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Summary.

An investigation into the effects of artificially induced
defects on the failure mechanisms of glass fibre reinforced
plastic tubes has been carried out. A fracture mechanics approach
was used in the analysis of the results. The failure pressures
of the tubes were found to obey equations in existence for
isotropic materials. The failure mechanisms of the combined
tube and defect types are discussed. The mechanisms were found
to vary according to these variations.

The values of Young's modulus and Poisson's ratio
determined for the compliance analysis were compared to the
predictions of two theories. This indicated that the theories
were reasonable for the predictions of Young's modulus, but
of little use for the prediction of Poisson's ratio. The
defect sizes were too small to obtain an accurate compliance

enalysis to be compared to those of isotropic materials.
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Nomenclature,

|Al  coefficient matrix

a radius of circuler plate
c contiguity factor, or compliance where applicable
(. % surface crack length, or critical where used as a subscript

D inside diameter of thin walled tube

IDl  coefficient matrix

E . Young's modulus limited by subscript

F load on circular plate

£ subscript fibre

G shear modulus, limited by subscript, or elastic strain
energy release rate, limited by subscript where applicable

H subscript for hoop

h  thickness of a circular plate, or 5 thickness of composite

layer, where epplicable

h individual thickness of composite layer

K fibre misalignment factor, or stress intensity factor limited
by subscript

L length of tube subjected to internal pressure

k| length of individual fibre

M Young's modulus of matrix

Ml coefficient matrix

subscript for matrix

pressure

critical pressure

W oW, W

inside radius of thin walled tube
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(iv)

constant included in the Folias correction factor =
subscript for transverse

tube ﬁall thickness

volume fraction limited by subscript

width of tensile specimen

subscript for working stress

direction along axis of tube

hoop direction in tube

radial direction in tube

Shear strain limited by subscript

deflection in a circular plate

strain limited by subscript

angle of fibres in tube axis and direction subscript
cos>0

sin29

sinBcosb

Foisson's ratio limited by subscript

normal stress limited by subscript

critical hoop stress

shear stress limited by subscript

0.&9(12(1-v?))%
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Chapter 1.

1. Introduction.

In recent years man has made many great steps
forward in the fields of supersonic flight and manned space
exploration. Complementing these advances has been the need for
high strength/weight ratio and/or high modulus materials for
structural members in the craft for these. Interest has been
aroused in composite materials consisting of stiff fibres in
a relatively soft and weak matrix. Work has been carried out to
obtain a knowledge of the stiffening and strengthening mechanisms
in such composites, but little is known about the fracture
characteristics of many systems.

Difficulties are experienced, when manufacturing fibre
reinforced materials, in obtaining a defect free composite.
Defects, such as voids, fibre/fibre contact, inhomogeniety and
debonding of the fibre/matrix interface, are not uncommon.
Catastrophic failure of such composites will often be initiated
at one, or more, of these defects. For homogenous and isotropic
materials, such as many metals, failure stresses and critical
sizes of defect can be predicted, with accuracy, from well tried
and tested fracture mechanics approaches. Composite materials
are, at best, orthotropic and often anisotropic and the application
of linear elastic fracture mechanics to these systems has not
been fully determined. Clearly there is a need to establish the

response of these systems to this approach.
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An important application of these materials is the
filament wound, cylindrical pressure vessel. VWthen a cylindrical
pressure vessel, containing an axial defect, is subjected to
internal pressure the combined effect of the hoop stress and
the radial stress causes bulging of the mouth of the crack.
This causes fracture to initiate at a lower hoop stress than
the axial stress in a flat plate,with a similar defect,
subjected to pure tension. For isotropic materials this has

been rigourously analysed(1’2’3'28’29’30’51’32’33)

and factors
have been evaluated to correct for this bulging. It does not
necessarily follow that these analyses will apply to the systems
which are the subject of this work.

In this investigation a number of filament wound, glass
fibre reinforced plastic tubes have been subjected to internal
pressure, The tubes were tested with and without artificially
produced, axial defects. Tubes of two different winding
-configurations were used. These were:;

1) Helical ¥ 30° angle of wind and

2)50% helical ¥ 30° and * 90° angle of wind.

Three depths of defect were investigated, each of five axial
lengths.

It was found that, in general, the behaviour of the tubes
agreed well with the analyses of the above workers. Interesting
failure mechanisms for each tube system were observed and
photographs of the history of the failures are presented. For

the fracture mechanics analysis, Young's modulus and Poisson's
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ratio measurements had to be made., Comparisons of theoretical and
observed measurements of these were drawn for two theories.
Comparisons of two methods of compliance measurement for the

different tube categories were also made.



Chapter 2.

2. Iiterature Survey.

2+ 1. The'ngperties and response of fibre reinforced composites.

2e¢ 1. 1. Basic considerations of the strengthening mechanisms

of fibre reinforced comrosites.

In recent years we have seen the advent of many new
materials for use in aerospace applications where a high
strength and /or modulus to weight ratio is essential., One
such material is the fibre reinforced composite consisting
mainly of two components - strong, stiff fibres in a relatively
weak matrix, but containing voids and defects due manufacturing
process, Clearly theories are needed which will predict
composite strengths and physical properties accurately from
the basic properties of matrix end fibre,

The simplest fibre composite consists of discontinuous
fibres embedded in a resin matrix. The load is transferred
-to the fibres by means of shear stresses set up as the resin
attempts to flow around the fibres., In the fibre the stress
veries as shown in Fig. 1. The shear stresses are greatest
at the ends of the fibre and are zero at the mid point. If
the fibre is longer than the critical elastic aspect ratio
(1/'&)crit the tensile stress qy is constant along the length
of the fibre, More rigourous solutions to the simple model
illustrated in Fig. 1 have been given(5’6’7’8’9) amongst

others (see Fig. 2.).
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As illustraeted in Fig. 1 the longer the fibre the
greater the load carrying capebilities of it and hence the better
the properties of the composite. Also the presence of shear
stresses at the ends of the fibres will favour crack initiation.
Continuous fibres are therefore more desireble. For continuous
fibres and elastic behaviour the nominal stress obeys the
rule of mixtures:

o = (Bev, +Em(1 - vf))
At higher stresses the matrix deforms plastically
and:
6 = Ewv, + (1 -vf)crm(ﬁ)
where am(ﬁ) is the true flow strength of the matrix at strain
Most continuous fibre composites usually contain some discontinuous
fibres prior to fracture., These arise due to:
1) Fracture of fibres during fabrication,
2) Fracture of individual fibres during loading.
Thus the criteria for failure in discontinuous fibre composites
can not be neglected since these are nearly alweys present
and may effect the initial crack propogation.

The fibre models illustrated in Fig. 2 are useful for
prediction of behaviour when the applied stress is parallel
to the main fibre direction. Many applications exist when
the applied stress is at an angle to the fibre direction. The
most notable example of this is the filament wound component.
Many theories are available for prediction of behaviour in
this more complex case. Two of these are examined and discussed

in 2. 1. 2.



(5)
H. L. Cox, 1952 I Fibre

Elastic fibre completely bonded into an extensive
elastic matrix. Results derived for two and three dimensions.

J. 0. Outwater, 1956(6)
Fibre

hin layer of
2 matrix

Assumes that the maximum interface shear stresses are
a function of the interface pressure developed by the differential
shrinkage of the matrix on to the fibre.

N. F. Dow, 1963(7) | pivre |V

7

V

Considers cylindrical matrix with fully bonded elastic

fibre. Implication is that straight lines remain straight after
deformation and two or three dimensions can be analysed.

W. B. Rosen, 1961+(8)
Matrix Fibre

[o e e — —_—»C

Perfect bonding is assumed at the interface -of fibre and
matrix subjected to tensile stress only. The matirix only carries
shear stress.

A. Kelly and W. R. Tyson,1965%) 5

O —

Elastic fibre in a plastic matrix yielding according to

the Tresca criterion.

Fig. 2. Fibre models used for developing approximate analyses
(Allison and Holloway(10))
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2. 1. 2. Prediction of the properties of angle-ply fibre

reinforced composites by two workers, Wallis(11) and Tsai(13).

In this section the prediction of the properties of
helically wound glass fibre reinforced tubes is investigated.
The ork of wartas' T ang meat$12) 4o connined 4ol conpareds
2. 1. 2. 1. Vallis.

Wallis utilises the Gutler''2) model and Pig. 3 shows
the element for an orthotropic fibre. From the properties of
fibre and matrix cE1,E2,\a,vz,vj,Em,vm,vf) a stiffness matrix

M is obtained where:

% Wy ¥y ¥is €g
S i~ o My Uyg €y
Tot Moy (Map Koy Yot

It is necessary to transform the equation from the ©
and t directions to the X and Y directions. The stress trans-

formation is:

x 0
o& = A o,
Txy Tot
where:
91 92 —293
A = 8, Gh 293
: e ol e
The reverse transformation for the strains is:
Ee i S
e | = A Ey



X / Unit Cube

Fig, 3. Cutler element with orthotropic fibre.



This yields:

o €x
X
o = A M A
y €y
Txy Yy
Defining el = |A] |u| |4 R
we cen obtain M' and
L]
S )
- 1
x IR
L]
P
o 1
y Moo
o 1 L 1
Sl Lo Vetlg2
o 1 - 1
and B = M3, v

2e Ve 22 2 Toal.

Tsai first calculates properties in the fibre direction

‘and transverse to it then transforms to the required axis.
By the law of mixtures:

E, = (veEp + (1 -v,)E K (1)
where K is a fibre misalignment factor.

(1-c) &

K, vf(ZKm+Gm)vf + KV (2Kf+Gm)(1—vf)

=
1

Rf(sz+Gm) - Gm(xf - Km)(1 - vf)

Kmvm(2Kf+Gf)(1-vf) + Kfvf(sz+Gf)vf

+C : -
Kf(25m+Gf) + G-f(xm KTJVf

where:
Ef E

E E
; m g m .
Gf o 211+vfj 4 Gm 2i1+vhi L Kf i 221-¥f) ;i Km % 2{1—vm5

C is a contiguity factor of the order of 0.2,

(2)
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Tsaji found that in most cases the law of mixtures equation:
VL = VpV¥p ¢+ (4 - vf)vm

was accurate to = 5% of the values computed from the more

complex equation (2). For computing values of Ep thtfollowing

equation was used:

E, = 2[1 = Vet (V= V) - v,)]
Ttk Kf(ZKm: + Gm) - Gm(Kf - Km)(‘l - vf)
(2Km + Gm) + 2(Kf - ij(‘l - vf)

(2K +G.) % Gk » KU -v.)
Relek, + G o\ = % f} (3)

(21{11:l + Gf) - 2(1cm - ‘f)(‘l - vf)

+ C

VT can then be obtained from the well known reciprocal relationship:
V.
L
VT = ET i (l")
L
The shearing modulus is given by:

26, - (G, -G )1 =-v,)
f £ m f

= (4 -cC)&
(1 -0, =6, —c )0 -v,)

(Gp +6) = (6 -6 )01 - v,)

G

+ CG ’ (5)
f (Gf + Gm) + (Gf Gm)(1 vf)
The transformation equations(1h) are:
L 2V, L
%_ - qgs ] . [;j -= L Sin2900329 4 sin '@
x T R | Eq
4 2v L
%— 4 "‘é“ ] ‘[c; - I‘:\ sin°6c0s26 + = 9
Y L i T
Vg -v.x VL 1 1 +\’L 1 +VT 1 >
B "R R e G e
x Yy L L T IT
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2. 1. 3. Comparison of the predictions of Young's modulus

and Poisson's ratio for a filament wound glass reinforced

epoxy resin tube,
The material constants used for the computations are
typical of a glass fibre / epo#y resin system and were:

E, = 75800 MN/n°

7
E = 2900 MV/n®
Jp = 0.200

Vo = 0.650.

Since Wallis assumes contiguity of fibre and good
alignment the contiguity factor was 0.0 and the fibre misalignment
factor was 1.0. An ICL series 1905 computer was used for the
computations.

Fig. 4 shows the variation with helix angle of Young's
modulus and Poisson's ratio in the longitudineal and hoop
directions for the Wallis equations. As expected the curves
are mirror images about the helix angle of 45°, The 1ongitudinal modulus
decreases rapidly from helix angles of 10° to 30°and small
changes in helix angle can have a large effect on the modulus,
After about LOO there is little change in modulus, but the
minimum modulus does ndt oceur at 90°, The Poisson's ratio
Sharesis from & helis angle of 90%to 50° (more than four times)
more than counterbalances the improving élignment which

results in the minimum modulus occurring at about 50°,
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Fig. 5 shows the variation of Young's modulus and
Pbisaon'slratio in the longitudinal and hoop directions for
the Tsai equations. Again, as is expected, the curves are mirror
images about a helix angle of h5°. The curves of modulus against
helix angle are similar to those of Wallis, but show no minimum.
The decrease in Young's modulus is also more rapid than that of
Wallis-between helix angles of 10° and 300. Between helix
engles of 60° and 90° the curve is reasonably flat corresponding
to the minimum value of Young's modulus that was reached in
the Wallis predictions. The Poisson's ratio increase between
90° and 60° is not as pronounced and this results in the Tsai
predictions showing no minimum in the Young's modulus curves.
Fig. 6 shows the variation of Young's modulus and Poisson's
ratio with volume fraction of fibres at a fixed helix angle
of 30° for the Wallis equations. The Young's modululii increase
rapidly for volume fractions greater than 0.75. At a volune
fraction of about 0.5 the Foisson's ratio in the longitudinal
direction goes through a maximum. The Poisson's ratio in the hoop
direction increases with addition of fibres and in order to

satisfy the reciprocal relationship:

‘4< ‘H<

E
s
Y

the Poisson's ratio in the longitudinal direction must also
increase. This results in the high values of Poisson's ratio in

the predictions.
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Fig. 7 shows the variation of Young's modulus and
Poisson's ratio with volume fraction of fibres at a fixed
helix angle of 300 for the Tsai equations. The predictions
of Young's modulus are lower than those predicted by Wallis,
but the curves show a similar shape. The predictions of
Poisson's ratio are very different and vy decreases with
fibre addition in the predictions by Tsei. This results in
much lower values of Ve than the values obtained from the

Wallis equations.

