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‘Responsibility is a unique concept. It can only reside 

and inhere in a single individual. You may share it with others, 

but your portion is not diminished. You may delegate it, but it 

is still with you. You may disclaim it, but you cannot divest 

yourself of it. Even if you do not recognize it or admit its 

presence, you cannot escape it. If responsibility is rightfully 

yours, no evasion or ignorance, or passing the blame can shift 

the burden on someone else. Unless you can point your finger at 

the man who is responsible when something goes wrong, then you 

never had anyone really responsible.' 

Admiral Hyman G, Rickover, July 23rd. 1963.
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Summary. 

An investigation into the effects of artificially induced 

defects on the failure mechanisms of glass fibre reinforced 

plastic tubes has been carried out. A fracture mechanics approach 

was used in the analysis of the results. The failure pressures 

of the tubes were found to obey equations in existence for 

isotropic materials. The failure mechanisms of the combined 

tube and defect types are discussed. The mechanisms were found 

to vary according to these variations. 

The values of Young's modulus and Poisson's ratio 

determined for the compliance analysis were compared to the 

predictions of two theories. This indicated that the theories 

were reasonable for the predictions of Young's modulus, but 

of little use for the prediction of Poisson's ratio. The 

defect sizes were too small to obtain an accurate compliance 

analysis to be compared to those of isotropic materials.
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Nomenclature. 

Al coefficient matrix 

a radius of circuler plate 

Cc contiguity factor, or compliance where applicable 

c 4 surface crack length, or critical where used as a subscript 

D inside diameter of thin walled tube 

Dl coefficient matrix 

E ... Young's modulus limited by subscript 

F load on circular plate 

£: subscript fibre 

G shear modulus, limited by subscript, or elastic strain 

energy release rate, limited by subscript where applicable 

EH subscript for hoop 

h thickness of a circular plate, or 4 thickness of composite 

layer, where applicable 

ho individual thickness of composite layer 

K fibre misalignment factor, or stress intensity factor limited 

by subscript 

L length of tube subjected to internal pressure 

2 length of individual fibre 

M Young's modulus of matrix 

IMl coefficient matrix 

n subscript for matrix 

w
o
m
,
 pressure 

critical pressure 

inside radius of thin walled tube
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(iv) 

constant included in the Folias correction factor = 0.49(12(1 ¥))2 

subscript for transverse 

tube wall thickness 

volume fraction limited by subscript 

width of tensile specimen 

subscript for working stress 

direction along axis of tube 

hoop direction in tube 

radial direction in tube 

Shear strain limited by subscript 

deflection in a circular plate 

strain limited by subscript 

angle of fibres in tube axis and direction subscript 

cos“@ 

sin“ 

sinOcos® 

Poisson's ratio limited by subscript 

normal stress limited by subscript 

critical hoop stress 

shear stress limited by subscript
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Chapter 1. 

4. Introduction. 

In recent years man has made many great steps 

forward in the fields of supersonic flight and manned space 

exploration. Complementing these advances has been the need for 

high strength/veight ratio and/or high modulus materials for 

structural members in the craft for these. Interest has been 

aroused in composite materials consisting of stiff fibres in 

a relatively soft and weak matrix. Work has been carried out to 

obtain a knowledge of the stiffening and strengthening mechanisms 

in such composites, but little is know about the fracture 

characteristics of many systems. 

Difficulties are experienced, when manufacturing fibre 

reinforced materials, in obtaining a defect free composite. 

Defects, such as voids, fibre/fibre contact, inhomogeniety and 

debonding of the fibre/matrix interface, are not uncommon. 

Catastrophic failure of such composites will often be initiated 

at one, or more, of these defects. For homogenous and isotropic 

materials, such as many metals, failure stresses and critical 

sizes of defect can be predicted, with accuracy, from well tried 

and tested fracture mechanics approaches. Composite materials 

are, at best, orthotropic and often anisotropic and the application 

of linear’ elastic fracture mechanics to these systems has not 

been fully determined. Clearly there is a need to establish the 

response of these systems to this approach.
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An important application of these materials is the 

filament wound, cylindrical pressure vessel. When a cylindrical 

pressure vessel, containing an axial defect, is subjected to 

internal pressure the combined effect of the hoop stress and 

the radial stress causes bulging of the mouth of the crack. 

