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SYNOPSIS

This_thesis examines plain and longitudinally prestressed concrete
T-beams under the action of combined loading. Thirty six post-tensioned
unbonded prestressed concrete T-beams, subjected to torsion, bending and
shear, were tested and examined. The beams were of two series
differentiated by the magnitude of prestressing force applied.

Using the skewed bending failure’approach, theoretical analyses are
developed for the ultimate strength of plain and iongifudinally'prestressed
concrete T-beams under the action of combined loading. The failure theories
for plain concrete are based on the initiation of the first crack. The
theory for prestressed concrete beams in mode one failure is based on either
the crushing or the cleavage of concrete. The torque is assumed to be
carried by either the steel dowel action or the stresses in the concrete
compression zone. Theories for mode two and three failures are based on
the cracking of concrete. The theories are compared to sixty eight plain
and seventy eight longitudinally prestressed concrete T-beams, including
the author's test results.

An investigation into the effect of age upon the strength, modulus
of elasticity and Poisson's ratio of concrete was also carried out. This
involved the testing of eighty two concrete cylinders at different ages.
Empirical equations are presented and theoretical models for predicting

the Poisson's ratio of concrete are analysed.
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NOTATION
Subscripts 1, 2 and 3 refers to modes of failure

j refers to level of steel

A cross sectional area of a member
Asj cross sectional area of longitudinal steel
At cross sectional area of one leg of a closed stirrup in

resisting torsion
b breadth of rectangular section, or larger breadth of section

for flanged beams

bw breadth of the web for flanged sections

Cd depth of the -compression zone

d depth of the section

Dj dowel force in the steel

dj depth of the centroid of the steel

Ec Young's modulus of concrete

fc! uniaxial cylinder compressive strength of concrete

fcm ﬁaximum direct compressive stress in the concrete due to bending
moment

fcemi maximum direct compressive stress in the concrete due to

combined loading normal to the skew failure plane
fcu uniaxial cube compressive strength of concrete
fm maximum direct tensile stress in the concrete due to

bending moment

fr modulus of rupture of concrete

£y modulus of rupture of concrete beam of 175mm depth
Fsj prestressing force on the steel

fsj increase in the steel stress due to loading

fsp cylinder splitting strength of concrete



fty
fv

Ge

Gs

Ke
kem

kemi

Kd

kt

La

2]

Lt

Mc

Mu

Mup

Pc

§j

Tc

yield stress of closed stirrups.in resisting torsion

shear stress in the concrete

yield stress of longitudinal steel

modulus of rigidity of concrete

modulus of rigidity of steel

second moment of area

torsional rigidity of the compression zone

bending direct stress distribution constant for the concrete
bending direct stress distribution constant for the concrete
on the skew failure plane

torsional rigidity due to dowel action of steel

torsional shear stress distribution constant of concrete
length of the compression hinge

lever arm of resistance of the lower layer of longitudinal steel
lever arm of resistance of the longitudinal steel

lever arm in resisting torsion due to dowel action

ratio of volume of longitudinal bars to volume of stirrups
bending moment applied to a member

bending moment at first crack

ultimate pure bending moment of a member

ultimate pure bending moment of a prestressed member failing
at the initiation of first crack

direct stress in the concrete due to prestressing

spacing of stirrups

bond slip factor for steel

thickness of flanges

torsional moment applied to a member

torsional moment at first crack
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Tu ultimate pure torsional moment of a member
Tup ultimate pure torsional moment of a prestressed member

failing at the initiation of first crack

v shear stress in the concrete due to applied shear force

\ shear force applied to a member

Vu ultimate pure shear force of a member

Vup ultimate pure shear force of a prestressed member failing

due to a crack at the critical section

X shorter side of component rectangle

X1 shorter c¢/c dimension of a closed stirrup

i centroid of area’

y longer side of component rectangle =

Y1 longer c/c dimension of a closed stirrup

yn vertical distance from the horizontal neutral axis to the

critical cracking point
Yn vertical distance from the horizontal neutral axis to the

bottom concrete fibre

z elastic modulus of section ’

2 elastic modulus of distorted section

o shear factor at critical section

Bc angle of inclination to the horizontal of the straight line

crushing failure envelope for concrete

Y shear strain

yc shear strain in the concrete

Ysj shear strain in the steel

€ direct strain

ecj direct longitudinal strain in the concrete

ecij direct strain in the concrete normal to the skew failure plane



ecmi

€pJ

€S]

eps]
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direct strain in the concrete top fibre normal to the

skew failure plane

direct longitudinal strain in the concrete due to prestressing
direct strain in the steel bars

direct.strain in the steel bars due to prestressing

angle of failure of the skew plane

angle of inclination to the horizontal of the straight line
cleavage failure envelope for concrete

angle of failure plane due to action of torsional moment
constant associated with the centroid of compression zone
constant associated with the centroid of compression zone

of T-shape

axial stress in the concrete

shear stress in the concrete due to applied torsional moment
Poisson's ratio of concrete

numerical coefficient
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CHAPTER ONE

REVIEW OF PREVIOUS WORK

1.1 Introduction

Torsion, a secondary effect caused by loading, has in the past
been ignored. It has not given cause for concern because of the high
safety factor used in design. Due to improved knowledge concerning the
behaviour of beams under loadings, ultimate strength methods of design
in flexure and shear have been recommended by many codes of practice.
Consequently the design factors of safety have been reduced considerably.
As a result of this, and the recent use of monolithic irregular
structural shapes, which produces high torsional stresses, more
attention has been given to combrehending the effect of torsion on
concrete structures.

In an attempt to establish simplified rational and empirical
design equations, extensive work has been performed on reinforced
concrete under the action of combined loading. Most of these rational
equations were based on the equilibrium of the section and compatibility
of strains was ignored; hence assumptions were introduced with

restrictions to ensure their applicability.

1.2 - Review on Rectangular Members

On the basis of elastic stress distribution, assuming concrete to
be homogeneous, St. Venant (1) was the first to formulate mathematically
the torsional capacity of plain rectangular sections. Since concrete
is a parfially plastic material St. Venant's equation underestimated
the strength of the section. Nadia (2) proposed the use of plastic
stress distribution; thi§ approach tends to give an upper bound to the

failure of plain concrete.




In 1959 Lessig (3) conducted tests on reinforced concrete beams
subjected to torsion and bending. She observed that failure was due to
rotation of the beam about a skew axis. In deriving her equations of
equilibrium she assumed the yield of all steel at the vicinity of the
failure surface. Hsu (4) recognized the same type of failure when
testing plain sections; hence he concluded that plain concrete fails in
a skew bending failure with the compression falling on the wider face.
In deriving his equation he assumed a 45° angle of inclination on-the
" skewed axis, and introduced an empirical factor of 0.85.

Tu = 0.85 db2 fr
3

Anaiysing the distorted skew failure plane and minimising the
torsional capacity Martin (5) found a theoretical basis for the
reduction factor. This coefficient depended on the proportional shape
of the section. He found good agreement when applying the theory to
existing test results.

Many investigators édopted Lessig's approach in analysing
reinforced concrete beams in combined loading and basing it on the
assumption that the steel yielded at failure. To justify the yielding
of steel, empirical factors limiting the ratio of the reinforcement
were introduced. Experimental results (6) showed evidence of steel not
reaching yield. Hsu (7), in 1968, concluded that the member changes
from under reinforced to tatal over reinforced by incréasing the ratio
of reinforcement. From test results of 80 beams he suggested an
expression to determine the torsional capacity of under reinforced
concrete beams by summing up the torsional contribution of steel to

that of the concrete.

Tu = 223 x2y VET + (0.66m+0.33 yy) XAt fry

b |



in which 0.7 < m < 1.5. Furthermore he imposed a limit on the total

volume percentage of reinforcement by

/£c

= 2400 —=
£

Pib

Martin, employing Cowah's.[B) simplified failure criterion,
presented a.theoretical procedure in analysing réinforced beams under
torsion and bending. On arriving at the final equations Martin made
use of the equilibrium of méments and forces abouf the-skew axis and
the compaﬁibility of strains. | |

' .In the past ten years more attention hés been given to prestressed
members. Many research groups (9 10,11,12) conducted experiments on
réctangular prestressed beams and produced empirical interaction
equations. |

in 19?0, Evans and Khalil (13) developed a theoretical analysis
for pregtréssed rectangular beams, with or without web reinforcement,
sub&ected to tofsion and bending. They backed their théoretical
aﬁproach with twenty eight rectangular.post-tensioned béams. Failure,
it was concluded, was due to cleavage of the concrete éna fhe crushing
failuré was only observed when high bending moments were applied.

Rangan and Hall (14), utilising Collins et ai (15) analyticsl
method, analysed prestressed concrete sections by equating the
equilibfium of moments and forces about the skewed pléne. In order to
solve the equatlons the steel was assumed to yleld at the failure
section. They found good agreement when comparlng thelr theory to one
hundred té;t results.

From tests on twénty two rectangular prestressed beams, Martin and
Wainwright (16) presented theoretical solutions for the three modes of

failure under the action of torsion and bending. Mode one was analysed

using equilibrium and compatibility equations at the skew bending plane



and governing the failure criterion by Cowan's envelope (8). Limiting

the maximum tensile stress at failure to the modulus of rupture of the

section they solved mode two and three failures. Very good correlation
was found when these theories were applied to 125 test results.

Applying the skewed bending method and making use of the properties
of steel and concrete, below, Rangan and Hall (17) analysed rectangular
prestressed beams with web reinforcement. A reasonable fit to
experimental results was claimed to have been found. Based on the
" same’ theoretical principle, Woodhead and McMullen (18), derived
equations to-predict the ultimate capacity of prestressed rectangular
beams with web reinforcement under combined loading. The validity of
the theory was tested on 177 results and a very good agreement was
obtained between the theory and the test results,

Cooper (19) tested forty post-tensioned prestressed concrete
rectangular beams in torsion, bending and shear. The Cowan failure
criterion (8) was applied in the analysis of mode one failure and the
capacity of the section 'in mode two and three was related to the
maximum stress criterion. The test results compared favourably with
the theories,

1.3 Review on 'T' Members

Concrete is a poor material for resisting tension and should be
strengthened by reinforcing bars. Flanged beams are often used to
reduce the éead weight of a structure and also to combine the advantages
of beams and slabs. Investigators have agreed on the superiority of
flanged beams for resisting loading. -This is dug to the action of the
flange in raising the centre of rotation of the section and in
resisting torsional warping. As a result of these reasons interest in

the construction of flanged sections, to resist combined loading, has



increased.

1.3.1 Plain Concrete Members

In the past it was a general practice to analyse plain concrete
sections either, by St. Venant's elastic approach (1), or by Nadia's
sand heap analogy (2). For flanged beams the elastic torsional
capacity of the component rectangles were summed up to produce the
maximum torsional resistance; this is refefréd to as Bach's
approximation (20). This-approximation is justified for members

" composed of narrow rectangles. Since concrete construction members are
far from narrow; applying Bach's approach to St. Venant's theory will
result in a very conservative estimate of the torsional capacity.
Nadia's theory, assuming infinitely plastic_matefial, over estimates
the torsional resistance of the member.

Turner and Davis (21) introduced an empirical factor to account
for the excess strengfh observed in analysing their test results. The
torsional capacity was calculated by summing the contribution of the
component rectangles and assuming plastic distribution in accordance
to concrete under compression,

By observing the failure of ten beams Hsu (4) concluded that
flanged sections failed in skewed bending in a similar way as
rectangular plain members. This led him to extend his failure theory
by summing the component rectangles of the flanged beams. Furthermore
he suggesteé a limit of overhang flange width effectiveness of six
times the thickness for T - sections.

Tests on plain T-members were reported by many investigators as
part of extensive work carried out on flanged reinforced sections
subjected to combined loading. Vague conclusions were drawn but no

rational analysis was produced.



1.3.2 Reinforced Concrete Members

Considerable experimental work has been reported on reinforced
concrete T-beams under combined loading. Nylander (22) was the first
to test longitudinally reinforced beams in combined torsion and bending.
He reported that an increase in the torsional resistance of the beam
was achieved by applying a small amount of bending, and conversely a
small amount of torsion, increased the bending capacity of the beam.

In 1955, Brown (23) tested seventeen T-sections with tension
-reinforcement subjected to torsion and shear in the presence of a
small amount of bending. His attempt was premature and only few
conclusions were drawn.

In an attempt to establish design methods for reinforced flanged
beams many investigators suggested the use of non-dimensional
interaction surface. The interaction between torsion and shear was
-represented by a quarter of a circle. Many different interpretations
of the interaction of torsion and bending were offered; mainly a
quarter of a circle, or a three line representation with no interaction
whén a small amount of one or the other loadings was applied,

Design equations for rectangular and flanged sections, under
combined loading, were presented by Mattock (24). The torsional
resistance was calculated by the summation of the contribution of

concrete and of the web reinforcement

2 2 A

i w2 o B L. ZAt
where g =0,33 + 0,16 (yl/xl) < 0.75

The similarity between these equations and the one suggested by Hsu
(7) can be clearly -seen. (Reference to section 1.2)
The longitudinal steel requirement for torsion was recommended to

be equal to the -volume of the calculated stirrups. A circular



interéction for the torsional and shear stresses was assumed. Thé web
reinforcement needed for torsion and fof shear were added. The
torsional and bending loadings were assumed to be independent and,
therefore, the summation of the calculated reinforcement was applied.
To vérify this design procedure Osburn, Mayoglou and Mattock (25)
carried out tests on 22 reinforced beams in torsion, bending and shear.
They concluded that the design method was reasonably conservative.

By employing the equilibrium approach Kirk and Lash (26) weré the
-firsf to analyse reinforced concrete T-sections. Using an idealized
failure surface two methods were utilised; Lessig's (3) and Collins
et al (15). The failure surface was presented by a crack running along
all sides of the web at the same angle. To complete the mechanism an
'S' shaped compression in the flange was assumed. Minimising the
moment equilibrium equation, at the-failure surface, yielded an
expression for the -angle of the compression fulcrum. The depth of
compression was calculated from the equilibrium of forces in the case
of the first method, while in the second method it was assumed to be
equal to that of a beam loaded for pure bending. When the equations
were derived many factors were ignored; such as, the compression in
the over-hang flanges, the forces on the steel in the compression zone,
the contribution of concrete in resisting torsion and the dowel forces
in the reinforcing steel. Other assumptions were put forward to limit
the reinforcing steel ratio in the section in order to insure yielding
of all steel crossing the failure surface. The restrictions on the
volume of steel suggested by Lessig and Collins et al were found to be
satisfactory for T-beams and so were adopted in their analysis,

To verify the applicability of the analysis they carried out an

extensive test programme on T-beams. Thirty six beams of the same
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cross section were tested in torsion, and combined torsion and bending.
"In pure torsion the test consisted of three plain, three longitudinally
reinforced and ten fully reinforced beams. Four plain and twelve
longitudinally and transversely reinforced sectiorswere tested in
torsioﬂ and Eending. The remaindexr of the beams, which consisted of
one plain and three fully reinforced sections, were tested in pure
bending. In spite of all the restrictions and assumptions put forth
they claimed that their theoretic¢al method gave good correlation to
experimental results and could be used to determine the capacity of
fully reinforced T-sections. When plotting the test results they
suggested a circular interaction of torsion and bending at failure.
Kirk and Loveland (27) extended the work on T-beams by testing
unsymmetrically reinforced sections. ~ A second type of failure was
analysed with the compression zone falling at the bottom of the web.
This was found to occur at high torque to bending ratio for beams
having a greater area of bottom reinforcement. Based on the same
methods of analysis, and laying down almost the same assumptions
described, they derived a solution for fully reinforced T-sections
subjected to torsion and bending. Testing eighteen beams they
concluded that the ultimate strength could be adequately predicted by
the methods presented. Both procedures were reasonably conservative.
For beams having a tendency to fail in both modes they suggested an

empirical third degree polinomial interaction curve for torsion and

bending.

T M )3 M )2 M) _
7o+ 0.83 %ﬁi} + 1.03 Eﬁ --0.86 = = 1.0

This formula is a special case of the general interaction curve
recommended by Reeves, which will be discussed in the next section.

Kirk and Lash's interaction was found to be appropriate for sections



failing in the first mode only.

1.3.3 Prestressed Concrete Members

Fewer test results were reported on prestressed concrete T-beams
in combined leading. In 1961, Zia (28) tcsted 68 plain, reinforced
and pre-tensioned prestressed members in torsion. The experimental
programme on T-sections consisted of three plain, three longitudinally
and transversely reinforced and fifteen prestressed beams. The .
prestressed sections were of different eccentricity and nine of which
contained web reinforcement. High strength rapid hardening cement
with additives was used to enable the tests to be carried out on the
seventh day.

Plotting Humphrey's (29) results with various failure theories
Zia found good correlation to Cowan's (8) simplified criterion. The
prediction of the torsional strength of concrete, when stressed with
not more than 60% of the cylinder strength, Qas claimed to have been
improved upon with the inclusion of clegvage failure to Cowan's failure
envelope. He concluded that the ultimate capacity of the sections
without web reinforcement could be calculated adequately using
St. Venant's elastic theory and employing the modified failure
" envelope. The strength of prestressed members with web reinforcement
was claimed to be equal to the summation of the cracking torque and
that of the resistance of the web reinforcement. It was recommended
to use web reinfofcement if sudden collapse of the member was to be
avoided.

Extensive work on prestressed concrete T-sections, subjected to
torsion and bending, was carried out by Reeves (30). The test
consisted of forty two post-tensioﬁed beams with bonded wires

subdivided into three series related to the flange width, All other
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dimensions remained unchanged. The number, placing and the force
applied to the prestressing steel were varied in order to achieve the
same triangular stress distribution on the concrete in all series.
Close examination of the failure revealed a crushing mode for bending
moments higher than 70% of the ultimate while for the remaining range
of loading a cleavage failure was visible. As a result of the plotted
test results, and applying the least square method, he proposed‘an

empirical regression curve of the form

T . M)3 M )2 M) _
'TE'*'aEma% +b%m% +C(-ﬁa-)-l.0

The constants a, b and ¢ are faﬁtors depending on the sectional
properties and the prestressing forces. It is obvious that such an
equation is unsatisfactory in design because of the many factors
involved which need to be determined before a solution is applicable.
In an attempt to esfablish the ultimate torsional strength he
tested the validity of the failure criteria to his results. The
maximum tensile stress criterion, with the controlling stress of
either the split cylinder or the modulus of ruﬁture of the section,
was examined. A more complicated failure criterion of Bresler and

Pister (31) was also applied.

T § § )2 613 s 3
3 0.1{0.62+1o.1_&d + 5.8 Efé - 18.6 Ef—-J + 2,09 %ﬁ%}z

Both criteria gave a conservative estimate of the torsional capacity.
The best me;n was obtained by applying the split cylinder strength to
the maximum stress criterion but a better coefficient of correlation
was determined using the modulus of rupture. He concluded that the
existing failure criteria could be used to predict the torsional
capacity of the sections, with moderate accuracy, but were not

satisfactory in explaining the behaviour of the beams. An application
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of up to 80% of the ultimate bending moment was found to be favourable
to the torsional strength. Increasing the bending moment caused an
increase in the ultimate rotation of the beams.

