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‘Responsibility is a unique concept. It can only reside 

and inhere in a single individual. You may share it with others, 

but your portion is not diminished. You may delegate it, but it 

is still with you. You may disclaim it, but you cannot divest 

yourself of it. Even if you do not recognize it or admit its 

presence, you cannot escape it. If responsibility is rightfully 

yours, no evasion or ignorance, or passing the blame can shift 

the burden on someone else. Unless you can point your finger at 

the man who is responsible when something goes wrong, then you 

never had anyone really responsible.' 

Admiral Hyman G, Rickover, July 23rd. 1963.
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Summary. 

An investigation into the effects of artificially induced 

defects on the failure mechanisms of glass fibre reinforced 

plastic tubes has been carried out. A fracture mechanics approach 

was used in the analysis of the results. The failure pressures 

of the tubes were found to obey equations in existence for 

isotropic materials. The failure mechanisms of the combined 

tube and defect types are discussed. The mechanisms were found 

to vary according to these variations. 

The values of Young's modulus and Poisson's ratio 

determined for the compliance analysis were compared to the 

predictions of two theories. This indicated that the theories 

were reasonable for the predictions of Young's modulus, but 

of little use for the prediction of Poisson's ratio. The 

defect sizes were too small to obtain an accurate compliance 

analysis to be compared to those of isotropic materials.
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Nomenclature. 

Al coefficient matrix 

a radius of circuler plate 

Cc contiguity factor, or compliance where applicable 

c 4 surface crack length, or critical where used as a subscript 

D inside diameter of thin walled tube 

Dl coefficient matrix 

E ... Young's modulus limited by subscript 

F load on circular plate 

£: subscript fibre 

G shear modulus, limited by subscript, or elastic strain 

energy release rate, limited by subscript where applicable 

EH subscript for hoop 

h thickness of a circular plate, or 4 thickness of composite 

layer, where applicable 

ho individual thickness of composite layer 

K fibre misalignment factor, or stress intensity factor limited 

by subscript 

L length of tube subjected to internal pressure 

2 length of individual fibre 

M Young's modulus of matrix 

IMl coefficient matrix 

n subscript for matrix 

w
o
m
,
 pressure 

critical pressure 

inside radius of thin walled tube
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(iv) 

constant included in the Folias correction factor = 0.49(12(1 ¥))2 

subscript for transverse 

tube wall thickness 

volume fraction limited by subscript 

width of tensile specimen 

subscript for working stress 

direction along axis of tube 

hoop direction in tube 

radial direction in tube 

Shear strain limited by subscript 

deflection in a circular plate 

strain limited by subscript 

angle of fibres in tube axis and direction subscript 

cos“@ 

sin“ 

sinOcos® 

Poisson's ratio limited by subscript 

normal stress limited by subscript 

critical hoop stress 

shear stress limited by subscript
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Chapter 1. 

4. Introduction. 

In recent years man has made many great steps 

forward in the fields of supersonic flight and manned space 

exploration. Complementing these advances has been the need for 

high strength/veight ratio and/or high modulus materials for 

structural members in the craft for these. Interest has been 

aroused in composite materials consisting of stiff fibres in 

a relatively soft and weak matrix. Work has been carried out to 

obtain a knowledge of the stiffening and strengthening mechanisms 

in such composites, but little is know about the fracture 

characteristics of many systems. 

Difficulties are experienced, when manufacturing fibre 

reinforced materials, in obtaining a defect free composite. 

Defects, such as voids, fibre/fibre contact, inhomogeniety and 

debonding of the fibre/matrix interface, are not uncommon. 

Catastrophic failure of such composites will often be initiated 

at one, or more, of these defects. For homogenous and isotropic 

materials, such as many metals, failure stresses and critical 

sizes of defect can be predicted, with accuracy, from well tried 

and tested fracture mechanics approaches. Composite materials 

are, at best, orthotropic and often anisotropic and the application 

of linear’ elastic fracture mechanics to these systems has not 

been fully determined. Clearly there is a need to establish the 

response of these systems to this approach.
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An important application of these materials is the 

filament wound, cylindrical pressure vessel. When a cylindrical 

pressure vessel, containing an axial defect, is subjected to 

internal pressure the combined effect of the hoop stress and 

the radial stress causes bulging of the mouth of the crack. 

This causes fracture to initiate at a lower hoop stress than 

the axial stress in a flat plate,with a similar defect, 

subjected to pure tension. For isotropic materials this has 

been rigorously enatyeed 12328,29,30,31 32,33) and factors 

have been evaluated to correct for this bulging. It does not 

necessarily follow that these analyses will apply to the systems 

which are the subject of this work. 

In this investigation a number of filament wound, glass 

fibre reinforced plastic tubes have been subjected to internal 

pressure. The tubes were tested with and without artificially 

produced, axial defects. Tubes of two different winding 

configurations were used, These were: 

4) Helical * 30° angle of wind and 

2)50% helical * 30° ana + 90° angle of wind. 

Three depths of defect were investigated, each of five axial 

lengths. 

It was found that, in general, the behaviour of the tubes 

agreed well with the analyses of the above workers. Interesting 

failure mechanisms for each tube system were observed and 

photographs of the history of the failures are presented. For 

the fracture mechanics analysis, Young's modulus and Poisson's
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ratio measurements had to be made. Comparisons of theoretical and 

observed measurements of these were dravm for two theories. 

Comparisons of two methods of compliance measurement for the 

different tube categories were also made.



Chapter 2. 

2. Iiterature Survey. 

2. 1. The properties and response of fibre reinforced composites. 

2. 1. 1. Basic considerations of the strengthening mechanisms 

of fibre reinforced composites. 

In recent years we have seen the advent of many new 

materials for use in aerospace applications where a high 

strength and /or modulus to weight ratio is essential. One 

such material is the fibre reinforced composite consisting 

mainly of two components - strong, stiff fibres in a relatively 

weak matrix, but containing voids and defects due manufacturing 

process, Clearly theories are needed which will predict 

composite strengths and physical properties accurately from 

the basic properties of matrix and fibre. 

The simplest fibre composite consists of discontinuous 

fibres embedded in a resin matrix. The load is transferred 

to the fibres by means of shear stresses set up as the resin 

attempts to flow around the fibres. In the fibre the stress 

veries as shown in Fig. 1. The shear stresses are greatest 

at the ends of the fibre and are zero at the mid point. If 

the fibre is longer than the critical elastic aspect ratio 

(1/4) it the tensile stress oe is constant along the length 

of the fibre. More rigourous solutions to the simple model 

(5,6,7,8,9) illustrated in Fig. 1 have been given amongst 

others (see Fig. 2.).
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As illustrated in Fig. 4 the longer the fibre the 

greater the load carrying capabilities of it and hence the better 

the properties of the composite. Also the presence of shear 

stresses at the ends of the fibres will favour crack initiation. 

Continuous fibres are therefore more desireble. For continuous 

fibres and elastic behaviour the nominal stress obeys the 

rule of mixtures: 

o = Epvp + EG - vp)) 

At higher stresses the matrix deforms plastically 

and: 

© = Epvp + a - vg)o,,(€) 

where o,,(€) is the true flow strength of the matrix at strain 

Most continuous fibre composites usually contain some discontinuous 

fibres prior to fracture, Thes¢ arise due to: 

4) Fracture of fibres during fabrication, 

2) Fracture of individual fibres during loading. 

Thus the criteria for failure in discontinuous fibre composites 

can not be neglected since these are nearly always present 

and may effect the initial crack propogation. 

The fibre models illustrated in Fig. 2 are useful for 

prediction of behaviour when the applied stress is parallel 

to the main fibre direction. Many applications exist when 

the applied stress is at an angle to the fibre direction. The 

most notable example of this is the filament wound component. 

Many theories are available for prediction of behaviour in 

this more complex case. Two of these are examined and discussed 

anes Teves



(5) H. I. Cox, 1952 Fibre 

C<a—_—_——__ 0 

Elastic fibre completely bonded into an extensive 

elastic matrix. Results derived for two and three dimensions. 

J. 0. Outwater, 495666) 

Fibre 

thin layer of 
ic natrix 

Assumes that the maximum interface shear stresses are 

a function of the interface pressure developed by the differential 

shrinkage of the matrix on to the fibre. 

N. F. Dow, 49637) | Fibre 
oO.       

  

Considers cylindrical matrix with fully bonded elastic 

fibre. Implication is that straight lines remain straight after 

deformation and two or three dimensions can be analysed. 

W. B. Rosen, 496, 8) 

Matrix Fibre 

pou a 

Perfect bonding is assumed at the interface of fibre and 

matrix subjected to tensile stress only. The matrix only carries 

shear stress. 

A. Kelly ana W. R. Tyson,1965 (2) ae 

o<—_—, {> 0 

Elastic fibre in a plastic matrix yielding according to 

the Tresca criterion. 

Fig. 2. Fibre models used for developing approximate analyses 

(Allison end Holoway(1°))
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2.1. 2. Prediction of the properties of angle-ply fibre 

reinforced composites by two workers, wat1is (11) and agai 13), 

In this section the prediction of the properties of 

helically wound glass fibre reinforced tubes is investigated. 

Wha lwork oe Wallig |!) and) teat \!>))tareaanined! endlcompaned: 

2. 1. 2. 1. Wallis. 