This causes fracture to initiate at a lower hoop stress than 

the axial stress in a flat plate,with a similar defect, 

subjected to pure tension. For isotropic materials this has 

been rigorously enatyeed 12328,29,30,31 32,33) and factors 

have been evaluated to correct for this bulging. It does not 

necessarily follow that these analyses will apply to the systems 

which are the subject of this work. 

In this investigation a number of filament wound, glass 

fibre reinforced plastic tubes have been subjected to internal 

pressure. The tubes were tested with and without artificially 

produced, axial defects. Tubes of two different winding 

configurations were used, These were: 

4) Helical * 30° angle of wind and 

2)50% helical * 30° ana + 90° angle of wind. 

Three depths of defect were investigated, each of five axial 

lengths. 

It was found that, in general, the behaviour of the tubes 

agreed well with the analyses of the above workers. Interesting 

failure mechanisms for each tube system were observed and 

photographs of the history of the failures are presented. For 

the fracture mechanics analysis, Young's modulus and Poisson's
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ratio measurements had to be made. Comparisons of theoretical and 

observed measurements of these were dravm for two theories. 

Comparisons of two methods of compliance measurement for the 

different tube categories were also made.



Chapter 2. 

2. Iiterature Survey. 

2. 1. The properties and response of fibre reinforced composites. 

2. 1. 1. Basic considerations of the strengthening mechanisms 

of fibre reinforced composites. 

In recent years we have seen the advent of many new 

materials for use in aerospace applications where a high 

strength and /or modulus to weight ratio is essential. One 

such material is the fibre reinforced composite consisting 

mainly of two components - strong, stiff fibres in a relatively 

weak matrix, but containing voids and defects due manufacturing 

process, Clearly theories are needed which will predict 

composite strengths and physical properties accurately from 

the basic properties of matrix and fibre. 

The simplest fibre composite consists of discontinuous 

fibres embedded in a resin matrix. The load is transferred 

to the fibres by means of shear stresses set up as the resin 

attempts to flow around the fibres. In the fibre the stress 

veries as shown in Fig. 1. The shear stresses are greatest 

at the ends of the fibre and are zero at the mid point. If 

the fibre is longer than the critical elastic aspect ratio 

(1/4) it the tensile stress oe is constant along the length 

of the fibre. More rigourous solutions to the simple model 

(5,6,7,8,9) illustrated in Fig. 1 have been given amongst 

others (see Fig. 2.).
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As illustrated in Fig. 4 the longer the fibre the 

greater the load carrying capabilities of it and hence the better 

the properties of the composite. Also the presence of shear 

stresses at the ends of the fibres will favour crack initiation. 

Continuous fibres are therefore more desireble. For continuous 

fibres and elastic behaviour the nominal stress obeys the 

rule of mixtures: 

o = Epvp + EG - vp)) 

At higher stresses the matrix deforms plastically 

and: 

© = Epvp + a - vg)o,,(€) 

where o,,(€) is the true flow strength of the matrix at strain 

Most continuous fibre composites usually contain some discontinuous 

fibres prior to fracture, Thes¢ arise due to: 

4) Fracture of fibres during fabrication, 

2) Fracture of individual fibres during loading. 

Thus the criteria for failure in discontinuous fibre composites 

can not be neglected since these are nearly always present 

and may effect the initial crack propogation. 

The fibre models illustrated in Fig. 2 are useful for 

prediction of behaviour when the applied stress is parallel 

to the main fibre direction. Many applications exist when 

the applied stress is at an angle to the fibre direction. The 

most notable example of this is the filament wound component. 

Many theories are available for prediction of behaviour in 

this more complex case. Two of these are examined and discussed 

anes Teves



(5) H. I. Cox, 1952 Fibre 

C<a—_—_——__ 0 

Elastic fibre completely bonded into an extensive 

elastic matrix. Results derived for two and three dimensions. 

