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SUMMARY

As an improvement to the non-uniform induction-heating
method using wrap-around coil and pulsating field, Davies
and Bow:len5 suggested use of travelling magnetic fields for
inductively heating solid-iron plates from both sides, the
primary excitations being provided by 3-phase distributed
windings. This thesis presents a stud? of electromagnetic

fields in such a travelling-wave induction heater.

Electromagnetic field solutions for corresponding
poles of similar and of dpposite instantaneous polarity on
the two primaries form two parallel developments throughout
this thesis. A plate of finite-thickness, and subsequently
of finite-width, is considered subjected to travelling
fields and expressions for electromagnetic field guantities
are obtained for magnetically linear and non-linear plates;
these expressions are functions of plate-thickness, but

agree with published works3o'4o

for large plate-thicknesses.
In electromagnetically thick plates, fhe power loss is the
same for either pole-arrangements, whereas in thin plates,
power loss for poles of opposite polarity is shown to be
much greater than that for poles of similar polarity4

Despite finite plate-thickness, the magnetic field in the
plate is predominantly one-dimensional for both pole-
arrangements. In the non-linear theory, a new function is
introduced as a solution to the diffusion equation to

account for the additional boundary condition due to finite

plate-thickness. Electromagnetic field quantities in the



plate are cexpressced in terms of primary excitation by

equating field solutions at the air-iron interface.

The effects of finite plate-width are accounted for
by introducing a finite-width factor; the two-dimensional
solution developed assunmes weak eddy-current recaction,
includes effects of magnetic non—lineafity and shows that
finite-width effect is more significant for poles of
opposite polarity than for poles of similar polarity.
Beyond the active width, plate-currents are shown to be
predominantly cross—thickness o. cross—-pole in nature

depending on the pole-arrangement and plate-—-thickness.

The non-linear theory and the finite-width effect
were verified by measuring power loss, flux/pole and
surface curent-densities on ENIA steel plates subjected
to travelling magnetic fields; agrecment between

theoretical and experimental results was good.

Indexing terms: Heater, Induction, Travelling-wave,

Electromagnetic field distribution.
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LIST OF SYMROLS

Throughout this thesis rationalised MKSA units are used.

A = Magnetic vector potential (Chapter 3), T.m.
a, b = Constants used in the parabolic representation

of the normal B-H curve (B:aHb), numeric.

A = 1.25a (Chapter 5), numeric
B = Magnetic flux density, T.
Cp = Function showing influence of primary permeability,

numeric.

Cy = Constant in the current—density expressions for
the plate (Chapter 7), A/m?.

Coy = Constant in the current-density éxprcssions for

the end-strips (Chapter 7), A/m? .

cq = Y2 cos{ (w/4) = (eh/Z)}, numeric

c, = /2 sin{(n/4) = (8, /2)}, numeric

Bs = (urq - k)/(prq + k), numeric

d = Half-thickness of the platé, m.

dc = Thickness near the plate surface over which the
current density is assumed uniform (Chapter 7), m.

de = w Ldth of conducting end~-strips (Chapter 7), m,

dm = Half~thickness of the plate for optimunm loss, m.

E = Flectric field strength, V/m.

F =  Force densiﬁy in the plate, N/m3.

Fc = Primary m.m.f., At/pole.

F = Eddy-current reaction m.m.f., At/pole.



£ = Constant in equation (5.17), m—l.
g = Alr~gap length, m.
H = Magnetic field strength, A/m.
h = Constant in egvation (5.17), m‘l.
J =  Current density, A/m?.
J = m/2 operator.
Kf = Finite-width factor, numeric.
KZ = Line density of primary current sheet; A/m‘(*
K = (g2 + 3202)7%, mt
kb = Function of b, numeric
. 5 -1
ky = (g? + quhz)z, m
ky = (qpkztanhqg)/{Zduow(k-l)}, numeric
k, = [agel(2/@) + o] tanhag]/v u.
L = Active width of the plate, m.
& = Given by equations (3.42) or (3.78), numeric
m = urq/a, numeric
P = Total eddy-current loss in the plate and end=-
strips, W.
PC = Eddy-current loss in the solid-iron plate, W.
Pe = Eddy-current loss in conducting end-strips, W.
PO = Eddy—-current loss in the active width of a
plate fitted with zero~resistivity end-strips,W.
* While it is realiscd that the symbol for the density

of current sheet should be A (B.S. 1991, Pt. 6, 1975),
the symbol K is used in this thesis to avoid confusion
with the magnetic vector potential which has A as its

symbol.
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Eddy-current loss in the plate per unit of
surface area, W/m?

Number of pailrs of pole, numeric.

Ratio of wave impedances at the surface of the
plate (Chapter 6, Non-linear theory), numeric
Ratio of wave impedances at the surface of the
plate (Chapter 4, linear theory), numeric.
n/T, mml
Function of b, numeric

Constants inAequation (5.17), humeric

Ratio of the y-component of the magnetic field
strength to the x~component of the magnetic

field strength at the surface of the plate,

numeric.

- Time, S
. R.M.S. Voltage, V.

- Cartesian co-ordinates, X is in the directicn

of travel of the magnetic field and is along
the length of the plate, y 1is measured into
the depth of the plate, z is measured across
the width of the plate, m.

Wwave impedance, .

L -
(uourw/Zp)Z, m
axkb’m X
a.exp(—joh/2), m

= Given by equation (5.25) or (5.53), m "
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(vii)

2/(1l-b), numeric

Given by eguation (5.33) oxr (5.58), numeric
Function of Q (Chapter 6), numeric

Function of QQ and plate--thickness (Chapter 4),
numeric

l1/a, depth of penetration, m.

Depth of penetration in end-strips, m

A limiting depth of penetration, equation
(5.61), m.

(cosh2ad + cos2¢d)/(cosh2ad - cos2cd), numeric
pde/pedc, numeric

Phase angle with depth, rad.

Hysterisis angle, rad.

(l+2a 4d) + (l+4fl2 dz)%, numeric

Equivalent constant ?ermeability, H/m.
Permeability of free space, 47 x 1077 H/m
Relative permeability of the material of the
plate, numeric.

Relative permeability of the priwmary member,
nﬁmeric

Resistivity of the material of the plate, &.m.

3

Resistivity of the material of the end-strips, &
Pole—pitch of excitation current sheet,; m.
Magnetic flux, Wb.

Magnetic flux/pole, Wb.

Tmpedance angle, rad.

1
. . 9] . . ay 2 P N T
(sin2e¢d — sin2ed)/(cosh”2qd - cos?2qd) 7, numeric
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1

Uy = (sinh2ad + sin2c¢d)/(cosh?2ed - cos?2ad) ?,numeric

w = Angular freguency of current sheet variation,
rad/s.

- SUBSCRIPTS

av = Average value

d = On the surface of the plate, i.e. at y=d.

e = In the end-strips.

h = Effect of hysteresis.

i = Any of the three regions, i=1 represents the
primary member, i=2 represents the air-gap,
i=3 represents the solid-iron plate.

) = Longitudinal flux arrangement.,

m = At maximum loss.

max = Maximum value

o} = In a thin plate or iﬁ the presence of zero-
resistivity end-strips.

t = Transverse flux arrangement,.

X = Along the direction of travel of the magnetic
fields, i.e. along the length of the plate.

y = Into the depth of the plate.

z = Across the width of the plate.

@ = In an infinitely thick plate.

SUPERSCRIPTS

. = Complex quantity.

* = Complex conjugate or footnote,

~ = Peak value of an alternating quantity,

v = Sinusoidal quantity.



ADRBRREVIATIONS

exp

|Gl

LTFA

Exponential of

Absolute value of G.
Multiplication.

Longitudinal flux arrangenent.
Real part of.

Transverse flux arrangement.

Approximately equal to.
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CHAPTER 1

INTRODUCTION  TO THIS THESIS

1.1 INTRODUCTION

Electro-heat téchniques.are by far the most efficient
of various heating methods and induction heating is one of
the most widely used. 1In the first part of this Chapter
various heating methods are briefly discussed. The problems
associated with inductively heating a metallic plate or slab
are discussed and a new travelling-wave induction heating
system i5 introduced as a probable alternative to existing
induction heaters. 1In the rest of this Chapter, various
aspects of the travelling-wave induction heater are discussed
and those aspects which are the céncern of this thesis are
defined.

After a brief reference to the continued interest in
the effects of eddy-currents, the various approaches to the
solution of electromagnetic fields in solid iron are outlined
and the approach used in this thesis is defined. The work of
this thesis is then briefly introduced.

In a travelling-wave induction heater, a plate :s
subjected to tfavelling magnetic fields on both sides. The
arrangement of poles on the two sides of the plate (Fig. 1.1)
may be of similar or opposite instantaneous polarity and
the significance of these are discussed in section 1.4.2.

For each of these pole arrangements, two-dimensional linear

theories are proposed for magnetically linecar plates. In



order to account for the effects of magnetic non-linearity

in a solid-iron plate, non-linear one-dimensional theories

have been developed. The effects of finite plate width

and the nature of end-current distribution are discussed in
Chapter 7. The work of this Chapter concludes with a brief

reference to the experimental investigation undertaken.

1.2 BACKGROUND OF THIS THESIS

1.2.1 ngeral

Various existing heating methods, particularly
electrical induction heating, and their limitations are
discussed in this section and, from this background, the
travelling-wave induction heating method is introduced.

1.2.2 Methods of Heating Flat Metal Plates

Various methods of heating a flat metal plate have
been used in industry. Some of these methods use coal, oil
or gas as the source of heat energy. Because the heating
is indirect, these methods have a low rate of heat transfer
and their efficiency is low. Since heat has to diifuse
into the metal, heating 1s non-uniform and slow.

The use of electricity for heating purposes is,
perhaps, as old as the discovery of it, since the passage
of electric current results in heat. Because heat can be
generated directly within the workpiece, system efficiencies

are greater and as a result electro—-heat techniques are

widely adopted.



1.2.3 Electro-heat Technigues

Electrical heating is the method of converting electrical
energy into heat energy by restricting the free flow of
electric current. Different heating methodsl’2 have been
developed and since electrical and magnetic phenomena are
complementary,'some of these methods are electro-magnetic.

There are four main methods of electrical heating:

(i) Resistance heating

(ii) Induction heating

(iii) Dielectric heating, and

(iv) Electric arc heating
Other electrical heating methods (e.g. microwave heating,
electron beam heating, glow discharge heating etc.) have
"rather limited areas of application and are not discussed
here.

Resistance heating (direct and indiréct) is an efficient
method; but it is expensive and the heating pattern cannot
be varied. Moreover for the direct method, there is the
problem of providing low contact-resistance terminals connact-
ing the supply to the workpiece and the indirect method heats
up surrounding structures in addition to the workpiece.
Dielectric heating needs high frequencies and high electrode
voltages and is used, generally, for non-metals and poor
conductors. Electric arc heating is not a very efficient

heating method, since it relies on radiation, and has limited

use (e.g. steelmaking).



Electrical resistance heating, dielectric heating,

electric arc heating and the other forms of electrical
heating all use one or more of the three principles of heat-
transfer, namely, conduction, convection and radiation.

Electrical induction heating, on the other hand, does
not utilise any of these heat-transfer methods, but produces
heat directly in the workpiece due primarily to the eddy-
currents induced by an alternating magnetic field.

1.2.4 Induction Heating Method

Induction heating is an efficient method and is used
for a variety of applications, e.g. heating metal billets,
metal melting, soldering, brazing, welding etc. It has
many advantages over other electrical heating methods,

" namely, high heating rates, heating confined to workpiece,
precise control of heating sequence, ease of automation,
minimum workpiece distortion, in-line operation etc.

However, in this method heat generated in the workpiece
is not uniform over the cross-section due to the concentra-
tion of alternating current at the surface of the conductor
(skin effect). Most of the heat, approximately 87%3, is

generated within a depth of penetration, § , defined by

Resistivity :
6 = 7. (Permeability x Frequency) (1.1)

Thus, magnetic materials, rather than non-magnetic, are

more easily heated. Frequency of supply is an important



variable, since its choice allows the depth of the heated

layer to be controlled. Frequencies varying from 50Hz to
IMHz are used, although frequencies higher than power
frequencies involve extra cost.

Although induction heating of steel slabs is a long
established industrial process, it has its limitations
which are dependent on the method of application. 1In
induction heating method, generally a wrap—-around coil is

used (Figure) and heating is

Wrap-around achieved by a pulsating field

Coil

(rather than travelling) due

Flusx to the use of single phase

P -
ath supply. The necessity to

permanently tailor the induc-
tion coil to the workpiece
drastically limits its scope
of application. Since the flux path is totally axial in the
coil and workpiece and since the return path of the flux is
usually a high reluctance one (being in air), induction
heating by this method is not very effective.

Thus there was considerable need for improvement in
induction heating methods.
Higher heating efficiencies

in slabs may be obtained by

winding the coil around the W o
3 Rocoananlar
slabs largest dimensions Coni

(Figure), although the



return flux path is still in the air. Many of the
deficiencies of induction heating method may, however, be
overcome in a split arrangement as shown in Fig. l.l..
Jackson4 has used this arrangement for directing flux
through the workpiece and hence the name transverse flux
heating. But his coricept applies to essentially thin plates
and since single phase supply is used, the heating is non-
uniform across the plate width.

The essential features of Fig. 1.1 are described in
the following section.

1.2.5 Introduction of Travelling Wave Induction Heating

The travelling-wave induétion heater, like other
induction heating systems, produces heat by periodically
varying electromagnetic fields within the workpiece. |

The essential features of a travelling-wave induction
heater are shown in the model of Fig. 1.1. It consists of
two laminated-iron primary members each of which houses a
three phase winding for the production of travelling magnetic

field. The workpiece (or the plate) is placed in the air-

gap between the two members. When the windings are energised
i_\» Primary S
S e — S
g Alirgap ™~
~
;; z % Current
Plate ’ sheet
4 e
dJ . Adxrgap. ,jf/
T— ?7 Primary 7
Fig. 1.1l: The essential features of a travelling~wave induction

heater and the model used in analysis



from a balanced three phase supply, the workpiece is subjected

to travelling magnetic fields on both sides. It is possible
to have opposite or like polarities on the two sides of the
workpiece.

The travelling-wave induction heating differs from the
conventional (i.e. using wrap-around coil) induction
heating method in four major ways:

(1) The travelling magnetic field is produced by
supplying the p;imary from a balanced three-
phase source, as against single-phase supply
for conventional method resulting in pulsating
field. As a conseqguence a more uniform heating
is produced by travelling-wave induction heaters.
Also, for large heating fequirements (of the
order of MW), the three phasing balances the load
demand on the industrial suprly systemn.

(ii) The split arrangement of travelling-wave heaters
offers much greater flexibility since no induction
coil of fixed dimensions is involved; the same
travelling-wave induction heater may be used for
heating plates and slabs of various thicknesses.

(1ii) In travelling-wave heating, the return flux path

is a low reluctance one, being mostly in the
primary iron, and thus higher effective flux
densities may be obtained.

(iv) The ability of travelling-wave heaters to have



opposite or like poles offers the flexibility

of obtaining different eddy-current flow patterns
in the workpiece, which can result in a reduc-
tion of end-region loss (due to concentration

of end currents).

Since a travelling-wave induction heater is an electro-
magnetic heating device, electromagnetic and thermal
distributions are interactive. 1In addition, the essential
discontinuities would introduce entry and exit problems at
the ends of the effective length. These are discussed in
the following section with a view to introducing the area

of interest in this work.

1.3 ELECTROMAGNETIC FIELD DISTRIBUTION OF TRAVELLING-

WAVE INDUCTION HEATERS

1.3.1 Electromagnetic Field Distribution

The travelling-wave induction heating,.it is believed,
is a new concept proposed by Davies and Bowden5 and although
it is introduced here as an electro-heat device its electro-
magnetic field distribution needs to be carefully analysed

pefore the heating aspect can be considered. Whilst 1t is

recognised that a complete analysis would involve simultaneous

solution of electromagnetic field equation and the heat
transfer equation, it is difficult to achieve in practice,

although some efforts have been made in this direction6. The

difficulty arises from the fact that the heat transfer



equation contains many ill-defined quantities (e.g. specific

heat, thermal conductivity etc.) which are themselves
functions of temperature; The presence of all three modes
of heat transfer (viz, conduction, convection and radia-
tion) further complicétes the situation. However, for

the travelling-wave heaters a great deal needs to be done
(theoretically as well as experimentally) to understand

the electromagnetic nature of the device. For example,

it was felt that it would be instructive to study the
distribution of electromagnetic field quantities in both
magnetically linear and non-linear plates and to study

the effect of finite plate width and thickness on them. It
is realised that even the electromagnetic field distribution
itself would have such tem-perature sensitive quantities as
resistivity and permeability; their effects on theoretical
predictions have been neglected, although approximate
allowances have been made in experimental investigations
for the variation of resistivity.

In addition to the temperature effect, the problems of
entry and exit edges at the ends of the active length are
inherent in the device due to essential discontinuities.

At these positions the windings are faced with a larger air-
gap than in the central part of the.machine* and the plate

itself passes through a transition because the travelling-

* The word 'machine' has sometimes been used in this thesis
in place of 'travelling-wave inducticn heating device'.



wave either starts or finishes its travel along the plate

length. The entry and exit effects manifest themselves

in lower current and flux densities at the ends of the
active length. However, some experimental investigations
made at the start of this project showed that these effects
were very small and did not occur exce?t at the extreme

ends of the active lenéth. Alsc due to multipole excitation
the effects of entry and exit edges are usually small.

Thus in this thesis the entry and exit edge effects are

also neglected,

The contents of this theéis may, therefore, be stated
as a study of electromagnetic field'distribution within
an idealised model of a travelling-wave induction heating
device as shown in Fig. 1.1, in which the current sheet
considered for the primary excitation is not influenced
by the finite-width or the entry and exit effects.

In the following sections reference is made to the
interest in the problems associated with electromagnetic
fields in ferromagnetic bodies and to the various
approaches adopted for the solution of the problems.

1.3.2 Interest in Eddy-current Problems

Farly interest in eddy-current and associated
eclectromagnetic phenomena dates back to the nineteenth
century7. In early twentieth century, *the works of

: 9 ‘
Rudenberg8 and Rosenberg” arxe outstanding.



The considerable interest in eddy-currents since that

time are due partly to historical necessities, but mostly
to the following reasons:
(1) the occurrence of eddy current in a very wide
range of electrical engineering apparatus.
(ii) the recognition of its occurrence as
desirable 10,11 or detrimentalg.

(iii) the ever pressing need of the designer to know
more accurately the effects of eddy currents,
due, mostly, to the non-linear magnetisation
in solid iron, and

(iv the advances made in experimental techniquesl2

and the high speed digital computers.

Depending on the source of its occurrence and the body
in which it occurs, the eddy-current effects may be vefy
complicated and difficult to solve. Various approaches are
thus found in literature for their solution. Some of these
approaches and the approach adopted in this thesis are
discussed in the following sections.

1.3.3 Various Approaches to the Solution of Eddy-current

Fields
The flow of eddy-current is associated not only with
the generation of heat but also with the production of
eddy-current reaction field and forces of electromagnétic
origin. None of these is easy to measure and a sound

theoretical basis is necessary to appreciate the effects of



each of them. Various approaches for the solution of eddy-

current problems are available in published works.
Accordingly, taking data from a previous similar set-up is

a long established design préctice, but is limited when a
considerable change in size and design is involved. Making
a prototype or experimental model is also widely practiced,
but the questions of cost and its applicability become

very important in such cases. The approach to the problem
is accomplished rather easily by. an analogue or a mathe-
matical model, although numerical methods ave presently
being widely used. Numerical methods mey bequite accurate, but
are costly in terms of labour and computer time and storage.
Also they lack generality. Although the analogue model
simulates the performance through a network of electricail
resistors, capacitors, diodes etc., it is the mathematical
model that results, despite necessary approximations, in
algebraic solutions in which the machine parameters appear
as the variables. Thus the effect of varying one or more
of these parameters is easily visualised and this, in turn,
helps the design of the system.

1.3.4 Approach Adopted in this Thesis

In this thesis, an analytic approach based on an
idealised model is used. Such idealisations are necessary
for the problem to be amenable to analytic solutions and
for taking into account the finite geometry of the arrange-

ment. Thus, several assumptions are made at the beginning



of the theory. Either these assumptions or the mathematical
model or both are later modified to incorporate the particular

case being considered.

1.4 THE WORK OF THIS THESIS

1.4.1 General
Clearly, the work of this thesis recognises the presence
of eddy current as desirable and studies the eléctro~
magnetic fields in a solid-iron plate subjected to travelling
magnetic fields from both sides. The arrangement is shown
in the model of Fig. 1.1. It consists of a plate of finite
thickness, 2d, and is separated from the primary members by
air-gaps each of length g. The primary excitations are
represented by current sheets on the surfaces.
fhe work of this thesis has two parallel developments,
one for each of the two different pole arrangements
(section 1.4.2). For each of these, the work has three
distinct aspects:
(i) a linear two-dimensional theory for the
electromagnetic field components in the plate
and in the air-gap.
(1) a non-linear one dimensional theory for field
components in the plate; and
(1iii) finite-width effect on loss calculation including
magnetic non-linearity and end-current distribu-
tion.

Aspects (ii) and (iii) of this work are experimentally
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verified on a test rig.

1.4.2 The Pole Arrangements

The frequency and the direction of travelling fields
on the two primary members are the same, so that poles of
the two travelling fields are stationary with respect to
each other. Thus, it is possible to have two different
pole arrangements on the two sides of the plate.

1.4.2.1 The Longitudinal Flux Arrangement

In this arrangement, I'ig. 1.2, the corresponding poles
on the two sides of the plate are of similar instantaneous
polarity, i.e. a north‘pole on the top primary member is
always accompanied by another north pole on the bottom

primary member. This arrangement of poles results in the
Dircction of
Tfield travel-

2 N S N

Trimarv 1*

*_

b
n

N

\
) Y e’ S —-: \-——4~
EPJiITC . A}

Primary Pt i~{ )

NT

S M S
Direction of -
field travel

Ficure 1.2: Longitudinal p'lux arrancerent

flux being predominantly directed along the length of the
plate and is termed the Loncitudinal Flux Arrangement (or

LFA for brevity) throughout this thesis.

1.4.2.2 The Transverse Flux Arrangement

In this arrangement, Fig. 1.3, the corresponding poles

on the two sides of the plate are of opposite instantaneous



polarlty, +:©@. a north pole on the top primary member is
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Figure 1.3: Transverse Flux Arrangement

always accompanied by a south pole on the bottom primary
member. This arrangement of poles may be thought to give
rise to the flux being predominantly directed across the
plate thickness. (As will be shown in Chapter 3, this is
far from true; but the idea is retained here only to
differentiate from the LFA). This is termed the Transverse
Flux Arrangement (or TFA for brevity) throughout this

thesis.

1.4.3 Linear Two Dimensional Theory

Linear twosdimensional theories have been developed in
Chapter 3 for the idealised double-sided arrangement shown

in Fig. 1.1. Although such two-dimensional linear thecries

are well knownl3, few studies published so far consider

both a finite plate-thickness and a double-sided arrangement.

Linear theories have been developed for both longi-

tudinal and transverse flux arrangements. The two theories

differ in respect of (i) the representations of the current

sheets on the surfaces of the two primary members and (ii)

the boundary condition at the centre plane of the plate.



Equations have been obtained for the electromagnetic

field quantities inside the plate and in the air-gap region
and expressions are obtained for power loss and forces
developed. Certain criteria have been obtained for consider-
ing the plate electrically thick and thin. Penetration
curves have been obtained for electromagnetic field
quantities inside the plate and variation of power loss
through the transition from electrically thin to thick
plates has been studied in some detail. The one-
dimensional nature of magnetic field strength has been
investigated in the presence of double-sided arrangement
and finite plate thickness.

In Chapter 4, field equations have been obtained on
the plate surface and are used to.study the effects of
eddy-current reaétion field. Criteria for optimum loss in
the plate are defined and expressions are<obtained for
optimum plate thickness. A comparative study has also been
made of the electromagnetic field quantities for the two

different arrangements of poles.

l1.4.4 Non-linear One Dimensional Theory

In order to account for the magnetic non-linearity in

the plate one~dimensional non-linear theories have been
4

b
developed in Chapter 5. B = aH” has been used for the

representation of the magnetisation curve, but a new
double function has been introduced as a solution to the
diffusion equation. Equations have been obtained for

electromagnetic field quantities, power loss and forces.



These are expressed in Chapter 6 in terms of primary
excitation by equating the field solutions at the air-
iron interface.

The solutions obtained clearly show the combined
effects of finite thickness and magnetic non-linearity.
Conditions for maximum loss in the plate are obtained and
optimum plate-thickness is defined.

1.4.5 Finite-width Effects

In order to account for the effects of finite plate
width on power loss, finite-width factors have been intro-
duced in Chapter 7. Two dimensional theories have been
developed for considering finite plate width. These
theories are related to the linear and non-linear theories,
through a new loss-invariance concept, 1in defining
equivalent thicknesses over which the current densities
have been assumed uniform.

By considering the magnitude of current densities at
the end of the active width, the preferred directions of
end currents for the two different pole arrangements are
studied for various plate thicknesses.

1.4.6 Experimental Investigation.

Experimental investigations héve been undertaken in
order fo verify the non-linear theories proposed in Chapters
5 and 6 of this thesis. The investigation also included
finite width effect and the nature of end-current

distribution (Chapter 7). For this purpose two identical
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primary members and three ENIA steel plates were used.
These were properly instrumented for measuring surface
current density, flux/pole and temperature. One of the
plates used had width equal to the width of active region
and was used for the investigation of finite width

effect and current-density distribution at the end of the

plate width.

1.5 CONCLUSIONS

In this Chapter an induction heating device, utilising
travelling magnetic fields, is introduced. It is
believed that this device offers considerable improvement
and flexibility over the conventiénal induction heating
method. In this device, a solid-iron plate is subjected
to travelling fields on both of its sides and induced
eddy currents produce heat in it. Although heating effects
by this method are guite important, the work of this
thesis is concerned with electromagnetic field distribution
only. 1In the development of the solutions for electro-
magnetic fields, temperature effect and entry and exit
effects are neglected and a mathematical model approach
is adopted.

The longitudinal and transverse flux arrangements
define two important parallel developments of the whole

study For each of these pole arrangements, the thesis

has the following aspects:
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(L) a linear two-dimensional theory for the
electromagnetic field components in the
plate and in the air-gap.

(ii) a non-linear one-dimensional theory for the
field components in the plate.

(iii) effect of finite width on loss calculation
including magnetic non-linearity and end-current
distribution, and

(iv) an experimental verification of the non-linear

theories and finite-width effect.
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A SURVEY OF LITERATURE

2.1 INTRODUCTION

As stated in Chapter 1, this thesis is concerned with
the study of the distribution of electromagnetic fields and
the power loss in a linear double-sided travelling wave
induction heating arrangement as shown in Fig. 1.1. Heating
of the plate occurs due to eddy currents induced by the
travelling magnetic fields and in this chapter a brief
description of the nature of eddy-current problems in
relation to the above arrangement precedes the survey of
published works.

The remainder of this chapter consists of three distinct
parts. In the first part published works using a model
similar to Fig. 1.1 are discussed with a view to defining
the neéd and the scope of the present work. In the second
part (section 2.4.4) some of the published works using linear
B-H relationship are discussed. This forms the basis of the
linear analysis presented in this thesis. For a ferro-
magnetic material, a solution is made more difficult by the
non-linearity of B-H relationship and variocus efforts
(analytic and otherwise) are made to include its effect in
In the third part of this Chapter, some

the solution.

published analytic works including the effects of magnetic

non-linearity are discussed and justification has becn
- X a

- atment. Because of its relevance
sought for the present tree
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to the present work, the parabolic B-H relationship has been

discussed in some detail. 1In addition to these, various
other approaches (e.g. numerical) for including the effects
of magnetic non-linearity have been briefly referred to for
completeness.

Published works including the important effect of
finite width are not included in this Chapter and will be

discussed in Chapter 7.

2.2 NATURE OF EDDY CURRENT PROBLEMS IN RELATION TO THE

MODEL OF FIG. 1.1

Eddy currents are generated in a solid ferromagnetic
material when it is subjected to a time-varying (pulsating
or travelling) magnetic field. In so far as they form a
closed path within the body itseif, the flow of eddy
currents is always associated with the production of power
loss within the body and is manifested by a rise in the
body's temperature, the production of an eddy-current
reaction field and forces of electromagnetic origin.

The study of eddy-current phenomena in a body is very
much dependent on the magnetic field strength to which it
is subjected and the resulting magnetic flux density
throughout the body. In a magnetically linear media, the
flux density is directly proportional to the magnetic
field strength and the calculation of electromagnetic field
guantities in such a case 1is mathematically tractable; the
configuration of the model determines the particular nature

of the solution. In a magnetically non-linear media, the



study of eddy-current problem is complicated by magnetic
saturation; this affects the electromagnetic field
quantities occuring in the media and the solution obtained
depends very much on the analytic (or other) relationship
between flux density and the magnetic field strength.
When a solid-iron body is subjected to high magnetic
field strength, not only does it bring about the problem
of magnetic non-linearity, but also the increase in
temperature, in turn, means that the increase in the values
of resistivity and permeability of the material needs to
be considered. This has been discussed in section 1.3.1.
Thus, although it is recognised that the idea of producing
eddy currents in a body, as in the model of Fig. 1.1, is
one of producing as high a power:loss as possible, the
work of this thésis is concerned with the study of electro-
magnetic field quantities only and the effect of temperature
is an important area where further work may be carried out.
Since eddy currents are confined to flow within the
body in which they are generated, they have to clcse their
paths in the end-regions where they need to be driven at
induced in the active region.

the expense of the e.m.f.

This, in turn, means that the loss occuring in the plate
14

will be reduced. In relation to the configuration of

Fig. 1.1, this cffect depends largely on the pole arrangement
. - 7

(section 1.4.2) and the thickness of the plate in addition to
1 tic of plate-width to nole-pitch, This effect, termed
the ratlic biate .

finite width effect, ig discussed in detail in Chanter 7.
1n e WG M e



Determination of eddy-current effects is further compli-

cated by the occurrence of hysteresis. This occurs because the

flux density in the material, on the reduction of magnetic
field strength, does not retrace its own path. However, the
effect of hysteresis is generally small, especially for the
high magnetic field strength used in travelling wave heating,
and as found in the literature, it is Very often neglected. In
the work of this thesis also, hysteresis is neglected, although
an approximate analysis to include its effect is given in
Appendix 1.

In the literature concerned with eddy current problems,
only a few authors use a model iike the one shown in Fig. 1.1
and in the following section published works on this model are
discussed. In the subsequent sections, other works using a
model similar in certain respects to that of Fig. 1.1 (single-

sided arrangement with a semi-infinite body) are also included.

2.3 SOME PUBLISHED WORKS USING THE MODEL OF FIG. 1.1

2.3.1 ggnerql

is its

)

The distinctive feature of the model of Fig. 1.
double-sided arrangement resulting in two air-gaps, a finite

plate thickness and a plane of symmetry at the centre of the

plate thickness. Many double-sided eddy-current treatments

consider no air-gaps, since they pertain to the loss in.the

steel laminations and, as such, consider the magnetic field

; 7
strength on the plate surface -as a known quantity. Thomson's

; : xample.
classic work 1s one€ such examp



Baker14 J 4 5
» Jackson  and Davies and Bowden~ used the

model of Fig. 1.1 (i.e. include air gaps) and Gibson

15 .
et al considered heating effect in some details. Two

arrangements are used for this model, namely, transverse

4,14,15
flux heaters and travelling wave heaters”

differentiated by the arrangement of poles on the two sides
of the plate. These are discussed in the following sections.

Reference is also made to the use of the above model for

linear induction motors.

2.3.2 Transverse Flux Heaters

Transverse flux heaters utilise a configuration
(p.15) -
shown in Fig. 1.3, The poles on the two primary structures

are of opposite polarity and since the plate being considered
is thin and non-magnetic, the air-gap flux passes normally
through it i.e. in a transverse direction to that of the plane
of the plate (hence the name of the heater) .

Baker14 first suggested the transverse flux induction
heating method. He argued that, with the usual single
solenoidal coil, the magnetic flux was longitudinal i.e.

axial and the small cross-section of a non-magnetic strip

contained only a small percentage of the flux through

the inducing coil. Improvement was in fact achieved by

using transverse-flux technique, but only for thin non-

magnetic strips. The equations obtained by Baker would

not apply to thick ferromagnetic plates. The strip was

considered to be in motion, thus averaging out the power



loss over most of the strip length. However, heating was

not uniform over the width of the strip and due to current

crowding at the edges, excessive heating of the edges

occured and Baker found it necessary to attach U-shaped

Copper shields at the edges. While this was found

satisfactory for preventing physical distortion and magnetic

non-uniformity, significant electrical losses were believed

to occur in the shield.

An improvement was later suggested by Lackner16 in

which the current and directions of strip motion were
inclined to one another (i.e. not at 9OO). Jackson4 and
Gibson et al15 used this skewed arrangement which resulted
in a reduction of edge heating. However, the distribution
of current and power density across the width of the plate
was not uniform, resulting in non-uniform heating.

Jackson4 has carried out extensive theoretical and
experimental work on transverse flux heaters and this
method of heating is claimed to offer a rapid rate of
heating at high strip speeds. Jackson showed that for a
given excitation the loss occuwming in electrically thin
plates had a maximum value for transverse flux heating.

This is also substantiated in the present work (Chapter 3).

Very high theoretical efficiencies were obtained by Jacksnn

for transverse flux heating. Jackson also considered

: -limited -
resistance-limited and reactance limite cases of eddy

current distribution, the former occuring in thin plates

ond the latter in thick plates. However, transverse flux
d -11C - G : )



heating was foung unsuitable for thick ferromagnetic

plates, although it was suitable for non-magnetic plates

of low resistivity. The author recognised that longitudinal

flux heating was better suited for magnetic strips or

plates. Although Jackson considered heating of electrically
thin plates, he did not consider transition modes from thin
to thick plates. Gibson et al15 reported experimental
results for transverse flux heating of thin stainless
steel sheets and close agreement with computed results
was obtained.

Transverse flux heaters have limitations of their
own. As has been suggested by the authors, this heating
system was useful mainly for electrically thin strips and
the idea originated from the necessity of directing the
magnetic flux in the low reluctance path across the plate
thickness for non-magnetic materials. Nevertheless,
these strips are subjected to electromagnetic fields and
hence, unless the plate is electrically thin*, the magnetic
flux density in it would have longitudinal, in addition
to transverse , component even in the transverse flux
configuration! For electrically thick* plates, the

longitudinal component of flux density becomes the dominant

one and the transverse flux concept becomes invalid.

trip may be considered thin or thick
ﬂcther its half-thickness is less or
depth of penctration in that material,

* A plate or s
depending on v
greater than the
respectively.



Transverse flux heaters utilise a single-phase
supply and this results in non-uniform heating. Tor
moving strips, this effect may be reduced, but cannot
be eliminated altogether. Since in the transverse flux
heaters poles in the half inductors are of oppcsite
polarity, eddy currents circulate only in planes parallel
to the air-gap surface and considerable reduction in
power loss can take place due to the impedance of current
paths which do not link active Flux.

Thus, there is a need to improve on the existing
heating arrangement utilising transverse flux technique,
and yet retain the advantages and flexibilities of the
split arrangement. One such arrangement was suggested by

bavies and BowdenB.

2.3.3 Travelling Wave Induction Heaters

As an improvement to the transverse flux heaters,

Davies and Bowden5 suggested travelling wave induction

heaters, where, more uniform heating was obtained by the

use of a balanced three phase supply, instead of sincgle

phase Their travelling-wave induction heater envisaged

similar instantaneous polarity for the corresponding poles

of each half inductor 2nd was shown to result in a much

higher power 1O0sSS in the plate, compared with the same

* %
when the opposite instantaneous polarity for the

e e—

i - X = of the present work.
i inal flux arrangement /
; Longd b ] gement of the present work.

** Transversc flux arrang




corresponding poles was considered. This higher loss was
due, primarily, to the cross-thickness rather than cross-
pole distribution of end currents.

Their work, which did not include any analytic treat-
ment of the travelling wave heating arrangement, was, it
is believed, a pioneering piece of work in this field and
pointed to the necessity of carrying out extensive
theoretical and experimental studies of the twe different

pole arrangements.

2.3.4 Other Literature

The bulk of the treatments for the model of Fig. 1.1
s , however, in connection with a different class of
problem, namely, the theory of linear induction motorsl7~22
where a developed linear arrangement is considered for
the conventional cylindrical induction motor. These studies
are mainly concerned with the thrust exerted on a linearly
moving part by travelling magnetic fields and these
moving parts may not necessarily be of ferromagnetic
materialzz. In the present arrangement, however, es=entially
ferromagnetic material 1is considered and although no motion
of the plate is envisaged, due consideration is given to the
forces of electromagnetic origin. Many linear induction
motor applications are single-sgided, Whereas the preéent
work necessarily considers a double-sided arrangement. In
4 lincar induction motor, the problem of heat developed

is particularly unwelcome. In the present arrangement,



however, heating effect of eddy currents is very desirable.

Also, due to essential discontinuities, short rotor or
short stator effects do arise in linear induction motors
and part of the whole machine is in a transient state at
all times. The problem of edge—effectzo both at entry and
exit edges of the plate and the effect of finite width of

. 19, . .
the moving part 21,22 further complicates the treatment

of linear induction motors.

Thus, although these works consider a model like the
one shown in Fig. 1.1, they have very little in common with
the present work, but are included here for completeness.
However, these linear induction motors were considered
to be suitable for the production of travelling magnetic
fields (i.e. primary members) in the model and two identical
linear induction motor units were actually used for the

experimental investigations (Chapter 8).

2.3.5 Observations

It may be observed from the study in this section that
transverse flux heating has many shortcomings and these may
be overcome by the use of a travelling-wave induction
heating system. It may also be observed that there is a
need for extensive study (theoretical and experimental) of
electromagnetic fields in such a system. However, any such
study would have to consider various aspects of magnestisa-
tion (e.g. analytic B-H relationship, effect of magnetic non-
lincarity etc.) and in the following sections of this Chapter,

some published works on these aspects are discussed.



2.4

A SURVEY OF LITERATURE ON TDDY~CURRENT PROBLEMS

2.4.1 General

In this section, some published works on electro-
magnetic effects in cases of magnetically linear and non-
linear plates are considered. Most of the works included
here are analytic; other works (e.g. graphical) are briefly

included for completeness.

2.4.2 Early Works

In considering means for reducing eddy-current loss in
transformer laminations, Thomson7 (1892) related mathe-
matically the loss in thick and thin plates to the number
of laminae, frequency and permeability. Thomson's
analysis is basically one-dimensional; although similarity
of expressions with the present linear theory (Chapter 3)
is notable. Also, he considered a known surface magnetic
field strength instead of primary excitation.

Following the early work of Thomson, Rudenberg8 (1906)
solved the diffusion equation for a two-dimensionel model
of eddy-current coupling. He considered the appliec
field and the reaction fields of eddy currents. Even
though he considered constant permeability, Rudenberg's
work was a major contribution of his time and formed the
basis of some aubsguent WOTKS (e.g. Glazenko23).

The cffects of magnetic non-linearity arc implicit in
Rozenberg's9 (1923) work carried out for the flux in an

iron core The flux density into the depth of iron was
ir . . 1



taken as constant over a depth of penetration and negligible

at greater depths. Current density was taken as maximum
on the surface and decreased uniformly to zero over the
same depth of penetration. Power loss/area was shown to
vary approximately to the exponent 1.5 of the magnetic
field strength (compared with 2.0 in the linear case). In
his one-dimensional analysis, Rosenberg considered a
pulsating field. His assumption of uniform flux density
over the depth of penetration and neglect of phase shift
with depth resulted in smaller calculated depth of penetra-
tion and lower loss values. Despite these limitations,
good agreement between predicted and experimental values
of 10ss were obtained and this showed the need to consicderxr

the effects of magnetic non-linearity.

2.4.3 Dependence of Analyses on Assumed B-H Relations

Ir all the analyses of the electromagnetic effccts
of eddy-current, it is necessary to assume sone kind of
relationship between B, the magnetic flux density obtained
in the media and H, the magnetic field strength producing
the flux density. This applies irrespective of whether
magnetic non-linearity is considered or not. Depending on
the kind of B-H relation, a solution particuiar to the
problem being considered is obtained. Some published
works depending on linear B-H relation are discussed below,

while others are discussed later.

2.4.4 Linear Analvses




‘Linear B-H relationship is the simplest and considers
the magnetic field intensity, H, as being directly
proportional to the flux density, B, i.e.

B = u H (2.1)
where the constant of proportionality, ., is the
permeability of the material.

All published works considering a linear B-H relationshir
use a model for the analysis. The model considered in
the works discussed here are similar to Fig. 1.1 in so far
as excitation is produced by a primary member and the body
in which eddy current occurs is separated from the primary’
member by an air-gap. The linear analyses on the basis of
these models bring out the aspects that must be considered
in the present treatment. Some published works considering
linear B-H relationship are discussed below.

In connection with their analysis for a synchronous
machine with cylindrical solid-iron rotof, Concordia and
Poritsky24 developed a rigorous mathematical treatment from
field distribution theory. Their work made a worthwhile
contribution in predicting the performance of synchronous
machines under transient and sub-transient conditicns.

They considered a surface current sheet for excitation and
also assumed that the magnetic field did not vary in the
axial direction. Although their paper presented a means

of considering the effect of eddy currents in solid iron,

no eddy-current loss expression was given; it also neglected
end effects and considered infinite stator permecability

without justification.



25
Kuyper presented a two-dimensional linear analysis

in determining pole-face losses in solid-rotor turbine
generator. He carried out an analysis in terms of a
current sheet and obtained that the tangential component
of magnetic field strength in the rotor was greater than
the radial component. Contribution of higher m.m.f.
harmonics was considered in his loss calculations.
However, Kuyper neglected end-effects and considered
infinite stator permeability from the beginning.

Mukherji25 presented a linear solution for a rotor
subjected to an alternating field and considered the
reaction of eddy-current (inducéd in the rotor) on the
inducing field. He, however, did not consider the
presence of a ferromagnetic medium for the location of
the source of excitation. Mukherji, in a later paper27,
introduced a stator with finite permeability and resistivity.
He showed that the field at the air-gap/rotor interface was a
component of stator excitation, which attenuated over the
air-gap length in an exponential manner. His consideration
of finite stator core permeability is a more realistic
approach. He showed that for large values of stator
permeability and air-gap length, expressions obtained27
for electromagnetic field gquantities were consistent with
those obtained previously26. Hcwever, his work is a case

of single-sided excitation and he did rot consider the

occurrence of eddy currenrts in a finite thickness of the

media.



Based on Mukheriji's work, Stoll and Hmmnond28 considered
eddy-current loss in a. plate of finite thickness. The
paper considers the problem of a current sheet carrying
a sinusoidally distributed éurrent parallel to a conducting
magnetic surface. The paper makes the distinction between
the total (or resultant) and the applied magnetic fields
and recognises that it is the total field that satisfies
the complete field equations. Their observations about the
criteria of plate thickness, one-dimensional nature of
magnetic fields for the calculation of current density
and power loss and their use of the method of images are
also commendable.

Although Stoll and Hammond éonsidered eddy currents
in a plate of finite thickness, theirs' is also a case of
single-sided excitation. However, their model resembles
that of the present work in so far as a current sheet,
separated by an air-gap causes eddy current in .the solid
conducting medium. Thus, some similarity of observations
and also of expressions may be expected especially when
the plate thickness is large.

Lammeraner and Stafl29 have also dealt in detail with
linear theory. Their work clearly showed how the skin
effect of eddy current influences the resistance of the
body in which it flows. Although their analysis concerned
thin laminations, the equations obtained were, nevertheless,
applicable to a plate of finite thickness. The assumed

distributions of flux and current densities over the plate



thickness (Fig. 6 of reference 29) are similar to those
considered for longitudinal flux arrangement (Chapter 3)
of the present work. Similarity of the nature of equations
is also notable. The authors have also analysed the
penetration of a plane electromagnetic wave in a thick
plate. However, their work envisages a known surface
magnetic field strength, which, very often forms an
unknown component of a known primary excitation .

| Elaborate studies of one and two-dimensional electro-
magnetic fields considering linear magnetisation was also
undertaken by StolllB. His study of eddy currents in a plate
subjected to uniform applied field parallel to its
Surfacesﬂ(section 2.2 - 2.4, reference 13), in effect,
Vutilises a one-dimensional study of the longitudinal flux
case (Chapter 3) of this thesis. The similar nature of
curves obtained for loss by Stoli (Fig. 2.2 of reference
13) and in the present work (Fig. 3.6, firm lincs) shows
that the eddy-current loss in the plate is determined by
one-dimensional fields irrespective of plate-thickness.
His observations about power loss in electrically thick
and thin plates are also similar to those obﬁained in the
present work. However, Stoll considered one-dimensional
eddy-current flow and his work being concerned with eddy-
current loss in laminations also considered the magnetic
field strength on the plate surface as a known quantity.
In his two-dimensional study later, Stoll considered a
known primary excitation, instcad of surface magnetic
field strength.

3 . . . . _
Bowden's © study of linear magnetisation considers a
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semi-infinite solid-iron medium. Bowden considers a
primary current sheet rather than unknown surface magnetic
field strength. He considers finite permeability of the
primary members from the beginning and later justified its
being considered infinite. His contributions to published
eddy current theories include the treatment of impedance
matching principle, recognition of eddy current reaction
field and analysis in terms of a dimensionless parameter,
Q. He obtained expressions for loss, torgue aﬂd flux/pole
and defined the conditions when these would be maximum. The
one-dimensional nature of eddy current loss in a two-

dimensional model was also obtained.

2.4.5 Effect of Magnetic Non—lineari;z

For the case of linear magnetisation, the flux density
in the material increases linearly with increase in the
magnetic field strength. This, however, applies to non-
ferromagnetic materials and approximately for ;ow excitation
(below the knee point of the magnetisation curve)
applications in ferromagnetic materials. For very high
temperature applications of ferromagnetic materials

(above Curie point), the linear theory applies.

In general, the ferromagnetic materials exhibit

marked non-linearity with increase in magnetic field

although it 1is realised that even at low excita-

strength;
tions, the assumption of linear magnetisation for solid
iron is not strictly justified. Nevertheless, it is the

caturation effect at higher excitation (above knee point



of the magnetisation curve) that is of interest in most
practical applications.

The effect of magnetic non-linearity is that the perme-
ability of the material (apart from the effect of temperature)
is no longer constant, but is a function of magnetic field
strength. With increase in magnetic field strength, the
permeability increases at first and then decreases. A unique
permeability may, therefore, be defined at each layer inside
the solid-iron plate.

In addition to the permeability being a variable, magnetic
saturation results in a much higher loss in the body in which
the eddy-currents flow. It has been shown3o that due to
magnetic saturation eddy-current loss may be as high as 1.47
times of the same in the linear case and hence it is important
to consider magnetic non-linearity.

Various efforts have been made in the past in order to
account for the effects of magnetic non-linearity. These
include analytic, graphical and numerical . approaches. Some
analytic approaches are considered below.

Of the various analytic treatments of magnetic non-
one relation between B and H is the limiting non-

linearity,

linear case (Fig. 2.1) and it is briefly discussed in the

following section. Other analytic approaches are discussed

later.

epending on Limiting Non~-linear B-H

2.4.6 Analyses Depending oo —-

Relation

The limiting non-linear (or step function) B-H

relation is shown in Fig. 2.1. The magnetic flux density



in the solid-iron body is supposed to have only one value
+ BS, called saturation flux density, for all values of
magnetic field intensity + H except H = O when the flux
changes instantly from one direction to the other.

The B-H relation may

B
- be expressed in this
+B _
s case as
B = BS(Sig. H) (2.2)
_H H
Where 'Sig. H' stands
—_— i for 'Sign of H'.
: s

Figure 2.1: Step function B-H curve

: 31-34,36 . .
Many authors have considered this case and

the result is one of a moving wave-front of flux density
with distorted wave-fronts of induced e.m.f., flux and
magnetic field intensity inside the body, depending on

whether H is considered sinuscidal or § is considered

sinusoidal.

Haberland and Haberland3l offered the first treat-

32

ment of limiting non-linear case in 1936. McConnell

presented the diminishing magnitudes and phase shift of

flux density with depth for linear and limiting non-linear

{heories in a logical manner. After discussing the short-

comings bf Rosenberg's theoryg, McConnell showed that the

limiting non-linear theory included the effects of both time



harmonics of current density and phase shift in the magnetic
field strength. He made specific reference to the use of
non-linear theory in calculations of inductive and conductive
heating. McConnell32 assumed a sinusoidal flux. In
contrast, MacLean33 considered sinusoidal magnetic field
strength and showed that the loss on the surface calculated
on the basis of step-function B-H curve was 16/3 1 times
higher than that of linear theory and w /4 times that
obtained by Rosenberg9

Agarwal34, like MacLean33, also assumed sinusoidal
magnetic. field on the surface; but considered penetration
of the wave from both sides of a plate of finite thickness.
Depending on whether the half-thickness of the plate was
greater than the depth of penetration or otherwise, Agarwal
obtained theorefical waveforms for electric field and
magnetic flux on the surface and inside éf the plate. These
were substantiated by extensive experimental work. Loss
values obtained by his theory was higher than those obtained
experimentally and in order to provide good agreement
between theory and test results, Agarwal found it necessary
to reduce the saturation flux density, By, at the surface
corresponding to peak impressed mmf, by an empirical
factor of 0.75. The logical basis of this empirical
factor has since been proved by Bowden3o and Ellett35.

Davies and Bowden36 used step function B-H curve for
direcct resistance heating problem of a cylindrical body.

The theory considered constant voltage and constant current



- 40 -

modes and dealt with the benetration of e.m.f. wave into a
cylindrical body. They introduced a concept of saturation

depth which was verified by experimental results.

2.4.7 Analyses based on Other Analytic Representations

of B-H Curve

It has been shown that, by comparison with experimental
results, the linear theory underestimates the loss in solid-
iron, whilst the limiting non-linear theory overestimates
it; a more realistic representation of B-H relation must be
somewhere in between. Various attempts have been made to
represent this relation analytically and Fisher and Moser37
made a survey of many such functions. They showed that
while the Frohlich eguation, B=H/ (a+bH), and the equation
of the form B=a-b/H, where a and b are constants, are most
suitable for the representation of B-H relation at and
around the knee of the magnetisation curve, they are less
accurate at higher magnetic field strengths. Alternately,
the simple parabolic representacion, B=aHb is less accurate
very low magnetising field strength, but is most suitable

for

for representing the saturated region of the curve (typically

1.5 - 30.0 kA/m for mild steel). Because of its especial

relation to this work, the parabolic representation of the

magnetisation curve is discussed in the following section.

