

l
[ No
l

JA

Yes

S
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' THETA:=((J+1)/2-1)+

9,

3.14159(N1-1)
Ud:=(2*R0)+0.5%( (2*

THETA:=(J/2-1)*3.14159/(N1-1)
UJ:=(2*R0)+0.5%( (2*KAP+1)
*SIN(THETA/2)-SIN(1.5*%

KAP-1)*COS(THETA/2) THETA) )/ (8*G)
-COS(1.5*THETA) )/ (8*G)
| B = T
No
Yes
| U=l I

KT11:=KT11+UIT*UJ*K[ADD[DI ]-DI+DJ]

et ks -——<:: I:=1 (2) 2*N1-1 __;:>

CI:=I-ADD[I]+ADD[I-1]+1
IA:=CI-2*ENTIER((CI/2)

No

Yes

CI:=CI+1

< 9i=Cl (2) 21-1 >

Yes
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CJ:=J-ADD[J]J+ADD[J-1]+1

Yes S

No
DI:=J
DJd:=I

KT22:=KT22+K[ADD[DI]-DI+DJ] |

s e < Ji=142*N1 (1) B*N1 >

CJ:=J-ADD[J]+ADD[J-1]+1{

1:=CJ (1) 2*N1 o

@ Nes
No

CI:=1-ADD[I]+ADD[I-1]+]

Yes CI>d

Na

No

DI:=I
DJ:=J

IA:=1-2*ENTIER(1/2)




O

— — —
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@

®

THETA:=((I+1)/2-1)*
3.14159/(N1-1)
UI:=(2*R0)40.5%((2*
KAP-1)*COS(THETA/2)
-COS(1.5*THETA) ) /(8*G)

THETA:=(1/2-1)*3.14159/
(N1-1)
UI:=(2*R0)+0.5%( (2*KAP
+1)*SIN(THETA/2)-SIN
(1.5*THETA) )/ (8*G)

I

|

Yes

No

UIT:=-UI

KT[1,d-2*N1+2) : =KT[1,J-2*N1+2]+U1
*K[ADD[DI]-DI+DJ]

T A — < g=le2N1 (1) 61 >

|
|

—— - <

CJ:=J-ADD[J]+ADD[J-1]+1
JA:=CJ-2*ENTIER(CJ/2)

No

Yes .

CJ:=Corl |

I:=CJ (2) 2M1-1 >

I

Yes

1
No DI:=J

Cl:=1-ADD[I]+ADD[I-1]+1

DJ:=I

Yes
CI>J

oe

No
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00

DJd:=J

I KT[2,3-2*N1+2]:=KT[2,J-2*N1+2]+
K[ADD[DI]-DI+DJ]

il —< I:=1 (1) NG-2*N1 >

CI:=I+2*N1-ADD[I+2*N1]
I +ADD[I+2*N1-1]+1

CIE2*N i

[ Yes
{ CI:=2*N1+]

| ADD[I]:=I+2*N1

i -CI+ADD[I-1]+1
T

i R BT T (s

| K[ADD[I]-I+J-2*N1]:=K[ADD[I+2*N1]
~I1-2*N1+J]

e —i =l (1) NG-21 >
l
l— — =1 (1) NSETF >
l |
| Q[1,0]:=Q[ 1+2*N1,J]
g =
i e LT 5T TR

| QING-2*N1+1,1]:=Q[NG-2*N1+2,1]
| :=0.0

— — i
I
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l

ADD[NG-2*N1+1]:=ADD[NG-2*N1]
+NG=-2*NT+1

ADD[NG-2*N1+2]:=ADD[NG-2*N1-1]
+NG-2*N1+2

l
ik - I:=1 (1) NG-2*N1 >

| K[ADD[NG-2*N1+1J-NG+2*N1-1+1 ]
:=0.0

[ K[ADD[NG-2*N1+2]-NG+2*N1-2+1]
I :=0.0

K[ADD[NG-2*N1+2]-1]:=KT12
K[ADD[NG-2*N1+1]]:=KT22
K[ADD[NG-2*N1+2]]:=KT11

o < =3 () a2 >

K[ADD[NG=2*N1+1)-NG+2*N1

+I1-3]:=KT[2,1]
K[ADD[NG=2*N1+2]-NG+2*N1
| +1-41:=KT[1,1]

——

— —
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7.14 Procedure CCRMM12

This procedure is similar to (CCRM1) but deals with mixed mode I
and II problems. In this case the rigid body modesof the core element
are the two rigid body displacement components 5r and Gz and a rigid
body rotation term. Failure to include the rotation term will result
in imposing constraints on the core, hence the physical situation will
not be accurately represented. With reference to Fig.(7.4), the

displacement components obtained from a rotation of w® are:

-wRsing (7.59)

=
n

wRcos6 (7.60)

=
1]

The near tip displacement field may be written as:

u

3 f1(Rc,a)KI+g1(Rc,e)KII+5r+h1(Rc,s)w (7.61)

w

- f2(Rc,e)KI+92(Rc,s)KII+6z+h2(Rc,e)m (7.62)

Where F], fz, 9 and g, are given in Appendix (10.2) and,

hy(R.,8) = -R_sing (7.63)
hy(R.,8) = R_cose ' (7.64)

In this case the potential energy is minimized with respect to
ar, Gz’ W, KI’ KII’ and Us. As the crack plane is inclined to the
global axes the components of equations (7.61) and (7.62) must be

resolved to correspond to them, hence,

| ==
n

u.cosa - w_sina (7.65)

=
1]

ursina + W, Cosa (7.66)
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Therefore equations (7.61) and (7.62) become:

g, = F1(Rc’B)KI+GT(Rc’B)KII+Gr°°5“'525i"a+H1(Rc’e)w (7.67)
W, = F2(Rc,e)KI+GZ(RC,8)KII+6rsina+62c05a+H2(Rc,e)w (7.68)
where
Fy = ficosa - f,sina (7.69)
Fy = fisina + f,cosa (7.70)
Gy = gqcosa - g,sina (7.71)
Gy, = gysina + g,cosa (7.72)
H1 = h]COSa - hzsina (7.73)
Hy = hysina + h2c05a (7.74)

The same principle in node numbering on the interface as that of
the mode I case is used with the only difference being that the core is

a full circle.

The {q]} vector of equation (6.13) is the same as (7.40) but the

{a}c is now:

(a1 = 5 | (7.75)
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and [A] is:

~

(A] =

{Hﬁc’em‘}
Ha(ResByq)

{-sina
L cosa

—

H](Rc,e])l -sina] [cosa é1(Rc,e1) F](RC,EH)}
Hy(Res87) ) | cosa] |sinaf (6,(R..8;) ) |Fp(R.,87)

1(Rc,sz) !lsina cosa G1(Rc,82) F1(Rc’e2)
Hy(R.s8y J L cosa (sinaf (G,(R..8,)) [F;(R.,8,)
{%05&1

sin

(7.76)

{61(Rc’em )} {F1(Rc’9m)}
62 (R LFa(Res8yy) |

From Appendix (10.3) the core stiffness matrix may be written as:

[0 0 0
0 0 0
[Kl. = |0 0 0
0 0 0 rR w
0 0 0

:sln
——
(&%)
+
(%]
Fay
o

0 {7.77)

%ﬁ_ (ZK"'] )

The appropriate coefficients of [K]* may be obtained from

equation (6.23) with

TI = NG - 2N1
as follows:
2N1 "-I
K*(TI+2,TI+m]=K [2,m]+ Z

(7.78)

2N1-1

L K[4,3IMRIMIm] (7.79)

1=1,3,5 3=1,3,5
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ZN] 2N1

K*[TI+2,TI+m]=Kc[£,m]+ L L K[i,dIN[2IN[m] (7.80)
i=2,4,6 j=2,4,6

And due to symmetry:

K*¥[TI+2, T[+m]=K*[TI+m,TI+2] (?.81)

And 2N1-1
K*[TI+2,j]= I K[j+2N1,i]M[£] j=l,2,3...4NT (7.82)

i=1,3,

2H1

K*[TI+2,j]= = K[j+2N],1]N[£] j=1,2,3...4N1 (7.83)

i=2,4,

where

g ] 2. 38,5

QK
kK

[H2 cosa sina G, F2] (7.84)

[HI =sina cosa Gy F1] (7.85)

As the nodes on the interface are free from external loading

100" = {0} (7.86)

Similar to the mode I case the partitioning will imply:

KLi,31* = K[i+2N;,3+2N, ] (7.87)

QLil* = qi+2N, ] (7.88)

where 1, = 1,2,...NG-2N1
The steps of the procedure are similar to those of section (7.13)

except for step (6) where there will be five rows instead of two at the

bottom of [K]* corresponding to {a}c,
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<o Wilslyd >

C

CM[I]:=READ )

— —

G:

=0.5*CM[1]/ (1+CM[2])
MU:=CM[2]

@

ALPHA:=READ )

ALP
SN:
CN

HA:=0,0174533*ALPHA
=SIN(ALPHA)

:=COS(ALPHA)

I:=1 (1) 5 >

T
— — <A ) s>
[

KT(I,J]:=0.0

— —

KT[1,1]

KAP:=3-4*MN

:=2*RO*CR*((3.14159)42)

*(2*KAP-1)/(8*G)

KT[2,2]:=2*RO*CR*((3.14159)42)

*(3+2*KAP)/ (8*G)

No

g

I:=1 (1) 2*NI

®.

| IA:=I-2*ENTIER(1/2)

IA=1

S

Yes

N

o
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O R (¢

THETA:=-3.14159+2*(1 THETA:=-3,14159+2*((I+1)
/2-1)*3,14159/(N1-1) /2-1)*3.14159/(N1-1)

i |
[

F10:=(R0/2)+0.5%( (2*KAP-1)+C0OS(THETA/2)-C0S
(1.5*THETA) )/ (4*G)

GI0:=(R0/2)+0.5%( (2*KAP+3)*SIN(THETA/2)+SIN
(1.5*THETA) )/ (4*G)

FI1:=(R0/2)4+0.5%( (2*KAP+1)*SIN(THETA/2)-SIN
(1.5*THETA) )/ (4*G)

GI1:=(R0/2)+0.5*%C(2*KAP-3)*COS(THETA/2)+C0S
(1.5*THETA) )/ (4*G)

HI0:=-RO*SIN(THETA)

HI1:=RO*COS(THETA)

No Yes
FI0:=FIO*SN+FIT*CN FI0:=FIO*CN-FIT*SN
GIO:=GIO*SN+GIT*CN GI0:=GIO*CN-GIT*SN
HIO:=HIO*SN+HIT1*CN HIO:=HIO*CN-HIT*SN
T2:=SN__ T4:=CN T2:=CN__ T4:=-SN
L I
I=1 Yes
No
CI:=I-ADD[I]J+ADD[I-1]+1 CI:
g e T s J:=CI ( 3
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| CJ:=J-ADD[J]+ADD[J-1]+]1
[

Yes DI:=I
DJ:=d

Cd:=1

Yes

CJ>1

No

DI:=Jd
DJ:=1

[ JA:=J-2*ENTIER(J/2)

No

THETA:=-3,14159+
2*(J/2-1)*3.14159
/(N1-1)

Yes

THETA:=-3.14159+2*

((J+1)/2-1)*
3.14149/(N1-1)

1 ]
l

FJ0:=(R0/2)+0.5%( (2*KAP-1)*C0S
(THETA/2)-COS(1.5*THETA) )/ (4*G)
GJ0:=(R0/2)40.5%( (2*KAP+3)*SIN
(THETA/2)+SIN(1.5*THETA) )/ (4*G)
FJI:=(R0O/2)40.5%( (2*KAP+1)*SIN
(THETA/2)-SIN(1.5*THETA))/(4*G)
GJI:=-(R0/2)40.5%( (2*KAP-3)*C0S
(THETA/2)+COS(1.5*THETA) )/ (4*G)
HJO:= ~RO*SIN(THETA)
HJ1:=RO*COS(THETA)

No Yes
FJO:=FJO*SN+FJ1*CN FJO:=FJO*CN-FJ1*SN
GJO:=GJO*SN+GJT1*CN GJ0O:=GJO*CN-GJT1*SN
HJO:=HJO*SN+HJ1*CN HJO:=HJO*CN-HJ1*SN
T1:=CN T3:=SN Tl1:==SN  T3:=CN

L )|
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TEMP1:=ADD[DI]-DI+DJ]
KT[1,11:=KT[1,1]+FI0*FJO*K[ TEMP1]
KT[1,2]:=KT[1,2]+GI0*FJO*K[TEMP1]
KT[2,2]:=KT[2,2]+GI0*GJO*K[ TEMP1]
KT[1,4]:=KT[1,4]+FIO*T1*K[TEMP1]
KT[2,4]:=KT[2,4]+GIO*T1*K[TEMP1]
KT[3,4]:=KT[3,4]+T2*T1*K[ TEMP1]
KT[1,3]:=KT[1,3]+T3*FI0*K[ TEMP1]
KT[2,3]:=KT[2,3]+T3*GI0O*K[TEMP1]
KT[3,3]:=KT[3,3]+T3*T2*K[TEMP1]
KT[4,4]:=KT[4,4]+T4*T1*K[TEMP1]
KT[1,5]:=KT[1,5]+FJO*HIO*K[ TEMP1]
KT[2,5]:=KT[2,5]+GJO*1I0*K[ TEMP1]
KT[3,5]:=KT[3,5]+T3*HIO*K[ TEMP1]
KT[4,5]:=KT[4,5]*T1*HI0*K[TEMP1]

KT[5,5]:=KT[5,5]+HJO*HIO*K[ TEMP1 ]

|
|
|
l
l
l
|
|
|
|
|
|
i
|

— — — — =<6 (1) M5 >

CJ:=J+2*N1-5-ADD[J+2*N1-5]
+ADD[J+2*N1-6]+1

— < 1:=CJ (1) 2*N1 >

IA:=1-2*ENTIER(1/2)

No Yes

THETA:=-3.14159+2* THETA:=3.14159+2*

(I/2-1)*3.14159/ ((I1+1)/2-1)*
(N1-1) 3.14159/(N1-1)

l
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FI0:=(R0/2)+0.5%( (2*KAP-1)*COS(THETA/2)
-COS(1.5*THETA) )/ (4*G)
GI0:=(R0/2)40.5%( (2*KAP+3)*SIN(THETA/2)
+SIN(1.5%THETA) )/ (4*G)
FI1:=(R0/2)40.5*((2*KAP+1)*SIN(THETA/2)
-SIN(1.5*THETA))/(4*G)
GI1:=-(R0/2)40.5*( (2*KAP-3)*COS(THETA/2)
+C0S(1.5*THETA) )/ (4*G)
HI0:=-RO*SIN(THETA)
HI1:=RO*COS(THETA)

No Yes
. I1A=] '
FI0:=FIO*SN+FIT*CN FIO:=FIO*CN-FI1*SN
GI0:=GI0*SN+GIT*CN GIO:=GIO*CN=-GIT*SN
HIO:=HIO*SN+HIT*CN HIO:=HIO*CN-HIO*SN
T1:=SN T2:=CN T1:=CN T2:=SN
| i

TEMP1:=ADD[J+2*N1-5]-J-2*N1
+5+1
KT[1,d]:=KT[1,J]+FIC*K[TEMP1]
KT[2,d[:=KT[2,J]+GIO*K[TEMP1]
KT[3,d]:=KT[3,J]+T1*K[TEMP1]
KT[4,d]:=KT[4,J]+T2*K[TEMP1]
KT[5,d]:=KT[5,J]+HIO*K[TEMP1]

O .

— — —

I TT:=NG-2*NT

_ — —=< I1:=1 (1) TI >
CI:=1+2*N1-ADD[I+2*N1]+ADD[ I+
2*N1-11+1

CI2*N1 No

es



L

|
|

Bl -<i:; J:=CI (1)

|

[
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CI:=2*N1+1

ADD[I]:=I1+2*N1-CI+ADD[I-1]+1

[+2*N1

i

K[ADD[I]-1+J-2*N1) :=K[ADD[I+2*N1)-1-2*N1+J]

-

(3% 1:=1 (1) 5 b
: ADD[TI+1]:=ADD[TI+I-1]+TI+
e I:=1 (1) TI >
:—— =l ey U SETE.
: [ Q[I,97:=Q[1+2*N1,4]
e e L:=1(1) 5 >
e < J:=1 (1) NSETF >
: Q[ 1+T1,3]:=0.0
P B0 TE . >
l— — o J:=1 (1) 5 s
: K[ADD[TT+J]-TI-J+11:=0.0
e Sel iy B i S
|—— < 5 S,
! K[ADD[TI+I]-I-|!J]:=KT[6-I,6-J]
£ x:=s—(—1_)] N1es >
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K[ADD[TI+6-J]-TI+J+I1-11]:=KT[J,I]

[ .

i —i J:=1 (1) 5 >
I

!

