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Summary.

An investigation into the effects of artificially induced
defects on the failure mechanisms of glass fibre reinforced
plastic tubes has been carried out. A fracture mechanics approach
was used in the analysis of the results. The failure pressures
of the tubes were found to obey equations in existence for
isotropic materials. The failure mechanisms of the combined
tube and defect types are discussed. The mechanisms were found
to vary according to these variations.

The values of Young's modulus and Poisson's ratio
determined for the compliance analysis were compared to the
predictions of two theories. This indicated that the theories
were reasonable for the predictions of Young's modulus, but
of little use for the prediction of Poisson's ratio. The
defect sizes were too small to obtain an accurate compliance

enalysis to be compared to those of isotropic materials.
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Nomenclature,

|Al  coefficient matrix

a radius of circuler plate
c contiguity factor, or compliance where applicable
(. % surface crack length, or critical where used as a subscript

D inside diameter of thin walled tube

IDl  coefficient matrix

E . Young's modulus limited by subscript

F load on circular plate

£ subscript fibre

G shear modulus, limited by subscript, or elastic strain
energy release rate, limited by subscript where applicable

H subscript for hoop

h  thickness of a circular plate, or 5 thickness of composite

layer, where epplicable

h individual thickness of composite layer

K fibre misalignment factor, or stress intensity factor limited
by subscript

L length of tube subjected to internal pressure

k| length of individual fibre

M Young's modulus of matrix

Ml coefficient matrix

subscript for matrix

pressure

critical pressure

W oW, W

inside radius of thin walled tube
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(iv)

constant included in the Folias correction factor =
subscript for transverse

tube ﬁall thickness

volume fraction limited by subscript

width of tensile specimen

subscript for working stress

direction along axis of tube

hoop direction in tube

radial direction in tube

Shear strain limited by subscript

deflection in a circular plate

strain limited by subscript

angle of fibres in tube axis and direction subscript
cos>0

sin29

sinBcosb

Foisson's ratio limited by subscript

normal stress limited by subscript

critical hoop stress

shear stress limited by subscript

0.&9(12(1-v?))%
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Chapter 1.

1. Introduction.

In recent years man has made many great steps
forward in the fields of supersonic flight and manned space
exploration. Complementing these advances has been the need for
high strength/weight ratio and/or high modulus materials for
structural members in the craft for these. Interest has been
aroused in composite materials consisting of stiff fibres in
a relatively soft and weak matrix. Work has been carried out to
obtain a knowledge of the stiffening and strengthening mechanisms
in such composites, but little is known about the fracture
characteristics of many systems.

Difficulties are experienced, when manufacturing fibre
reinforced materials, in obtaining a defect free composite.
Defects, such as voids, fibre/fibre contact, inhomogeniety and
debonding of the fibre/matrix interface, are not uncommon.
Catastrophic failure of such composites will often be initiated
at one, or more, of these defects. For homogenous and isotropic
materials, such as many metals, failure stresses and critical
sizes of defect can be predicted, with accuracy, from well tried
and tested fracture mechanics approaches. Composite materials
are, at best, orthotropic and often anisotropic and the application
of linear elastic fracture mechanics to these systems has not
been fully determined. Clearly there is a need to establish the

response of these systems to this approach.
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An important application of these materials is the
filament wound, cylindrical pressure vessel. VWthen a cylindrical
pressure vessel, containing an axial defect, is subjected to
internal pressure the combined effect of the hoop stress and
the radial stress causes bulging of the mouth of the crack.
This causes fracture to initiate at a lower hoop stress than
the axial stress in a flat plate,with a similar defect,
subjected to pure tension. For isotropic materials this has

been rigourously analysed(1’2’3'28’29’30’51’32’33)

and factors
have been evaluated to correct for this bulging. It does not
necessarily follow that these analyses will apply to the systems
which are the subject of this work.

In this investigation a number of filament wound, glass
fibre reinforced plastic tubes have been subjected to internal
pressure, The tubes were tested with and without artificially
produced, axial defects. Tubes of two different winding
-configurations were used. These were:;

1) Helical ¥ 30° angle of wind and

2)50% helical ¥ 30° and * 90° angle of wind.

Three depths of defect were investigated, each of five axial
lengths.