. | b
Representation (B=aH ) of the

2.4.8 The Parabolic

Magnetisation Curve

~
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2.4ﬁ8.1 The Nature of B = anP Representation

In the parabolic representation of the magnetisation
curve, the peak value of magnetic field intensity, H, and

the peak value of the resulting magnetic flux density, B,

are related by

b
B = aH (2.3)

where a and b are constants. This pre-supposes that a
sinusoidal H-field results in a sinusoidal B-field, which
is, of course, not so in practice due to magnetic non-
linearity. Depending on the type of analysis, however,
one or both of B and H may be sinusoidal. Equation (2.3)
abcve relates the peak values of two sinusoidal guantities
which may be fundamental components of distorted B and/or
H wave.

The function B = aHb may be used to represent
B-H curve of anj/shape by the appropriate choice of the
parameters a and b. For the linear case b = 1 and the
limiting non-linear case mayAbe obtained by putting b = o.
Thus, as shown in Fig. 2.2, the parabolic function may be
used to represent any shape of B-H curve and the constant
b may be recognised as a shape factor. The constant a
sents either the permeability of the material (linear

repre

5 case) or the

saturation flux

density (limiting
non-linear case).

For the general

. cage of non-linear
Variation of B-H curve in B=aH

Figure 2.2: f
’ equation with the exponent b
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magnetisation, however, the constants a and b may be
obtained from the log-log plot of normal B-H curve of
the material, b being the slope of the then linear portion
of the curve and a is obtained by substituting the value of
b in the equation. It is clear from Fig. 2.2 that the
value of the exponent b should be between O and 1, closer
for a ferromagnetic material to O than 1.

Not only is the B = aHb type representation suitable
for values of H well into saturdtion, it offers even a
better fit when the material temperature rises above
room temperature. The permeability y obtained as

a® 71 (2.4)

uo=
however, approaches very high values at very low values

of magnetic field strength, as against small values obtained
from the actual B-H curve. Although this is recognised

as a shortcoming, it has been shown3o to have much less
effect on loss than it at first appears.

Because of its simplicity of form, accuracy of
representation, flexibility of analytic treatment end
logical similarity to the B-H curve on a log-log plot, it
was decided to use parabolic function for representing

B-H relation in the non-linear theory (Chapter 5).

2.4.8.2 Analyses Using B = aHb Type Analytic Function

Many authors3o’38”46 have used the parabolic function

. : 38
i m tisa : > S ume
for representing the agnetisation wave. Nejman assumed

a spatial variation of permeability of the form



W= 1/(c-dy)?> (2.5)
where ¢ and 4 were constants. Using equation (2.5) in
Maxwell's one-dimensional equation, he obtained an expression
for magnetic field strength. The constants c and d were,
however, obtained by equating the arbitrary function (equa-
tion (2.5)) to the permeability defined from p=ap® relation.
Lasocinski39 developed his theory on the basis of constant
permeability at first and later accounted for its variation
according to Nejmanb38 method. Thus both the above works
lack merit in so far as an arbitrary spacial variation of
permeability was initially assumed.

In connection with his work on eddy-current couplings,
Davies4o, following Gibb‘sll work, started with a linear
analysis, but discovered that the upper part of the
magnetisation curve for his loss drum followed a relation
(“r“o)% H = ka, where k and m were constants. He later
modified this in the form of equation (2.3) and produced a
generalised theory4l. In his extensive experimental and
theoretical work, Davies obtained eddy-current reaction mmf
and its relation to the surface magnetic field strength. He
also developed normalised torque-slip curve, the flux/pole
and the relation between torque and applied mmf. Davies,

however, allowed for magnetic non-linearity in his final

expression and the permeability did not vary with depth.

For a more appropriate appreciation of this function to

represent magnetic non—linearity, this B-H relation

(i.e. B = aHb) needs to be substituted at an early stage.

This was done DY Bowden



Pillai42 i :
» UsSlng parabolic B-H relation, obtained eddy-

current loss density, flux/pole, magnetic field strength and
induced emf in a solid-rotor induction motor. Pillai43, in
part 2 of his paper, extended his own work for a hollow rotor
(i.e. a rotor having a finite radial thickness). Results
obtained were given in graphical form and good agreement

was obtained bhetween experimental and predicted values.
However, Pillai's assumption that the tangential components
of flux density, BX, and the magnetic field strength, H s
were related by equation (2.3), whereas the relation between
the radial components of the same (i.e. By and Hy) was |
linear, needs more justification. Whilst it is correct that
HX>>HY and consequently, the component flux densities may
well be into non-linear and linear regions respectively,
permeabilities may not be chosen in different directions
independent of each other and the component flux densities
are obtained from a resultant B, which may be well into
saturation. 1In effect, Pillai tried to offer a two-
dimensional non-linear analytic solution which is known to
be difficult. He got expressions for loss for the limiting
non-linear case, although the linear case was not considered.
While the effect of temperature rise was included in a
simple and useful way, Very little has been mentioned about

the quantity, 'thermal conductivity' which is a function of

temperature, and about the effect of temperature on the

variation of air-gap length.

Davies et al44 used the parabolic B-H relation for the

experimental verification of the generalised theory of




eddy-current coupling and good agreement was obtained

between predicted and experimental values. The authors

suggested the use of equation (2.3) for design purposes.

WOOlley45 and Chalmers and Woolley46, in connection
with a general theory for solid-rotor induction motors,
have used the parabolic B-H relation together with limiting
non-linear function and another function of the form
UiH = B/(l—B/BS) where My was the initial permeability
and B  was the value of B at very high H. Compared with
the results of other forms of B-H relation, they
obtained, using B = aHb representation, consistently good
agreement between predicted énd experimental values of
torque-slip and current-slip characteristics for a wide
range of motors (6 W, 250 W and 1.5 kW).

All these published works suggest that in studying
the effects of magnetic non-linearity analytically, the
parabolic B-H relationship is most suitable and accurate,

. b
2.4.8.3 Bowden's Work Using B = al

. . 30
Tt is believed that Bowden's non-linear analysis

was the only one of its kind in so far as the functi.on

B = aHb was inserted into the diffusion equation at an
initial stage and expressions for loss, armature reaction
and flux/pole were obtained in terms of primary excitation
and the constants a and b. In his solution, Bowden
considered a one-dimensional magnetic field strength
(HX>> Hy) inside the rotor and obtained a new expresssion

for the peripeoral component of magnetic field intensity, Ix.
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He extended his work to two-dimensional analysis by

equating current densities at the air-iron interface, and
hence obtained loss in terms of primary excitation.

The ratio of wave impedances in the iron and in air-gap
surface of the rotor was introduced as a dimensionless
parameter, Qn’ and was fruitfully exploited for performance
calculations. Depending on whether Q, was much smaller than,
equal to and greater than unity, the eddy-—-current loss

was shown to be proportional to 1/p (approximately),
independent of ,, and proportional to /o respectively,
thereby, recognising three distinct modes of machine
operation. His work successfully included linear and non-
linear magnetisations as special cases. He obtained
expressions for generalised loss and torque and the varia-

tion of flux/pole with torque. Bowden substantiated his

theory by extensive experimental investigation.

2.4.9 Other Non-linear Solutions

Various other approaches for the representation of
the magnetisation curve are available in literature.
Some of these utilise an assumed variation of permeahility
with depth, some utilise a graphical approach, while others

use finite-element and finite-difference solutions.

2.4.9.1 Assumed Permeability Distribution

. 48
Ollendorf47 and Gonen and Stricker assumed that
permeability varied with depth, y, according to the relation

wy) = M GXP(Y/YS) (2.6)
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where US is the surface value of permeability and Y is the
decay depth of pcermeability. 1Increase in permeability

w;th depth, predicted by ecuation (2.6) is justified in so
far as H decreases with depth. Fig. (2.3) shows the

actual variation of M with H together with the above function.
As shown in this fiqgure, however, for very weak H-field
(i.e. below the knee point) permeability actually
decreases, so that equation (2.6) is only apprroximately

true. The other disadvantage of using this function is

. ' © that even with no air-

\ —
T u_useXp(Y/Ys) : gap assumption, the
\ .
~ loss and torque
H : equations are in
-——Normal .
terms of complicated
Hankel functions,

which are not well

tabulated.

Figure 2.3: U-H curve

Nejman38 also assumed a spatial permeability variation

and is given by equation (2.5). This has been discuassed in

sectibn 2.4.7.2.

2.4.9.2 Graghical Solution

In the graphical method of solution, the whole of the

ferromagnetic body is divided into thin layers each, say

§y, and a linear solution is obtained for each layer. The
, ,
values of magnetic and electric field strengths and hence

the flux density arc assumed on the surface of the material
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and their values at the depth 8y are obtained from linear

theory. These values now determine the starting point for

obtaining the electromagnetic field quantities in the next
layer, which now has a new permeability (determined by the
magnetic field strength at the depth 8y below the surface).
The process is continued till the magnetisation phenomena

in the whole body is obtained. Pohl49 and later Kesavamurthy

50,51

et al have used this step-by-step solution of this

graphical method. The graphical method of solﬁtion could
offer a high degree of accuracy because of the very nature
of the procedure, but it is a very laborious and a rather
lengthy technique. Although similar to piecework linearisa-
tion of the magnetisation curve, the graphical solution is
the less accurate one, since the permeability is obtained

from B/H rather than dB/dH.

2.4.9.3 Finite-element Method

In the finite-element method of solution,‘the problem
is discretised in such a way that the field variable has a
simply defined variation over a number of elements which
may be triangular, rectangular or of any other convenient
form which together covers the region. This variational
n calculus of variations and seeks to

method is based o

approximate the field function. The advantages of the method

are that the inclusion of boundary conditions is inherent in
the method and that the sub-division of the elements may be

graded to give small elements where it is anticipated that

the field is varying rapidly and large elements elsewhere
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for eccnomy. Also a high degree of accuracy may be obtained
in this method. Disadvantages of this method are that it
is conceptually difficult and that resulting matrix
equation requires compact storage and Gaussian elimination
for solution.

The finite-element method of solution has not been
applied to eddy-current problems to any great extent,
although Binns, Jabbar and Bernard52 have used it for

computing the magnetic fields of permanent magnets.

2.4.9.4 Finite- difference Method

The finite-difference method is simpler to apply than
the finite-element method. In this method of numerical
solution, the equation of an electromagnetic field
component is written in the algebraic form in which the
differential forms are expanded by Taylor series. Because
of the development of high-speed digital computers, it is
possible to replace the differential equations with
difference eguations having very small increments. The
problems of convergence and hence, of efficient use of
computer-time, however, do arise. Also the accuracy of
finite difference method is limited by the discretisation
error due to the truncation of higher order terms in Taylor
series, although the error is generally small.

Gillot and Calvert's53 finite-difference solutioﬁ for
electromagnetic fields inside a solic~iron plate considered
sinusoidal flux and total conduction current

sinusoidal mmf,

and used the normal B-H curve rather than any usual



approximations to it, Computed loss agreed well with test

results. While they neglecteq hysteresis, Gillot and

Abram554 considered it in their finite-difference calcula-
tion. They too obtained good agreement between calculated
and measured values of loss.

While the finite-difference solutions are very accurate,
they cannot be presented in a way in which the machine
dimensions and other parameters appear as variable (as
they do in analytic solutions). In the finite-difference
solutions of Lim and Hammond55'56, this disadvantage has
been partly overcome by expressing various machine dimen-
sions and parameters as dimensionless variables. The>
author555 have_produced universal loss charts from which
the power loss for a wide range of surface magnetic values
and a variety of steels may be obtained after simple
calculations. Their work thus has the merit of an
analytic solution; although, as the name suggests, only loss
values can be obtained. Lim and Hammond56 have obtained
electromagnetic field components on the surface and at

depths inside the plate and compared with those obtained

4 : we at tribution
by Agarwal's theory3 Their work showed that the contribu

of the fundamental component of eddy-current to the loss
was high even at high levels of saturation. However, the
accuracy of both of their treatments is limited by the
Fréhlich approximation to B-H curve, which, as has been

mentioned in section 2.4.7, offers good approximations

at and around the knec of normal magnetisation curve and
C s <l . -

diverges at high H.



2.5 CONCLUSIONS

In this Chapter, a survey has been made of some
published literature on eddy current and associated
electromagnetic and thermal problems in a model of Fig. 1.1
and in some similar models.

It may be observed from this survey that most of the
published works on eddy currents consider its occurvnce
in a semi-infinite body due necessarily to a single-sided
excitation. Some works that consider a finite thickness
of the body and a double~sided excitation consider no
air—-gaps and also the magnetic field on the plate surface
as a known gquantity. Others consider non-uniform heating
effects due to pulsating transverse flux in essentially
thin plates. Many of the shortcomings of a transverse
flux heater may be overcome by the use of travelling
magnetic fields in its split arrangement.‘ However, no
published work is available on such a system. Thus there
is a ga? in the literature where a study may be made of
eddy currents and associated electromagnetic phenomena in
a solid-iron plate of finite thickness, subjected to
travelling magnetic fields on both sides. An idealiscd
model for such a study is shown in Fig. 1.1, in which the
magnetic field strengths on the plate surface constitute

unknown components of a known primary excitation. Further,

two different arrangements oOf poles of travelling fields

on the two sides of the plate may be considered in such a

study.



The survey of literature on eddy~-current problems

shows that many published works consider linear magnetisa-
tion only and are, thus, strictly limited to low excita-
tions or to non-magnetic materials. Others consider the
limiting non-linear magnetisation where a saturation flux
density is obtained at all excitations and thus, over-
estimates the effects of saturation. Some authors try
to incorporate the effeét of magnetic nonmlinearity by
functional representations. While such a representation
of magnetisation curve has its éwn limitations, it offers
good compromise between underestimating (as in linear
case) and overestimating (as in the limiting non-linear
case) the effects of magnetic non-linearity on loss.
Aftér considering its advantages and limitations, the
parabolic B-H curve has been chosen in this thesis to
represent the normal magnetisation curve of the material.
A two-dimensional linear theory for the model of
Fig. 1.1 is given in Chapters 3 and 4 of thistthesis,
where due consideration has been given to the reaction
fields of eddy current. A non-lincar theory (assuiaing
B = aHb) for the same model is developed in Chapters 5

and 6 where a new function has been introduced for the

solution of diffusion equation.
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CHAPTER 3

LINEAR TWO DIMENSIONAL THEORIES FOR (a) LONGITUDINAL

FLUX ARRANGEMENT AND (b) TRANSVERSE FLUX ARRANCEMENT

3.1 INTRODUCTION

In this chapter a two-dimensional linear theory
is developed for both longitudinal and transverse flux
arrangements for the model configuration given in Fig.
1.1. As explained in Chapter 1, the linear induction
heater consists of an iron plate subjected to travelling
magnetic fields from both sides. For the longitudinal
flux arrangement, the correspording poles on both sides
of the plate are of similar instantaneous polarity,
while for the transverse flux arrangement, they are of

opposite instantaneous polarity.

The primary excitation is assumed.to consist of
a z—difected current sheet only and the flux density is
taken as directly proportional to the magnetic field
intensity. Analysis is carried out in terms of the
magnetic vector potential A and expressions are given
for the magnetic field strengths and current densities
within the plate. The general expressions obtained are
modified to suit the condition of pole-pitch being
much greater than the depth of penetration. Expressions

for power loss and force are also given.

The solutions obtained show that the effect of
primary iron on +he clectromagnetic fields inside the

plate is influenced by the finite plate thickness.



bquations are obtained for the components of magnetic
field strengths on the surface of the plate and by
considering their relative magnitudes, thickness criteria
(i.e. for the plate to be considered electromagnetically
thick and thin) are established. The one-dimensional
nature of electromagnetic field quantities is investigated
for a plate of finite thickness and also for the two
different pole arrangements. Variation of power loss in
the plate through the transition from electromagnetically
thin to thick plates is considered for the two different
arrangements. When the plate is thick, expressions for the
electromagnetic field quantities are checked against those

previously published.

The mathematical model assumed is explained in
Section 3.2. The assumptions made are also summarised
in Section 3.2 and the solutions for electromagnetic
field gquantities are given in Section 3.3. 2Analysis is

then carried out for the two different pole arrangements

being considered.

3.2 THE MATHEMATICAL MODEL

3.2.1 General

The mathematical model chosen for the analysis and
the associated co-ordinate system are shown in Fig. 3.1 (v.57)
It consists of a solid~iron secondary plate of thickness
23 which is separated from the two primary members by
air-gaps of length g each. The current sheets are assumed

to be located on the surfaces of the two primaries. Since
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a flat linear arrangement is being considered, rectangular
co-ordinates have been used. The three co-ordinates

X, ¥, Z, are used to represent the following directions:

X

the length of the plate and also the direction of

travel for the magnetic fields.
y : the plate thickness, and

z : the plate width (i.e. perpendicular to the plane of

Fig. 3.1).

Fig. 3.1 consists of three regions, namely, the
laminated-iron primary, the air-gap and the solid-iron
secondary. Each of these regions and the associated
assumptions will be explained in the following sub-sections.
However, it may be noted in Fig. 3.1 that y = O is a
plane of symmetry and the analysié may be carried out for
either half of the plate only. The solution obtained
would, of course, be subject to clearly defined boundary
conditions at this plane, so that with due regard to
the sign, the same solution will be applicable to the
other half of the secondary. Thus in the following

analysis only the upper half of the secondary will be

considered, i.e. for y varying from y = O to y = d.

The model will be assumed to be extending from

-~ - » to z = +» and also from x = -» to X = +», SO

z = 4

that finite-width effect and entry and exit-edge effect

are ignored. It is customary to make such

o) 29 5, 40 ‘o
assumptionsl3’“8’2J'3U’ , so that the current density
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in the secondary may be assumed purely along the width
(i.e. z~directed), and the problem becomes amenable to
analytic treatments. However, in a practical machine

z will be finite and the finite width effect will be
dealt with in detail in Chapter 7. Because of the
discontinuity in the x-direction inherent in thé present
model, entry ahd exit-edge effects will arise. However,
such effects do not arise except at the two extreme ends
and are generally small. This will be referred to again

in Chapter 9.

3.2.2 The Laminated-iron Primary

Two identical primaries extend from y = + (d + g)
to y = + . However, in the present analysis, details
of the primary extending from y = (d + g) to « will be
given, it being understood that the same applies for the

other primary as well.

The primary consists of infinitely thin laminations
each placed in the x-y plane. Each of the laminations are
insulated so that the resistivity of the primary in the
z-direction, ey is infinite. The relative permeability

of the primary is finite and equal to My

The primary excitation 1s represented by an
infinitely thin current sheet in which the current varies
sinusoidally both in space and time. The current flows

~

only in the s-direction and its line density K, A/m may

be represented by:
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gz = ﬁz cos(wt - gx)
= Re ﬁz expj (ut - gx) (3.1)
where,
ﬁz = peak value of iz, A/m
w = angular frequency of current sheet variation,
rad/s
t = time, s,
q = n/%, m”l
T =‘pole-pitch of spatial current variation, m

Re stands for 'real part of'.
~1

A '7!' sign on the top signifies sinusoidal and '

sign on the top signifies peak quantities.

Laminated primary Y
Jﬁ ( Dl:m,ul:finite Tv=ﬂ+q j
g Air aap ¥
r- Solid-iron v=0
- L.secorniary, ) o~ . Current sheet
24 or plate.p=finite % ~
J_ Me=_finite /////////’K expj (wt-gx)
g ALY aan ¢

T_ 5_ Laminated Primary 2

Fig. 3.1 Two-dimensional model used in analysis.

A current sheet may be considered to be obtained

by the merging of infinitely thin conductors carrying

current. The m.m.f.s may be obtained from current sheets by

integration. Slotting or other discontinuities have

not been included in the model.



Equation (3.1)represents a sinusoidally distributed
wave travelling at a velocity of w/q m/s in the x-direction.
Whilst it is noted that a more realistic representation
would assume a current sheét at some depth into the primary,
thereby, affecting its leakage reactance, its effect on
the field in air-gap and the secondary member is negligible;
and hence current sheets on the surface of the primaries

may be assumed.

3.2.3 The Air-gap

Two identical air-gaps, each of length g, exist
between y = + d and y = + (d + g) and separate the primary
members from the secondary. They are situated symmetrically
at equal distances from the y = 0 plane and, as before,
analysis will be confined to the air-gap existing between

y =dandy = (d + g).

The permeability of the ajr-gap is that of free

space and equal to u and the resistivity is infinite.

3.2.4 The Solid-iron Secondary

The secondary member is a solid-iron plate and is
assumed to bé composed of isotropic homogeneous, ferro-
magnetic material. It has a finite thickness of 2d, and
the plane of symmetry, y = O, is its centre plane. Once
again the analysis will be confined to only half the thick-

ness, d, of the plate, j.e. for y varying from O to 4.

The secondary member has a constant restivity, p,
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and a constant relative permeability, Ur(: U3). The currents
in the secondary are z-directed only and this gives rise

to magnetic field components in the x ardy directions.

3.2.5 Assumptions

Assumptions made for the model of Fig. 3.1, have
been discussed in detail in the preceding sections, but

are summarised here for clarity.

(i) The permeabilities of both the primary and secondary

members are constant in time and space.

(ii) The resistivity of the primary member is infinite in
the z-direction and that of the secondary is finite and
constant. The resistivity of the air-gap is also
infinite.

(iii) The surfaces of all the regions are smooth, flat

and parallel to the z-x plane.

(iv) Only the z-directed component of current exists in the

current sheet and in the solid-iron secondary.

(v) The solid-iron secondary is composed of isotropic
homogeneous ferromagnetic material and has a finite
thickness, 2d.

The model extends to + « in both z and x directions,

(vi)
so that finite width effect and exit and entry
effects may be ignored.

(vii) vy = O is a plane of symmetry and analysis may be

confined to y =+¥+Ve side only.
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(viii) Both primary and secondary members are stationary.

(ix) Hysteresis is neglected in this analysis.

3.3 ANALYTIC DERIVATION OF ELECTROMAGNETIC FIELD

COMPONENTS

3.3.1 The Field Equations

The mathematical model assumed consists of & linear
conducting medium. Maxwell's equations for such a medium,
where displacement currents can be neglected at low

frequencies, are given by:

curl H = J (3.2)
and

: =__20B

C S e T

url E 5T (3.3)
where

H = Magnetic field strength, A/m

J = Current density, A/mZ

E = Electric field, v/m

B = Magnetic flux density, T
and the bar on top signifies vector quantities.

In terms of the resistivity, p, and relative
permeability, ¥,/

E = pJ (3.4)

B = ' H 3.5
and B = uOLrH ( )

Also, the magnetic flux density and electric current

density must satisfy the continuity conditions,

div B =0 (3.6)

0 (3.7)

ol
"

and aiv



3.3.2 The Magnetic Vector Potential, A.

For analysis, a magnetic vector potential, A, may

be defined by the equations

curl A

B (3.8)

and div A 0 (3.9)

Analysis in terms of a magnetic vector potential is
preferred, because in all the three regions the electro-
magnetic field guantities may easily be evaluated in terms
of A alone, ‘thus eliminating the necessity of finding various
components from first principles. By concentrating on
variation of one vector quantity as against three (e.g.
Jz' HX and Hy), variations in all the three regions are
comparatively easily visualised. Consideration of the
vector potential offers simple continuity conditions at
the boundaries between different regions and thus, makes
computation easy. For two dimensional analytic methods
in case of linear conductors, the use of the vector
potential has been found advisable, since it is parallel

to the current density and may be conveniently obtained
by surface integral.

Because the line current is z-directed, A has only

one component, namely, A, and the suffix will be omitted

for the rest of this analysis. Also A does not vary in

the z-direction and we have, in equation (3.9)

9B _ o (3.10)
9z
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As the current sheet varies sinusoidally in space
and time, and the resistivities in all the regions are

constant, then A also varies sinusoidally and may be

described by

A =Re A exp(jwt) (3.11)

Expanding equation (3.8) and using equation (3.5),
the x and y components of magnetic field strength, HX and

Hy, respectively, are given by

1 CE

H ., = . (3.12)
x1 UMy 9y
dA.

H o= =1 . 2 (3.13)
yi Moy 9x

where the suffix i refers to any one of the three regions,

so that i = 1 signifies primary member
i = 2 signifies air-gap
and i = 3 signifies secondary member.

The current density may be obtained from equations

(3.8), (3.3), (3.4) and (3.11) as

J . = —— A, (3.14)

The current density could also be obtained from equation

(3.2) as
oH_ . OH,
3, = T (3.15)

Both equations (3.14) and (3.15) give the same

result, as they must, while much less labour is needed
! [e
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if equation (3.14) is used.

3.3.3 Laplace's Equation in Two Dimensions

Taking curl of equation (3.8)

grad (div A)- V?E = curl B (3.16)
h 2 . 97 3’ 3%
where V° = - + + is the Laplacian operator.
ox? dy? 3z?

Using equations (3.9), (3.5), (3.2) and (3.14) and
the assumptions (i) and (ii) of section 3.2.5,it is

obtained that

<
N
g
Il

0 for primary and air-gap regions
juourw
A for the secondary member

o
fo]
ol
<1
N
g
I

Using equation (3.10), the Laplacian operator in

two dimensions has the form

so that for the primary member and the air-gap

28 22 o (2.17)
ax? 9y?

and for the secondary member
3, IR g2 (1+9)’A (3.18)
ax” Byz

where o™= 70
Equations (3.17) and (3.18) are the required

] ati 1d describe the variations of the
Laplace's equationsal
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magnetic vector potential in two dimensions. Equations

(3.17) and (3.18) have the general form of solution

By = [CieXP(kY) * DieXP(—ky)] exp (-jgx) (3.20)

where Ci and Di are the constants to be obtained from the

boundary conditions, and

k? = g% + j2a?2 (3.21)

. . k = g for primary member and air-gap.

The boundary conditions for evaluating Ci and Di

will be outlined in the following section.

3.3.4 The Boundary Conditions

Since the vector’potential in the primary member
cannot be infinite, i.e. has to be finite when y tends to
infinity, therefore the constant C, = O. The remaining
constants may be evaluated from boundary conditions at

y =(d+g), y=dandy = 0.
(1) At the boundary y = (d + g), Ay = A,

(ii) At the boundary y = d, A2 = A3

(iii) At the boundary y = (d + g)
oA 0A ~ ‘
___].'_.,,_—__:.2_ - ._____]L-—..__é_% = Kzexp(_JqX)
My 9y MMy Y

(iv) At the boundary y = d
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In addition to these, another boundary condition
may be established at y = 0. This condition, however,
depends on the particular pole arrangement Dbeing
considered and may be obtained by considering the attenuation

of the vector potential A3 from the surface to the inside

of the plate.

3.3.4.1 Longitudinal Flux Arrangement

For this arrangement, since corresponding poles on
the primaries are of similar instantaneous polarity, A3
is an even function of y, i.e. A3(y) = —A3(~y). Since

A. is continuous at all values of y,therefore,at the boundary

Thus for longitudinal flux arrangement, the

relation between the constants C3 and D3 is given by

- - 3.22
C3g D3y ( )

(A further subscript 2 signifies longitudinal flux

arrangement) .

3.3.4 .2 Transverse Flux Arrangement

For this arrangement, since the corresponding
poles on the primaries are of opposite instantaneous
polarity, B, is an odd function cf y, i.e. A3(y) = A3(—y).

Since A3 is continuous at all values of y, it must pass

through a minimum at y = ©O-. Therefore, at the boundary

y = Oy
3A3

= =0

oy
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Thus for transverse flux arrangement, the

relation between the constants C3 and D3 is given by

Cip = Dyy - (3.23)

(A further subscript t signifies transverse flux arrange-

ment).

3.4 FIELD EQUATIONS FOR LONGITUDINAL FLUX ARRANGEMENT

3.4.1 General

In order to represent the longitudinal flux arrange-
ment, a further suffix £ will be used with all suffixed
quantities. The equations for the magnetic vector potential

in the three regions are now given by

A, = -Plzexp(—qy)Jexp(-qu)v (3.24a)
v = | - -3 .24b
A, _szeXp(qy) + D, exp qyilexp( jax) (3 )
S -5 3.24

By .?3flnhky]exp( jax) ‘ ( c)

The four constants may now be evaluated from the
four boundary conditions of section 3.3.4. Since tne
field equations in the air-gap and the secondary member

are only of concern, the values of A22 and A32 are only

given.

° U’K *

A, = :_Q—E{Eexp(kd)-DSeXP(“kd)}eXP{q(Y“d)}“
2
‘ qCpQ

{exp(—kd)—bsexp(kd)}eXP{‘q(Y“d){}GXP{‘(kd+qgt§qz;i
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and .
. —4uu, K
Big™ & [Slnhky]exp{~(kd+qg+jqx)} (3.26)
pzurqi-k)
where
. ul+l . ‘ Ul—l .
sz = ™ [szexp(—de)-l}+ Ul+l{DS-exp(—2kd)}exp(—qu)]
(3.27)
. n.a-k
d D e —
an TR (3.28)

3.4.2 Field Equations in the Air-gap and Secondary

The equations for magnetic field strengths and
current densities may be obtained from equations (3.25)
and (3.26) in conjunction with equations (3.12), (3.13),
and (3.14). Thus for the air-gap region the magnetic

field components are given by

A

. -K .
H = Z [{exp(kd)-D exp (-kd) Yexp{g(y-4) }+
x28% . S

pl

'{eXp(—kd)—bSexp(kd)}exp{—Q(y—d)}J

exp{- (kd+ag+jgx)} . (3.29)

~

_ Z[{exp(kd)~ﬁse><p<-kd)}eXP{q(Y‘d)}

H Sl
2%
Yy Cp!&
{exp(mkd)~bsexp(kd)}eXp{*q(Y—d){}exp{—(kd+qg+jqx)}

(3.30)
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For the secondary member, i.e. the solid-iron plate,

the magnetic fielqd strength and the current density are

given by

ﬁ - —4Kz k | . .
%34 —_ " q+kcoshky exp{-(kd+gg+jgx)} (3.31)
r

sz

. -j4K

H = 2 9__sinhky |exp{- (kd+gg+jgx)} (3.32)

y3% C u_ag+k grlq ‘ .
pL T

and ~
. j8KZ o
J =__2 . ~ _ .
230 é {;rq+k81nhk%]exp{ (kd+gg+jgx)} (3.33)

3.4.3 The Effect of Primary Member

The relative permeability My of the primary member

appears in the expression for Cpl’ which is given by

ul+l ul—l .

C = [}D exp (-2kd)-1}+ {D —exp(—de)}exp(—qu)w

o34 My S W+l IS i
1

(3.27)

The effect of variation in the permeability of primary

iron can, therefore, be studied from equation (3.27}. Two

extreme cases may be considered:

(1) Hp =1

In this case, equation (3.27) becomes

¢ = 2{D_exp(-2kd)-1} (3.34)
Pt S

Ul—l ) ‘
The expression ol = 0 and this shows that there is

no reflection of the current sheet and the image current
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sheet disappears.

(ii)

= o

My

In this case, equation (3.27) becomes

Coge= [P exp(-2kd)-1}+{D_-exp (-2kd) Jexp (-2q9)  (3.35)
n,-1
The expression E—Ii~ﬂﬂwhich shows complete reflection.
1 .

Equations (3.27), (3.34) and (3.35) clearly show how
the finite thickness of the secondary member affects the
contribution of the primary. For the case of d being large
(i.e. d >> 1/k ), all these equations tend to the standard

. . 0
expressions available in published literature 3 .

The effect of varying Uy is shown in Fig. 3.2, where

1€ !

wg&f has been plotted against Uy for various values of
C
half- thickness, d. Bowden plotted the same function

for an infinitely thick plate with various values of gg
w_q

and —=—. Fig. 3.2 has been plotted for one value of gg
a

and Hrd while curves of the same nature may be obtained
—_—

o

for various values of them. It can be observed irom these

curves also that for u, 2 500, Cp% = Cme' The point

to note here 1is that the half-thickness d has very little

effect on such an observation. It may be seen that for

u, as small as 100, the variation of thickness has very

C
wgﬁfw. The same may be

Cp9 u.q
awn for other values of ¢g & —5— -«

little effect on the ratio

observed for curves dr



Since for practical cases W, is very high (i.e. > 500) ,
it can be reasonably concluded that, the primary
permeability may be taken as infinite. Few authors seem

to offer such reasoning for assuming ul=cnat the outset.

Thus, in the rest of the analysis, Ul:cnand

ol - szm. Based on these and some further modifications,
the equations for electromagnetic field quantities in the

secondary will be simplified in section 3.4.4.

3.4.4 Fieldsin the Secondary and.Some Further Modifications

Ir section 3.4.2, the field equations were given for
both air-gap and secondary member for ease of comparison
and completeness of analysis. However, since the electro-
magnetic phenomena in the plate only is of interest here,
the field equations in the secondary member will be of
concern in the following analysis. Thus, the subscript
3 in the equations (3.31) to (3.33) may be omitted. While
the field equations in the air-gap may still retain 2 in the
subscript, field equations in the secondary will not contain

3 in the subscript and Hyﬁ’ for example, will signify the

y-component of the magnetic field strength in the secondary.

As has been pointed out in section 3.4.3, the
permeability of the primary 1iron may be reasonably assumed
infinite, so that sz is given by Cpgm as in equation
(3.35).
actical cases, the pole-pitch of the

In most pr

Hine, T (= w/q) is very much greater than the
machine s -
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depth of penetration, §(= =), (At least it may be made so at

Rir

the designer's discretion). Thus in equation (3.21),

it is assumed that:

2a% >> g? (3.36)
so that
k= (1 + 3o (3.37)

Based on the above modifications and using equation

(3.37), equations (3.31), (3.32) and (3.33) become

.  =2K (143)
H , = —2—— [cosha (1+3)y]exp (~3gx) (3.38)
M
'3
. . =J32K g
0 = ——2~ [sinha (1+3)y]exp (-jgx) (3.39)
Y oM
'3
and
. j4K a .
T, = _Z [éinha(l+j)j] exp (-jgx) (3.40)
z M
'3
where
MQ =-2coshqg coshad cosad[}(mtanhqg - tanod) tanhad +1}
+3{ (mtanhqgg + tanhad)tanad + 1}] (3.41)
lel =/Jcoshgg{m?tanh®qg (cosh2ad - cos2ad) +
1
omtanhqgg (sinh2ad + sin2ad)+ 2 (cosh2ad+cos2ad) }°
(3.42)
nd m = oE (3.43)

a

In the secondary being considered for this analysis,

y varies from d to 0, and equations (3.38), (3.39) and

AT tities attenuate with
(3.40) show that electromagnetlic, quan i
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depth in terms of hyper.-bolic functions. When the secondary
is infinitely thick (i.e. d is large), then, allowing for
the fact that these quantities cannot become infinite when

y =+ «, the nature of attenuation with depthmay be recognised

as exponential.

The attenuation of the magnetic field strengths Hx%
and Hyz for half the plate thickness are shown by firm
lines in Figs. 3.3 and 3.4 respectively. Diffefent ratios
of half-thickness of the plate to the depth of penetration
(= d/8) are considered, viz 0.25; 1.0, 2.0, 3.0 and 4.0.
The value of the magnetic field strength on the plate
surface is taken as unity and the half-thickness of the

plate is expressed in fractions of d.

In Fig. 3.3, it may be seen that the attenuation of
sz is small when the half-thickness 1is small (e.g. % =O;25),
whereas for thicker plates (e.g. % = 4,0), the attenuation
is quite marked because of the boundary condition at the
centre of the plate (i.e. y = 0). It may be observed that
at the depth of penetration, the attenuation of HX2 is
only 77% when the ratio of 4/6 = 1.0, as against 37% when
the ratio d/$ = 4.0, i.e. the plate may be considered
infinitely thick. In Fig. 3.4, although the boundary
condition requires that Hyi =0 at 'y = O, the attenuation

of H is again greater for large values of the ratio d/¢
yi

compared with that for small values of the same ratio.

T+ may be noted that the surface values of magnetic

in Fi — I 11
field strengths Hyﬁ in Fig. 3.4 are very much smaller
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compared with those of Fig. 3.3 (table insets in the Figures)

This, together with the fact that the attenuation of the
curves of Fig. 3.4 is more pronounced, shows that on the
surface and also in the inside of the plate the x-component

of magnetic field strength is the dominant one.

SH
Fig. 3.4 also shows the attenuation of <_5§&) and

oH
Ly .
(—Eiw) in the plate. Both are coincident with the curves
oH
of H . The surface value of ( x4
i ol oY

much greater than that of (-5%&), (table inset in Fig.3.4).

) is, however, very

This shows that the current density on the surface and in

BHX2

oy

)

the inside of the plate is due predominantly to (

only.

3.4.5 Field Components at the Secondary Surface

The field components on the surface of the secondary

may be obtained from equations (3.38) to (3.40) by putting

y = d. After some manipulations this gives
B h 20d + cos2ad) fexp (-3qx) /Pxid
= o cos20 exp (-jgx X
Hoga =TT (°°° pl-Jax) /[ xid
(3.44)
2T cosh 20d-cos20d) Texp (- jax) My sa
= cosh 2o0d-cos2a exp (-jgx
Hde o MQ
(3.45)

2V/2K,0 L ' -H
cosh 2ad - cos2ad) “exp(-jgx) / yid

Jona” ”"TMZT(

(3.46)

where ]MQI is given by equation (3.42),
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H -1 .
/7%9d = tan [__T__ﬁ‘gﬁggggq(81nggmd—sin2ad) ‘
mtdnhqg(Sth2ad+sin2d§TI§fcosh2ud+cos2ad)
and ' (3.47)
/HYQd = tan—l [mtanhqg(COShgud—cos2ud)+(sinh2ud+sin2ud)
/ (sinh2ad~sin2ad)
(3.48)
For the case wh i y i 1 i
when od is large, (i.e. d>>5) equations
(3.47) and (3.48) become,
1 -1 [ mtanh
- - _mtanhqg |
/ x84 tan Entanhqg+2] (3.47a)
Joad large
and
H = tan_lﬁntanh +l] (3.48a)
Mooa q9g <204

“ad large
Equations (3.47a) and (3.48a) are the same as those
obtained by Bowden for an infinitely thick plate. It
may also be seen that for the condition of these equations,

/Myad 1eaas /Mxrd by w/4.

When d is very small, however, both equations (3.47)

and (3.48)give very small values for the phase angles,
approaching zero.

Thus equations (3.47) and (3.48) help establish the
well known fact that when the plqte is sufficiently thick,
the naturc of eddy current is inductance-limited, wherecas

when the plate is sufficiently thin the nature is resistance-

limited.

Fig. 3.5 shows in firm lines, the variation of the
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surface magnetic field strengths H_, . and H_ _ with the
X

24 y2d
ratio of half-thickness to depth of penetration. The value
of magnetic field strengths for an infinitely thick plate

is taken as unity and the curves are drawn for two relative

permeability values (viz, 250 and 1000) for the plate.

The figure shows that for very small thicknesses of
the plate, ngd is higher than its value for an infinitely

thick plate. The reverse is true for H Physically

yd®
this means that the eddy-current reaction field is small

for such thih plates and becaﬁse of the essential boundary
condition at the centre (y=0) of the plate, the small flux
is constrained to take the path along the length of the

plate. In transition from thin to thick plates, Hea
passes through a minimum and Hyzd a maximum; the flux

passing into the plate is increasing, but the reaction

field is now becoming increasingly significant.
The curves for H . also represent the variation of

the surface values of (——§§_

3.4.6 A Thickness Criterion

Most studies in literature consider a plate of

infinite thickness from the beginning and as such, little

justification is necessary for its thickness so long as

it is greater than the depth of penetration. 1In the

present case, however, a plate of finite thickness, 2d

is being considered from the beginning. This leaves one

with the option of defining the conditions or criteria
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which determine whether a plate is electrically thick

or thin. For the cases of thick and thin plates, the

general nature of eddy currents has been mentioned in

Section 3.4.5. Thus it is necessary to determine the

criteria which makes the plate look like thick or thin,

for, the eddy-current phenomena are governed by certain

distinct formulae in each case,

It is well known that when the secondary is
sufficiently thick, ]szdl is.much greater than [Hy2d|
and the conditions which make it so will be studied.

From equations (3.44) and (3.45),

szd :/Zg.[éoshZad + cosZad] %

Hyzd q cosh2ad ~ cos2ad (3.49)

When d is sufficiently large (i.e. d>>1/a), this
V20 V2a

reduces to = But since by assuwmption ?; >> 1, >>

[szdl

| |, when the plate is very thick.

y2d
V20 _
Equation (3.49) also reduces to T when cos20d=0
il . i - "
i.e. when 4 = Z~(a), This means that for the plate to be

considered thick its half-thickness should be at lecast

equal to T/4 times the depth of penetration.

When d is sufficiently small the right hand side

of equation (3.49) is given by,

L
2 * 1
2 2] %
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Thus a plate may also be deemed as thick when its
half~thickness is greater than 1l/g (i.e. 1/7 times the
pole-pitch), for, in this case, the x-component becomes

the dominant component of magnetic field strength in the

plate.

It may, therefore,be summarised that a plate may
be considerea electrically thick if its half-thickness
is greater than 7/4 times the depth of penetration. The
plate may also be considered electrically thick, if its

half-thickness is greater than 1/w times the pole-pitch.

28
Stoll and Hammond also obtained similar condition
for plate thickness. Their work has shown that for a
plate to be considered thick, the second condition is

sufficient but not necessary.

3.4.7 One-dimensional Nature of Magnetic Fields in the

Platg

The one-dimensional nature of the magnetic field
in the secondary may be obtained by studying the relative

contributions of the two terms on the right hand side of
equation (3.15).

From equation (3.38),

Bﬁ -34K o ‘ .
oy
My,
From cguation (3.39),
> 2
H -2k g - . ‘
Dyh - 220 [ainha (143) ] oxp (=3 (3.51)
9% oM



SN YALA Y (3.52)
aﬂyz/axT o
which is much greater than unity (Section 3.4.4). Thus
BHYK oH 2
’ - >>|—2L%| and as far as the current density in the

Yy 90X

plate is concerned, the magnetic field is approximately

such that only the Hx component exits,.

L
Equation (3.52) has been obtained by previous

authorsl3f28, for a single-sided arrangement. The point

to note here is that the same condition applies not only for

the double-sided arrangement, but also for the finite

thickness of the plate. It may also be noted that equation

(3.52) is independent of y, so that this condition applies

at all depths and for any thickness of the plate.

Attenuation of BHXQ/By and aHyg/ax‘inside the plate
is shown in the firm lines in Fig. 3.4. Nature of variation
of both at per unit of the surface value 1is the same in
both the cases, although the former is of much higher

magnitude.

3.4.8 Eddy-Current Loss

The eddy-current loss per unit of surface area in

half the thickness of the plate is given by the complex

Poymting vector, @;K, where
P =-LreE x 8% (3.53)
v L 2 zL X4
. * ta rhe I i - g _ :
where ng is the complex conjugate of sz and hz% pTzz.
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Using equation (3.38) and (3.40), then, this becomes,

2Kzzpa
g = —~——(sinh2ay-sin2ay) (3.54)
Y [Mlz

, 2
The loss expression, therefore, contains 2ay in

hyperbolic terms as against oy in case of electric or
magnetic fields. The total loss in the iron per unit of
surface area is obtained by letting y=d in equation (3.54).

This gives, using equation (3.42), the total loss per unit

area as
> 2
_ Ko (sirh2 o d-sin2ad) ]
ytd cosh qg Hl%iﬂﬂl%}g(COShZadrCOSZQd)+2nﬁznﬂxyg(SiﬂhZad+Sin2ad)+

2 (cosh2ad + cos2wd)

(3.55)

When 4 is large (i.e. 4 >> é), the hyperbolic terms

are much greater than the trigonometric terms and since
cosh20d ~sinh2cd, the loss for an infinitely thick plate

is given by

Zpo

£, = : : (3.56)
Y4®  osh2qg | m?tanh?qg + 2mtanhgg+2

Equation (3.56) is the same as the loss expression
obtained by Bowden 30 . The loss per unit of its value
- for an infinitely thick plate may be obtained by dividing
equation (3.55) by equatién (3.56)and has been plotted

as a function of the ratio d/¢8 in firm lines in Fig. 3.6.
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Stoll also obtained similar curves. These curves show

that when the plate is sufficiently thin, the loss is
greatly reduced, although ng increases. This is because
for very thin plates both the flux and the eddy-current
loss are small.. With increase in plate thickness, both
the flux in the plate and the eddy-current reaction

increases causing the loss to pass through a maximum

value.

When d is small (i.e. d << é), egquation (3.55)
reduces to the form,
L2 43
2Kz,pg_d 1

B 00 : (3.57)
Y*©  3cosh2qg (admtanhgg+1) 2

which shows that the loss is greatly reduced.

3.4.9 Time~average I'orce Density

Because of the presence of flux and current
densities in the steel plate, forces of electromagnetic
nature are developed. The x-component of the time

average force density, FXR’ may be obtained as

F = -—% Re(Jd_,* B_,) (3.58)

* _ _.* .
where B ) is the complex conjugate of ByR = “o“rHyﬁ'

The y-component of the same, Fyﬁ' is, likewise, given by

p =_%RQ(J X B _.) (3.59)



* -
where B <3, is the complex conjugate of B
bid

[ UoufHXQ'
o Bx% and Byl from
equations (3.40), (3.38), (3.39) and (3.5),

Substituting the values of Jz

Y2
ZUOUrKZ.q

FX2 = — (cosh2ay - cos2oy) (3.60)
|, |
Q/ .
and
ZMOMfKZ?a

F = ——————— (sinh2ay=-sin2ay) (3.61)
Yy |M |2 :

L

where the value of |M is given by equation (3.42).

gl
Equation (3.60) is a force of translation while
equation (3.61) is a force of attraction. They vary at
different depths of the plate as may be seen from the
equations. At the centre of the plate both forces are
reduced to zero. At the surface of the secondary, the

ratio of the two forces is given by,

F , _ |
“y2d _ o |sinh2od-sin2ad :
Fooa g | cosh2ud-cosZod | (3.62)

Thus, at the surface of an infinitely thick plate

(i.e. @ »>> 1/a), the force of a?traction, Fyzd’ is
greater than, equal to or less than the force of
translation, szd’ according to whether the pole-pitch

is greater than, equal to or less than w times the depth
of penetration, respectively. For a thin (i.e. d << 1l/a)

secondary, on the other hand, eguation (3.62) reduces to



20,24
39

Thus, for thin plates the force of translation can be

which shows that the ratio can be very small.

greater than the force of attraction.

In general the pole-pitch should be large compared
with the depth of penetration, so that the force of
attraction is the dominant one and whose effect may be

reduced because of the double sided arrangement.

3.5 FIELD EQUATIONS FOR TRANSVERSE FLUX ARRANGEMENT

3.5.1 General

In order to represent the transverse flux guantities,
a further suffix t is used with all suffixed expressions.
The equations for magnetic vector potential in the three
different regions may now be obtained from equation (3.20)

together with the boundary conditions outlined in Section

3.3.4, as
ay, = [Dy exp(-qy)]exp(-3qx) (3.63a)
¢ = [Cppexplay)+D, exp(~ay)Jexp (-3gx) 13.63Db)
and
Byg = [C3tcoshkyjexp(—jqx) (3.63c)

The four constants may now be obtained from the
four boundary conditions given in Section 3.3.4. Since
the field equations in the air-gap and the secondary
member are required, the values of A2t and A3t only arec

given.
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. u K . .
By = kDSexp(—kd)}exp{q(y—d)}+{D exp (kd) +exp (-kd) }
qC s
pt
exp{~q (y=Q) } | exp{- (kdqg+iep) ) (3.64)
and
. 4“0’“35122
Ay = ~————— :[coshky ] exp{ - (kd+qg+jqx) } (3.65)
pt(urq+k) :

where

. u+l u -1 .

Cop = ™ [{D exp (-2kd) +1}- 37 Dgtexp(-2kd) Jexp ( 2qg)] (3.66)

1

and DS is given by equation (3.28).

3.5.2 Field Equations in the Air-gap and the Secondary

The field equations in the air-gap may be obtained
from equation (3.64)in conjunction with equations (3.12)

and (3.13). Thus the magnetic field strengths for the

air-gap region are given by

. K
H .= ———~[Eexp kd)+D exp(-kd)}exp{a(y—d)} {D exp (kd) +exp (-kd) }
cpt
expleq (yﬂ)ﬂ exp{- (kdag+iax) ) (3.67)
and
. 5K
H o= ———-[}exp(kd)+D exp —kd)}eXp{q(V—d)}+{D ;& (kd) +exp (-kd)
Y
Cpt |
exp{-g(y-d) }] exp{- (kdtgg+jax) } (3.68)

The equations for magnetic field strengths and
current density in the secondary member may be, similarly,

obtained from eguations (3.65) together with eguations
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(3.12), (3.13) and (3.14). Thus for the secondary member

i.e. solid-iron plate, the field equations are given by

. 4K
_ 4 . )
Hyse = o [U atk Slnth] exp{~(kd+qg+jgx) } (3.69)
pt T
J4K, .
H = = ! _ K .
y3t . LA e CosthJ exp{- (kd+qg+jgx) } (3.70)
pt *
and
. _jBKZ (},2
Jz3t= é E&g+k coshk%] exp{- (kd+qg+jgx) } (3.71)
pt

3.5.3 The Effect of Primary Member

The relative permeability of the primary member occur

in the expression of Cpt’ equation (3.66), only, so that
the effect of the primary member may be studied from

this equation. The expression for Cpt is given by

+1r- . ul—l .
[{Dsexp(—de)—l}— v +l{Ds+exp(—2kd)}exp(-—2qg)}

1

U
C = 1

(3.66)
Two extreme cases of variation of primary permeability

may be studied from equation (3.66) :

Case 1, Wy~ 1

In this case, equation (3.66) becomes

Cptl = 2{Dsexp(~2kd)+l} (3.72)



u,=-1
e O showing that there is no reflection

The expression
Hq
of the current sheet and the image current sheet disappears.

Case 2, yp

o M=%

In this case, equation (3.66) becomes

Cpt = {Dsexp(—2kd)+l}—{DS+exp(—2kd)}exp(—2qg)
(3.73)
U,~1
The expression TR » 1, showing complete reflection of
1

current sheet.