—
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7.15 Procedure KARBDMMST

In order to declare the correct size array for storing the stiffness
matrix coefficients, this procedure calculates the number of coefficients
in [K]* and compares it with [K] and fixes the size according to the

larger one for the mixed mode I and II problem by the following steps:

1. After eliminating rows and columns (1) to (2N1) from

[K], the number of remaining coefficients is calculated.

2. Coefficients in rows NG-2N1+1 to NG - 2N1+5 are added

to those steps (1) and the result is called BAND.

3. The new size is declared K[1:BAND].



1._|——--—-———-<
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Procedure KARBDMMST Flowchart

~ o<
-e
i
o

:=NFREE-2*N1

J:=1+2*N1-ADD[I+2*N1]+ADD[I+2*N1-1]+1

BAND:=I

Yes
J:=2*N1+]
L
o =1
+2*N1=-J+K+1 BAND:
K:=BAND

BAND:=BAND+5* (NFREE-2*N1)+15

BAND:=ADD

[NFREE]

END
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7.16  Procedure KARMIBND

This procedure is similar to (KARBDMMST) of section (7.15)
but is for mode I problems. The only difference between them is in
step (2) where only coefficients of rows NG-2N1+1 and NG-2N1+2 are
added.



- 211

Procedure KARMIBND Flowchart

V:=NFREE-2*N1

K:=0

=l

I:=1 (1) V

7

J:=]+2*N1-ADD[ I+2*N]+ADD[ I+2*N1-1]+1

No

J<2*N1 No
Yes
J:=2*NT+]

1::\\‘~\_ Yes

. LBAND:= [+2XN] -0+

|_sAND:=1 |

BAND:=BAND+2*(NFREE-2*N1)+3

ADD[NFREE
>BAND

Yes

BAND : =ADD[NFREE ]

END
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7.17 Procedure RESIDUAL

It will be shown later in section (8.4.1) that the conditioning
of a set of linear simultaneous equilibrium equations may be checked by
resubstituting the displacement vector {q} obtained from the solution
to evaluate a new load vector {Q}' which is compared with the original
{Q}. Also by examining {Q}‘, any constraint applied by mistake to the
structure can be spotted. It must be noted that for this purpose the
original overall stiffness matrix and load vector before modification
are required, therefore the back store of the computer is used to store
them in their original form and they are recalled before calling this
procedure. This was done to avoid having to store both versions of
the stiffness matrix and load vector at the same time and hence not

leaving enough room for the solution of the problem.

The procedure steps are as follows:
1. A Toop I on the rows numbers from 1 to number

of degrees of freedom is constructed.

2. The co]umn number (CI) of the first non-zero

coefficient of row I is calculated,

3. If CI<I then the stiffness coefficient is stored
and matrix multiplications are carried out to

evaluate Qi .

4, If CI>I then symmetry is used in the same way as
shown in section (7.13) to obtain the appropriate

stiffness matrix coefficient.
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5. Coefficient of the new load vector {0Q}' are outputed
for nodes N1+1 to number of nodes of the structure

as the core nodes are free from external loading.
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Procedure RESIDUAL Flowchart

T —< =1 (1) NFREE >
Il— — =< J:=1 (1) NSETF >
| ,

F[I,J]:=0.0

e R ik ==
o el Z:=1 (1) NSETF >
{—— ;=1 (1) NFREE >
[
s ! CI:=I-ADD[IJ+ADD[I-1]+1
— — =]
“— s S Bsetl (1) NEREE. >
i Yes
| No
l DI:’I
CJ:=J-ADD[J]+ADD DJ:=J
: | [3-1341
3. ‘ Yes o>l
| No
| DI:=J DJ:=I
F[1.21:=FI 1,21+Q[J,Z]+K[ADD[DI]
4. 1 -DI+DJ]

C PRINT HEADING )
I




- 215 -

— — =< 11 () NSETF >
— — < 371 (1) NRREE/2Z >

( PRINT(F[2*J-1],0,5)
PRINT(F[2*J,1],0,5)
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7.18 Procedure EQ4AAA

This is a standard procedure from the Nottingham algorithm group
library to minimize a function. It is used to minimize the strain
energy density function given in equation (7.24) and finds the corres-
ponding angle which accordiﬁg to Sih's criterion is the angle of crack
initiation. With reference to Fig. (7.5) the method used basically
works by fitting a quadratic through (81,y(e1)), (Bz,y(ez)), (83,y(83))
of the form:

Y=a+ bo + csz

(7.89)

It finds the point where Y' = 0 and calls it 6, and operates again
using 82, 83, 84 to find 85.....etc. The procedure requires specifying
e], a range where the minimum value is expected, and the maximum number
of iterations to be done. This procedure is stored in a precompiled

form and no flowchart or listing is available for it.
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-

» O

£ 6,8,

Fig. 7.5
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CHAPTER 8

MUMERICAL EXAMPLES

8.1 Introduction

The various procedures needed to build up a finite element program
to solve axisymmetric problems subject to axisymmetric loading, and
those required to include a singular core element for the calculation
of mode (I) or mixed mode (I) and (II) stress intensity factors have
been presented in Chapter 7. The general finite element program was
developed to form the basis for the fracture analysis programs, and its
results were tested against known analytical solutions and others
obtained by finite element methods using constant strain elements or
Tinear strain ones formulating the elements stiffness matrices by
explicit multiplication and term-by-term integration. The comparison
between the results was used to draw conclusions about the superiority
of the linear strain element and the accuracy of the numerical inte-
gration technique adopted. The fracture programs were tested by
solying problems whose solution by other methods was available. The
confidence gafned in the program cleared the way to the solution of
interesting fracture problems which have never appeared in the published
Titerature. Among them were those investigating the effects of grooves,
voids and inclusions of different material properties on mode (I) and

mixed mode (I) and (II) stress intensity factors.
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The complete programs, with input data instructions and results of

sample nroblems, are presented in (Appendix 10.4).

This chapter is divided into four sections. The first is devoted
to non fracture problems by the general finite element program while
the second is for mode (I) fracture problems, and the third for mixed
mode (I) and (II) fracture problems. In the fourth section, the
influence of inclusions of different material properties on the values
of the stress intensity factors in single and mixed mode fracture

problems are studied.

8.2 Applications of the general axisymmetric program.

8.2.1 Thick cylinder under internal pressure

This example was solved to demonstrate the accuracy of the numeri-
cal integration technique used, and the superiority of the linear strain
elements. The Lame solution for the calculation of stresses in the

thick cylinder are, [6]:

2 2
aP b -
G = Ty (1 - =) (8.1)
y b -a2 ;?
° 2
. o3 - b
G, = (1 + =) (8.2)
8 b?_az r2
where: a = internal radius
b = external radius
P = internal pressure

Meek and Carey, [6], solved this problem using constant strain
elements and linear ones with explicit multiplication and term-by-term

integration to formulate the elements stiffness matrices.
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In order to be able to draw conclusions regarding the accuracy of
the numerical integration technique, the descretization used in solving
this problem was the same as that used by Meek and Carev for their

linear strain element, and is shown in Fig. (8.1).

Table (8.1) shows that the results obtained using linear strain
elements and numerical integration are very close to those using term-
by-term integration, and much closer to the theoretical results than

those obtained from a constant strain element.
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Fig. 8.1



Ngde Axisym.F.E. prog. M&C C.S. element M&C L.S. element Theoretical (Lame)
0.
) Ur g Cfr ag O'r O'e Ul"
2 25.569 -18.606 26.21 -14.98 25.34 -18.7 25 -20
5 16.855 -11.877 16.10 -14.38 16.79 -12.32 16.9 -11.9
8 12.69 -7.009 12.03 -8.68 12.64 -6.89 12.5 -7.5
11 9.8642 -4.7782 9.53 -5.49 9.82 -4,92 9.846 -4.846
14 8.1793 -2.9762 7.89 -3.52 8.17 -2.94 8.125 -3.125
17 6.9468 -1.9207 6.77 -2.21 6.93 -1.97 6.94 -1.94
20 6.1184 -1.0436 5.96 -1.29 6.]2 -1.03 6.1 -1.1
23 5.4734 -0.4678 9,38 -0.63 5.47 -0.49 5.475 -0.475
26 5.008 -0.029 4.84 -0.31 5.02 -0.08 5.0 0

TABLE (8.1)

= 22¢ =
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8.2.2 Circular plate under uniform pressure

This problem was solved to study the effect of approximating the
radius, for elements which have one side on the axis of revolution, to
avoid computational problems arising from the calculation of the hoop

strain (u/r) which was discussed in section (7.2).

In the physical situation,'thé applied pressure is uniformly
distributed over the upper surface of the plate. When Meek and Carey,
[6], solved a similar problem, they noted that distributing the load
on the centroidal plane gives better agreement with theoretical solution
obtained from plate bending (small deflections) theory than that on the
upper surface. They concluded that this indicates that the simple
mechanics solution is not a particularly accurate representation of the
physical situation.

The problem of a simply supported circular plate under uniform
pressure was solved with mesh (1) of Fig. (8.2) and the loads distributed
on its upper and centroidal plane. The results are shown in Table (8.2)»
where it is seen that the values for the centroidal plane deflection and
the hoop and radial stresses of the lower surface are very close for
the two loading situations. The values however of the hoop and radial
stress of the centroidal plane are different. hen the centroidal plane
is loaded, they are very small compared with the lower surface ones and
therefore it can be assumed that the centroidal plane stresses are
approximately equal to zero. But when the upper surface is loaded, the
stresses of the centroidal plane are not very small and cannot be assumed

to equal zero.
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.0
:

10.0"

mesh |.

mesh 2

mesh 3

. OF
' mesh 4
?-/2 A
b
— mesh 5
Fig. 8.2

r



TABLE (8.2)

. * * < 0
?lg; eSmid.pl. 6%id.p]. % surface UE surface r surface ’r surface Yo mid.pl. %% mid.pl. Iy mid.pl. Oy mid.pl.
gin)

0 2.69x10°% 2.68x10°%  -1.35 -0.96 4.39 4.58 3.76x10°%  1.10x107"  2.89x107® 5.05x10
1 2.66x10"Y 2.66x10°% 236 236 191 191 6.90x10°%  1.43x1077  6.30x10° 1.56x10
2 2.56x10°% 2.56x100% 122 122 120 120 4.51x10°%  1.35x10°7  5.49x107® 1.40x10"
-4 -4 6 5 6 :
3 2.40x10"% 2.39x10 n7 17 12 12 3.97x10 .36x1077  2.16x10 .37x10
-4 -4 -6 Y -6 >
4 2.18x10°% 2.17x10 112 N2 103 103 3.14x10 .36x10°"  1.29x10 .37x10
-4 -4 £ -1 2 i
5 1.90x10°% 1.89x10 106 106 92 92 2.52x10 .36x10°7  -1.19x10 .37x10
-4 -4 | -6 -1 =7 =
6 1.58x10"% 1.57x10 99 99 79 79 1.50x10 37x107Y  -s.10x1077 1.37x10
-4 -4 = -1 o6 2
7 1.21x100% 1.12x10 91 91 63 63 9.56x10 37x107) T = 1.81x10°° 1.37x10
8 8.25x107° 8.23x10°° 81 81 45 45 5.07x1077  1.37x1071  -2.17x107% 1.35x10"
ok =5 -8 - -6 5
9 4.15x10™° 4.14x10 70 70 24 24 5.80x10 31x1077 —2.91x107% 1.52x10
10 0 0 58 59 4 4 -2.08x10°%  2.21x1077  -6.99x10°8 3.73x10
* denotes surface loading

- 077 =
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Due to this the centroidal plane loading situation is closer to

the elementary theory which assumes that plane sections remain plane.

The deflection of centroidal plane nodes obtained from the finite
element solution are plotted with the theoretical values in Fig. (8.3).
Two things are seen in this figure, the first is that the deflection
curve of the finite element solution is lower than the theoretical one,
and the second is that this difference is limited to the nodes near the
axis of revolution after which very good agreement is obtained between
them. It is thought that the first is possibly due to the fact that
the centroidal plane nodes are under the direct influence of point
loads simulating a uniform pressure and hence the deflections obtained
are expected to be on the larger side of the theoretical values. The
second is due to the effect of approximating the radius for elements
on the axis of revolution. The influence of the mesh design on the
accuracy near the axis of revolution due to approximating the radius
was studied by solving the same problem with another four meshes 2 to
5 of Fig. (8.2). The results obtained are shown in Table (8.3) where
it can be seen that they are very close with better results obtained

from meshes with elements of the same size (1, 4 and 5).

The values of the radial and hoop stresses of the Tower surface
of the plate obtained from mesh (1) were plotted with the theoretical
ones in Fig. (8.4). It is again seen that good agreement is obtained

after a small distance from the axis of revolution.



Transverse deflection of centre plane (in x 1074)

Distance from centre of plate (in)

O | 2 3 4 5 6 7 8 9 10

[
N

|
W

| | | | | |

® FE. Mesh (1)

=
®

Fig.8.3

= Ldd =



Distance Centroidal plane deflection (in x ]0'4)
from Q.
(in) mesh(1) mesh(2) mesh(3) mesh(4) mesh(5)
0 2.690 2.716 2.716 2.681 2.637
1 2.667 2.684 2.682 2.655 2.614
2 2.566 2.582 2.581 2,557 2.526
3 2.403 2.418 2.417 2.396 2.369
4 2.180 2.194 2.193 2.175 2.15]
5 1.904 1.914 1.914 1.899 1.879
6 1.580 1.588 1.588 1.577 1.560
7 1aell 1.223 1.222 1.215 1.202
8 0.825 0.829 0.828 0.824 0.815
9 0.415 0.416 0.416 0.415 0.410
10 0.0 0.0 ‘ 0.0 0.0 0.0

TABLE (8.3)

- 8¢¢ -
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Radial and hoop stresses (psi)
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o
O
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N
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Distance from centre of plate (in)
Fig. 8.4
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The problem of a circular clamped plate under uniform pressure
Fig. (8.5) was solved and the results of the centre plane deflection
and the radial and hoop stresses of the lower surface were plotted
with the theoretical ones obtained from, [80], in Figs. (8.6) and

(8.7) respectively.



l.o’l

AN

10.0"

L /

A

Fig. 8.5
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Transverse deflection of centre plane (fn x 107 5)

Distance
| 2

from centre of plate (in)
3 4 5 6 7 8 9 (@)

theoretical

Fig. 8.6

= fEEd ™



Radial and hoop stress (psi)
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20

®)

-20

-40

-60

Je y o FE J B~
theoretical 0 FE o

1 distance from

[l
I 2 3 4 5 6 7 8 9 IO centre of plate

(in)

Fig. 8.7
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8.3 Mode I fracture problems

8.3.1 A round bar with a circumferentia! normal edge crack

This problem was used to check the influence of core parameters,
namely the core radius (RC) and the number of nodes on the finite element/
core interface (NT)’ on the value of (KI). The geometry of the round

bar is shown in Fig. (8.8), with

h/R = 1.4

0.5

c/R

The results were compared with a solution by finite elements to
the same problem with (N1 = 21) and the total number of nodes (297)
by Hilton and Sih,[49], and another solution by Benthem and Koiter,
[51].

Due to symmetry only half the bar need be considered and hence the
core's shape is a semicircle. As ring elements are used, the mesh is
generated for one quarter of the longitudinal section of the bar. The
core radius was taken as (Rc = 0.02 C) and the number of nodes on the
core (NT = 19). Two circular rings of elements surrounded the core
with radii (ZRC) and @RC) after which the element distribution was
changed to rectangular to match the boundary shape of the solid as shown
in Fig. (8.9). The results for the dimensionless stress intensity

factor (RI)’

KI
RI = ——————? (8.3)
GO(ZR)

where: Yy the stress in the neck section



e




| fe ==
r XY X v
& 3
i v
(]
@
—
(¥}
o4
|
A
R (& ]
of | o
P |
9 1
i)
(9]
T, L
Lo,]
[~
u
‘Tm_
N o
a o~
F
o,
m
o un
E —

Fig. 89



- 237 -

are shown in Table (8.4); where it could be seen that although (N1)
was less than that used by Hilton and Sih and the total number of nides

was only (285), the results have good accuracy.