In order to compare the predictions for multileyered
tubes containing different angles of wind the following
procedure is necessary:

2. 1+ 3. 1. Wallis.
A matrix g is computed where:

h
D = .(_.o_)i N .
Pq t jolek

=1
i is the number of strata of each winding angle and

n is the total number of strata in the tube.
It is not valid to add the modulii by superposition

due to coupling effects. It is necessary to compute a value of

Vx where:
n
. Z B By Vi
- i=q
Vx =

yi

X

kil &
B
=

-
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E_,E_.and y_ are obtained from:
X ¥ y

x 11 X2
® Exp22
J Ex * xD12
vo B
v = ey
¥ L

2. 1+ 3. 2. Tsai.

The equations for computation of the Young's modulii
and Poisson's ratios for a tube with two different winding
angles are quite complex by Tsai's theory. The equations
therefore need not be quoted here and are available in

Appendix Z.

Figs. 8 and 9 show the predictions by Wallis and Tsai
for a tube comprising 507 of hoop winding and 50% of & 30°
helix angle winding, The predictions are of the variation
of Young's modulus and Poisson's ratio with fibre volume
fraction. Again the predictions of Young's modulus from Tsai's
equations are lower than those of Wallis, but the curves are
similar, Poisson's ratio values are also similar, but in this
case the values predicted by Tsai are higher than those by

Wallis. ;
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2. 1« 4. The influence of Interlaminar stresses on the failure

of fibre reinforced composites.

It is of great importance to consider the effect of
interlaminar stresses on fibre reinforced composite materials.
This arises because the interfacial surfaces between layers
in a laminated composite represent planes of minimum strength.

Puppo and Evenson(qs) have shown that a finite width
specimen of a laminate in a generalised state of plane stress
can have finite values of interlaminar shear stress at the edge
of the specimen. If these stresses become high enough then
the strip can fail prematurely by delamination initiated at
the edge of the strip. This would give misleading values of
strength data frsm uniaxial tests. If the data were subsequently
used for the design of a tubular structural member, which is
an infinite width body, the member may be overdesigned. For
aircraf't and spacecraft, where weight saving is of paramount
importance, this would be undesirable,

Pipes and Pagano(16)

calculated, by finite differences,
a solution of the elasticity equations governing the behaviour
of a four layer, symmetric angle ply laminate. The interlaminar
shear stress was also found to be an edge effect, restricted to
a region approximately equal to the laminate thickness. Such
stresses ‘can be‘expected to cause failure of the laminate by
delamination.

Pagano and Pipes(1?)

observed this unusual failure
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mechanism in a carbon fibre / epoxy system. The distribution
of o, is of the form shown in Fig. 10. The maximum value of
interlaminar stress occurs at the edge of the laminate. The
interlaminar stress is low compared with other stresses in
the system, but can result in failure, represented schematically
in Fig. 11. Pagano and Pipes showed that the stress can be
maximised by using a specimen with a stacking sequence of
(25°,-25°,25°,-25°,90°,90°,-25°,25°,-25°,25°), They constructed
specimens of carbon fibre / epoxy with this lay up. The specimens
they constructed failed by delamination, initiated at the edge
of the specimens.

Cleerly it is necessary to calculate the interlaminar
normal stresses in composite laminates for design purposes.

(18)

Pagano has presented an approximate method of calculation

of these stresses., The calculations are based on recent theory

(19)

developed by Whitney and Sun and compare favourably with

existing elasticity solutions.
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Fig. 10. Distribution of interlaminar normal stress v.Y.

Fig. 11. Schematic representation of failure of fibre
composite by delamination.
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2. 1. 5. The effect of stacking sequence on the properties

of fibre reinforced composites.

Section 2. 1. 3. showed that the interlaminar stresses
which may exist in composite laminates must be minimised
to protect against failure, by delamination, under axial
loadings. Recent work has shown that the strength of composite
laminates, which contain identical ply orientations, can be
dependent on the stacking sequence.

Pagano and Pipes (20)

have presented an approach to
predict how the layers of specific orientations should be
arranged in order to minimise the effects of interlaminar
stresses. They present an example of a boron/epoxy t15':’,'345':'
laminate with layers of equal thickness. Fig. 12 shows how
the change of stacking sequence can reduce the interlaminer
normal stress in this system. The calculations help to explain
the pronounced difference in strength of these laminates which
was observed by Foye and B&ker(21) « Clearly the arrangement of

the layers and orientations must be considered when designing

fibre reinforced composite components.



Stacking Sequence :-
[15%, -15°,65°,-45°]S
petias D [15°,45°,-45°,-15°]S

Z/h,

Fig. 12. Distribution of interlaminar normal stress in
boundary layer region v. Z.
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2. 1. 6. Stress gradients which may exist in helically wound,

fibre reinforced composite tubes.

When an anisotropic cylinder is subjected to simple
loading conditions the stress field may be far from uniform.
It has been shown by Pagano et Al(zz) that the stress field
approaches uniformity in such a cylinder when the wall thickness
approaches zero. Since this is not acceptable from a practical
standpoint it is necessary to re-define the term 'thin walled
cylinder' for anisotropic materials. Pageno and Whitney(zs)
have made calculations of the distributions of stress in
the walls of typical glass / epoxy and carbon / epoxy unidirectional
cylinders for three basic loadings - axial,torsion and internal
pressure, Figs. 13, 14 and 15 show the normalised stress gradients
for axial loading, torsion and internal pressure repectively.
These figures show the severity of the stress gradients and
the high R/t ratio necessary to approximate a state of uniform
stress for the highly snisotropic carbon system. Pagano and Whitney
also studied the variation of the three normalised stresses with
helix angle in a carbon / epoxy cylinder with R/t = 20. Fig. 16
shows these variations. The maximum normalised shear and hoop
stresses occur in a tube with a helix angle of about 60° and
the maximum normalised axial stress in a tube with a helix
angle of aboutljoo. They also show that the gradients are drastically

reduced for the same system but with cross ply lay ups.
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2. 2. Fracture mechanics of isotropic and anisotropic materials.

2¢ 2. 1. Brief historical review of the application of fracture

mechanics to isotropic materials.
(24)

Griffith satisfactorily explained the brittle fracture
of glass as early as 1920. Using the Inglis(25) solution for the
stresses and strains around the crack tip he said that the

crack would extend when the release of elastic stored energy
became equal to the energy required to form a new crack surface,

Using the fracture surface energy, to be a measure of the

initiation of the fracture process, he derived the equation:
1
(&)
SR

which was later modified to:

;Y %

ol - (m) for plane strain conditions.

When he tested these equations experimentally for
validity he found good correlation for the fracture behaviour
| of glass, but application to most metals was unsatisfactory.
This is due to the formation of plastically deformed material,
close to and ahead of the crack tip which absorbs work during
crack propogation. Since glass has little or no plasticity this
discrepancy was not shown.

(26)

Crowan suggested a plastic work factor but, to

overcome the difficulties associated with this Irwin‘2?)
introduced a factor, G, known as the strain energy release

rate., The criticel value of G is known as the 'Fracture Toughness',

G, or GIc’ for plane stress and plane strain conditions, respectively.
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Fig. 17 shows the three epemdmg modes of crack behaviour,
designated modes I,IT and III, combinations of which will
describe éll situations encountered.

The critical value of G in the mode I opening and for
plane strain conditions is denoted G ® This is related to

I
the critical stress intensity factor, KIc’ by the equation:

'Gic L
KIc = GG =vw)
The magnitude of K, is of particular importance when designing

against brittle fracture. The relationship:

Ko

Cc -— e

crit !2°h?

can be used to determine the critical defect size, Carit?
which would initiate fracture at a working stress of o

Y is a geometrical factor and is available, from tables, for
most situations. Should geomeirical factors be unavailable from

tebles for a particular situation it is possible to obtain

Y calibration curves both experimentally and theoretically.
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Fig. 17. Elementary modes of crack tip movement displacement.
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2. 2. 2. Fracture mechanics applied to cylindrical pressure

vessels,

If a cylindrical pressure vessel containing en axial
crack is subjected to internal pressure both the hoop stress
end the radial stress will tend to propagate the crack. The
radial stress will tend to ceuse bulging of the mouth of the
crack and coupled with the hoop stress will tend to cause
propogation. The critical propagetion hoop stress will be
lower than the equivalent stress for a simple axially loaded
specimen. It is of practicael value to correlate flat plate
behaviour with behaviocur in pressure vessels.

It is found that the pressure vessel can be treated like
a flat plate if the nominal stress, &, is taken as a multiple of
the hoop stress in the wall, Tgo i.e.

¢ = o f(c,R,t)

A summary of the form of f(c,R,t) is given in Table 1 for
various workers. The critical hoop siress o% can be related to
the nominal siress 4::"l which is critical for crack propagaticn
in a flat plate. In particular Duffy et Al(jj) combined the
Folias theoretical treatment form with the fracture mechenics
approach and included a correction for crack tip plasticity.
The latter correction was derived from the Dugdale crack model,
Hehn et Al(j) pfesent other approaches and two which are importent
here are shown in Teble 2, which is a shortened form of their
table. There appears to be some confusion about the plasticity
correction factor 4>3 in their teble since the function:

S M
%, %y

¢; = (55—) 1n(sec
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Failure criterion M ¢ Investigators
c; S (1+49.2 %) - Peteraaand Kuhn,
1957(%%)
2 4
Oy =0 M (141,61 &)? - Folias, 1965(2)
*.2
K (Moy,)
U;i = — u (1+ %) (14-—:1;— Anderson and
S'_T"f)‘z & ¥ Sullivan, 1966(29)
1
o =(a;a§(g+m) A () & Nichols et Al,
1965<5°)
2
0:1 =g N7 (1+ T.'?a‘%') - Kihera et Al,
(31)
1966
3
o;{ =o ¥ (140.81—=—)* - Chrichlow and Wells,
(rRt)2 196?(52)
* Ko ( 6 cz)-'g GEI
@, m 141.01 =¢ sec Duffy et Al
H (e ) Rt fcy+c!Uj A9 (33) ?

Table 1. Criteria for crack extension in unstiffened cylindrical

pressure vessels with axial through cracks (after Hahn, Sarrate

and Rosenfield(j) ).

(In the table e, f, g, h and P are coefficients depending on the '

geometry of the vessel and W is the Charpy V notch energy)
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does not approach unity as c% /G approaches zero as Fig. 1

in (3) suggests. Hahn et Al show that inspection of the equation
in the first category reveals that (dﬁTchllj)-4 is a function of
¢?/Rt with K;2 and 1.61K;2 the intercept and slope respectively.
Using data relevent to category 1 supplied from (29,30,31,33
and 34) they represent the data graphically on plots of
(0';12"04;5)-1 versus c>/Rt. In all cases the points could be
approximated to a linear relationship with slope and intercept
consistent with a single Kc value. Also it was shown that the
K, values agreed very well with those derived from flat plate
tests, Hahn et Al also used data for thin walled vessels and
plotted (cr;fncq>5)"' against c>/Rt(50tahnR/50t). The scatter

in this case ;as worse than the former, but still conformed
roughly with the equation far category 2 and with the Kc values
Idbtained for flat plate tests,

The methods of dealing with data from flat plate tests
and correlating it to behaviour in cylindrical pressure vessels
is quite well established for isotropic materials such as metals.,
Little material, if any, is available in the literature of the
behaviour of helically wound fibre reinforced pressure vessels
containing defects. At present the state of the science is that
methods of obtaining Kc values for normal tensile and bend
conditions in fibre reinforced materials are not fully established

and a review of the present position follows in the next section.
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2. 2. 3. The present situation in the determination and

utilisation of K wvalues for fibre reinforced composites.

A

The possibility of failure of composite materials by
brittle fracture has brought about the need to classify the
notch sensitivity of these materials in some way. The linear
elastic fracture mechanics approach, which is widely used for
metals, is the logical choice. If it could be found that this
approach is applicable it would be possible to utilise the
large amount of information, both theoretical and experimental,
which has been obtained for isotropic materials, particularly
metals., The linear elastic fracture mechanics approach may not
be applicable to composite materials due to the difference
in nature of the crack tips of composites and isotropic materials
such as metals. It is hoped that other factors will be more
important and outweigh these discrepancies and the approach will
be applicable,

Sanford and Stonesifer(js) have shown that it is possible
to obtain reproduceble fracture toughness parameters (Kb and Gc)
for a glass reinforced composite system., They used both single
edged and double edged notched specimens with longitudinel '
fibres. An important conclusion reached was that the test method
was sensitive to variations in the material and could be used
to evaluate the.material on the basis of fracture toughness.,
Attention is drawn to the fact that measurement of fracture
toughness parameters in the forward shear mode of failure (K

II)
is difficult and has been largely ignored for isotropic materials.,
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lineer elastic fracture mechanics and theoretical stress
concentration factors were found to underestimate the strengths
of the notch sensitive composites. The strengths tended towards
the theoretical predictions as the crack sharpness was increased.