Wallis utilises the cutier 12) model and Fig. 3 shows 

the element for an orthotropic fibre. From the properties of 

fibre and matrix (E, Ea o2V5 28a rVp) a stiffness matrix 

M is obtained where: 

% My Mio Ms £9 

Sera Mo, Moo Mos ee 

Tet Mo oo M55 Yet 
It is necessary to transform the equation from the © 

and + directions to the X and Y directions. The stress trans- 

formation is: 

      

ox co 

ey = & o 

Txy Tot 

where: 

9, & 26; 

A s 8, & 20, 

; de (O20) 

The reverse transformation for the strains is: 

©O A es 

& | = A ey 

Yet Yay



  

x , Unit Cube 

Fig, 3. Cutler element with orthotropic fibre.
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SoS Mi Ve 
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2..4. 2. 2. Tsai. 

Tsai first calculates properties in the fibre direction 

and transverse to it then transforms to the required axis. 

By the law of mixtures: 

EF (wep + (1 - vp)EL)K (4) 

where K is a fibre misalignment factor. 

Kp Vp (2K +6. Vp + KV (2K +6) (4-1 a) 
V, = (1-C) = 2 

L : Kp 2K +e) o Ge Kp = K,. 1 = Vp 

2 K Vn (2kp+Ge) (1-vp) + KpVp(2K_ +5 Vip 

Kp 2K Sp + Ge x = Kp Vp 

where: 
E. E E. E 

© = f aes nm eee fs cS Moe 
sme 14V_) TR 2C+V,, 2m 2(1=Vp) a 20-v,) 

C is a contiguity factor of the order of 0.2.
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Tsai found that in most cases the law of mixtures equation: 

Vz, = Vp¥p + (4 =Ve)Va 

was accurate to + 5% of the values computed from the more 

complex equation (2). For computing values of Ey tht following 

equation was used: 

Ep = 2[1 - vp + (Ye -v,)(t - vp) 

6 K,(2K., + i) - 6 (Kp - KG - Vp) 

2K +G)+2(k,-K )1 -v. 
m m £ m £ 

+C 

Kp(2K, + Gp) + Gp(K, - Kp) (1 - “s] (3) 
26 + Sp - 2K - Ke ine 

Ve can then be obtained from the well known reciprocal relationship: 
V. 

L 
Vp = Ep a (4) 

L 

The shearing modulus is given by: 

4 oR ce 26, - (Gp - ea - Vp) 

TE 5 m2G +(G¢,-G)-V, 
n = m se 

(Gp + ic) - (Gp - GG - Vp) 
+ CG, (one) Gs = (5) 

ft (Gp + G + Ge eG Vp) 

  

  

    

The transformation eauations ie) are: 

4, 2v. 4, 
= — 2, fe - = sin“ecos*9 + S428 

x 7 i | Py Ep 

a 2v, 4 1. atte zie - FE aintoas’s + ose 
¥ L mm “L | T 

v. Vv. V. 1 +4V, 4 4, 

z= g - g-t z+ — sin’2e 
x y L L Ly If
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2.1. 3. Comparison of the predictions of Young's modulus 

and Poisson's ratio for a filament wound glass reinforced 

epoxy resin tube. 

The material constants used for the computations are 

typical of a glass fibre / epoxy resin system and were: 

EB, = 75800 MN/mn? e 
B, = 2900 mN/ne 

dp = 04200 

Ym = 04380 

Ve = 0.650. 

Since Wallis assumes contiguity of fibre and good 

alignment the contiguity factor was 0.0 and the fibre misalignment 

factor was 1.0. An ICL series 1905 computer was used for the 

computations. 

Fig. 4 shows the variation with helix angle of Young's 

modulus and Poisson's ratio in the longitudinal and hoop 

directions for the Wallis equations. As expected the curves 

are mirror images about the helix angle of 45°. The jongitudinal modulus 

decreases rapidly from helix angles of 10° to 30°and small 

changes in helix angle can have a large effect on the modulus. 

After about 40° there is little change in modulus, but the 

minimum modulus does not occur at 90°, The Poisson's ratio 

increase from a hetix angle of 90°to 50° (more than four times) 

more than counterbalances the improving alignnent which 

results in the minimum modulus occurring at about 50°.
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Fig. 5 shows the variation of Young's modulus and 

Poisson's ratio in the longitudinal and hoop directions for 

the Tsai equations. Again, as is expected, the curves are mirror 

images about a helix angle of 45°. The curves of modulus against 

helix angle are similar to those of Wallis, but show no minimun. 

The decrease in Young's modulus is also more rapid than that of 

Wallis between helix angles of 40° and Boos Between helix 

angles of 60° ana 90° the curve is reasonably flat corresponding 

to the minimum value of Young's modulus that was reached in 

the Wallis predictions. The Poisson's ratio increase between 

90° ana 60° is not as pronounced and this results in the Tsai 

predictions showing no minimum in the Young's modulus curves. 

Fig. 6 shows the variation of Young's modulus and Poisson's 

ratio with volume fraction of fibres at a fixed helix angle 

of 30° for the Wallis equations. The Young's nodululii) increase 

rapidly for volume fractions greater than 0.75. At a volume 

fraction of about 0.5 the Poisson's ratio in the longitudinal 

direction goes through a maximum. The Poisson's ratio in the hoop 

direction increases with addition of fibres and in order to 

satisfy the reciprocal relationship: 

E 

mi oe 
a. <

<
 

he
e 

the Poisson's ratio in the longitudinal direction must also 

increase. This results in the high values of Poisson's ratio in 

the predictions.
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Fig. 7 shows the variation of Young's modulus and 

Poisson's ratio with volume fraction of fibres at a fixed 

helix angle of 30° for the Tsai equations. The predictions 

of Young's modulus are lower than those predicted by Wallis, 

but the curves show a similar shape. The predictions of 

Poisson's ratio are very different and oy decreases with 

fibre addition in the predictions by Tsai. This results in 

much lower values of VE than the values obtained from the 

Wallis equations. 

In order to compare the predictions for multileyered 

tubes containing different angles of wind the following 

procedure is necessary: 

2.1. 3. 1. Wallis. 

A matrix p is computed where: 

h 
D = Mos Kt. 
Pq et 

i= 

i is the number of strata of each winding angle and 

n is the total number of strata in the tube. 

It is not valid to add the modulii by superposition 

due to coupling effects. It is necessary to compute a value of 

ve where; 

n 

. Dd By Ma 
ante 

Mig 

po a 

By
 
=
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E_,E_.andy_ are obtained from: 
xy I 

x 44 x42 

E BD op 

y B * x42 

Vv, =. 
Vv See 
y BL 

Bets 5-20 Teel. 

The equations for computation of the Young's modulii 

and Poisson's ratios for a tube with two different winding 

angles are quite complex by Tsai's theory. The equations 

therefore need not be quoted here and are available in 

Appendix 2, 

Figs. 8 and 9 show the predictions by Wallis and Tsai 

for a tube comprising 50% of hoop winding and 50% of * 30° 

helix angle winding. The predictions are of the variation 

of Young's modulus and Poisson's ratio with fibre volume 

fraction. Again the predictions of Young's modulus from Tsai's 

equations are lower than those of Wallis, but the curves are 

similar, Poisson's ratio values are also similar, but in this 

case the values predicted by Tsai are higher than those by 

Wallis, |
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2.4.4. The influence of Interlaminar stresses on the failure 

of fibre reinforced composites. 

It is of great importance to consider the effect of 

interlaminar stresses on fibre reinforced composite materials. 

This arises because the interfacial surfaces between layers 

in a laminated composite represent planes of minimum strength. 

Puppo and Evenson 2) have shown that a finite width 

specimen of a laminate in a generalised state of plane stress 

can have finite values of interlaminar shear stress at the edge 

of the specimen. If these stresses become high enough then 

the strip can fail prematurely by delamination initiated at 

the edge of the strip. This would give misleading values of 

strength data from uniaxial tests, If the data were subsequently 

used for the design of a tubular structural member, which is 

an infinite width body, the member may be overdesigned. For 

aircraft and spacecraft, where weight saving is of peramount 

importance, this would be undesirable, 

Pipes and Pagano (16) calculated, by finite differences, 

a solution of the elasticity equations governing the behaviour 

of a four layer, symmetric angle ply laminate. The interlaminar 

shear stress was also found to be an edge effect, restricted to 

&@ region approximately equal to the laminate thickness. Such 

stresses ‘can be expected to cause failure of the laminate by 

delamination. 

(17) Pagano and Pipes observed this unusual failure
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mechanism in a carbon fibre / epoxy system. The distribution 

of o, is of the form shown in Fig. 10. The maximum value of 

interlaminar stress occurs at the edge of the laminate. The 

interlaminar stress is low compared with other stresses in 

the system, but can result in failure, represented schematically 

in Fig. 11. Pagano and Pipes showed that the stress can be 

maximised by using a specimen with a stacking sequence of 

(25°, -25° 25°, -25°,90°,90°,-25°,25°,-25°,25°). They constructed 

specimens of carbon fibre / epoxy with this lay up. The specimens 

they constructed failed by delamination, initiated at the edge 

of the specimens. 

Clearly it is necessary to calculate the interlaminar 

normal stresses in composite laminates for design purposes. 

(18) Pagano has presented an approximate method of calculation 

of these stresses, The calculations are based on recent theory 

(49) developed by Whitney and Sun and compare favourably with 

existing elasticity solutions.
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Fig. 11. Schematic representation of failure of fibre 

composite by delamination.
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2.1. 5. The effect of stacking sequence on the properties 

of fibre reinforced composites. 

Section 2. 1. 3. showed that the interlaminar stresses 

which may exist in composite laminates must be minimised 

to protect against failure, by delamination, under axial 

loadings. Recent work has shown that the strength of composite 

laminates, which contain identical ply orientations, can be 

dependent on the stacking sequence. 