It was found that, in general, the behaviour of the tubes
agreed well with the analyses of the above workers. Interesting
failure mechanisms for each tube system were observed and
photographs of the history of the failures are presented. For

the fracture mechanics analysis, Young's modulus and Poisson's
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ratio measurements had to be made., Comparisons of theoretical and
observed measurements of these were drawn for two theories.
Comparisons of two methods of compliance measurement for the

different tube categories were also made.



Chapter 2.

2. Iiterature Survey.

2+ 1. The'ngperties and response of fibre reinforced composites.

2e¢ 1. 1. Basic considerations of the strengthening mechanisms

of fibre reinforced comrosites.

In recent years we have seen the advent of many new
materials for use in aerospace applications where a high
strength and /or modulus to weight ratio is essential., One
such material is the fibre reinforced composite consisting
mainly of two components - strong, stiff fibres in a relatively
weak matrix, but containing voids and defects due manufacturing
process, Clearly theories are needed which will predict
composite strengths and physical properties accurately from
the basic properties of matrix end fibre,

The simplest fibre composite consists of discontinuous
fibres embedded in a resin matrix. The load is transferred
-to the fibres by means of shear stresses set up as the resin
attempts to flow around the fibres., In the fibre the stress
veries as shown in Fig. 1. The shear stresses are greatest
at the ends of the fibre and are zero at the mid point. If
the fibre is longer than the critical elastic aspect ratio
(1/'&)crit the tensile stress qy is constant along the length
of the fibre, More rigourous solutions to the simple model
illustrated in Fig. 1 have been given(5’6’7’8’9) amongst

others (see Fig. 2.).
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As illustraeted in Fig. 1 the longer the fibre the
greater the load carrying capebilities of it and hence the better
the properties of the composite. Also the presence of shear
stresses at the ends of the fibres will favour crack initiation.
Continuous fibres are therefore more desireble. For continuous
fibres and elastic behaviour the nominal stress obeys the
rule of mixtures:

o = (Bev, +Em(1 - vf))
At higher stresses the matrix deforms plastically
and:
6 = Ewv, + (1 -vf)crm(ﬁ)
where am(ﬁ) is the true flow strength of the matrix at strain
Most continuous fibre composites usually contain some discontinuous
fibres prior to fracture., These arise due to:
1) Fracture of fibres during fabrication,
2) Fracture of individual fibres during loading.
Thus the criteria for failure in discontinuous fibre composites
can not be neglected since these are nearly alweys present
and may effect the initial crack propogation.

The fibre models illustrated in Fig. 2 are useful for
prediction of behaviour when the applied stress is parallel
to the main fibre direction. Many applications exist when
the applied stress is at an angle to the fibre direction. The
most notable example of this is the filament wound component.
Many theories are available for prediction of behaviour in
this more complex case. Two of these are examined and discussed

in 2. 1. 2.
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H. L. Cox, 1952 I Fibre

Elastic fibre completely bonded into an extensive
elastic matrix. Results derived for two and three dimensions.

J. 0. Outwater, 1956(6)
Fibre

hin layer of
2 matrix

Assumes that the maximum interface shear stresses are
a function of the interface pressure developed by the differential
shrinkage of the matrix on to the fibre.

N. F. Dow, 1963(7) | pivre |V

7

V

Considers cylindrical matrix with fully bonded elastic

fibre. Implication is that straight lines remain straight after
deformation and two or three dimensions can be analysed.

W. B. Rosen, 1961+(8)
Matrix Fibre

[o e e — —_—»C

Perfect bonding is assumed at the interface -of fibre and
matrix subjected to tensile stress only. The matirix only carries
shear stress.

A. Kelly and W. R. Tyson,1965%) 5

O —

Elastic fibre in a plastic matrix yielding according to

the Tresca criterion.

Fig. 2. Fibre models used for developing approximate analyses
(Allison and Holloway(10))
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2. 1. 2. Prediction of the properties of angle-ply fibre

reinforced composites by two workers, Wallis(11) and Tsai(13).

In this section the prediction of the properties of
helically wound glass fibre reinforced tubes is investigated.
The ork of wartas' T ang meat$12) 4o connined 4ol conpareds
2. 1. 2. 1. Vallis.

Wallis utilises the Gutler''2) model and Pig. 3 shows
the element for an orthotropic fibre. From the properties of
fibre and matrix cE1,E2,\a,vz,vj,Em,vm,vf) a stiffness matrix

M is obtained where:

% Wy ¥y ¥is €g
S i~ o My Uyg €y
Tot Moy (Map Koy Yot

It is necessary to transform the equation from the ©
and t directions to the X and Y directions. The stress trans-

formation is:

x 0
o& = A o,
Txy Tot
where:
91 92 —293
A = 8, Gh 293
: e ol e
The reverse transformation for the strains is:
Ee i S
e | = A Ey



X / Unit Cube

Fig, 3. Cutler element with orthotropic fibre.