The problem was solved again with the same core radius but with
(N] = 15) and (N1 = 9), and total number of nodes (225) and (135)
respectively. This had the effect of increasing the distance between
nodes on the finite element/core interface, thus increasing the dis-
placement incompatibility on the interface. To be able to assess the
effect of the incompatibility the core radius in both cases was reduced
in two stages to a value which made the distance between the nodes on
the interface equal to that of (NI = 19) and (RC = 0,02C). Thefefore,
the core radii for (N] = 15) were (Rc = 0.0178C) and (RC = 0.0156C)
and for (N1 = 9) were (RC = 0.0145C) and (Rc = 0.009C).

The value of (RI) obtained in each case is compared to that of

Benthem and Koiter in Table (8.5), and it is seen that the best agree-
ment was obtained from the solution with (N1 = 19) and (Rc = 0.02C).

It could be concluded that although the displacement incompatibility at
the interface affects the accuracy of the results, there are other
factors involved which are the strain energy in the core and the back-up

mesh expressed as the total number of nodes used.

It is noted that as the core radius decreases, the one term
displacement expansions under estimates the strain energy in the core
region resulting in large values for the stress intensity factor, [49].
The overall mesh should also be fine enough to filter through the effects
of representing the distributed 1oad by nodal forces and the effect of

approximating the radius at elements on the axis of revolution.
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ol FE. Benthem
Program Hilton & Sih & Koiter
Dimensionless
RI 0.22774 0.235 0.237
%
Accuracy - 3¢l 4.0

TABLE (8.4)
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The total number of nodes which could be used depends on (NT) and
is 1imited by the computer store. Therefore, in order to stay within
the capacity of the available computer, all the mode (I) problems solved

had the parameters (N1 = 19) and a total number of nodes of (285).
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N1 RC KI Percentage
discrepancy
0.009C 2477 +16%

9 0.145C 2492 +17%
0.02C 2504 +17.8%
0.0156C 2311 +8.7%

15 0.0178C 2405 +13%
0.02C 2447 +14.8%
19 0.02C 2050 -4%

TABLE (8.5)
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8.3.2 A round bar with a normal penny shaped crack

This example consists of a bar similar in dimensions to the one
in (8.3.1) with (RC = 0.02C) but having a penny shaped crack, Fig.
- (8.10); and was solved also by Benthem and Koiter,[51]. The dimen-
sionless stress intensity factor (RI),
¢

Kp = I%
a(2R)?

(8.4)

where: o = the uniform stress remote

from the crack tip.

was found to be (0.34569) which is within (0.5%) of (0.34390) calcu-

lated by Bentmem and Koiter.
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8.3.3 A round bar with a crack extending from the base of an

external aroove

Cracks, when initiated, are often removed by cutting a groove in
their place. A study was carried out to examine the results if a
small part of the crack was left, or it initiates again from the base
of the groove for various groove geometries. Another interesting
example is the effect of a groove on a propagating crack. The
different groove geometries studied, with reference to Fig. (8.11),
were:

a/b = 0.0315, 0.063, 0.25, 0.5, 1, 2 and 3.

with ¢/b = 0.28

The bar was subjected to a uniformtensile Toad remote from the
crack plane of (500 psi) and the (KI) results obtained are shown in
Fig. (8.12). The two asymptotes in this figure represent the limits
of the variation of (KI). The upper one is the (KI) value of a
crack of length (¢ + b) in a bar of radius (R), and the lower one is
that for a crack of length (c) in a bar of radius (R - b). The
results show that (KI) values are insensitive to small grooves and a
reduction in them is not significant unless the groove opens up to an

(a/b) ratio greater than unity.

For the example of a propagating crack from the base of a groove,
a semicircular groove was chosen. The values of crack to groove ratio
considered, with reference to Fig. (8.13), were:
c/b = 0.08, 0.09, 0.11, 0.13, 0.14, 0.2, 0.28, 0.34, 0.4,
and 0.44.
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Fig. (8.14) shows the percentage reduction in the value of (KI)
of a crack of length (c) due to the existence of a semicircular groove
of radius (b), from that of a circumferential normal crack of length
(b + c) in a solid bar.

The results show that when (% >-%) this percentage reduction in

(KI) value is very small, while if (

oo

< %%J the reduction is large and
is affected by very small changes in the (c/b) ratio.

An important general conclusion may be drawn from these results
which is: if a crack is propagating from a groove whose (a/b) ratio is
less than unity or it has propagated from any groove to a distance
which is Targe compared to the groove depth, then a conservative
estimate of (KI) would be that of a crack of a depth equal to the sum
of the depths of the groove and the crack in a solid bar. Such (KI)
values are available in charts and formulae and the need to resort to

complicated numerical methods is eliminated.
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8.3.4 A round bar with an internal void and a circumferential

normal crack

A problem complementary to that in section (8.3.3) is of a bar
containing a circumferential normal crack, but the geometric disconti-
nuity is an axisymmetric void, Fig. (8.15). Here, the existence of
the void reduces the net section further and thus elevating the local
stress field near the crack tip. For the case of:

o = 500 psi, where o = uniform stress remote

from the crack tip

c/R = 0.5

a/b

d/b = 0.09,

the (KI) value was found to increase by (52%) due to the existence of

the void.
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8.4 Mixed mode I and II fracture problems

8.4.1 A test problem

To the knowledge of the author, a mixed mode (I) and (II) axi-
symmetric fracture problem has not been solved previousiy and an
example was not found in the published literature to be used as refer-
ence. In order to check the mixed mode (I) and (II) program, the
mode (I) problem of section (8.3.1) was solved using it. In mixed
mode problems there is no symmetry with respect to the crack plane to
exploit, and hence the whole specimen is considered and the core's
shape is a circle. However, as ring elements are used, half the
Tongitudinal section need be discretized only. The new discretization
of the problem required a redistribution of the elements both remote
from and around the core, which implied either increasing the overall
number of elements or reducing the number of nodes on the core/finite
element interface. As the program was nearly occupying the full store
of the available computer, the first alternative was not possible.
Therefore, the nodes on the core/finite element interface were reduced
to (NT = 17) and the total number of nodes became (289). It will be
seen that this alteration did not affect the accuracy of the results

obtained.

The problem was first solved using the discretization shown in
Fig, (8.16) and the results obtained were compared with those for the
same problem solved by the mode (I) program.

KI(mixed mode)

KI(mode T) = 0.9497
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and

KII(mixed mode)
K (mixed mode)

0.0441

They show that some influence in the mesh design exists leading to
a small (KII) value. It was noted that the mesh discretization was not
symmetric with respect to the crack plane, therefore the problem was
solved again with the discretization arranged symmetric in order to
simulate isotropy as well as possible, Fig. (8.17), and the results
obtained were:

KI(mixed mode)
¢ K (mode I) = 0.3956,

which shows very good accuracy, and the ratio of the values of (KII)/

(KI), which should be zero, was found to be:

KII(mixed mode)

KI (mixed mode) 0.0067

This result was assumed to be acceptable. The small KII value
obtained, which is the consequence of generating some asymmetry in the
discretization, is thought to be due to small errors resulting from
the various numerical approximations in calculating the core displace-
ment components and the nodal coordinates of the finite element mesh.
The accuracy of the value of (m) used and the various angle functions
which are calculated from series expansions are examples of these
approximations. When inclined crack problems were solved, this
symmetric discretization was limited to the neighbourhood of the crack

tip (the first three element rings around the core).
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The program was subjected to another test to check the conditioning

of the equations.

The equilibrium equations are solved,

[K1{q} = {Q} (8.5)
for the displacement {q} given by:
tq} = [K1™'{0} (8.6)

If the numerical values obtained for displacements from (8.6) are
substituted in (8.5), they will yield a new force vector {Q}*. The
new force vector should theoretically be the same as the old one {Q},
however due to the approximations involved in the solution process

some difference exists.

Substituting {0}* in equation (8.5) will give a new displacement
vector {q}*. The difference between {q} and {gq}* may be used as a

measure for the conditioning of the equations.

This iterative process was repeated three times giving three
displacement vectors {q}, {q}*, and {g}**, and by comparing the three
sets of stress intensity factors obtained as part of the displacement
vector, it is seen from Table (8.6], that the difference between them

is very small indeed indicating that the equations are well-conditioned.
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1st.iteration 2nd.iteration

3rd;iteration

2028.0818 2028.0820

2028.0819

II

13.70564 13.70566

13.70564

TABLE (8.6)
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8.4.2 A round bar with a conical shaped circumferential crack

The problem is that of a round bar with a conical shaped edge
crack inclined at an angle (8) to the plane perpendicular to the axis

of revolution, Fig. (8.18), with the ratios:

L/R = 2.4 and c/R = 0.1

The cases studied were for angles:

g = 15°, 30°, 45°, 60° and 75°

The bar was subjected to a uniform tensile end load of (500) psi,
and the values for (KI) and (KII) obtained are shown in Figs.(8.19)
and (8.20). In the mixed mode situation, the direction of initial
crack growth is not known beforehand, hence Sih's strain energy density
criterion may be applied to find it, [25]. Fig. (8.21) shows the
variation of the initial crack propagation angle (8) with the inclina-

tion of the crack.
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8.4.3 A shouldered bar with a circumferential conical crack emanating

from its fillet

The influence of different shoulder fillet radii on the KI and
|<II values for various inclinations is studied in this problem. The
range of possible geometries is infinite, and only a few representative

situations were examined which are with reference to Fig. (8.22).

D/d = 2, ¢/D = 0.1, a/d = 0.125, L/D = 2.4
r/d = 0,05, 0.1, 0:15, 0.2, 0.25 and 0,3
6 = 15°, 30°, 45° and 60°

The results are shown in Figs. (8.23), (8.24), (8.25), and (8.26)

for a tensile load of (500) psi applied to the end with diameter (D).

In the cases of non-symmetric geometries or loadings the crack
angle representing a pure mode (I) situation is not identified and
curves such as those shown in Fig. (8.26) may be used to find it. It
is seen from Fig. (8.24) that for the range of different fillet radii

examined, their effect on (KII) values is very Tlittle.
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8.5 The effect of inclusions on the values of stress intensity factors

To illustrate the versatility of the present method for evaluating
stress intensity factors, the mode (I) and mixed mode (I) and (II)
fracture problems of axisymmetric composite bodies were examined. Two
cases were chosen to represent mode (I) fracture problems. The first
was that of a thin ring inb1usion with its centre at the axis of
revolution, Fig. (8.27), and the second was of a cylindrical inclusion
around the axis of revolution, Fig. (8.28). For the mixed mode (I)
and (II) fracture problems, the three cases of thin edge normal ring
inclusions above, below,and both above and below a conical edge crack
inclined with an angle of (30°) to the plane perpendicular to the axis

of revolution were examined, Fig. (8.29).

The ratio (EO/E) was taken as:

3 -1

E/E = 10%, 10, 10 6

, and 10°

where

m
(@]
1]

Modulus of elasticity of inclusion

Modulus of elasticity of the remainder of the body.

Table (8.7) shows the ratio of the stress intensity factors
obtained with the presence of the inclusions (K') to those obtained for

the same problem with one material only (K).

It can be concluded that the effect of the inclusions on the values
of (KI) and (KII) can be characterized by the influence of the inclusions

on the stress field in the neighbourhood of the crack. Hence, the
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inclusion's geometry, its location with respect to the body, its
distance from the crack tip, and its material properties are the
factors which will ultimately effect the stress intensity values

obtained.




Mixed Mode Mixed Mode

Mode 1 Mode 11 Mixed Mode
ring cylind.

inclusion inclusion ring below crack ring above crack ring above & below crack
Eo/E SUS K1 /K; Ki/Ky  Kp/Kpp Kp/K Ki/kir © Ki/Kg Kr1/Kqr
103 0.92 0.36 1.08 1.1 1.14 1.22 1.16 1.23
10 0.93 0.59 1.07 0.91 1.04 1.08 1.15 1.18
10'] 1.03 1.09 0.56 0.77 0.79 0.41 .63 .46
10"6 1.11 1.12 0.17 .03 0.10 0.36 (-.04)+ (-.06)1

Tt The negative sign implies a crack closure situation for which no special provision is made

TABLE (8.7)
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CHAPTER 9

DISCUSSIONS AND COMCLUSIONS

9.1 Discussions

A finite element computer program has been developed to solve the
problem of axisymmetric solids subjected to axisymmetric loading and
certain problems were solved to test it and assess its accuracy. This
program was later modified to incorporate a special "core" element to
provide a facility for determining data relevant to problems in linear

fracture mechanics.

A1l the programs were divided into Sub structures (procedures)
each performing part of the solution. In addition to the simplifi-
cation of the program structure, this method of programming enables
corrections and alterations to be used to any procedure without

affecting the main flow of the program.

Thelprogram's facilities are:

a) Several loading sets for a given structure may be solved
in one run.

b) Several constraints sets per each loading set may be solved
in one run.

c) Each element can have different material properties which can
either be isotropic or stratified orthotropic.

d) Input facilities include:
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i) for the general axisymmetric problem, the structures can
have an arbitrary boundary shape (provided it is axisymmetric),
it may or may not have symmetry with a diametral plane, and it
can either be hollow or solid.

ii) for the mode (I) fracture case, the mesh is generated
automatically by specifying the radius and half the length of
the specimen, the crack length, the core radius, and the number
of nodes on the core/finite element interface. Any grooves
or voids are introduced by reading the coordinates of the nodes
describing them together with those which have prescribed loads
or displacements and hence overriding their previous values
calculated by the mesh generation scheme.

ii1) for the mixed mode (I) and (II) problem the angle of
crack inclination with the r-axis measured from the direction
of the crack tip is specified together with the parameters
in (ii), and subsequently the mesh is generated automatically
with symmetric discretization with respect to the crack plane

in the neighbourhood of the crack tip.

e) Output facilities include:

i) for the general axisymmetric program, nodal displacements
together with a choice of nodal and/or element centroidal values
of stresses and strains

i1) for the mode (I) program, nodal displacements of un-
constrained nodes with the value of KI and the tip displacement
in the r-direction.

iii) for the mixed mode (I) and (II) programs, nodal displace-

ments of unconstrained nodes together with values of KI, KII’ tip
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displacement in r & z direction, rigid body rotation of the core
element, angle of crack initiation, and the new force vector
{Q}* resulting from resubstituting the obtained displacements

into the equilibrium equations.

The choice of the isonarametric six node triangular ring element
was shown to be a good one. The isoparametric concept enabled the
mapping of curved boundaries which is particularly useful when matching
the core circular shape. The economy achieved by using a linear
strain element can best be illustrated by the example of a mode (I)
situation solved by the mixed mode program. Seventeen nodes scurting
a circular core gave results within (4%) of those obtained by Sih using
twenty one nodes scurting a semicircular core of the same radius with a

constant strain element, [49].

The solution was simplified by the use of numerical integration
in evaluating the elements stiffness matrices instead of explicit multi-
plication and term by term integration which requires the solution of
twenty one separate integrals. Although the order of integration
chosen was quadratic, the results compare very well with those obtained

by the term-by-term integration.

In solving the axisymmetric problem by finite element, some method
of approximating the radii used in calculating the hoop strain (u/r)
for elements on the axis of revolution must be used as a zero r value
will cause computational problems. One possible method is to average

the radii of nodal points of all elements on the axis of revolution,
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which can give a high average value if the elements are large. Another
method is to insert a hypothetical axial core by giving the nodes on the
axis of revolution a small r-coordinate value. Both these methods
affect all the nodes on the axis of revolution, however the method
chosen distinguishes between elements with a side coinciding with the
axis, which requires approximation, and others with only one node on it
which do not require special consideration and thus Timits the approxi-

mation to where it is needed only.

A considerable saving in computer storage is achieved by assembling
the overall stiffness matrix as a one dimensional array and making use
of symmetry by storing only the coefficients between the first non-zero
one and the leading diagonal of each row, compared with a normal banded
storage scheme. In the method used, the assembly is not penalised by
bad nodal. connections of some elements resulting in increasing the band

width of the whole overall stiffness matrix.

The automatic mesh generation scheme developed relieved fhe user
from the formidable task of preparing the large volume of input data
required. It provided error free data for several crack configurations

without the need for checking the mesh for every run.

I't was seen that the solution of idealized situations in fracture
mechanics problems may be obtained by powerful analytic techniques, but
the complex geometries and loadings of real engineering problems forced
the analyst to resort to numerical methods. The finite element method

is an approximate numerical method which can easily model these shapes
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and is widely used in structural analysis. However it was found that
its direct application to fracture prpblems required a very fine mesh
in the neighbourhood of the crack tip and its convergence to the right
results is not guaranteed. A modified finite element formulation was
suggested where the crack tip is surrounded by elements with the
singularity condition built into their displacements functions. From
the number of approaches possible, the idea of the singular core
embedded in a normal finite element mesh was developed. It was chosen
because it requires a 1ittle modification to the overall stiffness
matrix and load vector only and enables the direct evaluation of stress

intensity factors.