In 1969, Bishara (9) reported tests on twenty four pre-tensioned
prestressed beams with web reinforcement in combined torsion, bending
and shear. Of the test programme only eight were T-sections, four of
which were concentrically and the other four were eccentrically
prestressed., The diagonal tension crack in the web was inclined at a

"40° angle with the axis of the beam and concrete crushing was noticed
to be the cause of failure. Assuming the redistribution of shear
stresses at failure he developed an empirical expression to evaluate
the ultimate torsional capacity of the sections.

1 V1A £y /s

m=1oxpvp/f_g:1mj+nx
Where Kp is a property factor of the cbncrete strength, Vp is the
volume under the plastic membrane with a uniférm slope and f,,, is the
average effective prestressing stress on the concrete. Comparing the
equation to Zia's (28) tést results he concluded that a good agreement
was found.

From the test results he presented nondimensional interaction

equations for torsion and bending and for torsion and shear.

LA M) E“ :
M 0es (Ma) ~ St
* and ; S (V) V)2
Tu—l.oaf-a(-ﬁ)-sgVu

These formulae could not be depended upon because of the limited number
of results utilised. Most of*the experiments were performed at high
torsional loading and the interacﬁion range was not adequately covered.
He recommended that more test data was needed so that reasonable

assumptions could be applied to the solution of prestressed sections
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using the equilibrium approach., This leads to a more’reliable

prediction of the ultimate strength. He concluded that the cracking

and the ultimate torsional moments were not satisfactorily predicted
by the use of St. Venant's elastic theory.

1.4 Summary

As a result of the review it was found that extensive work had
been done in the field of rectangular sections and reasonable
theoretical methods had been produced.

-Investigators attempted the analysis of reinforced concrete
T-sections by applying the equilibrium method but ignoring strain
compatibility. Plain concrete beams were analysed using the elastic
or plastic methods, or by the summation of the torsional contribution
of the component rectangles using the skewed bending approach. No
rational analytical solution was presented for prestressed T-sections
and only empirical interaction curves were suggested. From this it
was concluded that further complimentary research on T-sections was
needed in the following regions.

1. To establish a theoretical analysis for plain concrete sections
using the skewed bending approach and comparing it with existing
experimental results.

2. To develop theories for plain concrete under the application of
combined torsion, bending and shear.

3. More tests were needed to study the behaviour of prestressed
concrete beams in combined loading.,

4, Extending and improving the skewed bending approach and utilising
the strain compatibility to offer an analytical solution for
prestressed T-beams subjected to torsion, bending and shear.

5. Testing and analysing prestressed concrete T-beams with web



- 13 -

reinforcement subjected to combined loading.
Only the first four regions of study are covered in the present

research while the fifth is recommended for further research.
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CHAPTER TWO

EXPERIMENTATION

2.1 Introduction

The test programme consisted of thirty six post-tensioned
prestressed concrete T-beams, subdivided into two series, under
different loading ratios. Series one contained twenty four beams.
Twelve beams were tested in the second series and denoted type 'A'.
The only difference between the two series was the amount of prest;essing
force applied to the steel.

Specimens, test rig and test procedure are described in this
Chapter and all relevant materials are referred to,

2.2 Preparation of the Specimens

Beams and control specimens were prepared, cast and cured in the
concrete technology laboratory.

2.2.1 Control Specimens

Thé moulds for the control specimens were cleaned and oiled before
casting. For each test beam the following control specimens were
required;

1. Three 150mm cubes for the concrete compression strength.

2. Three 150 x 300mm cylinders to determine the cylinder
compression strength of concrete. For beams No. 8 to 24 and
for beams of series A,two of these cylinders were also used in
det;rmining the modulus of elasticity of concrete.

3. Three 150 x 300mm cylinders prepared for the split cylinder
test,

4. Two 150 x 300mm cylinderé, for the first seven beams, to
determine the Young's modulus of elasticity of concrete.

5. Three 100 x 100 x 508mm beams for the standard modulus of

rupture test.
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6. Three 100 x 175 x 875mm beams, for the first seven beams, for
the modulus of rupture test. These moulds were made of 13mm
plywood and lined with Formica to give a smooth finish and to
check the absorption of water by the plywood.

The results of the latter specimens were needed in order to

predict the capacity of the test beam section in mode one failure.
The test span for the modulus of rupture beams was four times the depth.

2.2.2 Steel

Four high tensile prestressing wi;es, of 7mm diameter, were used
throughout the test project. From the tensile test performed on a
300mm long steel, the following properties were d?duced;

- The ultimate load of 62.1 KN and the maximum tensile stréss of

1653 N/mm?

- Young's modulus of elasticity of 208.2 KN/mm?

- A 0.2% proof stress of 1426 N/mm?

The stress-strain relation for the steel is shown in Figure 2.1.

Mild steel of 6mm diameter was used in strengthening the beams, at
the supports, to prevent premature failure.

2.2.3 Test Specimens

The test beams were 3000mm long. The dimension of the section was
175mm overall depth, flange width of gﬁOmm and a thickness of 35mm and
the web width of 100mm. A loading diaphragm,240 x 175 x 100mm dimension,
was cast monolithic  at each end of the beam to ensure an effective
torsional distribution to the web and the flange. The casting mould,
shown in Plate 1, was fabricated from 10mm plywood and lined with
Formica to give an accurate and smooth finish,

The strengthening cages at each end of the beam consisted of four

closed stirrups and six T-links with six connecting steel bars. Every
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two stirrups were linked together and placed to reinforce the diaphrams.
The T-1links were placed at 50mm c/c.

Four prestressing wires were cut to the required size and marked
to the length 6f the beam. The positions of the strain gauges were
cleaned and sanded with emery paper. A trichloroethane and an ammonia
solutions were used to degrease the surface. The strain gauges were
then glued to the s;eel.with M-Bond 200 adhesive, a Micro-Measurements
product, hnd.left for three hours to dry. Considerable care was taken
in soidering the electric wires to the leads of the strain gauges;
since this might damage the gauges. To complete the process an M-Coat
G paste was applied to the strain gauges;for water proofing. This
paste was made by mixing equal quantities of resin and hardner which
would dry to a flexible and resilient film. Prdtection to strain
gauges against damage during prestressing was provided by the use of
12mm diameter plastic tube surrounding each gauge. For the steel to
be post-tensioned their freedom to move must be ensured, consequently
the bars were covered with Sylglas water -proofing tape. This method
proved effective. |

The mould was cleaned, oiled and pﬁf together., A lsﬁm thick metal
plate was placed at each end of the mould to act in distributing the
prestressing force to the concrete and to form a support for the steel
anchorage pipces. The steel cages and the prestressing steel were then
secured in place. A small amount of prestressing force was applied to
each bar after inserting wood wedges between the mould and a reaction
metal plate for ease of releasing the force. This was necessary in
order to keep the steel in place during casting.

The dimension of the beams and the reinforcement details are .shown

in Figure 2.2.

-
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2.2.4 Materials, Mix, Casting and Curing

Ordinary Typical Portland Cement was used in all the test
specimens. The coarse aggregate, 10mm crushed, was obtained from the
Perry Common Pit and the fine aggregate was Packington granular sand.
The mix of 1:1.5:3.0 by dry weight was used throughout the test scheme
with a water to cement ratio of 0.5. This mix yielded an average
cylinder strength of 36.5 N/mm2, | |

Materials, sufficient to‘cast oné beam and the controiling
specimens, were weighed and divided into two batches. Each batch was
placed in the mixer, é Liner bumflow 1A, and mixed for two minutes.
The beam and the contrblling specimens were then cast gradually with
the help of the poker vibratbr. When all the concrete was placed a
smooth finish was given to the flanges of the beam and to the top
surfaces of the specimens, other than those to be capped for cylinder
crushing and modulus of elasticity test. The moulds were covered with
wet Hessian and polythene sheets till they were stripped the next day.

The first fifteen beams were cured in a curing tank under
controlled temperature and humidity. The temperature was regulated by
thermostatically controlled strip heaters and the water was automatically
sprayed once a day.  'Curing the remainder of the beams was achieved by
the use of wet Hessian and they were left in the laboratory. The.
temperature in the laboratory was fluctuating around 17°C. The beam
and the controlling specimens were manually sprayed with water once a

day. It was found that both methods of curing gave a comparable effect.

2.3 Test Rig

A large portal testing rig was used to carry out the tests on all
beam specimens. A general view of the rig is shown in Plate 2.

The torsional load was applied by means of loading frames clamped
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to each end of the beam. Refer to Figure 2.3.a. These frames were
secured to the diaphrams of the beam using steel wedges and were
supported on a combination of bearing pads. The pads were comprised of
steel bars and greased ncedle bearings to ensure the freedom of the
beam ends to rotate about the longitudinhl'and transverse axes and to
check lateral restraint. The test span length of the beams was 2900mm
determined by the centre to centre distance of the supports. The
loading frames had an effective lever arm of 470mm by which the
torsional load was applied. The left hand frame was secured, by means
of a threaded end bar, to the test rig and served as a reaction support.
A 30 ton jack, for applying the torsional load, was connected via a
32mm diameter m.s.bar  to the right hand frame. The load applied by
the jack was measured using a 50 KN capacity tensile proving ring of

30 N accuracy, giving a forque reading of about 14 Nm. The calibration
curve is presented in Figure 2.4,

The bending load was applied to the beam at a point one third
distance from the centre of the left support. A 100 ton hydraulic
jack, connected to a loading and automatic recording machine of .05 ton
accuracy, was employed. The load was transmitted to the beam by means
of bearing pads, of similar arrangement to that used at the supports,
to check any restraint at the loading plane.

The loading arrangement, already discussed gave uniform torsion
through the test length of the beam, a triangular bending moment curve,
and two different shear values. The shear on the left third of the
beam was twice that applied to the right of the bending load and these
will be referred to as the high and low shear sections respectively.

2.4 Instrumentation

Measurements of strain, deflection and rotation were possible with
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the use of electric strain gauges and mechanical dial gauges. Types,
placing and method of fixing are described in this section.

2.4.1 Steel Strains

Strains on the steel were measured by using electric resistance
strain gauges. Tokyo Sakki Kenkyujo PL-5-11 gauges were used with a
Smm gauge length and 120 ohm resistance. Two gauges were glued to
each prestressing wire, one was positioned under the load and the
other at the centre line section of the beam. An additional gauge'was
glued. to each bar, of beams 3 and 4, and was positioned at a point one
third of the distance from the right support. The steps taken to
attach the gauges have already been described in section 2.2.3 and will
not be repeated here. .

2.4.2 Concrete Strains

Two types of electric resistance gauges were used in measuring
strains on the concrete; a one element strip strain gauge and a three
elements rosette. Tinsley delta roséttes, of resistance 100 ohm and a
gauge length of 17mm, weré utilised in meéguring the principéi strains.
After testing eight beéms thislbatch'was exhausted and TML PRS-10,
4§° rosettes had to be used. These rosettes, having 10mm long elements
with 120 ohm resistance, pfoved to be adequate. Longitudinal strains
were measured by the use of Tokyo Sakki Kenkyujb, the same manufacturers
of the latter rosettes, PL-60-11 electric resistance strain gauges.

The gauges were of one element of 60mm long and having a 120 ohm
resistance.

The required positions of the strain gauges, on the concrete,
were marked, sanded and cleaned. A thin film of bonding cement was
applied and the strain gauges were lightly pressed in position. When

the cement had dried, electric wires were soldered to the gauge leads.
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Two types of cement were used, the F88 dental cement of Tridox Products
and the Araldite strain gauge cement used in conjunction with HY951
hardener. Both of these compounds were found to be satisfactory.

2,4.3 Mechanical Dial Gauges

Eleven Baty dial gauges of .0lmm per division were used for each
test beam., Four of the gauges with 25mm range were situated on the
one third sections of the beam, two at each sectién for measuring the
lateral deflections. Two gauges were placed on the end of the lever
arm of each torsional loading frame.

Vertical deflectionsat the one third and centre points of the
beams were measured by means of three gauges of 50 'mm range. The
angular rotation of the beam wés measured using two gauges, of 25mm
range, secured to a special apparatus.

The angular rotation apparatus used by Wainwright (32) and Cooper
(19) did not fulfil the present required need. Using this apparatus
would have resulted in an addition of flexure deflections to the
measured rotation, and therefore, would have required a tiresome
calculation to be performed on it in order to deduct this effect.
Consequently a new device was fabricated, figure 2.3.b. The new device
consisted of two separate parts made from a 25mm square hollow bar.
The U arm part made of 600mm long welded components, had two clamping
arrangements similar to that used by Wainwright, this is shown in
detail A, welded to it and acted in securing the dial gauges. The
needles of the dial gauges rested on the second part which consisted
of a straight 600mm long arm., Both parts of the device were bolted to
the web of the beam at prefixed points. Two dial gauges were used to
measure the relative deflections of the arms. From such an arrangement

it was possible to measure rotations as small as 5.6x10"8 rad/mm.
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Adding the readings of the dial gauges, when calculating the rotation,
the effect of flexure and shear deflections would be eliminated.

2.5 Test Procedure

On the twenty sevénth day after casting a smaill prestressing force
was applied to the top bars in order t& protect the test beam during
shifting and erecting. This was done after the initial reading of all
the steel strain gauges had been recorded by theluse of a B10S type
Peekel. The beam was then set up on the test rig after the torsion
loading arms had been clamped tolthe diaphrams. All concrete strain
gauges were glued at their premarked positions. Electric wires were
soldered to the leads of the concrete strain gauges and then connected
to the junction box of the Compulog Alpha 16 Data Logger. This
computer was utilized in reading and récording all strains during the
test period. ‘On the twenty ninth day, just before testing commenced, ™
the full prestressing force was applied to the steel bars and anchored
securely. Prestressing was achieved when a predetermined strain in
each bar was reached, using the same Peekel, and the final strain
readings were recorded. The wireswere then disconnected at the Peekel
and were connected to the data logger's junction box.

The test commenced by reading the initial dial and strain gauge
readings. A predetermined bending load was then applied in increments,
When the bending load was reached it was maintained and increments of
torque were applied up to failure. The magnitude of these increments
was reduced when approaching the failure load. The failure load was
determined either at the destruction of the section, in case of sudden
collapse, or at the maximum torque recorded before dropping beyond the
pumping capacity. Dial and strain gauge readings were recorded after

each increment and after allowing time for the gauges to settle.
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For beams tested in pure torsion or pure bending and shear the

appropriate load was applied, in increments, up to-failure.. For beams " °

tested at high bending load ratio, a predetermined torque load was
applied first and maintained while the bending load was increased to
failure. All other procedures taken in setting the beam and recording
the readings were as described above.

Tests on beams had ‘shown that the sequenée of loading had no
effect on the capacity of the section (33).

‘The control specimens were tested on the same day using the
Dennison compression and three points bending machine. All tests were

carried out in accordance to the recommendations in British Standard

1881,
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CHAPTER THREE

TEST RESULTS AND FAILURE OF BEAMS

3.1 Test Results

The following section is concerncd with the ultimate strength
of specimens, the properties and strength of concrete control
specimens, and the ultimate capacity of the beams. Relevant
information, such as the prestressing effects, is also included.

3.1.1 Control Specimens

Test results of the control specimens for the thirty six tests
are shown in table 3.1, means and percentage coefficients of
variation are also presented. These test results are found to be
reasonably consistent. The Young's modulus and the Poisson's ratio
for beams14, 15 and 18 are not given for the reason that the strain
gauges were not functioning properly. =

From the tests the following relations could be deduced for the
type of concrete used;

1. The cylinder strength is equal to 77% of the cube crushing

strength.

2. The indirect tensile strength is 83% of the standard
modulus of rupture strength.

3. For the first seven tests the modulus of rupture for beams
of 100 x 175mm section is equal to 93% of the standard
modulus of rupture strength.

4, If the modulus of ruptur; is proportional to the cube root
of the cylinder strength,
then fr = 1.128 ??E
and fr'= 1.099?'%TE' (for the first seven beams)

5. The empirical relation Ec = 5000 /?E'yields a Young's

modulus of 30.22 KN/mm? which is reasonably accurate.
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TABLE 3.1 TEST RESULTS OF CONTROL SPECIMENS

Var.

Beam feu £¢ fsp fr £r Ec u
N/mn? | N/mm? | N/mm? | N/mm? | N/mm2 | KN/mm2
1 50.28°| 41.05 | 3.43 3.886 | 3.38 34,87 .1639
2 59.49 | 38.19 | 3.23 3.992 | 3.263 | 32,56 .1312
3 49,32 | 35.02 | 3.44 3.773 | 3.815 | 31.45 .149 -
4 54.32 | 38.61 | 3.58 4,012 | 3,995 | 33.03 |. .1477
S 53.88 | 37.99 | 3.51 | 3.667 | 3.54 | 33,84 .137
6 50.04 | 34.96 | 3.07 4.55 4.026 | 33,71 . 1477
7 48.36 | 36.71 | 3.36 3.773 | 3.750 | 31.93 .1514
8 (47.33 | 32.73 | 3.17 3.494 30.93 .1393
-9 45,54 | 32.65 | 2,98 | '3.394 31.49 .1376
10 45,79 36.31 3.14 3,374 30.56 .1328
11 - [43.65 | 36,86 | 2.75 | 3.328 31.42 .1304
12 46.06 | 38.38 | 3.12 3.653 32,62 . 1569
13 46.0 34.55 | 3.25 | 3.959 32,73 | .1368
14 47.26 | 39.24 | 2.34 3.68 - -
‘15 49,78 | 39.06 |- 3.26 3.753 - -
16 47.03 | 34.70 | 2.98 4.205 31.90 . 1496
17 42,87 | 34.17 | 2.89 3,647 30.67 . 1459
18 48.57 | 37.74 | 3.31 3.893 - -
19 50.57 | 38.49 | 3.99 3.284 29.20 | .1572
20 55.58 | 36.67 | 3.23 4.178 32.07 .1446
21 49,38 | 36.35 3.06 3.335 27.41 .1503
22 46.38 | 38.92 | 3.27 3.84 27.83 .1214
23 41.52 | 33.85 | 2.51 3.414 24.29 .1353
24 43,65 | 34.68 | 3.16 3,255 27.04 .1303
Al 44,79 | 38:83 | 2.96 3.992 27.41 | .1284
AlIR |40.77 | 32.74 | 2.68 3.222 25.58 .1297
A2 46.06 | 36.05 | 3.04 |- 3,68 | 26,81 |- .14 -
A3 48.73 | 42.89 | 3.29 4.637 28.98 .1208
| A4 44.26 33.42 | '2.89 3.836 - 27.89 .1101
A5 41.86 | 35.22 | 2.94 4,085 26.90 .1753
A6 48.06 | 37.59 | 3.18 3.747 26.06 | -.1209
A7 46.37 | 34.98 | 3.09 3.541 26.42 .1141
| A8 46.72 | 37.78 | 2.90 3.84 25,06 .1155
A9 47.8 35.49 | 3,06 3.507 20,10 1239
Al0 44,42 | 35.88 | 3.11 3,295 - 25.17 .1197
All * |43.1 36.76 | 3.13 3.979 25,88 .1222
Mean - 47,38 | 36.54 | 3.12 3.742 | 3,681 | -29.21 . 1369
%Coeff.8.46 6.44 9.56 9.21 8.04 11.75 11.18
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3.1.2 Stresses on the Concrete Due to Prestressing

The prestressing force applied to the steel and the prestressing
stresses on the concrete are presented in tables 3.2 and 3.3 for
series cone and twe respectively. A negative sign indicates
compression. The force on steel was calculated by using the average
strain readings of the steel and utilising the stress-strain curve
for the steel. Reference to figure 2.1. The stresses in the
concrete were calculaied by using the modulus of elasticity for
each test. A modulus of elasticity for beams 14, 15 and 18 was
taken as the average value of the preceding tests. A force, equal
to half the force applied to the bars of beams of series one, was
applied to the bars of beams of the second series, hence pfoducing
half the compressive stress at the bottom fibres of the concrete.