This yields:

o €x
X
o = A M A
y €y
Txy Yy
Defining el = |A] |u| |4 R
we cen obtain M' and
L]
S )
- 1
x IR
L]
P
o 1
y Moo
o 1 L 1
Sl Lo Vetlg2
o 1 - 1
and B = M3, v

2e Ve 22 2 Toal.

Tsai first calculates properties in the fibre direction

‘and transverse to it then transforms to the required axis.
By the law of mixtures:

E, = (veEp + (1 -v,)E K (1)
where K is a fibre misalignment factor.

(1-c) &

K, vf(ZKm+Gm)vf + KV (2Kf+Gm)(1—vf)

=
1

Rf(sz+Gm) - Gm(xf - Km)(1 - vf)

Kmvm(2Kf+Gf)(1-vf) + Kfvf(sz+Gf)vf

+C : -
Kf(25m+Gf) + G-f(xm KTJVf

where:
Ef E

E E
; m g m .
Gf o 211+vfj 4 Gm 2i1+vhi L Kf i 221-¥f) ;i Km % 2{1—vm5

C is a contiguity factor of the order of 0.2,

(2)
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Tsaji found that in most cases the law of mixtures equation:
VL = VpV¥p ¢+ (4 - vf)vm

was accurate to = 5% of the values computed from the more

complex equation (2). For computing values of Ep thtfollowing

equation was used:

E, = 2[1 = Vet (V= V) - v,)]
Ttk Kf(ZKm: + Gm) - Gm(Kf - Km)(‘l - vf)
(2Km + Gm) + 2(Kf - ij(‘l - vf)

(2K +G.) % Gk » KU -v.)
Relek, + G o\ = % f} (3)

(21{11:l + Gf) - 2(1cm - ‘f)(‘l - vf)

+ C

VT can then be obtained from the well known reciprocal relationship:
V.
L
VT = ET i (l")
L
The shearing modulus is given by:

26, - (G, -G )1 =-v,)
f £ m f

= (4 -cC)&
(1 -0, =6, —c )0 -v,)

(Gp +6) = (6 -6 )01 - v,)

G

+ CG ’ (5)
f (Gf + Gm) + (Gf Gm)(1 vf)
The transformation equations(1h) are:
L 2V, L
%_ - qgs ] . [;j -= L Sin2900329 4 sin '@
x T R | Eq
4 2v L
%— 4 "‘é“ ] ‘[c; - I‘:\ sin°6c0s26 + = 9
Y L i T
Vg -v.x VL 1 1 +\’L 1 +VT 1 >
B "R R e G e
x Yy L L T IT
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2. 1. 3. Comparison of the predictions of Young's modulus

and Poisson's ratio for a filament wound glass reinforced

epoxy resin tube,
The material constants used for the computations are
typical of a glass fibre / epo#y resin system and were:

E, = 75800 MN/n°

7
E = 2900 MV/n®
Jp = 0.200

Vo = 0.650.

Since Wallis assumes contiguity of fibre and good
alignment the contiguity factor was 0.0 and the fibre misalignment
factor was 1.0. An ICL series 1905 computer was used for the
computations.

Fig. 4 shows the variation with helix angle of Young's
modulus and Poisson's ratio in the longitudineal and hoop
directions for the Wallis equations. As expected the curves
are mirror images about the helix angle of 45°, The 1ongitudinal modulus
decreases rapidly from helix angles of 10° to 30°and small
changes in helix angle can have a large effect on the modulus,
After about LOO there is little change in modulus, but the
minimum modulus does ndt oceur at 90°, The Poisson's ratio
Sharesis from & helis angle of 90%to 50° (more than four times)
more than counterbalances the improving élignment which