The computer programs developed using this method were tested by
solving simple configurations to which analytical or other numerical
solutions are available. Although the work was carried out on a
modest size computer and the most complicated shape considered was
represented by (578) degrees of freedom only, the results compare very
well with the published alternatives. The range of axisymmetric
fracture problems is very wide and hence only a number of problems of
special interest were chosen to demonstrate the power of the technique.
Among them are the problems of cracks extending from grooves, mixed
mode (I) and (II) problems where the angle of crack initiation was
calculated by Sih's strain energy density criterion, and shouldered
bar problems with varying fillet radii and crack angles. The effects
gf inclusions of different material properties on the values of stress

intensity factors was also examined for several illustrative examples.




- 279 -

The technique of Hilton and Hutchinson has been successfully
further deve]opéd to solve a wide variety of axisymmetric crack con-
fogurations and results for problems previously untackled were obtained.
However there still remains scope for further development of the
technique to deal with areas other than those considered in this work

which will be discussed in the following section.

9.2 Possible topics for further research

The topics which require further research and will be suggested
may be divided into two groups. The first group consists of develop-
ments to the computer programs to increase their efficiency and improve
their accuracy, while the second suggests different areas of problems
which can be tackled by the technique. Following are the topics of

each group.

9.2.1 Further developments to the computer programs

a) Improving the mesh generation scheme:

The scheme as it exists considers the structure as a whole and is
purposely built for the various fracture problems. More flexibility
in representing very complicated geometries, without risking over
distortion of the elements due to Bending element columns, may be
achieved by dividing the structure into sub sections and making use of
the isoparametric concept. The structure is represented by a
rectangular shape diyided into rectangular subsections whose number
depends on the fineness of mesh required, in the auxiliaryz -n plane.
These rectangular shapes are later mapped to curved shape required in
the r-z plane by using shape functions whose order can be chosen to

give the best matching possible.
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b) Improving the overall stiffness matrix storage scheme:

The variable bandwidth storage scheme can be improved further by
using a more complex addressing system storing only the non zero co-
efficients between the first one and the leading diagonal of each row,
together with a corresponding equation solving routine. However, the
advantages gained from this reduction must be weighed against the dis-
advantages of complicating the storage procedure which will be reflected

also on the re-assembling to incorporate the core element.

c) Developments to the core element:
There are two possible developments to the core.eTement which can
be incorporated:
i) To develop an elastic/plastic core element which takes
into consideration the small plastic zone at the crack tip
by including the plastic flow in the displacements field
near the crack tip,[21].
ii) To develop a core element capable of solving problems
of material anistropy. Stratified orthotropic materials
to which crack tip displacement fields are already
available, [21], and cracks along the interface between

two dissimilar materials are examples.

9.2.2 New areas for future research

a) To study the effects of core parameters and the back-up mesh:
The core's size, shape, number of nodes around it, and the back-up

mesh of the remaining structure were determined by comparing the results

obtained from each combination with known results, or by guidance from
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the experience of other authors. In solving problems which were not
tackled previously much judgement and testing is required to determine
these parameters. It is desirable that any user and not just the
expert is able to operate the computer program, therefore a criterion

for the choice of these parameters needs to be developed.

The core in its present form is circular and centered around the
crack tip. This was chosen to ease the integration required to
evaluate (Uc). However, if numerical integration is used, this
limitation can be eliminated and the core can have any shape with the
crack position in it arbitrary. Hence the crack can extend within
the core and its propagation path can be studied without having to
change the mesh everytime. To offset the reduction in accuracy of
the near tip displacement functions when the core is enlarged, more

terms of the series expansions can be retained.

b) To include mode III fracture:

Wilson, [74], developed a computer program using the same
principles as those employed in this research to evaluate KIII for
axisymmetric solids. As KIII is uncoupled to KI or KII’ this program
can be added as a package to provide the calculation of all three

stress intensity factors by one program.

c) To extend the method to solve axisymmetric problems subjected
to non-axisymmetric loading:
Separation of variables may be used to represent a three dimensional
problem by a two dimensional discretization by expressing the solution

in one direction as a Fourier series. The orthogonality of the
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trigonometric functions makes the Fourier series particularly valuable
because it reduces the coupling of the simultaneous algebraic equations

to be solved. For asymmetric loading the displacement vector is given

by :
an (ot @b @ | (e,
(U} =} O LI (S A () {4y}
W o @ gt U
= [NI{a,) (9.1)
where:

{N]}t = vector of shape functions given
by equation (3.21)

t

{qun} ...etc, = [u1n uZn"'USn] »

vectors of nodal points displacements.

The strain vector is:

t
{En} " [ern Een €zn Yren Yozn ern] (9.2)
and is related to displacements by
fe, )= [Bn]{qn} (9.3)

Similar to the case of axisymmetric loading and by the application

of the principle of minimum potential energy, the equilibrium equations

are:

[k 1{q.} = {Q.} (9.4)
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In equations (9.1) to (9.4) n = 0,1,2...Nf, where N. is the

f‘
number of terms in the Fourier series expansion necessary to represent
the loading and is the number of independent sets of algebraic

equilibrium equations resulting from the uncoupTihg obtained by making

use of orthogonality.

Unlike the plane two dimensional problem, where there is an
independent core for each of the two tips of a crack, the axisymmetric
fracture problem core element is a circular ring and hence the same one
for both crack opening and closure in a non-axisymmetric loading
situation. Therefore the near tip displacements functions must be
expressed as Fourier series as well. There are othér difficulties
associated with crack closure. One of them is the possible overlapping
of crack surface resulting from assuming the crack nodes free to
displace as dictated by the displacements of the discretization system
given by the finite element method. Another difficulty is that
concerning the frictional force due to closure of mode II fracture for

which no theoretical solution is available.

d) Including thermal stresses:

These stresses can be_included by assuming that initial strains
(eol exist in each element of the solid due to thermal expansions.
They are called thermal strains and are variable within the element.
However, for convenience they are assumed to be constant:

b

ro

80 L

{ao} = (9.5)

&
Z0
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For an isotropic material:
aeew

ag®

{e ] = " ’ 950

(6]

-

where 8% is the average temperature rise in the element and a is the
coefficient of thermal expansion. p° may be obtained by assuming a

temperature distribution through the structﬁre or by finite elements.

The stresses in the element due to external loading giving

strains {e} and thermal expansion giving strains {ao} is given by:

{a} = [C]({E}-{EO}) (9.7)

where [C] is the elasticity matrix.

The element stiffness matrix is the same as that with no initial
strains. The force vector {Q} is constructed by the superposition
of external nodal forces {Q}E and nodal forces due to thermal strains
{Q}E . The element nodal forces due to thermal strains {Q}g are
giveﬁ by: <

{Q}; = -2n I[B]t[c]{eo}rdrdz (9.8)
0

This equation is similar to that for evaluating the element

stiffness matrix and can be evaluated by a similar numerical

integration technique. Therefore including thermal stresses is re-

duced to modifying the force vector by superposing the vector {Q}g .
0
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In applying this technique to fracture problems, the crack will have
some effects on the temperature field in its vicinity, the extreme case
being that of a completely insulated crack. A more realistic boundary
condition is that of radiation across the crack proportional to the
Tocal discontinuity in temperature, [83]. In the embedded singularity
method, the part of the crack enclosed in the core and including the
tip is not subjected to the thermal stresses which is not an accurate

representation of the physical situation.

9.3 Conclusions
The embedded singularity technique has been adapted to solve mode
I and mixed mode I and II fracture problems of axisymmetric solids

subjected to axisymmetric loading.

Computer programs incorporating a singular core element in a
linear strain finite element mesh were developed from which results

for a variety of crack configurations were obtained.

The method requires relatively little modification to a standard
finite element program and is capable of tackling very complicated
problems using a modest size computer with a core storage limit

available to the user of (100K).

The computing time for typical runs with various degrees of freedom
using an ICL 1904S computer and their cost according to the University

Computer Centre costing system are shown in Table (9.1).
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mode fracture

Type of problem DOLE, Computing Cost
time (pence)
(sec)
General axisymmetric 578 982 2202
Mode I fracture 570 594 1344
Mixed mode fracture 446 470 1082
Shouldered bar mixed 502 573 1306

TABLE (9.1)
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Due to the development of an automatic mesh generation scheme, a
change of some of the parameters of a run examples of which are the
core size, crack length, crack inclination, fﬁ]let radius, and
different groove geometries, require changing one card of the input

data only.

Approximately 40% of the job time is spent on generating the mesh
automatically which shows a great saving compared with a manual system

requiring one to two working days per job.
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CHAPTER 10

APPENDICES

10.1 Numerical integration formulae for triangles

Order Fig. Error points Triangular Weights
coordinates NK

1

linear A(‘ R=0(h2) A a S T 0.5
VN

quadratic R=0(h3) a 3, 1, 0 '%
2 S .
y ¢ Nike 0.8 !
c
cubic : R=0(h*) s Aot cE
b 3, 3, 0
& a0, ;‘l 1%
d 3,0,1%
- 140450
£ 0 0,000 i
: g 0. 0, )
quentic R=0(h6) a T o 0.1125
b 0L1s31=811
¢ B1,01,8:1p  0.066197075

f B2, 2, B2} 0.06296959

g B2, B2, Q2
where: «; = 0.05971587
g8, = 0.47014206
ap = 0,79742699
B2 .= 0.10128651
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10.2 Near Crack tip equations for stresses, displacements and strains

According to Muskhelishvili, [42], an Airy stress function for
the plane problems of isotropic elasticity may be written in terms of
two complex functions, #(z) and w(z). The components of stresses and
displacements associated with them for cartesian coordinates, Fig.(10.1)

are given by:

Ot oy = 2[¢'(z) + ¢'(2)] (10.1)
Oy = Oy + Zitxy = 2[z¢"(z) + v'(2)] (10.2)
2u(u, + 1‘uy) = k¢(z) - z¢'(z) -u(z) (10.3)

and for polar coordinates, Fig. (10.2) are given by:

0. oy = 2lat(z) + 6" (2]] (10.4)
9 = Oy + 2yTpg = 2 219300 (2) +y(2)] (10.5)
Zp(uri-iue):e-ig[b@(z)-w'(Z)--IIJ'(Z)] (10.6)
where:
K = Modulus of rigidity

= 3-4vy for plane strain,

7
|

(3=v)/(1#v) for plane stress

The prime denotes the derivatives with respect to z and the bar

indicates the complex conjugate number. To constcueto'(z), the

derivative is obtained by:
8'(2) = £ (9(2)) {10.7)

and the result is converted to the conjugate.
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The Goursat functions are taken as suitable forms for ¢(z) and

(z), [21], as:
o(z) = £ Az" (10.8)

w(z) = ; g P (10.9)

where the A's and B's are complex constants to be determined from the

boundary conditions and the A's are real eigenvalues.

By considering the boundary conditions of the crack configuration

shown in Fig. (10.2), it can be shown that, [21]:

1 5] : 8
Ty E;;{a1(1+cose)cos 5+ a2(351ne)cos §J

+ a1(1 - c0s26) (10.10)

Q
1]

1 5] 2L
—_ [a1(3-coss)cos #r a2(3c058-1)s1n‘§ ]

¥ o
+ 2a1(1 + c0s28) - (10.11)
SO —l—-[a sinécos 2 - a (3cos6-1)cos 9 ]
re 1 2 2 2
2/r
—2u1sin28 (10.12)
where 2 and a, are related to the stress intensity factors KI and KII
by:
: : 1 ;
a, + ia, = — (K,=1K,,) (10.13)
1 2 /o j el ) ¢
This relation is sometimes expressed in the form:
. 1 X
a, + ia, = — (K; - iK,,) (10.14)
1 2 /o I /5!
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which leads to some confusion. However, most authors list the

equations of the rear tip stresses and displacements used by them, and
in this work, the form given in equation (10.13) is used. It yields
the following stress and displacement components around the crack tip

for the polar coordinates system:

1 8 e
g = [K;(3-cos8)cos 5 + K,,(3cos8-1)sin = ]
i 2‘/2? I 2 II 2
+2a](1+c0528) (10.15)
g = ! [KI(Hcose)cos %-— KII(3sin8)cos % ]
2/2r
+4u]sinzs (10.16)
ok o8 ] [K,sin6cos 94k (3cos8-1)cos g]
-2a1s1'n28 (10.17)
u, = —K-I- (5) [ (2¢<-1)cos 8 . cos 22 ]
v e ‘2 : 2 2
- I<I—I("‘)é [(2¢-1)sin 8 . 3sin 32 ]
Iy ‘2 2 2
+ o, (2%)(&-1+2c0528) (10.18)
K 3
ug = IET () [sin 3£ - (1+2¢)sin ]
K 3
- 411£ (%) [(2¢<+1)cos % - 3cos %El ]
a (5—) sin26 (10.19)
1

The strains are obtained from the displacements and are given by:
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E =

B 36
i ]
8u/2r

{K [(2¢-1)cos 5 - C0S &

-KII[(&Q-])sin %- 3sin §28—] }

1(2 =) (k=1+2c0526) (10.20)

3

39 + (e - 7)cosg-]

£

{K[ cos
e 411/_ 2

3

- K1 [ (- %)sin 5+ sin —2— 13

+ay (;—u)(K-mcosze) (10.21)

i B <Al 5] 36
Y [K (sin = + sin =) + K,,(cos 5 + 3cos =) ]
1"‘6 4]_[/?: Z 2 II 2 2

- o, (%)sinZG (10.22)

For a cartesian coordinate system, the stresses, displacements, and

strains components are given by:

O- =

o 39
A Br

[K cos 72 (1-sin 2— sin >

-KIIsin %- (2+cos % cos —33;—)] (10.23)

o] 8 S |
o = — [KIcos 5 (1+sin 5 sin 5 )

Y /o

KII(sin-g-cos -g-cos -3-2@-)] (10.24)
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NS B e B0 08
Txy-m (K (coszsmzcos 5

+ Kqp cos 2— (1-sin ? sin —2—)]
+ 2a1(1—sinecose) (10.25)
r? : 3
Uy * &1 () {K;[(2e-1)cos > - cos 5]
+ Ky [(2c#3)sin 5+ sin 21 }

+a (-2%)(@1 )cos6 (10.26)

3
u, = 7= (5 (K [(2e+1)sin § -sin 529-]

3] 36
- KH[(ZK:-B)COS > + cos T] }

+ o, (?:J-)(K-B)sine (10.27)

€, = {K [(2¢- 3)cos + cos ]
X 8].&/5 _2_
- KII[(21<+1)S'in g—- sin %Q-] }

+ay () ) (10.28)

1

56]

> / 2
€ {KI[\?K -1)cos > = COS

y 8u/2r

- Kyy[(2c-5)sin 2 - sin 528-] }

+ oy () (c-3) (10.29)
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) 1880 L g § . ool 58
Y. = ——— [KI(s1n 5> = sin 3 ]+KII(3cos 5 - C0s )] (10.30)

Xy du/2r

For axisymmetric problems, the radial and axial displacements are
the same as (10.26) and (10.27) for the plane strain case, [49]. The
radial displacement component u,. is the same as Uy given by equation
(10.26) for the case of a penny shaped crack. For a circumferential
crack u_ = -U - The angle 8 is always measured from the r direction

r‘
ahead of the crack tip.
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10.3 Strain energy of the core region

10.3.1 Mode I formulation

The core strain energy is derived from the strains, displacements,
and stresses relationships derived from linear elastic fracture mecha-
nics, and is given by:

U.= [ SED dVC (10.31)

c
VC

where: VC = Core volume

4 i .
SED/unit volume = T 94364 (10.32)
_
SED = é-(crer togeq * TreYre) (10.33)
With reference to Fig. (10.3), equation (10.31) becomes:
m To
Uc = 7R g é (Urgr + Tg€q * TreYre)Pdee (10.34)

The stresses are obtained from equations (10.15, 10.16 and 10.17)

by setting KII and o to zero:

K
- 8
g = (3cos6)cos (10.35)
Y T Z
& 8
Ty = —— (1+cos8)cos 5 (10.36)
2/2r
K 8
T = sinfcos > (10.37)

o
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Similarly for the strains:

K

€, = 1 [(2=1)cos g—— cos %? ] (10.38)
8uv2r -
K
3 3
€y = - I %—cos %?—+(m - 7§Jcos 7;—] (10.39)
uv2r
K
I ’ 5]
Y o= [2sinécos = ] (10.40)
re 41-1‘/2_'? 2

By substitution and performing the necessary integrations in

equation (10.34) the core strain energy is obtained:
KIZr T

N 0
UC = 2nR[ Fm (2x=-1)] (10.41)
where: R = distance from the axis of revolution
to the core centroid
ro = radius of the core

10.3.2 Mixed mode I and II formulation

The core strain energy for the mixed mode I and II situation

is given by:
21 "o

Ué=1rRJ' I {oe *o

Ff S oo * Treyre)rdrde (10.42)

The stresses and strains are obtained from Appendix (10.2) by
setting a to zero only, and the rest of the evaluation is similar to

that of section (10.3.1). The core strain energy obtained is:

2 <
KI i KII rm

0 0
T6n (2"5-1) + —]—Eu— (3+2K)] (]0.43)

l =
Uc = 2mR [




g el N |

o AN |
-

Fig. 10.4
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10.4 Programs Listings and sample problems

The complete program flow charts and listings will be presented
in this section using the procedures described in Chapter 7 together

with input data instructions and a sample problem for each type.