Pagano and Pipes 29) have presented an approach to 

predict how the layers of specific orientations should be 

arranged in order to minimise the effects of interlaminar 

stresses. They present an example of a boron/epoxy 245° 75° 

laminate with layers of equal thiclmess. Fig. 12 shows how 

the change of stacking sequence can reduce the interlaminar 

normal stress in this system. The calculations help to explain 

the pronounced difference in strength of these laminates which 

Seinen ity rorspend waren cl Cleanly cretarreneenentier! 

the layers and orientations must be considered when designing 

fibre reinforced composite components.
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    Fig. 12. Distribution of interlaminar normal stress in 

boundary layer region v. Ze
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2.1. 6. Stress gradients which may exist in helically wound, 

fibre reinforced composite tubes. 

When an anisotropic cylinder is subjected to simple 

loading conditions the stress field may be far from uniform. 

It has been shown by Pagano et a2) that the stress field 

approaches uniformity in such a cylinder when the wall thiclmess 

approaches zero. Since this is not accepteble from a practical 

standpoint it is necessary to re-define the term 'thin walled 

ceylinder' for anisotropic materials. Pagano and whitney 29 ) 

have made calculations of the distributions of stress in 

the walls of typical glass / epoxy and carbon / epoxy unidirectional 

cylinders for three basic loadings - axial,torsion and internal 

pressure. Figs. 13, 14 and 15 show the normalised stress gradients 

for axial loading, torsion and internal pressure repectively. 

These figures show the severity of the stress gradients and 

the high R/t ratio necessary to approximate a state of uniform 

stress for the highly anisotropic carbon system, Pagano and ihitney 

also studied the variation of the three normalised stresses with 

helix angle in a carbon / epoxy cylinder with R/t = 20. Fig. 16 

shows these variations. The maximum normalised shear and hoop 

stresses occur in a tube with a helix angle of about 60° and 

the maximum normalised axial stress in a tube with a helix 

angle of about 30°. They also show that the gradients are drastically 

reduced for the same system but with cross ply lay ups.
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2. 2. Fracture mechanics of isotropic and anisotropic materials. 

2. 2. 1. Brief historical review of the application of fracture 

mechanics to isotropic materials. 

crarritn (24) satisfactorily explained the brittle fracture 

of glass as early as 1920. Using the Inglis (25) solution for the 

stresses and strains around the crack tip he said that the 

erack would extend when the release of elastic stored energy 

became equal to the energy required to form a new crack surface. 

Using the fracture surface energy, to be a measure of the 

initiation of the fracture process, he derived the equation: 

4 

(By S52 Tc 

which was later modified to: 

EY? 
es (reqs) for plane strain conditions. 

When he tested these equations experimentally for 

validity he found good correlation for the fracture behaviour 

of glass, but application to most metals was unsatisfactory. 

This is due to the formation of plastically deformed material, 

close to and ahead of the crack tip which absorbs work during 

erack propogation. Since glass has little or no plasticity this 

discrepancy was not shown. 

Orowan (26) Suggested a plastic work factor but, to 

overcome the difficulties associated with this Irwin(2?) 

introduced a factor, G, know as the strain energy release 

rate. The critical value of G is known as the 'Fracture Toughness', 

G, or Gigs for plane stress and plane strain conditions, respectively.
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Fig. 17 shows the three epemime modes of crack behaviour, 

designated modes I,IT and III, combinations of which will 

describe all situations encountered. 

The critical value of G in the mode I opening and for 

plane strain conditions is denoted G. co This is related to 
Ir 

the critical stress intensity factor, Ke » by the equation: 

GurE 12 
ml ic 

Ke * [GG =v) 

The magnitude of Ki is of particular importance when designing 

against brittle fracture. The relationship: 

Kt ce oc — 
Cra tee Yo? 

can be used to determine the critical defect size, Conat? 

which would initiate fracture at a working stress of oO 

Y is a geometrical factor and is available, from tables, for 

most situations. Should geometrical factors be unavailable from 

tables for a particular situation it is possible to obtain 

Y calibration curves both experimentally and theoretically.



  

  

        

I IT III 
Opening Sliding Tearing 

Fig. 17. Elementary modes of crack tip movement displacement.
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2. 2. 2. Fracture mechanics applied to cylindrical pressure 

vessels, 

If a cylindrical pressure vessel containing an axial 

erack is subjected to internal pressure both the hoop stress 

and the radial stress will tend to propagate the crack. The 

radial stress will tend to cause bulging of the mouth of the 

erack and coupled with the hoop stress will tend to cause 

propogation. The critical propagation hoop stress will be 

lower than the equivalent stress for a simple axially loaded 

specimen. It is of practical value to correlate flat plate 

behaviour with behaviour in pressure vessels. 

It is found that the pressure vessel can be treated like 

a flat plate if the nominal stress, 6, is taken as a multiple of 

the hoop stress in the wall, O39 i.e. 

o = G £(c,R,t) 

A summary of the form of f(c,R,t) is given in Table 1 for 

various workers. The critical hoop stress oy can be related to 

the nominal stress o which is critical for crack propagation 

in a flat plete. In particular Duffy et 413) combined the 

Folias theoretical treatment form with the fracture mechenics 

approach and included a correction for crack tip plasticity. 

The latter correction was derived from the Dugdale crack model. 

Hehn et 1) present other approaches and two which are importent 

here are shown in Table 2, which is a shortened form of their 

table. There appears to be some confusion about the plasticity 

correction factor 9; in their table since the function: 

* * 
m1 Mu m1, M 

$, = ( Ba ) In (sec og )    



-20- 

  

  

  

Failure criterion M Investigators 

ope o MT (149.2 $) Peters and Kuhn, 
1957(28) 

24 
ea i (444.61 &)? Folias, 1965(2) 

K 
op ey ut (4+ Be) Anderson and 

BY (reg)? z (29) 
Sa Se Sullivan, 1966 

&, =(ofoh (anit) ut (04) Nichols et Al, 
49650 co 

2 
Gao MO (4+ 7S) Kihara et Al, 
# fe (31) 1966 

2 

neo ut (440.81—2-r)* Chrichlow and Wells, 
oy a (at) 1967022) 

* K 2 o * c oye H 
o,=—T (444.61 ==) sec Duffy et Al 

H™ (red) e yy) 6733) 

  

Table 1. Criteria for crack extension in unstiffened cylindrical 

pressure vessels with axial through cracks (after Hahn, Sarrate 

and Rosenfield), 

(In the table e, f, g, h and B are coefficients depending on the i 

geometry of the vessel and W is the Charpy V notch energy) 
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does not approach unity as oy /& approaches zero as Fig. 1 

in (3) suggests. Hahn et Al show that inspection of the equation 

in the first category reveals that (&r06,) is a function of 

o*/Rt with Kk? and 461K? the intercept and slope respectively. 

Using data relevent to category 1 supplied from (29,30,34,33 

and 34.) they represent the data graphically on plots of 

(G; Ted, )7 versus oo /Rte In all cases the points could be 

approximated to a linear relationship with slope and intercept 

consistent with a single K, value. Also it was shown that the 

kK values agreed very well with those derived from flat plate 

tests. Hahn et Al also used data for thin walled vessels and 

plotted (ci Hep) against o°/Rt(50tahnR/50t). The scatter 

in this case mee worse than the former, but still conformed 

roughly with the equation for category 2 and with the K values 

obtained for flat plate tests. 

The methods of dealing with data from flat plate tests 

and correlating it to behaviour in cylindrical pressure vessels 

is quite well established for isotropic materials such as metals. 

Little material, if any, is available in the literature of the 

behaviour of helically wound fibre reinforced pressure vessels 

containing defects. At present the state of the science is that 

methods of obtaining K, values for normal tensile and bend 

conditions in fibre reinforced materials are not fully established 

and a review of the present position follows in the next section.
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2. 2. 3. The present situation in the determination and 

utilisation of kK values for fibre reinforced composites. 

The possibility of failure of composite materials by 

brittle fracture has brought about the need to classify the 

notch sensitivity of these materials in some way. The linear 

elastic fracture mechanics approach, which is widely used for 

metals, is the logical choice. If it could be found that this 

approach is applicable it would be possible to utilise the 

large amount of information, both theoretical and experimental, 

which has been obtained for isotropic materials, particularly 

metals, The linear elastic fracture mechanics approach may not 

be applicable to composite materials due to the difference 

in nature of the crack tips of composites and isotropic materials 

‘such as metals. It is hoped that other factors will be more 

important and outweigh these discrepancies and the approach will 

be applicable. 

Sanford and Stonesifer (2°) have shown that it is possible 

to obtain reproducable fracture toughness parameters (K, and G,) 

for a glass reinforced composite system, They used both single 

edged and double edged notched specimens with longitudinel ' 

fibres. An important conclusion reached was that the test method 

was sensitive to variations in the material and could be used 

to evaluate the na terial on the basis of fracture toughness, 

Attention is drawn to the fact that measurement of fracture 

toughness parameters in the forward shear mode of failure (K. 
11) 

is difficult and has been largely ignored for isotropic materials.
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lineer elastic fracture mechanics and theoretical stress 

concentration factors were found to underestimate the strengths 

of the notch sensitive composites. The strengths tended towards 

the theoretical predictions as the crack sharpness was increased. 

Zimmer? 9) found that for a particular cerbon fibre 

composite lay up (0°,90°,0°) the analysis for the fracture 

mechanics of isotropic materials could be applied with accuracy. 

linear elastic fracture mechanics were applied by Owen and 

Bishop 4°) to various composites, including chopped strand 

mat and balanced weave fabric glass reinforced polyester resin. 

K, values were found to be dependent on crack length; by the 

use of a suitable correction factor, based on an equivalent 

yield strength and suggested by Irwin"), a constant Ky could 

be calculated. Using the constant value of K, it was possible 

to be able to predict with accuracy the failure of a plate 

specimen containing a central hole. Confirmation of this was 

_ given by Holdsworth, Owen and vorris (#7) who obtained constant 

K, values for similar materials after correcting using Irwin's 

crack tip zone correction factor. Using the K, value, prediction 

of failure stresses in both plate and box section beams containing 

holes, were in good agreement with observed values. 