J. 0. Outwater, 495666) 

Fibre 

thin layer of 
ic natrix 

Assumes that the maximum interface shear stresses are 

a function of the interface pressure developed by the differential 

shrinkage of the matrix on to the fibre. 

N. F. Dow, 49637) | Fibre 
oO.       

  

Considers cylindrical matrix with fully bonded elastic 

fibre. Implication is that straight lines remain straight after 

deformation and two or three dimensions can be analysed. 

W. B. Rosen, 496, 8) 

Matrix Fibre 

pou a 

Perfect bonding is assumed at the interface of fibre and 

matrix subjected to tensile stress only. The matrix only carries 

shear stress. 

A. Kelly ana W. R. Tyson,1965 (2) ae 

o<—_—, {> 0 

Elastic fibre in a plastic matrix yielding according to 

the Tresca criterion. 

Fig. 2. Fibre models used for developing approximate analyses 

(Allison end Holoway(1°))
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2.1. 2. Prediction of the properties of angle-ply fibre 

reinforced composites by two workers, wat1is (11) and agai 13), 

In this section the prediction of the properties of 

helically wound glass fibre reinforced tubes is investigated. 

Wha lwork oe Wallig |!) and) teat \!>))tareaanined! endlcompaned: 

2. 1. 2. 1. Wallis. 

Wallis utilises the cutier 12) model and Fig. 3 shows 

the element for an orthotropic fibre. From the properties of 

fibre and matrix (E, Ea o2V5 28a rVp) a stiffness matrix 

M is obtained where: 

% My Mio Ms £9 

Sera Mo, Moo Mos ee 

Tet Mo oo M55 Yet 
It is necessary to transform the equation from the © 

and + directions to the X and Y directions. The stress trans- 

formation is: 

      

ox co 

ey = & o 

Txy Tot 

where: 

9, & 26; 

A s 8, & 20, 

; de (O20) 

The reverse transformation for the strains is: 

©O A es 

& | = A ey 

Yet Yay



  

x , Unit Cube 

Fig, 3. Cutler element with orthotropic fibre.
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SoS Mi Ve 
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2..4. 2. 2. Tsai. 

Tsai first calculates properties in the fibre direction 

and transverse to it then transforms to the required axis. 

By the law of mixtures: 

EF (wep + (1 - vp)EL)K (4) 

where K is a fibre misalignment factor. 

Kp Vp (2K +6. Vp + KV (2K +6) (4-1 a) 
V, = (1-C) = 2 

L : Kp 2K +e) o Ge Kp = K,. 1 = Vp 

2 K Vn (2kp+Ge) (1-vp) + KpVp(2K_ +5 Vip 

Kp 2K Sp + Ge x = Kp Vp 

where: 
E. E E. E 

© = f aes nm eee fs cS Moe 
sme 14V_) TR 2C+V,, 2m 2(1=Vp) a 20-v,) 

C is a contiguity factor of the order of 0.2.
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Tsai found that in most cases the law of mixtures equation: 

Vz, = Vp¥p + (4 =Ve)Va 

was accurate to + 5% of the values computed from the more 

complex equation (2). For computing values of Ey tht following 

equation was used: 

Ep = 2[1 - vp + (Ye -v,)(t - vp) 

6 K,(2K., + i) - 6 (Kp - KG - Vp) 

2K +G)+2(k,-K )1 -v. 
m m £ m £ 

+C 

Kp(2K, + Gp) + Gp(K, - Kp) (1 - “s] (3) 
26 + Sp - 2K - Ke ine 

Ve can then be obtained from the well known reciprocal relationship: 
V. 

L 
Vp = Ep a (4) 

L 

The shearing modulus is given by: 

4 oR ce 26, - (Gp - ea - Vp) 

TE 5 m2G +(G¢,-G)-V, 
n = m se 

(Gp + ic) - (Gp - GG - Vp) 
+ CG, (one) Gs = (5) 

ft (Gp + G + Ge eG Vp) 

  

  

    

The transformation eauations ie) are: 

4, 2v. 4, 
= — 2, fe - = sin“ecos*9 + S428 

x 7 i | Py Ep 

a 2v, 4 1. atte zie - FE aintoas’s + ose 
¥ L mm “L | T 

v. Vv. V. 1 +4V, 4 4, 

z= g - g-t z+ — sin’2e 
x y L L Ly If
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2.1. 3. Comparison of the predictions of Young's modulus 

and Poisson's ratio for a filament wound glass reinforced 

epoxy resin tube. 