A high force was applied to one of the steel bars of beam Al
unintentionally; hence this beam-was discarded and.a substitute
beam, AlR, was prepared and tested.

3.1.3 Ultimate Strength of Test Beams

Failure position, applied bending load and ultimate failure
loads are presented in table 3.4. The failure position is measured
from the critical section to the centre of the left support. The
applied bending load is the maximum load recorded on the hydraulic
loading machine. The failure bending moment and shear are calculated
at the failu;e section and the estimated dead weight effects are
added. The average specific gravity of the concrete used is 2,352
giving a weight of 516.5 N per metre length of beam.

3.2 Failure Pattern of Beams

Failure patternsof beams of both series are shown in the

Appendix as figures A.l1 to A.6. The approximate average crack



TABLE 3.2 SERIES ONE - PRESTRESSING EFFECT

Prestressing Force on the

Prestressing stress on

Steel KN the concrete N/mm?
BEAM
Lower Layer | Upper Layer | Bottom Fibyres| Top Fibres
1 83.27 82.31 -17.79 - -.0934
2 80.03 75.79 -16.95 .0609
3 84.6 78.76 -17.86 .1249
4 81.61 83,55 - =17.57 -,2167
5 77.42 78.18 -16.61 -.1598
6 82.69 78.24 -17.51 .0659
7 78.66 77.76 -16.80 -.087
8 84.03 82.46 -17.92 -.066
9 88.35 78.48 -18.48 .2996
10 87.51 85.59 -18.65 -.0555
11 86.88 90.90 -18.78 -.3209
12 87.03 83.88 -18.50 .0004
13 85.56 83.32 -18.22 -.0381
14 87.28 84.38 -18.56 -.0113
15 84,49 85.44 -18.14 -.1791
16 83.59 82.95 -17.87 -.1064
17 89.06 87.83 -19.02 -.089
18 88.32 86.25 -18.82 -.0499
19 83.98 79.78 -17.8 .0523
20 82.50 79.27 -17.52 L0111
21 88.75 84,15 -18.8 .0623
22 90.19 87.81 -19,21 -.0394
23 85.89 84.65 -18.34 -.0834
24 92.14 88.72 -19.58 .0039
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TABLE 3.3 SERIES TWO - PRESTRESSING EFFECT

Prestressing Force on the Prestressing stress on
Steel KN the concrete N/mm?

BEAM

Lower Layer Top Layer | Bottom Fibrés| Top Fibpes
Al
AIR 44,37 41.60 -9,38 :0526
A2 44,17 43.80 -9.44 -.055
A3 43,69 41.99 -9.28 .0056
Ad 44,05 41.90 -9.34 .0248
AS 43.07 42,82 -9.21 -.0584
A6 44,31 41.04 -9.34 .0748
A7 43.42 41.85 -9.23 .0002
A8 42.20 39.79 -8.93 .0398
A9 41.23 39.72 -8.76 .0009
Al0 41.30 40,21 -8.80 -.0179
All 43,09 40,39 -9.11 .0515
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TABLE 3.4 TEST RESULTS OF BEAMS

1202

Failure Pos. | Applied Failure Loads
Beam | from Left Bending

Support mm Load KN |Moment | Torque | .Shear

KNm KNm KN

1 990 33,103 21.564 0 10.796
2 1017 30.595 19.701 0 9.974
3 1055 0 .503 | 3.872 0.204
4 1269 0 .534 | 4,228 0.093
5 1157 . 25.078 15.094 | 2.614 8.208
6 1227, 20.062 11.721 | 3.140 6.572
7 1379 15,047 8.172 | 3.949 4,979
8 1222 27.586 15.962 | 2.805 9.077
9 1132 22.570 13.821 | 2.721 7.359
10 1137 29.592 17.911 | 2.721 9.702
11 1214 17.554 10,396 | 3,838 5.729
12 1295 12.539 7.247 | 4.172 4.099
13 1582 10.031 4,948 | 4.284 3.411
14 2235 7.523 2,052 | 4.019 2.913
15 1257 4.868 3.200 | 3.851 1.522
16 1952 2.434 1,247 | 4.117 1.070
17 717 6.815 3.660 | 4.312 4.922
18 1217 18.010 10,635 | 3.907 5.883
19 1047 32,128 20.349 | 0.642 10.501
20 1149 31.641 18.991 | 1.270 10.392
21 11097 33.832 20.848 1.591 11.095
22 1177 27.504 16.323 | 2.289 9,027
23 967 21.906 14.600 3,084 0.25
24 1933 20.932 11.620 | 3.419 7.226
Al 967 27.747 - - -
AlR 1040 24,339 15,593 0 7.901
A2 799 0 0.434 | 3.517 0.212
A3 1077 21.906 13.821 | 0.837 7.134
A4 1125 14,604 9.158 | 1.688 4.700
A5 967 4,868 3.620 | 3.182 0.25
A6 1285 9.736 5.778 | 2.721 3.161f
A7 957 2.434 2.033 | 3.000 1.878
A8 . 1197 7.302 4,770 | 2.512 2.301
A9 1159 12.17 7.585 | 2.051 3.907
Al0 1062 14.117 9.155 | 1.214 4,506
All 16,550 9.897 | 1,256 5.589
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angles on the bottom and on the top of the beams, as well as on the
front and back faces of the webs, for both test series are presented
in table 3.5. The crack angles are measured from the vertical
transverse plane. The table is arranged in order of the value of
the failure bending to torsion ratio of the beams.

3.2.1 Torsion

Beams 3, 4 and A2 failed under the effect of torsion and the
beam's weight. Failure patternsof beams 4 and A2 are shown in
plate 3. |

Beams of geries one failed suddenly and violently with no crack
appearing before failure and the only warning was the increasing
pumping rate near failure. At failure parts of beam 3, mainly at
the compression zone and at the tension overhang flange, were
shattered. Series one showed a mode 2 failure with the compression
hinge on the back face, as in beam 3, or on the front face of the
beam as in beam 4.

Beam A2 showed gradual failure with higher torsional deformation.
Maximum torsional load was recorded at the formation of a crack on
the front flange edge. The crack propagated rapigly to the web and

the flange top, while the torsion load was dropping considerably.

The failure mechanism was completed by the formation of a compression
hinge at the back web of the beam, mode 2 failure.

3.2.2 Bending and Shear

Two beams from each of the two series were tested under bending
and shear. The failure patterns of these beams are similar and only
a general, but detailed, crack pattern will be described.

The first crack appeared under the bending load at the bottom

of the web and extended to the front and back faces of the beam.
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TABLE 3.5 ' ANGLE OF PROPAGATION OF CRACKS

-

Failure Crack Angles - Degrees ~

Beam Moment to

| Torque Ratio Top Front Face Back Face Bottom
3 .1 46 54 75 66
4 B | 50 .. 63 55 .
16 .3 5S4 77 63 52
14 _ .51 56 | .- 72 59 -
15 .83 58 72 57 42
17 . .84 41 62 74 - 42
13 1,15 67 77 65 54
12 1.74 . . 59 77 . - . 61 . 72
7 2.07 62 78 72 49
11 2.71 . 66 . 54 . . |. 74 39
18 2.72 62 72 78 27
24 3.4 69 - 80 50
6 3.73 67 59 70 31
23 4.73 64 |. . 41 _ 55 : 38
9 5.08 75 64 55 55
8 5.69 . 72 |- 40 . . 45 . : 34
5 5.77 66 0 44 30
10 6.58 60 - 51 22-
22 7.13 60 60 48 29
21 13.1 -0 . 0 0 24
20 14.96 60 0 49 30
19 31.7 - 18 -0 25 6
1 © 12 0 0 10
2 .® - 13 0 0 11.
A2 .12 42 56 76 70
A7 .68 {1 54 |- 72 51 52
AS - 1.14 58 47 73 51
A8 1.9 .58 | -. 55 e 56 46
A6 2.12 61 43 30 39
A9 . . 3.7 68 49 29 . 24
A4 5.42 65 37 0 30
AlO +7.54 66 |- 22 ., 23 | - 24
All | 7.88 70 41 21 22
A3 16,51 38 | . 0. i 10 . . 8
AIR @ 6 8 i 10 6
Al @ 0 0 0 0
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When the load was increased the crack penetrated to the top of the
web and moved in different directions. Failure happened due to the
penetration of one of the cracks into the flanges; thus reducing
the compression zone and causing the crushing of the concrete at
the top of the beam.

~ Plate 3 shows the failure pattern for beam AlR.

3.2.3 Torsion, Bending and Shear

The remainder of the beams were tested under different benéing
to torsional loading ratios. In this subsection the general
behaviour of the twenty nine beams is discussed.

3.2.3.1 Series One

‘Beams of moment to torque ratio of up to 2.72 showed sudden
failure with no cracks being detected before the ultimate loading.
Shattering of the flanges and part of the bottom of the web was
experienced, while for beams 15 and 11 only shattering of the web
was noticed. All these beams failed in mode two failure with the
compression hinge falling at the front or back sides of the web.
Views of beams 12 and 16 are shown in plate 5. At ultimate loading
beam 18, with moment to torque ratio of 2.72, showed cracking at the
bottom front face of the web. This crack propagated along the front
of the web to reach the flange while the torque loading was dropping
gradually. At this stage failure occurred suddenly with the
shatteriné of the flanges and the formation of the compression zone
at the back side of the web.

Beams 24, 6 and 23, with moments to torque ratios of 3.4, 3.73
and 4.73 respectively, failed suddenly and violently with the
shattering of parts of the beams. Mode of failure was not distinct

and referring to the failure section, it was thought to be mode 2.
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On analysing the dial gauges it was found that the beams underwent
severe vertical deflections while only small lateral deflections
were recorded indicating mode 1 failure.

Beams tested under moment to torque ratios of higher than 4.73
failed gradually and cracks, before collapse, were noticed to be
forming at the bottom of the beams. When the load was increased
gradually these cracks penetrated upwards to reach the flanges of
the beams. At this stage the beams failed with the crushing of-the
flanges and in some cases parts of the flanges disintegrated. Views
of beams 9 and 22 are shown in plate 4. At ultimate load, just
before collapse, it was thought that beam 10 ought to be saved from
destruction to examine the failure more closely. This was attempted
by reducing the bending and torsional loads simultaneously, but the
beam section was so weak.that the prestressing force in the steel
was adequate to destroy the beam. .

3.2.3.2 Series Two

Beams A7 and AS were tested under bending to torsion ratios of
.68 and.1.14 respectively. Just before complete failure a crack was
noticed to appear at the bottom of the web and propagated to.one
side of the web. A crack on the top of the flange,.beam A7, was
also observed to initiate and propagate to cover the top of the beam.
Complete failure mechanism was observed to occur by the formation of
the compr;ssion hinge at the front side of the web, as for beam A7,
or the back side of the web as for beam AS. - Analysing the dial gauge
readings for these beams it was found that they deflected considerably
in the vertical direction whilst only a small lateral deflection was

caused, hence suggesting mode 1 failure,

Beams failing under moment to torque ratios of 1.9 to 3.7



On analysing the dial gauges it was found that the beams underwent
severe vertical deflections while only small lateral deflections
were recorded indicating mode 1 failure,

Beams tested under moment to torque ratios of higher than 4.73
failed gradually and cracks, before collapse, were noticed to be
forming at the bottom of the beams. When the load was increased
gradually these cracks penetrated upwards to reach the flanges of
the beams. At this stage the beams failed with the crushing of.the
flanges and in some cases parts of the flanges disintegrated. Views
of beams 9 and 22 are shown in plate 4. At ultimate load, just
before collapse, it was thought that beam 10 ought to be saved from
destruction to examine the failure more closely. This was attempted
by reducing the bending and torsional loads simultaneously, but the
beam section was so weak that the prestressing force in the steel
was adequate to destroy the beam.

3.2.3.2 Series Two

Beams A7 and A5 were tested under bending to torsion ratios of
.68 and.1.14 respectively.. Just before complete failure a crack was
noticed to appear at the bottom of the web and propagated to one
side of the web. A crack on the top of the flange, beam A7, was
also observed to initiate and propagate to cover the top of the beam.
Complete failure mechanism was observed to occur by the formation of
the compr;ssion hinge at the front side of the web, as for beam A7,
or the back side of the web as for beam AS. - Analysing the dial gauge
readings for these beams it was found that they deflected considerably
in the vertical direction whilst only a small lateral deflection was

caused, hence suggesting mode 1 failure,

Beams failing under moment to torque ratios of 1.9 to 3.7



- 39 -

inclusive showed cracking of the bottom and sides of the web. When
the load was increased the crack propagated to the flanges and
failure was observed to occur due to the cleavage of the top of the
flanges. Examining the flanges after failure revealed a number of
cracks in addition to the crushing of part of the flanges, this can
be seen clearly for beams A6 and A8 as shown in the Appendix as
figure A.6. Cracks on both the front and back sides of the web of
beam A8 are shown in plate 5. ‘

For higher ratios of bending to torque failure was observed to
be mode 1 crushing. Cracks appeared at the bottom of the web and
penetrated upwards along the sides of the web reaching the flanges.
Increasing the load caused the beam to rotate about a skewed axis
situated at the flanges, whilst the cracks opened wider. The beams
collapsed due to crushing of the top of the flanges. Views of the
cracks for beam A4 are shown in plate 4.

3.3 Cracking Loads

The first crack in beams 1 and 2, tested under pure bending
and shear, was observed after the application of a bending moment
of 16.8 and 15.5 KNm respectively. A bending load, smaller than
the load to cause cracking, was applied to beam 9; hence the first
crack was observed after the application of a torque of 1.6 KNm..
Beams 5, 8 and 10 were loaded under bending first and cracks were
observed to initiate at a bending moment of 16.2 KNm ekcept for the
latter beam which showed cracking at a moment of 14.5 KNm. Beams
19 to 22 inclusive were loaded first with a predetermined torque
and then the bending load increments were applied. Cracks in these
beams were noticed to initiate after a bending moment of 15.7 KNm

except for the cracks on beam 21 which were noticed at a bending
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moment of 17.3 KNm.

The bending moment causing the first crack to-initiate in beam
AlR was observed to be 9.7 KNm. Beams tested under lower values of
bending moment than the cracking moment value did not show signs of
cracking until the torque was applied. For these beams the value
of the torque causing the first crack to initiate was lower for
higher bending loads applied and they ranged from 1395 to 3000 Nm.
Beams A3, A4, Al0 and All were loaded ﬁnder torsion first and .
showed cracking at a moment of 9.4 KNm except for beam All in which
cracking was observed at a moment of 7.8 KNm,

From this section it can be concluded that the bending load
causing the first crack to initiate is independent of the amount of
torque applied to the beam, while the cracking torque value is
reduced for increasing bending load applied. The sequence of
loading did not effect the value of the bending load at which
cracking initiated.

3.4 Torsion-Bending Interaction

The interaction of torsion with bending moment for series one
and two are presented in graphical form as figures 3.1 and 3.2
respectively. The critical failure section for beam 17 fell at the
high shear span while for beams 23, AS and A7 fell under the loading
point. For the remainder of the beams that were subjected to
torsion, bending and shear failure happened at the low shear span
indicating that the shear does not effect the capacity of the beanms
greatl;. Consequently only the torsion-bending interaction will be
discussed.

A bending moment of up to 10 KNm shows little effect on the

torsional capacity of the beams in series one. Increasing the
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bending moment beyond this valug causes a great reduction in the
torsional moment up to a torque value of 1.6 KNm; For beams
subjected to a torsional moment of less than this value failed at a
value approximately equal to the value of bending'homent of beams
tested under pure bending and shear.

The failure torsional moﬁents of beans in series two are
greatly reduced by the amoﬁnt of bending moment carried by the
section. This interaction:phenomenon hblds fof}the whole range of

bending to torsion- loadings.

3,5 Torsional Rotation

The torsional rotation of beams was measured using the .

apparatus discussed in section 2.4.3. The torsion-rotation curves

for beams in series one and two are presented in figures 3.3_an&"
3.4 respectively. ‘ |
The torsion;rotation curves, for beams tested under édrsion,l
bending and shear with a predetermined bending ioad-being'applied
first, are very similar. These curves could be_described_as a
smooth continuous curve, rising from the origin with a decreasing
rate, into a flat peak at ‘the ultimate torque. The curves for the
beams tested with the torsion;l load being applied first are
observed to behave in a similar manner to the initial part—of the

curve, described above, up to the predetermined torque value.

The ‘initial torsional stiffness, defined as the slope of the

torsion-rotation curve at the origin, for the beams of each series

seems to be constant. Consequently it can be said that the bending
moment value applied to the beam has no effect on the initial
torsional stiffness. This stiffness for beams in series one

fluctuated between 577 and 750 KNm? with a mean of 654 KNm2 and a

g
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coefficient of variation of 6.1%. Beams in series two showed an
initial stiffness value of 472 to 625 KNm? with a mean of 535 KNm?
and a coefficient of variation of 9.3%.

3.6 Deflection of Beams

Three dial gauges were used in measuring the deflecfions for
all beams. Beams tested under torsion and self weight showed a
maximum upward deflection of .18,‘.38 and .13mm for beams 3, 4 and
A2 respectively. As the value of the ultimate bending load applied
to- the beams was increased,the maximum deflection of the beams also
increased. The maximum deflection recorded was 30.85mm for beam 19
with a moment to torque fétio of 31.7, while beam AlR, tesfed under
pure bending and shear, deflected by 36;12mm.3

Figures 3.5 and 3.6.show the bending - deflection curves of
series one and two respectively. Only the_eurves of the beams that
were tested under pure bending and shear, and of beams- loaded to a
predetermined torque first, are presented. The bending - deflection
curve can be divided into three regions.