The above indicates that , in general, the linear elastic 

fracture mechanics approach to failure in composite materials 

is reasonably acceptable. It must be remembered that composite 

variables can invalidate the application and clearly more data
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The composite material fails in this mode frequently. By use 

of specimens containing angled notches they showed that it 

was possible to relate the Kite values to K. 6 values by a 
Ie 

simple relationship. This means that only fracture toughness 

tests for the opening mode need be carried out since the 

forward shear mode values can be deduced from these. 

Wadaups et 01°97) showed that for a grephite / epoxy 

system containing a circular hole, fracture mechanics analysis 

was applicable, The material was subjected to fatigue prior 

to testing for static strength. The theoretical values of static 

strengths agreed very well with those observed in practice. 

Applying the analysis to narrow slits in the same specimens it 

was found thet the material hed a slightly higher static strength 

then the predictions. This was probably due to material damage 

at the end of the slit improving the material geometry. It 

appears that, unlike metals, the geometry of the specimen does 

not alter substantially with repetitive loading. 

Further illustration of the underestimation of the strengths 

of composites was provided by Beaumont and Phillips (28) « The 

materials which were investigated were carbon and glass fibre 

composites containing either surface untreated or surface 

treated fibres. It was found that the composites containing 

untreated fibres exhibited notch insensitivity and those with 

treated fibres exhibited notch sensitivity. The lower shear 

strengths of the fibre interfacial bond with the untreated fibres 

caused effective crack blunting at the tip of the notch. Both
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XS needed before the widespread use of the approach can be 

made. In particular, it has been shown by Barnby and Spencer 9) 

that K calibration curves for itotropic materials, such as 

those provided by Brown and Srawley “2? » can be significantly 

different from those found for composites. The use of the 

isotropic calibration curves can produce similar K values in 

some ranges of c/ii, but in others can overestimate failure 

stresses of components by as much as 50%.
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2. 2. 4. Applications of fracture mechanics to anisotropic 

plates. 

vu 8) has shown that the magnitude of the stress intensity 

factors in anisotropic plates can be dependent on the normal 

stresses in the system and functions of the material constants 

and orientation of the crack. Mode 1 stress intensity factors for 

isotropic materials have been shown to be dependent on the normal 

stresses only. The dependence of the stress intensity factor on 

the material and orientation functions will not exist if the 

erack has an orientation along a plane of symmetry. When this 

situation exists the stress intensity factor can be defined as: 

K, = o (ec)? 
The equation can be written: 

log(K,,) = log(s ) + log(c) 

at criticality. iu plotted values of Jog(o ) against log(c) 

for tests on orthotropic tension test pieces. They were tested 

in pure tension, pure shear and a mixture of both. The graphs 

showed that within experimental error the slopes of the graphs 

were 0.5. 

The most deleterious orientation of a crack in a 

cylindrical pressure vessel is the axial orientation. This is 

a principal axis of symmetry for the tubes which are the subject 

of this work. There is justification in attempting to apply 

linear elastic fracture mechanics, normally used for isotropic 

materials, to these tubes if the defects which are introduced 

have an axial orientation.
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Chapter 3. 

3. Design of equipment _to pressurise the tubes. 

3. 1. Pressure testing cubicle and pumping systems, 

Plate 1 shows the pressure testing cubicle with the 

high pressure pump taken out for clarity. A close-up of the 

tie bars and end plates to hold the tube are showm in plate 2. 

The empty cubicle normally houses the main pump to pressurise 

the tubes and an isostatic press. 

The cubicle was made of 6mm. mild steel plate and 

angle. The top left, left front, right front and right back 

sections were removable. Provision was made to incorporate 

two removable laminated glass windows in the front and back 

of the tube testing cubicle. The windows could be replaced 

with mild steel sheets, if required. 

Fig. 18 shows a line diagram of the pumping system. 

A small pump was added to recirculate any water from the tube 

Side back to the main pump reservoir. The isostatic press could 

be used as a pressure sink to obtain slower pumping rates 

and could be isolated for slightly higher rates. The high 

pressure pump was supplied by Stanstead Filtration Fluid Power 

Products and was Model TC/40 with the following specification: 

Model Rated Pressure Output Outlet 

2 
512 2800 K_/cm' 0.125 min. 3" O/D EH. P. 

Plates 3, 4, 5 and 6 show the pump from all sides.
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3. 2. End caps and clamps. 

When subjecting steel tubes to internal pressure there 

are no problems in sealing the ends since end caps can be 

simply welded into place, thus effecting a seal. This technique 

is not possible with glass reinforced plastic tubes and a 

problem encountered was one of sealing the ends of the tube 

(43) satisfactorily. Wilson » Who was working on high vaccuum 

systems, encountered the problem of sliding rods in and out 

of a high vaccuum system without breaking the seal. He produced 

a@ sliding seal and it was possible by careful design to utilise 

his ideas and to make an end cap capable of sealing the pressure 

in the tube. 

Fig. 19 shows a cross section of this end cap and plates 

7 and 8 show the assembled cap and its individual components. 

The internal pressure forces the rubber gasket against the wall 

of the tube; the greater the pressure the more effective is 

the seal. At high pressures it is possible for the tube wall 

to expand sufficiently to allow the rubber sealing ring to 

bend back and release the pressure. To minimise the risk of 

this occurring, mild steel clamps were designed. Plate 9 

shows the assembled clamps. 

The end seals were constructed of stainless steel (EN58J7) 

and the rubber seals were a stiff neoprene. A compromise must be 

made between the need for a stiff rubber to minimise extrusion 

of the seal and an easily deformed rubber for flexibility when 

fitting. To hold the caps in position it is necessary to have



  

Plate 1. 

  
Plate 2.
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    Plate 4.



 
 

Plate 6.



3. 2. End caps and clamps. 

When subjecting steel tubes to internal pressure there 

are no problems in sealing the ends since end caps can be 

simply welded into place, thus effecting a seal. This technique 

is not possible with glass reinforced plastic tubes and a 

problem encountered was one of sealing the ends of the tube 

(43) satisfactorily. Wilson » Who was working on high vaccuum 

systems, encountered the problem of sliding rods in and out 

of a high vaccuum system without breaking the seal. He produced 

a sliding seal and it was possible by careful design to utilise 

his ideas and to make an end cap capable of sealing the pressure 

in the tube. 

Fig. 19 shows a cross section of this end cap and plates 

7 end 8 show the assembled cap and its individual components. 

The internal pressure forces the rubber gasket against the wall 

of the tube; the greater the pressure the more effective is 

the seal. At high pressures it is possible for the tube wall 

to expand sufficiently to allow the rubber sealing ring to 

bend back and release the pressure. To minimise the risk of 

this occurring, mild steel clamps were designed. Plate 9 

shows the assembled clamps. 

The end seals were constructed of stainless steel (EN58J) 

and the rubber seals were a stiff neoprene. A compromise must be 

made between the need for a stiff rubber to minimise extrusion 

of the seal and an easily deformed rubber for flexibility when 

fitting. To hold the caps in position it is necessary to have
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Plate 7. 
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tie bars and plates on the outside of the tube. Due to the 

presence of the tie bars the tube is not subjected to any 

longitudinal stress.
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3. 3. Tie bars. 

Plate 2 shows the tie bars and plates which retained the 

end caps in the tube. The working pressure for designing the 

pars and plates was 138 ws /i?. This pressure acting on the 

area of the end cap was equivalent to a force of 357 KNS. 

Sinc there were three tie bars each had to sustain a loading 

of 119 KNS. The material used for the bars was EN24Z, which 

has a yield strength of 1312 mis /ie. Designing at half yield 

strength the bars had to have a minimum diameter of 1.52 cms. 

(In fact 1.90 cms. diameter bar was used.)
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3. 4. Steel_end plates. 

It was necessary to determine the minimum thickness of 

plate necessary such that the maximum stress in the plate was 

equal to half the yield strength of the material used. Since 

there are no readily available formulae to apply to the bending 

of a circular plate restrained by three bolts an approximation 

was necessary. An assumption was made that the plate behaves 

in a similar way to a three point supported plate, with a 

uniformly distributed load acting over a circular area in the 

centre. Formulae were not available for this case and a correction 

factor to convert the simply supported case to the three point 

supported case had first to be calculated. 

From Reork 4+) 3 

4) Three point supported uniformly distributed load on a 

circular plate 

5 _ 0.307 F a’ 

Where F = 178.26 KNS 

a = 7.62 cms 

E 206.85 ans/u* 

Le Bang = 1254 X 10°/n? at 
  

2) Simply supported uniformly distributed load on a circular plate. 

a _ BE (m= 14)(5m 44) 0% 
nex 46TE n° bh? 

Where m = 3 

F, a and E as above 

te Snax = 1.06 X4107/n? ut
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For the above figures the deflection for the three 

point supported plate is 1.54/1.06 times as great as the simply 

supported plate (i. e. 1.453). Within the sizes of plate to 

be used this correction factor will be accurate enough. 

3) G4, for simply supported uniform load over an area of 7,62 cms 

diameter in the centre of 15.24 cms diameter plate is given by: 

max 21m ne 

2 
0, = — (m + (m+ 4)log (2/r,) =) 

a’ 

Correction factor for three point supported is 1.453 

where F = 178.26 KNS 

a = 7.62 cms 

r= 3.81 cms 

Snax = 139 uns/m@ at half yiela strength (EN 3 B) 

i. e. Thickness of plate must be a minimum of 3.56 cms. 