The material constants used for the computations are 

typical of a glass fibre / epoxy resin system and were: 

EB, = 75800 MN/mn? e 
B, = 2900 mN/ne 

dp = 04200 

Ym = 04380 

Ve = 0.650. 

Since Wallis assumes contiguity of fibre and good 

alignment the contiguity factor was 0.0 and the fibre misalignment 

factor was 1.0. An ICL series 1905 computer was used for the 

computations. 

Fig. 4 shows the variation with helix angle of Young's 

modulus and Poisson's ratio in the longitudinal and hoop 

directions for the Wallis equations. As expected the curves 

are mirror images about the helix angle of 45°. The jongitudinal modulus 

decreases rapidly from helix angles of 10° to 30°and small 

changes in helix angle can have a large effect on the modulus. 

After about 40° there is little change in modulus, but the 

minimum modulus does not occur at 90°, The Poisson's ratio 

increase from a hetix angle of 90°to 50° (more than four times) 

more than counterbalances the improving alignnent which 

results in the minimum modulus occurring at about 50°.
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Fig. 5 shows the variation of Young's modulus and 

Poisson's ratio in the longitudinal and hoop directions for 

the Tsai equations. Again, as is expected, the curves are mirror 

images about a helix angle of 45°. The curves of modulus against 

helix angle are similar to those of Wallis, but show no minimun. 

The decrease in Young's modulus is also more rapid than that of 

Wallis between helix angles of 40° and Boos Between helix 

angles of 60° ana 90° the curve is reasonably flat corresponding 

to the minimum value of Young's modulus that was reached in 

the Wallis predictions. The Poisson's ratio increase between 

90° ana 60° is not as pronounced and this results in the Tsai 

predictions showing no minimum in the Young's modulus curves. 

Fig. 6 shows the variation of Young's modulus and Poisson's 

ratio with volume fraction of fibres at a fixed helix angle 

of 30° for the Wallis equations. The Young's nodululii) increase 

rapidly for volume fractions greater than 0.75. At a volume 

fraction of about 0.5 the Poisson's ratio in the longitudinal 

direction goes through a maximum. The Poisson's ratio in the hoop 

direction increases with addition of fibres and in order to 

satisfy the reciprocal relationship: 

E 

mi oe 
a. <

<
 

he
e 

the Poisson's ratio in the longitudinal direction must also 

increase. This results in the high values of Poisson's ratio in 

the predictions.
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Fig. 7 shows the variation of Young's modulus and 

Poisson's ratio with volume fraction of fibres at a fixed 

helix angle of 30° for the Tsai equations. The predictions 

of Young's modulus are lower than those predicted by Wallis, 

but the curves show a similar shape. The predictions of 

Poisson's ratio are very different and oy decreases with 

fibre addition in the predictions by Tsai. This results in 

much lower values of VE than the values obtained from the 

Wallis equations. 

In order to compare the predictions for multileyered 

tubes containing different angles of wind the following 

procedure is necessary: 

2.1. 3. 1. Wallis. 

A matrix p is computed where: 

h 
D = Mos Kt. 
Pq et 

i= 

i is the number of strata of each winding angle and 

n is the total number of strata in the tube. 

It is not valid to add the modulii by superposition 

due to coupling effects. It is necessary to compute a value of 

ve where; 

n 

. Dd By Ma 
ante 

Mig 

po a 

By
 
=
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E_,E_.andy_ are obtained from: 
xy I 

x 44 x42 

E BD op 

y B * x42 

Vv, =. 
Vv See 
y BL 

Bets 5-20 Teel. 