results in the minimum modulus occurring at about 50°,
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Fig. 5 shows the variation of Young's modulus and
Pbisaon'slratio in the longitudinal and hoop directions for
the Tsai equations. Again, as is expected, the curves are mirror
images about a helix angle of h5°. The curves of modulus against
helix angle are similar to those of Wallis, but show no minimum.
The decrease in Young's modulus is also more rapid than that of
Wallis-between helix angles of 10° and 300. Between helix
engles of 60° and 90° the curve is reasonably flat corresponding
to the minimum value of Young's modulus that was reached in
the Wallis predictions. The Poisson's ratio increase between
90° and 60° is not as pronounced and this results in the Tsai
predictions showing no minimum in the Young's modulus curves.
Fig. 6 shows the variation of Young's modulus and Poisson's
ratio with volume fraction of fibres at a fixed helix angle
of 30° for the Wallis equations. The Young's modululii increase
rapidly for volume fractions greater than 0.75. At a volune
fraction of about 0.5 the Foisson's ratio in the longitudinal
direction goes through a maximum. The Poisson's ratio in the hoop
direction increases with addition of fibres and in order to

satisfy the reciprocal relationship:

‘4< ‘H<

E
s
Y

the Poisson's ratio in the longitudinal direction must also
increase. This results in the high values of Poisson's ratio in

the predictions.
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Fig. 7 shows the variation of Young's modulus and
Poisson's ratio with volume fraction of fibres at a fixed
helix angle of 300 for the Tsai equations. The predictions
of Young's modulus are lower than those predicted by Wallis,
but the curves show a similar shape. The predictions of
Poisson's ratio are very different and vy decreases with
fibre addition in the predictions by Tsei. This results in
much lower values of Ve than the values obtained from the

Wallis equations.

In order to compare the predictions for multileyered
tubes containing different angles of wind the following
procedure is necessary:

2. 1+ 3. 1. Wallis.
A matrix g is computed where:

h
D = .(_.o_)i N .
Pq t jolek

=1
i is the number of strata of each winding angle and

n is the total number of strata in the tube.
It is not valid to add the modulii by superposition

due to coupling effects. It is necessary to compute a value of

Vx where:
n
. Z B By Vi
- i=q
Vx =

yi

X

kil &
B
=

-
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E_,E_.and y_ are obtained from:
X ¥ y

x 11 X2
® Exp22
J Ex * xD12
vo B
v = ey
¥ L

2. 1+ 3. 2. Tsai.

The equations for computation of the Young's modulii
and Poisson's ratios for a tube with two different winding
angles are quite complex by Tsai's theory. The equations
therefore need not be quoted here and are available in

Appendix Z.

Figs. 8 and 9 show the predictions by Wallis and Tsai
for a tube comprising 507 of hoop winding and 50% of & 30°
helix angle winding, The predictions are of the variation
of Young's modulus and Poisson's ratio with fibre volume
fraction. Again the predictions of Young's modulus from Tsai's
equations are lower than those of Wallis, but the curves are
similar, Poisson's ratio values are also similar, but in this
case the values predicted by Tsai are higher than those by

Wallis. ;
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2. 1« 4. The influence of Interlaminar stresses on the failure

of fibre reinforced composites.

It is of great importance to consider the effect of
interlaminar stresses on fibre reinforced composite materials.
This arises because the interfacial surfaces between layers
in a laminated composite represent planes of minimum strength.

Puppo and Evenson(qs) have shown that a finite width
specimen of a laminate in a generalised state of plane stress
can have finite values of interlaminar shear stress at the edge
of the specimen. If these stresses become high enough then
the strip can fail prematurely by delamination initiated at
the edge of the strip. This would give misleading values of
strength data frsm uniaxial tests. If the data were subsequently
used for the design of a tubular structural member, which is
an infinite width body, the member may be overdesigned. For
aircraf't and spacecraft, where weight saving is of paramount
importance, this would be undesirable,

Pipes and Pagano(16)

calculated, by finite differences,
a solution of the elasticity equations governing the behaviour
of a four layer, symmetric angle ply laminate. The interlaminar
shear stress was also found to be an edge effect, restricted to
a region approximately equal to the laminate thickness. Such
stresses ‘can be‘expected to cause failure of the laminate by
delamination.

Pagano and Pipes(1?)

observed this unusual failure
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mechanism in a carbon fibre / epoxy system. The distribution
of o, is of the form shown in Fig. 10. The maximum value of
interlaminar stress occurs at the edge of the laminate. The
interlaminar stress is low compared with other stresses in
the system, but can result in failure, represented schematically
in Fig. 11. Pagano and Pipes showed that the stress can be
maximised by using a specimen with a stacking sequence of
(25°,-25°,25°,-25°,90°,90°,-25°,25°,-25°,25°), They constructed
specimens of carbon fibre / epoxy with this lay up. The specimens
they constructed failed by delamination, initiated at the edge
of the specimens.