The influence of the finite thickness, 2d, of the
secondary member on the contribution of the primary
member is clearly demonstrated in equations(3.66), (3.72)
and (3.73). When the secondary thickness is very large
(i.e. d >> 1/k), these equationsvreduce to standard

expressions available in the literature.

The effect of varying My is shown in Fig. 3.7, where

C .
te has been plotted against My for various values of d.
Cpt
The curves obtained are of similar nature as those for
C \
l—E&fi , Fig. 3.2. Thus the observations made in Section
C
| "p2 |

3.4.3, are also applicable for curves of Fig. 3.7. Bowden
observed that for Ul > 500, this ratio tends to unity, i.e.
the primary permeability may reasonably be assumed infinite

over this value. This observation also holds in Fig. 3.7,

irrespective of the secondary thickness. TFor very small

" secondary thicknesses, (ad << 0.1), however, this

observation necds to be modified. Such small thicknesses
o C

s : ven if it doos
would, perhaps, not be used in practice or even if it does,
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this observation will hold good at a higher value of by
Thus, it will be assumed that Hy =@ for the rest
of the analysis. The field equations in the secondary

will be modified in the following section on the basis of

this and some further assumptions.

3.5.4 Modified Forms of Field Equations in the Plate

As observed in Section 3.4.4, the three modifications

may be outlined as:

(1) the secondary quantities will, henceforth, occur
without the further subscript of 3 , e.g. th for

Hx3t’ etc.

(ii) the relative permeability of the primary will be
taken as infinite so that Cpt = Cptoo given by

equation (3.73), and

(iii) the pole-pitch of exciting current sheet will be
assumed much greater than the depth of penetration,
§ (= 1/a), so that 202>> g? and k = (1+3)a.
In terms of the above modifications, equations (3.69)

(3.70) and (3.71) are given by

. 2K _(1+3) _ _
H,, = z [sinho (1+3)y]exp (~3ax) (3.74)
X

My
. j2K g , .
A -[cosho:(l*-a)y]exp(-«JqX) (3.75)
YR o

and
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~j4%KZ
Jot = . {cosha (1+3) y]exp (-jgx) ©(3.76)
t

where

Mt=2coshquoshudposud[{m;anhqg+tanhad—tanad}+j{(ﬁtanhqgﬁanhad+l)

tanad+tanhod}] (3.77)

The absolute value of Mt is given by

M, |= VZcoshqg|m’ tanh?qg (cosh2ad+cos20d) +2mtanhag (sinh2od-sin2ed)

- ;’
+ 2(cosh2ud - cos2(xd)] 2 (3.78)

The attenuation of the magnetic field strengths th

and Hyt for half of the plate thickness is shown in dotted
lines in Figs. 3.3 and 3.4. The construction of these

graphs has been described in Section 3.4.4.

In these figures it may be seen that the nature

of attenuation of Hx is the same as that of I-Iy2 and

t
the nature of attenuation of Hyt is the same as that of
H e But like in longitudinal flux arrangement, here
X
also |H_, | >> |H_ .|, in spite of the boundary condition
xt vt

which requires H , = O at y = 0. (Table insets in the

figures).

In these figures, the at?enuation of both H . and

H is seen to be very small for small thicknesses (e.g.
vt
d/8 = 0.25) and rather pronounced for large thicknesses,

€.g.4/8 = 3.0). The surface value of th in Fig. 3.3 is

much higher than that of Hyt in Fig. 3.4 and this shows

that under transverse flux arrangement also, the x-component
[« 24 -
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of magnetic field strength is the dominant one.

The dotted lines in Fig. 3.4 also represent the

oH 9H
attenuation of xt, vyt
( 3y ) and ( 5%

), although the surface
value of the former is much higher than that of the latter
(table inset in the figure). This shows that the current

density on the plate surface and also in the inside of the
oH

plate is due predominantly to{—§§z).

3.5.5 The Field Components at the Secondary Plate Surface

The field components on the surface of the secondary
may be obtained from equations (3.74) to (3.76) by putting

y = d. After some further calculations, this gives,

2K
thd = T——T (cosh2oad - cosZad) exp( jax) i
(3.79)
/—qu
Hytd = ~T_—T (cosh2ad + cos?ud) exp ( th)éﬁ~ td
3 (3.80)
an ~
2/§uKz )
= osh2ad + cos2ud) ex X
Tpta = TTHT © p(-Jax) /-0
(3.81)
where,
-1 mtanhqg (sinh2od+sin2od ) :} 3. 82
xtd tan mtanhqg(olnbzod*%LnZQO){?(cosh2ad—cog2od) (3.82)
and
-l E&QQDEELEQEh7Odi§OQZOd) t (sinh2cd--sin2ad) (3.83)
I (sinh2od+sin2ad) )
For the case when ad is large i.e. d »>>1/a, equations

(3.82) and (3.83) become



- 89 -
s _ N i
xtd = tan™1 [thgf} (3.82a)
— ad large mtanhgg+?2
and
H = tan ' [mtanhgg+l
td tanhgg+ ] (3.83&)
od large

Equations (3.82a) and (3.83a) are the same as the
correspondiﬁg equations, i.e. equations (3.46a) and (3.47a)
respectively, of the longitudinal flux case, and of course,
the same as were obtained by Bowden3O

, for an infinitely

thick plate.

When d is very small, however, {thd and {Hytd

tend to m/4 and 7m/2 respectively.

Fig. 3.5 shows in dotted lines the variations
of the surface magnetic field strengths thd and Hytd
with the ratio of half-thickness of the plate to depth
of penetration. The construction of the graphs has

been described in Section 3.4.5.

Unlike the longitudinal flux case, here thd
decreases and Hytd increases for very thin plates.
For thin plates, this implies that the eddy current
reaction field is small and more and more of the flux is

allowed to pass through the plate thickness. With

i i ickne wever, H soon becomes
increase in plate thickness ho r Hoig

siénjfjcant. Tn transition from thin to thick plates

i inimum.
thd goes through a maximum and Hytd through a mini

] , represent the variations
The curves of Hytd also P
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oH oH

xt vt
5y ) and (—5%=) although

the former is always much greater than the latter.

of the surface values of (

3.5.6 A Thickness Criterion

As in the longitudinal flux arrangement, Section
3.4.6, a thickness criterion may be established for the
transverse flux arrangement.. From equations (3.79)

and (3.30),

thd‘Z/Zg {cosh2ad - cosZad}
Hytd q cosh20d + cos2ad

(3.84)

When d is very large, i.e. the plate is very

thick, this reduces to¢€%. But since by assumption

/20
q .
for a thick plate. Equation (3.84) also reduced to

>> 1, therefore Ithd | >>|Hytd|which is obtained

/ZQ when cos2ad = 0, i.e. when d = % (1/a). This means
that for a plate to be considered thick, its half
thickness should be at least equal to w/4 times the
depth of penetration.

When d is small, on the other hand, equation (3.84)

reduces to

Thus a plate may also be considered thick if d > &,

20.°
i.e. if its nalf-thickness is greater than 7/2 times
s 2
(dePED_Qf_PEDEEEEEEQEL , for, then the x-component of
~ T pole-pitch
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surface magnetic field strength becomes the dominant

one.

3.5.7 One-Dimensional Nature of Magnetic Fields in the

Secondary Plate

From equation (3.74) and (3.75)

OH_,  j4K o
5 = — [Cosha(l+j)y] exp (-Jjgx) (3.85)
Y M
t
and
PH,, 2K g
—sx— = Z [cosha (1+3)y] exp(-jgx) (3.86)
t
<. From equations (3.85) and (3.86) therefore,

laHXt/ayl: g2 G587

2
Since by assumption 2a” >> 1, (Section 3.4.4),there-
S

d
fore|aHXt/ay|>> bHyt/8x|. Equations (3.85) and (3.86)
form the two terms in the current density expression of
equation (3.15), sO that the current density obtained is
approximately such that only the H . component of the
magnetic field existed in the plate. The equation (3.87)
is obtained irrespective of the plate thickness and in
spite of the presence of a boundary condition at y = O

plane This equation also holds at any depth in the

plate.
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of
. oH
Attenuatlons“ xt) and (aHyt) inside the plate
oY aX
for one half of plate thickness havtbeen shown in Fig.3.4,
(dotted 1lines). Although the nature of variations of both

at per unit of the surface value is the same, the former

is much higher than the latter in magnitude.

3.5.8 Eddy-Current Loss

The eddy-current loss per unit of surface area in
half the thickness of the plate is givén by the complex

Poymting vector, &) where

vt

£, =- L Rre(®  x mx,) (3.88)

vt 2 zt xt
H;t is the complex conjugate of thand Ezt = szt. Using
equation (3.74) and (3.76), this becomes,

2K 2ap ,
£, = —% _ (sinh2ay + sin2ay) (3.89)
vt |M ’2
t

where [Mt| is given by equation (3.78).

The total loss from one side is obtained by putting

y=d as
G) Kzgap (sinh2ad+sin2ad) .
ytd cosh?qg Ln%tanhzqg(coshzad+cos2ad)+2mtanhqg(sinh2ad—sin2ad)

+—2(cosh2ud—c082ud)] (3.90)

when d is sufficiently large (i.e. oad >> 1), equation
(3.90) becones

K Zap

R .{ﬂ, 1 (3.91)
Y ~ cosh?qg m?2tanh?gg+2mtanhgg+2
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which is the same as was obtained by Bowden,

When d is small (i.e. ad << 1), equation (3.90)

becomes
2K22.0L2.p.d 1
(Pyto B Coshzqg ’ R 80333
mﬁtanh?qg+—%é_.mtanhqg+4u%d2
n , (3.92)
' B ZKZ?u?pd ‘
i.e. Pyto = —Z (3.92a)

m?sinh?qg

Thus the loss becomes very small.

The loss per unit of its value for an infinitely
thick plate has been plotted in dotted lines in rig. 3.6.
These curves confirm the observation by Jackson 4 , that
for thin plates the loss in transverse flux arrangement
may be many times higher than that obtained in longitudinal

flux arrangement.

For very thin plates, the reaction field is weak
and the flux passes through the plate. The eddy-current
distribution over the plate thickness is uniform, as may
be observed from attenuation curves (Figs. 3.3 and :.4),
and the loss increases. With increase in plate thickness,
the x-component of magnetic field gradually comes into
prominence, the total flux reduces and a greater proportion
of the flux passes along the plate length. The loss thus
reduces, and goes to a minimum. When the plate is very

thick, the reaction field governs the loss, which becomes
, >

the same as that in the Jongitudinal flux arrangement.
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3.5.9 Time Average Force Density

The x and y-components of time average force densities

Fxt&Fyt may be obtained from
F_, = - 2 Re(J_. x B*.) 3.93
xt 2 zt ¥ Syt (3.93)
and
F . = - % Re(J_, x B* ) (3.94)
yt 2 zt - “xt )

.

are the complex conjugates of B

" (:“onHXt) respectively.

where, B*, and B;

vt t vt

(=p_u

. oHyt) and Bx

Substituting from equations (3.74), (3.75) and

(3.76) into eguations (3.93) and (3.94),

ZUruquzz
F = ———— %2 (cosh2ay + cos2ay), O <y < d
)
t (3.95)
and ~
2u_p oK _? :
F = ——E—Qa—zm(sinh2ay+ sin2ay), 0O <y «d
SN
t (3.96)

where |M_| is given by equation (3.78).

el

Thus both the forces of translation, Fxt’ and of

attraction, F e vary with the depth, y. At the centre
) Y

of the plate, however, only F_, exists. At the surface

of the plate, their relative magnitudes are given by

¥ inhz in2ad

ytd _ o sinh2ad + sin .“} (3.97)
F T q '[coshZQd + cos2ad

xtd
Thus, al the surface of an infinitely thick (ad >> 1)

plate, T ‘ will be greater than, ecual to or less than Fxt'
Y
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according to whether the pole-pitch is greater than, equal
to or less than, = times the depth of penetration,
respectively. When the plate thickness is very small

2
equation (3.97) reduces to

which shows that FX may

t
be much greater than Fyt at the surface.

Thus, in general the pole-pitch should be greater
than the depth of penetration for the transverse flux
arrangement also, so that the force of attraction becomes

the dominant one, and whose effect may be reduced due 40

the double-sided arrangement.

3.6 CONCLUSIONS

In this chapter, linear two-dimensional theories
have been developed as appliedto a plate being subjected
to travelling magnetic fields on either side. The cases
of poles on opposite sides being of the same, (i.e.
longitudinal flux), and opposite (i.e. transverse flux),
instantaneous polarity have been considered in detail.
Analysis has been carried out for one-half of the plate
thickness, it being assumed that the same applies to the
other half of the plate through matching boundary conditions

at the centre of the plate.

Expressions have been obtained for magnetic field
strength= and current density in the plate. The contribution of
primary iron, equations (3.27) and (3.6€), has been shown
to be affected by the finite thickness of the plate. It is
shown that for primary relative permeability of 500 and over,

the influence of finite thickness is negligible.



Surface values of different electromagnetic quantities
and their associated phase angles have been obtained and
verified against standard expressions available in the
literature:x) , when the plate thickness has been taken
as being very large. A thickness criterion has been
established by considering the relative magnitudes of the
x and y-components of surface magnetic fields. They help

establish the criterion as to when a plate may be

considered electrically thick or thin.

It has been established that the magnetic fields in
the seqondary are predominantly one-dimensional in nature,
irrespective of pole arrangements, plate thickness and
the presence or otherwise of boundary conditions at the
plate centre. LoOss expressions have been obtained which
agree for d -~ «, with those obtained for a thick plate.

It has been shown that for the transverse flux case the
loss in thin plates may be many times greater than that
for longitudinal flux case. In transition from electro-
magnetically thin to thick plates((d/6)> 1) the loss for
the transverse flux arrangement goes through a minimum

and the loss for the longitudinal flux case passes through
a maximum. Equations for electromagnetic forces developed
in the plate have been obtained and used to show the
prominence or otherwise of the force of attraction against
the force of translation. Conditions have been obtained

to determine when one force is grcater than the other.
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For the case of the plate being very thick, the
two different pole arrangements become the same, for both
reduce to the case of studying electromagnetic fields in
an infinitely thick plate. Thus the different expressions
for electromagnetic fields and loss become the same for

thick plate as may be seen from curves of Fig., 3.5 and

3.6.

As mentioned in Section 3.2.5, the effect of
hysteresis has been neglected in this chapter. However,
an approximate allowance for hysteresis was made on the
basis of elliptical B-~H curve. The electromagnetic field
quantities obtained in this chapter are modified in order
to allow for hysteresis. The detailed derivation of these

are given in Appendix 1.



THE FIELD EQUATIONS ON TIE PLATE AND PRIMARY SURFACES AND

A COMPARATIVE STUDY OF THE TWO POLE~ARRANGEMENTS

4.1 INTRODUCTION

The linear two-dimensional theories developed in
Chapter 3 have been extended further in this chapter, which

is divided into two different, though related, parts.

In the first part, the field equations have been
developed at the surface of the primary (y=d+g) and at the
surface of the plate (y=d). These equations have been used to
investigate the nature of the eddy;current reaction field
for various operating conditions. The resulting magnetic
flux densities are also considered. The wave impedances
at the plate surface are obtained and their ratio is defined
as an important dimensionless parameter, Q. The study also
includes power loss and electromagnetic force expressions.

The two different pole-arrangements are considered in detail.

Tn the second part of this chapter, a comparative study
has been made of the lincar theories developed for the two
differeut pole—arrangements. The advantage of considgring a

finite thicknecss of the plate in the analysis is that the

.t Al v s N
e R N N P and thin plates may be
specific cases of infinitely tnick ai t ay

. a1 one e tThe oo 311 v - 110
obtained from the resulting equatlons; the comparative study

considors the two cascs in some detail. The study includes
e I TR G NS S 4 - - AN
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the eddy-current distribution pattern in the plate, the
magnetic field strengths on the plate surface, the eddy-

current loss, the reaction field of eddy currents and the

impedances at the plate surface. For this purpose, the

results obtained in Chapter 3 have been used. The
study also includes an investigation of the various assumed
inequalities which were used to simplify many of the

expressions obtained.

4.2 THE FIELD EQUATIONS ON THE PLATE AND PRIMARY SURFACES

-

4.2.1 General

The eqguations for field quantities in the plate and in
the air-gap region are given in Chapter 3. The guantities
at the surface of the plate may be obtained by putting y=d
in these equations. For each of the arrangements of poles, it
is possible to study the reaction field of eddy currents in
the plate, its dominance Or otherwise on the magnetic field
in the absence of eddy currents, the flux density at different
parts in the air-gap region, etc. By studying the input
impedances on the plate surface, it is possible to define
certain dimensionless parameters; the loss and foxce

. fne ; I = the aral .
expressions may Dbe obtained in terms of these parameters

As has been shown in Chapter 3, the magnetic field

2

strength 18 predominantly one-dimensional in the plate when

?d23>q2 Thus in the study of the magnetic field strength in

) e ORI + is consicered. In the
the plate, only the x~-component L = <

i socti he longitudinal flux arrangement 1is
following scction the long
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cs i - -
considered and the transverse flux arrangement is considered

in section 4.2.3.

4.2.2 Longitudinal Flux Arrangement

4.2.2.1 Eddy-Current Reaction Field

The magnetic field strength obtained in the plate consists
of two components, Hc’ the magnetic field strength of the
current sheet, and Hr’ the reaction field of eddy current.

.

Thus, the resultant magnetic field, H is given by

H=H + H : (4.1)
C I

Since only x-component of magnetic field strength is
being considered, then for the LFA and at the surface of the

plate (i.e. y=d), equation (4.1) may be written as,

. . .

(4.2)

Hopa = Hoxsa T Hrxra

The analysis so far has assumed only the resultant

fields, so that ﬁ 0g may be obtained from eguations (3.38)
T X

and (3.41) as,

% (l+j)(l+jtanhad tancd) . exp (-Jax)
.

H_, = ——

x2d Coshqq[{Ontanhqg~tanudﬁ?mhyd+l]+j{(mganhqg+tanhad)tanad+l}]
2
207 551 (4.3)
7
Ul o

. Co e eaTu L fine the
ai _ ig necessary to define t1
In order to obtaln chﬂd’ it is y
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condition when the surface current density in the plate
becomes zero for any plate thickness. As may be seen from
equation (3.40) or (3.46), this condition is obtained when
a>0. Since the relative permeability of the solid-iron plate
is quite large and sinusoidal alternating fields are being
considered, 20 implies that p»w. Thus, for determining the
magnetic field of the current sheet, p»+*» and ¢>0 and from

equation (3.21)

k=g | (4.4)

L3

At the plate surface (i.e. y=d), therefore, H_ o5 May

be obtained from eguation (3.31) or (3.29) as,

K_.exp(-jgx)
i = . (4.5)
cxid coshqg(l+urtanhqgtanhqd)

The reaction field at the surface'ergd may be obtained
by substituting equations (4.3) and (4.5) in equation
(4.2). Clearly, the resulting expression is complicated and

three specific cases about the reaction field may be studied

from the above eguations as they are.

Dividing egquation (4.3) by equation (4.5),

esa { (1-tanad. tanbad) + (1+tanad. tanhod) }(L R Emibng. tanhad)
- RN gttanhad) tanad+l )

- had 1 { b
I { (mEanhqgy- L anad) tanhad 1 L amean:
CX )\/1(1 Ll L

(4.6)
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If in equation (4.6), mtanhqg<<tanhod and also

mtanhqgg<<tanad, then it reduces to

x2d mtanhgg<<tanhoad

5(l+urtanhquanhqd), { (4.7)

cxfd mtanhqgg<<tanad

mtanhgg<<tanhod is believed to be the general case of the
Aassumption mtanhgg<<l in Bowden's work 30, and, likewise,
also implies that the eddy-current field is strong.
mtanhgg<<tancd is another restriction brought in due to the

finite thickness of the plate. In general, however,

mtanhgg<<tanhad is the necessary condition.

Three specific cases may be identified from equation
(4.7) .
Case 1 urtanhqgtanhqd>>l

i 3 - >> H and hence, H .. Thus
This means that Hx%d cx2d 1

x£d+er£
under this condition the eddy-current reaction field is almost
equally as strong as the resultant field. This applies to
solid-iron plates having high permeability and/or to

heaters having large ratios of plate-thickness to

pole-pitch and air—-gap to pole-pitch.

Case 2 prtanhqgranhqd<<l

.
.

This means that ngd+ch£d 0.  Underx

and‘hence er£d+

e - ~orfor ~caction field is very weéak
+his condition, thererfore, the reac . -

1 this significs @ complote reflection of applied field in
and this o Lyitbdn N *

i iti >e obtained with rathev
secondar This condition may be
the sccondary. This
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thin plates of low permeability, e.q. Copper, and with a

length

low value of the ratio of air-gap,to pole-pitch.

Case 3 urtanhqgtanhqd=l

This means that é -hi 5 a
erﬁd+Hx£d/2' In this case, the

-_)_
cxd

plate may be of solid iron or copper. In the former, the
plate-thickness and the ratio of air-gap to pole-pitch are

both relatively unimportant, while in the latter these should

be as large as possible.

The above study defines the conditions when the eddy-
current reaction field may be equally as strong, half as
strong or very weak compared with the resultant field. They
are shown to depend on such factors as the relative
permeability of the plate, its thiékness, the air-gap length

and the pole-pitch.

4.2.2.2 The y-Component of Flux Density at the Surfaces

4.2.2.2.1 At the Plate Surface, y=d

The y-component of the total flux density at the surface

of the plate (i.e. y=d) may be obtained from eguations (3.39),

(3.41) and (3.5) as,

(tanhadt] tanad) exp (=Jgx)
Z

bl 4 e e
ey

4 1
: ; : -anhgg—tanhad) tanadt
BySLd Cochqg[gmtanhqgwtangd)tanhqd+l}+j{(w¢unhqg tanhad) tanad+1} |



The y-component of the flux density at the plate surface

due to the applied field of the curvent sheet, é

cyad’ may »he
obtained from equations (3.5), (3.32) and (4.4) as,
. juousztanhqd.exp(—jqx)
ch%d— (4.9)
coshqg ( l+urtanhqg;tanhqd)
.- judKz.exp(—qu)
. chzd: STnhag if  u _tanhggtanhgd>>1 (4.9a)

urianhqgtanhqd>>l will be assumed to hold, so that the
simplified expression of equation (4.9a), instead of eguation

(4.9), will be used in further analysis.

Since magnetically linear media are being considered here,
equation (4.1) applies to the y-component of the magnetic
field strength, and for that mattexr,to the magnetic flux
density also. Thus, using the relation ByidzB‘ p By

the reaction flux density at the plate surface,<Bry2d, i

obtained as,

_ - B (4.10)

Bryﬁd Byﬁd cyd

putting the values from equation (4.8) and (4.9a),
cguation (4.10) becomes,
~-ju K (1+j)(l+jtanad.tanhad),exp(~jqx)
: oz ' - .
I3 B e e o e ~ e —
rygd (qrﬂwuft{@“tnnhqq~tungd)tanNad+l}+3amtanhqgvtanund)tanqa‘l}]

(4.11)
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Comparing equation (4.11) with equation (4.3), it may be
scen that

- V2a>> >0
- =TU q, H
= 1o e 1 (4.12)

B = 2 .
ryld tanhgg x2d H urtanhqgtanhqd>>l

4.2.2.2.2. At the Surface of the Primary, y=d+g

An equation of the form (4.12) may be obtained for the

y-component of the flux density at the primary surface

(i.e. y=d+g) when there is no eddy current. Thus putting k=q

in eguation (3.30) and using equation (3.5) again, the

y-component of flux density at y=d+g in the absence of eddy

current, chz(d+g) is given by

. ju . K .(p_tanhgd + tanhqg) - exp (-jgx)
B . =2z = , (4.13)
cy & (d+q) (1 + Urtanhqgtanhqd)
ju ~ urtanhqd>>tanhqg
. = ° X if (4.13a)

B =
cyf(d+9)  {anhqg u_tanhggtanhgd>>1

The condition urtanhqgtanhqd>>l was already assumed to

is satisfied the other condition,

hold and if this condition

viz. 1 tanhqgd>>tanhqg, will also be satisfied. Thus two
C M J

) actually amounts to one.

conditions of equation (4.13a

A
is the actual line current

In equation (4.13a), K,
Thus comparing

' incd at t -imary surface.
density obtained at the primary

(4.13a2) with cquation (4.12), it may be seen that

cquation
©eddy current may be represented by an

the total offect of
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equivalent current sheet on the rlate surface whose line
density is equal to —é .
. d x4

4.2.2.3 The Input Impedances at the Plate Surface

The input impedance at the plate surface (i.e. y=d) is

given by

é [

. . zld _ szQd
- _ (4.14)

vy d " I

x%d xd
From equations (3.38) and (3.40), then,
2y£d = -(1+j)aptanha (1+3)d (4.15)

The impedance due to the reaction field of the eddy

current at the plate surface is given by

Erzkd _ (4.16)

Zryzd B

Hxﬁd

ere a O (S b

the plate due to the reaction field of eddy current, and is

given Dby

Bryra o (4.17)

4.12), this bocomes,
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- S
rzd q_tanhqg %24 (4.17a)

so that the impedance Zryﬁd' equation (4.16), becomes,

. B ]uo.w

Z = e
rysd  gtanhqg (4.18)

It may be seen that the input impedance has a real and an
imaginary part i.e.it has a resistive and @ reactive component
while the impedance due to the reaction field has only an
imaginary part i.e. it is wholly reactive. The input
impedance 1is dependent on the finite thickness of the plate
while the impedance due to the reaction field is independent
of it. In fact eguation (4.18) is the same as was obtained

for an infinitely thick plate 30,

4.2.2.4 The Dimensionless Parameter, Q

L2

In orderxr that maximum power transfer may take place
between the primary and the solid-iron plate, the two

impedances given by equations (4,15) and (4.18) must be equal.

. . et )
In general, however, a dimensionless parameter, Qll'ma§ be

defined us the ratio of the moduli of the two impedances. For

+he case of maximum lOSS; therefore, this parameter will

for maximum loss, 0 = 1.

become unity, 1€ 0

' 5 .16 therefore
From cquatlons (4.15) and (4 Y, ,
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IZrzldl Vors
Q,, = —"— = 2e (4.19)
Ié mtanhgg
ySLdl
where
. = [éosh2ad + cos2od
cosh2ad - cos2od (4.20)

From equations (4. 8) and (4.11), it may be seen that

Byzd _ -mtanhgg (tanhad + jtanad)
B (L + J) (1 + jtanhced.tanad)
ry.d

After some4simplifications,

18,4l

yed _ mtanhqgg i (4.21)
3 ! /2e %)
rygd!

so that for maximum loss, éygdl = Iéryﬂdl’

It is interesting to note that when the plate is
infinitely thick, the value of ¢ given by equation (4,20)
tends to unity and the present definition of QQQ becomes
the same as waé given by BowdenBO, Using equations (3.43)
and (3.19) for the valuc of m in equation (4.19), the

. . “
exprecssion for Qgg may be obtained as,

BoWET L
R SR i (4.22)
Qe 7 granhqy pu L

7 ) o g} Y el 1 .._ ne d j_ mens 1 One ana 1- h 0
) 1€ C func LJOH Of lhc me C}' ] S
Cl(,\( T J.S I QQ, Q/ LS 13} i ns
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thickness of the plate, Thus it is possible to define the

optimum half-thickness, dmgl at which maximum loss will

be Obt( i . i i i
ained Such a value of dm2 is obtained,by putting

Q

Q%:l in equation (4.19) and using eguation (4.20), as,

cosh2udm m%tanhzqg+2

2

cosZad
m

(4.23)
% m “tanh ‘gg-2 !

Equation (4.23) shows that for a given set of machine
dimensions a thickness of the plaLe may be so chosen that
maximum loss is obtained. Conversely, for a given plate
thickness, equation (4.23) may be used to define machine

dimensions for maximum loss.

In general, Q is obtained as a number e.g. 12.58
22
and is indicative of the fact whether the loss obtainable

under a given arrangement is very well exploited or not. A
value of QQQ as close to unity as possible is highly desirable,

because in that case loss close to the maximum possible is

being obtained.

4.2.2.5 Loss In Terms of Qo4

The loss expression, equation (3.55), may be obtained .n

j i s rameter and such a form of
terms of the dimensionless parameter &

. i e - sisualise when the maximum loss
cquation makes it casy Lo visud

. . < g e 1 1 £ the
occurs ]\150, CXP]TCSSIH(} the loss as per unit ot ti

: 1oss one ¢an sce how best +he obtainable loss is
maximum LoSs o C se
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being exploited,
From equation (4.19y
V2

mtanhqgg = 5 (4.19a)
L

o

22

Using equation (4.1%a) in equation (3.55), the loss

expression is finally obtained as,

aN
2
p — __Iiziuo‘wwl’AQ,Q, 4 24)
v2d~ 2VZgsinhgg.coshqg (4.24
where
wl — gsinh2ad-sin2ad . (4.25a)
(COSh22ad~COSZ2qd)2
A = (4.25b)
24 -1
+ + /2
Q™ Y /2
and
0. = §inh2%~d+-sin2a(§ . (4.25c)
2 (cosh 2ad~cos 2ad) *

For thec case of maximum loss, Agz is obtained by putting

0 =1 in equation (4.25b) and, thus, the loss expressed at
S22

per unit of its maximum value is given by

A 41/2 :
R v . ?__j__‘ﬂ___’_;__i__w,_” (4.26)
gl ST s
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4,2.2.6 Force Densities in Terms of Q
-9, L

Using equation (4.19a) in equations (3.60) and (3.61),
the time average force densities at the plate surface may

be obtained in t
erms of Qz%' Thus the x-component, F_, s is

given by,
"2
P _ K‘z'“ s 2
xgd ~ V/2esinhggcoshqgg (4.27)
and the y-component, Fyﬁd’ is given by
%2 2, A
. 0% Y17eg
(4.28)

yd ~ VZgsinhggcoshgg

In equations (4.27) and (4.28), Agg is given by equation

(4.25b). The forces will also have their maxirmuin when ¢ =1
2%
and equation (4.26) also gives the forces per unit of their

maximum values.

F F P
ﬁé_z_i&é_zl_’id._ (4.29)

i.e. =
szdm byldm Pyﬂdm

4.2.,3 Transverse rlux Arrangement
Rl A =

- _‘_,m_.,._.__,__..._—_,_______—-—-

4.2.3.1 pady-Current Reaction Ficld

Equation (4.1) also applies for transverse flux arrangement

and in terms of the platonsnrface (i.c. y=d) quantities forx

the TrA, cquation (4.1) is given by .
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. .

H = , .
xtd chtd i ertd (4.30)
where H. 4 is the magnetic field strength of the current
sheet, H is- - -

r Prxta *° the magnetic. field strength of the eddy~current

reacti fi i 1
R ion leldAand thd is the resultant field.

:E'

<td is obtained from equation (3.74) together

with eguation (3.77) and is given by,

. : KZ.(l+j)(tanhad + jtanad).exp(“jlx>

thd -

coshqg[{mianhqg+tanad~tanad}+j{(mtanhqg.tanhad+l)tanad+tanhud£]

(4.31)
Hota is obtained, as in section 4.2.2.1, by putting k:g in
equation (3.69). And this give, after some steps,
. K .exp (-3qx)
. (4.32)

R ]
chtd = Tcoshqg (1 + urtannqg.cothqd)

the reaction field may be

Hyeta
X and from eguations (4.31)

H

Once again, the effect of

obtained by finding the ratio
xctd
and (4.32)

xtd { (tanhad-tanad) £ _('lef}?ﬁﬁ)_},g;ﬂfLE’;QECEQ;_Q@}EE@M_W
. fbntanhqq+tanhud~tanmﬂ}+j{(mﬁanhqq'ta”h“d+l)tan&d+tanh&d}]

4.332)
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Lf mtanhqg<<| (tanhad - tanod) and mtanhqgg, tanhad<<l,

then equation (4.33) reduces to the form

thd mtanhqg<<l(tanhad—tanad)|

chtd

-

2 (1 + u_tanhgg.cothqd),

mtanhqgg.tanhad <<l

(4.34)
mtanhqg‘tanhad<<l (i.e. mtanhqg<<cothod) is believed to be
another form of the general expression in place of mEanhqgg<<l
used by Bowden3o and implies that the eddy-current field
is strong. ﬁianhqg<<|(tanhud - tanad)[ is another restriction
due to the finite plate thickness. 1In general, however,

mtanhqgg. tanhoad<<l is the necessary condition.

Thiee specific cases may be studied, as before, from

cquation (4.34).

Case 1 Urtanhqg.cothqd>>l

In this case, thd>>chtd’ so that thd*ertd‘ Thus

the reaction field 1is nearly equal to the total field. This
condition is obtained, for a given pole-pitch in a machine
having large air-gaps and with plates of high permeability

and any thickness.

Case 2 Urtanhqg_cothqd<<l

.

' 7 - and hence H -+0. Thus, the
This means, thd*chtd and henc ‘rxtd r

e o eame as the field of the applied
Lotal ficld is jcarly the sam S ,

o cince B 0. this implics complete
currcont shoeot and since Hooeq ™ x &

4 i -he ate Tor a gilven
X e eivrent ficld in the plate. TIoxr a give
roflecbion of cddy-cur rent



- 114 -

pole-pitch, this ¢ Lt . i ; - ‘
' 5 condition applies to machines having small

air-gaps and “hic St .
gak a thick plate of low permeability, e.g. Copper.

Case 3 urtanhqg_cothqd=l

Hoea

This means chtd+ertd+ —5 . Thus the field of the

current sheet and the reaction field of the eddy current are
approximately equal in magnitude. This applies to plates
of high (e.g. s0lid iron) or low (e.g. solid copper)
permeability. For given values of air-gap length and pole-

pitch, the plate thickness could be large with a high

permeability plate: and small with a low permeability plate.

4.2.3.2 The y-Components of Flux Density at the Surfaces

4.2.3.2.1 At the Plate Surface, y=d

The y-component of total flux density at the plate
surface (i.e. y=d), Bytd , may be obtained from equations

(3.75), (3.77) and (3.5) as,

szmpO(l+jtanhad.tanad).exp(~jqx)

Bytxi: COShqgTfﬁ{ﬁﬁﬁ&g?Eaﬁﬁgﬁinﬁga}+j{(Hianhqg‘tanhad+1)tanad+tanhud}]

(4.35)

the y-component of flux density at plate surface (i.e.

y=d) duc to the field of applied current sneet, chtd’ is

i ing k=q 1 wation (3.70 together with
obtaincd by putting k=q in equatlo ( ), g

oy C
<

cqguation (3.5), as;



. ~ Ju K .exp(~jgx)
cytd = coshqg {prj;anhqg T tanhqd} (4.36)
A .
. judKz.exp(—jqx) .
- chtd = Sinhqg , if 1§tanhqg30tanhqd (4.36a)

Since urtanhqg>>tanhqd will be obtained in most cases, the
simplified form of equation (4.36a) will be used. At the

plate surface, therefore, the magnetic field strength due to

the reaction field of eddy currents, Brytd' may be obtained

- : - - ; 3
from the relation Bytd chtd + Brytd and equations (4.35)

and (4.36a) as,

. —jpdﬁz.(lﬂ') (tanhad+tanad) exp (-Jgx)
Brytd= sinhqg[ﬁmtanhqg+tanhad—tanad}+j{(nianhqg.tanhad+l)tanad+tanhaaj]

(4.37)
Comparing eguation (4.37) with equation (4.31),
- . Y20>>q, U,7® 4
B = _EEQ__.H if L (4.38)
rytd tanhgg xtd urtanhqg>>tanhqd

4.2.3.2.2 At the g££@§£zﬂgggggge, y=d+g

The y-component of flux density at the surface of the

due to the field of the applied current

primary (i.e. y=d+g)

sheet ﬁ is obtained Dby putting k=g in eguation (3.68) and
el Z )

.

; T U ity B is, thus,
. - S This flux density " ,
uning cguation (3.5). Th cyt (diqg)

given by,



- 116 -

lay
. judKZ(ur + tanhqd.tanhqqg)

Beyt (d+g) (4.39)

(urtanhqg + tanhgd)

In general y >>tanhqgd.tanhqg and by assumption in the
previous sub-section Urtanhqg>>tanhqd, so that equation
(4.39) may be approximated as,

. ul—H)o
é J UO A
cyt(d+g) ° EEHHEE-KZ if ur>>tanhqd.tanhqg (4.40)
urtanhqg>>tanhqd

But Ez is the actual line current density assumed at the
primary surface. Thus, comparinyg equation (4.40) with
equation (4.38), it may be concluded that the total effect
of eddy currents may be represented by an equivalent current
sheet on the plate surface whose line density is equal to
“Hyta

4.2.3.3 The Input Impedances at tne Plate Surface

e i e

.

The input impedance at the plate surface, Zytd’ is

given by,

od_ . a
E zta
é _ ztd — (4.41)
ytd g ¥
' thd thd

From eqnations(3.76) and (3.74) at y=d, then,

; = w(l+j)GOcotha(l+j)d (4.42)
Jytd )



The i S , A .
impedance Zrytd due to the reaction field of the

eddy current is obtained from,

rytd

H
xtd

2ryta T (4.43)

where Erytd is the electric field at the plate surface

induced by the reaction field in the plate and is given by,

. dB_ .4
Epota = Jo— ax _ (4.44)

Using equation (4.38), this becomes,

. judw
Erytd ~ ‘gtanhgg Hira (4.44a)
Thus Z in equation (4.43) is given by,
rytd
. ) LW
S S a.e3)

Zrytd gtanhgg

Once again, the input impedance due to the total field

. o fem I 1o TnE ~ . -
has resistive and rcactive parts and 1S influenced by the

finite plate~thickness while the impedance due to the reaction

ficld of eddy currents is purely inductive and independent

of plate-thickness.

e eionless Pazemetely Qo
4.2.3.4 The Dinensionlesg tostoo s e it

. ionles arame te nay
. : A o aimensionless paramater Q. ., May
Aq in socllon A 20250 4 rURR
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be defined in this case also as the ratio of the moduli of
the two impedances, and hence for maximum loss 0,,=1 From
Lt T

equations (4.42) and (4.45), therefore

Z
O = ’rytd[ = ‘/_2—
Lt |z | /eémtanhqg (4.46)
ytd
where € is given by equation (4.20).
From equations (4.35) and (4.37),
B .
“ytd _ -mtanhgg(l + jtanhad. tanod)
é (1 + 3j) (tanhad + jtanod) (4.47)
rytd
IB,rq |
. ytd ' _ mtagpqcﬁé 1 (4.48)
.o ': _QL *
DN
Thus for maximum loss, lBytdI = |Brytd|'

For the case of a thick plate, the value of €, eguation

(4.20), tends toO unity and the definition of ta is the same as

30 N
the definition given Dby Bowden putting the value of m,

(4.46) finally becomes,
]

2

U
U S R (4.49)
A gtanhqg pHE

may be defined

egquation

i ' c-thickness d
Once again an op timumn half-thi ot

- which maxi 1oss will be obtained. This
for the plate for which maximum

is given by,
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cosh2od , '
It _ 2+ mz.tanhzqg

2 (4.50)
t 2 -~ m’tanh’qq

In general, the value of Q%t should be as close to
unity as possible, and the observations made in connection

with equation (4.23) also apply here.

4.2.3.5 Lo i s
ss in Terms of ta

-

The loss per unit of surface area from one side of tne
plate may be obtained in terms of Q%t from equatiOns(3.90)

and (4.46) as,

A

2 |
e

—~
ey
«
o
=

~—

Pyea = -
ytd 2/2gsinhgg. coshqg

where

B,e = e (4.52)
[} -L
ta + Qgt F /Zwl

and Y, and §, are given by equations (4.25a) and (4.25c)

: - is obtained when
respectively.- The maximum loss, ggtdm’ e

0 =1 and the loss expressed at per unit of the maximum

Lt

value is given by

|
-
|
k
|
I
e
w
\Li
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4.2.3.6 Force Densities in Terms of

Q¢
The force densities at the surface from one side is

obtained from equations (3.95), (3.96) and (4.46) in terms

of Qﬁt’ as,
n 9
2 2
Kzudaﬁ,A

F - 2t
xtd /?Sinhqg_coshqg (4.54)

and

A2 2 .
RoMoe Wolty o

Fytd'= Y2gsinhqgg.coshqg (4.55)

where Aﬂt is given by equation (4.52).
The forces expressed at per unit of their maximum

values both have the form given by equation (4.53).

4.3 A COMPARATIVE STUDY OF THE TWO POLE-ARRANGEMENTS ON THE

BASTS OF LINEAR THEORY

4.3.1 General

e e et

The equations describing the electromagnetic field
quantities in and around a solid-iron plate subjected to
travelling magnetic fields from both sides have been
and earlier in this chapter. Both

obtained in Chapter 3,

longitudinal and transverse flux arrangements have been discussed
glt q1c a

. - i sons have been made. In this
in some detail, but few compari

; g 5t iffercnt pole-
scction a comparative study of the two differcnt p

. | ST Ll vr\v .
arvrangements 1S undertaken

‘ s P -he plate is
 Aensity distribution an t ~

The currend L-density G5

' L in the two casce and thus forne the basis
cscontially aifferent An =
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of the two particular pole arrangem»nts. So the study begins

with a discussion of the current density distribution and
R | . . .
goes on to consider the magnetic field strengths and flux

densities on tl z -
the plate surface, the eddy-current losses and

reaction fields, the wave impedances and the various

inequalities assumed in the study.

4.3.2 Current-Density Distribution

Physically the two arrangements of the poles are such
that the eddy-current paths are very clearly defined. With
the longitudinal flux arrangement, the current density is an
oven function of depth into the plate, y-. Therefore,the
currents flowing across one face of the plate find a return
path on the other, particularly when the plate is thin.

With the transversé flux arrangement, on the other hand, the
current density is an odd function of depth‘into the plate,
so that the currents flowing across One face of the plate do
not find a return path on the other. The return paths of the

currents in the latter case are, therefore, under the

adjacent poles on the same surface.

~vati ] . necossarily mean that in
The above obscrvations GO not ncces Y a ;

the ond region all the currents flow across the thickness 1n

: a > - 0SS - 1 e
the LIPA and across the pole (i.e. currcnts are cross-pole

only) in the TIA. Tn fact their distribution is a little

R e fact has been dealt with in detail in
AiFrorent and tats Fabb

ael it ne finite-width effects.
Chapter 7, in connection with ta
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It may, however, be noted that the above pattefn of
current-density distribution is generally true and forms a
very basic point of distinction between the two cases. This
point of distinction is very pronounced in thin (d<<l/a) plates

but not so much with a thick (d>>1/¢) one. This is because

with a thick plate, the currents flow so that they are doing
so in a semi-infinite plate and the situation in one-half
of the plate is unaffected by that in the othexr half.

Consequently, the currents would tend to flow in the now low-

resistivity cross-pole paths.

4.3.3 The Surface Magnetic Field Strengths

The magnetic field strenths on the surface of the plate
(i.e. y=d) are given for longitudinal flux arrangement by
equations (3.44) and (3.45) and for transvefse flux arrangement
by equations (3.79) and (3.80). The consideration of the x

. o
and y-components reveals someinteresting aspects.

4.3.3.1 The «~Components of the MEQEEEEE.EEE&Q_EEEEEEEQ

e

When the plate 1s infinitely thick (8>>1/a), equations
(3.44) for LI’A and (3.79) for TFA both tend to

- ;

/2K
1 oz H ~ ._‘_.. ,.._.,.‘fm,_ . .___..._‘__,__,ﬁ.__,_.___..__._. l J (4 . 5 6 )
whde] stde| 7 ocoshgd | p?ranh’qg + 2mtanhgg + 2

-~

L..30
G Was ohtained by Bowden
b (R A
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When the plate is very thin (d<<l/a), cecquation (3.44)

for LFA reduces to,

A
. =
xfdot ~ coshqg(l + urgdtanhqg) (4.57)
and eguation (3.79) for TFA becomes,
204K )
M a0l 2 : ‘[ € 12
xtdo' T coshg . °qs 2
shag m%tanh®qg + 8u3§~mtanhqg + 40%d° B
Neglecting higher powers of d, this becomes
20%dK,,
|thdo| = prqsinhqg | (4.58)

Thus it can be seen that when the plate is thin, the

=
i

-
n 11

x—-components of the magnetic field strengtn

e 1 o~
b}.l_ 1IL,L:

Q
0

;A.

surface are quite different. Since d, which is assumed small,

appears in the numerator of equation (4.58), therefore,
generally, for thin plates the x-component of the surface
magnetic field strength under longitudinal flux arrangement

is greater than that under transversc flux arrangenment. This

=

is to be expected in practice, because with a thin plate

more and more flux would tend to go through the low

reluctance path across the plate thickness rather than

pole-to pole under the transverse flux arrangement.

3.3.% e uComponents oL the HMacgnetic Field Strengih
4.3.3.2 ppe y-Componenlts O o fn fii ¥ e

et e

: G "W the mlat fee A fFinit
As in the provious casc, when the plate is infinitcely

hS}
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thick (i.e. d>>1/y), the y-components of the magnetic field
strength at its surface, given by equations (3.45) and

(3.80) for LFA and TFA respectively, reduce to,

%

14

A
K4
H = |H =~ Z 1
| Yﬁdml | Ytdml - aposhqg[ > )
m°tanh®qg + 2mtanhgg + 2

(4.59)

When the plate is thin, however, these two equations

tend to, respectively,

Kzgd‘
H = -
l y%dol coshqgg (1 + urthanhqg) (4.60)
and
I ] Kzg 1 %
H 1 = . 373
ytdo aCOShqgin?tanhzqg + Bg_d mtanhgg + 4u%d;]

Neglecting d2 and d3 terms in the denominator, this becomes

A

K
y P (4.61)
IHytdo| ~ usinhqg

As seen from equation (4.61), the y-component of magnetic

field strength on the surface of a thin plate under transverse

flux arrangement is practically independent of d. But

from cquatcion (4.60), the same under longitudinal flux

arrangement contains d in the numerator. Thus it may be

recasonably concluded that when the platc 1s thin ‘Hytdl>iﬂy£dl'

seme al s +-med by the plots of H . and
these obhgervatlons arc confirmea LY P w14



and Hytd in Fig. 3.5. This study of the magnetic field

strengths on the surface of the plate, thus, helps establish
the fact that when the plate is thin, the flux tends to pass
through the plate for the transverse flux arrangement more

than for the longitudinal f£lux arrangement.

It may, however, be remembered that, as has been shown
in Chapter 3, the magnetic field in the plate is predominantly
one dimensional and whatever the observation of this
comparative study, the fact remains that the y~-component of
magnetic field strength on the plate surface is negligibly

small compared with the x-component if V20>>q.

4.3.4 The Eddy-Current Loss

The eddy current loss per unit of surface area of the
plate for the LFA is given by equation (3.55) and for the TFA
by equation (3.90). The forms of these equations for the
cases of the plate being infinitely thick (i.e. a>>1/w) and
very thin (i.e. d<<l/e) are given by equations (3.56), (3.57)
and (3.91), (3.92) respectively. It may be seen from these

equations that for a thick plate the loss in both the cases

are equal. Tor a thin plate, however, the loss in the

i jinal £ ;. arxé ment is much smaller (bein
longitudinal flux arrangement 1s é ( g

proportiohal to d3) than that in the transverse flux

« 2 2
1 : N SR Ta T AR V¢ O 1) e
arrangenent (being plOdeuiOLdl to d)

. - B =) ~¢ .' o) - v:a:‘ 3‘1
Fig. 4.1 shows the plot of the ratio ny’/l ot obtaine
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from Fig. (3.6) and confirms the above observations. It

may be seen in this figure that for thin plates, the power
(ol ol -~ -
loszs under transverse flux arrangement can in fact be many

times greater than that under the longitudinal flux

arrangement. This observation has been reported before4
As the plate thickness increases, the loss in the transverse

flux arrangement goes through a minimum while that in the

longitudinal flux arrangement goes through a maximum.

Tn order to obtain the greatest possible power loss,
therefore, it is advisablé to use the TFA when the plate is
thin (d<<l/a). For plate half-thicknesses of between 1.5 and
9.5 times the depth of penetration, the LFA is the more
effective arrangement. When the plate is infinitely thick
(@a>>1/a), either arrangement of poles may be used. With the
provision that one of the two primary members 1is movable,

the same heater may be used for poth pole-arrangemnents.

4,.3.5 Eddy—Current Reaction Field on Plate Surface

PR

At the plate surface, the ratio of the resultant magnetic

ficld strength to the field of applied current sheet are

given for the LFA by equation (4.7) and forthe TFA by egquation

(4.34) poth are of the form (l+x), and the influence of

" ] in the plate depends on how
the eddy-current reaction field 1 D D S

i : ! wpared with L.
big or small X 1S compae

. i fipnitely thick (i.e. d>>1l/d a»>1/q)
when the plate 15 infinitely ( ¢ /c /<)

) At i o reduce to,
botlh of theose eguations
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HX 9,3 _ thdoo

- _ - = 1 + u_tanhc an! z
- - M tanhgg,  mtanhqgg<<l (4.62)
cxde cxtde '

Equation (4.62) is the same as was obtained by Bowden 0

for the same study.
It is interesting to note that for a thin plate equation

(4.7) reduces to

= 1 + prgdtanhqg, mtanhgg<<ad (4.63)

and the equation (4.34) becomes,

333
. d
H it mtanhgg << ‘
XEAO ¢ 1 4 7 tanhqg, 3 (4.64)
i qdte <<1
chtdo urqﬁLanhqg

From the egquations (4.63) and (4.64), it may be seen that
for thin plates, the reaction field of eddy current is very
weak under the longitudinal flux arrangement, while under
the transverse flux arrangement the reaction field is quite
strong. This 1s to be expected in practice, since with a
the eddy current paths for the TFA are more

thin plate,

restricted than for the LFA.