The equations for computation of the Young's modulii 

and Poisson's ratios for a tube with two different winding 

angles are quite complex by Tsai's theory. The equations 

therefore need not be quoted here and are available in 

Appendix 2, 

Figs. 8 and 9 show the predictions by Wallis and Tsai 

for a tube comprising 50% of hoop winding and 50% of * 30° 

helix angle winding. The predictions are of the variation 

of Young's modulus and Poisson's ratio with fibre volume 

fraction. Again the predictions of Young's modulus from Tsai's 

equations are lower than those of Wallis, but the curves are 

similar, Poisson's ratio values are also similar, but in this 

case the values predicted by Tsai are higher than those by 

Wallis, |
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2.4.4. The influence of Interlaminar stresses on the failure 

of fibre reinforced composites. 

It is of great importance to consider the effect of 

interlaminar stresses on fibre reinforced composite materials. 

This arises because the interfacial surfaces between layers 

in a laminated composite represent planes of minimum strength. 

Puppo and Evenson 2) have shown that a finite width 

specimen of a laminate in a generalised state of plane stress 

can have finite values of interlaminar shear stress at the edge 

of the specimen. If these stresses become high enough then 

the strip can fail prematurely by delamination initiated at 

the edge of the strip. This would give misleading values of 

strength data from uniaxial tests, If the data were subsequently 

used for the design of a tubular structural member, which is 

an infinite width body, the member may be overdesigned. For 

aircraft and spacecraft, where weight saving is of peramount 

importance, this would be undesirable, 

Pipes and Pagano (16) calculated, by finite differences, 

a solution of the elasticity equations governing the behaviour 

of a four layer, symmetric angle ply laminate. The interlaminar 

shear stress was also found to be an edge effect, restricted to 

&@ region approximately equal to the laminate thickness. Such 

stresses ‘can be expected to cause failure of the laminate by 

delamination. 

(17) Pagano and Pipes observed this unusual failure
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mechanism in a carbon fibre / epoxy system. The distribution 

of o, is of the form shown in Fig. 10. The maximum value of 

interlaminar stress occurs at the edge of the laminate. The 

interlaminar stress is low compared with other stresses in 

the system, but can result in failure, represented schematically 

in Fig. 11. Pagano and Pipes showed that the stress can be 

maximised by using a specimen with a stacking sequence of 

(25°, -25° 25°, -25°,90°,90°,-25°,25°,-25°,25°). They constructed 

specimens of carbon fibre / epoxy with this lay up. The specimens 

they constructed failed by delamination, initiated at the edge 

of the specimens. 

Clearly it is necessary to calculate the interlaminar 

normal stresses in composite laminates for design purposes. 

(18) Pagano has presented an approximate method of calculation 

of these stresses, The calculations are based on recent theory 

(49) developed by Whitney and Sun and compare favourably with 

existing elasticity solutions.
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Fig.10. Distribution of interlaminar normal stress v.Y. 
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Fig. 11. Schematic representation of failure of fibre 

composite by delamination.
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2.1. 5. The effect of stacking sequence on the properties 

of fibre reinforced composites. 

Section 2. 1. 3. showed that the interlaminar stresses 

which may exist in composite laminates must be minimised 

to protect against failure, by delamination, under axial 

loadings. Recent work has shown that the strength of composite 

laminates, which contain identical ply orientations, can be 

dependent on the stacking sequence. 

Pagano and Pipes 29) have presented an approach to 

predict how the layers of specific orientations should be 

arranged in order to minimise the effects of interlaminar 

stresses. They present an example of a boron/epoxy 245° 75° 

laminate with layers of equal thiclmess. Fig. 12 shows how 

the change of stacking sequence can reduce the interlaminar 

normal stress in this system. The calculations help to explain 

the pronounced difference in strength of these laminates which 

Seinen ity rorspend waren cl Cleanly cretarreneenentier! 

the layers and orientations must be considered when designing 

fibre reinforced composite components.
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    Fig. 12. Distribution of interlaminar normal stress in 

boundary layer region v. Ze
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2.1. 6. Stress gradients which may exist in helically wound, 

fibre reinforced composite tubes. 

When an anisotropic cylinder is subjected to simple 

loading conditions the stress field may be far from uniform. 