Cleerly it is necessary to calculate the interlaminar
normal stresses in composite laminates for design purposes.

(18)

Pagano has presented an approximate method of calculation

of these stresses., The calculations are based on recent theory

(19)

developed by Whitney and Sun and compare favourably with

existing elasticity solutions.
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Fig. 10. Distribution of interlaminar normal stress v.Y.

Fig. 11. Schematic representation of failure of fibre
composite by delamination.
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2. 1. 5. The effect of stacking sequence on the properties

of fibre reinforced composites.

Section 2. 1. 3. showed that the interlaminar stresses
which may exist in composite laminates must be minimised
to protect against failure, by delamination, under axial
loadings. Recent work has shown that the strength of composite
laminates, which contain identical ply orientations, can be
dependent on the stacking sequence.

Pagano and Pipes (20)

have presented an approach to
predict how the layers of specific orientations should be
arranged in order to minimise the effects of interlaminar
stresses. They present an example of a boron/epoxy t15':’,'345':'
laminate with layers of equal thickness. Fig. 12 shows how
the change of stacking sequence can reduce the interlaminer
normal stress in this system. The calculations help to explain
the pronounced difference in strength of these laminates which
was observed by Foye and B&ker(21) « Clearly the arrangement of

the layers and orientations must be considered when designing

fibre reinforced composite components.



Stacking Sequence :-
[15%, -15°,65°,-45°]S
petias D [15°,45°,-45°,-15°]S

Z/h,

Fig. 12. Distribution of interlaminar normal stress in
boundary layer region v. Z.
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2. 1. 6. Stress gradients which may exist in helically wound,

fibre reinforced composite tubes.

When an anisotropic cylinder is subjected to simple
loading conditions the stress field may be far from uniform.
It has been shown by Pagano et Al(zz) that the stress field
approaches uniformity in such a cylinder when the wall thickness
approaches zero. Since this is not acceptable from a practical
standpoint it is necessary to re-define the term 'thin walled
cylinder' for anisotropic materials. Pageno and Whitney(zs)
have made calculations of the distributions of stress in
the walls of typical glass / epoxy and carbon / epoxy unidirectional
cylinders for three basic loadings - axial,torsion and internal
pressure, Figs. 13, 14 and 15 show the normalised stress gradients
for axial loading, torsion and internal pressure repectively.
These figures show the severity of the stress gradients and
the high R/t ratio necessary to approximate a state of uniform
stress for the highly snisotropic carbon system. Pagano and Whitney
also studied the variation of the three normalised stresses with
helix angle in a carbon / epoxy cylinder with R/t = 20. Fig. 16
shows these variations. The maximum normalised shear and hoop
stresses occur in a tube with a helix angle of about 60° and
the maximum normalised axial stress in a tube with a helix
angle of aboutljoo. They also show that the gradients are drastically

reduced for the same system but with cross ply lay ups.
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2. 2. Fracture mechanics of isotropic and anisotropic materials.

2¢ 2. 1. Brief historical review of the application of fracture

mechanics to isotropic materials.
(24)

Griffith satisfactorily explained the brittle fracture
of glass as early as 1920. Using the Inglis(25) solution for the
stresses and strains around the crack tip he said that the

crack would extend when the release of elastic stored energy
became equal to the energy required to form a new crack surface,

Using the fracture surface energy, to be a measure of the

initiation of the fracture process, he derived the equation:
1
(&)
SR

which was later modified to:

;Y %

ol - (m) for plane strain conditions.

When he tested these equations experimentally for
validity he found good correlation for the fracture behaviour
| of glass, but application to most metals was unsatisfactory.
This is due to the formation of plastically deformed material,
close to and ahead of the crack tip which absorbs work during
crack propogation. Since glass has little or no plasticity this
discrepancy was not shown.

(26)

Crowan suggested a plastic work factor but, to

overcome the difficulties associated with this Irwin‘2?)
introduced a factor, G, known as the strain energy release

rate., The criticel value of G is known as the 'Fracture Toughness',

G, or GIc’ for plane stress and plane strain conditions, respectively.
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Fig. 17 shows the three epemdmg modes of crack behaviour,
designated modes I,IT and III, combinations of which will
describe éll situations encountered.