1. A semi-linear rising of the curve from the origin to the

cracking bending moment,

2. A severe non-linearity with a drastic reduction of the

rising rate of the curve. _

3. A flat region with a great increase.of deflection for a

small increaee-in bending moment.

The observed cracking bending momeﬁt is generally higher than
the point of start of non-linearity of the curves. Thie deviation
is due to the observation of the cracks after each loading
increment and not during the actual loading and also, it is thought,

due to microcracking in the concrete which is difficult to detect
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visually,

3.7 Steel Strains

The increase in the steel strains were found to be small up to
the cracking load, after which they showed severe increasing,

Beams tested under pure bending énd shear showed a higher
increase in steel strains than other beams. The maximum recorded
increase in strain was 415 and 998 microstrain for the top and
bottom bars of beam 2 respectively. For beam AIR the maximum
recorded strain was 1930 and 4137 microstrain respectively.
Comparing these values to the prestressing strain on the steel, the
increase in strain would be 19% for beam 2 and 148% for beam AIR.

For beams tested under torsion with only the self weight
acting showed\a very little increase in the steel strain. The
maximum values recorded for these beams were a compression strain
of 36 microstrain at the bottom bars of beam 4 and a tensile strain
of 21 microstrain at the top bars of beam A2, These values, if
compared to the value of the prestressing strain on the steel
before the test commenced, the ratio would be 0.8%; hence they can
be ignored, Consequently it can be said that the increase in steel

strain is mainly due to the bending load.

The maximum recorded strains in the steel for all the test beams

were lower than the yielding strain value.

3.8 Conc}ete Strains

The positions of the electric resistance strain gauges on the
concrete are shown in figures A.l to A.6 at the Appendix. The
strain readings were not very effective due to the failure section
falling at a distance from the gauges. The strain readings were

utilised in calculating the depth of compression for mode 1 failure.
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The ratios of the increase in the steel strain to the increase in
the concrete strain at the same level, known as the bond slip
factor, are calculated after plotting the average concrete strains
along the depth of the section of the beams. This is shown in the
Appendix as figures A.7 to A.9 %or beams 1, 2 and AIlR.

The maximum compressive principal strain was found to be 3823
microstrain at the top of beam 19 with a moment to torque ratio of
31.7. The maximum compressive strain for beams of series two w;s
found to be higher than 2949 microstrain in beam AlR. This strain
was the last reading recorded, two increments before failure, when
the strain gauge failed. The maximum principal tensile strains
were noticed to occur at the'opposite face to where the compression
zone fell for beams failing in mode 2 failure. The maximum values

were found to be 2118 and 2238 microstrain for beams 4 and A2

respectively.
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'CHAPTER FOUR

THEORETICAL ANALYSIS

4.1 Introduction

Theoretical analyses for the ultimate strength of plain and
prestressed T-sections under combined loading are developed in this
Chapter. Plain concrete sections are analysed under the action of
pure torsion and combined torsion, bending and shear. Prestressed
beams with only longitudinal steel are analysed under the action of
combined torsion, bending and shear. The ultimate capacity of
prestressed section under the application of one loading or a
combination of two loadings would be a special case of the theory.

The theoretical ‘analyses are based on a bending mechanism about
a skewed axis, situated at one of the sides of the beam, defining
the mode of failure. The skewed failure mechanism was originally
suggested for reinforced concrete by Lessig (3). Analysis was based
on the equilibrium of forces and moments about the skewed failure
axis. Failure in bending action about a skewed axis was observed
by Hsu (4,34) for plain and prestressed sections.

4.2 Ultimate Strength of Plain Concrete 'T' Members

ﬁrom tests on plain concrete T-sections, Kirk and Lash (26)
observed that failure occurred at the appearance of the first crack.
Diagonal tensile cracks were noticed to have developed on all the
faces of‘}he beam and failure was completed by the rotation of the
beam along a skewed compression hinge in the flange section. This
type of failure was recorded for beams tested under pure torsion
and, also, under torsion and bending.

4,2.1 Ultimate Strength in Pure Torsion

Hsu (35) analysed rectangular plain sections by equating the



- 55 -

moments of forces about the skewed failure axis. Minimising the
torque and introduﬁing an empirical factor he prééeﬁted his final
form of the equation. .After thorough examination of the failure
mechanism, he concluded that failure occurs when the‘maximum stress
on the section rgachéé the modulus of rupture of concrete. The
failure of T-section under pure torsion, Hsu (4) concluded, is also
a bending type of failure about the skewed compression hinge. .
When calculating the torsional capacity carried by a T-section he
suggested the summation of the contribution of the cdmponent
rectangles to torsion.

Plain concrete T-members subjected to puré torsion fail in one
of two modes of failure. Mode 1 failure generally occurs when the
flange section of the beam is comparably larger than the web section.
For smaller flanges mode 2 failure normally can be expected. Due to
the presence of the flanges, mode 3 failure does not occur, but for )
completeness it will'be anal&sed. These modes of failure are

analysed by considering the distorted section of the member at

failure.

4.2.1.1 Theory for Mode One Failure
| Mode 1 failure'décursnﬁhen the member rotates about a skewed

axis situated at the top of the beam. Depending on the geometry of
the section,lthe Eompression zone could be contained by the flange
section or otherwise it extends to cover part of the web as well.
Taking moments of forces about the skewed axis;

Tu, Sin 6, = El f;l 4,2,1
I. The compression depth smaller than the flange thickness.

The failure plane is assumed to be distorted as shown in

Figure 4.1. The length of c0mpressidn hinge is,

L = b/cos 6 4,2.2

1
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I Compression Depth smaller than Flange Thickness
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FIGURE 4.1 MODE ONE FAILURE IN PLAIN CONCRETE T-MEMBERS - I
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I Compression Depth smaller than Flange Thickness
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FIGURE 4.1 MODE ONE FAILURE IN PLAIN CONCRETE T-MEMBERS - I
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projecting the distorted dimensions onto the compression hinge

~ bw _ 2bw (d-Cd)tan 6 sin 6, 4.2.3
cos 6 2d + b -2 Cd ter
c= b-bw  (b-bw) (d-Cd) tan & sin 6; 4.2.4
2 cos 8, 2d + b - 2 Cd e
and
. __bw . 2(b(d-t) - bw (d-Cd)) tan & sin & 4.2.5

cos 6, 2d + b -2 Cd
If the distorted section is divided into three parts, then the areas,
centroid of the areas from the soffit of the section and the second

moment of areas about the centroid of the section are expressed as;

Al = (d-t) (2+R)/2 4.2.6a
A2 = (t-Cd) (L+&+2c¢)/2 4.2.6b
A3 =

L Cd _ 4,2.6¢
— _ (d-t) (22+R) .

X1 = T3 (R 4{2.7a
X2 = (d-t) + (tgcﬁififgi;zc) 4.2.7b
X3 =d - E% 4,2,7¢
and 11 = (d't%z(%E:§§R+R2) 4.2.8a
o - COREIPUON
13 = cdd L /12 4.2.8¢c

Combining equations 4.2.6 and 4.2.7, the centroid of the distorted

section from the bottom would be;

- 3 _ . 3 .
X =, %n An / I, An | 4.2.9

and the second moment of area about the centroid of the section,

3 3 _
I=1% In+ I An (X - Xn)? 4.2.10

The depth of compression and the modulus of the distorted section can

be expressed as

Cd

d - ¥ 4,2,11

4,2.12

'_l:ll
1]
-

~
>
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The computer was utilised in solving these equations. For a
given value of Bi, the compression depth één be calculated by
iterating eqhations 4.2.2“through 4.2.11. The distorted section
modulus cép then be calculated using equation 4.2.12 and, therefore,
the torque can be evaluated from equation 4.2.1. If the compression
depth became greater than the flange thickness, the properties of
the distorted section are calculated from part II. Changing the
value of 81 the minimum torque can be calculated.

II. The compression depth greater than the flange thickness.

Figure 4.2 shows the distorted failure section. The length of
the compression fulcrum is the same as in equation 4.2.2 and the
projection of the bottom of the section onto the compression zone

is the same as in equation 4.2.3. The remainder of the projected

dimensions are;

2 = bw / cos 91 4,2.13
and

- _ __b-bw

c = 5—333-31' 4.2.14

A similar procedure to part I can be taken in evaluating the
properties of the distorted section, such as area, centroid, second

moment of area and sectional modulus.

Curves giving the values of the torsional factor for different
sections of T-members are shown at the Appendix as figures Al0 to

Al3. The torsional factor is defined as;

T,, = (Factor) b fr, ' 4.2.15

4.2.1.2 Theory for Mode Two Failure

Mode 2 failure generally occurs for relatively deep T-beams

with relatively wide web. The members fail by rotating about a
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compression hinge situated on either the front.or back face. Taking
moments of forces about the skewed axis of failure,

_Tu2 sin 82 =_22 fr2 . 4.2,16

I. The compression depth smaller than the overhang flange width.
The assumed distorted failure section is shown in figure 4.3,
The length of the compression hinge,
L=t/ cos 82 4
projecting the distorted dimensions onto the compression hinge,

t 2t (d+b-t-Cd)tan 6, sin 6,

R=Gss, -~ 2d+2b-t-2dd 432 18.
_ _d-t  2(d-t)(d+b-t-Cd)tan 6, sin 6, 4,2.19
¢~ Cos 6, 2d+2b-t-2¢Cd -
g = t t(2d+b+bw-2t-2Cd) tan 65 sin 69 4.2.20
-7 7 cos 8, 2d+2b-t-2Cd .
and
' d  [2d(d+b-t-Cd)-t(b+bw)]tanb, sinf, 4.2.91
~ cos 0y 2d+2b-1t-2Cd v

II. The compression depth greater than the overhang fiangégwidtﬁ:t
The distorted failure plane is shown in .figure 4.4,

Ly =t / cos 6, . 42.22

and

Lo (d-t) / cos 67 4,2.23
summinéﬂthe;e_éé;ééiéns would give the length.of compression hinge,
therefore

' L =d/ cos 82' | —_— 4,2.24

projecting the distorted dimensions onto the compression hinge,

t 2t (b-Cd) tan 6, sin 8,

R s CoS 62 = 2b ""d ___2 Cd 4.2-25

f =B _ d-t  2(d-t)(b-Cd)tanB, sin6,

= Tos 6; 2b+d-2Cd 4.2.26

and

4.2-17 E

3
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I. Compression Depth Smaller Than the Over Hang Flange Width
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t , [d(b-bw)-2t(b-Cd)]tans, sin6y 4.2.27
cos 62 2b+d-2Cd ter

The properties of the distorted failure section for both parts of

the analysis can be evaluated in a similar manner to that in section

4.2.1.1.

4,2.1.3 Theory for Mode Three Failure

Due to the presence of the flanges in T-members, it can be
said that mode 3 failure does not occur for T-beams subjected té
pure torsion. The flange section acts in raising the centroid of
the section and causes the beam to fail in either mode one or two
depending on the size of the flanges. No experimental evidence
showing the failure mechanism of T-members in mode 3, is provided.
Hence the distorted failure section is assumed, bearing in mind
mode 1 and 2 failure, as shown in figure 4.5. Taking moments of
forces about the_skewed failure axis;

Tuz Sin 83 = z3 fr3 4.2.28
The length of compression hinge,

L = bw / cos 83 4.2.29

projecting the distorted dimensions onto the compression hinge;

b 2b(b+d-bw-Cd)tan 83 sin 63
R* o583 +2d-bw-20Cd 4.2.30
¢ o _b-bWw ___ (b-bw)(b+d-bw-Cd)tan 63 sin 03 4 , 5
2 cos 03 2b + 2d - bw - 2 Cd tes
and
. _bw 2bw(d-Cd-t)tan 63 sin 63
L= s6; ~Hbr2d-bw-2Cd 4.2.32

Area, centroid, second moment of area and the modulus of the

distorted failure section can be evaluated as described in section

4I2I1.1.
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4.2.1.4 Computer Programming

The PDP 11/40 computer incorporating DOS (Disk Operating
System) was used in calculating the torsional capacity of plain
concrete T-sections. Feeding the dimensions gf a T-section the
programme would utilize the Golden Section Séérch metho& in
minimising the torque. To reduce the computer. time involved the
search was confined to an upper and lower angle limits of 70° and
30° respéctively. A typical flow chart is presented as Figure 1.6.

The programme consists of the main programme and a subroutine.

The main programme contains the minimization function, while the

subroutine computes the torsional capacity for specified angles of

skewed axis.

4,2.2 Ultimate Strength in Torsion, Bending and Shear

Only two modes of failure are possible for plain T-members
under combined loading. Mode i failure with the compression hinge
falling on the top of the section and mode 2 failure with the
compression hinge falling on the front or back faces of the beam
are analysed. Testing T-members under torsion, hogging bending and
shear would form a compression zone at the bottom of the web. This
is discussed in mode 1 failure, It is important to note that the

failure sections analysed are assumed to be undistorted in order to

reach a solution.

4.2,2.1 Theory for Mode One Failure

This type of failure occurs at high bending to torqueratios.
The maximum stress criterion can be applied to concrete under

combined stresses with the maximum stress being less or equal to the
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tensile strength of concrete in casé of tensile failure. Since the
failure is a bending type on a skewed axis the tensile strength can
be replaced by the modulus of rupture of concrete. Applying
Mohr's circle of stresses, shown in Figure 4.7, the maximum stress

on the section.

fr] = f%-+ Yfvé + (fm/2)% 4,2,33

Applying a torsional moment to concrete sections would cause a
direct bending stress at a skewed axis. Taking moments of forces
about the skewed axis for sections loaded in pure torsion.

Ty siny = £ 27 / cos ¢ 4,2,.34
where f is the bending stress at the battom fibre normal to the -
skewed plane. Minimising the torque yields a value for ¢ of 45°.
Hence éhe maximum stress at the bottom fibre due to torsion,

fmx=T) /2 2 4,2.35
Since this stress is acting on an element at 45°, then equilibrium
is achieved by the action of shear stresses on the element of equal
magnitude as the direct stress.

T=fmax =Ty / 22y 4.2,36
The bending stress at the bottom fibre due to the bending moment
applied is normal to the transverse plane of the beam

fm=M / 23 4.2.37
Both stresses due to bending and torsion are maximum at the bottom
fibre of the beam. Hence for a low shear force applied the first
\Frack would initiate at the bottom and the stress due to shear is nil.
For higher shear force the maximum stress resultant would occur at
the lower part of the section where the shear stress value is not
zero. The torsional and bending stresses would be a bit smaller

than the maximum stress presented and conservatively it will be
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assumed the same. The stress at the critical section due to the
shear force can bewritten as the product of a factor and the
average stress on the section,

v=aVy /A 4.2.38
where the factor a depends on the level where the first crack

occurs. The total resulting shear stress at the critical section

e T2 4.2.39

fv

Rearranging equation 4.2.33 and combining it with equatiorf 4.2.36

through 4.2.39 gives;

a Vi \? T, )2 M
(A Er;) * (221 fry * z1 fr] 1.0 4.2.40
* where Mu; = z; fr o ' ' 4.2.41

for pure torsion applied,

Tup = 2 2 £77 = 2 Muyy 4.2.42
and for pure shear,

Vay =Afry /o 4.2.43
Substituting these values into eduatibn 4.2.40 gives the general
interaction of loadings of beams failing‘in ﬁode i failure,

%ﬁ)?+(%h)2"ﬁﬁ='Lo 4.2.44
The ultimate pure torsional capacity can be evaluated as in section

4,2.1.1. :
For plain concrete T-members required to fail by rotating about
a compression axis, situated in the bottom of the web,‘need to be
subjected to a hogging bending moment. The analytical procedure is
very similar to that above, except that the subscript 1 should be
changed to 3. A noteworthy point is that the first crack should
occur in the flanges where the shear stress due to the shear force

is very small. Hence the shear parameter can be ignored and
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consequently reduces the equation to

2
T3 M3
(Tu3 * iy = 10 4.2.45

4,2.2.2 Theory for Mode Two Failure

This type of failure occurs at low bending to torsion ratios. -
Three critical points of stresses should be considered;

1. At the bottom edge fibre of the flanges. .

2. At the top fibre of the web.

3. At the horizontal neutral axis section.
The first critical section governs for high torsion to shear ratios,
while the second section is critical for low torsion to shear
ratios, if the neutral axis falls at the web section then this
section is critical for low torsion to shear ratios. If the neutral
axis falls at the flange section then this section is critical for
high torsion to shear ratios. In all cases the stress at the
critical section due to bending moment is either nil or of low
magnitude and, therefore, could be ignored but for complete
representation of the theory it will be considered. From Mohr's
circle of stresses, equation 4.2.33 is applicable. Referring to
equations 4.2.34 through 4.2.36 and changing the subscript 1 to 2,
then the torsional stress is equal to,

T=Ty / 222 4,2,46

L

The stress due to the shear force at the critical section could be

expressed as

v=aVz /A 4.2.47
The crack would occur at the face of the beam where both the

torsional and shear stresses are additive,

fv=T+v 4.2.48
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The stress at the critical section due to bending is,

y , o
fm=z—12—. %"5 4.2.49

where yn and Yn are the distances from the horizontal neutral axis,
to the critical section and to the bottom concrete fibre respectively,
assuming downward movement is positive. Rearranging equation 4.2.33

and combining it with equations 4.2.46 through 4.2.49 gives,

2
(i giz ¥ 2222&2) * z—:%g = 1.0 4.2.50
Therefore, for pure torsion
Tz = Tup = 2z fro | | 4.2.51
and for pure shear
Vo =Vuy = A fry / a . 4.2.52

The ultimate bending moment for mode 1 failure is approximately equal

to z1 frp. Equation 4.2.50 could now be rewritten as

Vs Tg)z My yn _ ,
Vu, * Tuz * Mu, "Yn 1.0 ' 4.2.53

Sihce mode 2 failure occuré at luw‘bending moments and the ratio
yn/Yn is very small then the bending effect can be ignored and the

equation reduces to

-V Ta2  _ - . ,
VGE-+ Tu, =1,0 4,2.54

It is imﬁortant to note that the section modulus zp is to be
taken for the critical section and, therefore, would change depending
on whethe; this critical poinf falls in the web or the flange., Hence
the ultimate pure torsion and pure shear capacity of the section

should be calculated accordingly:

4.3 Theory for the Ultimate Strength of Prestressed Concrete

'T' Members, Subjected to Torsion, Bending and Shear, in Mode One Failure

This type of failure occurs at high bending to torsion ratios.
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Failure is gradual due to the formation and propagation of tensile
cracks at the bottom of the beams. Two types of failures were
observed, crushing of the concrete at the top of the flanges and

the cleavage of concrete. Consequently two failure criteria are

required for the analysis, Cowan's (8) simplified failure criterion

for the failure of concrete in crushing,

2 2
25.23 (%Er) + 4.02 %%ﬂ) - 3.02 %g? = 1.0 4.3.1

and Zia's (28) criterion for the failure of concrete in cleavage.

fv \2  1-sin?) /fcm\? . fem
frl) + 4 frl) - sin A E = 1.0 4.3.2
_ /{0.2493 £c!
where tan A = / (—?__rl .y_ 1

Both these formulae are derived in section A4 at the Appendix.