4.3.6 The Impcdances at the Piate Surface

e e

e i e

Under both the pole arrangements, the input impedances

to the plate surface, cguations (4.15) and (4.42), are
-0 theo ate ¢ LAt

f cions of thickness. while for an infinitely thick plate
unctions - thi
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the impe
pedances are expressed by the same equation, they are

quite different when the plate is thin.

w

)

From equation (4.1

the magni 1 - . .
gnitude lZdeO[ of the input impedance under LFA

for a thin plate ((d/6k<l) may be obtained as,

Zy%dol

iR

da
2pg€ . (8= 1/0q) (4.65)

From equation (4.42) the same under TFA is obtained as

©

~

Zytdol =5 (4.66)

Thus it may be seen that for a thin plate, the input
impedance for the longitudinal flux arrangement exhibits a
reactance-limited nature (being a function of §) ,while the
input impedance for the transverse flux arrangement exhibilts a
resistance-limited nature (being independent of §) . This is
indicative of the fact that for the LFA, currents flow in
opposite directions in the two halves of the plate and the flux
is constrained to pass through zero at the plate éentre. ror
the TFA, on the other hand, currents flow in the same
direction in the two halves of the plate and are more
uniformly distributed, since the flux passes straight through
the plate with 1ittle or no attenuation. The impedance given
by equation (4.66) 1is, howevel, larger than that given by

equation (4.65) -

‘ ; due e reaction fields, equations (4.18)
The impedances Que to the reac , eq ( ’

] o qmeitudinal and transverse flux arrangemonts
and (4.45), fox longitudinal &

and unaficct by the plate thickness.
i ar 3 unaffected by ple
respectively, are cqual and &



- 129 -

4.3.7 The Parameters QQQ and ta

The parameters Q22 and ta, for longitudinal and transverse

flux arrangements respectively, both become for an infinitely

thick plate (d>>1/a)

_ _ V2 . .
QQQ@ Qﬂtw - EEEHHEE (4.67)

Equation (4.67) is obtained from equations (4.19) and (4.46)
together with equation (4.20), by making d large and , as

expected, is the same as the definition of Q@ obtained by’

Bowden30

For a thin plate (d<<l/a), equation (4.19) for longitudinal

flux arrangement reduces to

S _ | (4.68)

and equation (4.46) for transverse flux arrangement becomes,

0 . el (4.69)
-0 © -ant _
gto pqu nhgg

For a thin plate, although both Qg and Qpro are greater

' ;s that for a thin plate, the
than one, ngo>Q£to' This show p ,

TFa is better ttuned' than is the LIA; the current-density
N hs (L

distribution in the plate is more uniform in the TFA and thie
1Lstriput

results in higher loss.
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4.3.8

The Assumed Inequalities

In this + SN .
5 chapter, certain assumptions have been made with
C i g c i S ' .
various cquations Lor the two different pole-arrangements.These

assumptions were made to facilitate the understanding of the

point. However, these equations contain d, the half-thickness

of the plate,and while the assumptions may hold when the plate
is infinitely thick, it may not when the plate is thin, and
vice versa. Table 4.1 makes a comparative study of these
assumptions with a view to pointing outf their applicability

or otherwise.

The table shows that not only are the assumed inequalities
of different form for the two different pole-arrangements,
but in most cases, they retain these differences for thick
and thin plates. Some of these inegualities are applicable
'only for certain plate-thicknesses, and thus it is necessary

to practice caution when using them.

4.4 CONCLUSIONS

The occurrnce of eddy currents is always accompanied by

its own reaction.fields. The work in this chapter clearly

4 . N i ~o7 1 - Kot T DRI -3
defines the conditions of dominance or otherwise of this field.

It has been shown that for a given pole-pitch, the reaction

fiocld depends on the relative permeability of the plate in which

. anot 1 +he plate-thickness. ¥For
it occurs, the alr-gap length anda 2 >

cither arrangement of poles, the total cffect of the cddy

R N I & FRNSURE IR ~

currcnts have been shown to bo rcplengntoa by an equLVQIQnL
Ao M T ol - PN -~
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TABRLE 4,1

ASSUMED INEQUALITIES

The  Assumed @m LFA Fom of the Inequality when
Inequality . or |4 1s large d is small Comment
where oA d>>l/c'_;d>7]_/q A<<l/od<<l/q !
occurs _
mtanhgg<<tanhed | 4.7 LFA imtanhgg<<l mtanhgg<<ed May not hold when
: d is small
mj:armqg«tanad 4,7 LFA mtanhqg<< m.tanhqg<<ad May not
tanad necessarily hold
: when d is small.
when 4 is large,
holds only for
values of ad in
the range of /4
and 3w/4 or any
odd multiple of
it
urtanhqg. 4.% LFA urtanhqg»l u_gdtanhgg>>1 | May not hold when
tanhqd>>1 4,12 r d is small
4,13a
urtanhqd >> 4,13a | LFA ur>>tanhqg urggi»tanhqg In all probability
tanhqgg holds for all
thicknesses
mtanhgg << 4,34 TFA mtanhgg<< mtanhgg May hold most of
| tanhed-tanad| | (1-tanad) | 26333 the time when d
a’d .
<3 is large, but not
necessarily when
d is small
mtanhqgg . tanhad | 4.34 TFA {mtanhgg<<l urqtitanhqg <<] | will hold more
<<l when d is small
than when it is
large
u_tanhgg>>tanhqd 4,36a |TFA |u tanhge>>l u_tanhqg>>qd
4,40 Holds for all
thicknesses
u_>>tanhqg. 4,40 |TFA |u >>tanhqg u >>qdfanhag
gd




- 132 -

current sheet on the plate surface, whose line density is equal

in magnitude to the surface magnetic field strength.

The input impedance on the plate surface has been shown
to be dependent on the plate-thickness while the impedance
due to the reaction field is not. The ratio of their modulil
(sz or ta) has been introduced as an important parameter
and it has been shown that the loss and force equations may
be obtained in terms of this guantity. The maximum values
of loss and force occurs when Q (i.e. QQQ or ta) becomes
unity. For a given set of machine dimensions it has been shown
that, a plate thickness, de may bé chosen so that maximum

power loss occurs.

The comparative study of the longitudinal and transverse
flux arrangements help establish the very different patterns
of current-density distributionsall over the plate. The study
of the plate surface magnetic field strengths, the eddy-

current losses in the two cases, the reaction fields and the

impedances all establish one fact peyond doubt, namely, when

the plate is infinitley thick (i.e. d>>1/a, a>>1/q), the

longitudinal and transverse flux arrangements both become

. . o ¥ ~angements reduce to the
the same. This 1s SO pecause both arr g o

case of the study of elcctro—magnctic fieclds in a semi~infinite
Aol - w2

plate and because the field equations in one half of the plate

; - iher half. For a finite
+ hw the same in the Owaes
arce unoflfectea by the sd

i aloctro-nagnetic field
thichknaoss the equations for the clectro—mag
own jndividual forms and these fOrmz

qunatitics have thelx
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may be drastically different when the plate is thin .

An investigation into the assumed inequalities in this
work has shown that while some of these inequalities will hold

good for any thickness, others may not. Thus it is necessary

to practice caution in using them.
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CHAPTER 5

FLUX ARRANGEMENT AND (b) TRANSVERSE FLUX ARRANGEMENT

5.1 INTRODUCTION

It has been shown in Chapters3 and 4 that the magnetic

flux penetration in solid-iron plates, subjected to

travelling magnetic fields on both sides, is predominantly

one~dimensional if 2a2>>q2. This is obtained irrespective

of the pole arrangements and of the finite plate thickness.
In so far as the pole-pitch of the winding is generally much

greater than the depth of penetration, the condition
20L2>>q2 is satisfied.

Tn this chapter, one-~dimensional theories, including
magnetic non-linearity, for the penetration of electromagnetic
field quantities in solid-iron plate are developed (the air-
gap will be included in Chapter 6). Both longitudinal and
transverse flux cases have been considered in some detail. &
plate of finite thickness is considered from the beginning

and its magnetisation curve is represented by tne parabolic

b

form B = ai®. Starting from the Maxwellls equations applicd

to the plate, the p-H relation 1s substituted at an eaxrly stage
RS . :

in the analysis. A nev function for the attenuation of

. : s = £
magnetic field strength from the surface to the inside of the

1 and is evaluated by substitution in
plate has been assuned and

. S~ 10T Having obtained the
. AT Efusion CulluLlon. 3
the fina form OL (,k.L‘.fL.,J !
gide the plato, the current density,

. = w1 K 1
magnetic field strength 1D



the impedance and th i
e loss density values are obtained.

The work of this chapter is believed to be original.

5.2 ONE-DIMENSTIONAL ANALYSIS

In the linear analyses of Chapters 3 and 4, it has been

showvn that the x-component of magnetic field strength, H_,in
’ ; X

the plate is Very much greater than the y-component, Hy’ if

2 2 : s .
207>>q . This condition implies that only HX needs to bhe

considered in solid~iron plate for determining the
electromagne%ic field quantities.

In the non-linear analysis, use of this condition is even
more desirable since a two-dimensional analysis 1is
mathematically intractable due to the variation of
permeability with magnetic field strength. Since the magnetic
field strength decreases with depth'inside the iron, the
permeability increases with depth, provided the surface

magnetic field strength is greater than the value at the knee
. . 2 2
of the magnetisation curve. Thus, if the condition 2a” >>g

holds on the surface, it also holds at any depth. Many

previous resecarchers 30,48,63 have found this to be soO.

Since 2a2>>q2 is obtained in most practical cases, it is

' w3 .sis that H_>>H_ and the
assumed in the following analysis that o . -

electromagnetic ficld distribution in the solid-iron plate 1is

g ~dimensional, or lane electromagnetic
the same as that of a one dgimens al, p J

The non-linear theories geveloped in this chapter are
wave. Ti n-lineax

ST i 1T a +he
rolated (by oquating ficlds at the air-iron interface) to the
S ) C G A D) > .

X I ~nter 0.
ficlds in the air-gap in Chapte:
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In the following section, Maxwell's equations applied
to the model of Fig. 3.1, together with the assumptions,
are developed. In sections 5.4 and 5.5, the particular

cases of longitudinal and transverse flux arrangements,

respectively, are considered.

5.3 ELECTROMAGNETIC FIELD EQUATIONS APPLIED TO SOLID-IRON PLATE

5.3.1 Analytical Model

The analysis is carried out for a plate of finite
thickness, 2d, and the arrangements are shown in Fig. 5.la
and Fig. 5.1b. The arrows indicate the attenuation of

x—component of magnetic field strength, H , over the plate

Fig. 5.1b

Fig. 5.la

T : e Flux Case
Longitudinal Flux Case rransverse Fl

. .- - £ veyr the
hicl phe two aifferent distributions of H ov
thickness. X VO
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thickness 1s the basic distinction between the two cases*.
The rectangular co-ordinate axes are as shown in
Fig. 5.1.The plate is assumed to extend to infinity in both
x and z- directions, so that entry and exit- edge and
finite width effects may be neglected. Because of the
symmetry of the field distribution about the y=0 plane, only
one half of the plate need be considered. As has been done
in the linear case, (Chapter 3), analysis is carried out for
the upper half of the plate i.e. for y varying from 0O to +d.
The magnetic field strength has been considered as
having only an x-component and the resulting current density
only a z-component. The magnetic field strength and the
flux density are taken as being distributed sinusoidally,
both in space and time and their peak values are related
through the assumed hyperbolic form. Thus, the analysis is
basically confined to the fundamental sinusoids of flux
density and magnetic field strength, for,a sinusoidal H

would not result in a sinusoidal B due to magnetic non-

linearity in the plate.

5.3.2 The Assumptions

' 1 the theory are discussed in the
The assumptions madae for the tn y &

e

in Fig. 5.1b, the nomenclature of

- mow isleading, si the
niransverse flux' may pe somewhat misleading, S1ince ]
fransverse Or the y- component of flux has been neglected
‘Qiénu th;V 'Howover, the term "transverse flux" is
a Log@ i %é djff@antiate from the texm “longitudlnal
rctdinfgi‘to ﬁéjntain continulty throughout thls tne§1s
ilUTlrénsh{onc for rotalning tnhose terms have peen glven
Justificatios & - -

in Chapter 1.

e e i

* Tt is noted that,




preceding section,

(1)

(iii)

(iv)

(vii)

(viii)

5.3.3 Field Bquations APP-iZe ==

gince electrorn

z-dixrcction,
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b . .
ut are summarised here for convenience.

The maGHet;c field strength everywhere in the

Z

Zs

plate is x-directed only (i.e. H = H_ = 0).
y

The current density everywhere in the plate is
z-directed only (i.e. J_ =J = 0).
X Y
Neither HX nor J vary in the z-direction.
The magnetic field strength and the resulting

flux density are sinusoidally distributed both

in space and time.

A

The peak value of magnetic field strength, Hy, is

related to the peak value of the magnetic flux

o A "
density, Bx’ by BX = al, where a and b are

N
constants.
The plate is composed of homogencous isotropic
material, has a finite thickness and extends to
infinity both in the z- and x-directions.

The surfaces of all regions are smogth, flat and
parallel to the z-X plane.

y = O is a plane of symmetry and the analysis may
pbe confined to y = tVe side only.

Both the primary members and the plate are

gtationary.

Hysteresis is neglected.

aagnetic fields do not vary in the

from curl I = J, therefore,
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9H dH
J === =-_2X
’ 5 T (5.1)
From the relation curl E = - 2% and Ohm's Law
8J7 1 3B
R .S
5y TS (5.2)

From equations (5.1) and (5.2),

dzfl 9B
28

S—— —

dy

— (

0

(63

o[+

.3)

Equation (5.3) is the diffusion equation governing the
penetration of magnetic flux density in iron.

At the surface of the plate i.e. at y = d, the
fundamental sinusoids of magnetic field strength, de, and

flux density, Bggr 4re€ given by

H cos (wt-ax) (5.4)
xd »

de

and

(5.5)

1!

B B.qa cos (wt-gx)

xd X

where ﬁ and g a are the peak values at the plate surface,
xd X

a n/t and T 7 pole—pitch of primary excitation. Eguations
= d

(5.4) and (5 5)constitutetraVelling magnetic fields having

i e % divection.
a velocity of w/q w/s 0 the x di

' he plate th B and H_ attenuate
AL any depth 1n the plate both B a M e
1 shift in phase with respect to the surface values and
and shift in phd=s o
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since hysteresis is neglected, both nagnetic field strength
and the flux density shift in phase by the same amount.
Thus, let 0 represent the phase-shift with depth of both
flux density and magnetic field strength, so that at any

- l = — 1 * . B
depth y (y — d)yi.e. inside the seccndary, these quantities

are given by

N

Hx = Hx cos (wt-gx+6) (5.6)
and
BX = BX cos (wt-gx+6) ‘ (5;7)
Pal A

where H_ , B, and 6 all are functions of y.
In the analysis so far, the peak value of magnetic flux
density is taken as related to the peak value of magnetic

field strength by the normal B-H curve. But in order to

mathematical relation between these two quantities are a
pre-requisite and in the rest of the analysis, they would

be assumed to be related by the equation

B = q P (5.8)
BX = aHX

where a and b are constants.

Now , from equatioﬁ5(5.6) and (5.7)

. HX < HX - (§Q 2 cos(wt~qx+0)~ H_ §_§_+ 27_§.§91x
5 T\ 7 Hytay X dy2 dy dy|
dy dy”
(5.9)
sin (wt-qx+0)
and
(5.10)

o B 0
X _ . soein (@E-gxt )
T T e




- 141 =~

But equati S
ut equations (5.9) and (5.10) are related through equation

(5.3), so that, equating the co-efficients of 'sin' and

'cos' terms from both sides
21\
d“H
S oae2 g
dy2 T (5.11)
and
~ 2 dH
daco x db w 2
H «&“— + 22, = — Z
dy2 dy ‘dy By (5-12)

From eguation (5.11)

a’H,
2
) ) (5.13)

D

d 1
=22 = (-
H, dy

(~<

From equations {5.12) and (5.13) and using the relaticn o

equation (5.8),

~ (b+1l) _ d ~3/2 Uy : 5.14
'(‘l'pJ‘_a‘I’IX _E[X ( ) ( )

Equation (5.14) is the final form of the differential
equation concerning ﬁ and Y- Clearly a mathematical solution

of this differential equation is intractable, and hence a

particular function regarding attenuaLlon of H from the

plate surface to inside the iron has to be considercd.
. alte <« -

3.4 A %olutlon to Ll the Big}d Equation

(O3]

= 5.14) and considered a
30 Stad ~d equation (5.1

ainea €4
powden”  Obte
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. ~
solution of the form o = ﬁ
X

r
Xd(l+hy') ;, hy'«-1, where h and
r were constants ' i fr

and y' varied from zero at the surface of the

late increasin nec < : . . ;
p g (negatively) inside,i.e. y'=y-d in the present

model. Bowden considered the case of a semi-inifinite slab

and, essentially, one~sided excitation and hence the use of

the above function was appropriate. But in the present case

because of the double~sided arrangement and of the finite

thickness of the plate, there are further restrictions to

the solution.

N
In both longitudinal and transverse flux cases, H_

has the marimum value at the plate surface and decreases
inside the plate. 1In the case of longitudinal flux
arrangement, HX reaches a minimum at the centre plane, i.e.

at y=0, and then increases again as shown in Fig. 5.la and

curve (i) of Fig. 5.2. In other woxrds Hy is an even function

A

of y, and since HX is continuous inside the plate,

~

aH '
_ 0 at y=0 (5.15)

dy

(The suffix £ signifies longitudinal flux arrangerent).

A
- c1ux arrangement, H_ 1s an
Similarly, for transverse flux arrangei , H is

odd function of y inside the plate (Fig. 5.1b and curve (11)

of Fig. 5.2) and the boundary condition at the plate centre

is given by
(5.16)

. o ifics transverse flux arrangement).
(The suffix t signdhi=s
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Fig. 5.2 Assumed attenuation of ﬁx from the surface to the
" inside of the plate. Curve (i) :Longitudinal flux

arrangement, Curve (ii): Transverse flux

arrangement.

To satisfy the equations (5.15) and (5.16), the use of

Bowden's function for HX gives h = 1/d. This is an extrenely

undesirable restriction for three reasons:
(1) h = 1/d4 implies that h can have only one value
determined by the plate thickness, whereas in a

practical situation h should be a function of suriace

magnetic field strength.

(ii) conversely, d=1/h means that a solution may be

obtained only for a plate thickness equal to 2/h,
e R

1 as a solution must be obtained for the general
whereas S .

. 1.+ thickness € usal to 2d without any
casc of @ plate thic 3 q

rcstrictions.

S
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(iii) Use of h = 1/d specifies that ﬁx must be zero at
the plate centre. While this is the casc in transverse
flux arrangement, this may not necessarily be so in
iongitudinal flux arrangement.
Thus a new function must be found as a solution to
equation (5.14) in order to satisfy both conditions given by
(5.15) ;:and (5.16).

Allowing for the attenuation of HX with depth a sclution
of the form*
~ n r s
H = de(l + hy')7 (1 + fy'), hy'<—l, fy'<-1 (5.17)

where h,r and f,s are positive constants and y' = (y-d), was

found to satisfy the boundary conditions at y=0.

From y' (y-d), dy'=dy, so that differentiating witi:
respect to y' is the same as differentiating with respect to
y'

In the following sections longitudinal and transverse

flux cases are considered and eguation (5.17) is used as a

solution in both cases.

* Pprobably a more general solution would have the form

~ co r.
H, = H g T (1 +hy') *, hyy'<-1 (5.17a)
X X

i=1

This ecuation would definitely give a more accurate solution,

bul is not easily amnenable to analytic solution. In fact
very little is gained at the expense of mounting complexity.
Féﬁition (5 17), while being simple gives sufficiently

5\ <. - . v L

accurate results.




5.4 A NON-LINEAR THEORY FOR LONGITUDINAL FLUX ARRANGEMENT

¥
. |
5.4.1 Equation for Magnetic Field Strength in the Plate

The longitudinal flux arrangement, in which the

corresponding poles on the two sides of the plate are of

the same instantaneous polarity, has been shown in Fig. 5.la
and the resulting magnetic field distribution in curve

(i) of Fig. 5.2. A further subscript £ is used to represent

the longitudinal flux quantities, so that equation (5.17)

may be written as

>

A r,Q, S,Q,
- ' [ [ 1
ng = szd(l + hgy ) (1 + fzy ) B hzy <-1, fgy <-1

(5.18)

According to the condition of equation (5.15), therefore g

(1-f 4d) {sgfz(l~h£d)+r2h 1-f,d) }=0

g (1-Ey
(5.19)
Since neither h2 or fz can be equal to 1/d for reasons
given in section 5.3.4, equation (5.19), therefore, implies

that

. ) .
s fptrohy = fohpd(s +r,) ‘ (5.20)

* Jquation (5.20) shows that when d becomes large (i.e. plate
tends to a semi-infinite one)

]
4G = (g f 4r h )»> O
fQ/]’lSzl(rsz/ ;.)/QJ) d( Q/ /Q, ,Q, ,Q, o - -C . i )
so that ecither £,70 Or hQ+O. Letting LQﬂO, equation (5.18)
tends to A ~ ' rQ
= T ; +n
= Hygq (1Y)

e - 319 1 el g J lefg
which ia of the sane form of equation as used by Bowden.
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-

Equation (5.18) may be substituted in equation (5.14)

and using the condition of cqguation (5.20), this results in

an identity, from which

A 2 ’
1
H . (f, hz)(sz+r2)2(sg+r2—l)%(l~h£d)(l—fgd)3
(2r ,=2) (2s,=2) r, (b+1) s, (b+1)
NS 25y bal , 5y
(1+h,y") (1+£,y") = &5 izé {1+h g') (1+£,y")
(5.21)

Both sides of equation (5.21) are of the form
K(l+h2y')p(l+f2y')q so that the indices and the constant
terms may be equated. Therefore, 2r2—2 = rz(b+l) and
2s,-2 = sz(b+l), so that

Ly =S¢ = TI<by = Pgr S (5.22)
and
02 £n (s,4r,) (s, +r,-1)(1-h d) (1-£,d) 3
xgdt et STy L 7L % L
waf b+l
T p Txid
which, using equation (5.22), becomes
f h (l1-h d) (1-f,d) =a 2 (5.23)
278 L TR £
where
2 42 2 (5.24)
U T “xpa bl

ancd
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7 (b=1)
a
uz _ w'szd
2 (1-b
kbﬁ = ~—~—-L; (5.25)
3(3+b) *?
Using equation (5.22), equation (5.20) gives
_hQ’
f2_= Tffﬁga (5.27)

Substituting the value of fQ from equation (5.27) into

(5.23) and- taking magnitudes only, a guadratic equation

in

h2 is obtained, the solution of which is

h, = %E (5.28)
whefe

2.k

A= (L+20,d) = (1+d4asa’) ? (5.29a)

Taking the positive sign in equation (5.29a) it is seen
that when 4 is large, A;Auzd and therefore h2+2d2 and
f2+ %ﬁ : and when d is small k§2(1+agd), i.e. h£+l/d and
f2+l/d

Taking the negative sign in equation (5.29%a), it is

seen that when d is large, Az0, sO that h2+f2+0; and when

i - B A -
d is small, AgZagd, i.e. hzmcE and ££+ l~2a£d -y

Thus only the positive sign in equation (5.29a) is of

importance, so that

L 2.2y
A= (L420,d)+ (1+4a)dT) 7 (

<

(2]

N
O
~
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From equatiors (5.29), (5.28) and (5.27)

£ o= A

g —l

2d (A=-1) (5.30)

Equation (5.18) for the peak magnetic field strength can

now be written as

H =8, [+ 20 yiais 2 5] ;
X4, %14 24 ¥ T saosny Y (5.31)

The phase angle 62 is obtained by substituting equation

(5.31) in eguation (5.13) and integrating with respect to
y. The constant of integration is determined from the

boundary condition that at the surface of the plate

(1.e.
at y'=0), 62 =0. Thus,
0 = 1n (l+2‘-« )y {1+ A v'H (5.32)
g T Yt 2y 2d (h-1)
where
. 3 V2(l+b) 5 3)
YQ, = -—-——(—T_*_—B’) ( ° J)

Substituting equations (5.31) and (5.33) in equation
(5.6), the value of magnetic field strength, H ,, inside the

plate is given by

- D) (L4 _MMA_““y,}]BQCOS
ng:ngd[}lT Sav ) W ganEny?

>\ 1 a- ,____._.)L__,__ 1 [
[@tqu+Ygln{(l+ 73 Y ) (14 sd(a-1) ¥ )}] (5.34)

" »
e el



- 149 -

or
H = Re H [(1+ A onn A ' SARAY) :
x4 x2d Zay ) + E’é‘—()\“l) Y }] expj (wt-gx)

(5.35)

5.4.2 Limiting Depth of Penetration

From equation (5.35) it may be seen that HX becomes

L
zero at yi»= - %Q and also at yé}= - Eﬂi%:ll. For a thick
plate A+4a£d and the yi tends to - §é~ while yé tends to
2
-2d and hence only y' = - %Q is applicable so far as the

determination of a limiting penetration depth is concerned.
yi is also smaller than yé; for a thick plate no magnetic

field strength exists beyond y=yi, so that y5 has no

signficiance. For a thin plate, however, yé is effective o

in modifying the attenuation and satisfying equation (5.15).

It may, however, be noted that Hx does not necessarily
go to zero inside the plate (curve (i) of Fig. 5.2) and thus o
the concept of a limiting penetration depth may only be
retained with particular regards to plate-thickness, the
surface magnetic field strength, the frequency and the

resistivity and magnetisation curve of the material of the

plate.

5.4.3 The Current-Density Distribution and the Impedance Angle

The distribution of currept density inside the plate may

. . - ] [ [ . : g
e obtained from eqguations (5.1) and (5.35) and is given by,
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2
~ A y(89+jY
Jog = ReHy 0q

) B,~1+jy
% Ay - I
2d% (A-1) [(l+ 2y {1+ n_li_m~4] L Qeij(wt*qx)

(5.36)
At the surface of the plate, y=d and y'=0, so that the

amplitude of the surface current density is given by,

A

2 .
5 Mxaa (Betivy) |
794 2d(>\"l) (5.37&)
i.e.
- 2
A H AR
- _X%d %
Yora = a1y L%y (5.37)
where
_ 2 2.5 _ V2(3+b)
RQ = (BQ Y, ) * = 1i-b) (5.38) =
y
;ﬂ
and ﬁ
=
Y L o
tang = X = (2IB,)7 (5.39)
% By 2

¢2, being the angle between the surface values of magnetic
field strength and the current density, may be termed
impedance angle. As may be seen from equation (5.39) this

angle tends to m/4 for linear case, i.e. when b=1.

5.4.4 The Impedance of the Solid-Iron Plate

The impedance of the solid-iron plate is given by
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Using eyquations (5.35) and (5.36), this becomes

. B ,pszzy
vy 5 2, Ay " A / ¢2 (5.40)
d”.(A-1) (1+ 5%-) {1+ EETX%I“}

At the surface of the plate y=d and y'=0 and the

magnitude of the impedance at the surface is given by

pszz
1Zg0al = s3reiy (5.41)

The impedance increases with depth inside the plate

tending to « at y' = - %g, the limiting depth of penetration.

5.4.5 Eddy-Current Loss in the Plate

The mean power per unit area from any one side into
the solid iron at any depth is given by the complex

Poynting vector, @%2, as

£, = -%Re(E_, x H_*) - (5.42a)

where sz denotes complex conjugate of sz'

Substituting for H_, and Ezz(:szz) from equations (5.35)

and (5.36), respectively,

n2 K 2B£~l
_ E§&Q3§&wmz[kl+ AXL){1+ WMNAXM_}] (5.42)
Y2 49% (A=) 2d 23 (A1) -

Cm T e
—



The total loss per unit of surface arca due to
excitation from any one side only is given by the power
crossing the air-gap and may be obtained by putting y=d
i.e. y'=0 in equation (5.42). This is given by

H oapB,A
— _ x2d" 72 )
@yzd = §§2Jy=d T TZao=D (5.43)

When the plate is thick, i.e. d is large, A is large

and tends to 4ad, so that equation (5.43) becomes

2

Z HoaPPp%y

Py e (5.44)

Using equations (5.24) and (5.25) for o, it can be scen

~

that the true exponent of Hx?d in equation (5.44) is

30,40

(b+3) /2. Other researchers have also found it to be so.

When d is very small A+2(l+a2d)+2 and equation (5.43)

becomes
A
)
H pB
© a0 = _5&%~_& (5.45)
hY% (@]

Here the true exponent of ngd is 2. Also, compared with

equation (5.44), it may be seen from equation (5.45) that

with thin plates higher loss densities may be obtained.

. I a4+ o - ans U T " ol
Thus it may be concluded that in tyransition from

electrically thin to thick plates, not only does the loss

- ¥
e



density go on decreasing,but alsc the exponent of H 0d
XX

from approximately 2 to (b+3)/2. In general, thercfore, the

A

exponent of HxQd in the expression of loss density is

between 2 and (b+3)/2.

A

Fig. 5.3 shows the plot of P as a function of HX

y2d 24

for various thicknesses.

5.5 A NON-LINEAR THEORY FOR TRANSVERSLE FLUX ARRANGEMINT

5.5.1 Eguation for Magnetic Field Strength in the Plate

The transverse flux arrangement has been shown in Fig.5.1lb

and the resulting distribution of magnetic field strength
inside the plate has been shown by curve (ii) of Fig. 5.2
A further csubscript t is used to represent the transverse
flux quantities. Equation (5.17) for transverse flux case

may be written as

r s
t
(

A

th

t

- ' " .
= thd(l+hty') I+f, y ) 7 hy'< 1, fy'<-1

(5.46)

According to the condition of equation (5.16), therefore,

N r S
1-h,d 1-£,4d) = 0 - (5.47)
H _3(L h, d) (

r and s, arc both positive quantities, since a negative
t Tt
value for them would mean (Equation (5.46)) that H o

increases with depth ins

(5.47), therefore, implies that either h, = 1/d

Fiquation (5 C

reduces

side the plate, which cannct be true.



or ft_- l/d. Let ft = 1/d*, so that equation (5.46) reduces
to

la} A I'_t;' St

Equation (5.48) may now be substituted in equation (5.14)

and this finally results in an identity, from which

H ) (2r, -2) (25, -2)
L L
zgd stz(st—l)z(ZSt—l)(l-htd)2(1+hty') t (y/a) ¢

N r_(b+l) s, _(b+l)
- wa p(b+l) (l+hty')t (y/a)©

5 Hxta (5.49)

ity

Both sides of this equation are of the form K(l+hty')m(y/d)n

so that the indices and the cecnstant terms may be equated.

Thus, !
(2rt"2)=rt(b+l) and (ZSt—Z):st(b+l), so that
r = g = ——-—-ZJ»W——— = B say., (5.50)
t t (1-b t!
and
ﬁz ] 2 a 2 (b+1l)
d _ % % - 2 2y
~~§-§~--st2(st—l)2(28t-l)(l h @) =l

which, using equation (5.50), becomes

3 . . o et 5. 4¢ - PR
* When d is large, ft+O and cquation (5.46) reduces to

I ~ﬁ (1-+h y|)rt which is of the same form as used by Bowden.
= Ay

xt xtd
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2 2.2
1~ =
(1-h, A% = o, 4 (5.51)
where
2 2 2
a, = axtd'Kbt (5.52)
and
2 A(b"l)
o - wathd
Xxtd (5.53)
2p
and
w 2 _ /2(1-b)? R
bt L (5.54)
(3+b) (1+b) *?
From equation (5.51),
(liatd) '
htv: ———— (5.55a)
d
y' = (y-d) varies from O to -d inside the plate and

hence is always negative inside the plate. Thus, for

(l+hty') to decrease with depth ht must always be positive.
l-a,d
_ £ _ 1. o v 5
If ht = =3 =3 Cys then for large values of d, ht

becomes negative. Hence

(l+atd)
h, =———— (5.55)
t a

Equation (5.48) now beconmes

A A g

. t o
Ho o= 1L [{l+(l+atd)y'/d}y/d] (5.56)
Xt X

i &
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The phase angle Oiis obtained by substituting equation
(5.56)1in equation (5.13)and integrating with respect to y.
The constant of integration may be obtained from the
boundary condition that at y=d (i.e. y'=0), 6t=O. Thus

6, = veln[{1+(1+a d)y' /aty/d] | (5.57)

where

V2 (14b)

Yt = * 1B (5.58)

Thus, the complete solution for the magnetic field strength

inside the secondary is given by

o

A

. 8 ) |
'th:thd[{l+(l+atd)Y'/d}y/d] tcos[@t~qx+ytln{l+(l+atd)y'/d}y/dj y

(5.59)
or

* vl € Coxps (wieax)  (5.60)
= - '/a d xpij(wt-~-gx "
H_ .= Re thd[{1+(14atd)y /d}y/d] expj q

5.5.2 Limiting Depth of Penetration

From equation (5.56), a value of y' may be defined as

_ e (5.61)%
y' = =0 = T+a.d

when H becomes zero. 1t may, thus, be termed as a 'limiting
‘ xt '

?mwﬂxWﬁszﬁgw??EEE{gangaﬁdtion (5.61) roeduces Lo Bowden's
p N ] . r N 9 2 N - Lyt ' >
dofinition of a limiting depth of penctration when d

ig largce.
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depth of penetration'. Clearly, tne value of y' given by

e
equation (5.61) is less than -d, so that th, in fact |
becomes zero at a depth less than the half-thickness of the
plate and remains so equally beyond in the other half of the
plate (as the symmetry requires). The depth at which H ¢
becomes zero is determined by ut, i.e. by such quantities as,

the surface magnetic field strength, the frequency, the

resistivity and the magnetisation curve of the material.

5.5.3 The Current-Density Distribution and the Impedance Angle

The current-density distribution, J inside the plate

zt/

may be obtained from equations (5.1) and (5.60) as

. Bt“l+th
~ 1 1 -
0 e oy L - +

Ik Redxtd(8t+jyt)d{2(l+utd)y/d @td}[{l+(l a0, d)y /a}y/d]

(5.62)

At the surface of the plate y=d and y'=0 and the amplitude

of the surface current density is given by

- 3 2 ' 5.63
T ea = Betivg (@ + o) iea (5.63a)
~ _ 2 VH (5.63)
Toea = Rel@ * o yea L0t

whexre

2 2v% _ y2(3TD) (5.64)

Reo= (B +vg = T(1D)

and



» Y.
tan (bt = .._.E — l+b) ;i

- o

(5.65)
£ 2

¢t is the angle between the surface values of magnetic

field strength and the current density and, as such, may

be termed the impedance angle. As may be seen from equation

(5.65), the angle becomes 1/4 for the case of linear

magnetisation. It may be seen that

B
t 2 .\ %

cos ¢, = —— = (=2-)"* (5.66)

t Rt 3+b
and
. Ve l+b, %

sSin ¢t = —R— = (‘375) (5.67)

t .

5.5.4 The Impedance of the Sclid-Iron Plate

The impedance of the solid-iron plate, Zyt’ is given by

_ Ezt - szt

yt th th

Z

which, using the eguation (5.62) and (5.60), becomes

R {2(1+a,d)y/d-a,d}
g =t = /¢, (5.68)
Yt f1+(re d)y'/dly

At the surface of the plate y=d and y'=0 and the

magnitude of the surface impedance, Izytd!’ is given by

204! = p,Rtl% + ooy (5.69)
gt
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The impedance increases inside the plate, tending to

oo — ~d ) sy
at y' = TFa™g - the limiting depth of penetration.

5.5.5 Eddy-Current Loss in Solid Iron

The mean power flow per unit area from any one side into
the solid iron at any depth is given by the complex Poynting

vector, &§t’

1
= - - . *
&;t 5 Re(EZt bl th ) (5.70)

where HK; is the complex conjugate of HX

«

£

Substituting for EZ (=pJZt) and HXt from eguation

t
(5.62) and (5.60), respectively,

B = 55 0 {2 (1+a d)y/d-a d} [{1+(1+a )y /d}y/d]
(5.71)

The total loss per unit of surface area due to excitation

from any one side only, is given by the power crossing the

air-gap and may be obtained by putting y=d in equation (5.71).

]

This is given by

102

= = =.01 . 0B, ) (5.72)
B ca yt]y:d 3 Pxtd P

2

. 2 . -
When 4 is large, (i.e. d>>&f)’ egquation (5.72) becomes

t

1 72 (5.73)

@;tdm 2 5 MealPe

Using equation (5.52)

and (5.53), it can be seen that the

azrdimen e e
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A

true exponent of thd in equation (5.73) is (b+3)

5 .
When d is small (i.e. d<<§~), equation (5.72) becomes
t

Hifd'p'gt
R tao ¢ 3 | (5.74)

A

Here the true exponent of HX is 2. Also the loss

td
density given by equation (5.74) is higher than that given
by equation. (5.72).

Thus for transverse flux arrangement, the true exponent
of ﬁxtd in the loss equation is -between 2 and (b+3)/2. When
the plate-thickness is small, the exponent tends to 2, while
for a thick plate, it tends to (b+3)/2.

AN

Fig. 5.4 shows the plot of Pytd as a function of thd

for various thicknesses of the plate.

5.6 CONCLUSIONS

In this chapter, one-dimensional non-linear theories have
been developed for the penetration of electromagnetic field
quantities in a solid-iron plate under both longitudinal and
transverse flux arrangements. The variatiors of these

: .. 3 > atq
gquantities inside the plate depend on the surface magnetic

field strength, the frequency of the current sheet excitation,

the resistivity and the magnetisation curve of the material.

A salient featurc of the work of this chapter is that a
al: - L

. < s1dered T -he >ainning.
plate of finite thickness was considered from the beginning

- Ly ole~arranqgements give risae
This together with the two p arrangemel g

—E

e



tg special boundary conditions at the centre of the
plate~thickness. This necessitated the introduction of a
new function (equation (5;17)) as a solution of the
diffusion equation. The resulting expressions obtained for
electromagnetic field quantities clearly show how these

are influenced by finite plate thickness. The expressions

for an infinitely thick plate are obtained as a special case

by letting the thickness become very large.

It has been shown that the magnetic field strength for
both arrangements of the poles are confined mainly near the
Plate surfaces. For both pole arrangements the impedance angles
are independent of plate-thickness and are functions of the

magnetisation curve of the material of the plate. In both

cases, the impedance of solid-iron plate increases from the

surface inwards, although the natures of their variation

are different.

The loss densities obtained in both cases are of the
same general nature, being higher for thin plates than thick,
and the exponent of the surface magnetic field strength in
the loss expression being between 2 and (b+3)/2. It has been
shown that for thin plates, the exponent tends to 2, while

for thick plates, the exponent tends to (b+3) /2.
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CHAPTER 6 /

TWO~-DIMENSTIONAL ANALYSIS INCLUDING MAGNETIC NON-T,TNEARITY

6.1 INTRODUCTION

In Chapter 5, non-linear one-dimensional theories
were developed for the penetration of electromagnetic
field quantities in a solid-iron plate; fields in the

air-gap were not included in the analysis,

In the air-gap, linear theory applies and the fields
are essentially two dimensional. In this chapter, field
equations in the air-gap are obtained and related to the

quantities defined in Chapter 5 in terms of the surface

kY
_F

current density. It is assumed that the current density

on the plate surface is due totally to one-dimensional

non-linear theory, and is equated to that obtained

considering two-dimensional fields in the air-gap. -

The magnetic field strength on the surface of the plate
is obtained in terms of.the primary current sheet. A
non~dimensional design paramcter Q is introduced as the
fatio of the wave impedances at the surfacc of the plate.
The magnetic field intensity at the surface of the plate
and the loss per unit of surface area of the plate are
obtained in terms of this parameter. By letting Q.
become unity the maximum value of loss is obtained.
Expressions have also begn obtained for force density and
the flux per pole, and these are also given in terms of

- on t itudinal and transverse
the same parameter. Both longitudinal and transverse
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flux arrangements have been considered in detail. /

In the concluding section different aspects of
the two different pole-arrangements are discussed. These
include Q, the plate-surface values of magnetic field
strength, the current densities, the impedances, the

losses/area, the flux/pole, and the forces developed.

6.2 ~ FIELDS IN THE AIR-GAP

As has been shown in Section 3.3.2, Laplace's
equation in two dimensions for the linear air-gap region

(Figure 3.1) is given by

ViA =0 (6.1)
2 _ 07 3% . .
where V° = + is the Laplacian operator and A is oty
ax? 3y ?

the vector potential.

The solution of equation (6.1) is given by ﬁﬁ

A, #{Czexp(qy) + Dzexp(—qy)}exp(~jqx) (6.2)

where the subscript 2 indicates air-gap quantities and
q = I , T being the pole-pitch of the spatial current
T

variation.

Eguation (6.2) describes the magnetic field
components in the air-gap regio§ once the constants C2
and D. are known. The x and y-components of the magnetic

2
field strength would then be given by

171 = = (6.3)



- 164 -

and .
. o 0
1 772

H = e o 4 e

2 T (6.4)

It has been shown in Sections 3.4.3 and 3.5.3

that in the model of Fig. 3.1, the primary member may be
assumed to have infinite permeability. Thus at the
primary surface, i.e. at y = (d+g),

0B,

Ty =uOKz exp (-jgx) (6.5)

y=(d+g)

«

At the surface of the plate, i.e. at y=d, let tha

X and y components of magnetic field strength be related
by
Hy2d = (6.6a)

where T is a complex quantity.

Using equations(6.3) and (6.4), equation (6.6a)

A . 9A
_53 } — —52-J (6.6)
* Jy=a Y Jy=a

From equations (6.2), (6.5) and (6.6), the unknown

becomes,

constants C2 and D, may be evaluated. The values of A

may then be obtained from equations (6.2),

2’
: ﬁ

H o and y2
(6.3) and (6.4), respectively. The values of these

quantities at the surface of Lhe plate may be obtained

by putting y=d in these expressions. Thus the x~component

of magnetic field strength on the surface of the plate

' = ﬁ is given by
Heoa 7 Yxa
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Hea = sz}7 = : (6.7)
Y coshqgg (1+jTtanhqgq)

Likewise, the surface value of the magnetic vector
potential A2d = Ad is given by

u T

A, = A = -2 _.@ (6.8)
d 2}y=d q xd |
where HXd is given by equation (6.7).

The magnetic vector potential A2 in the linear air-

gap region varies sinusoidally in both space and time and

induces on the surface of the plate an electric field,

Ez2d = Ezd’ given by
E o 8A2
a ot ™
z y=d R
P
. E = =jwA (6.9a) 3
Zd 2 y:d :i

Using equation (6.8) then, equation (6.9a) becomes o

T
H W

c = .9 . (6.9)
Ezd g de

6.3 MEANS TO EVALUATE THE COMPLEX QUANTITY, T

Equations (6.7) to (6.9) are applicable to both
longitudinal and transverse flux cases, although the
values of f are different. To obtain the field eguations

at the surface of the plate,it is necessary to evaluate
T first.
The complex dimensionless quantity T may be

obtained by using the one-dimensional non-linear solutions
—al y p
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for the solid iron developed in Chapter 5. This, however, !
presupposes that thg current-density distribution in

the plate is dependent only on the x-component of

magnetic field strength. This has been discussed in
Sections3.4.7, 3.5.7 and 5.2, where it was shown that

this assumption is valid if 2q? >> g?at the surface of

the plate.

Thus, in the following analysis the condition
202 >> g? (which is obtained in most cases) is assumed
to hold and the current density obtained at the plate
surface from the consideration of linear theory in the
air-gap is equated to that obtained from the non-linear

solution (Chapter 5) in order to evaluate T. M

6.4 FIELD EQUATIONS AT THE PLATE SURFACE UNDER

LONGITUDINAL FLUX ARRANGEMENT

As in all previous cases, the longitudinal flux o

arrangement is represented by a further suffix 2 with

all quantities.

6.4.1 The Value of Tz

Under 1ongitudinal flux arrangement, the current
density at the surface of the plate is given by equation

(5.37), so that using equation (3.4), the electric field

is given by

- R .0 . (6.10)



- 167 -

It has been assumed in Chapter 5 that, the electro- k
magnetic field quantities vary sinusoidally in time and
space, and hence, the distribution of these guantities
in the x-direction is also sinuscidal. Thus, in terms
of the notations of Chapter 3

- 2 :
. QK(B£+JY£) .

Eoea © Tmaoe Hyga (6.11)

A

where Hxﬁd = Hxid exp (-Jjgx), and is the same as given in

equation (6.7).

~

From equations (6.9) and (6.11), therefore

. 2
f _ ._qp‘(82+jYQ)A
2 U W 2d.(A-1)

(6.12)

Having obtained the complex non-dimensional quantity

Fh

TQ, other electromagnetic field eguations at the surface

of the plate may now be obtained.

6.4.2 Surface Magnetic Field Strength in Terms of Primary .

Excitation

Substituting the value cf T, in equation (6.7), the

magnitude of the magnetic field strength on the surface

of the plate, lezdlfiS given by

A

z
’H zd{ = P L (6.13)
X . .
coshqg[l%kl,R2 +2kIR£81n¢£]
2 . .
where RRZ = 822+Y2 is a function of b only and
24
Ll - ?dpdm(>*l)



- 168 -

Equation (6.13) defines the magnetic field strength
on the surface of the plate in terms of the primary
excitation, the machine dimensions and the resistivity
and the magnetisation curve of the material. ‘ﬁxﬁdl

may also be obtained in terms of a dimensionless parametexr,

Qg' to be introduced in the next section.

6.4.3 The Dimensionless Parameter, Q,

As in the linear theory, a non-dimensional

parameter, O may be defined in the non-linear theory

Q,'

as the ratio of the impedance due to eddy-current reaction

Zy2d|
surface of the plate. Clearly Q2 = 1 is the condition

field, |2 to the input impedance | at the

ry%dl'
when the maximum loss occurs in the plate. Other electro-
magnetic field equations may also be obtained in tercuws

of Q'Q and thus define the nature of these equations

under the conditions of maximum loss.

Q2 is defined by

Z
0, = =~ Ld (6.15)
IZy%d,
is given by equation (5.41). ‘Zryﬁd‘ may

’Zy2d1
be obtained from eguation (4.18) if the permeabilities

of both primary and the plate are high and if urtanhqgtanhqd

> 1, i.e. the eddy-current field is strong. While the
; L.e.

permeabilities are gene:ally high, this condition applies

D

4

for noderate values of gg and gd. Thus, equation (4.12),
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which does not contain solid-iron parameters, may be

used for Zryld r SO that equation (6.15) becomes

2dy jw (A-1)

Qz = ; . (6.16)
qu.thanhqg

This expression of Qz is used in defining plate
thickness for optimum loss in the following section.
Equation (6.16) is used also in obtaining other electro-

magnetic field quantities on the surface of the plate.

6.4.4 Plate Thickness for Oétimum L.oss

Since QR = 1 represents the maximum loss, a plate

thickness may be so defined that maximum loss will occur.

Such a value for half—thickhess, d, , may be obtained

2m
from equations (6.16) and (5.29) by putting QQ = 1.

l ‘ 2pdwquztanhqg 6.17)
d = 6.17
m 2,2 _ 2.2.2p 2 2

My w 4a£.q.p.R£.tanh qg

It may be seen from equation (6.17) that the
plate-thickness for optimum loss depends on (i) the
magnitude (included in o) and freguency of primary
excitation, (ii) the machine dimensions, and (iii) the
resistivity and the magnetisation curve of the material
of the plate. For given values of these quantities,
therefore, there exists a plate thickness, which if uced
would result in maximum power loss. Conversely, for a
given value of the plate thickness, cquation (6.17) may

£ 3 i imensions for imum loss.
he used to define machine dimensilol or maximu
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6.4.5 "Hxﬂd}and m.m.f. Expressions in terms of Ql

From equations(6.14) and (6.16)

.
R k = —_
L1 QQ

so that the relation between the magnetic field strength on

the plate surface and the primary current sheet, equation
(6.13), may be written as
~ 1
2
KZQQ

H = ' (6.18)
— L
‘ ngi coshqg(Q£+Q£ l+Zsin¢9')2

‘Hxﬁd] may also be expressed in terms of the
m.m. s obtained at the primary and the plate surfaces. This
relation may later be used in loss, force and flux

itl e

cxpressions to cbtain these in terms of the primary m.m, £, Sl

It is shown in Appendix IT that the eddy-current A
reactionm.m.f. in the plate]Frzlis related to inle by

the equation
: B,
x2d
= okl 6.19
|FrQ| 3 ( )

and that the primary m.m.f.'FcUis related to KZ by

- - 6.20
IFCQ,I ( )

From equations (6.18), (6.19) and (6.20), therefore

L
- 73
a|Fey 19 - (6.21)

H 25 e e e T 1

2

and
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. . :
7| = 'chz|Qz !
ry, : — — (6.22)
Ccost ot +2sint
OSlqg(Qz*Qz -2 1n,Q)

.6.4.6 Loss/area and the Parameter Qz

The eddy-current loss per unit of surface area due
to excitation from any one side is given by equation

(5.43), which, using equation (6.21) and (6.16), becomes

r |2cosd
FCRI cos b A gy w

G;Rd - 2coshqgg.sinhqg ‘ (6.23)

where

A, = L (6.24)

2 -1 .
Q2+Q2 +251n¢2

Since Qp = 1 is the condition for maximum loss,
it is given by : ¥

- 2
|Fc£|‘

cos¢xqudw g
Fyram = T(I+sing

) coshgg . sinhdg (6.25)  M

2

The loss expressed at per unit of its maximum

value is given from equations (6.24) and (6.25) as

@§2d 2+251n¢h

-1 C
G?Qdm Q£+QZ +251n4&

The variations of A2 and the normalised loss

(equation(6.26))with the non-dimensional parameter QR

are shown in Figs. 6.1 and 6.2 respectively. Bowden

21so obtained similar expressions for loss and normalised
cl - ;

loss as given in equations (6.23) and (6.26), although
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his definition of QQ was independent of d.

In order to obtain the value of loss, the value
of QQ has to be determined first, as is clear from
equatioms (6.23) and (6.24). Since the loss expression

(equation (6.23)) contains primary m.m. £. [ﬁ it would be

CQ"
helpful if a relation could be established between QQ

and [F_,|. In fact it is possible to do so.

The expression for Qg,given by equation (6.16),

contains A which includes o, (equation(5.29)) i.e.
Iéx%dl' Substituting for léxgdlfrom equation (6.21)
the relation between Q, and ]fcgl is finally obtained.
However, the resulting expression is lengthy and
complicated and is not given here. Both sides of the
resulting expression contains Qg with fractional indices S
and, as such, it is not possible to find the value of 1ﬁ
Qz except by some iteration process. This was computed

63

using the Newton-Raphson method and the variation of

Q, with Ié ,| for various thicknesses of the plate is
c

shown in Fig. 6.3.