10.4.1 The general axisymmetric program

I) Program flow chart

Procedure

declaration

(" NJOB:=READ )

’___ i < COUNT:=1 (1) NJOB >

| NELEMT :=READ
| NNODE : =READ

NSETFS:=READ PRINT:=READ
. SOLID:=READ  NMAT:=READ
} EC:=READ ER:=READ

l NSETC:=READ -

— — — — < s:=1 (1) NSETC >
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(:%) No S=1

| Yes

( NNENC:=READ> (" NSETF:=READ )

NSETF:=READ

Procedure FEINPUT

— —<I:=1 (1) NNEWC> | Procedure ADDARRAY

"J:=READ \Qmmo:ﬂ (1) war>— |

KODE[J,1]:=READ

| ULX[J,1]:=READ  |Procedure CONSTREL |
ll VLY[J,1]:=READ / |

— — —

l—— < I:=1 (1) NFREE >
— — < g (1)1 NSETF >

| Q[I,J]:=0.0

l —— —_—

Procedure LOADING _l

No NSETF>1
Yes
< J:=2 (1) NSETF B
( NSPEC:=READ )
<3 gee1 1) wspEC. . >
K:=READ KODE[K,I]:=READ
| ‘ ULX[K,I]:=READ VLY[K,I]:=READ
[
O Q@
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Procedure LOADING

Procedure ASSEMBLY

Procedure BOUNCONST

Procedure SYMVBSOL

( output nodal displacements

No

Yes

Procedure NODSTR

PRNT=20r3

Procedure ELESTR

END
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II) Program listing

1PROGRAM ! (AXX )
ErNPUT U=
1QUTPLT ! 0=LPO

EEXTENDED: DATES
'EﬂE'lnin_ — _ = =

lﬂiﬁlﬂ 'COMMENT' THIG PRoj S7pi i s THe [S0PA3A1ETaig

i

e = i
e T et} o —
T

—PHRLGEITES = = = o

THE ELenElY %) Is A 41X=-3DF yRIAyGLE:

ECoMI O RANGES T [a v :

NODAL COHMNESTIGIS, tA-cRTAL WA, -

-1;ET¢tEH=§*:=?4* TR =t = =
'INIEAEEJTﬂELLET:N\QG" eS8 e Brue, T e Mol UsNSETC uNENEC, 8,
EQs&ftﬁﬁﬁprkgziﬁskz+H;:;4+4u_-' EENE e e LA
'REAL' Df_t.TA r‘ETJ RUBAH R aVGe¥S sl V3 ,YF]
ﬂ\ikLU_E:_L_P_LJAL»LJJ le - .

EINTEGER 2o S0 LD = ===

TREAL' L1,12,13,U;

ErNTEGERE—SARTAT— ——

YARRAY! X.Y:RB;

FREGINY =

VINTEGER' L.V ‘
FREAL—CHANGE G =
VREAL''ARRAY' [1: VA S R o s B O 0 i B e Sl Y

ﬁnﬂiﬁl IIE!q: E‘Pf"'&:'im S e 7 —:—.."’11; Se=—F a—a T == ._.;:—_
AND THE STRAIH=nTSD Apnh v 0 1
mem—- et ..V:TL < — -

k*Ll*ELﬂLL&QJli&ileLﬁ¢nlﬁxiéﬁL_ 2y 8 : - 2

4*L2__‘LL__L_Z__-_5J_L*_‘*_t‘i_fi*iusal 1w(lmzwit=l2)g
IEF%F‘IE&&E&T;?MEH—FHLqW — EE ,'.-“:#‘ﬂ__—-:"_-‘“-_v 1 ——--T-Ei ==

ARXCNTZa811#(1=11m2% | v abul 1nl . L0lis
&fEthL:%LEfIEZEEiﬂaﬁF?I&+*"“"_“—”7*Ttttt-ntzizqi§E§F$t¢¢:£f$#¢rt=

Acvmghsu-p Li~2dwi2)=bordenl 0 i

"
:é

u-..-.,u:'l.fuuz 2]- .m 21w Jn.-.; M

MF'aJt1 1]:
FESE=SSS SEe s as iy
J01,2):=2=001,2)/U;

FEFF=REE EnETe=a i
J.L[?.Z] "'CHANGEIU:

e . — —
TrOMRENTE—NL—tS THE Bfe so—rry ==s==——s————se===cr T =

NL[1]*=L1~(2*L1~¢).

= B R st =

NELZFr=lzste ;
NLE3] s=3#(20L3m1);
NLEGTrsbeil*|2:

NLES):=bwl2*L3;
NLE6] :=bwl 3%
'1g' SQL1D=0 'THEH'
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fﬁfﬁ&¥§(lf¢52%$iifﬁrﬂf*— SRR =
XINLZ, 4)14XINLZ, 511¢ers.,qlr~z

=EF EE SRR tgnery = e
RAVOIwRMEANS . —
SEErEFORE—ZFret—tSTrpt—= e T e vl
_'BREGIN!

_Eﬁlﬁ‘{;;m.:t. T

"FOR'1:=1'STER'"T'UNTI  'A"'0un"

“RAVGI=RAVG*CKENLZ T i Fefictrsrs

"END';

B

YEOR' Vvis1,2 'DO* pLV,11:=0,7;

“FEARY [i=t, 2 tpot

'BEGIN' P[J,1)33J[]1,11wliwlImt);

S SIS ST ARs SSSEFaR eSS

Plr.3]255(1,112(1= h*lﬂ)vd 2lw{Tmiw} )3

S IS ST SRS T e e s e D o "E:

Pl1,5):1=4«CJ(1,2] L3‘L(*<}rla «J71,11))
B it e St EEE T

i | |- n

TEND';

SRR ry T FOEE P o e

_YFOR' V3:=1,2,3,4 'DO' miV, I]:""-.':

SEPORE st S TERE | tgET TSt

'BEGIN'

RCEECERd=trrauta Cleasroaattvog
Bla,(Iw2-1)];=8(3, <x.h;15=9£2.11

_EﬁéﬁﬁﬁkziifitiKLtﬁiiﬂ

'END';

SEENDOF S TRDES; ——

PR OCEDU RS SO oS T ==

JVALUE' U ,N/NEQ.F;

ESidi=="5

"INTEGER' N/NEQ/F:

CFARRAY =g, AKE

"INTEGER! '"AR2AY' A;

SEREGENEF N TEGER . ks

'1E! N=1 !'THEN'! CJge=1 tels F‘ ClezrimliTpdmpaliimg )

SRR rSC S TER oo

_'BEGIN'

e S e oo S n e ! :
o ey o n - i =

AKCACM]I=N4K]:=0,0:
“YENDY;

'LF' Nel1 'GT! NEQ_‘TH&H‘ LGOTHY Los

'BEGIN'

LSS SESSEnssmees ———————-————=c==.

AK[ﬂEm J=Hwridgmi, s
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iRt R g g = ==
S— A, TR R
“YENDY OF 4OUNCONST ;

SEPROCEDU R oAbl St e e o
'VALUE' A,8sC,E/F;
FINTEGERE A, E-F
VREAL? 8,C3
"ARRAY' p;
JBEGLIM!
;‘—_ s E& : ___t"_ — = -
Y1pt A=3 'THEM' 'GOTO’ Kklsm1:
Krma*ET = _ S
'18' A=1 'THEN' '6OTO' KL .32¢

%Eiﬁﬁt:f_ifﬁfﬁﬁii%fiifﬁ: :
{1:' A Mt' Q_ THFM' 'ﬂﬂ'w' KLAZT ¢

_KLAB1- 'r—MD' OF LOAD NG

JPROCEDURE' SYMVBSOLCA, L, S, B)0T 5 610 (8:C€ i, R)eAILUGE mxlTs(FALL) ]
NP N e T ARRAY st == e e Ern e n ety
JLABEL! pALL; :
TREGINTY
'INTEﬁER' GeHeled KeM, PO, T ",
TREALYY =
Hi=0;
R et FSTERT A —Fr—=vx
'BEGIN'

-§§§i§$§§i§E£¥§xnéﬁ$§§E¢;
—PRING[T)mls -
—rRORY S tSTEept ttoe ot

'BEGIN'
QrsPels Hr=Her— =
— PsRSLJ): K:SJaQmp.
PV iraHaP i gis6, —

'HAI' H];:

ESS s —— ===

'FGR' Ji=sl 'STEP' 4_PuNTIE et t'hnt

i
H

Y-:?/rLH-UJ. LEHLL=YE
e S EE S =R R e e L=
— BlIl,M):=2RC1,H)=BL), 1]y}
FENDE—};
Yi=A[H+1]:
%ﬁ%ﬁ% et et
YisY=L{U]T2;

—EFFEF—V—TLF-0 THEH ey T
Hi=Hel; Y:=SQRT(Y);

"BOR' M:21 'STEp' 1 'utizgl' » ' .0°
=HEE M=t Aty

'END! i
TCOMMENTEREDUCT IO Cohoiarrs
LECRY JoaN JSTEP' o1 tiurp ¢ 4 th o0
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=EREGre——— = =
__vi=L[HY:

==FpORE M=l S Thott ot et = - e
_BLL,M]l.=8(1.M)/v: '

=EFpElat traERttaarat oo o= =

Jamy1? praS(1=13;
——EE&E&FM},_E&H*: EECE .
"BEGIM' e
= Frulnis V=t LaE -
PEORY M:w] 'STEP® 9 FNTILr 7 %DDD

"END' H:
=W uP}
COMPLETE: 'END' I;
EEND =S RS O ==

'PROCEDURE' CONSTRELCZ, Asr aTHO, 0N E) ] .
==EVALUESRATNGS =
"INTEGER'MATNO, CASE;
VARRAY'A,2;

TBEGIN!
—FEINTEGERELES ==
'REAL'c11.,€C12,C13,014,
TR R e T e e o B : —=
JCOMMENT! CALCULAYION OF FIASTIC ~OUHSTANTS FOp SEVERA; MATERTALSE

LASEr=REASS ===
'POR" 1:=1 'STEP' 1 'UMNTI;' 5 'pn
ALEET=REAS T =

"1E' MATNO=1 'THEN!

1€'2C"Y'MATERIAL'C("218" )Y 'ELASTIC¥%ORAPEITLIES

qﬁeﬁ&myw =i S
NP (et YL ORI a2y ) )
_EEBH—‘-.—

NEWLINEC2); SPACE(1):

PRINTCMAT 0+ 2. 0 ) SPACF oS ro=7 mw; e
PRINTCALL],0,3) iSPACE(2)ioallT (il 1,",2) ;900 (2) 1pulnTCALS] 1,2);
SPACECII RNt AL

£14:=2C024:=C34:=0,9;

EFEECASE=U " THERE=

'BEGIN' C4bszA[3];
A=A CEEwALS

C11I=A[3]*(1-AES]-AL’J]).
@?E'M-ﬁﬁm‘—:—;b ST e—es s EE AT
£22:=CR3:=(A[A4)/AL 1] )% (1= A{4T /Al " Y)wAld]lwAl2 1) AT
TENDE P SEE
'REGIN'
Pr(tsA 2 AN A Ot L
C:=Af11/p;

LHEr=C2 = C+ (T = (A2 A TS 3
_CJZ_.__'IE*CAEQJMAIEJL*AQ]))

CES a2 = (CRALE I o CEwa ¥

£33:= _.(Ar1]/4(6])-'(4-(,.[;11*\':::-':
Lob oA LT/ Cowtr=ALS )+

o

e




b 206

RGN AT E FEE TR CE =T s —
_lLﬁA;ﬂn,31_+g1;. ZUNATHO 4] sec s
TEE&AIEQIEE?*E’ == i

1juATNO.?1--c’ 20HATHD , 5

EEND 0 FDROUCECURE-CORS Tty = =

' pPROCEDURE" APDARRAY(HFLE T, Ui Gl bl rUDNE)S

EINTEGERE NELEMT  SNESED =

——LHIQQER*__ﬁﬁiaf' NODE ,nDivg =

R EG I INTECER TN 3 =

TEOR' W:i=) 'STEP' 1 YUNTIL! arL. T Thid _

HREGINE=CH:= Wt iy ==
FEGRY Tsis? *STERY 1 YiNTiL! 6 'DOR
;"i—_FT'_wg”ZE"FL’:?—'—* = Ty T2
VgAY as] terRBu Tl MUEELE! & TDOY

= e e

'IF'ADDTFWP'GT' O LHUDELD 1, 11 #2) "THEN ) ADDINUDREI W, 1 #2] s =ANDTE|'F

FENDTS =

lENpl-

=T ':r-%?‘;ttqu:ﬁ;lmt:},—m o ae
_'REGIN' cH:Z2+4ADD(21]: 1;22-1

———————— A DLW i ADD L e
ADDIWY:=AnD(!=1T*ci

-l__ ye—
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ORXLOAD' ('4S")'0R%LOAD') "y :
Etﬁk__ﬁizii;ﬁrEFtZF:ﬂWFFT.‘ =
'BEGIN' NEUL!NE(1):__PAFt(\::

SRINT e =

GRIMT(XXIII.O.J)
= —ORENTCY YL o, e ——
=t PRINT(KONEL], 11,:.u): Sail72); L
= _ngFTﬁéx:I.tt. ==

PRINT(VLYLI,13,0,3); ) 1>
'eEND':
:_L:Eﬂt“_k._;“’__'*.“!‘ﬁ—s SN ss s =
] Eﬁﬂ _Ji=1 ISTEP' 4 UMTTI‘ HSETE D0 uir,4)«g0 Q> o
_____LﬂaﬁiﬂﬁfKODE[If1l UL(fI:13;7 0 W 0 1 ) W 8 -
=£¥E§§E$E§§E£E?+—*—*t&EEi_
'BEGIN'
TEOR —Lino tSTERLT s SE=—r=—===
'BEGIN'
NSPEC =READ S
NRITETEXT(' (' ('20) ' EORCENSETmmman’) 1y}
PRIENTECESS 05 =
WRITETEXP( (! (120 ) 'NODE ('55") " ~VETI1 ¢ B350 ) 1 milgp' (175') ' YanySP
I E S Y ORI UAD T g Pyt et

'EOR' J:=1 'STEP' 1 '"UNTIL' !SPEL '0Hia

EREGINT

K:=READ? KXODEfK,I1]:=READ: ULSPK,

VIYLK, 11s=READ:

I]1:SREAD:

=t
AN GO D E LS e e —

NEWLINE(2):

= = =
ERENTCG ) S

DRINT(KOnE[K.I] L D) SPLCE(2);

PRINT(VLVIK:I];D 4),

1£HD"

FENDE;

JBEGIN' 'QEAL' 'ARRAY' KP4 :ADDILF FET];
-§E$§g55§§E§£E§EEE;¥ﬁr+¥¢;E££. e e == SErr oW -
JCOMMENT! INTRODUETION OF gIMENAT ¢ STRAlHTS
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FEOR st CSYERT R =

YREGIN'

Erpt Kol P tTHEg -t ot r

M1E' KQOE[1,11%2 'THEN! '6OT ~!u:.