I. Compression depth smaller than the flange thickness.
Taking moments of forces about an axis through the lower steel

level and perpendicular to the length of the beam, Figure 4.8;
. n
M1+j§1[Asj fsj(d1-dj)+Fsj(d1-dj)]= kem fem b Cd 2a 4,3.3

where the lever arm %a = d; - p Cd
Assuming that the steel does not resist the shear; hence the
stress, on the compression zone, due to the shear force is,

3

4.3.4

A. Assuming that the torsional moment is carried by the dowel force

action. Taking moment of forces about an axis parallel to the length

of the beam and through the centroid of the compression zone;

n

I

n
or _ T1 = ;L,(Dj 2j) 4.3.6

TR A I §

A
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I. Compression Depth Smaller than the Flange Thickness
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where £j =dj - p Cd 4.3.7
Assuming that the dowel force is proportional to the distance from

the centroid of compression, then;

%}=E—-§..... =Bj 4.3.8
Combining these equations, therefore,
n I

vt = L) 232 / 5B 4 4,3.9

and Dj = Ty &5 / 351232 4.3.10

Taking moments of forces about an axis along the centroid of the
steel and parallel to the length of the beam, assuming parabolic
torsional shear stress distribution;

T, = %—b Cd T ot 4.3.11

Resolving the shear stresses acting on the compression zone due to
the shear force and the torsional moment;

fv = W2 + 1% 4.3.12
Substituting equation 4.3.9 for &t into equation 4.3.11 and combining
it with equatiors 4.3.4 and 4.3.12, would determine the total shear
stress on the concrete. The sheap stress and the bending stress on
the compression zone can be substituted into one of the failure
criteria. To solve these equations the stresses in the steel and
the depth of compression should be determined.

Resolving forces perpendicular to the skewed failure plane,

¢ gemi D_Cd . S (Ast feieEai)est L -
kcemi femi Sos 97 - cos 8y j=1(A53 fsj+Fsj)+sin 8, jEID] 4:3.13
Using Mohr's circle of strains,

el=%(ex+'ey)+%(ex-sy) cos 23-&-:2!5111 28 4.3.14

strain in the concrete at level j, where ey=o, Y = AS?JGS -

£, = ecj, therefore,

b S P S T T R
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ecij = ecj cos? 6y + sin 8; cos 8, 4.3.15

Dy
Asj Gs
The strain distribution along the failure section is assumed to be
linear;

ecmi = ecij Eﬁg%f . 4.3.16

If the increase in the steel strain to the increase in the concrete
strain at the same level is defined as the bond slip factor 'S' then;

ecj = 9§§l + €pj 4.3.17

Combining equations 4.3.15 through 4.3,17, the total strain in the

steel at level j, including the prestressing strain, is

o . _ o (ecmi(Cd-dj j 0 , .
€sj = lAesj + esp) = SJ(Ecmléd ) sec? 6, 1 %%EEEE-Eé-— epj) + espj

4.3.18

1

The total stress in each steel bar can be related to the total strain
in the steel using the stress-strain curve for the steel. Approximating

the curve into elastic-plastic regions would be sufficiently accurate.

TR uy kA U

The stress-strain curve for concrete in compression can be represented

1Y

by a parabolic function (36),
2
€

Sed 4.3.19

f = Ec (e -

The curve reaches a flat peak at g,; hence differentiating the function

and equating the differential to zero at g.

1
Where Eu = Zéic 4,3,20

Substituting the stress and strain in the compression zone and

Young's modulus from equation 4.3.20 into equation 4.3.19 and

rearranging, .
ecmi = eu (1-vY1-fcmi/fc') 4.3.21
ecmi
. 1 f de
Now kemi = fcmi ecmi ‘/: 4.3.22

substituting for f from equation 4.3.19 and integfating, therefore,
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S ecmi ecmi fc!
kcemi = (1 3 su) o S EeaT 4:3,23
Now p = [ecmi - {[scmlf € de){[ecmlf de]/ecmi 4,3,24
o )

substituting the stress-strain function and integrating, therefore,

p=-tEi- _com 4.3.25

12 eu - 4 ecmi

Taking moments of forces about the lower steel for the skew failure

plane;
. _ 4 . bCd fa
My cos 8; + Ty sin 81 = kemi femi T

n
jgl[(st*ASj fsj) (dy-dj)cos 6;]

;2103 (d1-d))sin 6y 4.3.26

-

To be able to get a solution from the above equations the angle of
compression needs to be determined. Taking moments of forces about
the skewed plane at the initiation of the first crack,

Mcy cos 6; + Tc; sin 6) = (fr; + Pcy cos? 61) 4::5.27

- -
cos 6,

rearranging

z1 fry (1 + tan? 8; + Pcy/fry)

tan 67 + Mcy/Tcy g

Tecy =

If the moment to torque ratio is kept constant during the test, then,

Mc1/Tcp is constant and is equal to M;/Ty. Minimising equation

4,3.28 and rearranging,

S M My Pcy
tan 8 = - Ty + /{Tl) + 1+ 4.3.29

B. Assuming that the torsional moment is carried by the torsional
stresses in the concrete compression zone. The torsional stresses
are assumed to be fully.plastic in accordance with the sand heap
analogy (2j. The equations would be similar to those presented

except equations 4.3.5 through 4.3.11 should be ignored and the

L

L SR Tl S L]

LY
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torsional moment would be,

Ty = .Cd% (b - 3 Cd)t iy 4.3.30

The dowel force parameter in equations 4.3.13 through 4.3.26 should

be ignored.

II. Compression depth greater than the flange thickness.

Taking moment of forces about an axis through the lower éteel
level and perpendlcular to the length of the beam, refer to figure
4. 9, equatlon 4.3. 3 should be modified to,

My + z [AsJ fSJ(dl-dJ)+FSJ(d1-dJ)] kem fem[(b-bw)t + bw Cd]2a -
4.3.3a

The compression force on the concrete perpendicular to the transverse
section of the beam_can be approximated to,

= kem fcm (b-bw) t + kem fcm bw Cd 4.3.31
and the centroid of compression from the toﬁ of the beam can be .

expressed as,

(b-bw) t p t + bw Cd p Cd

(b-bw) t + bw Cd 4.3.32

p Cd =

The lever arm of the compression force to the lower steel level is,
=d; - p Cd 4,5,33
The maximum stress due to the shear force on the compression zone

occurs at the top of the web,

v max = 4.3.34

Ic bw

Centroid of the compression zone area from the top of the beam,

1 (b-bw) t2 + bw Cd?
y=3 (b-bw) t + bw Cd

4,3.35

The second moment of area of the compression zone about its centroid,

(b-bw) t®  bw cd? - i t -)2
Ic = v *o— + bw Cd y) + (b-bw) t (2 y
4.3.36

and Qr =bt (y - t/2) \) 4.%:37

1 8

LAk

| B
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I1. Compression Depth Greater than the Flange Thickness
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Equations 4.3.35 through 4.3.37 can be substituted into equation

4.3.34 to evaluate the shear stress.

A. Assuming that the torsional moment is carried by the dowel -
force action. Referring to analysis I part A above, equations

4.3.7, 4.3.11, 4.3,13 and 4.3.26 are modified to,

2j = dj - p Cd 4.3,7a
Ty =2 [bt+ (Cd-t) bw] ot 4.3.11a
. e s (b-bw)t+bw Cd _ W o o s mws L.
.kcml femi cos 0 Fos Bljgl(ASJ fsj+Fsj)+sin e1j§lDJ
4,3.13a
and
; _ ‘ . [(b-bw)t+bw Cd]la
M; cos 6; + T; sin €; = kemi fomi cos 0y
n
- j§1{(F5j+ASj fsj)(di~dj)]cos 6,
n -
- jgl[DJ(dl-dj)]sin 81 4,3.26a

The remainder of the equations are not changed.

B. Assuming that the torsional moment is carried by the torsional
stresses in tﬁe concrete compression zone. The torsional stresses
are assumed to be fully plastic. The previous equations are
modified by eliminating the dowel force parameter. The

torsional moment equation, refer to equation 4.3.1la, should be

changed to,
Ty = [5 Cd2 (bw-Cd/3) + 7 t2 (b-bw)]t 4.3.38
- for Cd < bw
and
e bu? (Cd-bw/3) + 2 t2 (b-bw)]t 4.3.39

for Cd > bw

an

L O
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4,3,1 Computer Programming

Computer programmes to analyse both failure criteria were
written in a Fortran language and were run on the PDP 11/40 Computer.
The programmes are similar in the procedure of analysis. A general
computation procedure is presented and the flow chart is shown in
Figure 4.10. Knowing two of the loads applied, properties of
concrete and steel, the prestressing force applied and the
dimensions of the section the third failure load can be determined.

In this example the values of the shear and the torsional
moments are given and the bending moment value is required.

1. Assume a bending‘moment value,

2. Initially take fcmi = fc!',

3., Assume the depth of compression.

4. Calculate 6; from equation 4.3,29.

5. Calculate the strain in the céncrete from equation 4.3.21.

6. Calculate the strain in-the steel from equation 4,3,18,

Hence from the stress-strain curve, calculate the stresses
in the steel.

7. balculéte the new value of the compression depth from

equation 4,3.13.
8. Iterate 5, 6 and 7 to find the value of Cd.

9, Calculate the new value of the bending moment from
Equation 4,3,26.

10. Iterate points 4 through 9.

11. Calculate the stresses due to torsion and due to shear.

12. Apply the criterion of failure to evaluate fcm.

13. From equation 4,3.3 calculate the new value of bending

moment.

Loy

»



- 81 -

START

READ
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FIGURE 4.10 FLOW CHART - ULTIMATE
STRENGTH OF PRESTRESSED CONCRETE
T-BEAMS IN MODE ONE FAILURE
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14, Substitute into equation 4.3.26 to calculate the new value

of femi.

15. Iterate points 3 through 14 to find the final value of the

bending moment.

4,4, Theory for the Ultimate Strength of Prestressed Concrete

'T' Members, Subjected to Torsion, Bending and Shear, in Mode Two Failure

This type of failure generally occurs at low bending to torque
ratios. Maximum load is recorded at the formation of a crack on the
front or back face of the beam and the beam collapses suddenly or the
load gradually decreases as more cracks develop. Refer to sections

3.2.1 and 3.2.3. Consequently it is reasonable to assume that the

-

member behaves as a plain concrete with axial compressive stresses _f
due to prestressing. The maximum stress occurs in the concrete ?
before a crack initiates is, ;
fmax = frp + Pcy cos? 6y - asz sin 62 cos 62 - g%-..%g-cosz 02 -

4.4,1
It is important to note that the failure section is assumed not to
be distorted, refer to Figure 4.11. Taking moments of forces about
the skewed failpre plane, |
: Ty sin 62 ='z2 fmax / cos 63 4.4.2
Substituting equation 4.4.1 into equation 4.4.2 and minimising the
torque wifﬁ respect to the angle of failure, therefore;
Pe2 Mo ym 4.4.3

tan 6 = V1 + fr, ~ z) frp; Yn

Combining equations 4.4.1 through 4.4.3 and rearranging;

aVy 23 _ J/ Pep Mo ym :
Ty + A 2zp frp V1 + ¥§% TWTRE 4,4,5

For pure torsion, the ultimate strength,

Tup, = 222 frz V1 + %—% 4.4.6



Neutral axis

FIGURE 4.11 MODE TWO FAILURE IN PRESTRESSED CONCRETE
: T-MEMBERS UNDER COMBINED LOADING

Neutral axis

FIGURE 4,12 MODE THREE FAILURE IN PRESTRESSED CONCRETE
I T-MEMBERS UNDER COMBINED LOADING
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Neutral axis

V’

FIGURE 4,11 MODE TWO FAILURE IN PRESTRESSED CONCRETE
T-MEMBERS UNDER COMBINED LOADING

—

Neutral axis

FIGURE 4.12 MODE THREE FAILURE IN PRESTRESSED CONCRETE
T-MEMBERS UNDER COMBINED LOADING
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for pure shear,

2A fr P -
Vupy = _1;__1 Y1+ ?%f- 4.4.7

and z; fry is approximately equal to the ultimate bending moment of

plain concrete in mode 1 failure. Combining these equations and

rearranging;
2
L .0 ) ( EE;) ym My Pep _
(TUPZ * Vup2 1+ fry " Muy ?;f = 1.0 4.4.8

Since Mode 2 failure occurs at low bending moments and the ratio
yn/Yn is very small, then the bending effect could be ignored and

the equation reduces to,

T2 Vo _
Tﬁﬁ; + VGE; = 1.0 4.4.9

If the prestressing stress applied is zero, then these equations
reduce to the equations of plain concrete in Mode 2 failure as
derived in Section 4.2.2.2.

By considering the distorted section, ﬁore accurate results can
be obtained. A programme similar to that discussed in Section 4.2.1.4
was used with the torsional moment being;

T2 sin 8, = zp fmax 4.4.10

where the value of the stress-is taken from equation 4.4.1.
In computing the ultimate capacity of a T-member in mode 2
failure, three critical sections should be considered. Refer to

Section 4-.2.2.2.

4,5 Theory for the Ultimate Strength of Prestressed Concrete 'T' Members,

Subjected to Torsion, Bending and Shear, in Mode Three Failure

No beam, in the present investigation, failed in mode 3 failure,
but for completeness of the theoretical analysis mode 3 failure is
analysed. Tests on rectangular prestressed concrete beams (32) showed

failure in mode 3 at the formation of the first crack on the top of
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the beam. Assuming this failure to be a bending type failure with
the first crack forming at the flanges, then the stresses due to

the shear force at the critical point is very small and is ignored.
Refer to figure 4.12. Assuming the failure section to be undistorted

and taking moments of forces about the skewed failure plane,

= 55 (fr3 + Pes cos? 03) 4.5.1

T3 sin 63 - M3 cos 03 = o

The minimum value of torque occurs when,

2 -
tan 05 = M0 /() 4 14 ey 8.5.2
T3

Substituting the value of tan 63 into equation 4.5.1 and rearranging,

Ts )2 M3  Pe3 _
(?zg fra T z3 fry fry = 1.0 4.5.5

The ultimate hogging moment is,

Mup3 = z3 frz (1 + Pc3 / fr3) . 4.5.4
and at pure torsion,
Tups = 223 fr3 V1 + Pc3/fr; 4.5.5
Combining these equations would give the interaction of torsion with

bending for mode 3 failure.

(TUpa Mup3 = 1.0 4.5.6

| This‘analysis could be modified by considering the distorted
failure section. This can be done by subsiifﬁting z3 = z3 / cos 03
into equation 4.5.1 and minimising the torque by the use of the

computer in a similér'manner to that described in Section 4.2.1.4.
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CHAPTER FIVE

COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

5.1 Introduction

Theoretical analyses, for the strength of plain and prestressed
T-members presented in the previous chapter, are compared in this
Chapter with the experimental results. For plain concrete members,
the author analysed and examined test results of many investigators.
While for prestressed concrete sections, the author's and Reeves'

results are utilised. The analyses of the results were carried out

on the PDP/11 Computer. -

5.2 Ultimate Strength of Plain Concrete 'T' Members

Theoretical values for T-sections, subjected to pure torsion,

are compared to experimental results of investigators in Tabie 5.1.
Tests on plain T-Beam conducted by Hsu (4) had shown that the
effective total overhang flange to flange thickness should be
limited to 6. Hence this value is adopted in evaluating the
ultimate torsional strength of piéin T-sections. Since the
experimental cylinder or cube strength of concrete was presented by
many investigators as the control specimens tests these values were
converted to the modulus of rupture of concrete by the use of Hsu's

(35) empirical equations. In SI units,

£r, = 0.76 (1 + ¥30 Jre 5.2.1a
for d>100mm.
and
£r) = 2220 VFTC 5.2.1b
at/3

for d<100mm

R 1
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[}

For mode two typé of failure the relevant beam breadth should be
substituted for the depth of the beam in the equations. Many
investigators (21,26,37,41,43) have agreed that longitudinally
reinforced beams behave similarly toplain concrete beams and the
ultimate torsional strength of both beams are comparable., Hence
T-beams with small amount of longitudinal steel are also compared
to the theoretical plain concrete analysis. These beams are
denoted by an asterisk.

The theoretical analysis, on the average, seems to overestimate
the torsional capacity of the sections by 8%. This could be
attributed to the fact that equations 5.2.1 do not give a very
accurate estimate of the modulus of rupture of all types of concrete
used by investigators. This can be clearly seen from test results
of Zia and Arockiasamy; in which both investigators tested beams of
same sectional dimensions, while the concrete compression strength
of the latter investigator is lower, his beams showed higher
torsional strength. Ramakrishnan and Jayaraman presented, in their
paper, the experimental values for the standard modulus of rupture
test of the concrete they used. Comparing their torsional test
results the theoretical solution underestimated the torsional
capacity of the beams by 4%. The percent coefficient of variation,
between the theory and the investigators' experimental results, was
found to be less than 10%; with the exception of Evans et al's
results in which the coefficient was 18.7%. This is due to the léw
experimental results of the second and third beams and are thought
to be caused by some weakness in the concrete. If these two results
are ignored then the coefficient of variation would be 4.1%.

No experimental results have been reported on plain T-beams
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subjected to torsion, bending and shear. Kirk and Lash (26) tested
plain concrete T-beams subjected to torsion and bending. Their

test resuits, as a ratio of the theoréticai puré forgiﬁnél ;nd fure
bending moment strengths, are plotted in figure 5.1. Equation 4.2.44,
with the shear force set to zero, is also plotted. The maximum
deviation from the theory is +16% at an interaction of bending to
torsion of 2. The average of the mean of the experimental to the
theoretical values is 1.03 with a percent coefficient of variat&on

of 9.3.

Due to the impracticality of loading plain T-sectioﬁs in
torsion and shear no attempts have been made to investigate the
interaction of shear with torsion. -

Brown (23) tested longitudinally reinforced T-sections
subjected to torsion and shear with a small effect of bending. A
dimensionless interaction of the cracking values of the loading
capacity is plotted in figure 5.2, and the theoretical curve is also
presented. The comparison is good with the maximum error of 14%
underestimation and of 7.5% overestimation and with an average of
the mean of experimental to theoretical values of 1.0l1. Ersoy and
Ferguson (44) tested L-beams with different values of longitudinal
steel under torsion and shear with a little effect of bending.
Beams with the smallest steel percentage, .006 of the web's area,
were chﬁgen for the analysis. Hence the ultimate strength is
assumed to be equal to that of a plain concrete beam. Since the
theories for plain section under combined loading were derived for
the undistorted section then a similar interaction, as that for

T-sections, can be said to be applicable to L-beams. The

theoretical and experimental values are compared graphically in
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Figure 5.2. The comparison is generally good with the maximum
overestimation of test result by 12.1% and a maximum underestimation
"by 4.7%. The average of the mean of experimental to theoretical -

values is found to be 0.99.