(In fact 5 cms thick plates were used.)
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Chapter 4. 

4. Experimental Procedure. 

The tubes were wound by Imperial Metals Industries, Ltd. 

Two glass types, 'E' glass and 'S' glass, were used for this, 

the properties of which were: 

density(gm/ec) Roving E, yur? 

'E' glass 2.55 20 end 75800 

'S' glass 2.54 30 end 97895 

The resin types were: 

Supplier Cure a 

MY705/H906/DY062 CIBA GEIGY Ltd. 4hrs@% 80°C 2900 

828/UNA/BDMA SHELL Lta. 4nrse50°C 3400 

0.20 

0.22 

Vv 
n 

0.38 

0.34 

The final densities of the resins were 1.31 and 1.22 gms/cc, 

respectively. 

The continuous fibres were passed through a resin bath 

and wound on @ Royalene covered mandrel, 7.5cms in diameter. 

Excess resin was brushed off continuously during the winding 

process. ifoven glass fibre ribbon was wound around the ends of the 

tubes for reinforcement. Fach tube was held on a lathe, by 

tapered metal blocks, and the reinforcement machined down to 

8.5ems diameter * 0,0Mcms. 

The final tube was 55cms long and had a nominal wall thickness 

of 3mms. This resulted in tubes of about 8.3cms outside diameter due 

to the presence of the Royalene.
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4. 4. Preparation of the tubes for testing. 

4. 46 4. Full through wall slots. 

A hole 2mm in diameter was drilled half way along the tube. 

By use of a specially prepared hacksaw blade and guide a full 

through slot was cut to the necessary length. The slot was 

sharpened by a jeweller's saw blade. The dimensions of the slots 

are shown in Fig. 20. A thin sheet of annealed copper was bonded 

over the slot, on the inside of the tube, by means of epoxy 

resin to hold the pressure during testing. The copper membrane 

was held in position while the resin hardened by means of an 

inflatable rubber bag. 

4, 4. 2. Part through wall slots. 

The tube was held in a lathe by tapered metal blocks and 

a 0.75mm thick tool brought up to bear against it. The tool was 

wound in 0.1mm and scratched along the tube, thus forming a slot. 

This was repeated until a defect of the required depth was 

obtained. The dimensions of the slot are shown in Fig. 21. Since 

the process did not damage the Royalene lining, copper sheet was 

not needed to hold the pressure. 

4.1. 3. Knife edges. 

These were made by machining a mild steel ring 8.9 cms 

outside diameter, 8.5 cms inside diameter and 4mm thick. Short 

lengths were cut out of the band and were filed to form the 

knife edge with a fine file. They were bonded on to the tube, a 

standard distance apart(3mm), by means of epoxy resin. Fig. 22 

shows an isometric drawing of the knife edges in position on 

the tube.



| slot length 2c | 

| | 

& ae, 
  

    

Fig. 20. Dimensions of full through slot. 

slot length 2c 
  

  

        & 
0.75mm 

Variable depth 

Fig. 21. Dimensions of part through slot.
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4. 4-4. Measurement _of tube dimensions. 

Pieces were cut from the ends of each tube and the faces 

were polished by normal metallurgical techniques, finishing 

with metal polish. The metal polish etched the composite clearly 

defining the various layers. Using a travelling microscope 

the average inside and outside diameters, wall thicknesses and 

hoop layer thicknesses were determined. 

4.4. 5. Strain gauges. 

Strain gauges were bonded to the tubes in the longitudinal 

and hoop directions by means of epoxy resin. For the tubes 

containing no defects an extra gauge 45° to the tube axis 

was also included to form a rectangular strain gauge rosette. 

Fine wires were soldered to each gauge and secured, by adhesive 

tape, to the walls of the tubes. 

4. 42 6. Measurement of volume fraction of fibres. 
  

Samples of the tubes were cleaned and dried in an oven 

at 90°C for 2 hours. They were weighed in air and weighed suspended 

in water, After subjecting them to 550°C for 2 hours the 

resulting glass fibres were weighed to constant weight. From a 

knowledge of the glass and resin densities the volume fraction . 

of fibres was determined.



—she 

4, 2. Calibration of the clip gauge. 

The clip gauge was held by a points micrometer, 

whose jaws were separated by 2mm. Fig. 23 shows the clip gauge 

end the micrometer jaws. The output from the clip gauge and 

amplifier was fed into a digital voltmeter, A calibration chart 

was prepared by opening the micrometer by pre-set amounts and 

reading the out of balance e. m. f.'s on the digital voltmeter. 

Care was necessary to ensure the clip gauge did not slip out of 

the jaws. Calibration charts were obtained for all ranges of the 

amplifier. The most sensitive range was able to detect jaw 

openings of 0.02mm. The charts showed that the clip gauge was 

linear for all of the ranges used.



micrometer jaws 

     

  

strain 

clip gauges 

gauge 

  

      

electrical lead 

Fig. 23. Calibration of clip gauge.
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4. 3. Determination of the longitudinal Young's modulii /and 

Poisson's ratios. 

A number of tubes were subjected to determine the longitudinal 

Young's modulif) end Poisson's ratios. The base and top of each tube 

were machined flat and parallel and the tube subjected to axial 

compression on a 5 Ton Instron testing machine. The longitudinal 

and hoop strains were plotted, versus stress, on two Bryans X - Y 

recorders, The test was repeated three times to obtain average 

nodulii) and Poisson's ratios.



-36- 

4. 4. Pressurisation of the tubes. 

The end caps were carefully fitted into place in the 

ends of each tube and the whole stood in position on the end 

plate. The inlet and outlet lines were connected and tightened. 

Clamps were placed in position around the tube reinforcement 

and their bolts tightened. The six tie bar nuts were tightened 

using a torque wrench to minimise bending moments on the tube 

whilst it was under pressure. A camera, with flash attached, 

was assembled in front of the armour plated glass windows to 

photograph any interesting developments as the tube was pressurised. 

4. 4. 1. Tubes without artificial defects. 

The three strain gauges, forming the rosette, were each 

connected to the appropriate amplifier and the outputs from the 

strain gauges and the pressure transducer were fed into three 

Bryans X - Y recorders, The tubes were pressurised slowly and 

photogrephs were taken at known pressures. 

4. 4. 2. Tubes with artificial defects. 

The three Bryans recorders in this case recorded hoop strain, 

longitudinal strain and creck opening displacement on their 

X - axes and pressure on their Y - axes, The tubes were pressurised 

slowly and photographs were taken similarly to the tubes with 

defects absent.
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4. 5. Compliance Testing. 

The determination of K-calibration charts relies on 

some means of measuring the change in compliance of a system, 

with crack length. This compliance change was estimated in two ways: 

1) The measurement of crack opening displacement, and 

2) The measurement of volume change. 

When pressurising the tubes graphs of crack opening displacement 

versus hoop stress were obtained. The slopes of these graphs 

were taken as the compliance of the tubes. For the crack opening 

Gisplacement measurements the following assumptions were made: 

1) That the tubes had similar elastic moduli, 

2) That the tubes deformed evenly around the perimeter. 

A strain gauge was attached opposite the slot on each pipe. 

The strain in this region was so obtained and used to estimate 

the volume change with pressure. The assumptions for this were: 

4) That the strain in this region was the same as the strain would 

be for an uncracked tube, 

2) That the tube deformed from and to a true circular cross 

section. 

The increase in circumference was calculated from the strain 

observed and from a knowledge of the initial circumference. At the 

same pressure thecrack opening displacement was known and added to 

this so that the final circumference was: 

Final circumference = Initial circumference + elastic strain 

+C. 0. D. 

From this a new radius, RS could be calculated, i.e. 

New radius R, = final circumference/2¢¢ 
=
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The volume change per unit length was taken as the difference 

between the volume calculated using Ry and the initial volume of 

the tube. The volume changes were plotted against pressure and 

the slope AV/P obtained as another compliance measurement.
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Chapter 5. 

5. Results. 

5. 1. Measurement of Young's modulus and Poisson's ratio. 

  

  

Tube No. Lay up Fibre volume E Myo 
fraction 4 

; +40) 
WGE/33 4 = 20 0.613 5041.0 0.484 

2 = 20° 56970 0.528 
+ Oo WGE/35 4 27a 0.608 45300 O.445 

2 * 20 50390 0.502 
+ 0 

WGE/36 4 cea 0.604 42.270 0.483 

2 = 20' 45390 0.526 
+ )70 WGE/4A 4 = ue 0.644 24760 0.616 

a = 40 20200 0.635 
+ oO 

WGE/42 4 i. 0.62 20160 0.716 

2 2 40) 25570 0.543 
+ oO WGE/43 4 =e 02636 18460 0.533 

2 = 40) 24910 0.640 
Won /37 + 20° 0.609 55080 0.513 
WGE/38 * 20° 0.643 701140 0.623 

WGE/39 = 20° 0.616 65250 0.564 
WCB/1.0 £ 20° 0.606 57310 0.571 
WOE/4, * 40° 0.622 20970 | 0.534 
WGB/L5 = 00 0.652 28140 0.575 

> + oO 

WaE/3B /9 = 20 0.623 42190 | 0,266 
2/9 = 90° 

+ oO 

WcE/5B saa 0.626 14750 | 0.275 
2/9 = 90               

Table 3. Longitudinal Young's modulii and Poisson's ratios for 

tubes with 20° and 40° helix angle. 

(Modulii values are in uNS/M? )
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Tube No. Fibre volume E,, OS 
fraction 

Bart 25250 0.274 
2 35220 0.198 

3 0.683 33900 0.216 

4 33380 0.200 

5 26000 0.223 

B14 34310 0.247 

2 24450 0.4187 
3 0.684 20050 0.417 

4 B. F. E. F. 

5 29650 0.248 

o 4 20350 0.457 

2 28820 0.223 
3 0.673 36780 0.244 
4 31760 E. F. 