BOUNC "”Eﬁkffafirﬁzéékxzﬁ =255
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‘1¥EE§E&EE$£E$$HIEE¥EE =5 =
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WRETETEATCECEE AL S vtasoE s
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[ . %

JREGIN' WoITETEXT((11¢1400) " I00 1SPLACENE PAXEnKK CURCELSEPY VY]
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E.'LRJL‘LE‘E_E?LIL'_U'(_&CS_J_LJL;_L”R Y raw=n o CY T Ul 2 "'J'a-u[ e T 10

SRS TrtRODEECISeE L een o e S n A ey gy
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ERORE—FraZ—CYER—J tuprr
__'BEGIN' NEWLINE(2): Vi=2*{j=l):

B ENT It I8, 00 SPACE s ot et P, e e e Sy

PRINT(QfvV,1),0,8); SPACE(12): PRI T(J 3,033 SuACE(2)]

PR ULV r e oo e e SRR mr— s er Al E e

CEEEENNDpE G T FTRERT

'REGIN' NEWLIMNEC2): PREIMT(NLONE, 5, 00; SHACEC2):

===t euni—

PRINTC(QO[V=1,11,0,3); SLACE D)) ARI(T(D V,11,VY,8)3%

=EENDS;

'END':

SEEptpRNTST 'S =Tt

NODNSTR(NSETF ,NNODFE,NEIFMT,NODE, X% ¥V, uETd,12,0,8TRNTS) s

Freb pRNT=Z TortBEoNT=orTHC

_;LgSIRiusgli_a;NE|sHT HODE XX MV, spTl £38Taiilc)]

_liﬂﬂ _ﬂf.ﬁQﬁSIRAIHT LOQP;

_[E”_D,I- e

_EAYL: 'END' OFE JOB LOOPS 84
CEEND_OF - OROGRANT = ==
TR ]
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III) Input data instructions

A) Number of jobs to be solved.
B) For the first job:
1. The job name followed by end of title.
2. Number of elements.
3. Number of nodes.
4. Number of sets of forces(1).
5. Type of output(z).
6. Type of the solid of revo]ution(3).
7. Number of materials.
8. Number of element columns.
9. Number of element rows.
10. Number of sets of constraints.
C) For the first set of constraints.
1. Number of sets of forces
2. Type of boundary shape(4).
3. r and z coordinates for the boundary shape(S).
4. Number of specified nodes(s).
5. For each specified node.
a) Node number
b) Kode!7)

c) Value of displacement or load in r direction

d) Value of displacement or load in z direction
6. IF number of materials >1 then:
a) The number of elements with different material properties for each
differential material.
b) The element numbers of these elements.

7. Type of mesh(s)




- 318 -

8. For each material:

a) Type of material property(g).

b) Elastic constants(]o).

9. If the number of sets of forces for this set of constraints
is >1 then:
a) Number of sets of forces.
b) For each force set:

Node number

Kode

value of prescribed load in r direction

value of prescribed load in z direction
D) For subsequent sets of constraints:
1. Number of new constraints.
2. Number 6f sets of forces in this set of consttaints.
3. For the first set of forces in the new set of constraints
input C-9(b). .
4. For subsequent sets of forces input C-9.

E) For the next job repeat from B.
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Notes

(1)  The number of sets of forces is the maximum for any set of
constraints.

(2) Input 1 if nodal point stresses and strains are required.

(3)

(5)

(6)

(8)

2 if element stresses and strains are required.
3 if both 1 and 2 are required.
Input O if the structure is a hollow axisymmetric solid.
1 if the structure is a solid -
Input 1 if the boundary shape is a square or a rectangle.
2 any other shape
If boundary shape is 1 input
a. r coordinate of the bottom left-hand corner
b. r coordinate of the bottom right-hand corner
C. z coordinate of the bottom left-hand corner
d._z coordinate of the upper left-hand corner
If boundary shape is 2 input
a. left and right hand r coordinate of each main nodal row
b. Tower and upper z coordinate of each main nodal column.
The specified nodes are those with prescribed loads and/or
displacements.
Input O for prescribed loads in both r and z directions.
1 for prescribed displacement in r and load in z directions.
2 for prescribed load in r and z displacement in z directions.
3 for prescribed displacements in both r and z directions.
Input 0 if no symmetry with respect to a centroidal plane is required.

1 for a mesh symmetric with respect to the mid centroidal plane.
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(9) Input 0 for isotropic material
1 for a stratified orthotropic material.
(10) Input E v u E v for an isotropic material.

E1 vy My E2 Vo for a stratified orthotropic material.
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IV Sample problem:
The input data required to solve the problem shown in Fig. (10.5)

y 5

1
NBAR END OF
128,129,1,3,
0,10,0,10,0,
0,10,0,10,0,
45

233050
1,0,0
1,0,0

3

TITLE
151,84
10,0,1 10,0,10,0,10,0,10

10,0,1 10,0,10,1,768,10,2.5,10

]
’ 3

289,0,0,6136
0.0
30000000,0.3,12000000, 30000000, 0. 3

*dkkk



-2

18 35

Fig.

10.5

|
l TN S

r



—

SHOOEELEMENTEsewa qpp— ————

10-NO OF NODES ==wmm=m= 289 _j—_: — ———

16-NODAL —POIHT DA!ﬁ‘-‘—-=-?_"_";':--";"__—'_'---'-

andano Jayndwod Jo a|dues(A

0,000% Q 66,2504 w

=3 000k —0 ¢ Isn

0,0004 0 1,8754&

2 ‘—__—;—__ —0,000& 0 —> ,5008—06— = -ﬂ—guur~+~— 000

Q 0008 O  3,125%&

~ 00,0008 03,7508

'_ _0 0008 04,5754

—*_D.QQO& —=5; 000z—=0

00,0004 0 5.645%

—=41———0 0oz — —% esﬂs—
: RIED00% o) 6,87564

18 =G = k—cuﬁgb—“P%§i5§Eﬁﬁﬁ———_—%¥¢b_w——“~—w-utiﬂ————h—f’v+§¥;—
OR LOAD Uk LUAD
W0 000800 D00E———3%— soue—t—0-GsoE—0
1 1. 0,00V% 0 v LOUE U
{r == O 0UE—0— 9 Uga—0— =
U 1 0,00V 0 vV, bbua
0 1 0,00V 0 v, 000%
- 3 0. OUUgE —0© U, 0ugg U =
0 1 0,00V 0 U, Ugus U
1= Uy 00U —0— —0, 0yusg—u
Bt 10 U 0,000 U U, 0vg v
= : = ﬂﬁﬂp\t——u B A2 i =
A ] E!._L!.!“&__L _ U U000k =

o<

=0, 0004 Q-:—"?.ssma—-—&'— ——1—0,000—0—u, ugus

s 0. 000K 0 8,1254 _

PENRWINSHL, A L 0, LU0 K

M =0 000E 0 S0

==——=2 0, 00UE—U- 0. 0600z

o 0.0008 0 9. 3754

6 =t —0 0002 —0 =9, Q{JD&--—-
-:1521-;; 6,304 =1 0,0008 G

U
1. 00008 ) U, HDQ& U

== - — —

e e e LHUEL_L___L!.__ULL&_U

B¢ 250 o8 — 6,2504 =
L DugHEst v 6.2508 w1 ___1_.42%_.

—'——E_Eﬂ_":—:u_.ﬂﬂk&ﬂ———u— HOUX—=U

i 0 UUU& & VU v, 000% v

“EeE -



“ELEMENT DATA

NN ——— _-.—--—!mDaL cﬂﬁ”ﬁ&ﬂﬂﬁ&---- = ———HATER AL —
RS i T 30 SR b
=———= e S e &
g e e, 3 TR

= 22 %
Sy 28 40 25
: '-.:;_Ej?-_ _—__23 ——-—ﬁ
2k 4 25

— ﬂ.JJJ-—I

e gb t.r. 27

j—

=———cE=——r———————
W7 28 46 29
Ioian T oaes 29 50 =
P, 3u 48 31
——f5————3— =5
. et 1 52 50 55
Ty =¥ i6
S Pec T o Aue 70 53

|

— |l

- |2

1
—=37———53 — == T 1 =
ST & i o Y R v A 55 1
=== ————— 1
L0 e 50 L4 57 1
=7TE———= ——58 40— 1
s e R oA 76 59 1
===y > — |
..__?.?:__. _’__.'_gg ..__f b b1 1‘
=—————>— —— = 5 =
ek Ty Sl T B0 65 1
= —64 46 1
£ % Sl W e GP) 1
——B3—————4F———§5————p 2 = 1 ==

“ Yot =



E<

Vi 4 614

“MATERI N ——————% L&ST! ¢ — PRDEEKTIES

L NUUB—E -R:.L__-f"_ e

5,000

( _—

U, 80 0,50 M1.400%

N __ L&E EMEMI s ma Exmc E__sg - .
= R-al R_E_c:'!? I OH_:_“:_—_—Z:R;E—ECW EWE:EI'BﬂEﬁEEﬂHE—:[_mEﬂIlHL_

:
-
E

- =

e e

= ";-_—_:Lg; 000000008 0 1,04756486% =5 —

ﬂ_ﬁzﬁ:ﬂﬂwﬂ'ﬁ s_ﬂ_ﬂ'l_ﬁz“' ".'5 = _

—8———— (- 0uu uimrrﬁi—u-——-é .‘551 4398612 "3

~ S  0,00000000& 41'. =2, 08472906 =5 —

._-; l'l‘—i—l;i-ﬂ-i_i-ﬂ {mﬁifﬁxzﬂz-——_::j.;—ﬁ_ﬁgf_ﬂ;i__ﬁi;—-_ )_—;_—_ e

e

_"};'—::— ‘;ﬁ_lﬁ'}_‘?q_nﬂv LEY

U OUU0000E—0— —4,480920825 =5

e gy ougnE ———————95 % 5?532&-——:- fae———

——— 2 315k =5

= UL QU0 ——— 5 A ZNAG AN i _=& ===

z__‘li-‘——:__a uﬂﬁobﬁﬂb&_'a:;:i_ﬁ"iiﬂaaﬂﬁi—' Te—

gL g N E—0———5 -ﬁgglpﬁb E-E -

'-”;.--—-o 000000008 o

1 a == R AT R = — -—u—_u_ﬁ_[[ EH}H U = —— ==

E&?ﬁqf—'—;J 045851008 =7 5, 3574370% =6 ¢




- 326 -

STRESSES

=S e it ———— o h e ae e Clptamp
16474 2 1,.2841% 2 S 2390 U3 1.0020% =1

e a2 SRS, e A
L0250 2 1 - Po8yY2 P 3. 20675 2 =% 2385342 g
————F—EE§#5+4—~¢——~4Tf¢i§E— Z S B = _— L iy 5 3
Y. S506A% 14 1. 226358 2 $.193024 2 -1.5;77~ Q
=====_o= = g £ SIS s = h G T =
8,81043 1 f osSan g - o 2BSEAE 2 -1,49154 g
6.591?4 1 1,.Q0526% P z 5‘954 2 =1.671604% (

e ST as : At e
8,337584 1 AN L 2:.22%08 9 el S398% 0

m%:ﬁ:ﬁﬁ"r S = —rm e T -t = = —
= [ ¥ == 5o = 7.

B.S071% 1 7 48994 1 1. AA4598% 2 =1 Ighsg g
L iedrn &St Age ¥ SN/ T Z L m—— &
7.33634 1 5.0142% 1 9. 35724 1 nN2iLdb6 3% =1
U R R ! =S A S = R e T
1.8205% 1 1 _5205% 1 i _S479% 4 =& IALSE he
1 OTITR. 2 i 2F8TR_-D 3 _gSiSe =2 {728 % -
g A o T F S S ¥ X F g ' —
L - o LB B L2 w1 oy L Lo S g " §
e e AN 1 24473 2 3. .2115¢% 2 L.-S121% 0
i e SRt — SR FT—2 =0T A
B 2500 RIN A 1.18108 2 3 1909 2 2. SV6g 0
ES=—— — - =—c=—=c—cci et e —,

STRATLXNS

=NOpE——EaR === == ==

1 -9.6805& -7 0, ooou& ] 8, 41045 -5 alsaeva -y

3 -1 6548 =6 0. 0000& ] L;Qnoa b  m1_ 02784 =7

A Pt =6 ognpo—3 SR ST S e ——C
S =1,18568 =6 0.00004 0 8 25013 g #1,2939% w7

= = T
= e~ —-—— =
L—Eﬁwﬁx OO0 P LNy S e e T T S M

7 -1.1?35& -6 U.00002z 0 ? 82684 =5 =1 4()9R% =t

e

9 "8 8164& -? 0, 0000& -/

Y
0"
C
o
ot
=1 391
a
]
55
]
-
-
'~
~C
i
I
>

3 = - - ——7 = 2
- _l_l.xl.!.\ ¥ ‘1:113. = X L —
X TSRS o = -

="

11_ -2, 9?55g_r? 0 00002 5 62?14 “h =1 29404 =7

=T ——— =i —— DOOOR—0 & St tesi s pores o

= H

1.3 4,4L078%8 =7 0,00002 3,8867% =4 =1 (HBRXE o/

L E e s et

15 1.0151& =6 0,00004 0 1.8820& =5 =2,0¢219& =3

7 4 nnon& Q 0,0000z% 0 - 785'&& ""? =2, 73718 =7

8 —— 7, Y0P — = _37F1

_19 <9 334BY =7 =6 67925 =8 B 47764 =6 1 3105%& =7

%Eﬂ&x&-d:-ﬁ_—__ﬁ =
21 =1,08264% =6 =7 444l =3 B _LbL30g f

23 =1 .16543 = a8 0219z =98 319602

o}
A

2= ST = ——=F A hP e e ———F S TR




- 327 -

= —S FaAlES
—ELET _ERR _ETTH E22 EqR2
e
€ TP 20788 97 =4 54497 ~8" 4 %iigs M6 4 8854k a7
e — oo — - =

A__=1.0915% =6 =5 04433 =8 &, 24484 =& % 010VE 7

E;E:MM;M&WA — e

6 1.15278 -6 =5.2860% =8  7,94424 =4  5.7499% =7

§ 29 87438 «P 74 49892 =8 7 24143 w4 - D 15818 of
T2 : =i -

w

10 =5,.42248 =7 =2 33033 -3 6,.1317% =6 1.266878 =5
== 038U ==t Sioe——x SR AT ——s ===
12 8.79983 =8 5,83202 =9 4,6053% =5 1,.5877% =4

=000 =t S e —a—— o —— FwASee—n
14 0,3707% <7 3.1724: =38 ¢.83844 =5 1.85474 =6

= T e
—_— T ¥ Y o =LY

16 4,4052% =7 2.00235 =3 1.2213% =% 1.8598% =5
::F?L**FTfT5ﬁg=1#221¢?4¥33§=ﬂ#:==§$1*Eﬁ_ = F=asge—aa—«————
_ 18 =7,42068 =7 =] 4£%X503 ~7 8,76413 =4 53,61
:’FV:“‘*FQT#&@E&_:‘&_W = =7 P S - 23
20 =9 77732 w7 1 G44Ss =7 8,764904 =5 1.00

=2t 3A365 a6 =7 geon—3 ==a==————=—-o———

22 =1.16758 =6 =2,00753 =7 8 S4414 =6 2 12254 <4

5 =
WS e e e e

=S = == ——
SIGMAmR SIGMA=TTH IIGMAm7 _ SIGMA=RZ
S = 1_,’%:&__‘: TS ; PRS- —
LULQ78 2 1,2542% 6,879 )%
=c==== 2 E=Sissie==——c=r= : A e—s =
. 774948 1 1.2176% 6 27272 ' : :
5 & RS ——f o A 0 —
1 1 H,UNAZA 6, RY99K% 0
8.50978 14 1. 06784 2.818%R
— S ek — e =N Ay > Tttt — %
S, 38168 1 9 . S57X80% 1 4, 7A07 % 1.,52008 4

e
;o e

v 3
iy
-
- -
>
o
AY]
-
o
-

NN
g N
L~

.

(™

AN

L~
oo
L

=

WO MU NG 8 s L

ZU031%

2]
e e
NN N
- E L,
3 |4

7.24603%% 1 6

e e o B 4

:‘tﬁz
1.1854%

-
. N
h,
M
+
—ed g ’
!
NN N B
-
.y
.
-
1

1
2

ISSSTEs === s —7 TR
1.08638 2 1 2677¢ 2 6, 589494

YLy ¥

M N NG 0y
k
k

9.7099% 1 1 :
Entias— s o et — = s 1 e

Nt
NC
N
=
-
A
>
I~
|~
.
NS IN
L\;N




- 328 -

10.4.2 Mode I fracture program

I) Program flow chart

Procedure declaratioms

(___ NJOB:=READ )

— — — — — < __COUNT:=1 (1) NJOB >

NSETF:=READ  NMAT:=READ

N1:=READ G:=READ H:=READ

AA:=READ RO:=READ NSETC:=READ
] CASE : =READ

MET il < 951 (1) MSETC. T >

l No

l
| NELEMT :=READ NNODE:=READ
l
l

$=1
I Yes
l ( NNEWC : =READ )
NSETF:=READ
I | Procedure CCRINPUT

- —<1:=1 (1) NNEWC> Procedure ADDARRAY
Procedure KARMIBND

J:=READ KODE:=READ
ULK:=READ VLY:=READSIMATNO:=1 (1) NMAT>— — -

— [

| Procedure CONSTREL ]

S e S
|

e el et T LREE S,
l ’_'

< J:=1 (1) NSETF B

ll
[
[ =

b
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I

I Q[1,J]:=0.0

I:=1 (1) NNODE

e

|  Procedure LOADING

No

NSETF>1

D

es

e

o —< 1:=1 (1) NSETF

& NSPEC:=READ

)

J:=1 (1) NSPEC

e

K:=READ

KODE[K,I]:=READ
ULX[K,I]:=READ VLY[K,I]:=READ

)

_1.