Fig. 6.3 shows that the general nature of variation
: : : i - oes on increasing for the
of 0, with |F ol 1s that Q, g g for the
range of |F l plotted. This is true for all plate
- cl
thicknesses. Thus, small values of Qg occur at low

primary excitation, i.e. peak loss density in the plate

- ~ iS o g
is obtainable at small values o Ilcgl and as |chf
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increases, the loss densities obtainable are progressively
smaller proportions of the peak loss. This is, however,
not strictly true about plates of very small thickness,
where the loss densities obtainable are always quite

high as indicated by small values of QR'

Fig. 6.3 has been obtained for one value of air-
gap length and pole-pitch of excitation winding only,
and a set of similar curves has to be obtained for any
change in either or both of these quantities. For the
same values of air-gap iength and pole-pitch, Fig. 6.4
shows the variation of maximum loss against primary
excitation (equation(6.25)). For a plate of given thick-

ness and for a given value of primary m.m.f. |7

col® the
loss density may be obtained using Figs. 6.2, 6.3 and

6.4. TFor a plate of a given thickness the value of QQ

may be obtained for any primary excitation from Fig. 6.2
and corresponding to this value of QQ the value of
normalised loss may be obtained from Fig. 6.3. Having
obtained the maximum loss from Fig. 6.4, the actual loss
density may be calculated. This procedure, though lengthy,
provides the value of Q2 which may be used to find the
values of other quantities and also to provide some

idea of the proportion of obtainable loss that is being
exploited. Furthermore, this procedure has an aspect

of generality in that it utilises the normalised curve

of Fig. 6.2 which is useful irrespective of the plate
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thickness, the primary excitation and the machine
dimensions. Alternately, however, all the above steps

may be incorporatedlin the computer programme itself, so
that loss values may be obtained straight as a function

of IFCQI as shown in Fig. 6.5

6.4.7 Forces on the Surface of the Plate

The solid~iron plate, being subjected to magnetic
fields, experiences forces of electromagnetic nature.
At the surface of the plate, .the x-component of force

density is given by

- _1 : * oo
Fxﬁld 2 Re(Jsz x B yld) (6.27a)
where jzzd is the surface current density given by
equation (5.37) and B"“d is the complex conjugate of
Y X
: = -y T E ! 8 . 6.12
Byzd “oTszzd' Thus, from equations ( )},
- 2p 24 b
. _ szd'RQ'A'qp | .
x2d - gyaz (a-1)2 ’

Using equations(6.21) and (6.16), equation (6.27)

finally becomes

_ - 2.2 2

- - 6.28
Feoa = 7d(n-1)coshqg. sinhqgg ( )

where A2 is given by eguation (6.24) .

At maximum loss Q, = 1 and if the frequency is the

same, this also represents the maximum force condition.
-, is S :

. . -ained from equati 6.28
The maximum force may be obtained f1 equation ( )
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by putting (2+251nd&) for AK’ so that normalised force

is also given by equation (6.25).
The y-component of force density at the surface

of the plate is, likewise, given by

_ 1 . |
Fora = ~ 3 RelJ,q x BE ) (6.29a)

h * 3 . ° —_ °
where Bx%d is the complex conjugate of Bx%d = “onzd’

Thus
22
u B AZH
F. - oL x2d (6.29)
yd 4d (A-1)
Using equations (6.21) and (6.16), this becomes
2 2
. _ uo.wcos%q.]FCz].A2 6. 30)
yd 2pcoshgg,.sinhgg . -
!
ol
Thus the y-component of force density at the plate iy
: N
surface also has its maximum when Qg = 1, provided frequency ﬂ

remains the same. The normalised force equation is also

given by equation (6.26).

6.4.8 Flux/pole and Qz

The mean flux density at the surface of the plate

Byzmn’ is given by the eqguation
5
= —|B (6.31)
Byzmn n’ yﬁdl
where Bygd = —“dTQszd

The total flux per pole, épp' is given by

"

= ole-area
®p2 - Bygmn x
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Thus, if L is the width of the plate in the z-
direction, then using eguations (6.12), (6.21) and (6.16),
the total flux/pole is given by,

) 2uOL|FC2[ {AQ}%

®p2 "~ sinhqgg 6; (6.32)

The effect of finite plate-thickness on the flux/

A
C C e %
pole is implicit in the expression (5&)2 in equation
L
(6.32). Three specific cases may be studied for this

expression.

Case~i,Q2 is large (i.e. QQ'>> 1)

A
;, .
In this case {é&JZ > 5L, so that
% 2
24 L[F [
_ o} cl
¢ = FaTea— (6.33a)
pQ}Q large  Qpsinhqg
2
Case 2, Q2 is small (i.e. Qg << 1)
A2 L
In this case |==|?~+1 and
Q
g Q = EE_I_FC_’Q{_ (6.33b)
P Qz small sinhqgg
Case 3, Q = 1
In this case, equation (6.32) is given by
/2uGLI Ty | (6.33c)

) iI = T
pL Q7 (L+sin®)) *sinhqg

Thus, it is only when the value of Ql is large that

the flux/pole is a function of Qg and hence of plate

L rOr alues { F f
thickness (Fig. 6.3). For small values of Qg mnd for
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QQ = 1, the flux/pble is independent of plate-thickness.
Also equation (6.33b) is independent of solid-iron parameters,
so that for weak eddy~current reaction field the flux/

pole is not influenced by either the thickness of the

plate or the magnetisation curve of the material of the

plate.

Equation (6.33c) gives the value of flux per pole

when maximum loss occurs in the plate.

6.5 FIELD EQUATIONS AT PLATE SURFACE UNDER TRANSVERSE

FLUX ARRANGEMENT

As before, the transverse flux arrangement is

represented by a further suffix t with all guantities. "

6.5.1 The Value of Tt . WW

Under this arrangement, the surface current density L
is given by equation (5.63a), so that the electric field

intensity is obtained, using equation (3.4), and the
reasoning of section 6.4.1, as

2 .
= - i 2 .34
E g =~ °(BHIVL) (3 T ) Hy g (6 )

Y A

= -49gx) and is given by equation
where H_, 4 thd exp (-jgx) g g

(6.7).

From equations (6.9) and (6.34) ,therefore,

. ’) . r
The value of Tt,given by equation (6.35), may now

i ytaini ] xpressions of other electro-
he used in obtaining the exg
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magnatic field quantities at the surface of the plate.

- 6.5.2 Surface Magnetic Field Strength in Terms of

" Primary Excitation

Putting the value of T, from equation (6.35) in
equation (6.7) expression for the magnetic field strength,

‘thdl = thd at the surface of the plate is obtained

A

B - , K, S | 6. 36)
xtd . 25 2 . % )
coshqg(l+k2_Rt +2ij£S1n®t)

2

where R ? = g, °+ Ytzand k» is given by
= 90 (2
k, T (d + at)tanhqg (6.37)

Equation (6.36), therefore, defines the magnetic
field strength on the surface of the plate in terms of
the primary excitation and its frequency, the machine
dimensions, and the resistivity and the magnetisation
curve of the material of the plate. It may be noted
here that k» (equation(6.37))contains two terms, of which
the first term is prominent for small values of plate
thickness and is independent of primary excitation,

while the second term is prominent for large values of

plate thickness.

H may also be obtained in terms of a dimension-

xtd
less parameter Q. to be introduced in the next section.

6.5.3 The Dimensionless Parameter O

As in Section 6.4.3, a non-dimensional paramcter

0. may be defined in this case, as
) :
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0, = %rytd

t |Zytd ' (6.38)

where Izytd! is the input impedance at the plate surface

and is given by equation (5.69) and |2

rytd] is the

impedance at the surface due to the reaction field of

eddy current and is given, as before, by cquation (4.45).

Substi 1
ubstituting for Zrytd and Zytd '
LW
Qt = 20 (6.39)
qut(a+ut)tanhqg. :

This expression is used to define the plate thick-
ness for optimum loss in the following section. Equation
(6.39) is also used in expressions of other electro-

magnetic field quantities at the surface of the plate.

6.5.4 Plate Thickness for Optimum Loss

Clearly Qt = 1 represents maximum loss, so that

a plate half-thickness dtm may be obtained for which the

loss in the plate is maximum. Thus, from equation (6.39),

by putting Qt =1,

ZqQRttaang

| = (6. 40)
’dtm! uow—qQRtattanhqg

Equation (6.40) shows that for a given set of
values for (i) primary excitation (through qt) and its
frequency, (ii) the machine dimensions and (iii) the
resistivity and the magnetisation curve of the material,

there exists a plate thickness for which the power loss
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in the plate is a maximum, Conversely, for a given

plate thickness, equation (6.40) may be used to define

machine dimensions for maximumn loss.

6.5.5 |thd|and m.m.f. Expressions in Terms of Q.

From equations (6.37) and (6.39)

1
R k =
t72 Qt

so that equation (6.36) becomes

%

. K 0
_ z t
intdI B

(6-49)

-1, . %
coshqg(Qt+Qt +2&1n¢t)

As has been shown in Appendix II, the eddy-current

i ' . i [ 1
reaction m.m.f. in the plate P is related to 'thdl by
H .
- xtd
= 42
IFrt| q (6.42)
and the primary m.m.f. F_ 4 is related to K, by
: IKZ‘ (6.43)
lFCtl - q .
From equations (6.41), (6.42) and (6.43), then
- %
: alF 10
I gl = =) —, (6.44)
X ‘ i
coshqg(Qt+Qt +251n©t)
and
- %
. cht'Qt
|F_ | = — ST T (6.45)
re coshqg(Qt+Qt +2Sln¢t)

Equation (6.44) expresses the magnetic field



- 181 -

strength on the plate surface in terms of the primary

mnf, and the effect of finite piate thickness is implicit

in the definition of Q, . Ithdl’ as given in equation

(6.44), may be used in other equations in order to

express them in terms of [Fctl.

6.5.6 Loss/area and the Parameter, Q.

The eddy-~current loss inside the plate per unit
of its surface area due to excitation from any one of
its sides is given by'equation (5.72), which, using
equations (6.44) and (6.39), becomes

|fct|2cos©ﬁAtqudm

= .46
&§td 2sinhqgg.coshqgg (6 )
where
Ay - i (6.47)
Qt+Qt +251n$t

Since Q .= 1 is the condition for maximum loss,
from equations (6.46) and (6.47) the expression for
maximum loss is obtained as

l};ctl Foosh i

. _ _ (6.48)
Pytam” Z(I+sin ¢ )sinhgg.coshqy

The normalised loss is obtained from equations

(6.46), (6.47) and (6.48)

Ppea 7 - (6.49)
€ an “li2sing
ytdlﬂ Qt’{_o - o :t
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The variations of At and normalised loss with Qt

are shown in Figs. 6.1 and 6.2 respectively.

Equation (6.48) shows that maximum loss may be obtained

in a plate irrespective of its thickness. Fig. 6.4 shows

a plot of @ytdm against |F

.

ct

In order to obtain the 1loss density in terms of the

primary m.m.f., the non-~dimensional parameter Qt should
first be determined, as may be seen from equations (6.46)
and (6.47). It is possible to obtain Qt as a function of

pPrimary m.m.f, FC from equation (6.39) in which the

t

value of Gt is obtained from equations (5.52) and (6.44).

This gives

b-1 b-1 b+3  b-1 h
I ) 4 Z ’

. A2 .
294 on x @ 1Tl Ot £ Kbt _ bo” v
— +t Gp) - b-1 qPR, tanhqg i
2 f
cosh qg H

(6.50)
Equation (6.50) gives the parameter Qt with
fractional indices and hence it is not possible to obtain
an algebraic solution. The value of Qt was computed for
EN1A steel (i.e. for b = 0.112) using the iterative

63

Newton-Raphson method”~. Fig. 6.6 shows the variation

i . for various thicknesses of the plate.
of Qt against [Fctl

The curves of Fig. 6.6 are similar to those

obtained for the longitudinal flux arrangement (Fig. 6.3).

Small values of Qt at low cht! are indicative of the
fact that optimum loss conditions are obtained at small

S increasing the primary excitation
values of lEctI and by 1in g vy ,
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progressively smaller proportion of the peak loss is

being obtained.

For a plate of given thickness, the value of Q.

may be obtained from Fig. 6.6 for any primary

excitation. Normalised loss value may be obtained

from Fig. 6.2 corresponding to this value of Qt’ and

from the knowledge of maximum loss, (Fig. 6.4), the
actual loss may be obtained. This prccess, though
lengthy, provides with the wvalue of Qt which may be

used in other expressions and which gives an idea of

the proportion of obtainable loss that is being exploited.

Also this procedure utilises the normalised curve of
Fig. 6.2 which is useful at all values of primary

excitations, plate thickness and machine dimensicns.

Alternately, however, all the above steps may
be incorporated in the computer programne, resulting
in loss vs. primary excitation curves as shown in

Fig. 6.7 .

6.5.7 Forces on the Surface of the Plate

Forces of electromagnetic origin act on the
surface of the solid-iron plate. The x-component of

force density on plate surface is given by

F = - % RQ(JJ . X B;td) (6.51a)

where Jztd

is the surface current density and is given

i ‘
e

ne

i
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by equation (5.63a) and B;td is the complex conjugate of

the y-component of flux density at the plate surface,

Bytd’ given by - uoTtthd' Thus using equation (6.35),

this becomes

1 2 2 2 2
o Mea 9eR” (§ voy) _

Using equation (6.45) and (6.39) this finally

becomes

o 2 2 2.
Ml F PR (o) \
F = (6.52)
xtd ,
2sinhgg.coshqg

The y-component of force density at the surface

of the plate F is, likewise, given by o

ytd’ |
f
Sl
—_ - ..1.‘. . * . . ui
Fytd 2 Re(Jztd X Bied! (6.53a) i
where B;td is the complex conjugate of thd = uontd
Thus
o .2
_ o xtd | 2
Fota ™ 72 Hoby (g +oyp) (6.53)
Using equations (6.45) and (6.39), Fytd finally
becomes
2 17 2
_ uo,wJFct|_Atcos¢t N
Fytd 2psinhqqg.coshqg
In both eguations(6.52) and (6.54), b, is given
by equation (6.47) . Tor maximum loss, Qt = 1 and this

applies for forces as well, so long as the frequency
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remains the same. Thus in the force expressions above,
the maximum force conditions would be obtained by
replacing A_ with (2 + 2sin¢t)_l and the normalised

force density equations would also be given by equation

(6.49).

6.5.8 Flux/pole and Qt

The mean value of the flux density on the plate

surface Bytmn is given by
_ 2y 5
ytmn ﬂlBytdl (6.55)
where Boyq = 7 HoTiHxeq

The flux/pole, @pt,is given by

1) =

pt Bytmn x pole-areca,

Thus, using equations (6.44) and (6.35), the total

flux/pole is given by

2UoLcht] [AtJ%

pt = sinhqg__— 0.

(6.56)
Op

d

where L is the active width of the plate.

The effect of finite plate thickness is implicit

s

) A
in equation (6.56) in the expression[ﬁzj . However,
itis only when Qt is large that finite plate thickness

affects the flux/pole, as may be seen from the following

study.
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" Case 1, Q. is large, (Q, >> 1)

t t

A L
In thi £t 1
n is case o - o so that

t t

2y L|F |
o J =_9o ¢t (6.57a)
pt Qt large Qt81nhqg

Case 2, Q, is small, (Qt'<< 1)

t

2

Ak
In this case [—E} + 1, so that

Qt
o ] = EEQElEEEl (6.57b)
pt Qt small sinhgg
Case 3, Qt = 1
In this case ff&
. 3 /7 Ll | 6.570) tﬂ

L
p?JQt = 1 (l+sin® ) *sinhqg

Thus flux/pole,given by equation (6.57a), is a
functicn of Qt and hence of plate thickness (Fig. 6.6).
As in the longitudinal flux case, here also for weak
eddy-current reaction field, the flux/pole is independent of

plate~thickness and the magnetisation curve of the

material of the plate. When Qt ="1, the flux/pole
is also independent of plate-thickness and equation

(6.57c) gives the value of flux/pole for maximum power

loss in the plate.
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6.6 A DISCUSSION ON ELECTROMAGNETIC FIELD QUANTITIES

- ON THE PLATE SURFACE

6.6.1 General

In Chapter 5, one dimensional non-linear theories
were developed for both longitudinal and transverse fiux
arrangements and so far in this chapter they have been cor-
related with the two-dimensional fields in the air-gap.
Equations have been obtained for the various electro-
magnetic field gquantities at the surface of the plate and
in this section a discussion of these, including the

model, 1is made.

6.6.2 The Arrangements in the Model

The model used in the analysis is that of Fig. 3.1, 1
except that the fields are one dimensional in the plate,
i.e. the y-component of magneticfieldé is neglected. 1In as
much as a transverse flux arrangement implies that the
flux passes through the plate, (especially when it is
thin), it is, in a way, a misnomer, because of the one-
dimensional nature of the problem. However, with a
double-sided arrangement, both pole-arrangecments are
possible, and it is found convenient to retain the terms
'longitudinal' and 'transverse' flux, as was introduced

with the two-dimensional linear theory of Chapter 3, to

keep the continuity throughout the thesis.

It may be mentioned here that since by letting
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the plate-thickness become very large, the present
model corresponds to that of Bowden, some work on
Optimisation of loss in a plate with single-sided
arraangement was carried out. High loss in the platé
would result in increase in resistivity of the plate

due to rise in temperature and a relation was obtained
between normalised loss and normalised resistivity. The

details of the work are given in Appendix III.

6.6.3 General Comments on Field Quantities

The non-linear theories developed in Chapter 5 depend
for their solutionson the double function introduced in

equation (5.17).

H =0 Y (1+£y) S, hy'< -1, fy' < -1
HX de (1+hy') " (1+£fy')~, hy 1, fy

(5.17)

The values of the constants h and f obtained for the
two different pole-arrangements clearly show how these
are affected by finite plate thickness. It has been
mentioned in Chapter 5 (Sections 5.4.1 and 5.5.1) that
by making the plate thickness very large, these constants
are so modified that equation (5.17) always turns into a

single function of the form

A r '
= I 1 + hy'") (6.58)
HX de( Yy

which is of the same form of solution as was appropriately

used by Bowden. This justifies the use of equation (5.17)

. solution to the differential cquation (eqguation (5.14))
as a soluti
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A

concerning H and
g Y, y.

Having obtained a solution for the magnetic field
strength in the solid iron, expressions for current
density, impedance, loss, force and flux may be obtained
relatively easily. It is seen that both magnetic field
strength and current density inside the plate are confined
to thin layers near the plate surfaces. It was found
convenient to define a plate thick when its half-thick-
ness was very much greater than l/2a£ in longitudinal

flux arrangement and 2/xt in transverse flux arrangement.

For both pole—arrangéments, the impedance angles
are equal and are functions of the magnetisation curve
of the material of the plate. It may be noted that for

the linear case both become equal tc 1/V2.

(©

The input impedance at the surface of the plate is
generally higher in the longitudinal flux arrangement
than in the transverse flux arrangement, for the same
value of surface magnetic field strength. This suggests
that eddy-current field is stronger for transverse flux
arrangement than for longitudinal flux arrangement.
Physically this is due to the currents being more
uniformly distributed across the plate thickness in

the transverse flux arrangement than in the longitudinal

flux arrangement.

T¢ was found convenient to carry on the analysis

. : Toas Srameter 1@ £
in terms of a dimensionless pgxamobel, Q0 (i.e. Q_2 & Qt)
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defined as the ratio of wave impedances at the plate
surface. Maximum loss and force conditions may be ecasily
obtained by equating it to unity. The magnitude of this
parameter represents the dominance or otherwise of the
eddy-current field. It also indicates how much of the
maximum possible loss is being obtained (Fig. 6.2). If
optimisation of power loss in the plate i5 desired, the
dimensions of the machine may be so chosen that Q tends to
unity. Equations (6.17) and (6.40) may be used to select
a plate of optimum thickness (i.e. Q = 1). It may be noted
in these equations that for a given machine, there is
always a plate-thickness which would give maximum loss;
although these thicknesses are different for the two
arrangements of poles. Conversely, for a plate of given
thickness, these equations may be used to select machine

dimensions such that maximum loss occurs.

Loss densities obtainable under the two different pole
arrangements are shown plotted in Fig. 6.8 against the half
thickness of the plate. The loss for the transverse flux
arrangement is higher than that for the longitudinal flux
arrangement, especially when the plate thickness is small.
This agrees with similar observations made in connection
with the linear theory (Section 4.3.4). Fig. 6.8 also
includes a plot of the ratio of the losses under the two
arrangements and this shows that the losses are not very

much different. Thus, while for the non-linear case

either arrangement of poles results in a high loss,
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longitudinal flux arrangement is to be preferred for
plates of large thickness and transverse flux arrangement

may be preferred for plates of small thickness.

It may be mentioned here that while the non-
dimensional parameters QR and Qt are very helpful in
the analysis and design, their values may not be obtained
except by some iteration method on a digital computer.
Thus in order to design a heating system using the model
of Fig. 3.1, the values of Q2 or Qt has to be obtained
either from computatioh or from sets of curves of the

nature shown in Figs. 6.3 and 6.6 .

6.7 CONCLUSION

In this chapter a general solution has been obtained

uantities at the surface

for the electromagnetic field

o]

of the plate by eguating the solutions for electric

field intensity from the present non-linear theory in the
plate and the linear theory in the air-gap at the air/
iron surface. Magnetic field strength on the plate
surface was, thus, expressed in terms of the primary
excitation which enabled the loss, the forces and the flux/

pole to be exprescsed in terms of the same.

T+ was found convenient to carry out the analysis
i i ~dimensiona ramete i.e. r
in torms of a non dimensional parameter, Q (i.e Q& o

0. ) defined as the ratio of input and output impedances
“t
at the plate surface when the cddy-current field was

+ g 0 =1 represented the condition of maximum loss
strong. = g

1 forces The relation between the surface magnctic
and forces. » rels
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field strength and the primary excitation has been expressed
in terms of Q so that the loss, the forces and the flux/

pole have also been obtained in terms of this quantity.

A definition for dm’ the plate half-thickness for

optimum loss, has been obtained from the definition of

Q. dm (i.e. dzm or dtm) has been expressed in terms of .
(i) the magnitude and frequency of primary excitation,
(ii) the machine dimensions, and

(iii)the resistivity and the magnetisation curve of the

material of the plate.

Thus for a given set of these values, there always
existed a plate thickness when the loss in the plate

would be a maximum.

A discussion of the field quantities under the two 8
different pole arrangements concludes the work of this
chapter. The use of a double function solution (equation
5.17) to the diffusion equation has been shown to be
appropriate in order to account for the additional
boundary condition at the centre of plate-thickness.
Conditions have been obtained for defining a plate as thick
and thin for both pole—arrangementé. As in the linear case,

the loss under TFA was markedly higher than that under

LFA when the plate thickness was small.



CHAPTER 7

FINITE WIDTH EFFECTS FOR LONGITUDINAL FLUX ARRANGEMENT

AND TRANSVERSE FLUX ARRANGEMENT

7.1 INTRODUCTION

The work in this chapter considers the effects of
finite plate width (in the z-direction) on power loss
and current-density distribution in a plate subjected

to travelling magnetic fields from both sides.

In the analyses presented in Chapters 3 and 5, finité
width effect was neglected so that current density in the
plate was considered unidimensional. In a plate of finite
width, however, current density in the plate will have o
components in all three dimensions, and, depending on the W;g
particular pole-ﬁrrangement, current densities will have gﬁ
preferred directions of flow in the end~région. Eddy-
current power loss in the plate, likewise, will be

different.

For a machine having constant-voltage excitation,
the air-gap flux will be of approximately constant
amplitude; the voltage induced in the plate,for
sinusoidal flux, will be proportional to the flux and
the resulting currents would be 4dependent on the plate
impedance., These conditions may also be obtained in a
machine having constant primary m.m.f. and weak eddy-current

reaction in the plate (i.e. Q < 1).
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The nature of the eddy-current reaction ficld (i.e.

whether it is strong or weak) is detcermined to a great
extent by the dimensions of the heater (e.g. pole-pitch,
air—gap length, thickness of the plate) and the physical
parameters of the material of the plate. Where the eddy-
current reaction is weak, any change in the eddy-current
reaction has little effect on flux/pole. This is seen

from equations (6.33b) and (6.57b) which are independent

of the physical parameters of the material of the plate.

Double-sided linear induction heaters are often
weak eddy-current reaction devices; Jackson's4 transverse
flux slab heater is one such example. For machines having
strong eddy-current reaction (Q > 1), three~dimensional
analysC¢s are necessary to account for the variaticon in the
flux/pole and the air-gap flux density distribution.
Bowden's3o treatment of end~effects, for example, was
concerned predominantly with machines having Q > 1. Thus,
it was felt that in the present work, finite width effect
would be considered in a heater having weak eddy-current
reaction field; for such a case, the analysis is simpler
than the three-dimensional analysis necessary for machines
with strong eddy-current reaction.

T: a heater has weak eddy-current reaction field,
the current density and hence, the eddy-current loss, in
é plate having low-resistivity end-strips would be higher

than those in a plate without such end-strips. In the
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present analysis a plate of finite thickness is considered
as being subjected to double~sided excitation and in this
chapter the effects of finite plate width on power loss and

current-density distribution in the plate are studied.

The analysis presented in this chapter consists of
a simple two-dimensional solution of current densities in
the plate and in the end-strips. Current densities are
assumed to be uniformly distributed in small depths near
‘the plate-surfaces and over the width of end-strips.
Aaditional boundary conditions arise due to finite
thickness of the plate. The analysis results in the
definition of a finite width factor which is equal to
the ratio of power loss in a plate with end-strips of
finite resistivity to that in a plate having end-strips
of zero resistivity. Both longitudinal and transverse

flux arrangements are studied in detail.

The effect of magnetic non-linearity in the material
of the plate is accounted for by defining an effective

thickness for the assumed uniform current-density

~

distributions; the non-linear theory of Chapter 5 is
used for this purpose. The width for uniform distribution

of end-region currents with and without end-strips is

also defined The nature of current-density distributions
1ls " .

in the plate and their dependence, at the end of the active

width, on the plate thickncss and pole avrangecments arc
idth, on the platd

also investigated.
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In rotating electrical machines, the effect of
finite rotor length or end-effcct also arises and various
attempts to account for this effect are found in published
11,22,44,64~-72

rk . A brief survey of some published

literature precedes the solution presented in this chapter.

The chapter endswith a comparison of the present
treatment with that of Woolley and Chalmer866 and this
includes a reference to the areas where new contributions

are believed to have been made.

7.2 NATURE OF FINITE WIDTH EFFECT

The linear and the non~linear theories developed
in earlier chapters (Chépters 3 and 5) assumed a machine*
of infinite width (i.e. the machine was considered to
extend to infinity in the z-direction, which is perpend-
icular to the direction of travel of the'magnetic fielad)
so that eddy currents flowing in the plate would close
their paths only at infinity and thus have no effect on
the electromagnetic field distribution within the boundaries

of the model (Fig. 3.1); the current density in the plate

could then be considered as purely z-directed.

% The word '‘machine', used in this section,; refers
to the travelling-wave induction heating device

being discussed throughout this thesis.
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In a practical arrangement, however, the width of
the machine would be finite and the currents in the plate
would close their paths in the active as well as in the
end regions. An infinitely wide machine can, nevertheless,
be simulated by fitting low (ideally zero) resistivity
end-strips (e.g. Copper) at the ends of active width of
the plate,* as shown in Fig. 7.la. The end-strips
provide low resistivity paths for the end currents and
these minimise end-~region loss.. The resulting current
density in the plate would be predominantly z-directed,
JZ, since the use of end-strips would provide approximately
equipotential surfaces at the interfaces between the active
and end region, although current density in the x-directiocn, o

(i.e. in the direction of travel of magnetic field), JX,

4 K
7 /
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s LS / / /// /,/ e Z ’/)
0 ——— i
] JX J,
LTH z ' S
PR W _ .(i“L" ) 1 o R
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/ // //)/ ,////////, Z *"ir//“
y rys S
{forms O~€

. SRS A aiime a3 s g #*‘
Iig.7.la End-strip plate. rig.7.1b Assumed,distributions

of JZ and Jy over the

&4

active width of the plate

* This will be termed the 'end-strip plate' in this thesis.
** The actual distributions of JZ and JX are optgined .
mathematically, for the given~boundary conditions, in

section 7.4.
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forms of
The assumedAdistributions of Jz and

would also exist.
JX over the active width of the plate are shown in
Figure 7.1b. It may be noted in Figure 7,.1b that

at the centre of the active width, i.e. at z=0, the
current density in the plate is wholly z-directed and
any correlation of electromagnetic field distribution

with the theories developed in earlier chapters (Chapters

3 and 5) may be obtained only for values of JZ at z=0.

In the absence of such low resistivity end-strips,
the directional components of current density in the
active width of the plate would have distributions similar
to the current densities in an end-strip plate, but their
relative magnitudes would be different. If the width of
the plate is not greater than thé active width of the
primary, the currents are constrained to-close their paths
within the active region, and at the edges (i.e. at the
ends of active width) of the plate, JZ may not necessarily

be greater than Jx'

In the present double-sided model with a plate of
finite thickness, (Fig. 3.1), the dominance, or other-
wise, of J_ over J_ depends on the pole arrangements on

Z, X

the two sides of the plate as well as on the plate-

thickness. Figures 7.2a and 7.2b show the assumed

distributions of end-currents in the plate for longit-

udinal and transverse flux arrangements, respectively.
Tl < - ~ -

1 1 -hese i -es that for the
It may be noted in these figures tha o
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Cross—-nole
currents

Cross—thickness
current

Fig.7.2a Idealised distribution Fig.7.2b Idealised distribultion
of end-currents in the plate for of end-currents in the plate for
longitudinal flux arrangement. transverse flux arrangement.

longitudinal flux arrangement (LFA), the end-currents are
predominantly cross-thickness in nature, whereas for the
transverse flux arrangement (TFA), the end-currents are
cross-pole in nature.' In the LFA, currents may flow from
one air-gap face of the plate to the opposite air-gap face
across the thickness, since they flow in opposite directions
in the two faces. . In the TFA, on the other hand, currents
flow from one pole to the other within the same air-cap

face or on the side face (Fig.7.2b), since they flow in

the same direction in the two air-gap faces. 1In general,

however, both x and y components (y is in the direction

. - ~rent o] oxist on the sid
of plate-thickness) of currents will e he side

) : L wever . when the plate thick-
facos in the end region. Howevelr, pia

ness is large, the electromagnetic fields in one half of
HNINGY doeo PR S I §

1 f that i : other, so that
the plate is independent of that in the other, so tl
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the end-currents would be cross-pole in nature

As the magnitudes of the currents in a plate of
finite width would be different from those obtained by
the non-linear theory (Chapter 5), the ajir—-gap flux
density and its distribution over the active width
would also be different. Changes in the magnitudes of
current and flux densities are, however, governed by the
machine dimensions and the nature of the eddy-current

reaction.,

For a given primary mem,f.,the expressions for the
air~-gap flux/pole are given by equations (6.32) and
(6.56) for longitudinal and transverse flux arrangements

s
[ R NS L e

4o

respectively, and they apply approximately to the
machine with an end-strip plate (I"ig.7.la). Fcr the
weak eddy-current reaction, the expressions are modified
to equations (6.33b) and (6.57b) respectively; which
are seen to be independent of the parameters of the
material of the plate (p, a and b). Thus so long as

the reaction field is weak, the flux/pole is not greatly
influenced by any change in the resistance and reactance
in the eddy-current path due to finite plate width,

Althouuh it is realised that a three-—dimensional analysis

may result in a different expression for flux/pole, these

. i that maanitudes of flux/pole for the
cquations predict that magnitudes /po
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cases of a wide and a narrow plate, where the impedance

to eddy-current path is higber than that in an end-strip
plate, will be very little different from those obtained

for the end-strip plate.

The nature of the eddy-current reaction field (i.e.
whether it is strong or weak) is determined largely by
machine dimensions such as the pole-pitch, the air-gap length
and the thickness of the plate. These dimensions may be
such that the magnitude bf Q (eguations (6.16¢) and (6.39))
is less than unity at all excitations, so that the machine
may be said to have a weak eddy-current reaction field
(see Section 7.1). In such a case, the eddy-current loss
in the plate is proportional to the conductivity of the
plate (c.f. for a strong reaction field, the loss is
proportional to the resistivity of the plate). Physically
this means that since the eddy-current reaction is weak,
any change in the magnitude of eddy-current reaction has
little effect on flux/pole. Thus, for a given primary
m.m.,f,, the air-gap flux remains substantially constant

irrespective of changes in plate impedance.

T,
Tn addition to a weak eddy-current reaction field,

. , R e the
* A wide plate 1s onhe whose width is greater than the

active width of the machine.

one whose width is the same as the

>
>

A narrow platce 15

c t+he machinoe.
active width o the maching
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the ratio of active width to pole~pitch influences the
magnitude of air-gap flux/pole; the larger the ratio, the

less the change in flux/pole for a given primary excitation.

In considering the distribution of the y-component
of air-gap flux density (i.e. normal to the plate surface),
it may be noted that in an end-strip plate, currents are
virtually z-directed everywhere in the active region and
close their paths in the end-strips, so that the y~component
of aif—gap'flux density will be uniformly distributed along
the z-direction, i.e. the active width. 1In the wide plate,
currents can find an easy path (a path of minimum impedance
between the poles) outside the active region and thus there
should be little change in the y-component of air-gap flux
density along the active width. The m.m.f. due to cross-pole
currents within the active width, in the case of thé Narrow
plate, does, however, affect the distribution of this flux
density, but the effect is small since the circulation of
eddy current within the active region is itself minimal,
the eddy currents being forced by the primary m.m.f. to flow
in the ends and side faces of the plate. The m.m.f. duc to
cross—pole currents 1is negligible in the longitudinal
flux arrangement (Fig. 7.2a), since they flow in opposite
directions in the two halves of the plate. It is only in
the case of the transverse flux arrangement (Fig.7.2b) that

the offects of the m.m. £.8 due to cross~pole currents may be
- o LI S e P B g

i i . vesction field is weak and the
important; but if the reac S W .

) ; N A wole-pitch is lardge, an
ratio of active width to pole-i 5 Large, any



variation in eddy-current reaction will have little effect

on flux/pole.

It may, therefore, be observed that irrespective
of the type of plate used, for a given primary m.m.f., the
air-gap flux, in a model of Fig.3.1 (but incorporating
finite plate-width), remains substantially constant and
the variation of the y-component of air-gap flux density
along the active width is negligible so long as the
machine dimensions are such that the eddy-current reaction
is weak and the ratio of active plate width to pole-pitch

is greater than unity.

For sinusoidal air-gap flux, the e.m.f. induced
in the plate is directly proportiénal to the air-gap
flux, so that for a given primary m.m.f., approximately
equal voltages would be induced in the wide, narrow
and the end-strip plates if the value of Q is less than
unity. But in the wide and narrow plates, a part of
this induced e.m.f. will be required to drive the
currents in the end region and therefore, compared to

the end-strip plate, there will be less e.m.f. available
in the active region.
The reduction of e.m.f. in the active regions of

the wide and the narrow plates results in lower current

. i -ur sults
densities in the active regions and this, in turn, recsul

: £ - “ront s i he plates for &
in a roeduction of cddy-currenc loss in the plates for ¢

. ) R s Ny Thi «ffect is termed as
given primary excitation. This ellc S termel
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'finite-width effect' in this thesis.

The effect of finite width on current and flux
distributions and on eddy-current power loss is usually
termed 'finite-length effect' or simply 'end-effect' in
published works. Some of the attempts to account for
this effect are discussed in the folléwing section with
a view to introducing the analytic method used in this

thesis.

: *
7.3 A BRIEF SURVEY OF LITERATURE

The simplest and most direct method of accounting
for the effect of finite width on eddy-current power

loss is to introduce into the linear solutions either
11,64
f

a 'resistivity multiplying factor’
65,66

a ©1Toss reduction

or an 'impedance multiplying factor'67,

factor!
which accounts for the increased impedance of eddy-

current paths and the change in power loss.

An early work incorporating a resistivity multi-
plying factor was that by Gibbsll, /ho recognised that
the currents in the scecondary flowed not only in the
air-gap surface, but also in the side faces and on the
back (i.e. unexcited) face of the solid-iron section.

He suggested a resistivity multiplying factor (> 1) on

the assumption that the permeability and the thickness

*  the word 'machine'tused in this sectlonyrefors 0

a solid-secondary rotating machine.
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of the end~region were the same as those of the active
part of the machine. He also noted that the end-region
currents should follow a path of minimum resistance.
While such considerations of the distribution cof end-
currents are logical, the assumptions about end-rcgion

permeability and thickness need more justification.

In connection with his work on eddy-current
coupling,James68 offered a simpler treatment of end-
effect than Gibb§sll. He considered the end-region as a
thin conductive sheet of finite width with a potential
distribution defined along the boundary between the end
and the active regions. On the assumption that the
currents were only resistance-limited, he obtained the
ratio of end-region to active region loss; computed

values for this ratio agreed well with experimental

results.

Although James68 consider ed the x and z-components of
current density in the end region, the current density
in the active region was assumed LO be z-directed only.
He did not define the width of the end region in the
model, although he had shown that for a ratio of end-
region width to pole-pitch greater than 0.4, the

width of the end region may he considered as infinite.
James's work showed that the use of copper end-rings

would mean negligible 1oss - in the end region.

7o incorporate the effects of finite width, many
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] ...20,67,69,70

authors have offered three-dimensional analyses.
These analyses are the most complete solutions; but since
it is impossible to include magnetic non-linearity in

three-dimensional analyses, these treatments consider

linear magnetisation only, although the effects of non-

30

linearity are often included in the final solutions
All three~dimensional analyses assume an idealised model
for the machine under consideration. It is assumed in
these theoretical models‘that the machine may be
considered as one of an infinite array of machines, placed
end~-to-end, whose lengths were equal to the active length
of the actual machine. Wood and Concordia69, and later
Angst7o, assumed that the z~directed current sheet on the
primary flowed in one direction over the whole of the
rotor length but reversed at the ends of the active
length. The s-directed current sheet may, thus, be
described by a Fourier series and a sblution obtained in
series form. However, in such treatments no account is
taken of the primary end-region currents. Preston and
Reece'22' suggested modification of the primary currcnt
sheet to allow for the end-region currents, when the
ider than the stator (i.e. primary), by

secondary was Ww

allowing the s-directed current to attenuate beyond

the active length. However, in the active region, they

. ol wecompoOnent of current nsity s
assumed ncither the X comnone!l of current density nox

. . r ~direction of the z-component of
any varjation along the z-d poi



current density. Bowden3O proposed a more realistic
approach of considering (like Gibbsll) the developed
length (i.e. to include side faces and the back face

of the scecondary, rather than the active length of the
air-gap surface only) of the secondary for the path of
end currents. In his model, Bowden considered the
z-directed current sheet to be constant only over a
proportion cf the developed length (i.e. over active
length only) and the x-directed current sheet to be
present where the z-directed current sheet ends. This
resulted in the electromagnetic field guantities in the
air-gap and in the solid-iron secondary to be attenuated
beyond the active length of the secondary, thus showing
the soundness of such assumptions. He obtained a finite-
length factor from the consideration of losses in a
machine with and without end-effects. Bowden also obtained
the effect of finite length on flux/pole and included the
effect of magnetic non-linearity on finite-length effect
(Section 7.7.2). However, Bowden's solution applied to
machines with strong eddy-current reaction field (i.e.

0 > 1) only, as against the present treatment of weak

eddy~current reaction field (i.e. Q0 <1, Section 7.2).

RBecause of thelr three~dimensional nature, these

analyses are the most accurate obtainable. Howcver,

since the idealised models consist of an array of machines

: Ne een analyvses iwply that the electro-
placed end-to-end, these analyse DLy t h

. . = L= T 4 o~ B N RN
. . . o of any individual machine 1S
magnetic field gquantities 7
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not affected by the presence of other electromagnetic
fields in the immediate vicinity, which is an over-
simplification. The models also imply that the end
region of the primary contains high permecability iron,
while in practice, the permeability is that of air. A
yet more accurate model would incorporate the variations
of both z and x-components of current densities within
the active region.

2
2'71'72 offer three-dimensional

Many authors
analyses, but do not compare the eddy-current loss in a
machine having end-effect with that in a machine having
no end-effect. Preston and Reece22 obtained good agree=-
ment between their solutions and experimental results,
but the solutions were complicated and failed to single
out terms which show the effect of end-region currents.

In Malti and Ramakumar's7l analysis of eddy-current
couplings, the end-~effects were also implicit. But they
assumed only z- and x-components of current flow and did
not consider the y-component in the end region in their
threce~dimensional analysis. Also they did not consider
the variation of permeability with deptbh. Thus their work
did not consider magnetic non-linearity which has a
considerable influence on finite-width effect. In Boldea,
Rahman and Nasar's work72, the end-effects were implicit;

but they included the effect of finite thickness in additicn

PP "he a1 e o ylcdored ‘he effceceots
to finite-width ceffecct. They also considered the effccts

i T Aimesrity (Section 7.7.2). However
of magnctic non linecarity (Scc ) )
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their work had its limitations which may be summarised in

their own words, "--- the theory is applicable to the
case when the rotor has a finite thickness. TIf the rotor
is considerably thick, the correlations between the

measured and computed characteristics are not very good".

All three-dimensional analyses,'so far discussed;
obtain solutions inseries form, which, because these
analyses are complete, are the most accurate obtainable.
However, the series form of solutions is complicated
and lengthy, and the results may be obtained only by
means of a computer. A non-series or closed form of
solution, although it incorporates necessary approximations,
does not require lengthy computation. Such solutions are
sufficiently accurate in most applications and the
expressions obtained are compact, simple and conceptually

easier than the series form of solution.

In closcd form, the solutions obtained by Yee67,

-
Russell and Norsworthy6J and Woolley and Chalmers66 are

notable. Yee67 assumed an axial (i.e. z-directed) current

sheet of the primary excitation to be constant over the

total axial length. He assumed that the axial component

of eddy-current density decreased to zero at the ends of

the axial length of the rotor (i.e. the secondary). In

. . . .oy A > two~3 B o] S»‘_ P -~ 1t
his linear analysis, Yee obtalned two~dimensional currer

) ) ™ % o e . - - ~
densities on the rotor surface. 1In order to account 1o

el

. . LR b . ~ ‘<‘[ LI ~ -
end coffects, he obtained an lmpedance multiplying factor
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in closed form, since the air-gap impedance was calculated
on the basis of radial (i.e. y-directed) component of flux
density. He offered physical interpretations of his end-
effect factor and showed that for large values of the
ratio of active length to pole-pitch, this effect was
small. Yee's solution is a rigorous dne, but fails to
predict the electromagnetic field components at the ends

of the rotor.

Russell and Norsworthy65 considered eddy currents
induced in a thin conducting shell, placed in the air-
gap of a screened-rotor induction motor. Since the
thickness of the shell was considered to be small
compared with the mean radius (of the cylindrical rotocr),
variation of current density over the shell-thickness
was neglected, thus making the treatment two-dimensional.
Assuming axially-constant radial air-gap flux density,
they obtained correction factors for fhe reduction of
power Joss in the shell for both an open-ended shell
and a shell with end-rings of zero resistance. Their
work showed that the end-effect was very pronounced in
the absence of such end-rings and that for large values
of the ratio of active length to pole~pitch, this effect
In as much as they assumed axially-constant

was small.

air-gap flux, considered no variation of their two-

dimensional olcctromaqnetic‘fioldg over the shell-thickness

and considered continuity conaitions at the boundary
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between the active (i.e, region 1) and end (i.e. region 2)
regions, Russell and Norsworthy's analysis resembles the

present work (Section 7.4).

For the|merits of being simple, straightforward,
and yet accurate, the theory proposed by Woolley and
Chalmer566 is notable. They developed the solution for
solid-iron rotor induction motor when the rotor was
fitted with conducting end-rings, but included the case
of no end-rings in their final golutions. By considering
small equivalent thicknesses for the uniform flow of two-
dimensional current densities both in the active as well
as in the end regions, they proposed correction factors
for the power loss in a solid-iron rotor. Their work has
shown that unless the end-region has zero-resistivity end-
rings, end-effects may be pronounced. Like other authorg5’67
Woolley and Chalmers also obtained that for large values
of the ratio of active length to pole-pitch, end-effect
was small. They extended their work to cover end-regions
of arbitrary form and the sound theoretical basis of
their work was shown by the fact that the rotor loss was
obtained as being independent of the form of end region,
as long as end-region was continugus through the rotor
axis. The theoretical model assumed in the present
treatment (Section 7.4.1) considers, like Woolley and
a2 solid-iron body with conducting end-strips,

N PR 4
Chalmers,

: : = gqir-ge { 1 5 1 in the z-dircction and
no variation of ailr-—-gap flux density ! z roc c

amall thicknesses near the surfaces for uniform current-
smat . TNLCKITC. LD A0 .
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density distribution. There are, however, certain bhasic
differences bhetween the two treatments and these are

discussed in Section 7.10.

In most of the literature referred to here, end-
effects are considered in an infinitely thick secondary
and eddy currents are due essentially to single-sided
excitation. In this thesis a solid~iron plate of finite
thickness is being considered and eddy currents are due
to double~sided excitatibns and, in the following section,
a solution is developed for finite-width effect (i.e.
end—éffect) which includes these constraints. The effect

of magnetic non-~linearity is included in Section 7.7.

7.4 A SOLUTION FOR PFINITE WIDTH EFFECT

7.4.1 The Model

The model of Fig. 7.3a shows the cross-section of
the plate in the y-z plane, together with two conducting
end-strips at its ends. The plate has a resistivity, p,

which is different from the resistivity, Our of the end-

3

strips. The end-strips each have widths d_ which are

small compared with half-width of the plate, L/2.

The effectiveness of the end-strips depends on

o 7 - ey ] 1 1 y ch A <:3."
the resistivity and permeability of their material,

their widths and also the nature of contact with

the solid iron. Obviously, very low valuas of hoth

. . .. o -~ o~ 3~ ) N B ]
resistivity and permeability are preferred and copper is
= O S - .
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Fig. 7.3 The model considered to account for the finite

width effect.

(a) Cross-section (in the y-z piane) of the solid-iron
plate with conducting end-strips.

(b) Assumed distributions of J, and J_ in the plate over
the active width.

(c and d) Assumed distributions of JeX and Jey in the
end-strips over the plate thickness for (c) longitudinal
and (d) transverse flux arrangement.

44,66,68

a very good choice for this purpose While it is

realised that in a practical arrangement of travelling
solid-iron plates are highly unlikely to

wave heating,

i ' st i +h conducting end-strips
be used in conjunction with conc q ¥
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as shown in Fig, 7.3a, this model will he retained for

the sake of analysis. Once a solution for this model is
obtained, the effects of the more likely case of not

having conducting end-strips may be studied. This is

discussed in detail in Section 7.8.3.

As has been mentioned in Section 7.2, the current
densities in the active part of the plate will.have both
X and z-components. It is realised that at the centre
of the plate width (i.e. at z=0), there will be no x-
component of current density and only the z-component will
be obtained. Towards the ends of the plate width (i.e.
at z=+L/2), however, the x-component of current density
will increase. ¥Fig. 7.3b shows the assumed distributions

of current densities along the plate width.

In the end-strips (i.e. in the end region), the
current densities are assumed to have x and y-components
only. 1In order that the currents can flow into the end-
strips, z-component of current density must also exist
in the end-strips. However, if the width of the end-
strips is small compared with both the active width and
the pole-pitch of the primary, this component would be
small compared with the x and y-components of current
density. The loss produced by the z-component would,
therofore, be insignificant cowpared with that due to
z-componant. of

e Thus the
the other two components. Thus the

i . sglected in the end-strips.
current density is neglected ps



The x  and y-components of current density will
attenuate with depth from the surfaces of the end-strip
and the assumed natures of their attenuations are given
in Figs. 7.3c and 7.3d for longitudinal and transverse
flux arrangements respectively. The symmetrical natures of
their distributions about the y=0 plané is notable.
(The electromagnetic field quantities in the end-
strips are designated by a further suffix e, e.g. Jex’
Jey’ etc.z.

For the purpose of analysis, the current density
in the active part of the plate will be assumed to be
uniformly distributed over a small thickness dc near
the surface, where dc is small compared with the half-
thickness, d; of the plate. Both the linear and non-
linear theories presented earlier point out that the
currents in the plate are, in fact, confined within a
thin layer at the surface. Many previous authors44'65'66
have retained this skin depth concept. 1In order to allow
for the variation of current magnitudes along the z-
direction, the current density itself is considered
variable in the z-direction, so that the concept of small
thicknesses having uniform current-density distribution
may be retained. The concept of d, is, in reality, a
concept of offective thickness in so far as it is not
obtained as a 'skin depth' or & "depth of penctration'.

. e s : rhis thicknoss @ may be
Only an offective value of t C y b

. - e o £ . 1 c o M) N
obtained from the consideration of equivalence of some
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other quantities, e.g. power loss invariance in the

present work (Section 7.7.3).

Likewise, in the end-strips the currents are
assumed distributed uniformly over the thickness de'
The attenuations of currents from the air-gap surface
to the inside of the end-strips are accounted for by the

nature of the current density distribution, (Figs. 7.3c

and 7.3d).

In this model, the positions of the primary

windings have not been shown, because, it has been

65,66

proved that the loss in the secondary is independent

of the end-region extension so long as it is continuous
through the z-axis. However, it will be assumed in the
above model that the active region of the plate extends

to +L/2 and end-strips are beyond the active region.

In the above model, the air-gap flux density will
be assumed to have no variation in the z-direction. It
has been explained in Section 7.2 that the variation of the
air-gap flux density in the Z~direction'is determined by the

nature of the eddy-current reaction field in the plate.

-

When the reaction field is weak, (and this is the case

being considered) the variation of air-gap flux density
i ; - 11,65,66,72
along the z—-direction is negligible. Many authoxs™ ' 77" "f

. : 5 - cialls i.e. al 7~
have retained the concept of axially ( along z

. e A recap flux density.
direction) constant air—gap Flus density

Apart from the condition of constant air-gap flux
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density along the z-direction, weak eddy~current reaction
field in the plate implies that the air-gap flux is
approximately independent of the plate.impedance. Thus,
for a given primary excitation, the analysis may be
carried out in terms of current-density distribution in
the plate, since the e.m.f. induced in the eddy current

paths is constant.

In the above model, it will also be assumed that no
flux enters the end-strips. It is recognised that such
an assumption neglects the fringing flux, but is, never-
theless, justified from experimental result522. Fringing
flux is generally small and is neglected by many previous

authors65'66’68.

7.4.2 The Assumptions

The assumptions for the present solution of finite
width effect have been discussed in Sections 7.2 and
7.4.1 in detail. However, they are summarised here for
convenience. The assumptions are

(1) The current density in the solid-iron plate

has x and z-components. Jy=0 in the plate.

(i1) The current density in the end-strips has x and
' nt =0 in the end strips.

v —components only. J, 1

(i.ii) The current densities are distributed uniformly

~hicknes "~ near the surfaces in the
through a thickness d, near & acc

. . Jlate (d << d)and through a width d
aolid-iron plate (d ) ¢ h o .