Zimmer(sg) found that for a particular cerbon fibre
composite lay up (0°,90°,0°) the analysis for the fracture
mechanics of isotropic materials could be applied with accuracy.
Linear elastic fracture mechanics were applied by Owen and
Bishop(ho) to verious composites, including chopped strand
mat and balenced weave fabric glass reinforced polyester resin.
K, values were found to be dependent on crack length; by the
use of a suitable correction factor, besed on an equivalent
yield strength and suggested by Irwin(h1), a constant Kc could
be calculated. Using the constant value of K, it was possible
to be zble to predict with accuracy the failure of a plate
specimen containing a central hole. Confirmation of this was
~ given by Holdsworth, Owen and Morris(h?) who obtained constant
Kc values for similar meterials after correcting using Irwin's
crack tip zone correction factor. Using the K, value, prediction
of failure stresses in both plate and box section beams containing
holes, were in good agreement with observed values.,

The above indicates that , in general, the linear elastic
fracture mechanics approach to failure in composite materials
is reasonably acceptable. It must be remembered that composite

veriebles cean invalidate the application and clearly more data
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The composite material fails in this mode frequently. By use

of specimens containing sngled notches they showed that it

was possible to relate the KIIc values to K o values by a

I
simple relationship. This means that only fracture toughness

tests for the opening mode need be carried out since the

forward shear mode values can be deduced from these.

Waddups et A1$37) showed that for a graphite / epoxy
system containing a circuler hole, fracture mechanics analysis
was applicable, The material was subjected to fatigue prior
to testing for static strength. The theoreticel values of static
strengths agreed very well with those observed in practice.
Applying the analysis to nerrow slits in the same specimens it
was found thet the material hed a slightly higher static strength
than the predictions. This was probably due to material damage
at the end of the slit improving the material geometry. It
appears that, unlike metals, the geometry of the specimen does
not alter substantially with repetitive losding.

Further illustration of the underestimation of the strengths
of composites was provided by Beaumont and Phillips(BB). The
meterials which were investigated were carbon and glass fibre
composites containing either surface untreated or surface
treated fibres, It was found that the composites containing
untreated fibres exhibited notch insensitivity and those with
treated fibres exhibited notch sensitivity. The lower shear
strengths of the fibre interfacial bond with the untreated fibres

caused effective crack blunting at the tip of the notch. Both
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_i8 needed before the widespread use of the approach can be
made, In particular, it has been shown by Barnby and Spencer(35)
that K calibration curves for itotropic materials, such as

those provided by Brown and Srawley(hz)

» can be significantly
different from those found for composites. The use of the
isotropic calibration curves can produce similar K, values in

some ranges of ¢/ii, but in others can overestimate failure

stresses of components by as much as 507,
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2. 2. k. Applications of fracture mechanics to anisotropic

Pl&tes .

(18)

Yia has shown that the magnitude of the stress intensity
factors in anisotropic plates can be dependent on the normal
stresses in the system and functions of the materiasl constants

and orientation of the crack. Mode 1 stress intensity factors for
isotropic materials have been shown to be dependent on the normal
stresses only. The dependence of the stress intensity factor on

the material and orientation functions will not exist if the

crack has an orientation along a plane of symmetry. When this
situation exists the stress intensity factor can be defined as:

K, = ()2

The equation can be written:

1°g(KIc) = log(c!) + log(e)
at criticality. Wu plotted values of log(cr) against log(c)
for tests on orthotropic tension test pieces. They were tested
in pure tension, pure shear and a mixture of both. The graphé
showed that within experimental error the slopes of the graphs
were 0.5.

The most deleterious orientation of a crack in a
cylindrical pressure vessel is the axial orientation. This is
a principal axis of symﬁetry for the tubes which are the subject
of this wérk. There is justification in attempting to apply
linear elastic fracture mechanics, normally used for isotropic
materials, to these tubes if the defects which are introduced

have an axial orientation.
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Chapter 3.

3. Design of equipment to pressurise the tubes.

3. 1. Pressure testing cubicle and pumping systems,

Plate 1 shows the pressure testing cubicle with the
high pressure pump taken out for clarity. A close-up of the
tie bars and end plates to hold the tube are shovm in plate 2.
The empty cubicle normally houses the main pump to pressurise
the tubes and an isostatic press.

The cubicle was made of 6mm. mild steel plate and
angle. The top left, left front, right front and right back
sections were removable. Provision was made to incorporate
two removable laminated glass windows in the front and back
of the tube testing cubicle. The windows could be replaced
with mild steel sheets, if required.

Fig. 18 shows a line diagram of the pumping system.

A small pump was added to recirculate any water from the tube

side back to the main pump reservoir. The isostatic press could

be used as a pressure sink to obtain slower pumping rates

and could be isolated for slightly higher rates. The high

pressure pump was supplied by Stanstead Filtration Fluid Power

Products and was Model TC/410 with the following specification:
Model Rated Pressure Output Outlet

2

512 2800 K /em 0.125 1/min. . 2" O/D H. P.

Plates 3, 4, 5 and 6 show the pump from all sides.
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'3« 2. End caps and clamps.

\then subjecting steel tubes to internal pressure there
are no problems in sealing the ends since end caps can be
simply welded into place, thus effecting a seal, This technique
is not possible with glass reinforced plastic tubes and a
problem encountered was one of sealing the ends of the tube

(43)

satisfactorily. Vilson , who was working on high vaccuum
systems, encountered the problem of sliding rods in and out

of a high vaccuum system without breaking the seal. He produced
e sliding seal and it was possible by careful design to utilise
his ideas and to make an end cap capable of sealing the pressure
in the tube.

Fig. 19 shows a cross section of this end cap and plates
7 and 8 show the assembled cap and its individual components.
The internal pressure forces the rubber gasket against the wall
of the tube; the greater the pressure the more effective is
the seal. At high pressures it is possible for the tube wall
to expand sufficiently to allow the rubber sealing ring to
bend back and release the pressure. To minimise the risk of
this occurring, mild steel clamps were designed. Plate 9
shows the assembled clamps.

The end seals were constructed of stainless steel (FN58T)
and the rubber seals were a stiff neoprene. A compromise must be
made between the need for a stiff rubber to minimise extrusion
of the seal and an easily deformed rubber for flexibility when

fitting. To hold the caps in position it is necessary to have



Flate 2.
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3« 2. End caps and clamps.

When subjecting steel tubes to internal pressure there
are no problems in sealing the ends since end caps can be
simply welded into place, thus effecting a seal. This technigue
is not possible with glass reinforced plastic tubes and a
problem encountered was one of sealing the ends of the tube

satisfactorily. wilson(hj)

s Who was working on high vaccuun
systems, encountered the problem of sliding rods in and out

of a high vaccuum system without breaking the seal. He produced
a2 sliding seal and it was possible by careful design to utilise
his ideas and to meke an end cap capsble of sealing the pressure
in the tube.

Fig. 19 shows a cross section of this end cap and plates
7 end 8 show the assembled cap and its individual components.
The internal pressure forces the rubber gasket against the wall
of the tube; the greater the pressure the more effective is
the seal., At high pressures it is possible for the tube wall
to expand sufficiently to allow the rubber sealing ring to
bend back and release the pressure. To minimise the risk of
this occurring, mild steel clamps were designed, Plate 9
shows the assembled clamps.

The end seals were constructed of stainless steel (EN58T)
and the rubber seals were a stiff neoprene. A compromise must be
made between the need for a stiff rubber to minimise extrusion
of the seal and an easily deformed rubber for flexibility when

fitting. To hold the caps in position it is necessary to have
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tie bars and plates on the outside of the tube. Due to the
presence of the tie bars the tube is not subjected to any

longitudinal stress,
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3. 3. Tie bars.

Plate 2 shows the tie bars and plates which retained the
end caps in the tube., The working pressure for designing the
bars and plates was 138 MNS/MZ. This pressure acting on the
area of the end cap was equivalent to & force of 357 KNS.

Sinc there were three tie bars each had to sustain a loading
of 119 KiS. The material used for the bars was EN24Z, which

has a yield strength of 1312 }.ms/mz. Designing at half yield
strength the bars had to have a minimum diameter of 1.52 cms.

(In fact 1.90 cms. diameter bar was used.)



1

3., 4. Steel end plates.

It was necessary to determine the minimum thickness of
plate necessary such that the maximum stress in the plate was
equal to half the yield strength of the material used. Since
there are no readily available formulae to epply to the bending
of a circular plate restrained by three bolts an approximation
was necessary. An assumption was made that the plate behaves
in a similar way to a three point supported plate, with a
uniformly distributed load acting over a circular area in the
centre. Formulae were not available for this case and a correction
factor to convert the simply supported case to the three point
supported case had first to be calculated. |
From Raork(hh):

1) Three point supported uniformly distributed load on a

‘eircular plate

5 & 0,307 F a

Where F = 178,26 KNS

a = 7,62 cns
E = 206.85 QiS/M°
ie § = 1.54 X 1072/ Mt |

2) Simply supported uniformly distributed load on a circular plate.

3P (m=1)(5n +14) o
16TE n° b

[

max

Where m = 3
F, a and E as above

ie & 8

max = 1,06 X 10—9/h3 M




STy
For the above figures the deflection for the three
point supported plate is 1.54/1.06 times as great as the simply
supported plate (i. e. 1.453). Within the sizes of plate to
be used this correction factor will be accurate enough.
3) o;ax for simply supported uniform load over an area of 7,62 cms

diameter in the centre of 15.24 cms diameter plate is given by:

2
- ﬁ‘? (m+ (m + 1)log (o/r ) - c -4'1:ér0) )

Correction factor for three point supported is 1.453

where F

178.26 KIS

a = 7.62 cms

r = 3.81 cns
Opax = 139 mns/m° at half yield strength (EN 3 B)

i. e. Thickness of plate must be 2 minimum of 3.56 cnms.

(In fact 5 cms thick plates were used.)
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Chapter L.

4, Experimental Procedure.

The tubes were wound by Imperial Metals Industries, Ltd.
Two glass types, 'E' glass and 'S' glass, were used for this,

the properties of which were:

density(gm/cc) Roving E1 HN.MTz 2
'E' glass 2.55 20 end 75800 0.20
'S' glass 2.54 30 end 97895 0.22
The resin types were:
Supplier Cure Ell Uh
MY705/H906/DY062  CIBA GEIGY Ltd. 4hrs@180°C 2900 0.38
828/MNA/BDMA SHELL ILtd. Lhrs@150°C 3100 0.3k

The final densities of the resins were 1.31 and 1.22 gms/cc,
respectively.

The continuous fibres were passed through a resin bath
and wound on a Royalene covered mandrel, 7.5cms in dizmeter.
Excess resin was brushed off continuously during the winding
process, Woven glass fibre ribbon was wound around the ends of the
tubes for reinforcement, Fach tube was held on a lathe, by
tapered metal blocks, and the reinforcement machined down to
8.5cms diameter ¥ 0,001cms.

The final tube was 55cms long and had a nominal wall thickness

of 3mms. This resulted in tubes of about 8.3cms outside diameter due

to the presence of the Royalene.
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4, 1. Preparation of the tubes for testing.

4e 4¢ 1. Full through wall slots.

A hole 2mm in diameter was drilled half way along the tube.
By use of a specially prepared hacksaw blade and guide a full
through slot was cut to the necessary length. The slot was
sharpened by a jeweller's saw blade. The dimensions of the slots
are shown in Fig. 20, A thin sheet of annealed copper was bonded
over the slot, on the inside of the tube, by means of epoxy
resin to hold the pressure during testing. The copper membrane
was held in position while the resin hardened by means of an
inf'latable rubber bag.

Le 1. 2. Part through wall slots.

The tube was held in a lathe by tapered metal blocks and
a 0,75mm thick tool brought up to bear against it. The tool was
‘wound in O.1mm and scratched along the tube, thus forming a slot.
This was repeated until a defect of the required depth was
obtained. The dimensions of the slot are shown in Fig. 21. Since
the process did not damage the Royalene lining, copper sheet was
not needed to hold the pressure.

e 1. 3. Knife edges.

These were made by machining a mild steel ring 8.9 cms
outside diameter, 8.5 cms inside diameter and 4mm thick. Short
lengths were cut out of the band and were filed to form the
knife edge with a fine file. They were bonded on to the tube, a
standard distance apart(3mm), by means of epoxy resin. Fig. 22
shows an isometric drawing of the knife edges in position on

the tube.



L slot length 2c
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Fig.20. Dimensions of full through slot.

slot length 2c

G
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Fig.21. Dimensions of part through slot.
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4. 1. 4. Measurement of tube dimensions.

Pieces were cut from the ends of each tube and the faces
were polished by normal metallurgical techniques, finishing
with metal polish. The metal polish etched the composite clearly
defining the various layers. Using a travelling microscope
the average inside and outside diameters, wall thicknesses and
hoop layer thicknesses were determined.
4e 1. 5. Strain gauges.