5.3 Ultimate Strength of Prestressed Concrete 'T' Members
Subjected to Torsion, Bending and Shear

The author's test results and theoretical 6ﬁfves for both test

-

series are presented-in Figures 5.3 and 5.4.

5.3.1 Theoretical Analysis

The theoretical curves'consists of mode one and mode two types
of failure. Analysing beams in mode three failure would give high
torsional values and, therefore, curves for mode three failure were I
not presented. Beams of series one, failing in mode one failure,
wefe analysed using the crushing failure criterion and assuming the
torque being carried by either the dowei force action or the
torsional shear stresses in ihe concrete cﬁmpression zone. Cleavage
failure criterion gave higher strength values than the crushing
criterion for beams of series one. Experimental observation
confirmed that these beams failed in the crushing of the concrete at
top of the beams.

5.3.1.1 Mode One Failure

The flexure Young's modulus was taken as 1.1 of the compression
Young's modulus test performed on the cylinder control specimens.
This relation was observed by Hognested et al (45). RUsch (46)
concluded that only the rising part of the stress-strain curve of

the concrete is applicable for T-beams failing in flexure with the
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utmost fibre being at maximum stress. Hence the maximum compressive

strain in the concrete was limited to eu = 2 fc' / Ec. Poisson's

ratio of the steel, for the purpose of calculating the modulus of .

rigidity, was assumed to be 0.25. A best fit ninth degree
polinomial curve for the stress-strain relation of the steel was
used in the analysis; in order to give a smooth continuous curve.
The slip bond factor was taken to be 0,2, referring to Appendix A2,
Changing the bond slip factor to 0.1 or 0.4 would cause a change in
the analytical bending value of less than 7%. Hence the value of
the bond slip factor is not critical.

The torsional moment in longitudinally prestressed concrete
beams is usually carried partly by the dowel force action and

partly by the torsional shear stresses in the concrete compression

—

*u3nhn ] |

36
]
v-—m“_:m

p

zone. Hence assuming the torque to be carried by only the dowel

action would overestimate the capacity of the beams while assuming

g A
LRBUE 3

W

that the compression zone would resist the torque results in

LU
‘ I LB,

3
4

underestimating the capacity. In rectangular prestressed beams the
experimental results are related more to the analysis assuming
dowel force action, as found by Wainwright (32). The presence of
the flanges in T-beams act in shifting the axis of rotation upwards.
Hence the bigger the flanges are the higher the torsional moment,
resisted by the concrete compression zone,. would be.

Assuming that the torsional moment is proportioned in
accordance to the elastic torsional rigidity, then the torsional
rigidity exerted by the concrete in the compression zone, using
Bach's (20) approximation,

Ke = 3 Ge £ x¥y 5.3.1

The shear force in the concrete compression zone to resist the

e A L

4
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steel dowel force action,

o |

ke ©Cd b = jgl Dj = jgl Asj Gs ysj 5.3.2a

for Cd % t
and
n - n - -
k¢ T (bt + bw (Cd-t)) = jél Dj = j§1 Asj Gsysj 5.9+2b
for Cd > t

Assuming a linear shear strain distribution on the depth of the beanm,

then

ysj = yc (dj - €d) / cd 6.3.5
Rotation needed to cause the shear strain is Yc¢ / Cd. Defining the
torsional rigidity as the ratio of the torque to the rotation of

the member, therefore

Kq = k¢ T Cd2 b 2¢ / yc 5.3.4a
for Cd s t
and
Kd=ke T (bt+bw (Cdt)) %4 Cd / Yc 5.3.4b
for Cd > t

Combining equations 5.3.2 through 5.3.4, the torsional rigidity,
assuﬁing dowel action of the steel, would be

n

It is reasonable to assume that the higher the prestressing force

Asj Gs %¢ (dj-Cd) 5.3.5

applied to the steel, the higher its resistance to rotational

deformation, hence the larger the dowel force action in the steel,

Assuming this relation to be linear to the ratio of the prestressing

to the yield-stress of the steel, then the torsional rigidity could

be modified to,

Fsj

TR 5.3.6

The torsional moment resisted by the concrete compression zone,

—
1
A
TELE

!

-

B et St
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K
Tic = googg T 5.5.7
and the torsional moment resisted by the steel dowel action,
Kd

Tl d=mT1 . 5.3.8

This analysi; was combined to that in section 4.3 and plotted in
Figufes 5.3 and 5.4Ias a broken line, for a zero shear force
applied to the beamé. This analysis, as can be seen from the
figures, gave a better correlation for beams in series one, while it
showed a higher strength for beams in-series two. It is important
to note fhat this analysis is not based on experimental observation.
It is presented only to show the variation of the theory and its
correlation to fest results and, therefore, should not be depended
upon for analysis of results. Hence a research programme is
required to find the factors affecting the distribution of torque
resisted by the dowel action and that resisted by the compression
zone, which is suggested for further study.

Both theorles, assumlng torque to be resisted by dowel action
or by the concrete in the compression zone, are only slightly
affected by the shear force on the section. This was found to be
true experiméntally as well, with the failure section falling in
the low shear spaﬁ rather thaﬁ the high shear span. Consequently
it can be suggested thatlthe shear effect could be ignored for mode
one anélysis. Since experimental results 6f T-beams are more
related to the énalysis assuming n6 dowel action; and since this
analysis gives a safer estimate of the load carrying capacity, then

the experimental results will only be analysed and compared

accordingly.
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5.3.1.2 Mode Two Failure

The analysis of test results in mode two failure was based on
the distorted section as discussed in Section 4.4. Three critical
points on the cross section were analysed and the minimum torque
value was taken as the capacity of the section. These critical
sections are the bottom fibre of the flange, the top fihre of the
web and the concrete fibre at the horizontal neutral axis line.
The-concrete prestressing stress and the modulus of rupture fo£
each critical section were calculated and included in the analysis.
It was found that the bottom fibre of the flange was always the
controlling critical point; suggesting a low shear force effect on
the results. Referring to section 3.4, the failure section of only
beam 17 occurred at the high shear span. The modulus of rupture

was calculated from Hsu's (35) empirical equations as presented in

Section 5.2.

5.3.2 Comparison of Test Results

The test results are compared to the theoretical analysis,
assuming only one of the loadings to be unknown. The shear force
value and either the torque or bending moment were taken as the
experimental values and the remaining load was calculated
theoretically and compared to the experimental value. Hence the

error was confined to only one of the loadings and, therefore,

would be amplified.

5.3.2.1 Author's Test Results, Mode One

The experimental results for beams of both series are compared,

in Table 5.2, with the theoretical results of beams failing in mode
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TABLE 5.2 COMPARISON OF AUTHOR'S RESULTS - MODE ONE

Failure Loads - Theoretical Loads Expt.
Beam Moment Torque Shear Moment Torque Theory
KNm KNm KN ~ KNm KNm Value

1 21,564 0 10.796 19.761 0 1.091 cr
2 19.701 0 9.974 18,905 0 1.042 cr
5 15.094 2.614 8.208 | 13.172 2.614: 1.146 cr
6 11.721 3.140 6.572 12.410 3.140 0.944 cr!
8 15.962 2.805 9.077 13.106 2.805 1.218 cr
9 13,821 2.721 .7.359 13.638 2.721 1.013 cr
10 . 17.911 2.721 9.702 14,342 2.721 1.249 cr
19 20,349 0.642 10.501 18,820 0.642 1.081 ecr
20 18.991- 1.270 10.392 16,613 - 1,270 1.143 cr|
21 20.848 1.591 11,095 16,933 1,591 . 1.231 cr!
22 16,323 | -2.289 9,027 16,391 2,289 0.996 cr|
23 14,600 3.084 0.250 12,970 3.084 1.126 cr|
24 11,620 3.419 7.226 12,062 3.419 0.963 cr'
- Mean 1.096 !
% Coeff, of Variation 9.2 |
AIR 15,593 0 7.901 13.642 0 1.143 cr!
A2 0.434 |- 3,517 0.212 ~ 0,434 | 3,248 1,083 cl|
A3 13.821 0.837 7,134 11,347 0.837 1,218 cr|
Ad 9.158 1.688 4,700 8.086 1,688 1,132 cl|
A5 3.620 3.182 0.25 3.620 3.172 1.003 cl!
A6 5.778 2,721 3.161 - 5,778 2,600 1.047 «cl
A7 2,033 3.000 1.878 2,033 3.109 0.965 «cl;
A8 4,770 2.512 25301 4,770 | 2.787 . 0.901 «cl
A9 7.585 2,051 3.907 6.677 2.051 1.136 ¢l
AlQ - 9,155 | 1,214 4,506 8.760 1.214 1.045 ¢l
All 9.897 1.256 5.589 9,287 1.256 1,066 «cl

Mean 1.067
- % Coeff, of Variation 8.4
Total Mean 1,083

Total % Coeff. of Variation 9.4 i

cr : Crushing type of failure,
cl : Cleavage type of failure,
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one. For beams of series one, tested under bending to torque
ratios of greater than 2.72, the theory predicted a mode one
crushing failure. Experimental observations of these beams,

except beams 6, 23 and 24, showed crushing failure. At failure, it
was thought that the mentioned three beams failed in mode two, but
after analysing the dial gauges of the beams, it was found that
these beams underwent severe vertical deflections; hence suggesting
mode one failure. The theory predicted that beams of seriés tﬁs
would fail in mode one cleavage failure, except beams AIR and A3
which would fail in mode one crushing. Experimental observation
showed that beam A2 failed in mode two, beams AlR, A3, A4, Al0 and
All failed in mode one crushing and the remainder of the beams of
series two failed in mode one cleavage. Hence only the mode of
failure of beam A2 was wrongly predicted to be mode one.

The theory underestimates the test results by 8.3% with a
coefficient of variation of 9.4%. For beams of series one the
theory underestimates the results by 9.6% with a coefficient of
variation of 9.2% while for beams of series two it underestimates
the results by 6.7% with a coefficient of variation of 8.4%. The
experimental results varied from 6% below to 25% above the
theoretical values of series one. The experimental results of

beams of series two ranged between 6% lower to 22% higher than the

-

theoretical values.

5.3.2.2 Author's Test Results, Mode Two

The experimental results for beams of series one failing in
mode two type of failure are compared with the theoretical values

in Table 5.3. It can be seen that the theory underestimates the
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TABLE 5.3 COMPARISON OF AUTHOR'S RESULTS - MODE TWO
Failure Moment Shear Theoretical Texpt.
Beam Torque KNm KN KN Torque KNm Ttheory
3 3.872 .503 0.204 3.938 0.983
4 4,228 .534 0.093 4,099 1.032
7 3.949 8.172 4.979 3.906 1.011
11 3.838 10.396 5.729 4,075 0.942
12 4,172 7.247 4,099 4,043 1.032
13 4,284 4,948 3.411 3.943 1.086
14 4.019 2.052 | 2.913 4,093 0.982
15 3.851 3.200 1,522 4,114 0.936
16 4,117 | 1.247 1.070 3.975 1.036 |
17 4,312 3.660 4,922 3:977 1.084
18 3.907 10.635 5.883 4,134 0.945
Mean 1.006
% Coeff, of Variation 5.3

AR ELIERE UL |

3 PR N
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torsional strength by 0.6% with a coefficient of variation of 5.3%.
The experimental results of these beams varied between 6.4% below
and 8.6% above the theoretical values. If the modulus of rupture
of the section was substituted by the indirect tensile strength of
the concrete, split cylinder strength, then the theéry would-
underestimate the experimental strength by 4%, Hence the modulus of
rupture of the section gives a better estimation for the strength of
the section.

Analysing beam A2 as a mode two failure would give a theoretical
torque value of 3.468 KNm. This gives an experimental to theoretical

mean of 1.014.

5.3.2.3 Reeves' Test Results

Test results reported by Reeves (30) have been analysed and
presented in Table 5.4. The test programme consisted of forty-two
fully grouted post-tensioned prestressed beams divided into three

series of different flange width., Hence different steel percentage
and different prestressing force on the steel was used to achieve a
similar prestressing stress distribution on the concrete. Reeves
reported that the bonding between the steel and the concrete was
fully effective, consequently the bond slip factor was assumed to
be unity. The mean bf the experimental to theoretical values of all
the beamg is found to be 1.011 with a coefficient of variation of
18.2%. Taking each of the three series separately, the following
points could be deduced, |
Series A

1. Beams 1 and 2, tested under pure bending load, would fail in

mode one crushing, while the remainder of the beams are predicted

to have collapsed in mode one cleavage,

FTRECIR

% e

e
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TABLE 5.4 COMPARISON OF REEVES' RESULTS

Failure Loads Theoretical Loads Expt.
Beam Moment Torque Moment Torque Theory
KNm KNm KNm KNm Value
SERIES A

1 16,383 0 16.632 0 0.985 cr
2 17.072 0 16.764 0 1.018 cr
4 0.588 2.599 0.588 3.150 0.825 ¢l
5 0.588 1.921 0.588 3.100 0.620 «cl
6 2,723 2.599 2.723 3.150 0.825 «cl
7 4,293 2.825 4,293 2,950 0.958 «cl
8 6.44 2,938 6.440 3.039 0.967 «cl
9 0.588 1.566 0.588 2,920 0.536 «cl
10 8.589 3.243 8.589 2.856 1.135 ¢l
11 10.734 2.904 10.734 2,663 1.09 «cl
12 11.807 2.373 11.807 2.605 0.911 «cl
13 12,767 3.164 12,767 2.628 1,204 «cl
14 12,880 2.576 13.061 2,576 0.986 «cl
15 14,451 2,316 14,185 2.316 1.019 «cl

Mean 0.934

% Coeff. of Variation 19.7
!
SERIES B

1 16.609 0 16.728 0 0.993 cr
2 16.157 0 16.958 0 0.953 cr
3 0.531 2.090 0.531 2,575 0.812 «cl
4 0.531 2.260 0.531 2.780 0.813 «cl
5 11,807 2.497 11.807 2.072 1,205 «cl
6 8.372 3.005 8.372 2,277 1,32 ¢l
7 2,147 2,395 2.147 2,450 0.978 «cl
. 9 6.440 2.951 6.440 2,442 1.208 «cl
10 4,293 2,748 4,293 2.450 1,122 ¢l
11 10.169 2,068 10.169 1.900 1.088 cl
12 12,880 2.194 12.880 1.729 1,269 «cl




TABLE 5.4 (CONTINUED)
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COMPARISON OF REEVES' RESULTS

cr : Crushing type of failure, mode 1
Cleavage type of failure, mode 1
: Mode 2 failure

cl :

2

Failure Loads Theoretical Loads Expt.
Beam Moment Torque Moment Torque Theory
KNm KNm KNm KNm Value
13 14,236 1.763 14,236 1,409 1,251 ¢l
14 10.169 2.181 10.169 1,972 1.106 «cl
Mean 1,086
% Coeff, of Variation 14.8
SERIES C
1 14,089 0 12,899 0 1,092 cr
2 14,089 0 12,865 0 1,095 cr
3 0,486 1,573 0,486 2,189 0.719 2
4 0.486 1.573 0.486 2.273 0.692 2
5 2.904 1.654 2.904 2.163 0.765 2
6 5.050 2,203 5.05 2.167 1.017 2
7 7.197 2,237 7.197 2,035 1.099 «cl
8 9,344 2.169 9,344 1.812 1,197 ¢l
9 11.491 1.830 8.877 1,830 1.294 cl
10 1.830 1.763 1.83 2.039 0.865 2
11 2.977 2,068 3,977 2,172 0.952 2
12 6.124 2,169 6,124 2,185 0.993 2
13 8.271 2.440 8.271 2.055 1.187 ¢l
14 10,417 1.898 8.480 1,898 1.228 ¢l
15 12,564 1,424 11,554 1,421 . 1.087 cr
Mean 1,019
% Coeff, of Variation 17.8
Total Mean 1,011
y Total % Coeff, of Variation 18.2

BOEEIE |




2. The theory overestimates the capacity of the beams by 6.6%.

3. The coefficient of variation is found to be 19.7%. This can be
attributed to.the high scatter of the test results as can be
seen from beams 4, S and 9, having the same beﬁdiﬁélmoment
applied while the torque varied between 1,566 KNm and 2,599 KNm.

Scatter can also be seen-in comparing test results of beams 12,
13 and 14, Refer to Figure 5.5. |

SERIES B

l.l The theory predicts mode one crushing for beams 1 and 2, and
mode one cleavage for the remainder of the beams,

2. The theory underestimates the capacity of the beams by 8.6% with
a coefficient of variation of 14.8%

3. Scatter in the experimental results can be seen when comparing f
beams 5, 6, 9 and 12 to the remainder of the beams. Refer to g
Figure 5.6. ;

SERIES C -

1. Two modes of failure, mode one and two, were found to be possible
when analysing beams of series C, Beams 1, 2 and 15 were found
to be governed by the crushing of the concrete at the top of the
beams, while beams 7, 8, 9, 13 and 14 were governed by mode one
cleavage type of failure. The remainder of the beams were found
to be_critical in mode two failure,

2. The theories underestimate the experimental values‘by an average
of 1.9% with a coefficient of variation of 17,8%.

3. Taking only beams of mode one failure, the theory underestimated

- 106 -

the capacity of the beams by 16% with a coefficient of variation

of 6.7%.

For beams failing in mode two failure, the theory overestimates
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the torsional capacity by 14.3% with a coefficient of variation
of 15.6%. This is due to the low experimental torque values
found at low bending moments; which can be due to a different
mode of failure that the author has not come across in his
experiments, or due to some weakness in the concrete. Refer to
Figure 5.7.

In general the theories underestimate the experimental values at

moderate to high bending moments applied, while they overestimate

the capacity of the beams at low bending moments applied.

5.4 Cracking Angles

The relevant crack angles at the failure surface for different
moment to torque ratios are compared in Tables 5.5 and 5.6 with the -
theoretical angles. The theoretical crack angles for beams failing :
in mode one failure are based on equation 4.3.29. For beams failing ~
in mode two, the crack angles were taken as those producing the ?}
minimum torque values on the distorted section as analyged by the H
use of the computer.