1 L DS cc T/2) .
of the end-strips (dg L/2)
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(iv) The plate has a weak eddy-current reaction field,

so that the machine acts as a constant-flux one

for a gjven primary excitation.

(v) There is no variation of air-gap flux density in
- dB
the z-direction. i.e. a~z = 0.
Z

(vi) Negligible flux enters the end strips. i.e. Bez+0.

(vii) The m.m.f. on the plate surface varies sinusoidally

in space and time.

7.4.3 The Boundary Conditions

In the model of Fig. 7.3a, y=0 and z=0 may be
recognised as axes of symmetry and the solution obtained
will be subject to the boundary conditions at these axes.
In addition, certain other boundary conditions need to

be formulated at z=*L/2 and y=id,.

It is realised that the distribution of current
density may be complex at the interfaces at z:ii/Z. For
this analysis, it will be assumed that the interface
between solid-iron and end-strips is perfect and that
the continuity condition for the e.m.f. is maintained.

Applying Kirchoff's law at the rectangular section ABCD
in Fig. 7.3a

+ J
ch de ey = 0

ZT(L/?)I(de/?)—:L ~“y=d- (dc/2)"6\/

oy e de 2y >v 3 an > and
Tt has been assumed that (L/2) dg and d d, anc

i

Sz and oy may bhe made vanishingly smail. Hence, in the
2NS > Y - i
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limit,

dJd = ~-dJ (7.1
c %]2=L/2 e ey}yzd (7.1)
Also at the rectangle ABCD,

pJX:I = Pe ex}
z=(L/2)+(de/2)—Gz y=d—(dc/2)—6y

from which, in the limit,

pJd =0 J (7.2)
xlz:L/z e ex}yzd

‘

Equations (7.1) and (7.2), therefore,define the
boundary conditions at the interfaces at z=+L/2, as obtained

on the surfaces (y=zd).

With reference to the assumed distributions of JX
and J in the plate in the z-direction (Fig.7.3b),

- - - 3 = -z) . Sinée the current
Jx(z) = Jx( z) and Jz(z) Jz( z)

densities are continuous along z, therefore, in the plate

J J =0 (7.3)
x| _ .
7=
and
J
iﬁé =0 (7.4)
dz

z::o

Equations (7.3) and (7.4) define the boundary
conditions at the axis of symmetry, z=0.

s . ot re boundary c itions
In addition to these, twWo mOIE boundary condit

will apply in the end region at the other axis of
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symmetry y=0. These conditions, however, will be
determined by the arrangements of poles on the two sides

of the plate as shown by Figs. 7.3c and 7.34.

Under longitudinal flux arrangement, the preferred
direction of end-currents may be cross-thickness or y-
. 5 v , '
directed depending on the plate thickness. Cross-pole
or x-directed currents will, however, exist. Fig. 7.3c
shows the assumed variation of these components of current
density and, as before; this arrangement of pcles is

designated by a further suffix ¢ with all electromagnetic

field guantities. It may be seen that Jexz(y): ~Jex£("y)
and Jeyl(y) = eyﬁ(—y) Thus
Jexﬁ =0 (7.5)
y= :
and |
dJ
egR = 0 (7.6)
dy y=0 '

Under transverse flux arrangement, the preferred
2 . 5
direction of end-currents may be cross-pole or x-directed ~,

y-component of currents may, however, exist. Fig. 7.3d
shows the assumed variation of these components of current
density and, as before, this arrangement of poles is
designated by a further suffix t with all electromagnetic

field quantities. It may be seen in Fig. 7.3d that
| . Yy = ~J ., (~y) and thus
JOXt_(y) = 0 _(=y) and Jeyt(ﬁ) Cy'L:( Y

(7.7)

LT Ny
eyt yv=0
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and

7.4.4 Expressions for Current Densities

7.4.,4.1 General

The current densities in the model are assumed to
have z and x-components in the solid iron and x and
y—components in the end region. In this section,
expressions will be obtained for these current densities
subject to the assumptions and the boundary conditiong
outlined before. As in all previous chapters, the
analysis here will be limited to y=+ve, i.e. the upper

half of the plate only.

7.4,.4.2 Currcent Densities in the Sclid-~iron Platce

When the plate is infinitely wide, only the z-component
of current density will exist within the boundaries of
the model. The case of an infinitely wide plafe may be
simulated by a plate with end-strips of zero resistivity.

For such a plate and since the m.m.f. is assumed sinusoidally

distributed in the x~-direction,

J = 3 cosgx (7.9)
ZO Z
at all
and values of z
J = 0 (7.10)
Y xo

A

1 . = “nit J is the masximum
where g=n/1 and 1 = pole-pitch, J, e

1 e cmnt density in the z—-direction and J
amplitude of current aen M 20

~Tues of I and J respectively, when
and Jyo are the values of J ¢ <! : Yo
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end-~strips have zero resistivity.

But when end-strips of finite resistivity are
considered, the situation is different from those
described by equations (7.9) and (7.10), and JX# @)
except at z=0. However, the current densities in the

plate must satisfy the condition div J=0, so that,

=t =—— =0 (7.11)

Since the current densities in the plate are

assumed uniformly distributed over a small thickness dc

near the surface, there is no variation in the y-direction.

aB
Thus, from the condition curl E = 7 3¢r
od oJ oB
z _ _x .1 _ ¥ : (7.12)
Ix 92 p ot

Differentiating equation (7.12) with respect to

z and using the assumption (v) of section 7.4.2,

327 327
z _ _ %X -0 (7.13)
9¥32 9Z

Differentiating equation (7.11) with respect to x,

and subtracting from equation (7.13),

X -
— = 0 (7.14)

Equation (7.14) is Laplace's equation in two

. ) . -3 for the present case is
dimensions and its solution p

given by

{A]exp(qz)+B1exp('qZ)}Sinqx (7.15)

J
X
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where Ay and B are the constants to be obtained from
the boundary conditions. From the boundary condition
of egquation (7.3), A1 = - By and letting A, = ~B; = C1/2,

equation (7.15) becomes

JX = Cysinhqgz, singx : (7.16)

C1 is a constant to be found from the boundary
conditions at the interface of the plate and end-strips.
However, it may be noted that when pe=0, JX= 0 (equation

7.10), and therefore according to eguation (7.16) , C,=0.

From eguations (7.11) and (7.16), the expression JZ

may be obtained as

Jz = - C,coshqgz,cosgx + CO (7.17a)

where the constant of integration,co, may be evaluated
from the fact that when P = 0, Jz = chosqx and C;=0.

Thus
J = (32 - C,coshqz)cosgx (7.17)
z

Equation (7.17) shows that when end-strips of

Cinit istivi - sed, J_ decreases towards the end
finite resistivity are used, J,

of the active width due to the existence of predominantly
cross-pole currents; although at the centre of active

width i.e. at z=0, t+his decrement is a ninimum.

2.4.4.3 current Densitics in the Fnd-strips

std he rent densities have X
Tn the end-stryips, the current ¢ s have X

; - - respectively) only, which
and y-components (T and Jey’ sp N Y
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must satisfy the condition div J=0, and, hence
r

i

d
S 9dg BJe

Y=o

ox T Ty (7.18)

According to the assumption that negligible flux
enters the end-strips, curl Eezo and since the currents
are assumed distributed uniformly through d_ and the z-

e

component of current density is zero, therefore,

BJex BJeY
3y . Tix ~ © (7.1.9)

From equations (7.18) and (7.19),

a2Je 82Je
%2t ayz = O (7.20)

Equation (7.20) shows that both the x and y-components
of current densities in the end region satisfy the Laplace's
equation in two dimensions. Their solutions for the stated

conditions will be

{A,exp (qy) +Byexp (~qy)} singx (7.21)

1

J
ex

and

{~Ay,exp(qy) + Bpexp(-qy)}cosgx (7.22)

it

J
ey
The constants A, and B, have, first, to be assessed
with respect to the particular pole arrangements being

considered and then, evaluated from boundary conditions

at the interfaces.

- 1 - L
Th longitudinal flux arrangement, the relation
I .ongi.

between A, and B, may he obtained from equations (7.21)



and (7.5) (or alternately, from equations (7.22) and

(7.6) ). Thus A, = =B, (Further suffix & denoting

longitudinal flux arrangement) and letting A = -B =
- 22 2%

C2R/2, the current densities are given by

Jexk = C2Esinhqy,sinqx (7.23)

and

il

Jeyz -C, pcoshqgy. cosgx (7.24)

In transverse flux arrangement, the relation between

the constants A,, and B, (further suffix t denoting

t t

transverse flux arrangement) may be obtained from equations

(7.21) and (7.7) (or alternately from equations (7.22) and

(7.8) ).Thus A, =B , and letting A, =B, =C /2,

the current densities are given by

= 7. S 7.25
J Cz,coshqy.91nqx (7.25)
and
- - S ; . 7.26
J C2 sinhqy.cosgx ( )

The constants C; and C, will be evaluated in the

following sections, where, from the considerations of

power loss, finite width factors will be introduced.

FINITE WIDTH FACTOR FOR LONGITUDINAL FLUX ARRANGEMENT

7.5

7.5.1 ryaluation of constants C,, and &y,

e
The constants C,, and C,, may be obtained by

' it Ypressi 5 obtained
substituting the current density expressions, as obtalncda

in section 7.4.4, into equations (7.1) and (7.2). After

. . id ¢, are obtained as
some maanulatlonS, Clﬂ anc 28
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c — JzQ, ..
e T - (7.27)
coshqj + n2,51nhq§.cothqd
and T ~
sings
29, inh L raal
Pe sinhqd coshq% + nﬁ,sinhq%.cothqd
where
pd
e
no= —— (7.29)
. PeYen '
and d_, is the value of d, for longitudinal flux arrangement.

7.5.2 Loss in the Plate and in End-strips

The total loss in the plate and end-strips, PZ’ is

given by
P, = PQC + Poa (7.30)
where P, = | p|J,|?dv, is the loss in the plate and
v
Pro™ .leeglzdv,is the loss in end-strips. |ng and |J_, |
v

are the magnitudes of the resultant current density in the

plate and in the end—strips respectively.

For a heater having 2p poles, each of pitch /g, and of

an active width of L and using the assumption of uniform

current density distribution,

pr/qL/2 )
2 2
.-P']r/q "'L/z

' 1 J are given by eguations (7.17) and (7.16)
where Jz% and JXQ g :

respectively, together with equation (7.27).
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For a plate of thickness 2d ang using the assumption

of uniform current density distribution,

pr/q (d
P = T
te 2pede (ueX£2+Jey£2)dy dx (7.32)
-pr/q ‘o

where Jexz an@ Jeyz are given by equations (7.23) and

(7.24) respectively, together with equation (7.28).

Carrying out the integrations and using the results

in equation (7.30),

43_C C, ,? pd, C_2
T2 ooz L e e e 20 oa
J ol a +sinhq +—E;~snﬂmﬁ,+ Ea;;.—aJ=Sth2qd

L g c

0
A

(7.33)
The value of loss in an infinitely wide plate, 1i.c.
in a plate with zero-resistivity énd"strips, may be obtained
from eguation (7.33) by putting pe:O and Clgzo. Thus if
Pgo gives the loss in the active width of an infinitely

wide plate, then

A

_ br, 271, ’ .
PQO_ g QdCEJzz' (7.34)

Equation (7.34) could, no doubt, be obtained by

considering the flow of uniform current having an r.m.s.

densgity of value Jzz//f in the thickness dcg and over a

length L.
substituting the values of C12 and ng from equations
(7.27) anda (7.28), respectively, into equation (7.33) and

. . . 51 ‘or loss is finally given b
simplying, the expression for lo ally g Y
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e tanhq%

P, = = (=)

L PKO{l (qL) L

: 1 + nftanhqz.cothqd

(7.35)

where PQO is the loss in the active width of a plate having
zero-resistivity end-strips and is given by equation (7.34),

and Ny, is given by equation (7.29).

Equation (7.35) shows that the total loss in the plate
and end-strips is less than the loss in the active width
of a plate with zero-resistivity end-strips. Thus there
is a reduction of power loss in the plate due to finite

width effect; this is typical of constant flux machines.

7.5.3 FiniEe Wwidth Factor

From equation (7.35), the effect of finite width
on the power loss in the plate may be described by a
finite width factor Kfz’ given by

tanhq%
— (7.36)

£ gL’ ’ 1+n .tanhq%.cothqd

For plates with zero-resistivity end-strips N,y

so that, from equation (7.36), K¢ =1 showing negligible

finite width effect. For large values of plate thickness,

cothgd+1l and the finite-width factor, Kg . becomes

. \ 66
identical with those proposed by wWoolley and Chalmers

and Russell and Norsworthy
When the plate thickness is very small, cothqgd

] 1 4 Ty v 1
¢ s to unity. This shows that
becomes large and Ke, tend Y

tho finite width effect is small in plates of small thicknes:
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for the longitudinal flux arrangement. This could well
have been logically deduced because in a practical
arrangement, currents flowing along one surface may find

an easy return path by flowing across the plate thickness.

Equation (7.36) shows that the finite width factor
depends very much on the ratio of plate-width to pole-
pitch. In order to reduce the finite width effect, there-

fore, the value of this ratio should be large.

In equation (7.36), N, incorporates the effects

4

of varying de and dc It has different values for

.
different plate thicknesses and plate and end~-strip
parameters, and to account for magnetic non-linearity;
these will be discussed in detail later in this chapter.
It may, however, be mentioned here that « > N, > 1 and
equation (7.36) shows that finite width effect is most

pronounced for small values of Ny and least pronounced

for large values.

2 ¢  PINITE WIDTH FACTOR FOR TRANSVERSE FLUX ARRANGEMENT

7.6.1 Evaluat}on of Constants Clt and gzt

Substituting eguations (7.26) and (7.17) in

equation (7.1) and equations (7.25) and (7.16) in

equation (7.2), the values of the constants Clt and C2t

may he obtained. Thus

zt S (7.

J

C e e

t ."‘ (- I_J - a1 “Ii‘—z h\']
I co;,hq--2 Fon .),thqz tanhqgd
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and
‘ ,S:thqE _ . 3
S M-S -zt (7.38)
2t o coshqgd coshgZ + " . sinhgZ.tanhqgd .
> t 2
where,
. e , (7.39)

and dct is the value of dc for transverse flux arrangement.

The current density expressions in the plate are now
given by equations (7.16) and (7.17) where CIt is given by
equation (7.37) and the same in the end-strips are given

by equations (7.25) and (7.26) where C2 is given by

t
equation (7.38).

7.6.2 Loss in the Plate and in End-strips

The total loss in the plate and in the end-strips,

p is given by

tl
> = + (7.40)
Pt Ptc Pte
where, P, _ = p]JtIZdv is the loss in the plate, and
c
v
p = o|J_,|2dv is the loss in the end-strips.
te et
v
o ¢ h agnitudes of the resultant current
|Jt| and lJetl are the mag

density in the plate and in the end-strips respectively.
For a heater of 2p poles, each of pitch w/q, and

of active width L, and usinrg the assumption of uniform
i el

: . » «h d |
current distribution through ot



- 231 -

Ptc = pdct J (J 2+ Jth)dz dx (7.41)

prn/9 (L/2
[ xt

-prn/q’=L/2

where th and JZt are given by equations (7.16) and (7.17)

respectively, together with equation (7.37).

For a plate of thickness 2d and using the assumption

of uniform current-density distribution through de’

pr/q , ,
- : 4
Pte 2pede [ J (Jext + eyL ) dy dx (7.42)
~pr/q o0
. . -
where Jext and Jeyt are given by equations (7.25) and

(7.26) respectively, together with equation (7.38).

Carrying out the integrations and using the results

in equation (7.40)

47 .C c 2 pd C 2

> tlt . 1t e e 2t
bm 21~ —2—~—=.sinh ——.sinhgl ——~.sinh2gd
t 3 pd Zt‘L q q"2+ q e} T d q g

(7.43)

The value of loss in the active width of an

infinitely wide plate, P, _, may be obtained from equation

(7.43) by letting o =0 and C, . =O. Thus

_pT T2 1, (7.44)
Pro T %f'pdCﬁJ zt :

Bquation (7.44) could also be obtained by considering

the flow of uniform current having an r.m.s. density of

in the thickness d and over a length L.

value Jzt//f ct
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Substituting the values of C3t and C ¢ from
2

equations (7.37) andg (7.38) in equation (7.43) and
carrying out the hecessary simplifications, the
expression for loss in the plate and in the end-strips
is finally given by

tanhq%

_ 2
P, =P |1 (Ef .

l+nttanhq%,tanhqd (7.45)

where Pto is the loss obtained in a plate having zero-

resistivity end-strips, given by equation (7.44), and

t

is given by equation (7.39).

7.6.3 Finite Width Factor

It may be seen in equation (7.45) that the effect
of finite plate width is to reduce the loss in an |
infinitely wide plate by a finite width factor, Kft’

given by 1,

tanhgy
K_ = l‘(‘gﬂ). L J
ft 457" 14n tannz . tanhad

(7.46)

The finite width factor Kft also accounts for the
finite resistivity of end-strips, since, for end-strips
of zero resistivity it reduces to unity. For large values

of plate thickness tanhgd~l and the finite width factor,

K becomes identical to those proposed by Woolley and
e

65 . _— .
Chalmers66 and Russell and Norsworthy ~. This similarity
- 7

s SR afalial 7
is natural, and perhaps necessary.

when the plate thickness 1is very small, tanhad
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becomes very small and the factor approaches the form

T : ,which shows a marked finite width effect.

This could also be logically deduced, because, when the
plate thickness is small, the currents flowing across
one alir-gap surface do not find an easy return path (as
in the case of longitudinal flux arrangement) and are
constrained to fbllow the high resistance cross-pole

path on the same air-gap surface.

Equation (7.46) shows that the finite width factor
depends very much on the ratio of plate-width to pole-
pitch; £his ratio should be large in order to reduce

the finite width effect.

Like u in equation (7.36),nt is an important non-
dimensional parameter in equation (7.46) and the
observations made about n, in section 7.5.3 also apply

here,

7.7 EFFECT OF MAGNETIC NON-LINEARITY

7.7.1 General

In the analysis so far, no account has been taken
of the magnetic non-linearity of the material of the plate

and the values d_ and d, are yet to be obtained. The

effect of magnetic non-linearity in plates of finite

width may be accounted for by choosing a suitable

cmmc hoice has siderable
value of dc' whereas the choice of de as consideres

influence on the power loss in the plate (Section 7.8),
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magnetic non-linearity has very little effect on d
e

since end-strips are non-magnetic.

In the literature,various methods are suggested
to account for the magnetic non-linearity in plates
of finite width. 1In the following section, some of
these methods will be discussed with a view to intro-

ducing the present treatment.

7.7.2 Methods of Accounting for Magnetic Non-linearity;

a Brief Literature Survey

Combining the effects of magnetic non-lincarity
and finite width is analytically difficult because of
the variation of permeability over the surface due to the
variation of current densities. In the literature it is
found that the cffcct of magnetic non-lincarity ic
accounted for either by choosing a saturation flux

density, B,, or a value of effective permeability, u,,

for the iron.

Angst7o and later Yee67 used the rectangular

B-H curve to account for magnetic non-linearity.

However, both authors used the limiting non-linear

theory for obtaining operational impedances which were

multiplied by end-effect factors derived using linear

theory Yee and Wilson accounted for the saturatign

" - tic fi
of the flux due to the x—component of magnetic field

strength only in the active region of the plate. JHowever,

they also used the limiting non-linecar theory together

67 .
with the linear analysis given by Yee © to account for the
Ji. LT -heo lLinealk et
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end~effects, In the linear three-dimensional analysis

i . 72 -
of Boldea et al’“, the end-effects were implicit. However,
in their analysis, non-linearity was included by the

limiting non-linear theory 'in a special way"'.

Bowden3O accounted for magnetic non-linearity
by introducing an equivalent constant permeability He
obtained from the consideration of invariance of the
electromagnetic field, and therefore, of loss density,
between the linear two—dimensiénal and the non-linear
theories, In the opinion of the author, this is a
logical step and while it offers accurate results, it
avoids iterative solution. However, such equivalence
of linear and non-linear solutions can only be truly

obtained at the centre of the active width, i.e. at z=0.

Woolley and Chalmers66 accounted for magnetic non-
linearity by assigning an appropriate value to the small
thickness near the surface over which current densities

were assumed to be uniformly distributed, (i.e. dc of

the present solution). However, they used the definition

of the depth of flux penetration from the limiting non-
linear theory in defining such thicknesses, but later
modified it by a factor depending-on finite width effect.

In the present solution also, the effect of magnetic

non-linearity will be accounted for by choosing an

; - . Tor hbut, uniike the work of Woolley
appropriate value for d., but,

" . wodel considers a plate of
and Chalmers, the present m p
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finite thickness and two different pole arrangements,
({.e. LFA and TFA), so that any definition of d. must
include the effects of these constraints in addition

to the effect of magnetic non~linecarity.

A convenient basis for the definition of dc would
be to assume that for a given set of values of primary
excitation, frequency and machine dimensions, the loss
in the active width of an end-strip plate as obtained
from the present solution may be ecuated to the loss
obtained from the non-linear theory (Chapter 5) where
finite-width effects were neglected. This is discussed

further in the following section.

7.7.3 Definition of an Effective Value for d

Initially, the concept of dc was introduced as a
means of making the problem amenable to analytic treatment.
Tt is assumed that the current densities in the plate arc
uniforﬁly distributed over a small thickness, dc’ (Section
7.4.1) and therefore, the z-component of current density
at any depth within dc will also be the same as the

z-component of current density on the surface of the plate.

In order to define an effective value for dr the

surface value of the z-component of current density in
at- - - N

' ~resistivi end-strips may be considered
a plate with zero resistivity ps may

as that given by the present non-linear thcory developed
o 1 (- 2 .

. N tol: loss in the active region of a
in Chapter 5. The total 5 ;

istivit ~stri as obtained
sy ZOYO™ .ictivity end-strips as obtaine
plate having zero resis N
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from the solution of this chapter may then be ecuated to
the loss (for the same active region) predicted by the

present non-linear theory of Chapter 5 for the same

surface current density.

Thus the choice of the effective value of dC is

based on the assumptions that

(1) although the solution presented in this chapter
(Section 7.4) considers two-dimensional fields
for current density in the plate (JX and Jz), the
non-linear one-dimensional theory may be used for

the determination of Jz.

(ii) the current density Jz obtained on the surface of
a plate having negligible finite width effect and
given by the present non-linear theory (Chapter 5)
is the same as the current density on the surface
of a plate having zero-resistivity end-strips and

given by the present solution (Chapter 7), and

(iii) the loss in the active region of a plate having
sero-resistivity end-strips (Sections 7.5.2 and
7.6.2) may be equated to the loss predicted by

the non-linear theory (Sections 5.4.5 and 5.5.5).

The assumption (i) above tacitly implies that the

theory prcdjcting current densities in two dimensions

i 1little affected by neglécting one. In fact, as will

4~ foy Y e - N TR
. i 9. the present analysis of finite
be shown in Section 7.9, I

ooy rwo-dimensional current densitics
A (s e 23 dering tWworal
vidth effect consi :
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i1s very much one-dimensional in hature (i.e. J_ >> J )
€. J) i

X ’
especially in the Presence of end-strips, and as such,
neglecting JX may be quite justified. Tn so far as a
plate of finite width having zero-resistivity end-strips
may be taken to simulate g Plate of infinite width,

assunption (iii) above is quite straightforward. BowdenBo

has also used a similar concept.

The choice of the value of dc will, of course, be
influenced by the particular pdle arrangements being
considered., In the following sub-sections the values of
dC will be obtained with regards to the longitudinal

and transverse flux arrangements.

It may be mentioned here that when the plate is of
a magnetically linear material, an effective value of dc
may be obtained by equating the loss obtained from the
linear two-dimensional theory (Chapter 3) to that obtained
from the two-dimensional treatment of the present solution.
The effective value for dC in that case is a function of
the depth of penetration, &§(= 1/a) and the thickness of
This is discussed in detail in Appendix IV.

the plate.

7.7.3.1 Eﬁﬁoctivgmy§;pe Qé_dco for Longitudinal Flux

2 —_—

Arrangement
The total loss per unit of surface area for this

arrangement is given by cquation (5.43). For a hecater
of active width L and having 2p poles, each of pitch /g,

the loss is obtained as
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~

N 2 >
Hogaq B2

Pyﬁd = Za"‘zx:r-(ZPﬂ/qu (7.47)
where A is given by equation (5.29).

For the same pole arrangement, the loss in the plate
having zero-resistivity end~strips is given by equation
(7.34), so that equating it to equation (7.47)

 H 2 vgwx2
'mz‘d(k"‘l) (7.483)

As mentioned in assumption (ii) of section 7.7.3,

the value of Jz may be obtained, in this case, from

2.4
equation (5.37), so that

.
A 2d0a-1) | (7.48)

AZ

Tt may be seen in equation (7.48) that the value
of d . is always small compared with d and this applies
c
irrespective of plate thickness, so that the assumption

d << d is justified.
CcL

Using equations (7.48) and (7.29) in cquation
(7.36), the finite width factor for longitudinal flux
e 14

arrangement, Kfz’ including the effect of magnetic non-

linearity,is given by
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L
. _ ~K3L)" : ,tanhq§ o
£2 O TR A RS = (7.49)
e " ' L

E;a‘§§;7i:17tanhq2 cothad

Equation (7.49) is the final form of expression

for finite width factor and shows the effects of surface

magnetic field strength (or in turn, primary excitation),

frequency, finite plate thickness, the end-strip thickness,
the resistivities p and P and the magnetisation curve of
the material of the plate, in addition to the ratio of

active width to pole-pitch. Fig. 7.4 shows the plot of

Kfl against q% (= %}%) for various values of plate-thickness

and for given values of surface magnetic field strength,

copper end-strip width and pole-pitch,

It may be seen from Fig. 7.4 and also from equation
(7.49) that the finite width effect is gquite pronounccd
for small values of the ratio of active width to pole-
pitch and that the effect is quite negligible for higher
values of this ratio. This applies at all plate thick-
nesses. Also evident from Fig. 7.4 is the fact that for
plates of very small thickness, the effect of finite

plate width is quite small at all values of the ratio of

active width to pole-pitch. AS alrecady discussed in

Section 7.5.3, this is to be expected in practice, since
- .. . . 7 h

for small plate thickness, the end-currents find a low

s the plate thickness and,

oty ACTOSS
resistance return path acros

, LAt “fe i t pronounced in
as such, the finite width effect is not pr unc



this case.

7.7.3.2 Effective Value of d.y for Transverse Flux

- Arrangement

The total loss/area under this arrangement is given
by equation (5.72) which, for 2p poles, each of pitch n/q,

and for an active width of L,is given by

A

H .2
Pota = ngw-pﬁtié + a,).(2p1/q) L (7.50)

The loss in a plate of the same active width and
having zero-resistivity end~strips is given, in this
case, by equation (7.44). Thus, equating equation (7.50)
to equation (7.44)

A

2

H
s xtd 2 -
deg = (= >'tha‘4 o) (7.51a)

Jztd

In equation (7.5la), the expression for Jztd may be

obtained, according to the assumption (ii) of section 7.7.3,

from equation (5.63), SO that d_. is finally given by

ation (7.51) that dc is smalli

Tt may be seen in equ .

comparced with d and this applies irrespective of the plate

: SS o << d is Jjustified.
thickness and thus the assumption d_, << d is jus

Using equation (7.51) and (7.39) in equation (7.46),
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the finite width factor, including the effect of magnetic

non-linearity, is given by

L
_ S .tanhq§
K., = 1- (—=).
ft gL pd  R,2(2+a,d)
1+ —S & L tanhaZ.tanhqd
ped. Bt a ‘qzn,al’l gq

(7.52)

Equation (7.52) is the final form of expression for
finite width factor and shows the effects of surface
magnetic field strength (i.e. primary excitation),
frequency, finite plate thickness, the end-strip width,
the resistivities p and Por and the magnetisation curve
of the material of the plate, in addition to the ratio
of the active width to pole-pitch. Fig. 7.5 shows the

plot of Kft against q% for various values of halfi-

thickness of the plate, d. The curves are drawn for a
given value of surface magnetic field strength, copper

end-strips of known width and a given pole-pitch.

It may be seen from Fig. 7.5, and also from

equation (7.52), that the finite width effect is quite

pronounced for small values of the ratio of active width

to pole-pitch and less pronounced for large values of

the same. Although this applies at all plate thicknesses,

the finite width cffect in this case is much higher than

that in the longitudinal flux arrangement.

-hickness 1s ST ‘he finite width
Then the ~1e thickness 18 small, the finite

when the plate

/ s bee entioned in Section
i Lt ~vrgqc. As has been m

ef feet is quite larg
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7.6.3, this is to be expected in practice, since the end-

currents are,in this situation, constrained to flow in

high resistance cross-pole paths. For large values of

plate thickness, the end-currents are also cross-pole,
but the resistance of their path is greatly reduced.

This is shown in Fig. 7.5 where with an increase in plate
thickness, the effect of finite width is seen to be

reduced.

7.7.4 Influence of Pole Arrangements on Kfl and Kﬁt
- L

It is interesting to note that the curves of Fig.
7.4 and Fig. 7.5, are similar for large values of plate
thickness, showing thereby, that the effect of the arrange-
ment of poles on the two sides of the plate is negligible
for thick plates. This is so because when the plate
thickness is large, the electromagnetic field distributions
in one half of the plate tend to be independent of the
electromagnetic field distribution in the other half.
With decrease in plate thickness, on the other hand, the

curves of Fig. 7.4 and 7.5 diverge, showing thereby, the

influence of pole arrangement on the finite width effect.

The conclusion that, with decrease in plate thickness,

the effect of finite width becomes less significant in

. - sment .| : ignific C
the longitudinal flux arrangement ana more Sljnlflcapt

in the transverse flux arrangement, 1s consistent with
B Ll o )

.the physical interpretation of what happens in the plate

itself This 1is belicved to show the strength of this
.tself. s 1- - '
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theory and provide its partial verification.

It may also be concluded that for higher loss in
the plate, the longitudinal flux arrangement is

preferred to the transverse flux arrangement,

7.8 CHOICE OF END-~STRIP WIDTH, d

<

7.,8.1 General

End-strip width de was defined in Section 7.4.1
as the small width (compared with active width) over
which the end-current densities were assumed uniformly
distributed. The use of end-strips results in higher
loss in the plate (for the kind of low Q heater being
considered here)’and the choice of the width of end-strips
is always a compromise between high loss and the amount
of end-strip material (e.g. Copper, which is expensive) 1
required.

In this section two specific cases are considered,

(1) when the plate is fitted with end-strips, in which

case the choice of de is quite straightforward, and

(ii) when the plate is not fitted with end-strips, in

which case an effective value of de must be
defined.

when the Plate is Fitted with End-strips

7.8.2 Choiggwgfmge

when the plate 1is fitted with end-strips, the width

of h ond-strips may be compared with the characteristic
F such end-strips



2
depth of penetratj - e .
P penetration de(— a;*;;- > in the material

of the end-strips. when the end-strip width is greater

than (or equal to) §or the values of §, should be used

for de 6, since the depth of penetration is electro-
magnetically equivalent to the depth over which the

current density may be taken as being ﬁniformly distributed.
When the end—Strip width is smaller than 6e’ the value

of end-strip width itself should be used for de‘

However, the end-strip width should not be very
small, because in that case currents may flow in the plate
in parallel with the currents in the end-strips and much

of the advantage of using the end-strips would be lost.

7.8.3 Effective Value of de when the Plate is not Fitted

with End-strips

If a plate is not fitted with low-resistivity end-
strips, it does not mean that de=O, because currents in
the ena region have to find a return path within the
plate itself, so that an effective value of de may
be defined. The absence of any low resistivity end-strips,
however, means that there is no distinct interface at the
end of the active width, and the currents have to flow
within the same material, so that p_ = po. Since it is
assumed that de<< L/2 and only x and y-components of

- , i ~d in the end~region, d
current densities are considered 9 " Te

- eereme s e o e

is the relative permeability of the material of

the end-strips.
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is obtained at z = + L/2 whatever the actual width of

the plate; this is in agreement with the conclusions

of other authors65’66a

So long as the currents close their paths in the
end region, the boundary conditions formulated in
Section 7.4.3 still apply. Thus,equation (7.2) becomes,

with Pa = P

J =J | (7.53)
Xj| Z:L/Z eXJ y:d

Eguation (7.53) means.that on the surface of the
plate at z = L/2, the x-component of current density in
the active region becomes equal to the x-component of
current density in the end region. In other words,
equation (7.53) holds good on the line of intersection

of the planes z = L/2 and y=d.

Clearly. both x and y—components of current
densities will arise in the end region and, of course,

x and z-components of current densities will arise in

the active region. Since the currents flowing to the

end of the active region must find their paths partly

in cross-pole (i.c. x-directed) and partly in cross-

thickness (i.e. y-directed) directions, the condition to

g fi 5 ine of intersection of the
be satisfied on the same line

plancs y=d and 2 = L/2 may be given as
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[!szz + lelZ] L2 = [!JGXIZ + ’Jey|2LZd

(7.54)

Current densities in the active region have been
assumed variable in the z-direction and those in the end

region have been assumed variable in the y-direction, so that
they assume particular values on the above line. Also
since the currents are constrained to flow within the

plate itself, their distribution along the above line

must be governed by equation (7.54).

Using equation (7.53), equation (7.54) becomes

IJ IZ = (7.55)
z

Per|®|. .

z=1L/2 y=d
The value of [J [? at z = L/2 may be obtained from |

equation (7.17) in conjunction with equations (7.27) and

(7.37) for longitudinal and transverse flux arrangements

respectively. The value of ]Jey]2 at y=d may be obtained

from eguations (7.24) together with equation (7.28), for

longitudinal flux arrangement and from equation (7.26)

together with eguation (7.39), for transverse flux

arrangement For both pole-arrangements this gives

n, = np =1 (7.56)

}

p , this means

And since p e

de = dc
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Thus, in the absence of conducting end-strips the

effective value of eng region width de (over which
end-currents are assumed uniformly distributed) may be
taken to be the same as the effective value of the
active region thickness dc (over which active region

currents are assumed uniformly distributed). This applies

irrespective of the pole-arrangements.

Using equation (7.56) in equations (7.36) and
(7.46), tpe finite width factors in the absence of
conducting end-strips may be obtained for longitudinal
and transverse flux arrangements respectively. These factors
are plotted against q% for various values of half-thickness
d (and for the same values of constants as in Figs.7.4

and 7.5) in Figures 7.6 and 7.7..

Comparing the curves of Fig. 7.6 with those of !
Fig, 7.4 for longitudinal flux arrangement (or the
curves of Fig. 7.7 with those of Fig. 7.5 for transverse
flux arrangement), it may be seen that in a given plate
the finite width effect is, as expected, very much
pronounced in the absence of end~strips. In a practical

arrangement, this would mean that the end-currents no

longer find the low resistivity return paths (as in an

end-strip plate) and must flow 3in the high resistivity

material of the plate itself to complete their paths.

o . -
Thus a larger proportion of the induced e.m.f. in the
bor & RGeS ek R

plate would be required 1O drive them through the enc
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paths (cross-pole or cross-thickness), resulting in the

induced e.m.f.,and hence the eddy-current density, being

reduced in the plate itself, The loss in the plate,
which is proportional to the square of the current density,

would be greatly reduced. This amounts to saying that

the finite width effect would become more pronounced.

Figures 7.6 and 7.7 show the dependence of the finite
width factors on the ratio of active width to pole-pitch and
on the plate-thickness. Both figures show that with an
increase in the ratio of active width to pole-pitch, the
finite width effect is reduced and that with an increase
in the plate-thickness, the finite width effect is
increased under longitudinal flux arrangement and
is decreased under transverse flux arrangement. For any
plate thickness, therefore, the finite width effect is
very much higher under transverse flux arrangement than
under longitudinal one, so that if finite width effect
is the only criterion, longitudinal flux arrangement of

the poles should be chosen for higher loss.

7.9 ONE--DIMENSIONAL NATURE OI CURRENT DENSITY IN THE

7.9.1 General

As part of the analysis in this chapter, (i.e.

finding the effects of finite plate width on loss), the
v - the urrent density in the plate
components J and J, of the ¢

. 3 £
i side jowever, as obtained in the
\ TOSSAY ono_l.dcred, ]
vecre nec ,‘f-)S‘dI_lly C




- 250 =~

literature, J is likely to be the dominant component

of the two and a study of their relative magnitude reveals

some interesting aspects about the two different pole -

arrangements.

7.9.2 Current Densities at the End of Plate Width

At the centre of the plate width, =z=0, and the x-
component of current density, JX, is zero (Fig; 7.16).
Towards the ends of the active.width, JX gradually
increases and becomes significant at 2 = + L/2. J_, on
the other hand, has its highest value at the centre of
the plate (i.e. at 2z=0) but decreases towards the ends of
the active width (i.e. z = + L/2). Therefore, the current
densities at the end of the active width (i.e. at z =+ L/2)
only will be considered here in order to study their

relative magnitudes.

The expressions for current densities Jx.and J, are
given by equations (7.16) ana (7.17), respectively, so

thal the ratio of their magnitudes at z = + L/2 is given

by

A

J
|2 | _ % - cothay (7.58)

IJX C151nhq§
z=t 1/2

The valuc of this ratio may now be obtained with

. e ‘he arrangement of thce poles.
particular regards to the arrang
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7.9.3 One"dimenSional;NEEBEQ'Of Curreht Density in

- Longitudinal Plux Arrangement

in longitudinal flux arrangement, Cj; (= C._ ) is
12

given by equation (7.27), so that using it in equation

(7.58),
| 722
z9 nxcothqd (7.59)
'JxQI z=+ L/2
Thus [J_ | Iszl at z = + L/2 and, everywhere

along the plate width. This applies irrespective of the

plate thickness, since generally ng >> 1. The dominance

of the z-component of current density is maintained even

in the absence of conducting end-strips.

It may be seen in equation (7.59) that when the
plate is thin (i.e. d << %),then at the end of the active
width (i.e. %2 = + L/2), the current density is almost
wholly z-directed. With increase in the plate thick-
ness, however, the x-component of current density becomes

significant. Physically, this means that when the plate

thickness is small, the currents reaching the end of the

plate width tend to go across the thickness to complete

their path and very little, if any, would tend to take the

t ickness in 2ases e
cross-pole path. When the plate thickn ncreases, mor

i -5 reachi -he end of plate width
and more of the currents reacaing the d of plat

r y (. ~ et QG- i’lth .
tend to take the cross pole P




I
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7.2+4 Onezdimensional Nature of Current pensity in

In transverse flux arrangement, Cl(:C't) is given
1

by equation (7.37), so that substituting this in equation

(7.58),

[Jzt] .
ljw— = n.tanhqd (7.60)

xt | 2=+1./2
Thus, for thick plates (i.e.d>> %),in this case,
the z-zomponent of current density may be taken to be
the dominant one in the presence of end-strips. TFor plates
of small thickness (i.e. d<x< é) and in the absence of

conducting end-strips, the x-component of current density
is dominant at the end of the active width. Physically, this
implies that when the plate thickness is small, then,

under this pole-arrangement, the end-currents are cross-

pole., With an increase in plate thickness, although the end

currents are still cross-pole in nature, the resistance

of the end-path is greatly reduced. Finally, when the

plate becomes infinitely thick, the pole arrangements

lose their significance, since both the pole-arrangements

reduce to studying finite width effect in an infinitely

thick plate.

It may be noted in equations (7.59) and (7.60) that

- ~therwi f conducting end~strips has a
the prescence or otherwlse o (

very pronounced effect in determining the relative
very prc ncec -




magnitudes of z and x-components of current density. In

the presence of A —_—c s
P the end~strips IJZQ] at all plate

i l\ b Thee] S i QCes¢ ax .| I y rea Y (

dependent on the value of the plate thickness. In the absence

of conducting end-strips, on the other hand, |J Qlis still
Z

greater than [ngywhile |Jzt[ is smaller than [J_,| and

this applies at all plate thicknesses.

7.10 COMPARISON OF THE PRESENT WORK WITH THAT OF WOOLLLY

AND CHALMERS66

It may be noted that the present treatment of finite
width effect has followed closely the work done by Woolley
and Chalmer566. There are, however, certain aspects of
the present work which differ from their work. Also, in
the present work, there are some areas where, it is

believed, new contributions have been made.

7.10.2 Similarities

The most obvious similarity of the present work

6 . v
with that of Woolley and Chalmers6 is the choice of

the model in that they also consider low~resistivity

end-rings (for their cylindrical machines), two

_ . e ~»nt of small thicknesses for
resistivities and the concept

uniform current flow. The natures of the current-density

. . . ; L aebive part of the solid-iron plate
distributions 1n {+he active P

assumptions in the present WOY K

are similar. Some of the
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are also the same as theirs and so are the boundary

conditions at the interf . )
5 € 1lnterfaces of iron and end-strips. The

mathematical approach to the problem is, likewise, similar
and the resulting expressions for finite width factors are

also of the similar nature.

7.10.3 Differences

The model used by Woolley and Chalmers66; being that
of an unlaminated cylindrical rotor, is necessarily a case
of single-sided excitation. The present model, on the
other hand, envisages a double-sided arrangement and the
work is concerned with the effects of finite width in a
solid-iron plate of finite thickness, 2d. The finite
plate~thickness has been considered from the beginning
of the analysis and the resulting expressions for finite
width factors have been influenced by 1it. The two
different arrangements of poles in the present work
resulted in certain boundary conditions at the plane of
symmetry, y=0, in the end-strips, which did not arise

in their case. While the mathematical approach in the

present work 1s similar to theirs, the present work was

carried out in the widely used Cartesian co-ordinate

system as against cylindrical co-ordinates 1n their work.

(The cylindrical co-ordinate system was necessary 1h

their work to account for the curvature of the small

cylindrical rotor considered) . The present work envisages

tyravelling magnetic fields having linear travel along onc
T C - L LB At -
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of the co-ordinates while their work envisaged a

rotating magnetic field having angular motion along one

of the co-ordinates.

The other basic difference with their work is in
the choice of values for the thickness. dc’ and also
of de in the absence of end-strips. For obtaining the
value of dC, the present work uses the non-linear theory
presented in this thesis (Chapter 5), while they used

the concept of the depth of flux penetration using the

limiting non-linear theory.

Wéolley and Chalmers considered the effective
value of de’ when end-strips were not fitted, to be
proportional to the depth of flux penetration whereas
the present work considers actual eddy-current fields

at the end of active width for this purpose.

e e e 20

Although Woolley and Chalmers considered two-

dimensional current densities in the end reglon (i.e.

in end-rings), the currents were always cross-pole. In

the present work, the end-currents have been shown to

have preferred directions of flow in the end-strip and

could be cross—-thickness as well as cross-pole. The

study of the relative magnitudes of currents at the

cnd of plate width (Section 7.9) shows the variation

.~ e Wit ~ 1 + o —\‘" :.‘\_;‘CC.A
in the nature of end-currents with plate thickness and

pole arrangenents.
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The present w ider i
P t work considers two different arrange-

ments of poles (longitudinal and transverse flux) and

as such, suggests two finite width factors. These
factors, although similar in expression, reveal the
characteristics typical of the particular pole arrange-

ment. No previous work, it is believed, has done this.

The finite plate-thickness enters into the
expressions for current density, loss and finite width
factor; these expressiohs become identical to those of
Woolley and Chalmers66 when Lhe thickness is made very
large. This, together with the fact that identical
finite width factors are obtained, when 2d » «, with
both Cartesian and Cylindrical co-ordinate systems,
implies that the finite width effect (or end-effect in

a cylindrical rotor) is very little influenced by the

effect of curvature.

The choice of the value of dc is not only different

from Woolley and Chalmers' work, but it also provides a

new approach to such a choice. The approach of the

present work implies that the loss in a plate with zero

istivi st i che current may be
resistivity end-strips 18 such that the cur may

assumed to flow uniformly in the thickncss dc’ the

cffective value of which may be obtained from a loss-

invariance concept. It appears that the present

suggestion holds.
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7.11 CONCLUSIONS

In this chapter, the effects of finite plate width
on loss and current density distribution have been studied
in a plate fitted with conducting end-strips. Subject to
certain assumptions and boundary conditions, a solution
for loss in the plate has been obtained and from this,
finite width factors have been defined as the ratio of
the loss in a plate having finite-resistivity end-strips

to that in a plate having zero-resistivity end-strips.

The finite width factors have been shown to depend
on the ratio of active width to pole-pitch. In order to
reduce the effect of finite plate width, this ratio
should be large. This applies irrespective of pole

arrangements and at all values of plate thicknesses.

The finite width effects are shown to depend also
on the value of plate thickness. With decrease in plate
thickness, the effect becomes small in longitudinal flux

arrangement and becomes pronounced in transverse flux

arrangement. This has been found to be consistent with

the physical interpretation of

in the plate. With laxrge values of plate thickness, the

factors hecome identical with those proposed by Woolley

66
and Chalmers

Tn addition to finite plate thickness, the effeccts
of magnetic non~lincarity 1in the plate have also been

accounted for in the finite width factors. This has been

actual current distributions
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accomplished by obtaining an effective value for the

thickness of uniform current flow in the plate from the

present non-linear theory (Chapter 5) by a loss-invariance
concept. It is believed to be a new approach for such a

choice,

The study of the nature of currents at the ends of
plate width shows the dependence of end-currents on plate
thickness, and on the presence or otherwise of conducting
end-strips. It shows distinctly that while with very
thick plates, the finite width factors are independent
of pole-arrangement, with plates of small thickness, they
are not, With decrease in plate thickness, it is found
that the cross-thickness nature of end-currents becomes
prominent in longitudinal flux arrangement and the cross-pole
nature of end-currents becomes prominent in transverse flux

arrangement.

In the presence of conducting end~-strips, the finite
width factors are influenced by the primary excitation,
its frequency, the resistivities of solid-iron plate and

of end-strips, and the magnetisation curve of the material

of the plate. In the absence of conducting end-strips,
the finite width effects, as expected, are markedly more

pronounced, but are seen to be little influenced by these
, ;

quantities The finite width factors, in the absence of

end-strips, are such that unless the ratio of active

width to polewpitch ig sufficiently high, the loss in
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the plate would be.very_greatly reduced. Both in the
presence and in the absence of conducting end-strips,
it has been shown that, finite width effect being the
only criterion, the longitudinal flux arrangement of

poles must be chosen for higher loss in the plate.
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EXPERIMUNTAL_INVESTIGATIONS

8.1  INTRODUCTION

In Chapters 5 and 6, theories were developed for the
electromagnetic fielgd guantities in a magnctically non-
linear plate subjected to travelling ﬁagnotic fields. 1In
Chapter 7, the effect of finite plate width on power loss
has been discussed in detail. It was shown in the above
chapters (Chapters 5, 6, and 7), that the theories
correlated with other published works3o'66; nevertheless,

these theories were verified throuch some carefully

devised experimental investigations.

Measurements of power loss, flux/pole and surface
current density were made on three EN1A steel plates
subjected to travelling magnetic fields. Readings taken
on the narrow plate (Section 8.2.2), were used for studying

the finite width effects and the nature of the eddy-current
distributions in the end regions.

In the following section, a description of the
experimental rig*is given and in Section 8.3, preliminary

. Nt 1 ~ il 3 e -
tests for setting up the rig are described. 'his 1is

followed by a description of the instrumentations and of

ysure the electromagnetic field
the techniques used to measure the e agne

it sult -ained from the experiwents arc
quantities. Results obta :

: Mmls o~ STy vy 1 1L S
‘ .1 theoretical valucs. The chapter ends
given tegether with theoretice *

dimensions of the
‘ .es of Chapter 7, the :

TQ verity thehggzgrihat 0<1 (weak eddy-current ;eactlin)
;lg wire Sigg of excitation used in these experimenta

or the ra

g~ i A +FTONS
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with a discussion of the results of the experimental

investigations,

8.2 'QESCRIPTION OF THE EXPERIMENTAL RIG

8.2.1 General

The experimental rig was arranged so that a steel
plate could be subjected to travelling magnetic fields
from both sides. Tor this purpose, two identical primary
members were used, the supply to these being taken from the
same source. FBEach of the three plates (Section 8.2.2)
used in the experiments, was instrumented for measuring

the fluk/pole, the flux/pole per cm. of the plate-width,

the surface current density, and the temperature.

8.2.2 The Solid-iron Plates

For the pﬁrpose of the experimental investigations,
three solid-iron plates of ENIA mild steél were used. One
plate was so chosen that its length and breadth were
greater than the corresponding dimensions of the active
area. This plate was used for investigating the nature

of end currents beyond the active region. This is referred

to as the wide plate. A sccond plate was so chosen that

. .. -1 idtt * the active region.
its width was equal to the width of the ¢ k J

) . 4 o -ur f ed currents
This was used to investigate the nature o dy curr ’

on the lateral side face (i.e. the x-y plane,, (see Fig.

‘ saate the finite width effects in
8.5), and also to investigate tr

. RN PRGNS 8.3)
- cemducting end sirips, (Section 7.8 .
the absence of any conducting
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. . e K
This is referred to as the narrow plate. The width of

the third plate was the same as that of the active region,

but it had copper end-strips brazed onto it at the ends
of the active width. This plate was used to verify the
present non-linear theories (Chapter 5), which neglected

the finite width effects (Section 8.4.4), This is

referred to as the end-strip plate.

All three plates were of the same thickness and were
sliced out of one large steel plate; thus each had the
same resistivity, p. The constants a and b in the
parabolic B-H relation (equation (5.8)), were obtained
from a log-log plot of the B-H curve of the material of

30

the plates™ . The dimensions and the parameters of the

solid~iron plates are given in Table 8.1.

TABLE 8.1

DATA ON THE PLATES USED IN THE EXPERIMENTAL INVESTIGATIONS

Plate Length width Thickness{Parameters of
X cm Z Cm 2d cm the plate
Wide 76.6 20.3 1.902

5= 1.9x 10 Tqum

63.0 7.6 1.902

Narrow a = 0.664

A

it

70.2 7.6 1.902 b = 0.112

Ind-strip

spor end-strips were:
¥ mho dimeonsions of the copper end-strdll

Length = 70.5 cm, width = 1.8 cm, Thickness = 1.902 cm
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8.2.3 The Primary Members of the Healter

m "r* b - 4 -~

Pwo identical primary members were used for providing
linear tvavelling magnetic fields. For this purpose two
linear motor units were used. The linear motor units

were chosen for two reasons:

(i) these were capable of providing high excitations,
so that the verification of the theories could be

extended over a wide range of cexcitation.

(ii) an examination of their dimensions showed that
pronounced finite width effect would be obtained
with these units, so that the proposed finite

width factors (Chapter 7), could be verified.