5 30600 0.176 

DEA 38670 0.223 

2 35910 0.245 

3 0.689 42050 0.244 

4 36370 0.208 

5 33880 0.480 

By 25200 0.323 
2 24.860 0.240 

2 0.687 26900 0.198 

4 26060 0.184 

5 24240 0.185 

Fo4 37320 0.210 
2 38610 0.226 

3 0.698 38080 0.323 

4 : 37830 | 0.470 
5 37070 0.200 

G 4 37040 0.230 

2 38300 0.250 

3 0.722 43020 0.242 

4 35380 0.265 

5 45540 0.242             

Table 4. Hoop Young's modulii and Poisson's ratios for tubes with 

50% t 30° and 50% t 90° lay up. (Modulii values are in mNs/i2 5
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Tube No. Se E 44 Ny 2 

cles, 49030 0.233 

2 20550 0.286 

5 0.650 21770 0.273 

4 21510 0.279 

5 31470 0.396 

ont 17650 0.228 

2 2371.0 0.259 

3 0.649 20980 0.232 
& 20020 0.19% 

5 20780 0.200 

K 4 274,00 0.424 

2 21620 0.305 

x 0.672 21620 0.277 

4 48450 0.240 

5 20690 0.4.06 

is 34 20380 0.295 

2 47070 0.198 

3 0.649 48450 0.234 

4 20420 0.249 

5 48780 0.214 

M4 19420 0.273 

2 419580 0.302 

3 0.627 47060 0.247 

4 19280 0.505 

5 48710 0.259             

Table 5. Hoop Young's modulii/and Poisson's ratios for tubes with 

+ 30° helix angle. 

(Modalii)values are in ws /u?)



5. 2. Defect types. 

= 

Table 6 shows the types of defect and the tube numbers 

for the results which follow in 5. 3. The distance between the 

pressure seals was 0.495M in all cases. 

  

  

  

          

Lay up No defect Full through % through % through 
wall defect wall defect wall defect 

+ oO eo = 30 HA - HD Ji - 55 4 KS N/A 

4 - 15 M1 - M5 

50% = 30°] 4 42 - AS Bt - BS a -o5 
50% + 90°| 1 - E5 mM - D5 MM - F5 1 - G5 
  

Table 6, Defect types for the tubes subjected to failure 

internal pressure. 

by 

 



noe 

5. 3. Compliance and failure measurements. 

  

  

C.0.D. 449° BY 410° le 
On Er EP oy 

Tube No. c 

(cms) M/an/ue ware rove w/e 

7 - - - 48.91 682.23 

2 | 1.198 3.95 6.47 2.89 4.0.33 

3 | 0.824 4.74 5.33 EB. F. EF. 

4 | 1.802 6.29 8.08 1.64 22.44 

5 | 2.232 6.83 9.63 0.68 9.52 

B 4 | 0.612 4.10 4.70 4.02 54 87 

2 | 4.45h 2.45) 7.03 2.01 | 26.57 

35) ) 26291 3.08 8.75 448 19.56 

4 | 1670 3.46 6.70 4.65 21.47 

5 | 2.20 9.02 927k 2.49 28.9 

Git | 45945 4.58 7.66 E. F. E. P. 

2 | 1.378 4.27 Sale 3.09 4.0.15 

3 | 3.084 2.32 4.98 2.25 29.20 

4 | 0.552 4644 4695 6.43 83.43 

5 | 0.913 41.33 5.22 3.53 45.47 

D 4 | 1.027 3.44 6.05 2.17 32.36 

2 1 0s744 4.84 556 3.53 52.73 

3 | 2.043) 40.35 40.06 1.37 19.4 

4 | 4.852 9.57 40.37 1.2 17.98 

5 | 1-437 5.58 8.18 2.84 29.96 

E - - - 50.23 | 724.97 

2 - - = 47.59 683.97 

3 - - - 52.24 750047 

a - - - 47.32 | 680.17 

5 - - - 50.23 | 721.97 

F 4 | 0.617 0.473 4.38 3.29 | 47.54. 

2] 4.07 2.42 5.22 2.14 34679 

3 | 1.432 2.50 5.54 4.57 22.64 

4 | 1.687 2.77 5.70 4044 20.29 

5 | 2.19% 3046 6.20 4.00 44.50               
  

Table 7. Compliance and failure measurement for the A to M series 

of tubes. (E. F. is equipment failure)
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Table 7. continued 

  

G 4 | 0.655 4.03 475 4.50 | 65.34 
2 | 1.027 1.0 4.60 4.58 | 66.48 
3 | 4.372 0.87 4.08 2.61 | 37.90 
4 | 1.979 4.03 4.89 4.48 | 60.65 
5 | 2.436 1.27 4.42 2.64 37.90 

Ho 4” |e _ = 4698 | 66.42 
Pall 3 - 4686 | 64.82 
Beli = = 5.10 | 68.03 
DT = = 5.10 | 68.03 
5 | = - - 5.06 | 67.49 

J 4 | 0.539 4.84 9.78 2.17 | 30.86 
2 | 4.019 3.36 Bole 4.37 | 19.43 
3 | 1-444 5.92 10.84 0.95 13.49 
& | 4.93 7.54 12.13 0.42 59h. 
5 | 2.475 10.87 13.88 0.45 6.40 

K 1 | 0.659 2.23 6.92 2.4 | 28.72 
2 | 0.959 4.75 8.14 1.61 | 22.97 
2 1.619 27h 8.73 1.34 18.72 

4 | 2.248 2.22 9.66 4.49 | 21.25 
5 | 2.819 2.46 8.89 1.08 | 45.39 

L 4 | 0.503 4.64 8.09 2.17 | 29.47 
2 | 0.78 1.96 9.70 1.49 | 20.49 
3 | 1.233 2.92 9.60 0.68 9.17 
4 | 4.732 3445 8.96 0.48 6.55 
5: 3.010 7.06 41.84 0.37 5.02 

M4 | 0.49 4.22 7.95 2.73 35 46h. 
2 | 4.305 2.28 8.47 4.57 | 20.44 
3 | 4.942 2.06 9.43 1.37 | 47.82 
4 | 2.439 3.45 9.06 4.29 | 46.77 
5 3.207 2.34 10.6) 1.16 15.09                



Chapter 6. 

6. Discussion of the results. 

6. 1. Young's modulus and Poisson's ratio. 

6. 1. 1. Predictions of compressive E 2 gene and Y, 2 for 'S'_ glass 

in a resin matrix of 828/MNA/BDMA (Shell he using the theories 

of valtis(") ana tsai 13), 

Appropriate values of Young's modulus and Poisson's 

ratio were calculated using the theories of Wallis and Tsai. 

The following physical constants were used for this: 

'S' glass Resin 828/MNA/BDMA 

Young's modulus 97895 rau? 3400 MN/ue 

Poisson's ratio 0.22 0.34 

For the theory of Tsai the contiguity factor, C was 

taken as 0.2 as suggested by Tsai for this type of tube. Twenty 

tubes were subjected to axial compression ene the values of 

B, 4 and SD 2 8° obtained were compared to the theoretical ones 

obtained from the two theories. The observed and calculated 

values were subjected to statistical analysis to obtain the 

variance, standard deviation and mean of the differences between 

the observed and calculated figures. 

6. 42 1. 16 Longitudinal Young's modulus, E Baas 

Table 8 shows the observed and calculated values of 

longitudinal Young's modulus and Fig. 24 illustrates a comparison 

of these for the two theories. The line at 45°, passing through 

the origin of each graph, is the line which would exist if there
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Tube No. By, Ey, Ey 

(observed) (after Wallis) | (after Tsai) 

WGE/33 41 50h10 43450 36710 

2 56970 43450 36710 

WGE/35 4 45300 43090 36330 

2 50390 43090 36330 

WGB/36 4 44,270 4.2800 36030 

2 45390 4.2800 36030 

WOB/kA 4 21760 43700 21510 

2 20200 43700 24510 

WGE/L2 4 20160 43800 24670 

2 25570 43800 21670 

WGE/43 4 48460 43550 24240 

2 2490 43550 2421.0 

WGE/37 55080 43160 3614 0 

WGE/38 70110 4.3450 36710 

WGE/39 65250 4.3670 3694.0 

WGE/L.0 57310 42940 36180 

WOE/L 20970 43130 20510 

WOB/145 28410 41,060 22410 

WGE/33 42490 39970 4.9830 

WCE/5B 44750 4.01 60 50090       
  

Table 8. Variation of observed and calculated values of Ey, for 

'g' glass in a resin matrix of 828/MNA/BDMA (Shell Ltd. ) 

(Modulii |values are in saV/x7) 
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were no difference between observed and calculated Eyy- The 

results of the statistical analysis are as follows: 

Variance of Standard deviation Mean of 

differences of differences differences 

Theory of Wallis 6501x 408 1.74 x 10° 9005 

Theory of Tsai 2.07 x 408 144 x 40" 8290 

Ratio of the variances = 1.60 

'F' ratio at the 95% confidence level = 2.51 

The 'F' test is a test for the equality of population variances. 

The ratio of the variances was the ratio of the larger to the smaller 

sample variances. The 'F' test was used to determine whether there was 

a@ significant difference between the predictions from the two theories. 

In this case since two theories are being compared it is necessary to 

obtain the 2.5% significance 'F' ratio from tables for 95% confidence. 