It has been shown by Pagano et a2) that the stress field 

approaches uniformity in such a cylinder when the wall thiclmess 

approaches zero. Since this is not accepteble from a practical 

standpoint it is necessary to re-define the term 'thin walled 

ceylinder' for anisotropic materials. Pagano and whitney 29 ) 

have made calculations of the distributions of stress in 

the walls of typical glass / epoxy and carbon / epoxy unidirectional 

cylinders for three basic loadings - axial,torsion and internal 

pressure. Figs. 13, 14 and 15 show the normalised stress gradients 

for axial loading, torsion and internal pressure repectively. 

These figures show the severity of the stress gradients and 

the high R/t ratio necessary to approximate a state of uniform 

stress for the highly anisotropic carbon system, Pagano and ihitney 

also studied the variation of the three normalised stresses with 

helix angle in a carbon / epoxy cylinder with R/t = 20. Fig. 16 

shows these variations. The maximum normalised shear and hoop 

stresses occur in a tube with a helix angle of about 60° and 

the maximum normalised axial stress in a tube with a helix 

angle of about 30°. They also show that the gradients are drastically 

reduced for the same system but with cross ply lay ups.
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2. 2. Fracture mechanics of isotropic and anisotropic materials. 

2. 2. 1. Brief historical review of the application of fracture 

mechanics to isotropic materials. 

crarritn (24) satisfactorily explained the brittle fracture 

of glass as early as 1920. Using the Inglis (25) solution for the 

stresses and strains around the crack tip he said that the 

erack would extend when the release of elastic stored energy 

became equal to the energy required to form a new crack surface. 

Using the fracture surface energy, to be a measure of the 

initiation of the fracture process, he derived the equation: 

4 

(By S52 Tc 

which was later modified to: 

EY? 
es (reqs) for plane strain conditions. 

When he tested these equations experimentally for 

validity he found good correlation for the fracture behaviour 

of glass, but application to most metals was unsatisfactory. 

This is due to the formation of plastically deformed material, 

close to and ahead of the crack tip which absorbs work during 

erack propogation. Since glass has little or no plasticity this 

discrepancy was not shown. 

Orowan (26) Suggested a plastic work factor but, to 

overcome the difficulties associated with this Irwin(2?) 

introduced a factor, G, know as the strain energy release 

rate. The critical value of G is known as the 'Fracture Toughness', 

G, or Gigs for plane stress and plane strain conditions, respectively.
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Fig. 17 shows the three epemime modes of crack behaviour, 

designated modes I,IT and III, combinations of which will 

describe all situations encountered. 

The critical value of G in the mode I opening and for 

plane strain conditions is denoted G. co This is related to 
Ir 

the critical stress intensity factor, Ke » by the equation: 

GurE 12 
ml ic 

Ke * [GG =v) 

The magnitude of Ki is of particular importance when designing 

against brittle fracture. The relationship: 

Kt ce oc — 
Cra tee Yo? 

can be used to determine the critical defect size, Conat? 

which would initiate fracture at a working stress of oO 

Y is a geometrical factor and is available, from tables, for 

most situations. Should geometrical factors be unavailable from 

tables for a particular situation it is possible to obtain 

Y calibration curves both experimentally and theoretically.
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Fig. 17. Elementary modes of crack tip movement displacement.
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2. 2. 2. Fracture mechanics applied to cylindrical pressure 

vessels, 

If a cylindrical pressure vessel containing an axial 

erack is subjected to internal pressure both the hoop stress 

and the radial stress will tend to propagate the crack. The 

radial stress will tend to cause bulging of the mouth of the 

erack and coupled with the hoop stress will tend to cause 

propogation. The critical propagation hoop stress will be 

lower than the equivalent stress for a simple axially loaded 

specimen. It is of practical value to correlate flat plate 

behaviour with behaviour in pressure vessels. 

It is found that the pressure vessel can be treated like 

a flat plate if the nominal stress, 6, is taken as a multiple of 

the hoop stress in the wall, O39 i.e. 

o = G £(c,R,t) 

A summary of the form of f(c,R,t) is given in Table 1 for 

various workers. The critical hoop stress oy can be related to 

the nominal stress o which is critical for crack propagation 

in a flat plete. In particular Duffy et 413) combined the 

Folias theoretical treatment form with the fracture mechenics 

approach and included a correction for crack tip plasticity. 