The critical value of G in the mode I opening and for
plane strain conditions is denoted G ® This is related to

I
the critical stress intensity factor, KIc’ by the equation:

'Gic L
KIc = GG =vw)
The magnitude of K, is of particular importance when designing

against brittle fracture. The relationship:

Ko

Cc -— e

crit !2°h?

can be used to determine the critical defect size, Carit?
which would initiate fracture at a working stress of o

Y is a geometrical factor and is available, from tables, for
most situations. Should geomeirical factors be unavailable from

tebles for a particular situation it is possible to obtain

Y calibration curves both experimentally and theoretically.
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Fig. 17. Elementary modes of crack tip movement displacement.
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2. 2. 2. Fracture mechanics applied to cylindrical pressure

vessels,

If a cylindrical pressure vessel containing en axial
crack is subjected to internal pressure both the hoop stress
end the radial stress will tend to propagate the crack. The
radial stress will tend to ceuse bulging of the mouth of the
crack and coupled with the hoop stress will tend to cause
propogation. The critical propagetion hoop stress will be
lower than the equivalent stress for a simple axially loaded
specimen. It is of practicael value to correlate flat plate
behaviour with behaviocur in pressure vessels.

It is found that the pressure vessel can be treated like
a flat plate if the nominal stress, &, is taken as a multiple of
the hoop stress in the wall, Tgo i.e.

¢ = o f(c,R,t)

A summary of the form of f(c,R,t) is given in Table 1 for
various workers. The critical hoop siress o% can be related to
the nominal siress 4::"l which is critical for crack propagaticn
in a flat plate. In particular Duffy et Al(jj) combined the
Folias theoretical treatment form with the fracture mechenics
approach and included a correction for crack tip plasticity.
The latter correction was derived from the Dugdale crack model,
Hehn et Al(j) pfesent other approaches and two which are importent
here are shown in Teble 2, which is a shortened form of their
table. There appears to be some confusion about the plasticity
correction factor 4>3 in their teble since the function:

S M
%, %y

¢; = (55—) 1n(sec
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Failure criterion M ¢ Investigators
c; S (1+49.2 %) - Peteraaand Kuhn,
1957(%%)
2 4
Oy =0 M (141,61 &)? - Folias, 1965(2)
*.2
K (Moy,)
U;i = — u (1+ %) (14-—:1;— Anderson and
S'_T"f)‘z & ¥ Sullivan, 1966(29)
1
o =(a;a§(g+m) A () & Nichols et Al,
1965<5°)
2
0:1 =g N7 (1+ T.'?a‘%') - Kihera et Al,
(31)
1966
3
o;{ =o ¥ (140.81—=—)* - Chrichlow and Wells,
(rRt)2 196?(52)
* Ko ( 6 cz)-'g GEI
@, m 141.01 =¢ sec Duffy et Al
H (e ) Rt fcy+c!Uj A9 (33) ?

Table 1. Criteria for crack extension in unstiffened cylindrical

pressure vessels with axial through cracks (after Hahn, Sarrate

and Rosenfield(j) ).

(In the table e, f, g, h and P are coefficients depending on the '

geometry of the vessel and W is the Charpy V notch energy)
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does not approach unity as c% /G approaches zero as Fig. 1

in (3) suggests. Hahn et Al show that inspection of the equation
in the first category reveals that (dﬁTchllj)-4 is a function of
¢?/Rt with K;2 and 1.61K;2 the intercept and slope respectively.
Using data relevent to category 1 supplied from (29,30,31,33
and 34) they represent the data graphically on plots of
(0';12"04;5)-1 versus c>/Rt. In all cases the points could be
approximated to a linear relationship with slope and intercept
consistent with a single Kc value. Also it was shown that the
K, values agreed very well with those derived from flat plate
tests, Hahn et Al also used data for thin walled vessels and
plotted (cr;fncq>5)"' against c>/Rt(50tahnR/50t). The scatter

in this case ;as worse than the former, but still conformed
roughly with the equation far category 2 and with the Kc values
Idbtained for flat plate tests,

The methods of dealing with data from flat plate tests
and correlating it to behaviour in cylindrical pressure vessels
is quite well established for isotropic materials such as metals.,
Little material, if any, is available in the literature of the
behaviour of helically wound fibre reinforced pressure vessels
containing defects. At present the state of the science is that
methods of obtaining Kc values for normal tensile and bend
conditions in fibre reinforced materials are not fully established

and a review of the present position follows in the next section.