Strain gauges were bonded to the tubes in the longitudinal
and hoop directions by means of epoxy resin. For the tubes
containing no defects an extra gauge L5° to the tube axis
was also included to form a rectangular strain gauge rosette.
Fine wires were soldered to each gauge and secured, by adhesive
tepe, to the walls of the tubes.

Le 1. 6. Measurement of volume fraction of fibres,

Samples of the tubes were cleaned and dried in an oven
at 90°C for 2 hours. They were weighed in air and weighed suspended
in water. After subjecting them to 550°C for 2 hours the
resulting glass fibres were weighed to constant weight. From a
knowledge of the glass and resin densities the volume fraction .

of fibres was determined.
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4. 2. Calibration of the clip gauge.

The clip gauge was held by a points micrometer,
whose jaws were separated by 2mm. Fig. 23 shows the clip gauge
and the micrometer jaws. The output from the clip gauge and
apnplifier was fed into a digital voltmeter, A calibration chart
was prepared by opening the micrometer by pre-set amounts and
reading the out of balance e. m. f.'s on the digital voltmeter.
Care was necessary to ensure the clip gauge did not slip out of
the jaws. Calibration charts were obtained for all ranges of the
amplifier. The most sensitive range was able to detect jaw
openings of 0.02mm, The charts showed that the clip gauge was

linear for all of the ranges used.



micrometer jaws

strain

clip gauges

gauge

electrical lead

Fig. 23. Calibration of clip gauge.
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L. 3. Determination of the longitudinal Young's modulii and

Poisson's retios.

A number of tubes were subjected to determine the longitudinal
Young's modulii;J end FPoisson's ratios. The base and top of each tube
were machined flat and parallel and the tube subjected to axial
conpression on a 5 Ton Instron testing machine. The longitudinal
and hoop strains were plotted, versus stress, on two Bryans X = Y
recorders, The test was repeated three times to obtain average

odul:L‘l} and Poisson's ratios.



-36=

4, 4. Pressurisation of the tubes,

The end caps were carefully fitted into place in the
ends of each tube and the whole stood in position on the end
plate. The inlet and outlet lines were connected and tightened.
Clemps were placed in position eround the tube reinforcement
and their bolts tightened. The six tie bar nuts were tightened
using a torque wrench to minimise bending moments on the tube
whilst it was under pressure. A camers, with flash attached,
was assembled in front of the armour plated glass windows to
photograph any interesting developments as the tube was pressurised.

Le 4. 1. Tubes without artificial defects.,

The three strain gauges, forming the rosette, were each
connected to the appropriate amplifier and the outputs from the
strain gauges and the pressure transducer were fed into three
.prans X - Y recorders, The tubes were pressurised slowly and
photogrephs were taken at knovn pressures.

4e 4o 2. Tubes with artificial defects.

The three Bryans recorders in this case recorded hoop strain,
longitudinal strain and crack opening displacement on their
X - axes and pressure on their Y - axes., The tubes were pressurised
slowly and photographs were taken similarly to the tubes with

defects absent.
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4, 5. Compliance Testing.

The determination of K-calibration charts relies on
some means of measuring the change in compliance of a system,
with crack length. This compliahce change was estimated in two ways:
1) The measurement of crack opening displacement, and
2) The measurement of volume change.

When pressurising the tubes graphs of crack opening displacement
versus hoop stress were obtained. The slopes of these graphs
were taken as the compliance of the tubes. For the crack opening
displacement measurements the following assumptions were made:
1) That the tubes had similar elastic moduli,

2) That the tubes deformed evenly around the perimeter.

A strain gauge was attached opposite the slot on each pipe.
The strain in this region was so obtained and used to estimate
the volume change with pressure. The assumptions for this were:

1) That the strain in this region was the same as the strain would
be for an uncracked tube,

2) That the tube deformed from and to a true circular cross
section.

The increase in circumference was calculated from the strain
observed and from a knowledge of the initial circumference. At the
same pressure thecrack opening displacement was known and added to
this so that the final circumference was:

Final circumference = Initial circumference + elastic strain
+ C. 0. D.

From this a new radius, R, could be calculated, i.e.

2

New radius R2 = final circumference/2vp
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The volume change per unit length was taken as the difference
between the volume calculated using R2 and the initial volume of
the tube. The volume changes wefe plotted against pressure and

the slope AV/P obtained as another compliance measurement.
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Chapter 5.
5. Results,

5« 1. Measurement of Young's modulus and Foisson's ratio.

Tube No. Lay up Fibre volume E Vo
fraction 1

, + A0
WGEB/33 1 =20 0.613 50440 0.481
2 z 20 56970 0.528

4+ .0
2 to0 50390 0.502

+ .0
WGE/36 1 : 200 0.604 44270 0.483
2 =20 45390 0.526

+ , A0
WGE/41 1 - hoo 0.6 24760 0.616
2 K6 20200 0.635

+,.0
2 250 25570 0.543

+ ,.0
WGE/L3 1 e 0.636 L
2 < X0 1 21910 0.640
WCE/37 < 20° 0.609 55080 0.513
WGE/38 L a6° 0.613 70110 0.623
weE/39 & 20 0.616 65250 0.561
WGE/L0 t 20° 0,606 57310 0,571
WGE/L T i0° 0.622 20970 0.534
WGE/L5 Z 40° 0.652 28110 0.575

A + A~0
WGB/3B /9 =20 0.623 42190 0.266

2/9 I 90°

+ -0
WiGE/58 /9 et 0.626 M750 | 0.275

2/9 = 90

Table 3. Longitudinal Young's modulii and Poisson's ratios for
tubes with 20° and 40° helix angle.

(Modulii values are in MNS/MZ)
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Tube No. Fi‘;::c z:i::me E 14 v 12
7 SR 23250 0.271
2 35220 0.198
] 0.683 33900 0.216
L 33380 0,200
5 26000 0.223
B 1 34310 0.247
2 24450 0.187
3 0.681 20050 0.117
L E. F. E. F.
5 29650 0.218
e Y 20350 0.157
2 28820 0.223
3 0.673 36780 0.241
L 31760 E. F.
5 30600 0.176
D A 38670 0.223
2 35910 0.245
3 0.689 42050 04244
L 36370 0.208
5 33880 0.180
E 9 25200 0.323
2 24860 0.240
3 0.687 26900 0.198
L 26060 0.181
5 24210 0.185
F 1 37320 0,240
2 38610 0.226
3 0.698 38080 0.323
4 ' 37830 0.170
5 37070 0,200
¢ 4 37040 0.230
2 38300 0.250
3 0.722 43020 0.242
i 35380 0.265
5 45540 0,242

Teble L. Hoop Young's modulii and Poisson's ratios for tubes with

50% t 30° and 50% % 90° lay up. (Modulii values are in MNS/¥°)
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Tube No. Fl?‘:zcggiﬁme E 14 v1 >
H 1 19030 0.233
2 20550 0.286
3 0.650 21770 0.273
L 21510 0.279
5 31470 0.396
C R ¢ 17650 0.228
2 23740 0.259
3 0.649 20980 0.232
4 20020 01N
5 20780 0.200
K 4 27400 | 0.421
2 21620 04305
3 0.672 21620 0.277
. 18450 0.240
5 20690 0.406
PR 20380 0.295
2 47070 0.198
3 0.649 18450 0.231
4 20420 0.249
5 18780 0.214
M 1 19420 0.273
2 19580 0.302
3 0.627 17060 0.247
L 19280 0.305
5 18710 0.259

Table 5. Hoop Young's modulii/and Poisson's ratios for tubes with
X 30° helix angle.

(Modulii values are in Lms/uz)



5. 2. Defect types.

2

Table 6 shows the types of defect and the tube numbers

for the results which follow in 5, 3. The distance between the

pressure seals was 0.495M in all cases,

Lay up lo defect Full through % through 2 through
wall defect wall defect wall defect
+ 5.0 :
It - 15 M - M5
50% % 30°| A A2 - A5 BY - BS c1 - C5
50% % 90° [ ®1 - ES D - D5 M -F5 1 - G5

Table 6, Defect types for

internal pressure.

the tubes subjected to failure
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5. 3. Compliance and failure measurements.

C.0.D: 406 AV 11 ob v
oH I 5 r? cﬁ
Tube No. || ¢©

(cms) M/MN/M2 m3/MN/M2 MN/M2 MN/M2

A - - - 4L8.91 682,23
2 | 1.196 3.95 6.47 2.89 40.33

3 | 0.821 1.7 5.33 E. F. E. F.

L | 1.802 6.29 8.08 1.61 22,41

5 | 2.232 6.83 9.63 0.68 9.52

B 1 | 0.612 1.10 }.70 4,02 51.87
2 | 1154 2.15 7.03 2.0 26,57

3 | 2.2% 3,08 8.75 1.48 19.56

L | 1.7 3.46 6.70 1.65 21 47

5 | 2.240 9.02 9.7k 2.19 28.91

C 1 | 1945 1.58 7.66 B, B, E. P.
2 | 1.378 127 5.l 3.09 L0.15

3 | 3.084 2.32 4,98 2.25 29.20

L | 0.552 1.4 4.95 643 83.43

5 | 0913 133 5.22 3453 45.47

D 1 | 4.027 Be1l 6.05 217 32,36
2 | 0.714 1.81 5456 3.55 | 5273

3] 113 10.35 10.06 1.37 19.04

4 | 1.852 9.57 10.37 1.2 17.98

5 | 1.437 5.58 8.18 2.81 29.96
B - - - 50,23 721,97
2 o - - 47.59 | 683.97

3 e i - 52.21 750447

4 - - - 47,32 680.17

5 - - - 50.23 724.97

F 1] 0.647 0.473 4,38 3.29 475k
2| 1.017 2.42 5e.22 2.4 34.79

3] 1.432 2.50 554 157 22,61

L | 1.687 2.77 ' 5.70 1ol 20.29

5] 2.49% 3.46 6.20 1.00 14,50

Table 7. Compliance and failure measurement for the A to M series

of tubes. (B. F. is equipment failure)



Table 7. continued
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G

RS LI S U | N LS e O S R ASL R i GV | 8 A% 2 I - VR - S

b W -

AS A - © I S e

0.655
1.027
1.372
1.979
2.436

0.539
1.019
1444
1.93

2.475

0.659
0.959
1.619
2,248
2.819

0.503
0.748
14233
1.732
3.010

0.49

1.305
14942
2.439
34207

1.03
1.M
0.87
1.03
1.27

1.81
3.36
5.92
751
10.87

2423
1.75
2. 74
2,22
2.46

1.6
1.96
2.92
3415
7.06

1.22
2.28
2.06
3415
2.34

4.75
4,60
4,08
L.89
L.12

9.78
8el1
10,81
12.13
13.88

6.92
8.14
8.73
9.66
8.89

8.09
9.70
9.60
8.96
11.84

7.95
8447
943
9.06
10.64

4.50
4.58
2.61
4.18
2.61

4498
4.86
510
5.10
5.06

2.17
1437
0.95
0.42
0.45

2.01
1.61
1.3
1.49
1.08

2.17
1.49
0.68
0.48
0.37

2.73
1.57
1.37
1.29
1.16

65.31
66.48
37.90
60,65
37.90

66,42
64,82
68.03
68,03
67.49

30,86
19.43
13.49
5.94
6.40

28,72
22.97
18.72
21.25
15.39

29.47
20.19
9417
6.55
5.02

35.64
20,44
17.82
16.77
15.09




Chapter 6.

6. Discussion of the results,

6. 1. Young's modulus and Poisson's ratio.

6. 1. 1. Predictions of compressive E,1 and v12 for 'S' glass
|

in a resin matrix of 828/MNA/BDMA (Shell Itd.) using the theories

of Wa11is") ana msai(13),

Appropriate values of Young's modulus and Poisson's
ratio were calculated using the theories of Wallis and Tsai,

The following physical constants were used for this;:

'S! glass Resin 828/MNA/BDMA
Young's modulus 97895 MN/MZ 3100 MN/M2
Poisson's ratio 0.22 0.34

For the theory of Tsai the contiguity factor, C was
teken as 0.2 as suggested by Tsai for this type of tube. Twenty
tubes were subjected to axial compression And the values of
E11 and V12 so obtained were compared to the theoretical ones
obtained from the two theories. The observed and calculated
values were subjected to statistical analysis to obtain the
variance, standard deviation and mean of the differences between
the observed and calculated figures.
6e 4« 1. 1. Iongitudinal Young's modulus,_E11;
Teble 8 shows the observed and calculated values of

longitudinal Young's modulus and Fig. 24 illustrates a comparison
of these for the two theories, The line at ASO, passing through

the origin of each graph, is the line which would exist if there
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Tube No. E, E, E.
(observed) (after Wallis) | (after Tsai)
WeE/33 1 50440 L3450 36710
2 56970 L3450 36710
WGE/35 1 45300 43090 36330
2 50390 43090 36330
WGE/36 1 4270 42800 36030
2 45390 42800 36030
WGE/L1 14 21760 13700 21510
2 20200 13700 21510
WeE/L2 1 20160 13800 24670
2 25570 413800 21670
WGE/43 A 18460 | 13550 21240
2 21910 13550 21240
WGE/37 55080 43160 36440
VIGE/ 38 70110 43450 36710
WGE/39 65250 43670 36940
WGE/LO 57310 42940 36180
WGE/ L 20970 13130 20510
WGE/L5 - 28110 14,060 22110
WGE/33 42190 39970 49830
ViGE/5B 41750 40160 50090

Table 8. Variation of observed and calculated values of E‘H for
'3' glass in a resin matrix of 828/MNA/BDMA (Shell Ltd.)