Comparing the results for mode one failure, it can be seen that
the trend of the theoretical values is comparable to that of the
experimental results. Examining the experimental crack angles for
beam 9, 20 and A4, they seem to be ﬁigh and do not follow the trend
of the remainder of the results; i.e. decreasing angle value for
increasing values of moment to torque ratios. This could be attributed
to the difficulty in deciding and measuring the crack angles, Beams 1
and 2 showed a crack inclination of zero on the front and back faces
while they showed an 'S' shape crack at the bottom. This could be

due to some weakness in the concrete. In general the theoretical
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TABLE 5.5 MODE 1 - CRACK ANGLE AT FAILURE

Failure Relevant Crack Failure Relevant Crack
Beam - | Moment to | Angle Degrees Beam | Moment to | Angle Degrees |-
Torque Expt. | Theory Torque Expt. Theory
Ratio - Ratio
24 3.4 50 43 A2 .12 70 59
6 - 3.73 31 32 A7 .68 52 53
23 4,73 38 37 A5 1.14 51 46
"9 5.08 55 33 A8 1.9 46 39 |
8 5.69 34 33 A6 2.12 39 35
5 5.77 30 28 A9 3.7 24 28 |
10 6.58 22 26 A4 5.42 30 20 |
22 7.13 29 23 Al0 7.54 | . 24 15 |
21 13.1 24 18 All 7.88 22 13
20 14,96 30 12 A3 16.51 8 7
19 31,7 6 7 AlR ® 6 0
1. © 10 0 Al L 0 0
2 o 11 0
TABLE 5.6 MODE 2 - CRACK ANGLE AT FAILURE
Failure Moment Relevant Crack Angle-Degrees
Beam to Torque Ratio
- Experimental Theoretical
3 .1 54 55
4 .1 55 55
16 .3 63 55
14 .51 59 55
15 .83 57 55
17 .84 62 55
13 1.15 65 55
12 1.74 61 55
7 2.07 72 54
11 2,71 54 56
18 2.72 72 55
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values compare favourably with the experimental values, bearing in

mind that the theoretical equation was derived for an undistorted

failure plane.

The theoretical crack angles for mode two failure ﬁre relatively
constant with an average of 55°, A great scatter can be seen in th;
experimental values which vary between 54° and 72° with an average
of 61°. The crack angle calculated from equation 4.4,3 and ignoring
the bending parameter would be 64° and 57° for beams of series one
and two respectively. Analysing beam A2 for mode two failure, as
observed experimentally, would give a crack angle of 51° which is

comparable to the experimental angle of 56°,

5.5 Maximum Compressive Stress

The maximum compressive stresses at the top of the fiange for
mode one failure are calculated from the maximum compressive strains,
recorded by the rosettes, and converted to stress using the stress -
strain relation for the concrete, equations 4,3,19 and 4.3.20. These
values and the theoretical curves are plotted in Figures 5.8 and 5.9
against the bending moment on the skewed failure plane. Beams of
series two with no rosettes on the top of the flanges are ignored.
High scatter of test values can be seen, especially for beams of
series one, which is due to,

1. The rosettes are unlikely to be placed at the pogition where

failure occurs.

2. The rosettes used consisted of three elements of length

17mm for the first eight beams and of length 10mm for the
remainder of the beams, These lengths of elements are

small if compared with the size of the coarse aggregate used.
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3. Deficiency in any of the three elements of the rosettes
would cause a wrong estimate of the principal strains.

4, Shear lag on the top of the flanges causing higher strains
at tﬁe centre of the cross section than the edges, which
is ignored in the theoretical analysis.

From the figures it can be seen that the theoretical curves do

follow the -experimental trend, this is better shown for beams of

series two.

5.6 Steel Strain

The experimental average strains for the lower and upper steel,
for beams failing in mode one, are presented in microstrain in
Table 5.7 alongside the theoretical values. The experimental and
theoretical values are comparable except for beam AIR which showed
a much higher experimental strain. These strains are high in
comparison to the experimental values of beam A3, which is tested
under a bending moment of 89% of the ultimate pure bending moment.
In general the experimental values are higher than the theoretical

values, this is due to ignoring the dowel action of the steel,

5.7 Torsional Stiffness

The initial torsional stiffness of a member can be calculated
by summiné up the torsional stiffnesses of the component sections (20).
Hence the stiffness of the beams in this investigation can be divided
into the concrete stiffness and the stiffness due to the dowel action
of the steel, Since the web section is more rigid than the flanges,
therefore, the torsional stiffness of the concrete section is taken

as the summation of the total web section and of the two overhang flanges,
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TABLE 5.7 STRAINS IN THE STEEL AT FAILURE

Experimental Theoretical
BEAM
Lower Bars Upper Bars Lower Bars Upper Bars
1 6296 5799 6848 5819
2 6714 5915 6589 5355
5 5373 5120 5218 5068
6 5611 5024 5531 5043
8 6036 5447 5646 5350
9 6089 5114 5955 5078
10 6412 5757 5938 5586
19 6775 5635 6580 5505
20 6283 5187 5897 5259
21 6487 5707 6261 5557
22 6799 5749 6261 5777
23 5916 5533 5827 5511
24 6224 5777 6194 5780
AIR 6288 4282 4720 3334
A2 2781 2776 2843 2755
A3 4522 3137 3809 3028
A4 2923 2647 2999 2686
AS 2781 2720 2788 2696
A6 3097 2621 2897 2591
A7 2787 2659 2801 2633
A8 2813 2570 2752 2509
A9 2832 2562 2784 2526
AlO 2765 2543 3036 2660
All 2973 2623 3224 2702
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Applying St. Venant's (1) torsional constants and summing the
component rectangles, the concrete torsional stiffness would be
503 KNm?.

The torsional stiffness due to the dowel action is calculated
on the same bases as in Section 5.3 and with the same assumptions.
Combining equations 5.3.2 and 5.3.3 after modifying the steel
parameter of equations 5.3.2 to include the prestressing factor,

k¢ TCdDb = Cd le Asj Gs (dj=-Cd) ( j) 5.7.1a

for Cd s t

and

i n
ke T (bt + bw (Cd-t)) --Jg L, Asj Gs (dj-Cd) ( ASJ.) 5.7.1b

for Cd > t -
Assuming a parabolic torsional shear stress distribution in the |
concrete, ky would be equal to 2/3. Equation 5.7.1 can be solved
for Cd. In the case of torsion, Cd can be visualised as the depth
of concrete torsional shear stress due to dowel action. 71/ is
substituted by Gc = Ec / 2 (1+n). Sﬁbstituting these values into
equation 5,3.6 would give the torsional stiffness due to the
prestressing steel; these values are 103 and 56 KNm? for beams of
series one and two respectively. Hence the total torsional stiffness
of the members would be 608 and 559 KNm2, These values are comparable
to the experimental average initial torsional stiffness of 654 and

535 KNm2 for beams of series one and two respectively.

5.8 Bending Deflection

The elastic vertical deflections per unit load can be evaluated
using one of the elastic methods available and substituting the

properties of the concrete used. The flexure Young's modulus was
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taken as 1.1 of the concrete compressive elastic modulus (45) and
the total second moment of area for the uncracked section was

calculated., Using this method, it was found that the vertical

deflections under the load would be 0,196 mm/KN compared to the

average experimental value of 0.198mm/KN. The experimental values

were calculated from the initial slope of the deflection-bending

load curves.
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CHAPTER SIX

CONCLﬁSIONS AND RECOMMENDATIONS FOR FUTURE WORK

Conclusion for Plain Concrete 'T' Members

From the theories presented for plain concrete T-sections and

their comparison with many investigators' test results, the

following conclusions are drawn.

1.

Beams tested under moderate to high bending to torque ratios
would fail in a bending failure‘about a skew axis situated-on
the top of the member, mode one failure. Beams with relatively
large flanges, subjected to low bending or no bending at all,
would also fail in this mode.of failure. The non-dimensional
interaction of torsion, bending ana shear for beams failing in

mode one, is

Viye , (Tiy2 , My |
e RS e R i

where the ultimate shear force capacity at the critical section,
Vu; = A fr; / o
The ultimate torsional capacity,
Tu; = 2z fr;
The torque can better be evaluated by the use of the graphs
presented in the Appendix A.3.
Tu; = (Factor) b3 fr)
and fhe ultimate bending capacity of the section .
| | Mu; = z; fr)
Beams of relatively small flanges subjected to a low magnitude
of bending would fail in bending about a skew axis situated on
the side of the beam when tested under torsion, bending and

shear, mode two failure. The general non dimensional interaction
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equation is,
Vo, Tay2 yn My
(Vug * Tuz) Yo = 1.0
where the ultimate shear force
Vup = A ffz / «

énd the ultimate torsional resistance in mode two failure

Tup = 225 fro

Since mode two failure occurs at low bending moment and yn/Yn

is very small, then the equation can be reduced to

V2 T2 _
Vus ¥ Tusy 1.0

Mode three failure is theoretically impossible for T-members,
unless the member is subjected to a hogging bending moment.

In this mode the first crack would initiate at the top of the

flanges where the shear stress is very small and could be

ignored. The non-dimensional interaction equation of bending
and torque is

T3 y2 M3 _
(T3 * g - 10

where Tuz = 2z3 fr3 and Musz = z3 frj

More accurate values of the ultimate pure torsional capacity

of the section for the three modes of failure can be calculated
by analysing the distorted section., Refer to Section 4.2,1,

Available experimental results on T-members subjected to pure

torsion show that the presented analyses are reasonably accurate,

The mean of the ratio of the experimental to theoretical torque
is .924 with a coefficient of variation of 15%. Where the
modulus of rupture is quoted, the mean of the ratio of the

experimental to theoretical torque is 1,04 with a coefficient

of variation of 5.6%.
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No experimental results are available on T-beams subjected to
the combined loading of torsion, bending and shear. The
interaction equation of bending and torsion, equating the

shear force to zero, is in good agreement to .experimental
results on plain concrete T-members under the action of torsion
and bending. The mean of the experimental to theoretical
values is 1.03 with a coefficient of variation of 9.3%. No
attempts have been made to test plain concrete T-beams under
the action of torsion and shear., Taking the cracking values
of longitudinally reinforced beams, the.non-dimensional
interaction equations give a good representation of the
experimental results. The mean experimental to theoretical
values is found to be 1.0l. Since the interaction equations
are based on the undistorted section, hence, the equations are
also applicable to other shapes of beams. The mean experimental

to theoretical values for L-beams subjected to torsion and shear

is found to be 0,99.

Conclusions for Prestressed Concrete 'T' Members

From the theories presented for prestressed concrete T-beams

without transverse reinforcement subjected to torsion, bending and

shear and from the thirty six post-tensioned unbonded beams tested

by the au%hor, the following conclusions are drawn.

1.

At high bending to torque ratios, failure is predominantly a
bending failure with crushing of the concrete at the top of
the beams. The stresses at failure are related to Cowan's (8)
failure criterion for concrete. Alternatively cleavage of -

concrete is predominant at lower ratios of bending to torque.



- 122 -

The stresses at failure are based on the Zia's (28) criterion
for the failure of concrete in cleavage. The theoretical
analyses for these failures, mode one, are based on the
equilibrium of forces and compatability of strains along the
skew plane of failure. The theory is presented for both, when
the dowel action is taken to resist the torque or when the

stresses in_the concrete compression zone act in resisting the

torsion.,

At low bending to torque ratios, failure is predominantly a
torsional failure about a skew axis of bending situated on either
the front or the back face of the beams, mode two failure. The
theory is based on failure due to the initiation of the first
crack on the face of the beam opposite to the skew axis. The g
non-dimensional interaction equation relating the loads at

failure is

_s;_ L My Pep ' "
('ruﬁ * Vupg) A+ ) * W Wy~ frp - 20 |

Since the magnitude of the bending moment for this type of
failure is low and the ratio yn/Yn is very small, then the

bending parameter can be ignored and the equation reduces to

L = 1.0
Tup2 Vupz

where the ultimate torsional moment

Typ2 = 223 fra v1 + Poa/fry

and the ultimate shear force at the critical section

_2Afr) ;P2
Vypa ool & BA

No experimental results have shown failure of T-beams in mode

three failure, although, theoretically this type of failure is
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possible. The failure theory is based on the initiation of a
crack at the top of the beam, where the shear stress due to
the shear force applied is very small and could be ignored.
The non-dimensional interaction of bending and torque can be

written as

T3 2 _ M3 _
(Tupg) Mup3 1.0

where the ultimate torsional moment,

Tups = 2 23 fr3 /1 + PC3/fré
and the ultimate bending moment,

Mups = 23 fr3 (1 + Pc3/frj)
More accurate analyses can be achieve& by considering the
distorted section for mode two and made three failure. Refer
to Sections 4.4 and 4.5.
The beams tested by the author failed in mode one and mode two
only., Cleavage failure was observed to occur in beams of
series two where the prestressing force was of low magnitude,
The experimental results for T-beams failing in mode one are
more related to the theory where ignoring the dowel action of
the steel and assuming that the torque is carried by the
concrete in the compression zone,
Experimental results of the author's beanms show that the
present theories are reasonably accuraté. The mean of the
experimental to theoretical values of all the beaﬁs tested is
1.059 with a coefficient of variation of 8.6%. For beams
failing in mode one the mean of the experimental to theoretical

values is 1.083 with a coefficient of variation of 9.4%, while

for beams failing in mode two the mean is 1.006 and the coefficient

of variation is 5.3%. The theories are also favourable to Reeves'
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(30) 42 experimental results on T-beams subjected to torsion
and bending. The mean of the experimental to theoretical
values of all his beams is 1.011 with a coefficient of
variation of 18.2%. The coefficient of variation is relatively
high due to the experimental scatter found in his test results.,
In general the theories underestimate the experimental results
at moderate to high magnitudes of bending moments, while they
overestimate the experimental results at low magnitudes of
bending moments.

Under normal values of shear force the effect of shear on the
theoretical and experimental results for mode one failure is
very small and could be ignored.

The crack angle at failure can be predicted with a reasonable
degree of accuracy by the theoretical expressions, bearing in
mind that these equations are derived for the undistorted

section, For mode one failure,

wow ML L geliyo Poy
tan 63 T + /(TI) + 1 + o

and for mode two failure, ignoring the bending parameter

tan 85 = V1 + Pca/frs

There are no available experimental results to substantiate

the theoretical crack angle for mode three failure

’ tan 63 = %% + /I%%Jz +1 4+ %%%

The sequence of loading does not affect the experimental test

results at failure.

Bending moments applied to the beams do not affect the value
of the initial torsional stiffness., Alternatively the initial

torsional stiffness is influenced by the amount of prestressing
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14.

15.

6.3
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force applied to the steel. The initial torsional and flexural
stiffnesses of the beams agree reasonably well with the
theoretical values.

The increase in the steel strain of the beams failing in mode
one is mainly due to the presence of the bending moment; the
increase caused by the torsional moment is very small.

None of the steel bars in the beams were observed to reach
yield at failure,

The theory presented for mode one failure is tedious to use as
a design tool. Hence more test results are required to
establish simplified design equations for the ultimate strength
in combined loading; since neither the British Standard Code of
Practice for the structural use of Concrete, CP110:1972, nor
the ACI Building Code Requirements for Reinforced Concrete,

ACI 318-71, give satisfactory design procedure.

Recommendations for Future Work

For a more comprehensive understanding of the effect of torsion,

bending and shear on the concrete structural members, the following

recommendations for future work are proposed.

1.

Further experimental work is required on plain concrete flanged
beams under the action of combined torsion, bending and shear,
More.experimental results on plain concrete specimens to relate
the compressive strength of concrete to the modulus of rupture
for different types of cement, different mixes and different
sizes of specimens,

Experiments to establish the effectiveness of the flanges in

resisting torsion and the width limitation for prestressed
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concrete flanged beams.

Further experimental work on prestressed concrete T-beams with
higher prestressing stresses to force mode three failure and
compare the results with the presented theory with a view to
improving the analysis if necessary.

Tests on prestressed T-beams of different sizes to study
whether the modes of failure presented in this research comply
to all sizes of beams or to see whether there is any other
type of failure not discussed.

To study in detail the dowel action of steel in reinforced and
prestressed beams, the amount of torque carried by the dowel
action and the influence of steel and shape of the members on
this quantity.

Experiments to establish the effect of high shear forces on

prestressed concrete beams subjected to torsion, bending and

shear.

Experimental and theoretical work on the effect of transverse

reinforcement on improving the capacity of prestressed beams
under combined torsion, bending and shear.

Research work on other flanged beams with the view to expanding
the presented theoretical analyses to cover other shapes of
prestressed beams, such as box sections, L-sections and I-
secf&ons, under combined torsion, bending and shear,

Study the effect of end restraint on the resistance of beams
under combined loadings in case of continuous beams,
Experimental and theoretical work to determine the bond slip

factor, for unbonded prestressed beams, and its relation to

applied bending moments.
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A.1 Failure Pattern of Beans
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The failure pattern of the thirty six beams tested are shown in

figures A.1l to A.6.
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A.2 Bond Slip Factor

The longitudinal strains in the concrete along the depth of
the beams subjected to pure bending load are plotted in Figure A7
to A9 for each increment of loading. The increase in strains in
the steel bars and in the concrete at the same level are t;bulated
for each beam and the bond slip factor 'S' for each increment is
calculated. Beams of series one failed in mode one when subjected
to a bending moment of 2/3 or more of the ultimate bending capaéity
of the beams. Beams of series two failed in mode one when subjected
to any magnitude of bending moment. From the tables, it can be seen
that the bond slip factor varies greatly. Within the failure loading
the value varies between 0.53 and 0.06 for the bottom bars., Hence
this value was taken as 0.2 in the theoretical analysis. The same
value was adopted for the top bars since these bars are less critical

in determining the ultimate capacity.
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A.3 Torsional Factor

The torsional factors for plain concrete beams failing in mode

one failure are given in Figures A.10 to A.13 for different sizes

of beams. The torsional factor is defined as,

Tu; = (Factor) b3 fr;

e ey
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A.4 Failure Criteria for Concrete

Referring to Figure A.14, two failure criteria are derived.
Subscripts 1 and 2 refer to first and second criterion respectively.
I. Cowan's (8) simplified failure criterion for the failure of

concrete in crushing,

r] = Y(fcmy/2)“+fv{ A.4.1
_ fc' fcmy
Sl s Bk x s

b = fc' /2 sin Bc A.4.3

cdmbining equations A.4,2 and A.4.3

_ 1 fc fcmy
el okl e mhile s A.4.4
r; = a sin Bc A.4.5

combining equationsA.4.1, A.4.4 and A.4.5 to eliminate a and r;

V(femy/2)2+£v3 = (1 - sin Bc) £¢ /2 + fc—ml%’—ﬁ—‘i A.4.6

Squaring equation A.4.6 and rearranging, therefore,

4 fvi,2 _ 2sinBc fecmp . l+sinBc fcm1 _
(1-sinBc)“ (f ) " 1l-sinBc " fc' 1 51nBc ) = 1.0 A.4.7

where Bc is the angle of internal friction of the concrete and

suggested by Cowan to be 37°, therefore,

25.23 (f"l + 4,02 (—ﬁ%,“ll) 3.02 (fE’,‘i) « 9.6 A.4.8

II. Zia's (28) criterion for the failure of concrete in cleavage.

Ty =Csin A A.4.9

' ry = VEva + (femp/2)2 | A.4.10

¢ =d + femy/2 A.4,11

and d =10/ sin A A.4.12

Combining equations A,4.9 through A.4.12, therefore

VEvp e+ (fcmp/2)¢ = 10 + fgmz sin A A,4,13
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Failure at pure torsional moment is of a bending type with the
torsional shear stress 1o equal to the modulus of rupture of the
section frj. Squaring equation A.4.13, substituting fr; for 1o and

rearranging, therefore,

(%%%52 N jinz . (§§T2)2 - sin A (£§T2)= 1.0 A4, 14
Now angle X need to be evaluated;
e = (b - £/2) tan B¢ A.4.15
substituting equation A.4,3 and rearranging
e = tan Bc (si; 5c " 1) £¢/2 A.4.16
now ~ tan A = /eZ - 102/10 : A.4.17

substituting fr; for to and rearranging, therefore,

tan A = f(;§IJZ -1 N A.4,18

substituting e from equation A.4.16 and equating Bc to 37°, therefore,

1 4
tan A = /(Q;z%%%_éng -1 A.4.19
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A.5 Effect of Age on the Strength, Modulus of Elasticity

and Poisson's Ratio of Concrete

The properties of concrete have been given considerable attention
since the turn of the century. Many investigators attempted the
effect of age on the elastic properties of concrete, but only
preliminary conclusions were drawn.