The 3-phase windings of the linear motors were
rated at 415v, 18.5Aa, and were star connected. The
dimensions and the data of each of the units are given
in Table 8.2. Although the rated current of the units

was 18.5A, the experimental investigation was limited

to 14A, because at higher currents, the rise in the

temperaturc of the plate was very rapid. Table 8.3

shows the primary cxcitation in kA/m for the corresponding

values of line current.
The surfaces of the linear motor units were covered
with protective epoxy resin coatings. Since the coatings

. D s e . 1~}
. . C1y T - ermine the air-gap lencth
made it impossible to deter
removed making sure that the teecth

accurately, they were

were not affected.




8.2.4 The Supplies

Because of the number of steel plates being used
for both pole-arrangements, (i.e. LFA and TFA), the

verification of the theory was limited to two frequencies
only, namely, 50 Hz and 25 Hz. Wwhile investigations at
other frequencies may be carried out as a part of further
work, measurements taken at these two frequencies were

believed sufficient to verify the present non-linear

theories,

The 50 Hz supply was obteained from the 440V (L-L),
3-phase terminals of the a.c. mains and the 25 Hz supply
was obtained from the output terminals of a 415/500V,
2087, 1000/1330 rev/min., variable speed, 3-phase aiternator.
The alternator was driven by an a.c. motor through an eddy-
current coupling. By adjusting the speed of the alternator,
variable frequency output could be obtained, the 25 Hz

supply being obtained at 500 rev/min.

Both the 50 Hz and 25 Hz supplies were taken to a

42 kVA , 440V, 56A, 3-phase variable-output transforwer,

(rig. 8.1), which provided variable excitation for the

experiment. At 25 Hyz, although the magnctising rcactance

of the transformer was low, the current limit of 56A was

: -1 ~ywperiments. The instruments
never excecded during the exg

: ; - ked and found to be
used in the experiment were checked and fou

. o . - Cracuencioes.,
accurate to within 1 12 at both frequen 5




5.3 PRELIMINARY TESTS AND INSTRUMENTAT TON

8.3.1 Schematic Circuit Diagram

Fig. 8.1 shows the circuit diagram (partly
schematic) used in the eéxperiments. The 3~phase a.c.
supply (both 50 Hz and 25 Hz) was connected to the
circuit through a 3-phase transforﬁer and an isolating
switch (T in Fig. 8.1). Ammeters and polyphase watt-
meters (together with current transformers), were used
to measure the total current and power inputs to the
two primaries as well as those to the individual primaries.

This provided a check on the power and the currents being

measured for each of the two primaries.

A slight unbalance in the current to the individual
primaries was noted; but this was always less than + 7%
of the reading of the ammeter A2, (taking A2 as reference),
the extent of unbalance becoming less with decreasing
excitation. Attempts to eliminate this unbalance by the
use of resistanceswere abandoned because over the range
of excitation, considerable adjustments of these
resistances were required which was found impracticable,

since readings had to be taken gquickly to avoid a

significant rise in the tcmperature of the plate. The

effect of this unbalance oOn the power loss in the plate

was found to be negligible, since the readings obtalned
[BRS) i 1) -l o

9 and W3 were nearly ecual. and the
from the wattmeters w2 and W3 woere nNearly egual. ¢

y . ined as the sum of the above two;
- i : 2o obtained as U
reading of Wl was




-he g .
the actual power loss in ecach Primary being taken as

half of the recading of Wl., The readings of the volt-

meters V1, V2 and V3 were balanced.

6.3.2 Preliminary Tests for Tdentifying the Locations

for Longitudinal and Transverse Flux Arrangements

For the experimental investigations one primary
membexr was mounted on top of the other (Photoplate 8.1},
and it was necessary to rearrange the rig frequently
for longitudinal and transverse flux arrangements.

Before the start of the experiments, therefore, locaticns
had to be marked to identify both the pole-arrangements
for easy and accurate reference. Some preliminary tests

were made for this purpose.

A clamping arrangement was used for mounting one
primary member on top of the other. The lower primary
member was fixed to the table and was immobile. The
upper primary member, when mounted on the clamping

arrangement, had its z-axis coincident with that of the

lower one; no movement of the upper primary was possible

in the z-direction, although it could be slid in the x-

direction and raised or lowered in the y-direction.

For idéntifying locations of the pole-arrangements,

two full-pitch search coils (single turn), werc placed

and sccured in identical positions on the surfaccs of

1 two primaries The uppCy primary was then mounted
-he two prime 0S. he upr

on the clamp so that the two primary surfaccs were
. - - L -
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separated by an air-gap of about 1 cm, The search coil

leads were twisted and taken out to a selector switch
where they were connectegd in series, the two end-terminals

being taken to an oscilloscope,

Both primaries were excited (about 4A in each phase),
and the position of minimum search coil voltage was
obtained by sliding the top primary along the x-~axis.

The relative positions of the two primaries then
corresponded to P'ig. 8.2a, which was the longitudinal
flux arrangement, where the corresponding poles of the
two primaries were of the same polarity. This position

was marked as a reference point on the top primary member.

When the top primary was slid one pole-pitch from
the position of Fig. 8.2a, the search coil voltage was
a maximum. The relative positions of the two primaries
then corresponded to Fig. 8.2b, which was the transverse

flux arrangement, where the poles were of opposite

polarity. However, this left a portion of both the

i i 5 of > cive lengtl
primaries uncovered at the ends of the active length,

Gonrch coils
\
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\
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: ) lative positions of the
] ' ) ination of reliat: 008! s C
Fig. 8.2 Determine ambors for the longitudinal

two pr imary
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dﬂd the to SANSvVerse Flux arrandgluents.




- 2068 -

resulting in unequal reluctances for the cnd windings.
To avoid this, the top primary was rotated horizontally
through 180° from the position of FPig. 8.2a, and naking
sure that the directions of travel of both the magnetic
fields were the same,; the positions of maximum scarch

coil voltage was obtained. This position was marked

as a reference for the transverse flux arrangement.

In the transverse flux arrangement, the attractive
force between the two primary members was naturally
strong and considerable physical force was needed to
move the top primary member. In the longitudinal flux
arrangement the attractive force between them was weak
and only slight physical force was needed to move the
top primary member. This acted as a cross-check for

the respective positions and could be felt physically.

8.3.3 Instrumentation of the Solid-iron Plates

As part of the verification of the present non-
linear theories, measurements of flux/pole and current

density were made On the surfaccs of the plates (Section

8.1). 1In addition to these, alr—gap flux—-density

distribution along the z-direction and the temperature

of the plate werec measured on the plate surfaces. Yor

these purposes, the plates were fitted with search

coils, current-density probes and thermocouples.
1ls, oY

§.3.3.1 The Search Colls

e flux/pole, full-pitch scarch
For measuring the flux/1 ] 1

. . 1 eacnred on the suriaces of cach
coils were placed and secur
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of th - o 2 R
e plates. Tor this purpose a single-turn search

. o . .
coil of 0.08 mm.diameter, 44 SWG, copper wire was used.

The width of the search coils was the same as that of

the active region of the plate.

The search coils were secured to the plate surfaces
by an adhesive liquid and a non-magnetic cementing
material. The latter also provided thermal and additional
electrical insulations for the wire. The ends of the
coil were twisted, (so that the effects of voltages
induced due to fringing fluxes were negligible) and

taken to a selector switch.

Fig. 8.3 shows the location of the full-pitch
search coil on the surface of the wide plate terminal

a), while the search coils for the narrow and the

end-strip plates are shown in Figs. 8.5 and 8.6

respectively. Also shown in Fig. 8.3 are the locations
of full-pitch search coils of width 0.5 cm, numbered

1 to 11. These search coils were used to measure the

flux/pole per cm. of plate width.

Knowing the areas of the search coils, it was

possible to obtain the distribution of air-gap flux

density in the z-direction. In order to obtain the

_ ‘15 . the coils configuration
areas of all the search coils, g

. md Fied imes., by a Shadowgraph
was projected, magnified 10 times, 2Y ‘ Jrat

. ~J Al A ) -he a Y3 S oY e
on a large tracing paper from which the areas were

ans of a planimeter.

measured by mee
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As shown in Fig. 8.3, one end of all the secarch coils
was joined to a single common wire (terminal b); with this

search coll configuration,.any two terminals could be
used as a search coil and therefore readings could be
taken even when one coil was broken. The other ends of

the array of search coils (shown as arrow heads) were

carefully twisted and connected to the selector switch.

8.3.3.2 The Current-density Probes

For measuring the surface current-density, current-
density probes were attached to the plates. These probes
consisted of two insulated constantan wires, each 0.1 mm
in diameter, spot-~welded onto the cleaned plate surface.
Constantan wire was used instead of copper wire because
of the latter's dissimilar melting point with respect to

the solid-iron plate.

The spot welding was done by passing a high energy pulse
from a capacitor discharge unit through one end of one wire
and the plate, so that the wire was welded at the desired spot

on the surface. One end of the other Constantan wire was

also spot-welded 0.5 cm apart and the two wires together

4 seen the WO wires was
formed a J-probe*; the voltage between tnese two w a

equal to the voltage drop due to the current density in the

plate surface, provided the ared covercd by the J-prcbe was

~ e N Y O - 1 -ty o
vanishingly small. The two J-probe leads were carefully twisted

~d the Lwe terminals wore
and sccured on the plate surface, and the two terminals were

__..,,,-,_._,_,._..»——-——___.—.—_.4_._....__ N

. _ g P Tem o he i aed
* o Ahhreviat  the term J-proibe 15 US
* For the purposc of abbreviation,

for currcent-donsity prObG-
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finally connected to the selector switch

Fig. 8.4 shows the arrays of the current-density

probes for the wide plate, while those for the narrow

and end-strip plates are shown in FFigs. 8.5 and §8.6.

In these figures the J-probes are marked by the letters

z and X, implying thereby that they were fitted along

the z and x-axes respectively. They are also numbered
for convenience. In Figs. 8.5 and 8.6, the end region
J-probes are marked as XE and Y; XE is for measuring

the current density iﬁ the x-direction and Y for measuring
the current density in the y-direction. (Y's appear

only on the lateral surface of the narrow plate).

As shown in Fig. 8.4, an array of J-probes was
fitted in the central part of the plate (i.e. near x=0).
A second array was fitted at a distance of one pole-—
pitch and a third array was fitted at a distance of one
and a half pole-pitch from the central array. These two

arrays provided a check on the readings of the first

array. The J-probes were attached over one half of the

plate width (i.e. between 7z=0 and z=+L/2), although some

J-probes were also attached over the other half (i.e.

between z=0 and z=-L/2) for providing a check on the

readings.

Because of the similarity of the readings from the
- < L -

1 obes on the surface of the wide plate, the number
J-probes  the suria (
the end-strip plates werc

. - ¢mv the narrow and
of J-probes for the nars
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reduced, although a duplicate array of the J-probes

Ias PV 1N 3
was always used. On the lateral surface of the narrow

plate (Fig. 8.5), J-probes werec Fitted to measurc both

x and y—- components of current density

8.3.3.3 The Thermocouples

Three thermocouples were placed-on the surface of
each of the plates to record the rise in thelr temperaturcs-
The thermocouples consisted of insulated copper and
constantan wires fused at one end and spot-welded on
the plate surface. The other ends were taken to a
digitel thermometer which displayed the temperature. One
thermocouple was attached at the central part of the

plate, while two more thermocouples were attached at

Fh

distances of one and one-and-a-half pole-pitch. The
locations of some thermocouples are shown in Figs. 8.3,
8.5 and 8.6 for the wide, narrow and end-strip plates

respectively.

8.3.4 Location of the Two Primaries

. s Co -
Iin all experlmental investigations, an alr-gap O

o SR compressed paper
1.5 mm. was used; pieces of especially compressed pap

oAy I 11 A
. e - hide each 1.5 mm. thicx
(commercially known as'elephant hide), e '

were placed between the plate and the primary surfaces.

These compressed papers Were good electrical insulators,
non-magnetic and could stand high temperatures (abcve
i S I -

?OOOC) The coefficient of thermal expansion of the

s G 5 ‘hat the air-gap remained
conproased papers Was small, so th G& L




sufficiently constant over the range of excitation used.

In addition to providing the air-gap, these
compressed papers provided positive spacing for the
J-probes, the search coils and the thermocouples between
the plate and the top primary number. With particular
regard to the axes of symmetry (viz.x=0 and z=0 lines),
the top primary was placed in the proper position and
the whole rig was tightened so that uniform air-gap was
obtained and the vibration of the plate under excitation
was minimised. The total height of each constituent
region was compared with the height at which the top
primary member was piaced. Two air-blowers were used
for cooling the plate; these were positioned for minimum
ab

N~
AC& .

ct
e

effcct on the J-probes, ctc., con the plate su
Photoplate 8.1 shows the wide plate in position
between the two primary members for the longitudinal

flux arrangement.

8.4 EXPERIMENTAL MEASUREMENTS

8.4.1 General

- o ~ e - d- 1
Initially, it was necessary to investigate the

ise i -he ten ~ature of the plate
effects of the rise 1n the temperatu ple

under excitation, of entry and exit edges and of finite
AL 2N A

plate width on experimental measurenments; these effects
Al Wl N
. ~ s o e " X1 - A T A e Nes

re discussed in the following scolions. Methoas on
are discussad 1 1C

Ny Y ot -‘, B N ~ -\‘-:‘1 *‘;::
me ST irl(] th o }')C)\Ay(:\]“ ]‘{;)Fl 123 , thc flu};/}»)'\) ].L— anac k.}_\«_, SUX f i C
measuy C o pOWeEL
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current density ; > d '
density are described 1n Section 8.4.5 through

8.4,7. This is followed by the description of the

additional investigations undertaken

8.4.2 Lffect of Temperature

The rise in the temperature of the plate during the
experiments affected its resistivity and permeability,
However, no provision for changes in temperature was
made in the non-linear theories. (Reference to this has
been made in Chapter 9). Consequently, the experimental
results would show some devietion from the theoretical
values, especially at higher excitations when the rise

in temperature was more rapid.

Inorder to allow approximately for the rise in the
temperature of the plate, thecretical curves were also
obtained for higher values of resistivity. Table 8.4

shows the increase in the resistivity of EN1A steel with

TABLE 8.4

4
VARTATION OF RESISTIVITY OF ENIA STEEL WITH TgmggRATURE7

TEMPERATURE, °c 100 200 300 400
T_:_; __.‘l
Blectrica 0.6 97.2 35.6 45,8

Resistivity,pf, cm.

| I -

temperature (Ref 74). Allowing for the rise in the
A C LV N AN =
temperature of the plate, therefore, theoretical results
- 217 At SG ? .
quantitics were obtained

for various clectromagnetlc ficld




alt resistivity ve S - .
sistivity values of 25, 30 and 40 v, cm. in

addition to the measured v i _
asured value, Correlation of measurced

values of certain quantities (e.g. the surface curront
density) would be sought with theoretical results obtained

using a higher value of resistivity.

With an increase in the temperature, the permcability
of the plate also increases75, although at Curie point
it drops to a low value. However, the change in
permcability was not very significant and above the knee
of the B~H curve, the variation of permeability was small;
thus no approximate allowance was made for the increase
in permeability at higher temperatures. At higher
excitations due to rapid rise in the temperature of the
plate, the experimental values of flux/pole may be

expected to be somewhat less than the theoretical value.

pDuring experimental measurement, every effort was
made to take readings with the least possible variation

of the temperature of the plate. These included:

(1) The plate was continuously cooled by means of

air-blowers.
13 - - - _ecadinas considerable time
(1i) Between two sets of rcading

was allowed to pass, SO that the plate could cool

down, and

- readi 5 o taken as quickly as
(iii) Dach sct of readings was & e ‘

possible.
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8.4.3 Fntry and Exit Edge Effect

In the flat, linear configuration of the rig, the
air-gap for the primary windings near the ends of the
active length (i.e. in the x~direction), was larger
than that for the winding at the centre of the active
length, although its effect was minimised by using
intermediate and end coils (Table 8.2). Due to the
fringing flux and the flow of current between the pole-
centre and the edge of the plate, the flux and the
current densities at the eand of the active length were
less than those at the centre of the active length.
Measurement of curreﬁt density near the ends of the
active length showed a decrease of between 25% and 30%
th

(currcent density at the centre cf the active len

(]

(

as base).

However, since this effect occurred at the extreme

ends of the active length, its effect on current density

measurement was avoided by limiting the measurements Lo

the central part of the plate. Also since the area

affected by entry and exit edge effects was less than

. o = A - -a S ive ¢ ¥}
10% of the total active ared, the total active arec

could be considercd for loss density calculations.

(Refecrence to this cffect hars been made in Chapter 9).

8.4.4 nefoct of Tinite Plate WIALh

Finit ate width on loss and current
i roats of £inlte plate W

coussed in Section 7.2.
density distribution were discussed in Sectio
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Accordingly, the readings obtained from the narrow and

wide plate would be influenced by the finite plate

width.

On the surface of the end-strip plate, the voltage
induced in the 0.5 cm. wide full-pitch coils was compared
with the voltage of the J-probes which were also 0.5 cm.
long. It was found that the voltage of the search coils
was nearly twice the voltage of the J-probes,.thus
showing that the voltage induced in the search coil was
the same as that due to the fléw of the current density
on the surface of the plate. The end-strip plate may,
therefore, be considered as approximately simulating the
condition of an infinitely wide plate. The readings of
power loss, flux/pole and surface current density
obtained from the end-strip plate would, therefore,
be compared with the theoretical values obtained from

Chapters 5 and 6 where finite width effects were neglected.

8.4.5 Measurement of Power LOSS

The power loss in the plates was measured by the

use of polyphase wattmeters. For this purpose the

losses in the individual primary nembers were measured

under no-load condition, i.e. without having the plate

1 iti i s removed so far apart
in position and with the member p

that the magnetic circuits were independent of each

other At any ecxcitation, half of the total loss in the

aken ¢ ‘ o-load loss in
two primary members was taken as the n




Nne s o .
each. NS a cross-check, losses were measured in the

individual primary members (Fig.8.1) and werc found to

be in close agrceme ith t i
grecement with the value obtained above.

Readings of no-load loss were taken over the range of
experimental excitation values and for the frequencies

used.

With the plate in position between the two primary
members the total loss in both primary members was
measured using the same wattmetexr; half of it was taken
to be occurring in each of them. Once again, losses were
measured in the individual primary members as shown in‘
the circuit diagram of Fig. 8.1, and was found to be
within 4% of the mean value measured above. Readlngs
of load loss were taken over the same range Of

excitation and frequency values as with the no-—load test.

For each value of excitation, the no~load losses

were subtracted from the measured load loss Lo obtaln

the power loss in the plate. LOSS density (in kW /m?)

was obtained by dividing the power loss in the plate

with the surface area of the active region.

C _ . .
3 L Ht ed are -ted L i, 8.7
The loss densitiles obtained are plotted in Fig

s e - 4+ 1 V(& B £ te ek ~ N v
and &.8 for the longltudindl and transverse flux arrange

: 2 sensities obtained for all three
ments respectively. Loss densi S - :

plates arc p]ottod together with the theoretical curves.
blates are plotttt

' ~ ine results from these experiments
Discusslon of the results :

- " ‘ . '5.2_
arc madce in Sectioen 8



8.4.6 Measurement of PFlux/pole

For measuring the flux/pole, a full-pitch, single
turn search coil having a width equal to that of the
active area, (Section 8.3.3.1), was used. When the
primary members are excited, the magnetic flux passing
through a search coil induces a voltaée in it. If v,
is the voltage induced in the search coil, then the flux/

pole, ¢p, is given by

where t represents time.

The output from the search coil was fed to an
integrator circuit, shown in Fig. 8.9. The operaticnal
amplifier A used for this purpose was a plug-in unit of
a TETRANIX oscilloscope, and was first calibrated using

a signal generator.

For an input voltage of vi, the output voltage v,
C
Y
A\

P ~—
T
T
V) v

Fig., 8.9 I;tegrator circuit used for Measuring Tlux

A == Operational amplifier

B = Iilectronic Voltnmeter,
Oscilloscope

R = 0.0l Mo, C = 1.0uF

Wave Analyser and

'
|
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of the integrator circuit is given by

t
RS L
Vo = §é~ JO\)]Qt (8-2)

where R and C are the resistance and capacitance .

respectively, of the integrator circuit. Using equations

(6.1) and (8.2), the flux/pole, ¢p is given by

6, = RCvy (8.3)

The values of the resistance and the capacitance
used in the experiments were 0.0l MQ and 1.0 uF
respectively. The voltage v, was read on an electronic
voltmeter. Further amplification of the search coil
voltage was not necessary because the search coil voltage
was high and the input impedances of the integrator circuit

and the voltmeter were high as-well.

when the voltage output of the search coil is

sinusoidal, then from equation (8.1), the peak flux is

iven b
g Y a
ool =% (8.4)
p w
where V, is the amplitude of the sinusoidal induced

voltace and w=2rx (frequency of the primary excitation).
s :

For the sinusoidal output voltage from the search coil,

the magnitude of the search coil voltage was read directly

on the electronic voltmeter and the flux was obtained by

a1 freque This acted as
dividing it with the angular frequency. This acted a

11 > rained usi the
§ Ladings obtained using the
a cross—check on the reading

integrator circuit.



- 281 -

For obtaining the Tundamental flux/pole, a wave

*

b3 Jeis - .
analyser was used. Since the voltage induced in the

search i si i +
r coil was sinusoidal éxcept at very high excitations,
higheir order harmonics were found to be of very small

percentage (less than 5%), of the fundamental component

over the range of excitation used.

Figs. 8.10 and 8.11 show the measured fundamental
component of flux/pole for the end~strip plate in
longitudinal and transverse flux arrangements respectively.
Readings were taken fof both 50 Hz and 25 Hz, and the
figures also show the curves predicted from the present

non-linear theories,

Discussion of these results is made in Section 8.5.4.

oy o~ e T paqrmmmm e T o 4 Ay
8.4.7 Measurement cf Surface Current }‘JCL[D.LJL,‘Y

For the measurement of current density on the
surfaces of the plates, the current-density probes
attached to the surface (Section 8.3.3.2) were used. The
output terminals of the current-density probes were fed
to an amplifier and then taken to the electronic voltmeter

and the wave analyser. The same operational amplificr as

in Fig. 8.9 was used, except that the capacitance was

replaced by a resistance, R;. Photoplate 8.2 shows the

. . v as inag instruments used.
experimental rig and the measuring S s '

If v 1is the fundamental of the voltage reading
Y

sl ~obhes Sslace iistance
obtained from the current-density proebes, placed a distance
jamental comwponant of the current

1.  apart, then the func R Cemem
o SR

- . analyser was first calibrated using a signal
The wave analyser wWds

goeneraltbor.
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density on the surface of the plate, J;, is given by
is give ;

Y

_P
1T (8.5)
p

where p is the resistivity of the plate (Table 8.1).

Lguation (8.5) applies for bhoth the z and x=conmponents
of current density. Throughout the experiment L _ was 0.5 cm;
this was believed to be the smallest permissible distance
between the ends of a J-probe for half of the active width
used (= 38mm). Figs. 8.12 and 8.13 show the plotsof the
surface current density le for the end-strip plate for
the longitudinal and transverse flux arrangements
respectively. Experimental points for both 50 Hz and

25 Hz are plotted together with the theoretical curves.
Discussion of the results obtained is made in
Section 8.5.5.

8.4.8 Additional Investigqtions

Tn addition to the experimental measurements

described so far, investigations were also undertaken to

verify the validity of certain assumptions. These included

the measurement of the variation of air-gap flux density

1 Ve Y >y ] R
in the z-dircction, the theoretical and the experimental

investigations of some finite-width effects, the

oscillograms of wave shapes from the search coils and

- - . - ~ i T e £ .(.1 -
N d 4 -ohes and the measurcmuent oi the
the current-density probes a

temporature of the plates.



- 283 -

8.4.9 Measurement of the Variation of the Air-gap Flux

" Density in the z-direction

For the measurement of the variation of the air-
gap flux density in the z-direction, full-pitch, single-
turn search coils of width 0.5 cm. were fitted on the
surface of the wide plate (Fig, 8.3)*. These coils are
numbered frbm 1 to 11 and the flux was measured using
the integrator circuit shown in Fig. 8.9. The flux
density ©btained from each of these search coils was
taken té be that occurring at the centre of the area
covered by the coil. The measured values of the flux
density along the z-direction are plotted in Figs. 8.14
and 8.15 for the longitudinal and the transverse flux

arrangements respectively. Various excitation values

and the two frequencies, 25 Hz and 50 Hz, were used.

Observations from these figures are made in Section
8.5.6.

8.4.10 Theoretical and Experimental Investigations of

some Finite-width Effects

8.4.10.1 Theoretical Investigations concerning dey and~gct

while for the purpose of analysis, the thickness

for assumed uniform current-density distributions in the

*  guch érrays of search coils were also fitted on the
surfaces of the narrow and end-strip plates, but are
- . Lc D - R : 7L
not shown in Figs. 8.5 and 8.6 for clarity.
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late, d i.e. - o .
2 e (3. ch or dct)' was considered to be small

compared with the half-thickness of the plate, a
i b - C4 == ’

(Section 7.4.1), the effective value of d was obtained
c -

from a new loss-invariance concept (Section 7.7.3). It
was, therefore, hecessary to investigate whether the value
of dc, s0 obtained, was small compared with d (since
otherwise the analysis would not be valid). Theoretical
calculations were therefore undertaken for the end-strip
plate for both pole-arrangements and frequencies, over
the range of excitation used and the results obtained are

given in Table 8.5.

It may be observed in Table 8.5 that the effective
values of dc obtained for both pole~arrangements were
small {less than 99%), comparcd with thc half-thickncoo cf
the plate, thus verifying that the assumption of dc<< d
holds, despite the new loss-invariance concept used in

-

obtaining d. .

8.4.10.2 ILxperimental Investigations of Inmd-current

Distributions

Tt was mentioned in Chapter 7 (Sections 7.8 and

7.9) that the currcnt-density distribution on the line

of the intersection of the plancs z=L./2 and y=d was

given by equation (7.54), and the ratio of the current-
] g a™ - )
densi Ly distributions at z=1,/2 was given by egquation

narrow plate to verity

. 1= s
(7.58) Teats woere nade OD the

these obscervations.
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Since for the narrow plate, J

4

at 2=L/2 could not

be obtained, the readi: N
»d, the readings of the J-probes nearcst to

z=L/2 (namely, 221 and x21, Fig. 8.5), were used to

represent the surface current densitics at the end of

the active width. For the same reason readings of the

J-probes on the lateral surface nearest to y=d (namely,
X6 and Y3, Fig. 8.5), were used to represent the current
densities at y=d. Since the current density is directly
proportional to the J-probe reading, the J-probe readings
were used for verifying the equations and the results

are given in Tables 8.6 and 8.7 for longitudinal and

transverse flux arrangements respectively.

To obtain the ratios of end-currents, the readings

for J_ (i.e. J or J ,) were obtained from the J-probe
X X2 xt _

attached to the narrow plate at the end of the active
width, (namely, XBS5 of Fig. 8.5) and tlie readings for

J p were obtained from the J-probe nearest to the end
z5

of the active width on the surface of the narrow plate
(namely, %21 of Fig. 8.3). For the transverse flux

u - as -ained from the mean of
arrangement, however, JZt was obta c

i e J-probe g rface and on the
the readings of the J-probes oI the surf:

lateral side face necarest to the end of active width

(i.e., 221 and Y3 of rig. 8.5). Thils was necessary because

. - . +- Iy+ 21 IEE SR R Py
B at z=0 was not only impossible to ontaln but was also
8 C. - i i
zt
. - s variations of the readings
R ’ - -G - from the variaclc s
difficult to predict I ’

,
R T cal1iee wne 1aken as
: -ohoc and Lhe mean value was taken ¢
of these two J-probes, and

a C N -atios of rrent densities
ompronise gince onl the ratios of currcent densiltil
a comprouise. v :



- 286 -

were of concern, readings as obtained from the J-probes

were used and the results are given in Tables 8.8 and

8.9 for the longitudinal and the transverse flux

arrangements respectively.

In all the above measurements, the fundamental
components of the J-probe readings were always obtained.
Observations and discussions of these results are given

in Section 8.5.7.

8.4.11 Oscillograms of Voltage from Current-density Probes

and Search Coils

Oscillograms of voltages from current-density probes .
were taken to study the natures of current-density and
flux distributions on the surfaces of the plates for both

pole-arrangements. These are shown in Figs. 8.16 through
8.25.

' Figs. 8.16 and 8.17 show that oscillograms of
voltages from the J-probes and the search coil array,

respectively, on the surface of the wide plate. Figs.

8.18 through 8.22 show the oscillograms of voltages from

the current—donsitj probes on the surface of the narrow

plate; Fig g.22 showing those on the lateral side face.

Oscillograms of voltages from the current-density probes

on the surface of the end-strip plate are shown in T'igs.

8 23 through 8.25; Fig.8.25 also includes an oscillogram
s IAVAN g o .o

of voltages from the full-pitch scarch coil.

' 1 Og ains . e nﬂde 1
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Section 8.5.8,

8.4.12 Measurement of the Temperature of the Plate

Bach of the three Plates were fitted with thermo-

couple probes to monitor the rise in their temperatures

when subjected to the travelling magnetic fields. Slight
difference in the temperature in the three locations on
the plate surface was noted, and could be due to the
contact of the weld points. However, the difference was
not large, (less than + 10% of the reading of the thermo-
couple at the centre), and the mean of the temperature

readings of the three locations was taken.

Figs., 8.26 and 8.27 show the plotsof the risc in

the temperatures of all three plates for 50 Hz and 25 Hz

These will be discussed in Section 8.5.9,.

8.5 DISCUSSION OI' TEST RESULTS

8.5.1 General

Experimental investigations on the end-strip plate
to verify the non-linear theories of Chapters 5 and 6

and on the plates without end-strips to determine the

effects of finite width on power loss and current-density
2[fects e '

distributions, have beenh described in Section 8.4. The
JoaD - Sl 4

results of these experiments worc presented in tabular
d D o

‘v thig ~ion, these results
and graphical forms and, in this section,
ared with the calculated values.

arc discussed, and comp



8.5.2 Eggzigurrentwpower’Loss

The experimental values of power loss density in

the plates are plotted, together with the graphs of

calculated values, as a function of the primary
excitation in Figs. 8.7 and 8.8 for the longitudinal

and the transverse flux arrangements, respectively,

for both 50 Hz and 25 Hz.

The experimental values of loss density obtained
from the end-strip plate agree well with the theoretical
values at low excitations. 1In general, experimental
values of loss density obtained from the end-strip
plate are slightly greater than the theoretical values
(varying between 3% and 13%, calculated value as base),
over the whole range of excitation. The reasons for

the difference between the theoretical and experimental

values could be

(1) probable imperfections in the copper-iron inter-

faces causing an uneven distribution of current
in the plate, and

the iron loss in the teeth of the primary member

under load condition which were included in the
measured values.

i 9 ss cauzcd an increasc in the
During the tests, the power loss

t erature of the plate, and bence an increase in the
emperature -he

- N torial of the plate. Theoretical
resistivity of the materlia ‘

Ve o 1 cg d 1S1TY = i i ¢ } - va.Lue of
1t s _l»“ u_) - - >] - L,l \lci.u
¢ : N C]..S..t, ohtal ed ing a 1 1g !
alues ol loss )

loos than those shown in FFigs.
' ity W 1 he leoss than
recistivity would b
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8.7 and 8.8 (for all three plates, Q < 1)

Thus the
agreement with theoretical values is better in the
above figures than would be obtained for higher values
of resistivity, Nevertheless the results of Fig. 8.7

and 8.8 are considered to verify the solutions obtained

for loss density.

Several other observations may be made from
Figs. 8.7 and 8.8. It may be observed that the loss in
the end-strip plate is greater than that in both the
wide and the narrow plates; this is to be expected
because of the negligible loss in the end strips and
because additional e.m.f. is required to drive the
currents in the end region in the narrow and the
wide plates. It may also be seen in Figs. 8.7 and
8.8 that the difference between the measured loss values
of the end-strip plate and the narrow (or wide) plate
is higher for the transverse flux arrangement (TTFA)
than for the longitudinal flux arrangement (LFA); this
shows that the effect of finite width 1s more pronounced
in the TFA than in the LFA due to predominantly cross-

pole currents at the end of the active width.

Also notable in the above figures is the fact

that the loss values obtained for the wide plate arc

only slightly higher (maximum 5%), than those obtained

for the narrow plate, so that only slight rcduction

i 1] effects of finite plate width on loss is achieved
1n Ne i rects -
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by the use of a plate much wider than the width of the

active area. Thi -t . . _
his shows that the effective end-region

width, de, for the narrow ang the wide plates may be

considered equal and that the loss due to the z-component

of current density in the eng region may be neglected.

8.5.3 Finite wWidth Factors in the Absence of Conducting

———

End-strips

The power loss obtained in the end-strip plate may
be assumed to represent approximately the power loss in
an infinitely wide plate (Section 8.4.4), so that finite
width factors for plates having no conducting end-strips
may be obtained approximately as the ratio of the powexr

loss in the narrow plate to that in the end-strip plate.

Table 8.10 shows the values of the finite-width
factors obtained for the narrow plate for both the LTA
and the Tra, the calculated values beiﬁg obtained from
equations (7.36) and (7.46), respectively, with n=1.
Fairly good agreement is obtained between the calculated
and measured finite-width factors, although the measured
values are slightly greater than the calculated values.
The djfference between the calculated and experimental
values varilies between - 0.2% and +21%, (calculated value
the maximum difference occurring at the highest

as base),

itation for the TFA at 50 Hz. The difference between
excitatil ks

- 1S C Vel 25 O 1 1.TC .‘..C«,—L-l.l
L}/\(‘, calcu ](] l'.C- ( an Ll e €2~ -

E . . 1 K } L 100 Lj(;,‘ weei e
ac l N S ‘7""; 2 1i Wlt’) L ¢ dlffC,J - 2EN tl
- CLOYS 1S COI’]. L e tol - Cl o]
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calculated and measured values of loss density (Section

5 - [
8.5.2). 1In general, better agreement with the calculated
values is obtained at 25 Hz where the increase in the

temperature of the plate was not very great (Fig. 8.27).

It may also be noted in Table 8.10 that the finite
width effect is more pronounced for the TFA than for the

LFA due to the predominantly cross-pole currents.

8.5.4 Flux Per Pole

The variations of the calculated and the experimantal
values of the fundamental components of the flux/pole
with the primary excitation for the end-strip plate are
shown in Figs. 8.10 and 8.1l for the LFA and the TFA
respectively. Agreement between the calculated and
measured values of flux/pole is fairly good at low
excitations:; the difference between the experimental
and the calculated values of flux/pole varies between
0% and -129% (calculated value as base). The maximum
difference occurs at the highest primary excitation for
the LTFA at 50 Hz. The difference between the calculated
and experimental values occurs because the actual
resistivity of the plate was greater (due to the increase

in the temperature of the plate) than the value used in

Cc C (S ] ( [CF= S 3 (3 T =
i 1€ 11 e \/G..Ll"._ 7 thu. 7 1
. e ‘Ul{gtJ_OTh 7 t}l Ca < aer

~ . - . - - ATTOW
Y el ¢ 1&0 }nC\.dSll_L(\_ O] }] Y NADTY
Th@ f].‘\.l:\'/]T.O].Q Was a 1 C 9!

de plotes and the values obtained werce slightly
and the wide plates



- 292 -~

less that those for the end-strip plate; the difference
was between -5% and -18% (flux/pole on the end-strip

plate as base). The small difference in the air-gap flux/
pole for all three pPlates indicates that the flux/pole

is relatively unaffected by the paths of eddy currents

in the end region of the plate when the eddy-current
reaction field is weak. This confirms the observations
made in Section 7.2 in connection with the nature of
finite width effect. However, the experimental values

of flux/pole for the narrow and the wide plate are not

*
plotted in Figs. 8.10 and 8.11 for clarity.

Fig. 8.25c shows a typical oscillogram of the

voltage from the full-pitch search coil (proportiona

[

to flux/pole) for the end-strip plate.

8.5.5 Surface Current Density

8.5.5.1 Curcent Density on the Surface of t@E_EEQZEEEEE

The experimental values of the fundamental components

of current density along the z-direction on the surface

of the end-strip plate are plotted, together with the

theoretical curves, in Figs. 8.12 and 8.13 for the LFA

” . *ejrChch3o'44 obtained much higher differences
Other re&ociﬁ ref. 30) Dbetween measured values of
(over 2000 ' with ond without copper

. . S A-1r¢ rotors
"y in solid-lron gl ! i gl e
fl?”/901¢ this is typical for machines with strong
end-rings; : -

eddy~current reaction (Q > 1).



and the TFA respectively;
between the calculated

low values of primary excitation.
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~good agreement was obtained
and the experimental values at

With increase in

the primary excitation, the experimental values of

current density deviate increasingly from the calculated

values, the difference being higher for the TFA (Fig.

8.13) than for the LFA (Fig. 8.12). The difference

ranges from 0% to -24% (calculated value as base), thc

maximum difference occurring at the current-density

value for the TFA at the highest primary excitation.

Two reasons may be given for this difference:

(i)

At higher excitations, the temperature of the
plate increased and so did its resitivity (Section
8.4.2); this caused a decrease in the surface
current density. Better agreement between the
calculated and experimental values of current
density at higher excitations may be obtained by
using a higher resistivity value in calculations.

However, this would cause greater error at lower
. ]

excitations and a compromise value of resistivity

ig difficult to obtain.

Tn order to determine whether the use of a higher
n e ) zha

. Doy < ations gives closer agree-
resistivity 10 calculat g ,

ent between the experimental and theoretical
ment | ‘

. dengity, theorcetical curves
values of current density,

3 1 " } - oy iy
i AO ]‘()' ST e INGQ} )O Lz anl
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p = 30uf.cm. for 25 Hg cases, (Table 8.4), and

O e
are shown in dotted lines in Figs. 8.12 and 8.13.
It may be noted that the experimental points and

D b - -~ . . .
the dotted curves converge at higher excitations.

(ii) The z-component of the current density on the
surface of the plate for the TFA is less than that
in the LFA; this shows that the difference is
partly due to the existence of the cross-pole
currents in the TFA within the active region,
(oscillograms of Figs. 8.24 and 8.25), as well

as in the end-strips.

8.5.5.2 Current Densities on the Surfaccsof the Narrow

and the Wide Plates

The z and x-components of current density were
also measured on the surfaces of the narrow and the wide
plates. The z-component of current density for these
plates was always much smaller than the corresponding

values for the end-strip plate, while the x-component

of current density for these plates was generally more

significant (oscillograms of Figs. 8.16, 8.18 and 8.21).

Thus the assumption of the z—-component of current

i i > minant component was not
density being always the do

strictly true for the wide and the narrow plates, and
at >re nct plotted in
; ; -~ these plates were :

the values of JZ for p

e remnson for lower surface

ol R 13. The reasc

Figs.8.12 and 8.

5 ignificant x-component of
snt it 2lues and s19

current denslity Ve



- 295 -~

the surface - . .
3 ¢ curraent den51ty in the cases of the wide

and the narr : 3 '
narrow plates was the lncreased impedance

to the ec “rent R
ddy current paths because of the absence of

low-resistivity end-strips.,

The measured z—component of the surface current
density values for the narrow and the wide plates are
approximately 20% lower than those for the end-strip
plate at higher excitations; at lower excitations the

difference is less.

8.5.6 Variation of the Air-gap Flux Density Along the

z—-direction

The variation of the air-gap flux density along
the z-direction was measured using the érrays of search
coils placed on the surtaces of the plates. The resuits
obtained for the wide plate are plotted in TFigs. 8.14
and 8.15 for the LFA and the TFA respectively. Similar

results were also obtained for the narrow and the end-

strip plates.
Figs. 8.14 and 8.15 show that for both pole-

N C o = 1 ice -1 e
arrangements and for both the frequencies used, the

air-gap flux density for the wide plate is substantially

. . S ot idth over the range of the
constant along the active widt! ge

excitation used. This observation 1£ also substantiaved

by the oscillograms of Fig. 8.17.
At the end of the active width, il.e. at z=L/2

. il
- C aameity could not be measured
(=238 mm.) s the flux density ¢
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because the search coils on either side of the line

z = L/2 measured flux densitirs inside and outside the

(Y 3 4 A2
active region respectively. The measured flux density at

35.5 mm from the centre (z = 0) was less than that at the

centre, indicating that the flux density decreases ncar

the end of the active width.

The results of the flux density measurement show that
the air-gap flux density does not vary along the z-direction
for the hecater with low eddy-current reaction (Q<1l), thus

verifying the assumption (v) of section 7.4.2.

8.5.7 End~Current DistributionsFor the Narrow Plate

For investigating the nature of end-current distributions,
the narrow plate was fitted with J-probes on the line of
intersection of the planes z = L/2 and y=d and also on the
lateral side face (Fig. 8.5) in addition to thosg in the
active region. Tables 8.6 and 8.7 show the measured
magnitudes proportional to the current densities at z = L/2
and y=d , while Tables 8.8 and 8.9 give the ratio of the
current density components at the end of the active width.

ty Condition (eqguation

8.5.7.1 Verification For the Contini}

e 1 the End-Reovions
(7.54)) Between the ACLIVE and the b e

e

i secti 3 as +the
. o e ‘ven in section 7.8.3 as the
Lguation (7.54) was gived

: STyt i Nae jensities
cquation governing the distribution O current densit
quation goveirnlhc
f the planes z=L/2 and y=d

o mancti e}
on the linc of intersection
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and was an important condition in determining the effective
end-rcegion width, especially in the absence of end~-strips.
It was, however, difficult to obtain both J at z=L/2

(section 8.4.10.2), and Jey at y=d and J-probes nearest to

both z=L/2 and y=d lines (namely, %21 and Y3, Fig. 8.5 ),
were used for this purpose. The x-components of current
densities were, likewise, obtained from the J-probes
nearest to both z=L/2 and y=d lines (namely, X21 and XEG6,

Fig. 8.5).

It can be seen in Tables 8.6 and 8.7 that the magnitudes
proportional to the current deﬁsity obtained on the air-gap
surface of the narrow plate (J-probes Z21 and X21) are
approximately equal to those obtained on the lateral side
face (J-probes Y3 and XE6). This applies for both pole-
arrangements and frequencies. The slight difference
could be due to the distance of the respective J-probes from
the line of intersection of z=L/2 and y=d planes. The
results obtained from the J-probes are, nevertheless,

considered sufficient to verify equation (7.54).

In addition to verifying equation (7.54), Tables 8.6

and 8.7 show the different natures of end-current distributions

for the LFA and the TFA. This can be obtained by comparing

the recadings obtained from the J-probes on the air-gap
surface of the narrow plate nearcst to the end of the active
. . n the lateral side
widih (721 and X21, Fig. 8.5) and on the later e
. anls i [
face pearest to the air-gap surface (Y3 and XEG, Fig. 8.5).



For example, the readings Obtained for the X~component of

current density on the lateral side face (J-probe XE6, Fig
7 - °

8.5) near the air-gap surface show the predominance of

the cross-pole current for the TFA.

8.5.7.2 Verification for the Ratio of the Directional

Components of Current Densities at the End of the

Active Width (Equations (7.59) and (7.60))

The ratios of the z and x-components of current densities
at the end of the active width are given by equations
(7.59) and (7.60) for the LFA and the TFA respectively.
The ratio of these two components of current density at
z=L/2 is obtained for the narrow plate (n=1) from the
readings of J-probes fitted nearest to the end of the

active width (221, XE5 and Y3, Fig. 8.5).

Tables 8.8 and 8.9 show that the ratios of the end
current densities obtained from experimental measurements

. . *r 2 - - & Ie) [~
bear good agreement with the calculated values; agreement

is better for the LFA than for the TFA. The difference

between the calculated and the measured values of the

ratio varies for the LFA between -14% and +12% (calculated

value as base) and for the TFA between 9% and 40%. The

‘o the 1d not be obtlsined
reason for this difference 15 that JZ cou

exactly at z=L/2 and measurcments were approximate. In

& furt DY imation
P Je e to a further approximati
the TFA, the difference Was du

' T - = ~ction 8.4.10.2).
in obtaining J, . at z=L/2 (seC
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The results of the Tables 8.8 and 8.9 are, however,

considered sufficient to Suggest the validity of equa*ions
(7.59) and (7.60), respectively, for a plate without

end-strips. The results of these Tables also act as a
verification for the method of obtaining the end-region

width and, in particular,equation (7.56) (i.e. ngznt=l).

8.5.8 Oscillograms of Voltages from the J-probes and Search

Coils

8.5.8.1 Oscillograms for the Wide Plate

Figs.8.16 and 8.17 show the oscillograms of voltages
from the J-probes and the search coils, respectively, on
the surface of the wide plate. While the oscillograms of
Figs. 8.16 and 8.17 are for the LFA and the TFA respectively,
similar oscillograms were also obtained for opposite pole-

arrangements.

Fig. 8.16a for the LIA shows that while the change in

w _ ) cont densit {thi
the magnitude of the z-component of current density within

the active width of the plate is small, the decrease in

. LIy R o N J 7
its magnitude beyond the active width is pronounced. 1In

Fig. 8.16b, on the other hand, the x-component of current
- 4 . 14 A

; 5 £ 1701l ne ‘ntre tows
dengity is shown to be increasing from tne centre towards
the end of the active width. In particular, the wave-shape

. et at z=43 mm.) clearly
marked d beyond the active region (at z=45 1 ) ¥

e < - Y - A PR = B} "'7 I
suggests that the end currents flow beyond the active regicen
. = AT D) . -
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rather than within it.

Since the areas of the search coils (marked 1 to 11
in Fig. 8.3) on the surface of the wide plate were
approximately equal, the oscillograms of Fig. 8.17 for
the TFA clearly show that there was negligible variation
of the air-gap flux density along the z~directions within
the active width. This substantiates the information

obtained from Figs. 8.14 and 8.15.

The invariance of air-gap fFlux density along the active
width was also obtained from the oscillograms of the search

coils on the surfaces of the narrow and the end-strip plates.

8.5.8.2 Oscillograms for the Narrow Plate

Oscillograms of voltages from the currcnt-density probes
on the air-gap surface and the lateral side face of the

narrow plate (Fig. 8.5) arc shown in Figs. 8.18 through

8.22 for the two different pole~arrangements.

Figs. 8.18 and 8.19 show the relative magnitudes

i | ' . rticular locations
proportional to Jz's and the J,°S at parti

for the LFA, while Figs. g.21 and 8.22 show those for the

TFA.  An eoxamination of these figures shows that while the

I ity is the dominant one at the
z-component Of current density

contre (z=0) of the plate, the x-component of the current

: . . C Lt e towards the end of the active
density becomes significant

-ds the end of the active width,

widlth of the plate. ‘rowe.-
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the x-component of current density is much more significant

in the TFA (Fig. 8.21c) compared with that in the LFA

(Fig. 8.19%a).

Oscillograms of Figs. 8.19b, 8.19c and of TFigs. 8.22a
and 8.22b show the cross-pole and the cross~thickness
natures of end-currents for the two different pcle-arrangenents.
Fig. 8.19c for the LFA shows that on the lateral side face
(i.e. the x-y plane) of the narrow plate, the y-component of
current density (wave shape a) is much greater than the
x-component of current density (wave shape b), while in

Fig. 8.22a for the TFA the converse is true. Similar
Observation may also be made for the oscillograms of

- Figs. 8.19% and 8.2Z2b. This strongly substantiates the

view (expressed in Chapter 7) that in the end region, currents
flow predominantly across the thickness of the plate in

the LFA and from pole-to-pole in the same half of the platc

in the TFa.

8.5.8.3 Oscillograms for the End-Strip Plate

Figs. 8.23 through §.25 show the oscillograms of

voltages from the current-density probes and the full-pitch

search coil on the surface of the end-strip plate (Fig. 8.06).

Comparing the voltages of the oscillograms (for the LIFA) of
Fig. 8.23a for the endmstrip plate with those of Fig. g8.18a
for the narrow plate, it may be obscrved that although both
arc of the similar forly, the wave-shapes of Tig. 8.23a arc
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more sharp-peaked. Harmonic analysis of these oscillograms
shows that the fundamental magnitudes in Fig. 8.23a are
upto 20% less than those in I'ig. 8.18a. This shows that
the presence of the low-resisitivity end-strips causes the

x—-component of the current density in the active region on

the surface of the plate to be decreased.

Figs. 8.23, 8.24 and 8.25 also show the relative
magnitudes of the z and the x components of currént densities
at various locations on the pi&te.surface. Comparing the
wave shapes in Figs. 8.23 and 8.24, it may be seen that
the z-component of the current density is generally the
dominant one. However, for the TFA, the x-component of
current density can be significant at the end of the

active width (Fig. 8.25Db).

Fig. 8.25c shows the voltage from the full-pitch search
coil on the surface of the plate and the output of the
same voltage from the integrator circuit for the TFA. (Similar
oscillograms of search coil voltage were also obtained for
the other pole»arrangement and for the other plates.). The
phase shift of ﬁ/2 between them may be noted, as also the

sinusoidal natures of both voltage wave shapes. The ratio
of the amplitudes of the wave shapes in Fig. g.25¢ is 3.176

(ideally, it should be equal to m).

§.5.9 Temperature-Time CUTRSD

The curves of IFigs. 8.26 and £.27 show the rise in the
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temperature on the surfaces of the plates with time for

50 Hz and 25 Hz supplies respectively.

The curves of Fig. 8.26 are higher than those of
Fig. 8.27 showing thereby that the use of higher frequency
is advisable for heating purposes. In both figures it
may be seen that the rise in the temperature is higher fér
the LFA than for the TFA. This suggests that the LFA
produces more power loss in the plate than the TTFA, which

is true for-weak eddyucurrént reaction (Q<1).

The lower curves of Figs.8.26 and 8.27 refer to the
wide plate, where, because of the greater plate area, the

rise in the temperature of the plate was less rapid.
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GENERAL CONCLUSIONS AND FURTHER WORK

9.1 GENERAL CONCLUSTONS

This thesis is concerned with the study of the
electromagnetic fields in the solid-iron plate in a
travelling wave induction heater where the plate is subjected
to travelling magnetic fields on both sides. The study is
divided into two parallel developments; one for a heater
in which the corresponding poles on the opposite sides of
the plate are of the same instantaneous polarity, called
the longitudinai flux arrangement (LFA), and the other for
a heater in which the corresponding poles are of the opposite
instantaneous polarity, called the transverse flux

arrangement (TFA) .