(Moduli,i values are in b.iN/Mz)
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were no difference between observed and calculated E11. The

results of the statistical analysis are as follows:

Variance of Standard deviation Mean of

differences ] of differences differences
Theory of Wallis T30 x 108 1.14% x 10“ 9005
Theory of Tsai 2.07 x 108 1.44 x 10“ 8290

Ratio of the variances = 1.60
'F' ratio at the 95% confidence level = 2,51

The 'F' test is a test for the equality of population variances.
The ratio of the variances was the ratio of the larger to the smaller
sample variances. The 'F' test was used to determine whether there was
a significant difference between the predictions from the two theories.
In this case since two theories are being compared it is necessary to
obtain the 2.5% significance 'F' ratio from tables for 95% confidence.

Since the ratio of the variances was less than the 'F' ratio
obtained from tables there was no significant difference between each
theory at the 95% confidence level. The means of the differences gave
an indication of the 'bias' of the observed results. This is shown by
the broken line on the graphs and indicates that the observed values
were, in general, higher than the calculated values by about 8-9000b?/m2
for both theories. To obtain the most accurate estimate of E11 it is
necessary to add the mean of the differences to the predicted value.
The quantity so obtained is subject to 95% confidence limit of about
2 ZZOOOMN/in2 for Wallis and & 28000 MN/m2 for Tsai. The results show
that the theories, though reasonable, are not exact and neither is

significantly better than the other for the prediction of E11.

6. 1. 1. 2. Llongitudinal Poisson's ratio,v ,..

Table § shows the observed and calculated values of
Poisson's ratio and Fig. 25 illustrates a comparison of these for
the two theories. The 450 lines on each graph are the lines which

would exist for no differencés between observed and calculated\ﬁz.
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Tube No.

Y12 V42 Vi2
(observed) (after Wallis) (after Tsai)
WGE/33 1 0.481 0.783 0.307
2 0.528 0.783 0.307
WGE/35 1 0.445 0.785 0.307
2 0,502 0.785 0.307
WGE/36 1 0.483 0.787 0.308
2 0.526 0.787 0.308
WGE/44 4 0.616 0.878 0.282
2 0.635 0.878 0.282
WGE/42 1 0.746 0.877 0.282
2 0,543 0.877 0.282
WGB/43 4 0.533 0.880 0.282
2 0.640 0.880 0.282
ViGE/37 0.513 0.7€5 0.307
ViGE/38 0.623 0.783 0.307
WGE/39 0.561 0.781 0.307
WGE/40 0.571 0.786 0.308
WGE/Ll, 0.531 0.884 0.282
WGE/L5 0.575 0.874 0.283
WGE/3B 0.266 0.316 0.281
WGE/5B 0.275 0.316 0.284

Table 9. Variation of observed and calculated values ofV, . for

12

'3' glass in a resin matrix of 828/MNA/BDMA (Shell ILtd.)
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The results of the statistical enalysis are as follows:

Variance of Standard deviation Mean of

differences of differences differences
Theory of Wallis 0.07 0.27 - 0.247
Theory of Tsai 0.07 0.26 0.2314-

Ratio of the variances = 1.03
'F' ratio at the 95% confidence level = 2.5!

Since the ratio of the variances was less than the 'F!
ratio obtained from the tsbles, there was no significant difference
between each theory at the 95% confidence level, The means of
differences gave an indication of the 'bias' of the observed results.
It is seen that the Wallis predictions had a higher 'bias' and
the Tsai predictions a lower one. To obtain the most accurate
estimate of AP it is necessary to add the mean of the differences
. to the predicted value. The quantity so obtained is subject to
95% confidence limits of about % 0.5 for both theories. Such
estimates are unacceptable and it is clear that the theories are

not very useful for the prediction of v1 for these types of tube.

2
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6. 1. 2, Prediction of E2n and \%1 for 'E' glass in a resin
=

matrix of MY705/HY906/DY062 (CIBA-GEIGY) using the theories of

Wallis(11) and Tsai(13).

Appropriate values of Young's modulus and Foisson's
ratio were calculated using the theories of Wallis and Tsai.

The following physical constants were used for this:

'E' glass Resin MY705/HY906/DY062
Young's modulus 75800 MN/M2 2900 MN/Mz
Poisson's ratio 0.20 0.38

For the theory of Tsai the contiguity factor, C was
taken as 0,2 as suggested by Tsai for this type of tube. Sixty
tubes were subjected to internal pressure and the values of E22

&ndJUb1, so obtained, were compared to the theoretical ones
obtained from the two theories. The sixty results were reduced to
twelve lots of five and average values used for the comparisons.
The observed and calculated values were subjected to statistical
analysis to obtain the variance, standard deviation and mesn

of the differences between the observed and calculated figures.,
6¢ 1. 2. 1. Hoop Young's modulus,_ﬁzz&
Teble 10 shows the observed and calculated values of

hoop Young's modulus and Fig, 26 illustrates a comperison of
these for the two theories. The 45° lines, on each graph, are
the lines which would exist for no differences between observed
and calculated E_,. The results of the statistical analysis

22
are as follows:

Variance of Standard deviation Mean of

differences of differences differences
Theory of Wallis 716 x 108 B.46 x 103 42,00
Theory of Tsai 6.89 x 108 8.30 x 105 - 4700
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Tube No. E22 322 E22
(observed) (after Wallis) (after Tsai)
A1-5 28350 32180 39160
B1-5 27040 32080 39030
C 1-5 29600 31680 38500
D 1-5 37380 32490 39560
E 1-5 25450 32390 39430
P A~5 37780 32950 L0170
G 1-5 39860 34230 41840
H1-5 22870 9645 14355
J 1-5 20630 9620 15240
K 1-5 21960 10210 15240
L1-5 19020 9620 14320
MA1-5 18810 9120 13500

Table 10, Variation of observed and calculated values of E for

22

'E' glass in a resin matrix of MY705/HY906/DY062 (CIBA-GEIGY)

(Modulii values are in ms/mz)
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Ratio of the variances = 1.04
'F' ratio at the 95% confidence level = 3.48

Since the ratio of the variances was less than the 'F!
ratio obtained from tables, there was no significant diff'erence
between the two theories at the 95% confidence level. In general,
the predictions for tubes containing hoop windings were more
accurate than those without. The means of the differences gave
an indication of the 'bias' of the observed values. It is seen
that the predictions by Wallis were lower then the observed
results and vice versa for the predictions of Tsai. The means of
the differences and the standard deviations indicated that the
predictions of E22 for this system were more accurate than the

predictions of E,, for the 'S' glass systen.

11

To obtain the most accurate estimate of E_, it is necessary

22
to add the means of differences to the predicted value. The
quantity so obtained is subject to 95% confidence limits of about
% 16000 MN/M° for the two theories. The predictions of E,, for
the plain tubes appeared to be worse than the predictions for
tubes containing hoop windings.

6. 1. 2. 2. Hoop Poisson's ratio, W

21*

Table 11 shows the observed and calculated values of
hoop Poisson's ratio aﬁd Fig. 27 illustrates a comparison of
these for the two theories. The 45° lines on each graph are the
lines which would exist for no differences between observed and
calculated values of 221. The results of the statistical analysis

were as follows:
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Tube No. Vo4 v o4 Vo4
(observed) (after Wallis) | (after Tsai)
A1-5 0.222 0.289 0.283
B 15 0.192 0.289 0.283
C 1-5 0.199 0.289 0.284
D 1-5 0.213 0.289 0.282
E 1-5 0.225 0.289 0.282
F 15 0.226 0.289 0.284
G 1-5 0.240 0.288 0.279
H 1-5 0.293 0.375 0419k
J 15 0,222 0.375 0194
K4=5 0.330 0u 37k 0.195
L1-5 | 0.239 0.375 0194
M4-5 0.277 0.376 0.193

Table 11. Variation of observed and calculated values of\b1 for

'E' glass in a resin matrix of MY 705/HY906/DY062 (CIBA-GEIGY)
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Variance of Standard deviation Mean of

differences of differences differences
Theory of Wallis 0.009 0.095 - 0,085
Theﬂry of Tsai 0.006 0-080 - 0.005

Ratio of the variances = 1,50
'F' ratio at the 95% confidence level = 3.4%

Since the ratio of the variances was less then the 'F'
ratio obtained from tables, there was no significant difference
between the two theories at the 95% confidence level., The means
of the differences gave an indication of the 'bias' of the
observed results. The 'bias' indicates that the observed results
were, in general, lower than the calculated ones, for both theories.
To obtain the most accurate estimate of V

21
add the mean of the differences to the predicted value. The

it is necessary to

quantity so obtained is subject to 95 confidence limits of
about = 0,16 - 0,19 for the two theories. In general, predictions

of v although higher than the observed values were more

21°?

reasonable than predictions of v12.
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6. 2. Compliance measurements.

When determining fracture toughness data for isotropic
and elastically homogenous materials, it is necessary to have
a knowledge of the change of compliance with crack length for
& given geometry. For such a material the compliance increases
with crack length for most geometries. The compliance versus
crack length curves are analysed to obtain geometrical factors
for use in computing values of K. These calibration curves are
applicable to a wide range of isotropic materials, but Barnby
and Spencer (35) have shown that they are not necessarily
applicable to fibre reinforced materials. Further it is
possible, by careful choice of specimen, to observe compliance
decreasing with increasing crack length. It was necessary to
carry out compliance tests, on the material which was the
subject of this work, to estaeblish the preﬁise that compliance
would increase with increase in crack length. Intuitively this
was expected, but the material was so anisotropic and subject to
micro-geometrical effects that it could not be assuned.

Two methods of compliance measurement were investigated
for this material. The first was a crack opening displacement
measurement which was determined from first principles. The
measurement of compliance was the slope of the graph of hoop
stress versus crack opening displacement of the crack when the
tube was pressurised. The other compliance measurement was the
slope of the graph of pressure versus the volume change per

unit length of the tube obtained during pressurising. A similar
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measurement of compliance as a volume change was made by Underwood et
Al and is described in reference 45. The method used here is an
analogous approach based on the same principles and the details of this

can be found on page 37.
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6. 2. 1. Crack opening displacement measurements.

The absolute value of crack opening displacement was
measured by means of a calibrated clip gauge. The compliance
was taken as the slope of the line obtained by plotting hoop
stress against crack opening displacement for initial pressurising
of the tube, i. e. C.O.D./ohf Figs. 28,29,30,31 and 32 show
graphs of compliance versus half axial crack length for each
tube type and defect depth. For isotropic materials, graphs of
compliance versus crack length take the form of a curve. These
curves usually cover the c/L range of 0.0 to 0.6. The first part
of the curve, in the range of ¢/L = O to ¢/L = 0.1, is normally
quite flat and only after about ¢/L = 0.2 are rapid increases of
compliance with crack length shown. The range of ¢/L which this
work covers is limited to a maximum ¢/L of 0.1. The points
were considered to be representative of the straight line
section of the compliance curve and the data subjected to
linear regression analysis to obtain the lines of best fit. The

results of this were as follows:

Intercept Slope Regression Degrees
coefficient of freedonm
K and M tubes 1.65 x10™°  3.35 x 102  0.592 9
J and L tubes 8.07 x 108 3.40x10™  0.837 9
C and G tubes 7.38 %1077 357 x40 0,704 9
B and F tubes -8.95 x 107/  2.62 x 10%  0.718 9
A and D tubes ~1.92 x 10°  5.04 x 10 0,902 8

In all cases the regression coefficient was significant

at the 95% level.
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Examination of the graphs‘revealed that, for each tube type,
the compliance increased with increasing crack length. This
was confirmed by the above regression analysis. The rate of change
of compliance with crack length was clearly greater, the greater the
slot depth. Scatter was shown around the regression lines and it
is important to try and establish the source of this.

It may be assumed that no significant error was made in the
measurement of the slot length, 2c., The slot length was accurately
measured by means of a travelling microscope. The measurement of
the crack opening displacement was accurate since it depended on
ai  previously calibrated clip gauge. During calibration it was found
that the output from the clip gauge was linear over all ranges
and sensitive enough to measure the displacement to I 0.02mm.
Errors which may have arisen in the magnitude of the hoop stress
depended upon three measurements. These were, the measurement of
the wall thiclnesses and inside diameters of the tubes and the
pressure. The pressure was measured by means of a transducer and
was accurate to g 0.1%. The wall thickness and inside diameter were
subject to local variations. During curing the Royalene lining was
subject to local contractions and this, coupled with the method of
manufacture of the tubes, caused variations in wall thickness
and inside diameter of as much as 15%. For the quarter and

half through wall slots, the accuracy of the compliance
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measurements was affected adversely and this was reflected in
the correlation coefficients, which increased with slot depth.,
Taking all these deviations into account, the probable error
on 6 wes estimated as 2 437. Although this was a significant
error, it was not enough to explain the scatter involved.