In 1929, .Davis and Troxell (47) reported an extensive programme
on the modulus of elasticity and Poisson's ratio of concrete. They
observed that the Poisson's ratio increased with age at a decreasing
rate; so that further increase after a year was very small, This
relationship, they concluded, was only slightly influenced by the
richness of the mix. The modulus of elasticity was found to have a
definite relation to the strength of concrete but this relationshiﬁ
varied for each mix proportion. Pauw (48) confirmed that there was
a relation between the strength and the Young's modulus of concrete
in the form of

E. = 33 w3/2 VEev (imperial units) A.5.1
where w is the density of concrete in pcf. The modulus of elasticity
of concrete is also influenced by the properties of aggregate and,
whether, the condition of the test specimens is wet or dry. The
Poisson's ratios of concrete for different mix proportions were
examined by Plowman (49)., He observed that the Poisson's ratio was
independeht of strength, age and humidity of curing. He also
concluded that the mix proportions had no effect on the Poisson's
ratio. This is contradictory to test results of many investigators.
Anson and Newman (50), analysing available test data, concluded that
there was a definite relation between Poisson's ratio of mortar and

concrete and their mix proportions. - The Poisson's ratio is most
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effect of age on the elastic properties of concrete, but only
preliminary conclusions were drawn,

In 1929, .Davis and Troxell (47) reported an extensive programme
on the modulus of elasticity and Poisson's ratio of concrete. They
observed that the Poisson's ratio increased with age at a decreasing
rate; so that further increase after a year was very small, This
relationship, they concluded, was only slightly influenced by the
richness of the mix. The modulus of elasticity was found to have a
definite relation to the strength of concrete but this relationshiﬁ
varied for each mix proportion. Pauw (48) confirmed that there was
a relation between the strength and the Young's modulus of concrete
in the form of

Ec = 33 w3/2 /fcv (imperial units) A.5.1
where w is the density of concrete in pcf. The modulus of elasticity
of concrete is also influenced by the properties of aggregate and,
whether, the condition of the test specimens is wet or dry. The
Poisson's ratios of concrete for different mix proportions were
examined by Plowman (49). He observed that the Poisson's ratio was
independent of strength, age and humidity of curing., He also
concluded that the mix proportions had no effect on the Poisson's
ratio. This is contradictory to test results of many investigators.
Anson and Newman (50), analysing available test data, concluded that
there was a definite relation between Poisson's ratio of mortar and

concrete and their mix proportions. The Poisson's ratio is most
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affected by the volume fraction of aggregate and age. From tests
carried out on hardened cement paste, Anson (51) observed that the
Poisson's ratio was independent of the water-cement ratio. This
was confirmed by Parrott (52), who also found that the Poisson's
ratio of hardened cement paste greatly reduced upon the pre-drying
moisture loss,

The effect of maturity on the strength of concrete was examined
by Plowman (53). He concluded that this relation is a logarithmic
relation

Strength = o + 8 (maturity) A.5.2
where o and B are constants and the maturity was presented as the
product of age in days and the curing humidity in °F. Chin Fung Kee
(54) pointed out that Plowman's equation was not satisfactory when
compared to ekperimental results of many investigators. Analysing
existing test results, he concluded that the strength of concrete
as related to age can be better represented by

D/g=mD+ C ' A.5.3
where g is the strength of concrete at age D, m is the reciprocal of

the maximum strength that the concrete will attain and C is a constant,

A.5.1 Experimentation

The test programme consisted of eighty two 150x300mm cylinders
cast in €ight mixes. Three specimens of each mix were tested at
28 days as control specimens to determine the strength of the mix.
Ordinary typical portland cement was used for all mixes. The coarse
aggregate, 10mm crushed, was obtained from the Perry Common Pit and
the fine aggregate was Packington granular sand with a fineness

modulus of 2.0. The mix of 1:1.5:3.0 by dry weight with a water-

cement ratio of 0.5 was used.
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Cylinder moulds were cleaned and oiled before casting, ‘Materials
for each mix were weighed and placed in the mixer to be mixed for two
minutes, The cylinders were then cast by the help of the poker
vibrator up to a level 10mm lower than the top of the cylinders. The
cylinders were then covered with wet Hessian and polythene sheets.
When the concrete had set a cement mortar cap was applied to the
cylinders to give a smooth finish. The concrete cylinders were
stripped the next day and placed in the curing tank under controlled
temperature and humidify. On the day of the test the specimen was
removed from curing and left for two hours for the concrete surface
to dry. The specimen was then cleaned and marked with two vertical
lines running on opposite sides and a circumferential line at the
centre section. Four strain gauges of 60mm length were fixed on the
surface with F88 dental cement of Tridox Products. Two gauges were
fixed in the vertical plane and two on the circumference of the
centre section. Electric wires were then soldered to the lead of
the strain gauges and the specimen was ready for test,

The Dennison compression machine was used in testing the
specimens. The specimens were loaded and unloaded many times with
a small load to stabilize the strain gauges. Testing commenced by
recording the initial readings on the B 105 type Peekel. Loading

was applied in increments upto failure and strain reading at each

increment was recorded.

A.5.2 Test Results and Discussion

The effect of curing age on the strength of concrete is shown
in Figure A.15. The strength-age relation recommended by Plowman

(53) and using the factor presented in his paper is plotted as a
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broken line. The equation presented by Chin Fung Kee (54), taking
the maximum strength of concrete attained by time as 45.73 N/mm?2
and equating the constant to a value of 0.1244, is also plotted.

It can be seen that Plowman's approach gives a good estimate of the
strength at low age while it overestimates the strength at higher
ages. Plowman's equation has no limit on the strength of concrete
attained by age, but keeps on increasing, which is known to be
invalid. Kee's equation underestimates the strength at low ageﬁ,
slightly, while it is favourable to test results at ages of greater
than 15 days which is more beneficial to designers. This equation
is also limited by the maximum strength the concrete will attain
with age and, therefore, is a better representation of the strength
age relationship.

Pauw's (48) equation for the modulus of elasticity - strength
of concrete relationship seems to be a good representation of test
results, although, it is a conservative estimate. Changing the
constant from 33 to 38 would improve the fit of the equation. Refer
to Figure A.16, The specific gravity of the concrete used was 2,352
and, therefore, improving the constant in the equation would lead to
the relation, in SI units

Ec = 5610 vic" A.5.4
This relation is similar to Liebenberg's 655) equation when the
cylinder Etrength is equated to 80% of the cube crushing strength.

Plotting the Poisson's ratio of concrete against the cylinder
strength, Figure A.17, it can be seen that there is no relation
which confirmé Plowman's (49) conclusion. ‘Poisson's ratio increases
rapidly with age at a decreasing rate up to an age of one month;
beyond that the increase is minimal and could be ignored. Refer to

Figure A.18. This contradicts Davis and Troxell's (47) observation
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in which they reported that Poisson's ratio increase considerably
up to the age of one year, Since the Poisson's ratio of concrete
is dependent on the elastic properties of its constituents.(SO) and
these-.elastic properties increase rapidly up to the age of 28 days,
hence, it is reasonable to conclude that the Poisson's ratio of
concrete does not increase greatly after that age. The relation
betﬁeen Poisson's ratio of concrete and age can be represented by,

=c D, A.5.5

W= tnax (1-e
where Uhax is the maximum Poisson's ratio attained by concrete in
age, ¢ is a constant and D is the age of testing in days. This
eqdation is plotted in Figure A.18 with the constant ¢ = 0,15 and -
umax.= 0.154, Since freshlconcrete is fery lean, hence its Poisson's
ratio is high and this ratio decreases to a minimum as the concrete
sets hard (50), which explains the high Poisson's ratio of the few
initial results. Ignoring these few results, the equation presented
overestimates the experimental results by 3.1% with a coefficient of
variation of 11.16%. Hence the empirical equation is a good
representation of the experimental results, bearing in mind the high
discrepancy in the test results, as can be seen from the figure.
The.equation is also compared to Plowman's (49) results for different
“mixes in Figure A.19, Although there is a very high scatter in the
experimental results, the equation with the constant set to 0.3,
seems to.follow the trend of the test results. This is not very
prominent for mix I:Zb. Equation A.5.5 can also be arranged in terms

of the Poisson's ratio of concrete at 28 days,

- D -
wim s (L= e ) d (1s a9t A.5.52a
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A.5.3 Poisson's Ratio of Concrete

The British Standard Code of Practice for the Structural use of
Concrete, CP110:1972, recommends that the Poisson's ratio of concrete
may be taken as 0.2, irrespective of mix proportions or properties
of material, Anson and Newman (50) reporféd that experimental
results can be expressed by the empirical equation

w=p (1= V" A.5.6
where up is the Poisson's ratio of the paste, V, is the volume -
fraction of total aggregate and n is a constant. The value of the
constant is influenced by the type of cement used and the elastic
properties of aggregate. They also presented an analytical model
to predict the Poisson's ratio of concrete when the mix proportions
and properties of paste and aggregate are known. Comparing this
model to Anson's results (51), the model underestimates the Poisson's
ratio of mortar by 15% with a coefficient of variation of 7.5% and
overestimates the Poisson's ratio of concréte by 5% with a coefficient
of variation of 6.7%. Considering the test results of the mortar
and the concrete specimens together, the model underestimates the
Poisson's ratio by 10% with a coefficient of variation of 10,7%.

In an attempt to get better theoretical results two models are
presented and analysed in this sub-section. The notations used in
the analyses are,

Subscripfﬁ a .- refers to aggregate
h - refers to the horizontal or lateral axis
% - refers to layers part of the model
p - refers to paste
v - refers to the vertical or longitudinal axis

L length dimension
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P uniaxial load applied to model
R o . restraining force between layers
Model I

Model I consists of a layer region of paste and aggregate in
vertical layers and a horizontal paste region., Refer to Figure A,20,
The analysis of the model is based on the following assﬁmptions,

1. The layer and the paste regions undergo the same lateral
deformation due to the internal restraint,

2. In the layer region the paste and aggregate layers undergo the
same vertical deformation,

Method A

The lateral strain in the model is

—_+P“ _Ra-Rp _ 1  Paua , Ry, Ppup R
*h = Ep(lp+Ly) ~ Ip Ep Lp-t-LE(Ea +Ea+-E-Pn--t€—ég-) A.5.7

The vertical strain in the layer region is

LgEs © LgEa  Lpkp e A.5.8
where | P =Py + Pp A.5.9

The three equations presented involve four unknowns and, therefore,

in order to solve the model an additional assumption is required.

There are four reasonably possible assumptions that can be made,

1. The force resisted by the paste and by the aggregate in the
layer region are equal, Py = Pp.

2. The }estfaining force on the paste and on the aggregate in the
layer region are equal, Ry = Rp = R.

3. The restraining force on the paste layer is nill, Rp = 0,

4, The restraining force on the aggregate layer is nill, Ry = 0,

Examining these assumptions it was found that by assuming no

restraining force exists on the aggregate layer gave the best
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results,” Assuming Ra = 0, equations A.5.7 through A.5.9 can be
solved for P3, Pp and Rp. Back substituting into equation A.5.7
will give the lateral strain in the model in terms of the properties

of paste and aggregate. The vertical strain can be calculated from,

1 pa P Lp RDI.ID
s A. s . 10

and the Poisson's ratio of the model can be represented as,

y=Eh A.5.11
Ey *

Method B

In this method of analysis it is assumed that the layer region
acts as a single material within the model, Analysing the model the
following equations can be deduced; the lateral strain in the paste

region is equal to the lateral strain in the layer region

eh = priD R (Bt Bl %ﬁa) AL5.12

T By T Ty Bp R*Lp
Rearranging and solving for the restraining force

p (Lg+Lp) Ea Ep Ly Ly

- r 11

Substituting into either sides of equation "A.5.12, the lateral strain

= P ¥p _ Mp _ MR (Ly+lp) Eg Ly

The longitudinal strain in the model

= ( P RU‘D P R__ug
VL Py T L Y ety T )
A.5.14

Rearranging and substituting R from equation A.5.12a, the longitudinal
strain _
_ P Ep Eg+Lg Ep _ (M RN 2 (Lg+Lp) Ea Ep Lg
v - (L£+Lp)2( Ep Ep (Eg Eg )2 (Lh Lp(EL:EijEL(Lgi%fE!TQ)
A.,5,15
and the Poisson's ratio can be solved by dividing the lateral strain

by the longitudinal strain. To be able to solve for the Poisson's
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ratio, the elastic modulus and the Poisson's ratio of the layer
region are required to be calculated. Applying a longitudinal
strain of ¢ to the layer region would cause a lateral strain of
e (up Lp*Ha Ly)/(Lg+Lp) and, therefore, the Poisson's ratio of the
layer region is,

up = HP—%?{%;-LL- | A.5.16

Applying a load to the layer region, then the longitudinal strain

caused by the load is,

- Pp__"Pa
where P =Py +Pp A.5.18
Solving these equations would give the longitudinal strain
P
A.5.19

Vi T E; LpoEp Lp
and the modulus of elasticify of the layer region can be expressed as

P
By = s s e
A ey A.5.20

Substituting equation A.5.19 into A,5.20, therefore

- Ea La+E A.5.21

Ee Lo+lp

Model II

This model consists of two parts; vertical layers of paste and
aggregate and horizontal layers of paste and aggregate. Refer to
Figure A.20. The assumptions made in analysing this model are,

1. Both parts of the model undergo the same vertical strain

2. The paste and aggregate in the horizontal layer region

undergo the same lateral strain due to the internal restraint,

The longitudinal strain of the modelis ey and, therefore, the lateral
strain of the model is |

1
eh = 5 €y (UgA + HgB) A.5.22

pividing the lateral strain by the longitudinal strain would give the
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Poisson's ratio of the model,
W= 3 (uga + 12B) - A.5.23
Part A
Longitudinal strain of e, will cause a lateral strain of,
€hA = evA (¥p Lp + ua Lp)/(Lg + Lp) A.5.24
Therefore, the Poisson's ratio of tlevertical layer region is,
HgA = (up Lp + wa Lg)/(Ly + Lp) A.5.25
Part B
The lateral strain in the paste layers is equal to the lateral

strain in the aggregate layers,

PR u R . PR u R
EhB = 1 B ¥Hp = LP Ep - 1 B 2 + Lﬂ, Ea A.5.26
5(Lg+Lp)Ep 5(Lg+Lp)Ea

Rearranging and resolving for the restraining force,

2 Pg Lp Ly (up Ea = ua Ep)
R = P 2 a_p A.5.27
(Ce+Lp) (Ip Ep + Ly Ea)

substituting into equation A.5.26

_2Pg (up Ly + ua Lp)  A5.28
*hB = {Ty+Lp) (Lp Ep + Ly Ea) '

The vertical strain is

_ 1 2 Pp R p. 2 Pp R_ug
VB * iy (Gl " B P Bl Ig 2

A.5,29
Rearranging and substituting for R from equation A,5,27, the vertical

strain would be

E ~ oE
2pp(Lp®+Lp Lz(% - P *Le’-Ly Lp(up? %ﬁ- - 2uaup+ua’gD))
EyB © (LR."'LP)Z (L_Q, E-a + LP EP)

A.5.30
and the Poisson's ratio of the horizontal layers is

MgB = €hB / EyB A.5.31
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A.5.3.1 Discussion of the Models

The models presented in the previous subsection are analysed
and plotted in FiguresA.21, A.22 and A.23, for different Poisson's
ratio of aggregate. The properties of paste and aggregate are taken
as those presented by Anson ana Newman (50). Anson's (51) experimental
results are compared to the theoretical results as analysed from the
models in Table A.l.

Model I - Method A

1. The theory underestimates the experimental results for the
mortar specimens by 14% with a coefficient of variation of
4,4%,

2. The theory overestimates the experimental results of the
concrete specimens by 1% with a coefficient of variation of
5.9%.

3. For the total specimens, mortar and concrete, the theory
underestimates the test results by lﬁ% Qith a coefficient
of variation of 7.5%.

Model I - Method B

1. The theory overestimates the experimental results of the
mortar specimens by 3% with a coefficient of variation of
5.4%.

2. The theory overestimates the test results of the concrete
s%ecimens by 11% with a coefficient of variation of 5.7%

3, Considering all the specimens, together, the theory
overestimates the test results by 1% with a coefficient of
variation of 8.2%.

Model II
1. The theory underestimates the test results of the mortar

specimens by 7% with a coefficient of variation of 8.2%.
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2. The theory overestimates the concrete test results by 12%
with a coefficient of variation of 6,3%.

3. The theory underestimates the test results of all the
specimens by 2% with a coefficient of variation of 11%.

It can be concluded that Model I gave a better estimation of
test results than Newman's model., It can be seen that test results
of mortar specimens are better represented by Model I Method B,
while Model I Method A is more favourable to concrete test results.

Iterating the model twice by taking fine aggregate and paste
as the constituency of the first iteration and taking coarse aggregate
and the mortar matrix as the second iteration would give slightly
different results as those analysed by taking the total volume of
aggregate. The difference is less than 5% and, therefore, would not

influence the results greatly; hence could be ignored.

A.5.4 Summary

The strength of concrete increases rapidly with age at a
decreasing rate, The relation can be satisfactorily represented by

equation A.5.3.

The modulus of elasticity of concrete is a function of its
strength and can be calculated from Pauw's (48) equation, It is
found that this equation gave better relation to experimental
results Jhen the constant was modified to 38, For the concrete
used in this investigation the relation in SI units would be

Ec = 5610 /£
There is no relation between the Poisson's ratio of concrete

and its strength,

Poisson's ratio increases rapidly with age at a decreasing rate
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up to an age of one month; any increase after that is very small,
The relation between Poisson's ratio of concrete and age can be
expressed in an empirical form

CD)

M = Hpax (1-€7
The Poisson's ratio of concrete can be calculated satisfactorily
from the mix proportions and the properties of the materials involved

in the mix by using one of the models presented.
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