Since the ratio of the variances was less than the 'F' ratio 

obtained from tables there was no significant difference between each 

theory at the 95% confidence level. The means of the differences gave 

an indication of the 'bias' of the observed results. This is shown by 

the broken line on the graphs and indicates that the observed values 

were, in general, higher than the calculated values by about 8-9000MN/m@ 

for both theories. To obtain the most accurate estimate of Ey, it is 

necessary to add the mean of the differences to the predicted value. 

The quantity so obtained is subject to 95% confidence limit of about 

= 22000mN/m@ for Wallis ana + 28000 MWi/m? for Tsai. The results show 

that the theories, though reasonable, are not exact and neither is 

Significantly better than the other for the prediction of Eyy: 

6. 1. 1. 2. Longitudinal Poisson's ratio,v 42° 

Table 9 shows the observed and calculated values of 

Poisson's ratio and Fig. 25 illustrates a comparison of these for 

the two theories. The 45° lines on each graph are the lines which 

would exist for no differences between observed and calculated, ,.
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Tube No. 

  

  

™42 “42 42 
(observed) (after Wallis) (after Tsai) 

WGE/33 41 0.4.84 0.783 0.307 

2 0.528 0.783 0.307 

WGE/35 4 OnuA5 0.785 0.307 

2 0.502 0.785 0.307 

WGER/36 4 0.483 0.787 0.308 

2 0.526 0.787 0.308 

WGE/4A 4 0.616 0.878 0.282 

2 0.635 0.878 0.282 

WGE/42 4 0.716 0.877 0.282 

2 0.543 0.877 0.282 

WGE/43 4 0.533 0.880 0.282 

2 0.640 0.880 0.282 

WGE/37 0.543 0.785 0.307 

WGs/38 0.623 0.783 0.307 

WGE/39 0.564 0.781 0.307 

WGE/1.0 0.574 0.786 0.308 

WGE/LA. 0.534 0.884 0.282 

WGE/L5 0.575 0.874 0.283 

WGE/3B 0.266 0.316 0.284 

WGE/5B 0.275 0.316 0.284         

Table 9. Variation of observed and calculated values of\,, for 
te 

'S' glass in a resin matrix of 828/NNA/BDMA (Shell Ltd.) 
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The results of the statistical analysis are as follows: 

Variance of Standard deviation Mean of 
differences of differences differences 

Theory of Wallis 0.07 0.27 - 0.247 

Theory of Tsai 0.07 0.26 0.234 

Ratio of the variances = 1.03 

‘F' ratio at the 95% confidence level = 2.5! 

Since the ratio of the variances was less than the 'F' 

ratio obtained from the tables, there was no significant difference 

between each theory at the 95% confidence level. The means of 

differences gave an indication of the 'bias' of the observed results. 

It is seen that the Wallis predictions had a higher 'bias' and 

the Tsai predictions a lower one. To obtain the most accurate 

estimate of v,, it is necessary to add the mean of the differences 
12 

to the predicted value. The quantity so obtained is subject to 

95% confidence limits of about * 0.5 for both theories. Such 

estimates are unacceptable and it is clear that the theories are 

not very useful for the prediction of », for these types of tube. 
2
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22 

matrix of MY705/HY906/DY062 (CIBA-GEIGY) using the theories of 

6. 14. 2. Prediction of E and Mo for 'E' glass in a resin 

weartis() ana Tsai 13), 

Appropriate values of Young's modulus and Foisson's 

retio were calculated using the theories of Wallis and Tsai. 

The following physical constants were used for this: 

'E' glass Resin MY705/HY906/DY062 

Young's modulus 75800 sy? 2900 mye 

Poisson's ratio 0.20 0.38 

For the theory of Tsai the contiguity factor, C was 

taken as 0.2 as suggested by Tsai for this type of tube. Sixty 

tubes were subjected to internal pressure and the values of Foo 

and V, 42 80 obtained, were compared to the theoretical ones 
2 

obtained from the two theories. The sixty results were reduced to 

twelve lots of five and average values used for the comparisons. 

The observed and calculated values were subjected to statistical 

analysis to obtain the variance, standard deviation and meen 

of the differences between the observed and calculated figures. 

6. 14. 2. 1. Hoop Young's modulus, Boos 

Table 10 shows the observed and calculated values of 

hoop Young's modulus and Fig, 26 illustrates a comparison of 

these for the two theories. The 45° lines, on each graph, are 

the lines which would exist for no differences between observed 

and calculated E,,. The results of the statistical analysis 
22 

are as follows: 

Variance of Standeré deviation Mean of 
differences of differences differences 

Theory of Wallis 716 x 40° 8.46 x 40° 4.00 

Theory of Tsai 6.89 x 40° 8.30 x 10° = 4700
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Tube No. E50 E55 E55 

(observed) (after Wallis) (after Tsai) 

A 4-5 28350 32180 39160 

B4-5 27040 32080 39030 

c 41-5 29600 34680 38500 

D1-5 37380 32490 39560 

E 1-5 254.50 32390 394.30 

#45 37780 32950 4.0470 

G 4=5 39860 34230 44840 

H.4-5 22870 9645 44355 

J 1-5 20630 9620 45240 

K 1-5 21960 40210 45240 

L 1-5 49020 9620 44.320 

M1-5 48810 920 413500         

Table 10. Variation of observed and calculated values of B,, for 
22 

'E! glass in a resin matrix of MY/705/HY906/DY062 (CIBA-GEIGY) 

(Modulii values are in ws/x") 
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Ratio of the variances = 1.04 

'F' ratio at the 95% confidence level = 3.48 

Since the ratio of the variances was less than the 'F' 

ratio obtained from tables, there was no significant difference 

between the two theories at the 95% confidence level. In general, 

the predictions for tubes containing hoop windings were more 

accurate than those without. The means of the differences gave 

an indication of the 'bias' of the observed values. It is seen 

that the predictions by Wallis were lower then the observed 

results and vice versa for the predictions of Tsai. The means of 

the differences and the standard deviations indicated that the 

predictions of Eo9 for this system were more accurate than the 

predictions of E 4 
To obtain the most accurate estimate of F, 

for the 'S' glass system. 

02 it is necessary 

to add the means of differences to the predicted value. The 

quantity so obtained is subject to 95% confidence limits of about 

= 46000 aye for the two theories. The predictions of Eno for 

the plain tubes appeared to be worse than the predictions for 

tubes containing hoop windings. 

6. 1. 2. 2. Hoop Poisson's ratio, ¥o,+ 

Table 11 shows the observed and calculated values of 

hoop Poisson's ratio Pad Fig. 27 illustrates a comparison of 

these for the two theories. The 15 lines on each graph are the 

lines which would exist for no differences between observed and 

calculated values of Xo4? The results of the statistical analysis 

were as follows:
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Tube No. Y o4 Y 04 Vo4 

(observed) (efter Wallis) | (after Tsai) 

A 1-5 0.222 0.289 0.283 

B 41-5 0.192 0.289 0.283 

c 41-5 0.199 0.289 0.284. 

D1-5 0.213 0.289 0.282 

EB 4i-5 0.225 0.289 0.282 

F 4-5 0.226 0.289 0.284 

G 1-5 0.240 0.288 0.279 

H 41-5 0.293 0.375 0.494. 

J 41-5 0.222 0.375 0.494. 

K 4-5 0.330 0.374 0.495 

L1-5 0.239 0.375 0.194. 

M 4-5 0.277 0.376 0.193       
  

Table 41. Variation of observed and calculated values ofv,, for 
on 

'g! glass in a resin matrix of MY 705/HY906/DY062 (CIBA-GEIGY) 
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Variance of Standard deviation Mean of 
differences of differences differences 

Theory of Wallis 0.009 0.095 = 0.085 

Theory of Tsai 0.006 0.080 = 0.005 

Ratio of the variances = 1.50 

'F' ratio at the 95% confidence level = 3.43 

Since the ratio of the variances was less then the 'F' 

ratio obtained from tables, there was no significant difference 

between the two theories at the 95% confidence level. The means 

of the differences gave an indication of the 'bias' of the 

observed results. The 'bias' indicates that the observed results 

were, in general, lower than the calculated ones, for both theories. 

To obtain the most accurate estimate of v, 
24 

add the mean of the differences to the predicted value. The 

it is necessary to 

quantity so obtained is subject to 95% confidence limits of 

about * 0.46 - 0.19 for the two theories. In general, predictions 

of v,,, although higher than the observed values were more 
24 

reasonable than predictions of v. 42°
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6. 2. Compliance measurements. 

When determining fracture toughness data for isotropic 

and elastically homogenous materials, it is necessary to have 

a knowledge of the change of compliance with crack length for 

@ given geometry. For such a material the compliance increases 

with crack length for most geometries. The compliance versus 

crack length curves are analysed to obtain geometrical factors 

for use in computing values of K: These calibration curves are 

applicable to a wide range of isotropic materials, but Barnby 

and Spencer (35) have shown that they are not necessarily 

applicable to fibre reinforced materials. Further it is 

possible, by careful choice of specimen, to observe compliance 

decreasing with increasing crack length. It was necessary to 

carry out compliance tests, on the material which was the 

subject of this work, to establish the preniae that compliance 

would increase with increase in crack length. Intuitively this 

was expected, but the material was so anisotropic and subject to 

micro-geometrical effects that it could not be assumed. 

Two methods of compliance measurement were investigated 

for this material. The first was a crack opening displacement 

measurement which was determined from first principles. The 

measurement of compliance was the slope of the graph of hoop 

stress versus crack opening displacement of the crack when the 

tube was pressurised, The other compliance measurement was the 

Slope of the graph of pressure versus the volume change per 

unit length of the tube obtained during pressurising. A similar
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measurement of compliance as a volume change was made by Underwood et 

Al and is described in reference 45. The method used here is an 

analogous approach based on the same principles and the details of this 

can be found on page 37.
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6. 2. 1. Crack opening displacement measurements. 