The scatter probably arose from local material variations
in the tubes. The Young's modulus and Poisson's ratio measurements
showed variations from tube to tube, and the volume fraction
measurements were not constant. The superimposition of these

factors on the compliance measurements may explain the scatter

involved.
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6. 2. 2. Volume change measurements.

The change in volume/unit length was calculated from
the change in the perimeter due to elastic strain and the
opening of the slot, The elastic strain was obtained from a

knowledge of the hoop modulus, and the hoop stress. This

22
assumed that the tube deformed uniformly, despite the presence
of the slot. The compliance was taken as the slope of the
linear portion of the pressure versus volume change graph,
obtained at the start of pressurising.

Figs. 33, 34, 35, 36 and 37 show the graphs of compliance
versus half axial crack length for each tube type and defect
depth. For similer reasons to those described in 6. 2, 1.,

the data was assumed to be representative of a linear function

and was subjected to regression analysis with the following

results;
Intercept Slope Regression Degrees of
6 -5 coefficient freedom

K and M tubes 7.1 x 10 9.56 x 10 0.862 9
J and L tubes 7.86 x ‘IO-'6 1,66 = 10-4 0,766 9
C and G tubes 4.91 x 10*'"6 1.06 x “IO“5 0.857 9
B and F tubes 3.19 x 10—6 2.14 % 10—h 0.790 9
A and D tubes 2.89 x 10-6 B 10‘4 0.942 8

In all cases the regression coefficients were significant
at the 95% confidence level.
For each tube type the compliance increased with crack

length and this increase was greater, the greater the slot depth.
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The errors involved in the calculation of AV/P were
not as large as those for the calculation of C.O.D./OH. The
measurenent of volume change involved the calculation of elastic
strain which eliminated errors due to Oy The overall probable
error on AV/P was determined as + 4,07. This confirms the
premise that local material variations were responsible for
the scatter of the results. The regression coefficients for the
volume change method of compliance measurement were generally

higher than for the crack opening displacement method. This is

a reflection of the more accurate compliance measurement.

In conclusion it has been established that the compliance,
measured in two different ways, increased with increasing crack
length. The increase was greater, the greater the depth of
‘the defect. In both cases, the measurements were subject to
scatter which was probably due to local material variations in
the tubes.

The variation of compliance with crack length can be used
to determine K, values of the material from a knowledge of the
failure pressures and hoop stresses.

The two equations are:

1) Crack opening displacement

EL ac'! )%

T

(see Appendix 1 for derivation)

#
Kﬁ FY'Y% (
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2) Volume change

L N, B a(Av/P) &
K, = P(2(1-v2) T4

c
(after Underwood et Al(45))
The comparison of KC values obtained by each compliance method

is shown in section 6. 4.
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6. 3. Failure mechanisms of tubes subjected to internal pressure.

6. 3. 1. Tubes without ertificial defects.

6. 3. 1. 1. Plain ¥ 30° helix angle tubes (H tubes)

-
—

Table 7 in section 5. 3. shows the failure pressures and
hoop stresses sustained for five tubes (H1 - H5), each with a lay up
of ¥ 30° helix angle. The average ultimate hoop stress was 66.6 MN/M2
which corresponded to an ultimate internal pressure of 5.02 MN/Mz.
The hoop stress versus hoop strain graph for each tube was linear
at the start of pressurising, but, at about 507 of the ultimate
pressure, became non-linear. This was probably due to a combination
of two effects:

1) The fibres attempting to rotate,

2) The response of the resin becoming non-linear,

The rotation of the fibres, due to shear stresses, can be seen in
plates 10 and 11.

Failure of the tubes was initiated at the reinforcement.

An example of the sequence of events leading to failure of a
typical tube (H3) is shown in plates 12 to 15. Plate 12 shows the
tube prior to pressurising. At a hoop stress of 40 M/¥° a crack
was initiated along and parallel to & band of fibres as shown in
plate 13. Further stress caused the band to increase in width,

as the crack propagated, and for other cracks to be initiated,

as shown in plate 14. Further pressure caused the band width to
continue to increase until failure as shown in plate 15. The

initiation of the failure close to the reinforcement was due to
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the presence of stress concentration due to the section change.
It is possible to calculate a value of the stress concentration
in this region, but the mathematics is complex and beyond the
scope of this work.

Fig. 38 shows the variation of strain with angle to the
X - axis for a typical tube H3., This was obtained from the output
of the strain gauge rosette, in the usual way. The curve shows
that the change-over from tensile to compressive strain occurred
at 30° to the axis of the tube. The maximum hoop strain which
the tube sustained was 4.6 x 1072,

6. 3. 1. 2. 507 = 30° and 50% ¥ 90° tubes (A and E tubes).

Table 7 in section 5. 3. shows the failure pressures of
six tubes (81 and B4 - E5) with a lay up of 50% ¥ 30° ana
50% ¥ 90° helix angles., The average ultimate hoop stress was
721.8 MN/MZ wh;ch corresponded to an ultimate internal pressure
of 49.4 MN/MZ. In all cases th hoop stress/hoop strain graphs
were linear up to the point of failure of the tubes, Plates
16 to 19 show the sequence of events leading to the failure of a
typical tube, E41. Plate 16 shows the tube before pressurising.
At the relatively low pressure of 120 MH/Mz, voids were clearly
visible between the fibre/matrix interface in the z 300 layers,
as shown in plate 417. Flate 18 illustrates that, at a higher
pressure of 400 MH/Mz , the voids Were more clearly visible,
Catastrophic failure, initiated at the ends of the tubes near the

reinforcement, is shown in plate 19. The failure close to the
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reinforcement of the tubes was typical . This was due to the
section change causing a stress concentration. As previously
stated in section 6. 3. 1. 1., the calculation to obtain the
magnitude of the stress concentration is beyond the scope of
this thesis. The failure was accompanied by a loud report due to
the release of a large amount of strain energy stored in the
windings.

Fig. 39 shows the variation of strain with angle to the
X - axis for a typical tube A1, At a relatively low stress level
of 100 MN/MZ the hoop strain was 5 x 10—3,:which was more than the
maximum strein that the plain £ 30° tubes could sustain. This
explains the large number of voids observed in the * 300 layers
at the low stress levels. The hoop windings restrained the % 300
layers, but when these layers failed the + 30° layers could
instantly bulge out as shown in plate 19. The maximum hoop
strain at failure was 27.5 x 10_3. The change-over from tensile
to compressive strain occurred at about 26° to the axis of the
tube, which was lower than the plain tubes due to the presence

of the hoop winding.
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6. 3. 2. Tubes with artificial defects.

Table 7 in section 5. 3. lists the failure pressures and
hoop .stresses for the tubes which contained slots. The failure
pressure, Er was taken as the pressure at the point of intersection,
of a line drawn at 95% of the slope of the pressure versus crack
opening displacement greph. (see Fig, 40) The failure pressure, P
obtained in this way was used to calculate the failure hoop
a;. This is an accepted means of obtaining failure stiresses
for isotropic materials, such as most metals, The increase in

stress,

compliance due to crack extension causes the plot to become
non-linear. The stress determined in this way is representative
of the stress required to cause crack extension of 2%.

Section 6. 2. illustrated that the compliance increased
with crack length for the tube types discussed here and justifies
the use of the criteria normally used for isotropic materials.
The slot did not always increase in length, but there was enough
fibre and resin damage to increase the effective crack length;
this caused the pressure/crack opening displacement plot to
become non-linesr,

Further justification, for considering the onset of
failure to have occurred shortly after the graphs became non-linear,
is shovm in plates 20 to 23. The plates show a series of events
which took place during the pressurising of tube G1. Fig. 40
shows the stress at which each photograph was taken and its
position on the stress/crack opening displacement curve. The

sequence shows that, shortly after the curve became non-linear,
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the hoop winding begen to break away from the tube. This was
followed by catastrophic failure of the tube, illustrated in
plate 23. The other tubes, for each category, showed this
beheviour to lesser or greater degrees depending on the tube and
defect types. They were consistent in that the onset of failure
became clearly visible shortly after the curves became non-linear,
The data for the the five different categories are
presented in two ways. Section 2. 2. 2., in the Literature
Survey, illustrate two criteria for the interpretation of data
obtained by subjecting cylindrical pressure vessels to internal

pressure (Table 2). The two important equations are:

Equation 1
' K 220
- = (+sg )P
%y (o) Rt
Equation 2
K 2 '
W o 3
oy = -—ci—(1+39-§50tanh§%-£ z
(e )? R

(The factor ¢3 was not included in these equations since it is
a plastic zone correction factor, not expected to be relevant
in the case of glass reinforced plastics)

The factor S was calculated from the equation:

S 0.49(12(1 - vz))% (Folias(2))

]

A Kc value was determined for a tube which had a relatively

® %

short slot and failed at a high pressure, P . Variations of Gh
were then computed for increasing values of crack length, c,.

for the two equations.
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The second way of interpreting the data was similar
to that presented in reference 3. Inspection of equations

2 -1

0
41 and 2 reveals that ( ch Mec)  is a linear function of c2/Rt

snd c2/R® 50tanhR/50t with K;2 and SK;Z the slope and intercept
respectively. (this is fully discussed in reference 3 and in
section 2. 2. 2.). Craphs of ( 0; znc)-1 versus cz/Rt and
cz/R2 50tanh R/50t were obtained and compared for different

Kc values,
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6. 3. 2. 1. Plain * 30° helix angle tubes with full through

wall defects (J and L tubes).

The average value of V for tubes J and L was 0,230

21
which resulted in a value for S of 1.65. Kc values were calculated

using the data obtained from tube I4 for equations 1 and 2.

The two K, values were 4,36 and 4.35 MN.MT% for equations 1 and

W
2 respectively. Fig. 41 shows the variation of %y with crack

length, c. The experimental vales of cr;; and ¢ are also illustrated.
The two theoretical lines are almost identical and differ

by about 0.4J%. The values of c; predicted by equation 2 are slightly

higher than those from equation 4. The value of the function

cz/R2 50tanh R/50t is smaller than the function cz/Rt for a given

c. In ofder to preserve a constant Kc the value of o% for

equation 2 must be greater than 0';{ for equation 1. The experimental

measurements of oﬁ were subject to an error of I 13% as discussed

in 6. 2. 1. The scatter of the points could be due to this error.

The experimental points agree reasonably well with the theoretical

lines in view of the experimental errors and the errors encountered

with this material due to local variations. The equations are

useful in the prediction of failure hoop stresses for this type

of tube containing a full through defect. For practical purposes

equation 1 is as good as the more complex equation 2 for the prediction

of failure pressures.

21'1‘(:)“‘1 versus c?/Rt

Figs. 42 and 43 show graphs of ( ::r;'I
and cz/R2 50tanh R/50t for equations 1 and 2 respectively. The

graphs are very similar and show scatter around the lines of
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K, = 436 and 4.35 MN.M"E, The discrepsncies shown in the
previous method of data presentation are highlighted by this
method due to the form of the equations involved. The experimental
points all lay within a bend width of X =3 and K =6 rm.m‘i.
This illustrates clearly that for this material only a range of
slot lengths will give a true representation of its behaviour.
In this way a reliable, minimum value of Kc can be obtained
for design purposes.

The tubes failed in a similar manner irrespective of
slot length. Plates 24 to 27 show the progressive failure of
tube 12, which was typical of the behaviour of the other tubes.
Plate 2L shows the tube before pressurising. At a hoop stress of
22 L{N/Mz, plate 25 shows the initiation and propagation at the
ends of the slot, cracks between the fibre/matrix interface and
parallel to the fibre direction. This is tﬁe normal propagation
mechanisnm for the strong fibre/weak matrix systems. Plate 26
illustrates the crack propagation in a more advanced state,
followed by feilure as shown in plate 27. This was not the
ultimate pressure which the tube could sustain, but the pressure
at which leakage occurred due to the breakdown of the adhesive
holding the thin copper sheet in place,

The series of plates shows that the onset of failure
was similar, in some respects, to the tubes containing no
defects, but the initiation was started at the ends of the slots.
The stress concentration at the ends of the slots was evidently
more severe than the stress concentration at the reinforced

ends.
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6. 3. 2. 2. Plain * 30° helix sngle tubes with half through

wall slots (K and M tubes).

The failure mechanism for the K and M series of tubes
was interesting, since it was observed that the initiation of
failure did not always take place in the vicinity of the ends
of the slots. Very rapid initiation and growth of cracks
sometimes took place, particularly for the tubes containing
short slots, at the ends of the tubes, close to the reinforcement.
When this occurred, small cracks were initiated at the ends of
the slot, simultaneous to the growth of the previously initiated
cracks. The initiation and growth of the cracks from the slot
ends will be discussed first.

The average value of V_, for these tubes was 0,304

21
which resulted in a value of S of 1.62, for equations 1 and 2.
Another equation was considered for interpretation of the data

for these tubes, equation 3. This did not contain a correction

factor for crack mouth bulging.

Equation 3
b K
O'H = C

(o)
Values of o; were computed using equations 41, 2 and 3 for
increasing wvalues of ¢ ﬁnd a fixed Kc value obtained from the
test data of tube M1. The values of Kc were 5,13, 5.11 and
L2 MN.M-%ftw equations 1, 2 and 3 respectively. Fig. L4
shows the variation of G; with ¢, for the three equations,
and the experimental points,
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The theoretical lines for equations 1 and 2, while very
similar to each other, did not lie near the experimental points.
The line for equation 3 was a much better approximation to the
data, It is apparent that, for this system, a correction factor
for crack mouth bulging is not needed. The & 13% probable error
on 0’; could explain the 'scattering of the points except for
the result from tube K4i. Local thickening of the tube, in the
slot region, may have caused the value of 6; to be high. For
practical purposes the use of equation 3 for the prediction of
failure pressures is reasonably adequate.