The linear two-dimensional solutions (Chapters 3 and 4)
concerhing the penetration of electromagnetic fields into
the solid-iron plate show that the expressions for the
electromagnetic field gquantities, the eddy-current power
loss and the forces of electromagnetic drigin are all

functions of the thickness of the plate. For both pole-

arrangements, the plate may be considered electromagnetically

thick if its half-thickness is greater than n/4 times the

depth of penetration in the material of the plate. In the

LFA the plate may pe considered thick if its half-thickness
I

is greater than 1/m times the pole-pitch of the excitation

current sheet (section 3.4.6), while in the TFA, the plate

may be considered thick if jits half-thickness 1S greater

; o 2
than n/2 times the gquotient (depth of penctration) / (pole-

pitch) (scction 3.5.6.). In electromagnetically thick plates,



- 305 -

the expressions for electromagnetic field guantit

leg are the
same for koth pole—arrangeménts wheréas in thin plates

these expressions exhibit characteristics particular to the
pole~arrangement (section 4.3). TFor thin plates the power
logs in the TFA is many times greater than that in the LFA,
while for thick plates, the power loss is the same in both

pole—arrangements.

The study of the eddy-current reaction field inside
the plate shows that it is a function of the plate-thickness
in addition to the relative permeability of the plate and the
air-gap length (sections 4.2.2. and 4.2.3). The magnetic

field strengths cn the surface of the plate for either

pole-arrangement, H o4 OF Horar (equations (4.13) or (4.31))

cannot be considered the same as the primary excitation

A
K, even for small values of the ratio of air-gap length

to pole-pitch, since the expressions for these guantities
are functions of plate thickness. This, it is believed,

has not been considered before.

Irrespective of the finite thickness of the plate, the

magnetic field strength in the plate 1is predominantly one

dimensional for both pole«arrangements (sections 3.4.7. and

3.5.7.) if 2a2>q2; no previous study, it is believed, has

shown this for a machine of this form.

The non-lineal theories consider one~dimensional

maaneltic ficld strength in the plate for both pole--arrangements;
dd 1O A s R i -

4 new double-function (equation (5.17)) is introduced as

a solution to the aiffusion equation in order to account for
solut: he air
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the additional boundary conditions at the centre of the
thickness of the plate. It is shown that in transition

from clectromagnetically thin to thick plates, not only does
the loss density in the plate decrease, but the exponent

of the surface magnetic field étrength in the loss expression
reduces also from approximately 2 to (b+3) /2 (sections 5.4.5
and 5.5.5). By defining a dimensionless paramcter Q as the
ratio of the input impedances at the surface of the plate
(section 6.4.3 and 6.5.3), the dominénce or otherwise of

the eddy-current reaction field is determined according as
whether Q is very large or small compared with unity. Q=1
represents the condition for maximum loss in the plate

(from the principle of impedance matching). It is shown
that for a given set of values for (i) the magnitude and the
frequedcy of the primary excitation, (ii) the dimensions
6}‘the heater, and (iii) the parameters of the material of
the plate (p,a and b), a plate thickness exists at which
maximum loss would occul in the plate (equations.(6~l7)

and (6.40)). The air-gap flux/pole is obtained as being
solid-iron parameters when the eddy-current

independent of the

reaction was weak i.e. o<l (sections 6.4.8 and 6.5.8) .

The nature of the distribution of end~current 1n a

plate of finite width (in addition to finite thickness)

: he ~te. An investigation into
affects the power loss in tne plate of:

the effects of finite width on the power loss in the plate

shows that, for weak eddy—~current recaction, the power loss is
shows , for

reduced compared with the same in a plate having negligible

finite width effcct (egquations (7.35) and (7.45)). The
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reduction in the power loss in the plate duc to finite

width effect depends on the ratio of active width to

pole~pitch; this ratio ought to be large in order to

minimise such a reduction. In addition, the finite vidth

effect depends on the plate-thickness, the parameters of

the material of the plate and the pole-arrangement. With

a decrease in the plate thickness, the effect of finite

width becomes less significant in the LFA and more significant
in the TFA (section 7.7.4). This was found to be consistent
with the actual eddy—current'distribution in the plate; in

the LFA, the end currents are prédominantly cross—thickness

in nature, whereas in the TFA, the end currents are cross—pole
in nature (Fig. 7.2). The consideration of the ratios of the
directional components of surface current densities in the plate
at the end of the active width (sections 7.9.2 and 8.5.7.2)
substantiates this observation and shows how the distribution

of end current modifies with the variation in the thickness

of the plate. In so far as the cffect of finite width on

loss in concerned, the LFA is to be preferred for obtaining

higher eddy-current power 1oss in the plate.
The experimental investigations undertaken (Chapter 8)

. B » ~ N - -3 3 £ - I
verify the proposcd non-linear theor-es and the effects

of finite width on power loss and current-density distributions

in the plate; the investigations show that the increase in
’

=1 ac ¢ B i £ ‘
the temperature of the plate has considerable influence on

the experimental results.

In a {ravelling wave induction heatexr, the eddy~currcnt
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power loss in the plate would have to be as high as posgsible.
If solid-iron plates of a given thickness would be used,
either pole-~arrangement may be utilised and the use of
equation (6.17) or (6.40) for optimum plate thickness is
recommended for the design of the heater. If solid-iron
plates of various thicknesses would be used, the utilisation
of the transverse flux’arrangement is recommended for thin
plates and the utilisation of the longitudinal flux
arrangement 1is recommended for thick plates. with the
provision of one of the two primary members being movable,
the same heating device may be used for both pole-arrangements.
It is highly recommnended that a travelling wave induction
heater should be multipole and have large ratios of active
width to pole-pitch, plate thickness to pole-pitch and

small ratio of air-gap length to pole—pitch,although the

last condition may not be practicable.

The aim of this work was to study the electromagnetic
fields produced in a solid-iron plate when it is subjected

to travelling magnetic fields on both cides. It is

considered that this thesis presents'a thorough study of the

electromagnetic field quantities in the plate under the

constraints of finite plate-thickness, magnetic non-linearity

and of finite active width. It is believed that the aim

was accomplished and that this work provides a good

foundation fHor further work.
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9.2 TIURTHER WORK

e work -hi : .
The work of this thesis was concerned with a new kind of

induction heater; extensive theoretical work was necessary
for providing a sound basis for future work. In this work,
only those cxperiments considered necessary to verifly the
theory were carried out and consequently, scope exists

for extensive experimental investigationé. For example,
plates of various thicknesses may be considered in the
investigations, particularly in verifying optimum plate-
thickness (i.e. for which mazimum loss occurs) . Experiments
may also be devised to measure the forces developed on the

plate, which were not considered in the present work.

The linear arrangement of Fig. 3.1 (which is considered
throughout this thesis) gives rise to the entry and exit
phenomena on the plate resulting in lower current and flux
densities at the ends of the active length. This affects
the overall power loss calculations, whigh assumes uniform

current density over the whole of the active length. Although

for multipole heaters, entry and exit effects have little

influence on power loss, in 2-pole heaters, they may be

singificant. Further work may be carricd out on this aspect,

P IS s ) 1A o
providing, perhaps, & finite length factor, which would show

the effects of entry and exit phenomena on the power loss and

the electromagnetic field distributions in the plate.

in t Lte causes a substantial increase
The power loss in the plate causes ¢ a :

in the temperature of the solid-iron plate. A travelling-wave
. C Y L -

: ai § > future svelopment of this
heating sysiem being the aim of the future developme S



work, a high power loss and hence a rapid rise in the
temperature of the plate to very high values (upto 1000°¢)

is to be envisaged. The rise in the temperature of the
plate brings about an increase in the resistivity of its
material and also a change in the air-gap length. While

the variation in the air-gap length in the linear arrangement
considered here may be kept to a minimum at all temperatures,
the effects of the variation in the resistivity need to be
taken into account. This necessitates the solution of heat
transfer eguation together with the diffusion eguation for
electromagnetic field quantities. This was attempted by
Jackson 6 in connection With his work on eddy-current
couplings. , For the present model, extensive work may be
carried out to imncorporate the effects of the rise in the
temperature of the plate especially at high excitation,

resulting, perhaps in predicted temperature vs. power loss

and time curves.

The theories presented in this thesis predict the
penetration of the magnetic flux from the air—-gap surface
to the inside of the plate. The two different pole-arrangements

give rise to the different natures of flux penetration

and also to special boundary conditions at the plane of

symmetry, y=0. Both flux and currenft density penetration

tests may be carried out by splitting the plate as shown

. . . : ils and current-density
in Fig. 9.la and putting on scarch co1l € M

) e T m o in Fig. .1lb and
probes on the mating surfaces as shown 3. 91D

. g T -idge the split faces. The
using coppcr end-strlp® to bricg 5y

. . T - 1octromagnetic fields have
olffocts of the split on the clcd G
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v==-a Search
coils
(a) and J-probes (b))

Fig. 9.1: The x-y plane of the plate: (a) the plate with
faces for split. (b) sSplit faces exaggerated
to show the locations of search coils and J-probes.

been dealt with in detail in Bowden's work.30

While experimenting, vibrations were noticed in the
plate at certain values of excitation and frequency.
Although in the work of this thesis vibrations were minimised
by the clamping arrarngement, investigations may be made in
future on the nature and the extent of the electromechanical
effects of such vibrations. One effect.of considerable

influence may be the loss of symmetry (about y=0 and z=0

planeg) due to vibration.

In this thesis the analysis was carried out in terms

of field theory, whilst eventually an equivalent circuit

] " =quivalen i Lt
approach may pe ecasier to use. Thus an equivalent circult

for the present system may pe obtained from the work

presented in +his thesis.
In future work, attempts may be made to cbtain the

normaliscd loss as a2 function of normalised plate thickness
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(1.e. plate thickness/optimum plate thickness) with
normalised resistivity (resistivity/resisitivity at
maximum loss) as a parameter.

This will increase the scope

of application of the present work.

Finite-difference and finite-element solutions were
mentioned only briefly in this thesis. Elaborate work may
be carried out in these lines in future, so that more
accurate results may be obtained from computation. However,
it is believed that this would be mainly an academic

exercise.
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APPENDIX 1

AN APPROXIMATE ALLOWANCE FOR THE EFFECT OF HYSTERESIS

Al.1 GENERAL

Hysteresis complicates the eddy-current problems
further. In general, however, the effect of hysteresis
on loss and force is small and as such, more often than
not, hysteresis is neglected. Some finite difference

53,54
approaches

already discussed have also shown that
the eddy-current loss calculated using B-H curve alone
accounts for a considerable part of the hysteresis loss.
In the works of this thesis, hysteresis is neglected.
However, an attempt is made in this appendix to include
hysteresis approximately in the analysis.

Pohl's49 is an excellent attempt to include the
effect of hysteresis on loss and field distribution.
He introduces a multiplying factor (greater than one)
by whiéh the attenuation of the field quantities is
accelerated and the eddy-current loss is reduced. The

total loss due to eddy-current and hysteresis is, however,

30
increased by this factor. Bowden™~ also accounted for

hysteresis in the similar fashion.

n made in the past to represent

57,58
resis by rectangular B-H loop "

Attempts have bee

the magnetic hyste

but the revresentation by an idealised elliptical

i i . rerains a popular
k-1 loop, as shown in Fig. Al.1, POY

jyjroachl3r59’6l O‘Ke]ly59_61 has done extensive work
C _)}» .
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using elliptical B~H loop.

Elliptical B-H loop is a very simple and logical
approach for representing hysteresis. For the actual

B-H loop it is a good approximation. Moreover, this 1is

Fig. Al.l Elliptical B-H Loop.
a good choice for the effect of hysteresis to be amenable

to analytic treatment. In this thesis, therefore, an

elliptical B-H locop, as shown in Fig. Al.1l, is considered

and its effect on expressions for electromagnetic field

gquantities already obtained in Chapter 3 is studied.

TING THE EFFECT OF HYSTERESIS

Al.2 INCORPORA

: - : ce! cuation
Al.2.1 Modification 3N . Laplace's Equation

In its simplest form, hysteresis introduces an angle
n its simg
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ky = (1 + ])(}h

i.e.

kp = (G; + 3¢,)a . : (A1.6)
where,

c, = Y2 cos {(w/4) - (6,/2)} (21.7)
and

c, = VZ sin {(n/4) - (8,/2)] @)

The field components deduced in the following sections

Please swap the following twoO pages while reading.

Author

111 LllE audolve BT ETS o dadaning g wee— T

magnetic field components and current density, under

longitudinal flux arrangement , are given by equation

(3.38) through (3.40). on consideration of hysteresis

these are modified as given below

: _2K_(C,+3C)) _
H = —_—ELﬁl;——z— cosha(cl+jcz)y]exp(—jqx)

xh M

h
(A1.9)
-32K .q _ _ )

H _ —3;{pinhu(cl+ch)Y] exp (-Jax) (A1.10)

yah dﬁ

¢h
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so that,

ky = (1 + 3oy
1.€.

kp = (6 ¥ dey)e (A1.6)
where,

¢y = V2 cos {(n/4) - (8,/2)] (A1.7)
and

c, = Y2 sin {(n/4) = (6,/2)] (A1.8)

The field components deduced in the following sections
pertains, as before, to the model of Fig. 3.1 and are given
for the two different pole arrangements. The primary
members in Fig. 3.1 are assumed to have infinite permeability
and the field components are represented by a further

subscript, h, to show the effect of hysteresis.

Al.2.2 Field Components and LOSS and Force Equations

Under Longitudinal Flux Arrangements.

Tn the absence of hysteresis, the equations for

magnetic field components and current density, under

longitudinal flux arrangement , are given by equation

(3.38) through'(3,40). On consideration of hysteresis

these are modified as given below

% +7C
~2K,_ (€113 2)

coshu(Cl+jCZ)Y]eXP(‘qu)

i

xh Mlh

(A1.9)

~§2K, ' o
: ’Eg{Sinhd(cl+3c2)Y] exp (~3gx) (a1.10)
yh y -

OL'MQ,h

i
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of lag for the flux density, B, with respect to the
magnetic field strength, H, and this angle is termed
hysteresis angle. Neélecting the harmonics introduced
by saturation, the hysteresis loop may be considered as
an ellipse with the major axis making an angle 9, with
the H-axis (Fig. Al.l). A complex permeability, Wy, due

to hysteresis may then be defined as,

Uy = -exp(—jeh) = uruoexp(-jeh) (al.1)

jasifive)

Laplace's equation in two" dimensions, equation (3.18),
P

is thus modified to

2 2
9°A + 0"A _ uh?(l+j)2A (A1.2)
ax? dy? i

where A is the vector potential, defined in equation (3.8),

and

urudw L
ah = (_ép )

exp(—j@h/Z) (Al.3)

The solution of equation (pl1.2) is still given by

equation (3.20), but the value of k, equation (3.21),

is modified to, say., kh' where,

ky® = g2+ jZOLhZ (Al.4)

. 2 2 . . .
Under the usual assumption of 20> >> g?, it is obvious

from equation (Al.3),[ah\ = |a

that 2ah2 >> g?, since,

The use of this assumption was justified in Sections 3.4.4

and 3.5.4 and will pe taken to hold here. Thus in

equation (Al.4)

(Al.5)

2 2
Zah >>q
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and
J4t< 0
JZQ/h = e [:Sll’lhO’(Cl-i-jC y] exp ]qh) (A1.11)
M .
2h
where

Mﬁh‘: —2coshquoshclad,cosczud{}(mtanhqg~c2tanczad)tanhclad+cl}+

j{(Hmfnﬂmqg+cltanhc

1

ad) tanczad+02{} (Al1.12)

i.e. magnitudically,

Y2Zcoshgg{m’tanh”qg (cosh2c,ad - cos2c,ad) +

2mtanhqgg (c sinh2clad +c25in2c2ad)+2(cosh2clad +

[ ol

cos2c.,ad) } (A1.13)

2

The values of the electromagnetic field components
at the surface of the plate may be obtained from equations

(A1.9) through (Al.11) with the substitution of y = d.

After some calculations, this gives

—2K
Hx%dh - l ’[}osh2clad + cos2c ué] exp (- IKPQQ 2dh
2h
(p1.14)
/3K _q 5 .
Hy%dh = ——T~E+-[}oshchad~coslchﬂ exp (-Jax) {%y&dh
awMQh|
(A1.15)
and
/f% a
2 .
- Z d - cos2c ué] exp ( )Zi_
Jzﬁdh = TQ ‘ [cosh2cla 5dh
th (p1.16)

where 'MQhI is given by equation (Al.13) and,
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C

] 2 .
mLanhqg(.Ew51nh2clud—sin20 ad)

o1 ‘> 1 2
ﬁixscdh"tan { .

mtanhqg.(si 2 o
nt qg.( 1Dh201ud+ai sln2c2ud)+(cl+c2)@Dsh2clad+cos2c2ud)

nd (AL 17)
/ :tan_l mtanhqg(cosh2clud—cos2czud)+(clsinh2clud+czsin2c2adx
ydh (cqsinh2clad—clsin2c ad)
2 2
(r1.18)

Equations (Al.14) through (A1.18) may be compared with
equations (3.44) through (3.48);, respectively, in order to

sece the effect of hysteresis.

The total loss/area, given by equation (3.55), is now

modified to

2K _20p
P - %2 . (c,sinh2c,ad-C sin2c.,ad) (rl1.19)
y2dh M 2 1 1 2
[Mon|
The force equations given by equations (3.60) and (3.61)
are, likewise, modified to
- 2
ZUOUny_q
F = ——t (coshZCluy—cos2c2ay) (rl.20)
'Xﬁh lM Iz
2h
and
2u M i Za
F = _EQLE_E;~ (czsinhZClay-clsin202uy) (Al.21)
y&h IM Iz
2h

|M2h| in equation (A1.19) through (Al.2) is given by

equation (Al.13).
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Al.2.3 Field Components and Loss and Yorce Ecuations

Under Transverse Flux Arrangement

Under transverée flux arrangement, the field
components, in the absence of hysteresis, are given by
equations (3.74) through (3.76). When hysteresis is
considered, these equations are modified to the forms:

~

2Kz(Cl+jCZ)

wth = ‘[sinha(cl+jcz)y1exp(~jqx) (A1.22)

Min
. jZKZq
= . i -1 Al.23
C Hep - [cosho (¢ +jc,)y]exp (-3ax) (Al.23)
“n
and
: “IAKS 1.24)
- . ' - Al.
2tn = 7 [posha(cl+jcz)y]exp( jax) (
th
where ,

Mth: 2coshquoshcludgosczud{}mtanhqg+cltanhclad—cztanczad}+

1 ‘l .
j{(mtanhqgtanhclad+cl)tanczud+cztanhclad£] (AL.25)

i.e. magnitudically,

: .d) +2mEanhag (¢, sinh2c,ad =
IMth|=/§coshngﬂ%tanh2qg(COSh2C1Ud+C052C2Cd)+ ntanhag ( 1 1

L
czsin202ad)+2(coshZClad—c05202ud) ]2 (A1.26)

The surface values of the above guantities may be

obtaincd by substituting y = d in the above equations.

After some calculations;, this gives
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A

2K
H = ——2% [cosh2c.ad % :
y - cos2c,ad]’? -
xtdh ‘M \ [ 1 0 ] exp (=3ax) [H i ap
th L33
(A1.27)
/2K 4 1
H = eee————— % .
ytdh uWM h‘[boshZClad + cosZczad]2 exp (-jagx) Hytdh
t

(A1.28)

'2/§uKz N
- ——— 2 = . -
Jztdh i [}oshchad + cosZcZad] exp ( th)i Hvtdh

and

[Men|
(A1.29)

where lMtH‘ is given by equation (Al.26), and,

B <, a

mﬁanhqg(——-SinhZCfxd+sin2c2ad)
-1 !

{HxUﬂf:tan CH .

mtanhqg (sinh2c,od- c%sln2c2ad)+(crHiQ@Dsh2clad—cos2c2ad)

- (Al.30) -
and

mtanhqg(cosh2clad+cos2c2ad)+(clsinhZClad—czsin2c2ud)
{Hytdh:tan (czsinhZClad+clsin202ad)

(r1.31)

The above equations may pe compared with equations

(3.79) through (3.83), which were obtained neglecting

hysteresis.

The total loss/ared; given by equation (3.90), is now

modified to

z 2
ZKZ.qp

_ 2 . .(c

= sinhchad+clsin2czad) (A1.32)
M 1

‘ Pytdh
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The force equations,given by equations (3.95) and

(3.96), are now modified to

ZUr-quKZZ
Fyth ‘—;r——;— (coshZCluy + cosZczay) (A1.33)
My, |
and
OR 2
R i S .
yth IM h|2 ,8inh2c ay + 0151n2c2ay)
t

(Al.34)

In the above equations lMthl is given by equation (Al.26).

Al.3 COMMENT

In the above two sections, equations for electro-
magnetic field components and for loss and force densities
have been obtained, for both longitudinal and transverse
flux arrangements, including the effect of hysteresis. The
effect of hysteresis is embodied in the different expressions

through the constants ¢, and C,- These equations may be

readily verified against those obtained in Chapter 3, where

hysteresis was neglected.

In the absence of hysteresis 6 = O and both the

constants ¢, and Cy pecome unity, i.e.
(pl.35)

Substituting equation (aAl.35) in the above expressions,

cach reduces to its corresponding form in Chapter 3.

It is pelieved that no published work that deals with

the model of Fig 3.1, has allowed for hysteresis in this way.
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- APPENDIX II

THE M.M.T.EQUATIONS AND APPROXIMATE RELATIONS BETWEEN

JH | 2w |F_|

A2.1 THE M.M.F. EQUATIONS

Fig. A2.1 shows the model (as Fig. 3.1) considered
throughout this thesis. The m.m.f equation concerning

the primary current sheet Kz and the x-component of

by
PRI Y N
) HARY a' g ly=dig j K
AIR GAP ! g 2.
1 _ H
pLATE D . y=d o Fxa
y=0 X

Figure A2.1

magnetic field strength on the plate surface, de may

be obtained by considering the path aa'b'b in this
figure. Note that the path includes the primary current
sheet but no secondary currents.

Applying Ampere's circuital law around this path,

o +F (12.1)
Fg F g
where,
é is the resultant m.m.f. of the air-gap region
g a
é = fK dx is the m.m.f. of the primary current sheet
c VA
: ' . ddy current reaction
= dx 1s the m.m.f. of the eddy
and F_ [, 4 :

field in the plate.

o ~sents the m.m. L. of the eddy current
However, Er reproaents

. = > ) tion 4.13).
reaction field if L%tanhqg tanhqgd > 1, (equa
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This condition holds for moderate values of gqg and gd

Now, the integrals may be solved from considering

K = K_exp(-Jgx { B =B j
, ; jgx) and de = HXd exp(-jgx), so that
Pl
. . (a2.2)
and .
T xd (12.3)
Y q .

Eguation (A2.1) is now given by

P = %(‘KZ +H ) (A2.4)

de may be obtained from equation (6.7) and using

equation (6.12) and (6.35) the resultant air-gap m.m-{.

may be obtained for longitudinal and transverse flux
arrangements respectively.
A2.2 APPROXIMATE RELATIONS BETWEEMéde@lQ_Jﬁ ol

The relation between the surface magnetic field

strength, [de"and the primarynhnuf.lﬁciis given by

equations(6.21) and (6.16) for longitudinal flux arrangement

and by equations (6.44) and (6.39) for transverse flux

arrangement. An approximate relation between them may be

obtained when the non—dimensional parameter Q (i.e. Qp

or Q ) is laxrge. Equation (6.44), for example, becomes,
L

h >> 1
when Qt

alF .| :
et = glF

e - (n2.5)
"xtd\ coshgg

ct!



- 324 -

since, as seen from equation (6.39), for a given plate
and primary excitation, large values of Qt are always
associated with small values of gg. Similarly, for
longitudinal flux arrangement,

alF_, |

AR A2.6
lHXRdl ~ coshqg ~ qucR‘ ( )
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" APPENDIX TIII

CALCULATIONS FOR OPTIMUM LOSS ON A SINGLE-SIDED ARRANGEMENT

Although this thesis considers a double-sided
arrangement as shown in Fig. 3.1, some work was done at
the outset of this project, on the optimisation of loss
in a semi-infinite plate with excitation from only one
side. For this purpose, expressions were used from
Bowden's thesis, and it is beliéved to be an extension

of his work.
The loss/area, Pn’ is given by (equation 6.27 of Ref.30)

.f.fzﬂ'MQCosé A
[Pl g abn 3.1)

Pn ~ 2sinhqg.coshqg

I

where ¢_ ¢t' given by equation (5.65) of this thesis
n

and

b= L . (83.2)

n -1 .

+2sin
Q.9 sing
. 2
and 0 = Q, , given by equation (6.39) when d>>a;
n too

With increase in 10SS inside the plate, its temper-

ature rises and so does its resistivity along with a

variation in air-gap length. To obtain very high losses

2 r-q th should be
(of the order of MW/m ), the ail gap length shou

sufficiently large (e.g. 1 cm Or more), so that any small

change would be negligible. Alternately, provisions may

he air-gap reasonably constant in the

be made to keep t
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flat arrangement being considered. Thus, it was

decided to investigate the variation in loss with

variation in resistivity alone.

For given values of primary excitation and
frequency, Figure A3.1 shows the variation of 1loss
against resistivity in an EN1A steel plate for various
values of pole-pitch and for an air-gap of 1 cm. Similar
curves may be obtained for any change in these values.
Fig. A3 1 shows the very definite pattern that, for any
pole-pitch, there is always a value of resistivity when
the loss in the plate is a maximum. With reasonable
values of pole-pitch, (e.g. varying between, say, 12 cm
and 25 cm), such resistivity values may, in fact, be
attained with rise in temperature. Also to be noted in
the figure is the fact that the curves are flat-topped,

so that losses near to peak may be obtained relatively
easily.

On the basis of the findings of Figure A3.1, it

was decided toO investigate the relation between generalised

loss and resistivity. The maximum loss, P, may be

obtained from equations (A3.1) and (A3.2) by putting

= o that
Qn 1, s

2+25in¢n

R (A3.3)

P 1

P Tt42sin
nmn Ql’l+Qn 2s d)n

' essary to calculate Q
Since ¢ _ is constant, it is necesse Y : .
n
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only in equation (A3.3).

In terms of machine parameters and primary
excitation Qn is given by equations (6.34) and (6.35) of

Bowden's work, as

24 |7 | (17P) (b-1)
N _ ZUO.w.]bcl _COSh qg. (A3 4)
A (L+b) ” 5 .
q PR <k Atanh?qg
Where b3 bel
2 2
Yo T 4 (A3.5)
(R, = R_, given by equation (5.64) of this thesis, ky = Kpgr

given by equation (5.54) of this thesis and A = 1.25a.)

If o =P at maximum loss, then this applies when Qn = 1.
If NAm represents the value of NA when p = P i.e. at maximum
loss, then for a particular machine with given primary

excitation and frequency, equation (A3.4) gives

N
NAm = £ (A3.6)
A °m
But from equation (A3.5) and (A3.2)
(1-b)
N (2+25in¢n) 2
A (A3.7)
Na b+3 (1-b)
Q —EW(Q +0 "t42sine )
n n “n n
From equations (A3.6) and (A3.7), therefore
2+2siné (1-b)
si
! - 2 (A3.8)

& ) e,
b 4 bif3 “li2sin
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From equations (A3.3) and (A3.8), then

b+3 2
P _ 1D, 170
P79 G5 (A3.9)
nm m

Equation (A3.9) is the final form of the relation
between generalised loss and resistivity and shows that it
is necessary to obtain Qn for this relationship. Qn may be
obtained as a function of p/pm from equation (A3.8) and
since an may be obtained from equation (A3.1), the generalised

loss may be obtained from equation (A3.9) or (A3.3).

Fig. A3.2 shows the plots of Qn and Pn/an against
p/pm. These curves, being generalised in nature,apply

to all machine parameters and excitation values.

It may be noted in I'ig. A3.2 that the variation of

Pn/an ig not symmetrical about(p/pm)= 1. For example, the

value of Pn/Pn at(p/pm)= 0.1 is about 30% higher than that

m
at(p/pm)= 10, This is useful in optimising the loss, because

almost invariably,(p/om)<< 1 and one is working on the

higher loss side. A close examination of Fig. A3.2 also

reveals that for values of p/pm between 0.1 and 0.5, Pn/Pnm

varies between 0.6 and 0.95. It may be possible, in some

cases, to increase the resistivity to within this range at

sufficiently high temperatures (below Curie point). Small

values of O (between 3.8 and 1.54) are indicative of the
n
fact that obtainable loss values arc to a large extent

exploited. At other ranges of p/pm, loss values are either
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not high or the cost of Obtaining such losses does not justify
the advantages gained. (p/pm)= 0.22 is a fairly good choice,
because at this value, which may not be very difficult to

obtain, the loss in the plate is as high as 80% of the peak

loss.
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APPENDIX IV

- CHOICE OF THE VALUE OF dé FOR LINEAR CASE
Ad4,1 GENERAL

As mentioned in Section 7.7.3, the value of dc for a
magnetically linear material may be chosen in the same
manner as for the non-linear case. The loss calculated
from the linear theory for an infinitely wide plate may
be equated to the loss calculated assuming the presence
of zero-resistivity end—strips. In so far as having
zero-resistivity end-strips simulates the condition of
an infinitely wide plate, such an equation seems to be a
logical step. It may, however, be remembered that the
linear theory (Chapter 3) considers only one component,
viz, JZ in the plate and the theory for finite width
effect (Chapter 7) considers both Jz and Jx in the plate.
Such an equation, therefore, implies that the loss calculated
on the basis of two-dimensional current-density in the
plate is little affected by neglecting one. This may be
possible, since it has been shown in Section 7.9 that in
the presence of low resistivity end-strips, the current
density in the plate is one-dimensional in nature.

The values of d, will, therefore, be obtained for
both longitudinal and transverse flux arrangements by

equating the loss in an infinitely wide plate to that in

a plate fitted with sero-resistivity end-strips at its

ends.,



A4.2 VALUE OTF dCQ'FOR>LONGITUDINAL FLUX ARRANGEMENT

The loss/area under longitudinal flux arrangement
may be obtained from equation (3.54). Therefore, total
loss for a heater of 2p poles, ecach of pitch w/q, and
of active width L, is given by

ZKZ?QQ
P =(2pn/q).L+—=—— +(sinh2ad - sin2ad) (A4.1)

Y40 2
| |1, |
The ‘total loss in the plate fitted with zero-
resistivity end-strips is given by equation (7.34) so

that ecuating it to equation (A4.1),

>

Q

42 (sinh2ed - sin2ad) (84 .2)
M, |2
2

2

= (L2 Y.
dCQ_ (3 )
ZL

3 . in equations (A4.2) was assumed distributed
z

uniformly over the thickness dCg and hence is also its
value at the plate surface. Thus, using assumption (ii)
of section 7.7.3, the value of Jzz(: led) may be obtained,

in this case, from the linear theory, eguation (3.46), and

equation (A4.2) finally becomes

1 sinh2gd - sin2ad ad 3
dog = 53'[cosh2ad T cos2ad ( )

This value of dc2 may be used in the expression for

1 (equation 7.29) for using in the finite width factor.
Q! LM C

guch a substitution, once again, shows that the finite width
oUucC s Ll L

cffect is most pronounced in plates of large thickness
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and least pronounced in plates of small thickness.

A4.3 VALUE OF'dCt FOR TRANSVERSE FLUX ARRANGEMENT

The total loss/area in this case is given by
equation (3.89). Thus, the total loss for a heater of

2p poles, each of pitch n/q, and of active width L, is

given by

(Ad.4)

The total loss in a plate fitted with zero-resistivity
end-strips is given by equation (7.44), so that equating

it to equation (A4.4),

K 2 ’
= (Az ) . 4o - (sinh20d + sin2ad) (A4.5)
ct M l2 )
zt t
3zt in equation (A4.5) was assumed distributed

uniformly over the thickness dCt and hence, is also its
value at the plate surface. Thus, using assumption (ii)

of Section 7.7.3, the value of Jzt(: Jztd) may be obtained,
in this case from the linear theory, equation (3.81), and

equation (A4.5) finally becomes

1 [sinh2ad + sinZod nd 6
™ 35 °{cosh2ad T cosZad ( )

The value of dct’ given by equation (A4.6), may be

substituted in the expression of i equation (7.39), for
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using in finite width factor. Such a substitution, once
again, shows that the finite width effect is most
pronounced in plates of small thickness and least

pronounced in plates of large thickness.

For an infinitely thick plate, in the linear case,
the end-effect factors for longitudinal and transverse
flux arrangements are exactly equal instead of being

approximately so as in the non-linear case.
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TABLE §.2

DATA OF THE IDENTICAL PRIMARY UNITS (S100, LINTROL LINEAR MOTORS)

Dimensions are the same on both primary units.

—

No. of phases 3
Nature of connection " Y (star)
No. of poles 2p 6

No. of slots 18

Width of slot (= Width of tooth) 1.25 cm.
Rated current/phase | 18.5A
Rated Supply ' 415v (L-L)
Synchronous linear speed (50 Hz) 7.5 m/s
Force developed . 450N

Pole pitch T 7.5 cm.
Active width L . 7.6 cm.
Total number of coils (full-pitch) 17

No. of intermediate(l)coils .2

No. of end(l)coils 2

No. of turns in a coil 52

No. of turns in series per phase N 104

(1) The intermediate and end coils are short-pitched and'

are used for reducing the effects of unbalancing.



- 345 -

TABLE 8,3

PRIMARY EXCITATION OF EACH OF THE PRIMARY MEMBERS

q=1=41.88791 n'}
\ . i Pri
e A S
ct c z c'’
Amps. - At/pole

1.5 210.8 8.8
2.0 280.8 11.8
3.0 421.2 17.6
4.0 561.6 23.5
5.0 702.0 29.4
6.0 842.4 35.3
7.0 982. 4 41.2
8.0 | 1123.2 47.0
5.0 1263.6 . 52.9
10.0 1404.0 58.8
11.0 1544.4 64.7
12.0 1684.8 70.6
13.0 1825.2 76.5
140 1965.6 82.3
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oH
Fig. 3.5 Varlatlon of surface values of H X7 H , X

- Y 3y
and ot Y with the ratio of d/s¢ ’or tvo values

of uix under both longitudinal (firm lines)

anc
transverse (dotted lines) flux arrancementeg,

g =5mm. g/t = 0,02, w = 1007.
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Half—thickness/Dep?h of Penetration, d/:

Fig. 3.6

Variation of power loss in the
flux arrangement, P

prlate for longitudinal
flux arrangement, P°

,{(firm lines) and for transverse

, (dotted lines), per unit of
their values for th ck*plate, with the ratio a/<.
M= 1000, ¢/7 = 0.005, w = 100%. G/t ratio:

(a) 0.1, (b) 0.05, (c) 0.01, (d) 0.001.
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Ratio

Fig.

4.1

Half~thickness/Depth of pentration, d4/s

Variation of the ratio of power loss in longitudinal
flux arrangement to that in transverse flux
arrangement with the ratio of d/¢ for various ratios
of g/1.

r_. = 1000. ¢/1 = 0.005, w = 100+,

Alrgap to pole-pitch ratio, "g/t.

(a) 0.1, (b) 0.05, (c) 0.01, (d) 0.001.
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Figure 5.3: Variation of loss density in the plate with surface
magnetic field strength for various half-thicknesses
of the plate. Equaticon (5.43). Frequency = 50 Hz.
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Figure 5.4: Variation of loss density in the plate with
surface magnetic field strength for various
half-thicknesses of the plate. Equation (5.72).
Frequency = 50 Hz.
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Ldm & an’ /7

cm

Meximum Loss, @ . (P
Y Y

6000
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& §
2000 /
1000 — /
/
400
200 /
100 //
60 _/
o //
20
10 ‘
200 400 600 1000 2000 4000 10000
}c(Fcﬁ or Fct), At /pole. ‘
'ig. Plot of maximum power loss, equation (6.25) or . .
(6.48), against primarym.m.f., g = 1 mm, v = 18 cm. .

w = 100,
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Fig. 6.5 Plot or power loss against primary m.m.f. for various
nali-thicknesses of the plate {or longituuinal ilux
arrangemnent. ¢ o= 1 mw, « = 10 cm.
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Plot of power loss against primary m.m. . ® t,'ifor
: : i . e ; A ' et
various plate thicknesses under Lransverse
Clux arrangement, g = L wmm, ¢ = 18 cm,w = 100w,
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Fig, 7.4 Variation of finite-width factor for longitudinal flux

arrangement, K_ , with(qL/2)(m ratio of active width to
pole-pitch), £5% various plate thicknesses in the
presence of copper end-strips. Hxid = 1ka/m, v = 25 cm,
de = 0.5 cm.
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Fig. 7.7 Variation of finite-width factor for transverse flux
arrangement, K- _, with(qL/2)(m ratic of active wideh
to pole-pitch) Ffor various plate thicknesses ir the
absence of low resistivity end-strips. E_ . = 1ka/m,
- _ - - Xta
T = 25 cm., w = 1l00mw.
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Fig. 8.3 Location of full-pitch search coil for measuring

flux/pole and other search coils each 5 mm wide
on the surface of wide plate.

a : Full-pitch search coil ends twisted and taken
to selector switch.

b : One end of all search coils joined on this wire.

C & C' : Location of J-probes, Fig. 8.4,

d & d' : Location of thermocouples. There was
another thermocouple to the right of d (outside
this fig.) at equal distance.

1,2,3,-—- : Search coil numbers; coil formed by
wires on immediate top and bottom of the numbers.

The ends of the search coils marked by arrows were

twisted and taken to selector switch.
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Fig. 8.4 Location of current-density probes on the surface

of the wide plate. J-probes marked by Z's are

along the z-axis and measure J_'s and the J-probes
o m , ' - 1 ren s '

marked by X's are along the x—~aXis and measure JX S.

Two more sets of J-probes were placed on 2 = 0O

line at % pole-pitch from the ends of active length.
(Not shown in this figure).
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Fig. 8.5

Location of full-pitch search coil and the current-
density probes on the surface and lateral side face

of the narrow plate. Location of a thermocouple probe
is also shown.
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Fig. 8.6 Location of full-pitch coil and current-density
probes on the surface of the end-strip plate.
Location of a thermocouple probe is also shown.



kW/m?

Power loss,

- 378 -

70

60

50

o~
O

w
O

N
O

10

[ L I | | I

Fig. 8.7

Measured:

20 30 40 50 60 70 80

Primary excitation, KZ ka/m

Measured and calculated values of loss/area against
excitation for longitudinal flux arrangement at both
25 Hz. and 50 Hz.

& : End-strip plate. 0©O: Wide plate. X : Narrow plate.

Calculated, equation (6.23).



Power Loss, kw/m2
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20 30 40 50 60 70 80

Primary excitation, Kz kKA /m

Measured and calculated values of loss/area against
excitation for transverse flux arrangement at both 25 Hz
and 50 Hz. '

Measured ® : End-strip nlate. @ : Wide ﬁlate.

X : Narrow plate.

Calculated : — ,EqU&UOW(bAS)
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Tig. &.1¢C Variaticn cf measured and calcglatei vaiues of flux/
pole with excitation under longitudinal flux
rrangement for the end-strip plate at both frecuencies

O "+ Measured at 25 Hz

. C | 6.32
® : Measured at 50 Hz : Calculated, Equation ( )
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0 10 20 30 40 50 60 70 80
Primary excitation, KZ KA/m
Fig. 8.11 Variation of measured and calculated values of flux/

pole with excitation under transverse flux arrangement
for the end-strip plate at both freguencies.

O : Measured at 25 Hz

. ation (6.56)
® : Measured at 50 Hz ¢ Calculated, £qU
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Fig. 8.12

20 30 40 50 60 70 80

Primary excitation, Kz’ kKA /m

Variation of measured and calculated values of current
density on the surface of the end-strip plate with
excitation for longitudinal flux arrangement at both
freguencies. The dotted curves are calculated surface
current density values for a higher rvestivity (40 ufi-acm.
for 50 Hz and 30 uyf-cm. for 25 Hz).

Q¢ feiurad o BT s culcutaves, apustons (5130
) and (6.18) .
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Primary excitation, Kz’ kA /n

Fig. 8.13 Variation of measured and calculated values of current
density on the surface of the end-strip plate with
excitation for transverse flux arrangement at bcth
fregquencies. The dotted curves are calculated surface
current density values for a higher resistivity (4,0 vug-cm.
for 50 Hz ana 30 uyli-cm. for 25 Hz).

O : Measured at 25 Hz

© : Measured at 50 Hz ———-—=:@ Calculated, eguations (5-63)

and (6. 41)



, w/vy €°6¢ VY W/ €°6E 2NV
w/yy 88 * © u/vy gtgs O
w/vy grgg U w/\vy €728 ¢ 0

zH 0S z1 ¢

*Zy 0§ I0J SOUTT WIATJI pue zj ¢g IO0J dIe SBUTT POIJOd “SUOTIRITOXD
SnoTIeA 3B jJudwWebueIIR XNTJ TRUTPNITHUOT I0F 93eId OPTM 3y3x JO uothox

9AT3IOR 99U} 3O YIPTM 9yl buoTe AjTsusp xnlj deb-ate poaansedw Jo UOTIBRTILA p1°8 "bHTJ
‘ww Zz ‘y3zpIrm a2yl buore souelystd
05 62 0z ST oT S C 51
I ! | | !
l..N.v
]
< \V .
@ % .
= V4 v N
!
....... e kit v bl v/t VA 4
. * 6
© ® © O] 2
o4
F~>uﬂmcm© XN1Jd
ll atatnlalin s B o Rl > bt & bbbt
184
s et e e O--—-e- o Q- """ S i
T/ 1=2 0=2 —4.7
1




385

(0]

WA €7 SE
WY 8°8S
WA €28

o ZH 09

"ZH 0§ I03 SOUTT WITJ pue zy

Eog

GZ 103 ©I® SBUIT pPOlj0(
SNOTIePA I0J Judwabuerae Xnljy asaoasueil 103 sj3erd oprMm o9yl JoO uUolbol
9AT3O® BYU3 3O Y3pTs 9y3 buore A3rsusp xnT) deb-ate painseaw Jo uotijvTIRA GT°8 "BTJ

‘uw z ‘y3pTM 9yl buoTe souelsIq

qg Y
"gg ¢ O
.

9L ¢

W/ €
w/vy 8
w/vy 4
Z]]
*suot

G
3R} TOXD

qg og GZ oz ST 01 S oQN
! _ _ I H _ _
— 2
v % v v v v v A
\V
...... il v
o} : . )
© ® © © © @
: O === O==--==- O~-====0-====~ o T~ o~~~ -""- o~ T D
© B & m_ a 8 o) (n L
] xlwmwﬁmcww Xn1Jg
e e o--—---Becerepgeeem g - D-i--:al ...... 4
|
Z/1=2 — 0=2 ——0T




Fig. 8.1l6a
Voltages proportional to JZ

Wave~-Shape : J-probe

a : zl

b zZ2

c Z3

d z4

e Z5
Fig. 8.1l6b

Voltages proportional to JX

Wave-Shape : J-probe

a X1
4 b : X2
c X3
d X4
Fig. 8.16 : Oscillograms of voltages from current-density probes

on the surface of the wide plate for longitudinal flux
arrangement.

Excitation 58.8 kA/m 0.5 V/cm
Frequency 50 Hz 2 ms /cm
Amplification = 100

il

I

Locations of the J-probes are shown in Fig. 8.4.
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Fig. 8.17a

Voltages from the array of
search coils (e By).
Wave-Shape : Coil Number

1

3
5
7
9

Fig. 8.17b

Voltages from the array of
search coils (« B,).

Wave-Shape : CoilyNumber
a 1
b : 4
c 6
d : 8
e 10
Fig. 8.17: Oscillograms illustrating the variation of air-gap

flux-density on the surface of the wide plate along z-direction
for transverse flux arrangement

Excitation = 58.8 kA/m
Freguency = 50 Hz 0.5 V/cm
Amplification = 100 2 ms. /cm

Locations of the search coils are shown in Fig. 8.3.




Fig. 8.18a
Voltages proportional to Jx's

Wave Shape : J-probe

a a : XES5
d
B b X21
c c : X20
d X19
0.2 V/cm
Fig. 8.18b

Wave Shape : J-probe

a : zl1l9
b : X19

a : 0.5 V/cm
0.2 V/cm

Fig. 8.18c

Wave Shape : J-probe
a : 720
b : X20

a : 0.5 V/cm
b : 0.2 V/cm

Fig. 8.18: Oscillograms of voltages from the current-density
probes on the surface of the narrow plate for longitudinal flux
arrangement.

Excitation = 47 kA/m Locations 0f the J-probes are shown
Frequency = 50 Hz in Fig. 8.5.

100

il

Amplification




Fig. 8.19a

Wave Shape: J-probe
a : 221
b : X21

a : 0.5 V/cm

b : 0.2 V/cm

Fig. 8.19D

Wave Shape : J-probe

a : 221

b : XE5

a : 0.5 V/cm

b : 0.2 V/cm

Fig. 8.19c

Wave Shape : J-probe

a : Y3

b : XE5

a : 0.5 V/cm

b : 0.2 V/cm

Fig. 8.19: Oscillograms comparing the voltages from the current-
density probes on the surface and lateral side face of the narrow
plate for longitudinal flux arrangement.

Excitation = 47 kA/m. Locations of the J-probes are shown
Freguency = 50 Hz in Fig. 8.5.
Amplification = 100
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Fig. 8.20a:

Voltage from a current-
density probe.

Fig. 8.20b:

. Voltages proportional to JZ.

Wave-Shape : J-probe

a : Zlé

b : Z20
« e - c : Z21

R S — Nb

Fig. 8.20c:
Voltages proportional to JX.

Wave-Shape : J-probe

a : X19

b : X20

c : X21

d : XE5
Figure 8.20: Oscillograms of voltages from current-density
probes on the surface of the narrow plate for transverse flux
arrangement.
Excitation = 47 kA/m 0.5 V/cm
Frequency = 50 Hz 2 ms /cm
Amplification = 100 '

Locations of the J-probes are shown in Fig. 8.5.
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Fig. 8.2la:
Wave-Shape: J-probe

a : z19
b : x19
Fig. 8.21b:

Wave-Shape: J-probe

a : 7220
b : X20
Fig. 8.2lc:

Wave-Shape: J-probe

a : z21
b : X221
Figure 8.21: Oscillograms of voltages from current-density probes

comparing the magnitudes of J_'s and Jx's on the surface of the
narrow plate for transverse flux arrangement.

Excitation = 47 kA/m 0.5 V/cm
Freguency 50 Hz 2 ms /cm
Amplification = 100

1l

Locations of the J-probes are shown in Fig. 8.5.
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Fig. 8.22a
Wave-Shape : J-probe

a : Y3
XE5

Fig. 8.22b

Wave-Shape : J-probe

Y3
b : XE6
Fig. 8.22 : Oscillograms of voltages from current-density probes

comparing the magnitudes of J_'s and Jy‘s on the surface and
lateral side face of the narm%'plate fO0r transverse flux
arrangement.

Excitation = 47 kA/cm 0.5 V/cm
Frequency = 50 Hz 2 ms ‘/cm
Amplification = 100

Locations of the J-probes are shown in Fig. 8.5.




Fig. 8.23a
Voltages proportional to JX
Wave - Shag_ J-probe
X25
b X26
‘C X27
d XE10
0.2 V/cm
V\G
Fig. 8.23b
Wave-Shape J-probe
a Z25
b X25
0.5 V/cm
Fig. 8.23c
Wave-Shape J-probe
a 226
b X26
0.5 V/cm
Fig. 8.23d
Wave-Shape : J-probe
a z27
b X27
0.5 V/cm

. from current-density probes
on the surface of end- strip plate for longitudinal flux
arrangement.

Excitation = 47 kA/m Location of the J-probes are shown
Frequency = 50 Hz in Fig. 8.6.
Amplification = 100
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Fig. 8.24a
Voltages proportional to J,

Wave-Shape : J-probe
a : 225

b : Z26
7 ::ii::fj c : 227

b
C 0.5 v/cm

Fig. 8.24Db

Voltages proportional to JX

Wave-Shape : J-probe

a : X25
b X26
c : X27
d XE10O
0.2 V/cm

a :
b,c,d : 0.5 V/cm

Fig. 8.24c

Wave-Shape : J-probe
a : 7225
b : X25

a : 0.5 V/cm
b : 0.2 V/cm

Fig. 8.24: Oscillograms of voltages from the current-density
probes on the surface of the end-strip plate for transverse flux
arrangement.

Excitation = 47 kA/m Locations of the J-probes are shown
Frequency = 50 Hz in Fig. 8.6.

100

Amplification



Fig. 8.25a

Wave-Shape : J-probe

a a : 7226
b : X26
Amplification = 100

0.5 V/cm

Fig. 8.25b

Wave-Shape : J-probe
a @ 227
b : X27

Amplification = 100

0.5 V/cn

Fig. 8.25c

Voltages from full-pitch
search coil.

a
b

Search-coil voltage
Integrated voltage from
search coil

Amplification = 1

a : 0.2 vV/cm
b : 0.1 V/cm

Fig. 8.25: Oscillograms of voltages from-current-density probes
and full-pitch search coil on the surface of the end-strip plate
for the transverse flux arrangement.

Excitation = 47 kA/m
Frequency = 50 Hz

Location of J-probes and search coil are shown in Fig. 8.6.
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Fig. 8.26 : Measured temperature-time curves for the three

different plates at 50 Hz for an excitation of 58.8
KA/m. Firm lines are for longitudinal flux arrange-
ment and the dotted lines are for transverse flux

arrangement.
LFA TFA
] Wide plate D) Wide plate
YA Narrow plate FA Narrow plate
¢] End-strip plate © End~strip plate
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Fig. 8.27 Measured temperature-time curves for the three
Gifferent plates at 25 iz for an excitation of

64.7 kA/m.

Firm lines are for longitudinal flux

arrangement and the dotted lines are for transverse

flux arrangement.
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Power Loss, MW/m?

1 2 4 6 10 20 40 60 100 200 400 600 1000

Resistivity, 1078 ohm-m.

ig. A3.1 Vaeriation of power loss with resistivity for various pole-pitches
in a semi-infinite plate for a single-sided arranvement. Surface
magnetic field strengcth = 210 KA/m.. Air-gap length = 1.0 cn.
Frequency = 50 Hz.
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Fig. A3.2 Variation of generalised power loss, P _/P__, and the
parameter Q , with resistivity expressgd 4% per-unit of
its vzlue at mavimum loss b = 0,112, Note that the
p_/P curve is not symmetrical about (p/ep_) =

n nm m
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