Procedure LOADING

(_ HND:=READ

N

Procedure ASSEMBLY

Procedure CCRMI

Procedure SYMVBSOL

Procedure BOUNCONST

( Qutput Results

)
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II) Program listing

'PROGRAM! (AXXN)

SEENPEPEY O g TRy

"QUTRPUT'0=LPO

SEEXTENDED DATES

JEXTENDED'

= AR —Y

Lo 5 v

'BEGIN'

EINTEGER - NEL R g oS —Ter w1 oA S e n Tt

ﬂJOB COUNT, BAYD M IAT ,4AT 2

e et =
:
E s Srme— i ol B sl ST

"pROCEDURE" STYRDI LN sl 20 B B e Xt ie, 205

ngﬁg§£5g$ygﬁridk X

'INTEGER' Za

= ‘ IIII ‘xrr —n
"INTEGER! 'ﬁRQAY' ) L
EARRA i =
BEGIN! .
EINTEGERE il
YREAL' CHANGE: - —
=Eppket e e e e L =
TCOMMENT! THIS PQ*"-J"" AL UATES THE JACOSIAN J 17S HETERMIMANT
AN THE St e
CalZs il wlbmii+b4%: 2=3)sbwy 22 [0ulZ,4]])~

J[1'1]'=XFNLZ 1]]1(4*g1—11*ﬁ.:

J;j;é]-:v'ntz 1]]~(w~n -”1*(

(2, 111w (nLtenn

P23 s 2uY [ u LZ,.!-.*J__]_:

]
AW e Rt NS S teaxrtat o Prat m P w emL oy

2=3)warwy 1*X(nEZ,4]1]~

02, 11:=X (N2 2)]=Coni2=" 2002, 10w ChmLlnbe

4i2.2)13vINZ, le:[:¥}p-*~~vr~£?:'iJ;Ea*L1+¢- 2m3) et 1mY N2, 6]]5
S e e

|chHrNT' U REPLACES aE:J,

Ur=dli, e ey

CHANQEA?J=1n1]-

§EEE¥¥£EE§££Ei
Nilhlinhelivly:

NEL S Frshe o 2x L5
NLtél-aa.LS*L1'

r - - . o ——— = w

= > - = Tt £ : e =
]_—}-—;.—1} JJJJJJ ¥ T X = T S i~y

X(N[Z 5]]*X[N'2:61]J/u,

.ﬁﬁ%ﬁ&ﬁ&wf—ﬁ ===

RAVG:;=RMEAN

J;ﬁ

'BEGIN'
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RAVG:=0.0:
MEORY 323 'STERS 1 PjuTlod "y
SRAVGI=RAy o= CXENEZ T T - ——
.END' . e

1 T T

SroMBEREE T R R e — I —arrr o UR S rEE s ey

AepnR? t2at ‘STERY 4 Vdueied g, LB :
SEpORt=Ura, o tna a0 s —
VEOR' 13:=1,2 '0U!
= : = FeE=og T e
pl1,s2):2J 1,2 wlbeid=1)
PLEr S Fr=d i it .tff‘ e S S
PLI:&]"Q*(L“*JLftf' i B e
———pr YTty T —--«—:-u-i-—r‘—‘—*‘—l—_*—{_—i—-?—f':ﬂ‘-ﬁ_—'_'“_q_}'

)
-

her i

6l1,81:i8he(d?1., 1]t 3=t il ] ,11%i 12}

“FENDS;
YEORY 1eoaf 'SEEPT 4 U UnA. v 12 TOn?
O e s hrora 0o S—s s E
‘teoRY riwd 'SYEPY 4 ORTINY o D00
EEEFGF#L——? =
T (lxg= 1y14 :.'.'-,.'L,,,-’fv?f}]::_\r],jj;
gz@;ﬁfktﬂfw--ﬂ‘. e e T
_B_LZ_‘.LI_*Z.AL_J_]._' aNLIT)/04VG]
ES3="TESS
YEND' QF STRDIS;
_FtﬁﬁtEbEr-'—kfvt?*-f—;,. SE =i S siee——mmmea o
'INTEGER! MEL»—FT. INJDE
= E e
'EFGIL "NTEGER' Wed,1,3DDTEHP] o
| -—W—‘—W—f————r‘—? e i —
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Khtd I+1j:-KF[I+1 JJ:=<s?r¢1¢¢1*-2“,,,~<1§1.¢3 (C{qUDﬁfZ,’];31*u[1,l¢

aft= » " — ¥ o
_;_:_J:Fg_;_&u.;__g_,._‘_.—_._,LraL T e I oy a1

,1%91eC HODEL2,7) ¢ 7 (%302, 141

4EEE&GEE£ 313533%l&@&;##?7---7--_‘ ai:xgi$#§&£§E§I§§+j:

_Lé: "END'; X

SLENDES

_COMMENT! ASSEMBLY OF OVYEwALL STI=FiiZ5s 1 TRIX AS &

mﬁw—wh T

VEOR' I3=1 "STER' 1 'yuTl, ' o ' Gy

SEROR s ErsTep ¢ e

'YEOR' v:=1.,0 ‘30"
HBEGTRE=SUS T2 ¥0aRto Frevat -
___ SUB2:3NODE(Z,)])wD=/}

e SUB T aNOSE LI T ey

'Is' SUBY 'LT' SUs2 'THEN! '6°T0' LABas
_KEﬂﬁiﬂﬁhj¥ﬁﬂikﬂﬁmﬁ;ﬁﬁﬁ$zqtz““f*rﬁfﬁﬁﬁﬁéﬁqifT Zwtr fegm s =
LARA:; 'lg' Sus3 '"(T' SuB2 '1ThHEn' 160Ta" LARB) >
KCADDTSHRE =S == - = SR TS -_::‘_'Wh-Lfl'd?%%__— S
LABB: 'EnD': .

'END" i ot R T S
'END' OF OoROCEDURE ASSgnSLY:

MNJOB:=READ:

FEQR OGSt FSTERpE v ——r— bt = ==
'BEGIN' 2

AR T e i ag e e =
_QQPKIEX_Lwi[EHQXQEAIJILP'\"

‘RﬁﬁﬁgﬁiiiikﬁiiﬁﬁﬁéFi#~+wL—Aﬁ+ﬁ15_ =

MRITETEX TP (' (P (200! (OYOEUELTHEN Y S hmem=t ) 1)y

PRINTINET 4T 5,001
WRITETEXY (! (1 ( 2011 40uN %N P Y mmmmunty )

RRINT NN S0

NFEREE:»=NNODE®*2: JHAT:=20F 40

R EGCEEE LT EGER R e, e ey e
_'REAL' 'ARRAY' XX,YYZ1.:#i d}ET,!LRLUL?f1=1.JDE.1!NSFTF1,
TEEaNEA ST 0 Al S a g ——= E=s=s=—coooaa =

'LNTEuER' 'ARRAY' "ltID._I‘}' "r'

\?.1-?leﬁwﬁ'i:Hunhs.1:N:FTF].

ik ot I D o . 1 T : e e e e e e e T e e
e e e v e e . e e | tiT T e ety

_NJ_;_._RLA_D_: G:=READ; H: BREADE A4330FAT: R J-='<E ;'h

::gnl_“s+:l_'quD' 1 TUNTTL Y HeETO 'DOY

EREGINE— S Tt

'&EGIN'

= = = = = e
| — - ~ » - - -
i — e R e o iy

_HSIEL;STFt-ULX VLY H:l:r* NODE,HY ged AR, 008

ADDARRAY (NELENT i HuODE, An s oy

KARMAIBND (41 NEREE,ADD kia'ln)
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ER R MAT SO T ST e e s et S e
CONSTREL(C,MATNO,, ll . g =
SEENDE RS R — = =
'REGIN' LNEUF'=HFAL. CETRrmaFaiy]
SRR Trottartet At =——to =
TBEGIN' .l_:_-;R EADE 2 5
_:::::Eﬁt R e e e e e e ey
_VEND'; ik
=EENb—F -
_NRtTETEX'r('("L'Zc")'r-J':"'L;.:?*;f?—?”--I;-H':Fiéii—‘nurl----')')L 1%
PRINTINFRIE« 30X PR
NEWLIMECR):
O T STER T et et
VEARY je=1 "STEP' 4 ®OnTI ! HSeTE PDOY UET =G 0:
Pt et STl %mr—n“ﬁ%—*—' s ==
LOADEINGCKODESY 11, L x0T, 21, YET, 4] 001 9t) ¢

e Rehrrtort—tra
!'BEGIN!
CEEBRE —fiar S TER e —kee
_'BEGIN'
HSPEC:=ReDT
ual_l_izgr_t't"(_zv:m---:';5"—?-----'1'): .
PRINT(E 3,007 =
WRITETEXT(*C 1 (*'2c') ' HOLBEN ('S ") " YYPEI('551) "wwl]Igp ' (155 Y) ' YmDISP
SECrC O Sy roRa OOttt EEE =
TEQR' J:=1 'STYER' 1 *UMTI| W
FREGINE— — e

K:=READ; XODEfK,IJs:=Rp,iDs ULKTK,T]3R2EAD; VI YLK, 1J:1=pEAD;
= A E WA S D el T e S o D5 S e e B i e i o M o i —
NEWLINEC2):
CPRINT( K, 3.0 )— SPRCEl=T; ——
PRINT(XOpnE(K,11,0,4); SP. CEL(7); s

PRINT O S T 0 a T
"PRINTC(VLY K ,11,0,4):
SERDT—

VEND';

SEEN g

NEWLINECS) !
'BEGIN'

'INTEGFR' h.G HND.

. . x._rv: T

'FOR' 1:=1 'STEP' 1 _"UNTIL! ""i'-;'ﬂ‘i 00O

"1E! Kno:t1;1]=0 LTHENY YsoToY . Kla s

_BOUNCONST(ULX[I 1], 2-1-|.u.a;.:2F¢.1LnDu):

EENRt Jrns TS TRt SETE oot e g P Ty

'IE' KODE{1,11=1 'THEY! '.uTG' €Ce 2
KCZ=ROUNEONS O ST oe sy ey ——ron s rfash )ty

YEOR! Jia2 'STEP' 9 ‘HHTIL' MaETE DO QCr,J)s2201,11:
R =
_bLRJ_LE_E_'t('("(__C_ZS } CCRIMRBERTI NI )

RN Ao NSNS e T A e e e s

_HEMLINEC2)
"#R_ff_EIE:ﬁ'E(_'tf_': SESER s ey




Siahe =

Jm‘i&&lll.. KoK ADD 0, HG=dwildar , (9T Te , Fhip)? .
HEWEINECar = |
_VEQR! pox1 'STEP' 1 MunTIL! ‘{SETE 2001
G = == =
_ WRITETEXTL (¢ At qna. YD 1SoLACENELT I enR2eNREEYSET )Y
e S LSS T ERIE

WRITETEXTC (PP (308 ") il {1851y Ty I RErTIOu (P 2g")?

5_IEEEEEEI1£ﬁéif£§§:'L%+h-’Lx e A P e L ﬂL':=

2=DIRECTION')'"):

1 it

1FQR' ;=2 YSTER! 2 tU4=1L' 1) 'pn!

foe-

E—————=na s nlimsise=s el —— w1t =
RINT(Z2=1,3,0);: SPARE(2y: pRINTCILYVeT,1100,8)}
SR CE e o T e e ==S=-=
¥ PRINTCZ,3,0); S24C8¢2); PRIATCa(V+4,11,003)¢
,?$€E$£¥EEE¥5£EE£EE%3, ErE i
TENDY S

t-'r-rl——_ﬂ1—|=__.—‘-—,-’_?1 . 7_‘_. 31—
'BelGIN' NEWLIHEC?); PHT AT ndD e , 340Q) 3PACE(2Z) ;
S eSS (NN ,'r.
pRIN’(Q[U-?,[}
_______y‘:ﬂQHZ*N1
=Ll FrE T e eyt e e e e e =
INXR=DIRECTIN!=')");
ff;*———m—ﬁEE$¥FEE¢F$?¥r**hc,: =
uRlTETEXT('("('“ ') UIGNEA s 3TRESSATHTENSITVAFcTOR, K1) )
=P RINTINL Ve o s ==
YEND' e
"I.—E__-n.ﬁ_:_-_
TEND'
Yent!
FAIL: 'EnD'?

W ok ok W

3233230 -¢2) spnT T Y, V,3) 3

-~

'1|I| -
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ITII) Input data instructions

A) Number of jobs to be solved.

B) For the first job.
1. The job name followed by end of title.
2. Number of elements.

. Number of nodes.

Number of sets of forces.

Number of materials.

. Number of nodes on the singular core
. The radius of the specimen(1)
Half the Tength of the specimen(z).

Crack length.

O W W N OO0 o A W

—

. Singular core radius
11. Number of sets of constraints.
| P Case(a).
C) For the first set of constraints
1. Number of specified nodes
2. For the specified nodes:
a) The node number
b) The node r coordinate
c) The node z coordinate
d) Kode
e) Value of prescribed Toad or displacement in r direction.
f) Value of prescribed load or displacement in z direction.
3. If number of materials >1 then:
a) The number of elements with different material properties
for each different material.

b) The element numbers of these elements.
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5. IF the number of sets of forces for this set of constraints
is >1 then:
a) Number of specified forces.

b) For the number of specified forces

Node number

Kode

Value of prescribed load in r direction

Value of prescribed load in z direction.
6. Direction of crack tip(4)
7. Elastic constants E and v of near tip material.
D) For the subsequent sets of constraints:
1. Number of new constraints
2. Number of sets of forces for this set of constraints
3. For the number of new constraints.
a) Node number
b) Kode
c) value of prescribed load or displacement in r direction.

d) value of prescribed load or displacement in z direction.

E) For the next job strat from B.

Notes
(1) Dimension G shown in Fig.(10.6)

(2) Dimension H shown in Fig.(10.6)

(3) Input 1 for all cases.