The data could not be represented similarly to those of
reference 3 since equation 3 was not of the required form. The
EE values obtained for each tube from equation 3 were plotted
against crack length, This is illustrated in Fig. 45, The figure
shows that the Kc values obtained using equation 3 were reasonably
constant about a mean of 4.5 MN.M_gand 95% confidence limits of
1.0 Lm.r.:'%. This is further confirmation of the validity of the
use of equation 3 for determination of Kc and subsequent pred.iction
of failure pressures.

The above presents a useful means of prediction of the
initiation and growth of cracks from a half through wall slot
in a tube of this type. Its use is limited, since the initiation
of fajlure of the tube as a whole can be governed by changes in
section. The ultimate hoop stress for tubes containing relatively

short slots was similar to the ultimate hoop stress for tubes

without slots (H tubes). The failure hoop stresses were subjected
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to a statisticel analysis, the results of which are presented

below:
mean ultimate variance
hoop stress
H tubes (no slot) 66.96 1/U° 1.86
K and M tubes (half through 63.92 MN/MZ 10.70

wall slot, c<1.5cns)
Ratio of the varisnces ='5,75
'F!' ratio at the 95% confidence level = 6.59

The ratio of the variances indicates that, at the 95%
confidence level, there was no significant difference between the
ultimate hoop stresses for tubes with or without short slots,
(c <1.5cms). A similar analysis was carried out for tubes
containing slots longer than this, ¢ >1.5cms < 3.5cms. The results
were as follows:

mean ultimate variance

hoop stress
K and M tubes (half through 2
46,73 MN/M 131.61

wall slot, ¢ 41.5cm 3,5cm)
Ratio of the variances = 70.76
'F' ratio at the 957 confidence level = 5.19

The ratio of the variances indicates that, at the 95%
confidence level, there was a highly significant difference
between the ultimate hoop stresses sustained by tubes containing
long slots and those not containing slots,

The above illustrates that, if a short, half through wall
slot (¢ <1.5cms) was present, it did not have any significant
effect on.the ultinate hoop stress. If a longer slot (¢ >1.5cms

< 3.5cms) was present, then this had a deleterious effect on



the ultimate hoop stress.

This was confirmed by observations of the mechanisms
of failure. Plates 28 to 31 show the sequence of failure of
tube K1, which had a half through wall slot of length, 2c = 1.318cn.
Plate 28 shows the tube before pressurising. Plate 29 shows the
initiation and growth of a crack from the end of the tube,
near the reinforcement. At a higher pressure, plate 30 shows the
growth of this crack and the initiation of a small crack from
the end of the slot. Plate 31 shows that, at failure, the growth
of the crack from the end of the slot was not extensive. The
behaviour of this tube was typical of those tubes with very short
slot lengths.

Plates 32 to 35 show the sequence of failure of tube K3,
which had an intermediate slot of length, 2c¢ = 3.238cms, Plate 32
shows the tube before pressurising. Plate 33 shows the initiation
of cracks from the end of the slot as the tube is pressurised.

At a higher pressure, plate 34 shows the growth of these cracks
and the initiation of another crack, from the end of, and around
the tube. At failure Fig 35 shows substantial growth of both
cracks.

Plates 36 to 39 show the sequence of failure of tube M4,
which had a long slot of length, 2c¢ = 4.878cms. Flate 36 shows
the tube before pressurising. Failure was initiated by cracks
forming at the ends of the slot as shown in plate 37. At a
higher pressure substantial growth of these cracks is shown

in plate 38. The ultimate failure, shown in plate 39, shows
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that no cracks were initiated from the ends, near the reinforcement.

These series of plates illustrate that, for the K and M
tubes containing half fhrough wall slots:

1) For small slots failure was due, almost entirely, to cracks

initiated at the ends of the tubes, close to the reinforcement.
2) For intermediate slots failure was due to cracks initiated,

both at the slot tips and at the reinforcement.

3) For large slots failure was due, almost entirely, to cracks

initiated at the slot tips.

For intermediate slots, the stress concentrations due to
section change and presence of a slot appear to be of a similar
megnitude., At the ends of the tube bending moments are set up
as the tube distorts. It is possible to calculate the magnitude
of the stresses in these areas, but this is beyond the scope
of this thesis. |

The behaviour of the tubes illustrates that the presence
of even large defects may not be as important, for design purposes,
as local stress concentrations due to section change. In most
circumstances, defects of the size introduced into the tubes for
these experiments, will not be present. Clearly, large section
changes and small root radii must be avoided, wherever possible,

in the design of pressure vessels with this type of lay up.



~75=

6. 3. 2. 3. 50% % 30° and 507 % 90° helix sngle tubes with full

through wall defects (A and D tubes).

The average value of V,_,, for tubes A and D was 0.218,

21
which resulted in a value for S of 1.66. KE values were calculated,

using the data for tube D2, for equations 1 and 2. The two Kc
o,
values were 10,56 and 10,50 MN.M Z.for equations 4 and 2 respectively.

o
Fig. 46 shows the veriation of %

0
experimental values of %y and ¢ are illustrated also.

The theoretical lines for the two equations are almost

with crack length, c. The

identical and agree well with the experimental points. In nearly
all cases the actual failure hoop stresses were higher than
those obtained from the equations. The discrepancies with the
theoretical lines can nearly all be explained by the probable

W
error on the measurement of ¢, of % 13%. The experimental point

H
for tube A5 shows the most discrepancy and may be due to a local
thin part of the tube causing an underestimation of the value

of é;. It is apparent that the equations may be used, with a
reasonable degree of accuracy, for the prediction of failure
pressures for tubes with this lay up and containing full through
wall defects,

Figs. 47 and 48 show graphs of (c%:szc)-1 versus cz/Rt
and c2/R2 50tanh R/50t for equaticns 1 and 2 respectively. The
graphs are very similar and show that nearly all the experimental
points lay below the K = 10.50 and K = 10.56 L{I\T.M—% lines for

the respective equations. The experimental point which lay
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away from the line was the one for tube A5. The discrepancy

shown by this point in Fig. 46 is highlighted by this means of
presentation. These figures give confirmation to the value of
using the equations as a basis of design. Equation 1 is as useful
as the more complex equation 2.

Plates 4O to 43 show the series of events leading to the
failure of tube A3, which contained a relatively short slot of
length, ¢ = 0.821cms. An interesting failure mechanism for this
system was noted., Plate L0 shows the tube before pressurising.
The cut, hoop windings first started to bresk away from the £ 30°
layers. This was due to the inability of the interface to sustain
the strain as the = 30° layers started to bulge. This is shown in
plate 41. To contain the volume of liquid pumped into the tube,
further deformation of the < 300 layers was necessary. To deform
further these layers had to push against tﬁe layers of hoop
winding which were still intact., This resulted in the cut, hoop
winding secticn splitting away completely, as shown by plate 42,
Since the defect was relatively short the layers had to deform
a long wey to contain the liquid. The bulge deformed to its minimum
diameter, i. e. it became a bulge of semi-circular cross section.
The stresses required to deform the bulge further were evidently
greater than those required to break off the hoop windings.
Further pressure resulted in the removal of hoop windings and
failure as depicted by plate L43.

Plates 44 to 47 show the breaskdown of the interlaminar

interface of the hoop and z 300 layers around the slot present
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in tube A5. The slot length, ¢ was 2,232. Plate 44 shows the slot
before the tube was pressurised. Plate 45 and 46 show the

circular growth of the debonding of the interface as the tube is
pressurised. The growth of the circles impinged and the whole
broke away as shown in plate 47. local stress concentrations
existed, at the notch ends, as the z 300 layers tried to deform
outwards., This helps to explain the initiation of the debonding

in the proximity of the slot tip, and its subsequent growth towards
the centre of the slot.

Plates 48 to 51 show the sequence of events leading to the
failure of tube A4, which contained a slot of length, ¢ = 1.802cm.
Plate 48 shows the tube before pressurising. Plate 49 illustrates
that the hoop windings sterted to break away as the tube was
pressurised. The s 300 layers had to deform to contain the
liquid which was being pumped into the tube. The shape of the
bulge which was created by this is shown in plate 50. Since the
slot length was relatively long the bulge did not reach the
critical semi-circuler cross section before failure, as shown by
plate 51.

The feilure hoop stresses, even for small slots, were low
compared with the failure hoop stresses for this type of tube
without slots, (approximately 10%). The cutting of the hoop
windings had a very deleterious effect on the performance of
the tubes and made them quite notch sensitive; the tubes
containing no hoop winding only showed a lowering of failure hoop

stress by about 507 for the short slots. Since the hoop windings
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are present on the outer layers, care must be taken in the handling
of the tubes to avoid drastic decreases in performance of damaged

tubes.
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6o 2¢ 3. he 50% £ 30° and 50% ¥ 90° helix angle tubes with

half through wall slots (B and F tubes).

The average value of V_, for tubes B and F was 0,211,

21
which resulted in a value for S of 1.66. K, values were calculated
using the data obtained from tube B1 for equations 1 and 2. The

two K values were 9.00 and 8.96 M MCE for equations 1 and 2
respectively. Fig. 49 shows the variation of G:I with crack length, c.
The experimental values of or and ¢ are also illustrated.

H

Similarly to previous discussions the theoretical lines for
the two equations are almost identical and agree reasonably
well with the experimental results., Nearly all the actual failure
hoop stresses were higher than the ones obtained from the equations.
The probeble error estimate of Z43% on 5; could account for
the discrepancies in all of the results, except those for tubes
B3 and B5. It was necessary to estimate the depth of slot
which would cut through all of the hoop layer. This was determined
by measuring the hoop thickness in the walls of the tubes.
Difficulty was encountered in obtaining an accurate depth of
cut since the surface of the tube was slightly corrugated. Small
inaccuracies in the slot depth could result in large errors
g
This mey explain the high values of failure hoop stress measured

particularly if the hoop winding was not completely cut.

for these tubes. The equations are useful for prediction of
failure pressures for this type of tube and containing a half
through wall defect.

L]
Figs. 50 and 51 show variations of ( a.2rc)” with c°/Rt

H
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and c?/R2 50tanh R/50t for equations 1 and 2 respectively. The
graphs are very similar and show that all the points, except

two for tubes B3 and B5, lie between a band width of K = 8 and

K, =12 MN.M"%, The figures confirm thet equations 1 and 2 are
useful for prediction of failure pressures. For design purposes,
the line Kc =8 MN.M-Z‘contains all the failures. Similerly to

the A and D tubes, the cutting of the hoop windings has drastically
reduced the pressure holding capabilities of these tubes.

The failure mechanism was slightly different flor different
slot lengths as shown by the A and D tubes. Plates 52 to 59 show
the series of events leading to the failure of tube M. This
tube had a relatively short slot of length, 2¢ = 1.234cm, Plate 52
shows the tube before pressurising. As the tube was pressurised
the interface between the cut, hoop layers and the I 30° layers
was broken as the & 30° layers deformed. Plate 53 shows the
cut, hoop layers after they had broken away. As further liquid
was pumped into the tube the volume was taken up by bulging of
the ¥ 30° layers. The pressure remained fairly constant at this
point. The deformation of the layers is shown in plate 54, More
liquid caused the layers to bulge further, until the critical,
semi-circular cross sectioned bulge was reached. This is shown
in plate 55. The stress required to decrease the radius of the
bulge waé greater than that to remove some of the intact hoop
windings. The removal of some of these windings, with the
subsequent relief of stress, is shown in plate 56. As more liquid

was pumped in the bulge reached its new critical semi-circular
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cross section, shown in plate 57. Plate 58 illustrates that, more
hoop windings were then stripped away. This process was repeated
until failure occurred as shown in plate 59, This behaviour was
typical for tubes containing short slots, (2c <2.0cm).

The tubes with longer slots did not display this behaviour
of splitting of hoop layers ahead of the slot. Plates 60 to 63
show the sequence of events leading to the failure of tube F3.
This tube had a relatively long defect, 2c = 2.864kcm. FPlate 60
shows the tube before pressurising. Similarly to the tubes with
short slots, the pressure first caused the cut, hoop layers to
be debonded and forced away from the £ 30° layers as shown in
plate 61. Plate 62 shows the 2,307 layers beginning to bulge
out and decrease the radius of cross section. The bulge did not
reach the critical semi circular cross section before failure,
depicted by plate 63.

Tube F1 had a shorter slot than tube F3, but after
- removal of hoop layers the tubes were similar. The hoop windings
continued to be removed, even after the slot length was greater
than that of tube P3. The * 500 layers were strained and weakened
to allow the initial removal of hoop windings and deformed
easily to the critical semi-circular cross section. This resulted
in continual hoop winding removal and gross bulging at failure

of the tube.
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6¢ 3+ 2. 5+ 50% A 300 and 5006 - 900 helix angle tubes with

quarter through wall defects (C and G tubes).