The latter correction was derived from the Dugdale crack model. 

Hehn et 1) present other approaches and two which are importent 

here are shown in Table 2, which is a shortened form of their 

table. There appears to be some confusion about the plasticity 

correction factor 9; in their table since the function: 

* * 
m1 Mu m1, M 

$, = ( Ba ) In (sec og )    



-20- 

  

  

  

Failure criterion M Investigators 

ope o MT (149.2 $) Peters and Kuhn, 
1957(28) 

24 
ea i (444.61 &)? Folias, 1965(2) 

K 
op ey ut (4+ Be) Anderson and 

BY (reg)? z (29) 
Sa Se Sullivan, 1966 

&, =(ofoh (anit) ut (04) Nichols et Al, 
49650 co 

2 
Gao MO (4+ 7S) Kihara et Al, 
# fe (31) 1966 

2 

neo ut (440.81—2-r)* Chrichlow and Wells, 
oy a (at) 1967022) 

* K 2 o * c oye H 
o,=—T (444.61 ==) sec Duffy et Al 

H™ (red) e yy) 6733) 

  

Table 1. Criteria for crack extension in unstiffened cylindrical 

pressure vessels with axial through cracks (after Hahn, Sarrate 

and Rosenfield), 

(In the table e, f, g, h and B are coefficients depending on the i 

geometry of the vessel and W is the Charpy V notch energy) 
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does not approach unity as oy /& approaches zero as Fig. 1 

in (3) suggests. Hahn et Al show that inspection of the equation 

in the first category reveals that (&r06,) is a function of 

o*/Rt with Kk? and 461K? the intercept and slope respectively. 

Using data relevent to category 1 supplied from (29,30,34,33 

and 34.) they represent the data graphically on plots of 

(G; Ted, )7 versus oo /Rte In all cases the points could be 

approximated to a linear relationship with slope and intercept 

consistent with a single K, value. Also it was shown that the 

kK values agreed very well with those derived from flat plate 

tests. Hahn et Al also used data for thin walled vessels and 

plotted (ci Hep) against o°/Rt(50tahnR/50t). The scatter 

in this case mee worse than the former, but still conformed 

roughly with the equation for category 2 and with the K values 

obtained for flat plate tests. 

The methods of dealing with data from flat plate tests 

and correlating it to behaviour in cylindrical pressure vessels 

is quite well established for isotropic materials such as metals. 

Little material, if any, is available in the literature of the 

behaviour of helically wound fibre reinforced pressure vessels 

containing defects. At present the state of the science is that 

methods of obtaining K, values for normal tensile and bend 

conditions in fibre reinforced materials are not fully established 

and a review of the present position follows in the next section.
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2. 2. 3. The present situation in the determination and 

utilisation of kK values for fibre reinforced composites. 

The possibility of failure of composite materials by 

brittle fracture has brought about the need to classify the 

notch sensitivity of these materials in some way. The linear 

elastic fracture mechanics approach, which is widely used for 

metals, is the logical choice. If it could be found that this 

approach is applicable it would be possible to utilise the 

large amount of information, both theoretical and experimental, 

which has been obtained for isotropic materials, particularly 

metals, The linear elastic fracture mechanics approach may not 

be applicable to composite materials due to the difference 

in nature of the crack tips of composites and isotropic materials 

‘such as metals. It is hoped that other factors will be more 

important and outweigh these discrepancies and the approach will 

be applicable. 

Sanford and Stonesifer (2°) have shown that it is possible 

to obtain reproducable fracture toughness parameters (K, and G,) 

for a glass reinforced composite system, They used both single 

edged and double edged notched specimens with longitudinel ' 

fibres. An important conclusion reached was that the test method 

was sensitive to variations in the material and could be used 

to evaluate the na terial on the basis of fracture toughness, 

Attention is drawn to the fact that measurement of fracture 

toughness parameters in the forward shear mode of failure (K. 
11) 

is difficult and has been largely ignored for isotropic materials.