(4) Input 1 for a circumferential crack

2 for a penny shaped crack.
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IV) Sample problem

For the problem shown in Fig. (10.6), the required data is as

follows:

1

CCRS1 END OF TITLE
126,285,1,19,10,14,5.0,0.1,1,1
29

20,r20,220,2,0,0

39,r39,z39,2,0,0

267,0.0,0.0 3,0,0

279,10,14,0,0,14540
30000000,0. 3,12000000,30000000,0,3, 1
30000000.0. 3

Fedekk
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Z i1
A
s
h\
B
o P
]
5 o
P
2x Rec
= I/\l
L AA:=: 50"
G =i00"

A

Fig. 10.6
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10.4.3 Mixed mode I and II program

I) Program flow chart

Procedure declarations

(" NJOB:=READ )

e e e GOUNTEm (1) NIOB o D

NELEMT:=READ  NNODE:=READ
NSETFS:=READ  NMAT:=READ
NT:=READ G:=READ H:=READ
AA:=READ RO:=READ
NSETC:=READ CASE :=READ

~

\

]

/}

S AN, <ol Suel’[1) NSETC .. >

No

RS R R e
© '

I
P LT

$=1
( NNEWC : =READ ) Yes
_”SETFTREAD C NSETE ;READ %)
r < I:=1 (1) NSETF > Procedure MMINPUT |
8 Procedure ADDARRAY
| J:=READ \ Procedure KIRBOMMST
[ KODE[J,1]:=READ
|\ ULXOKI1:=READ < MATNO:=1 (1) NMAT > — —
[ VLY[J,1]:=READ /
R S Procedure CONSTREL
l_ - =<K I:=] (1)l NFREE >
- = — T 1T WoOTE 8
|
| Q[1,J]:=0.0



O,
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|

— — =< T:=1 (1) NnopE e

I
| Procedure LOADING

No NSETF>1

es

R (1) MSETE

l

(____NSPEC:=READ )

B =€ Sasel (T MEPED . O >

] K:=READ  KODE[K,I]:=READ
I ULX[K,I]:=READ VLY[K,I]:=READ

e e ey

Procedure LOADING

Procedure ASSEMBLY

Procedure CCRMM12

E Arra

Procedure BOUNCONST

Procedure SYMVYBSOL

Procedure EQ4AAA

Procedure RESIDUAL

END

_[K*] and [ADD*] are
copied to magnetic
tape on computer
back store

: Array [K*] and [ADD*] are

recalled to core
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II) Program listing
—PRAGRAMI (AXXX) :
SEINPUT G=CRO—— =
SQUTPUTIO=LPO el
SEEXTERDED DATR! - —— == ==
'Exli&aEn' B :
SETRACEY 2 —— = =
_'BEGIN'
—EfEfEhEE¥L#Ettﬁ¢F#¢ﬂ#E;:%;¥ﬁ¥:=r“ ~—*—¢xx;ﬂw&;algzggizggft;ntng;
NJOB,COUNT,PRNT, HVABY AT, AP0, 2AT, AV EUY .
“TREALYDES S S S oo Sos e e s S _-.:;‘,;._ =

-_&EL&QQdX$LERLCUNtE13K?.!H .
RO CE DU R = C s FATESTONE T, Ss ooy =
JVALUE'N,L,G] *INTEGER® L. .l.G3 'S=el ' 3,T7 'e{TronAlt}]
=EpROCEDURE = INSTORECST T oy —
IQL;LJ_E_,._'J'ILJ:_._NTE_.J.E.R' Nef PSR v, i '.:-(TF-"‘J;\LJ}'
PR OCEDURE S PIFTARRAY e : =
TVALUE'N: 'INTEGEQ' Naks CARRAV' 12 VexXTEaMALS:
FpRUCESURS = s
JVALUE' N: ! IuTEGFR' NoK2 YARBAY' A7 EATZRNALYS
CEPROCEUREE=S TR o e e e S
'VALUE! LJ;LZ LS gyt e
=FENTEGEREXS =
IREALY L1.,12,L374:

EENTEGERIE—FARSAL —ur ==
_VARRAY' X.,Y.8: '

_,i..__- e - ——
VINTEGER' 1,V; =
SEREAEE_CHANOET = =

'AFAL___LRQAY' pt1-2.1-51‘:rﬁ«2,ﬁ-“].r1L1eﬁ1:

=F - - 1 3 —m T + s = S e A e e & S—
ﬂND THE STQ\III"_}I-.) AR LY f‘; :

:sziﬁifixE%ttztzhftwrzt:i#t:;:I;x*f%vfr*+¢t#i:%=a¢¢ma¢#ziiqi¢;¢¢4m:

| 2eX[NLZ,5)1%bex [N, 67wl -?-"-L’)I !

ﬁﬁIZ}:-&‘FEAEtEdJ_E&L‘f*mE.:}.!" EESFSas= s = = SE=s=eoooes=—

b 2wV (NCZ,5))4bwey(Nl2, 6] ]eilminit=l);

SHEEE Rt 2 tathe 2ot owr ot rwr e Sasoa e s e

b XENCZ,5))%(1mlTadn| 2y mbu =00 ,67]

iizbzf;=¥FﬁrzigiiﬁtﬁtE?‘*kﬁ++~ﬁrﬁw~+thtt:!“ =S tehwrteY it t e
arYIN[Z,5]1%(1=L1=2%| D) bt T*vIil+,0]]
SECOMMENT U REPLACES DET

_UL!L[J 1]*J[2 ZJ~J[1 ?J*Jr2ail:

JI1I ].G-J[‘l'?JIUR
S S sESSE Fesra=rait
J[2,2]1:1=2CHANGE/U;]

SNELFS sEr= (2w it=13
NLEZ2):=L2*(2w% 2=1)
NLE3T:=L3%(2%3=1);
ﬂLLil+sk1LL_L2.
NCES):=b e _ =
“LLQILE&!LQ_LlL
_RHikﬁ?-{iEkaElEEiXEEf???4*+++-T-,,+ ==t e =
XINCZ2,501eXINIZy611) /0
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LR e Bo=tO = aC = e e
_RAVG;=RMEAN ¥
=EFESE! : = ==
"BEGIN' B

RAVGT=0.03 ==
FEQR! 1= '"STEPY 1 "UNTIL® n tgn

AV ERAEEOEENEZ Pt it =
'END':

SECOMBENTI—FRE—F—_SpoAr Gea——roe— = e L e e T el
TFOR" l:=1 °STEP" 1 "UNTI ! 6 '1-' _

DR a0 o0t —peu_pr B =
'FOR' 1:=1,2 '00'

SRR G P st e tawi T =
PLIs21:3J[1,2] (4wl 2=1);
= =se@ss=srimasmasarsa-ee-———c———=o ooy ==

nfl.&]'=6a(L’*J?I ol T R R e R

y+—F 57 ’—.’:_’. +—F = = — == T —
----- ‘v\-er-‘-'_E. ' 5 - -

. D[I 63-=4-tJLI 1]~L~-L*-\-:i,*]-J:zf:;)J:

=EENDLS = : =
'EOR' 1:a1 'S EPY Y thpTTe A A 1nal

SRR it e, 5.6 TR0t s e
YEOR' I:=1 'STEP' 1 'UMTIL' A 00

FREGIN'=—"— =
Bf1,(le2= 1)1'=btu;LI*3?"=~{1. 17
‘—*__ﬁEEéFFthtts#HI-:‘Lu.;;#_;.L. = = =
Bl2,(1%2~ 1:] =NLLT)/RAVG:
=EENDY; =

"END' OF STRD!S:

_'PROCEOURE' BOUNCONSTCU,N, B AN, LE ,F,,)1

AL UEE O NENEQ
'REAL' U:

SEINTEGER e =
'ARFﬁY' R:AK;

SEENTEGERY _CARIAYE—3F
"REGIN' 'INTEGEQ' M:KnCJ:

YEQR' K:i=sCy 'STEP® 1 SUHTILE & * iy
ZEEEGENE
RIKsF):=RIK,FlamAb Al miim Tw !
A A= =t

=FE Wittt

o
- ~t =
J

'FOR' KL;N*1 'STEP!' 1 ‘ulTIL® th D
RGN Tkl ALt T+ =
V1Y €4 MLEY N YTugn!
-‘H‘th-!:ﬁ:

AL Imnm I,

RrKl‘F]!ap.[L:; F:-n-;-
ARCA T I mRas s r=

x I

VEND' 'ELSE'

SEENDE;

LZ: AK[AEN1):=1,0;
=——RiNFEITEU
_JEND' OF BOUNCONST;
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== - —

'PROCEDURt'_LﬂﬁEI'Ggé;ﬁgciﬂégér

VINTEGER' A/E,F}

SEREAE =0 — = =
"ARRAY! n.

'"BEGIN!

' INTEGER!' Ki 2l 5
SEreE A= I THEREE 500 taots =

(L]

T i
- =

j:f;"—-—ﬁri—*fﬁﬁ*ﬂ—_%dtﬁf
__DIK=1,p):=D[K=1,Fl+B;

CEpptrth et CERER GO ==

_KLAB2: pDIX,Fl:=D[K,Fl&C:

KEABEr— I 0t Ok COAD NG —

:Wﬂkii.z....; e e e e e
S{ALUE N;Rf VARRAY™ A,tgne "IsYEaea! VARQAY! 87 116GTegERY dyH;

_laEQLNL
EEENTEGERE GNP r ek r o Pt Tt
'REAL' Y
=0
TPOR' I:=1 '"STEP' 91 'UMTI(' i tD0s
— FBEGINE T
Ti=]sH=SlI)el] G:=He1;
=prRStriet: ==

o tROpY a7 VSTEPI 4 UiNerl ! T=d 2901 2
= s =
Q:=Pwl; HizH*1;
e eSS — E ST eE e
VizHap} Us=G;

vimALs
'1E' K 'GT' T 'THEN' ySileg=T:

= e m T S in s e Le s e e e
YiaYal (UYel [U=Y]}

E———— = mS===T o ——aaaes =
TEORY M3awq VSTEPY 4 “uHTILY R ChOY

=—BlEnirea Bl et s

YEND' )
T R e

"EQR' 1:2G 'STEP' 4 'UNTIL' i '.0
F=— S= S ct=S:i-hoss
DEEa Iy BT ) VeHENY I8 P0Y EAT
—WreHery YiSSaURTILY)r;
LIHY:=vy;
=EFORt—mist SSTEpt T sgoeer b o - b =
Bl ,M).=R({1,M]1/v
EENDE T
VYCOMMENT' REDUCTION CUMPLETE:
Z%E@Wmmm—% T
__'BEGIN'
=——rrart=tjie—
'"FOR' .=1 'STEF" 1 'U”TIL' R Lant
=BiE ;éi&ﬁ;&%ﬁzx- = =
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—— LEt Iul 'TUENE YGHYRL CONPLETE
=) ISl PSSt —— — — = = ==
VEQR! H:=SH=1 'STEP' «f1 'UuTI1' e trut
'Egr—.——r, —
___._.__,':_",j"1__ Y:=L[H4];
E=——tppRIWr=t 'STEPTf -t

BELJ oMY= 0 ), M)=B60Y 0]y
= ENDr T =

VEND' SYMVBSOL; i
=P ROCEDURE AN D AR R AEGIFEES eyt h e —
VINTEGER' NELEMT,uNODE; :
SEINTEGERE_"CARSAYENOBE  &05; =
_VYBEGIN' ¢INTEGER' W,CH,1,ADDTEND;
== T R e e s Sa g E e = et =

TBEGIN' CH:=4O0DE[W.1]):

LEOR'Y g2 YesENr § YGETRLY &2 bhn?
PIE! NODEEU, 1YV L pICH fTUHESY cusa DB T
=—Ffggt Lraf forrat T voew—rs =y —
'BEGIN' ADuTka:=qﬂjlt,.- e

TR rAaDDTENP G e A At ot T T = TR TR fa F fe St T
T % ] o e s & T - - - s = I = - :

'END';
=EENES; =
PPOR' Iiwl 'STEP' 1 TUNTII' HIODE 190!
S REGH RS2 wADD PR s i mowy =
Aﬁotw 11 ADDLM-"1+FH-

EEEEEEEEE&EEEééﬁﬂﬁiiiwi:ﬁ%.,;r =k = .,ff.-:dLPJ; =SIEE ST
'IMTEGEL' N1, MG, NSETE,CASES
: - Rt = .'i‘—n-t.——-i—u-h"‘—‘i". s e =
'BEGIN' 'COMMENT' MODIFI 1TI”' 0F aY¥Zp AL \TI FSESS MATRIN FOG THF

..Ir,

TFOR' 1:s1,2 roof'

SCMEFErsREAD =
G:20,.5#CM[11/¢1+CL2)):

Bl seaa—

ALPHA:=READ:

SHEETETEATCCI I Cigrtytognraanowor oo =T '
_HQQLELESZTHEXDVERALLKa?IFFIESS”In?éI!”“”J‘iI&rh*HﬂDuﬁﬂqﬂﬂTUQF:SIJ GLEX

EEEEiEiEﬁEEEEEEﬁézﬁﬁiﬁﬁﬁﬁgiiéﬂf e e e e e
PRINT(NT1,3,0);

_Eﬁﬁffgfﬁﬁfggﬁszgfngfﬁn-.ﬂii”r”'i,Ftﬂrv Eerme oty
WRITETEXY(' (' C'2C") *MODUJUSHNERRYGIDITY,G%8%) ") PaINT(Ge0,4)}
Mﬁiﬂiﬁﬁﬁﬁﬁﬂﬁm T T S e ‘-—:1‘52‘-‘: S-S sesmIeeio o

SALPHA:20.0176533#ALPHA; SH:SSTHC P, CligsC0S(ALPHAD ]




384 A

_LEQBJ_JLiE‘__LSTEP' 1 MUNMTTL) Setifsc ThO0 K7 B, e Yeah b Lulk
EEEECASE= O THER A p et a b pte e ey ,-=_Muaa: : —

KT[1 1):=2#%RO*CR*( (3, 1a1jr)¢“‘*(‘-“g1~1;/gg~q;,rHrcu;

ZE%E%?ZEEE&_;&EE%?€€£%$t$&e#ﬂ%¥i*“ e e e

'eOR' 1331 'STEP' 4 'UNTIL' 2wii] 1t

S REGIN AT S T2 *ENTLERCL s

_YIE' 1A=1 'THEN' THETA:==3.14450 -rc‘v:(1*11/2-13~? 14183/ (w1=12)

_tEtSLE fn:g;c_ﬁ:‘o‘—_-_.:. *._.:.,"}_—':":.'_—."{::-.{_5;.:. TS e S S e e e -
FI10:=(RD/2)4D, 5*{(?*‘.nr’““')*'n§\. IETA{2)=008 (1 9%THETA)) /(4"0ri)

::::—::—:h—i:ﬁbﬂ?fﬂ'@f;}ﬂfw: = = _.—1— e T == FX T e T bt

'FI1' CRA/2I20 , 5% (22 fipPw )“‘ BETA/2) =51t (8 5*'1'-157;‘1))/(«*'&);

IYer==(Raftdy>0 > ur—r—_!:ﬁ-r-h_— Erasier oot —aeTt—JFayo oo e e R e G )
!*IO 'ﬂﬂ*SIH\ThFT,g). It :=0ueCsS(THETA) ¢
EEpE AT YrNprETteprbr s o» e e e S

n —

=

GlugSdjuxC =Gl2w5H

flglm:t&ﬂ:n:’h_;—!..—

TE:s=Cl; Ta:S=gng
=—=c==x et
'SEGIMN' FIsS81O=S (#FlqeClNy
= = . s e e e =
SIGiRIURS P HT1 0k
= e ==
ol =i & i

iFfﬁEEr&r%tﬁEEEEEE£ﬁE%—t#¥R EE—ftre-s-oot oot ey =
YFOR' J:sCl' STEP' 1 'UHTIL ,~n1 1)
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I1I) Input data instructions

A) Number of jobs to be solved.
B) For the first job.
1. The job name followed by end of title.
2. The number of elements.
3. The number of nodes.
. Number of sets of forces.
. Number of materials,

. Number of nodes on circular core

4
5
6
7. Radius of the specimen.
8. Half the length of the specimen.
9. Crack length.
0. Singular core radius
11. Number of sets of constraints.
12. Case
C) For the first set of constraints.
1. Angle of inclination of crack (851)
2. Number of specified nodes.
3. For the specified nodes:
a) Node number
b) Kode
c) Value of prescribed load or displacement in r direction.
d) Value of prescribed load or displacement in z direction.
4. IF number of materials >1 then:
a) The number of elements with different material properties
for each different material.

b) The element numbers of these elements.

5. Elastic constants.
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6. If the number of sets of forces for this set of constraints
>1 then:
a) Number of specified forces.
b) For the number of specified forces

Node number

Kode

Value of prescribed load in r direction.

Value of prescribed load in z direction.

7. Elastic constants E and v of near tip material.
8. The angle (180-8)
D) For the subsequent sets of constraints:

1. Number of new constraints.

2. Number of sets of forces for this set of constraints.

3. For the number of new constraints.
a) Node number
b) Kode
c) Value of prescribed load or displacement in r direction.
d) Value of prescribed load or displacement in z direction.

E) For the next job start from B.

Notes

(1) The angle & is shown in Fig.(10.7)
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IV) Sample problem

For the problem shown in Fig.(10.7), the required data is as
follows:

1

MODE END OF TITLE
96,223,1,1,17:10,12,150.02,1,1,1530
13

211,0,0,19634

216,1,0,0

223,0,0,-19634
30000000,0. 3, 12000000, 30000000, 0. 3
30000000.0. 3

150

*kkk
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2
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10.4.4 Mixed mode shouldered bar program

This program is identical to the mixed mode program presented in
section 10.4.3 except ﬁhat procedure (SBINPUT) is used instead of
(MMINPUT). The input data instructions are also the same except that
the coordinates of the nodes specifying the fillet radius are inserted
between C(1) and c(2) of the instructions for section (10.4.3)as will

be seen in the sample problem.

1) Sample problem
For the problem shown in Fig.(10.8) the required data is as
follows:

1
SBCRACK  END OF TITLE

108251, 1.1 .17,10,12,1,0.02,1,1,1,45
20.0,4.25

13.0,4.25

11.5,3.848

9.0,3.848

3.848

17

235,0,0,11435

.

244,1,0,0

251,0,0,-19634
30000000,0.3,12000000, 30000000, 0. 3
30000000.0.3

135

Jede s de




oL

D = 20,0

B _of &,
2 4\/
" ‘q’q*/
x O
o~

d =10.0"

&
Fig. 10.8
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