The average value of for tubes C and G was 0,222, which

21
resulted in a value of S of 1.66. Another equation was considered
for the interpretation of the data for these tubes. This was

equation 3 which did not contain a correction factor for crack

mouth bulging. The equation was:

Equation 3
or KE
= i
H (e)?

K& values were calculated using the data from tube C4 for

equations 1, 2 and 3. The K_values were 13.25, 13.20 and 11.00 R
for equations 1, 2 and 3, respectively. Fig. 52 shows the variation

of o% with crack length, ¢ for the equations. The experimental

points are also illustrated.

The theoretical lines for equations 1 and 2 are almost
identical, but underestimate the failure hoop stresses for tubes
containing long defects. The line for equation 3 overestimates the
failure hoop stresses for most tubes. For quarter through wall
slots crack mouth bulging is not as pronounced and the correction
factor, given by Folias, appears to be too large. The scatter of
the results is probably due to the difficulty of obtaining a
reproducable slot depth for these tubes. Small differences in
slot depth have a pronounced effect on &;. Using equations 4 and 2

would underestimate the failure pressures which the tubes could

sustain for these types of defect.
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Figs. 53 and 54 show graphs of ( t:\E;'_Iz"i'l't::)"AI versus cz/Rt
and 02/R2 50tanh R/50t for equations 1 and 2. The graphs are
very similar and show that most of the points lie around the
K, =13 and K, = 15 MN.M S1inss. The method of presentation
emphasises the scatter shown by the previous means of interpretation.
The graphs illustrate that designing, using equations 4 and 2,
would underestimate the usable strengths of the tubes. Kc values
were calculated using equation 3 for the experimental data. This
resulted in a mean K  value of 10.14 !.m.m'§ with 95% confidence
limits of * 4.6 MN.M"Z . This equation is of little use for the
prediction of failure pressures for this type of defect.

Plates 64 to 65 show the sequence of events leading to the
failure of tube CL. This tube had a relatively short slot, 2c =
2.104cm. Plate 64 shows the tube before pressurising. Similarly
to the other tubes containing a hoop winding, the failure
mechanism began by debonding of the cut, hoop layers from the

‘intact hoop layers. This is shown in plate 65. Voids in the - 30o
leyers are also shown. The layers were sirained more than they
could sustain, but were held by the hoop layers. iWhen failure of
the hoop layers occurred, the z 300 layers quickly deformed to
the critical semi-circular cross section and began to remove hoop
layers at either side as shown by plate 66. It is clear that this
mechanism of hoop layer removal at either side of the bulge was
promoted easily when the b 300 layers were strained well past their
normal maximum level., This was confirmed by the similar mechanism
shovn for longer slots. Previous tubes containing long slots did

not show this mechanism. The hoop layers were removed continuously
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as the bulge grew until failure occurred as shown in plate 67,
Figs. 68 to 71 show the sequence of events leading to the
failure of tube C2. This tube had a slot of length, 2¢c = 2.756cnm.
Flate 68 shows the tube before pressurising. As before the pressure
resulted in the breaking of the bond between the cut, hoop layers
and the intact, hoop layers. ?he tube was capable of sustaining
a pressure high enough to severely strain the z 300 layers. FPlate
69 shows the voids in these layers. \hen the pressure was high
enough to break the hoop layers, the 2 300 layers could deform
quickly to the semi-circular cross section necessary to remove
hoop layers. This is shown in plate 70. This plate was taken at
the moment when the hoop layers failed. Almost simultaneously,
the £ 30° layers deformed end stripped hoop layers at either side.
The bulge continued to grow, with the removal of hoop layers, until
ultimate failure occurred as shown in plate 71.
The failure mechanisms illustrated by the tubes containing
- hoop windings, clearly illustrated that the hoop leyers should not be
damaged before a tube is put into service. Protection of the hoop
layers is warranted if' drastic reductions in the pressure holding

capabilities of these tubes are to be avoided.
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6o 4. Cotaining K = values from the compliance testing.

Section 6. 3. illustrates there was strong experimental
evidence that constant Kc values could be obtained for the
materials which were the subject of this work. The KE values
were obtained from similar equations to those used for metals.
The expression

K, = a; (nc)%'(1 + 8 c%/Rt)% eosese(1)

could be used to give reasonably constant values of Kc for
wost of the tube systems. This expression is similar to that
used for metal pipes containing axial cracks of length, 2c:

W 1
KC = GH (YJ 02 ....-.(2)

The constant Y is given by:
Y = 4.77(1 - 041(2¢/1) + (2q/L)2)(1 +8S cz/RtJ%
sossse(3)
and includes the Folias correction factor. For very long
pipe lengths the value of Y can be approximated to,
(ﬂ)% (1 +5s c?/Rt)%, which is consistent with equation (1)s
‘The compliance measurements carried out here could be used to

obtain KE values for the two expressions:

IRY EL ac'* %

K = c < = ceenne J-I-
< ¢ S 2c(1—92) a ) (see Appendix(1g
s 2 1 3
K, = o (o)? (L __alwm) iz

CD2(1-V2) de

(after Underwood et A1(45))
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It is convenient to discuss the use of each equation separately.

6. 4. 1. Crack opening displacement messurements.

Rqﬁations (2) and (4) can be equated to each other by
assuming that the expression (3) will hold for the tubes
pressurised here. This results in:

1.77(1-0.1 (20/1)+(2c/L)2) (145 c2/Rt)Z

EL act! )%

: 2¢(1 —\52) &

By algebre and integration an expression for C'' is

obtained:

C''* = (148 cz/Rt)E —(-1,6'—"2-1 (3.17c2—1.?1c3+51.95c£*

5+281.2206)

-16.70c

Using average values for the constants in the gbove equation
for tubes with and without hoop windings, two graphs of C'' versus
crack length, ¢ were obtained. These are shown in Figs. 55 and 56.
The experimental values of compliance for the individual tubes
are illustrated also.

The figures show that, in the range, ¢ = O to 5cms, the
rate of change of compliance with crack length is very small.
The experimental values were slightly higher than the theoretical

ones. The determination of rates of change of complisnce for

this range of crack lengths is difficult.
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6e 4o 2. Volume change measurements.

Equations (2) and (5) can be equated to each other, by
assuning that the expression (3) holds for the tubes which are

the subject of this work. This gives:

1.77(1-0.1(2¢/L)+(2¢/L)2) (1 + S o2/Rt)Z

ZAT( 2 g2 a(Av/p) )—5
(1-¥F)en®

By algebra and integration an expression for V/P is obtained:

4 2
AI/P = (148 ¢*/Rt)Z -(ﬁ%:‘)— (1.57c%=0.84c7425, 706"
OBt

3 4439.200°)

-8.27c

Using average values for the constants in the above equation,
for tubes with and without hoop windings, two graphs of AV/P
versus crack length, ¢ were obtained. These are shown in Figs.
I57 and 58. The experimental values of AV/P are illustrated also.

In the range of, ¢ = 0 to 5 cms, the rate of change of
AV/P with crack length is very small. The experimental values
agree with the theoretical line reasonably well, but it must
be remembered that the scale of the Y axis is large compared
to these, To determine the rate of change of compliance with
crack length is seen to be very difficult for this range of
¢ values, since it is so small.

Agreement between the theoretical lines appears to be
better for volume change measurements than the displacement

method. The volume change increments are larger than the

displacement increments and may serve to reduce overall errors.
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7+ Conclusions.

7+« 1. Young's Modulus and Poisson's ratio.

The use of the two theories presented by Wallis and Tsai
was found to be limited. Neither theory was significantly better
for the predictions and both were found to be poor for Poisson's
ratio predictions. In general the predictions of Young's moduli were
lower than the actual moduli for both theories. Estimates of the modulus
for both theories were conservative and components could be overdesigned.

7. 2. Compliance measurements.

Both methods of estimating the compliance relied on several
assumptions and this must be remembered when reaching the following
conclusions. The compliance of the tubes was found to increase with
increasing slot length for both measurements. The rate of change of
compliance was greater, the greater the depth of the slot.

7. 3. Pressure testing of the tubes.

When designing pipework for the conveyance of liquids under
pressure the engineer needs to know what defect size levels are
tolerable and when section changes are critical. Section changes are
inevitable in such places as junctions between one pipe and another.
This is normally carried out by the use of flanges which are bolted
together.

This work has shown that mection changes can have an important
influence on the failure of glass reinforced plastic tubes. Both
the plain helical and the mixture of helical and hoop wound tubes
failed at the ends near to the reinforcement. Indeed it was found
that for a plain helically wound tube containing a half through wall
defect, the stress concentration due to section change could be more
important than the presence of the slot. Defects arising due to

mechanical damage may be similar to the part through wall defects
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introduced into the tubes.

The failure strength of a tube containing no artificial defects
was found to be increased by a factor of ten by the incorporation of
50% hoop windings. This is to be expectedlsinCe there was no longitudinal
stress present because the ends of the tubes were allowed to slide on
the seals. The axis of the hoop wihdings was in the direction of the
hoop stress. Damage of the hoop windings is critical because of this
and when testing tubes with artificial defects present the failure
hoop stress decreased markedly.

Defects are always present in structural materials and are
expected in glass reinforced plastic tubes due to the method of
manufacture and curing. For isotropic materials linear elastic fracture
mechanics has been successfully applied for the prediction of failure
of plates and pipes containing defects. It has been found that the
equations can be used for the tubes which were the subject of this
work for most of the defect types. Deviations from these equations
were found when the defects were only part through the wall of the
tube. This was probably because these defects were treated as though
they were full through defects. The design of pipes which contain
part through defects would be conservative. The equations, which
contained Folias correcfion factors for crack mouth bulging, are
useful to the engineer for designing pipe systems. It must be
remembered that a change in the helix angle or lay up may affect the
response of the tubes and invalidate the use of the equations.

All the tubes tested here had no longitudinal stress present
due to the free ends. Whilst this applies in many circumstances it
must be remembered that pipes could be subjected to biaxial stresses

due to restraints. These restraints may derive from the jointing
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systems and supports or the tubes may be buried. It is important that
the method of loading is taken into consideration when designing the
pipe system.r

A further test for the validity of the use of the equations was
made by attempting to obtain the geometrical factor,Y for this material.
It was found that the range of crack lengths studied here was too
small for the rate of change of compliance with crack length to be
measured accurately. Y calibration curves could only be determined
by testing tubes in the range ¢ = 5 to ¢ = 30 cms(i.e. ¢/W = 0.1 to

c/W = 0,6).
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8. Suggestions for further work.

8. 1. Compliance Testing,

Compliance tests should be carried out on tubes with
larger slots than those in the work presented here. Y calibration
charts, determined in this way, could be compared with those
obtained from equation (3) in 6.4. It is suggested that the
variation of compliance obtained from a range of slot lengths
from ¢ = 5 to ¢ = 30cm be investigated.

8. 2. Subjecting tubes to internal pressure.

The investigation into the effects of various types of
defects on the two types of tube has been fairly exhaustive.
The effects of the presence of these types of defects on tubes
of other ley ups should be determined. Since the cutting of the
hoop windings has been found to have a marked deleterious effect
on the failure pressures of the tubes, it is suggested that
various hoop lay ups be investigated. Damage to the tubes is far
more likely on the outside and it is important to find a glass
lay up which does not incorporate 1007z of the hoop windings there.

A similar test programme to the one presented here should
be created for tubes containing mixtures of carbon and glass
fibres at various helix angles. It may be found that a thinner
carbon fibre hoop winding inside the tube could replace much of
the glass hoop layer on the outside and thus produce a less
damage sensitive tube, Pressure tests should be carried out on
tubes with carefully designed lay ups of the two fibres in

order that an optimum be found.
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Appendix 1.

Derivation of the equation to give Kc from crack opening

displacement measurements.

Consider an infinite cylindrical pressure vessel containing
an axial slot of length, 2c. The slot can increase in length when
the rate of change of energy with crack length, d8/dc is equal

to the rate of release of elastic energy. i. e.

dE
E'c- = Gt 000000(1)
where G is the rate of release of elastic stored energy per unit
area of crack advance, and

t is the wall thickness of the vessel.

£ - #° a/ac _ SR

where dC/dc is the rate of change of complianée with crack length,
and F is the hoop force applied to the pipe of length,L.
i. e.

AL N evsees(3)
Defining compliance, C as u/F; where u is the displacement
resulting from the applied force F,

SRR T T sseesell)
Combining (3) and (4) we obtain:

u

C = B'EL-E- -c---o(s)
let gt = CL Sineeskh)
then

Cl = _ll-‘E o-ocoo(?)

%y
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Combining (1), (2), (3) and (7) we obtain:

ot Aut (dht)zL ac' /ac canenin)
but,
iy = . .o jﬂ-"z veeeen(9)

where K is the stress intensity factor.

substituting (9) for G in (8) we obtain:

K (1-2)%

= 3 %(aﬁt)zL ac'/ac veees(10)
or, E(GHt)zL act L
K = ( )2 ..o.-(‘H)
2t(1-v%) 9°
let C'' = C't ceses(12)
Then Q%él x t§2' coees(13)

substituting dC''/de for taC'/dc in (1) gives:

EO'HL ace %

=
1}

2(1_\’2) de
or'y
W EL act! 5
K = G Y
.c H 2(1_\,2) de

where 4C''/dc is the rate of change of compliance at crack length, c.
The compliance C'' is the slope of the line obtained on the

lot of o, versus crack opening displacement.
p H P P