The absolute value of crack opening displacement was 

measured by means of a calibrated clip gauge. The compliance 

was taken as the slope of the line obtained by plotting hoop 

stress against crack opening displacement for initial pressurising 

of the tube, i. e. C.0.D./o,. Figs. 28,29,30,31 and 32 show 

graphs of compliance versus half axial crack length for each 

tube type and defect depth. For isotropic materials, graphs of 

compliance versus crack length take the form of a curve. These 

curves usually cover the c/L range of 0.0 to 0.6. The first part 

of the curve, in the range of c/L = 0 to c/L = 0.1, is normally 

quite flat and only after about c/L = 0.2 are rapid increases of 

compliance with crack length shown. The range of c/L which this 

work covers is limited to a maximum c/L of 0.1. The points 

were considered to be representative of the straight line 

section of the compliance curve and the data subjected to 

linear regression analysis to obtain the lines of best fit. The 

results of this were as follows: 

Intercept Slope Regression Degrees 
coefficient of freedon 

K and M tubes 1.65 x407° 3.3540 0.592 9 

J and L tubes 807x107 3.40 x10 0,837 9 

€ end G tubes 7.38x407' 3.57x10° 0.701 9 

B and F tubes -8.95x 107" 2.62 x 107 0.718 9 

A end D tubes 1.92 x10°  5.04x40 0.902 8 

In all cases the regression coefficient was significant 

at the 95% level.
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Examination of the graphs revealed that, for each tube type, 

the compliance increased with increasing crack length. This 

was confirmed by the above regression analysis. The rate of change 

of compliance with crack length was clearly greater, the greater the 

slot depth. Scatter was shown around the regression lines and it 

is important to try and establish the source of this. 

It may be assumed that no significant error was made in the 

measurement of the slot length, 2c. The slot length was accurately 

measured by means of a travelling microscope. The measurement of 

the crack opening displacement was accurate since it depended on 

a previously calibrated clip gauge. During calibration it was found 

that the output from the clip gauge was linear over all ranges 

and sensitive enough to measure the displacement to * 0.02mm. 

Errors which may have arisen in the magnitude of the hoop stress 

depended upon three measurements. These were, the measurement of 

the wall thiclnesses and inside diameters of the tubes and the 

pressure. The pressure was measured by means of a transducer and 

was accurate to z 0.1%. The wall thickness and inside diameter were 

subject to local variations. During curing the Royalene lining was 

subject to local contractions and this, coupled with the method of 

manufacture of the tubes, caused variations in wall thickness 

and inside diameter of as much as 15%. For the quarter and 

half through wall slots, the accuracy of the compliance



-58- 

measurements was affected adversely.and this was reflected in 

the correlation coefficients, which increased with slot depth. 

Taking all these deviations into account, the probable error 

on OF was estimated as + 13%. Although this was a significant 

error, it was not enough to explain the scatter involved. 

The scatter probably arose from local material variations 

in the tubes. The Young's modulus and Foisson's ratio measurements 

showed variations from tube to tube, and the volume fraction 

measurements were not constant. The superimposition of these 

factors on the compliance measurements may explain the scatter 

involved.
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6. 2. 2. Volume change measurements. 

The change in volume/unit length was calculated from 

the change in the perimeter due to elastic strain and the 

opening of the slot. The elastic strain was obtained from a 

knowledge of the hoop modulus, and the hoop stress. This Boe 
assumed that the tube deformed uniformly, despite the presence 

of the slot. The compliance was taken as the slope of the 

linear portion of the pressure versus volume change graph, 

obtained at the start of pressurising. 

Figs. 33, 34, 35, 36 and 37 show the graphs of compliance 

versus half axial crack length for each tube type and defect 

depth. For similar reasons to those described in 6. 2. 1., 

the data was assumed to be representative of a linear function 

and was subjected to regression analysis with the following 

results; 
Intercept Slope Regression Degrees of 

wig a coefficient freedom 
Kand M tubes 7.1 x 107° 9.56 x 10 0.862 9 

J and L tubes 7.86 x 10° 1.68 x 107% 0.766 9 

CandG tubes 4.91 x 10° 4.06 x 10> 0.857 9 

Band F tubes 3.19 x 107° 2.44 x 107% 0.790 9 

A and D tubes 2.89 x 107° 3.31 x 107% 0.942 8 

In all cases the regression coefficients were significant 

at the 95% confidence level. 

For each tube type the compliance increased with crack 

length and this increase was greater, the greater the slot depth.
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The errors involved in the calculation of AV/P were 

not as large as those for the calculation of C.0.D./6,56 The 

measurement of volume change involved the calculation of elastic 

strain which eliminated errors due to Oye The overall probable 

error on AV/P was determined as * 4.0%. This confirms the 

premise that local material variations were responsible for 

the scatter of the results. The regression coefficients for the 

volume change method of compliance measurement were generally 

higher than for the crack opening displacement method, This is 

a reflection of the more accurate compliance measurement. 

In conclusion it has been established that the compliance, 

measured in two different ways, increased with increasing crack 

length. The increase was greater, the greater the depth of 

the defect. In both cases, the measurements were subject to 

scatter which was probably due to local material variations in 

the tubes. 

The variation of compliance with crack length can be used 

to determine K values of the material from a knowledge of the 

failure pressures and hoop stresses. 

The two equations are: 

4) Crack opening displacement 

EL ac'* 3 

Bao) eo 

(see Appendix 1 for derivation) 

* 
K, = a, (
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2) Volume change 

*, _E a(Av/P) \% 
K FG  arccrrans 2 

c ( 2(4 a) de ) 

(after Underwood et a1 5)) 

The comparison of K, values obtained by each compliance method 

is shown in section 6, 4.
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6. 3. Failure mechanisms of tubes subjected to internal pressure. 

6. 3. 1. Tubes without artificial defects. 

6. 3. 4. 16 Plain * 30° helix angle tubes (H_ tubes). 

Table 7 in section 5. 3. shows the failure pressures and 

hoop stresses sustained for five tubes (H1 - H5), each with a lay up 

or t 30° helix angle. The average ultimate hoop stress was 66.6 roy? 

which corresponded to an ultimate internal pressure of 5.02 my. 

The hoop stress versus hoop strain graph for each tube was linear 

at the start of pressurising, but, at about 50% of the ultimate 

pressure, became non-linear, This was probably due to a combination 

of two effects: 

41) The fibres attempting to rotate, 

2) The response of the resin becoming non-linear. 

The rotation of the fibres, due to shear stresses, can be seen in 

plates 10 and 14. 

Failure of the tubes was initiated at the reinforcement. 

An example of the sequence of events leading to failure of a 

typical tube (H3) is shown in plates 12 to 15. Plate 12 shows the 

tube prior to pressurising. At a hoop stress of 40 ray? a crack 

was initiated along and parallel to a band of fibres as shown in 

plate 13. Further stress caused the band to increase in width, 

as the crack propagated, and for other cracks to be initiated, 

as shown in plate 14. Further pressure caused the band width to 

continue to increase until failure as shown in plate 15. The 

initiation of the failure close to the reinforcement was due to



  Plate 10. 

  
Plate 41.
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the presence of stress concentration due to the section change. 

It is possible to calculate a value of the stress concentration 

in this region, but the mathematics is complex and beyond the 

scope of this work. 

Fig. 38 shows the variation of strain with angle to the 

X - axis for a typical tube H3. This was obtained from the output 

of the strain gauge rosette, in the usual way. The curve shows 

that the change-over from tensile to compressive strain occurred 

at 30° to the axis of the tube. The maximum hoop strain which 

the tube sustained was 4.6 x 107. 

6. 3. 4. 2. 50% * 30° ena 50% + 90° tubes (A and B tubes). 

Table 7 in section 5. 3. shows the failure pressures of 

six tubes (1 and E1 - E5) with a lay up of 50% + 30° ana 

50% b 90° helix angles. The average ultimate hoop stress was 

724.8 my? which corresponded to an ultimate internal pressure 

of 49.4 un/u?. In all cases th hoop stress/hoop strain grephs 

were linear up to the point of failure of the tubes. Plates 

46 to 19 show the sequence of events leading to the failure of a 

typical tube, E1. Plate 16 shows the tube before pressurising. 

At the relatively low pressure of 120 wn/u?, voids were clearly 

visible between the fibre/matrix interface in the S300 layers, 

as shown in plate 17. Plate 18 illustrates that, at a higher 

pressure of 400 sav? » the voids Were more clearly visible. 

Catastrophic failure, initiated at the ends of the tubes near the 

reinforcement, is shown in plate 19. The failure close to the



  Plate 19. 
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reinforcement of the tubes was typical . This was due to the 

section change causing a stress concentration. As previously 

stated in section 6. 3. 1. 1., the calculation to obtain the 

magnitude of the stress concentration is beyond the scope of 

this thesis. The failure was accompanied by a loud report due to 

the release of a large amount of strain energy stored in the 

windings. 

Fig. 39 shows the variation of strain with angle to the 

X - axis for a typical tube M. Ata relatively low stress level 

of 400 un/ue the hoop strain was 5 x 4107? ».Which was more than the 

maximum strain that the plain * 30° tubes could sustain. This 

explains the large number of voids observed in the + 30° layers 

at the low stress levels. The hoop windings restrained the + 30° 

layers, but when these layers failed the + 30° layers could 

instantly bulge out as shown in plate 19. The maximum hoop 

strain at failure was 27.5 x 407, The change-over from tensile 

to compressive strain occurred at about 26° to the axis of the 

tube, which was lower than the plain tubes due to the presence 

of the hoop winding.
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6. 3. 2. Tubes with artificial defects. 

Table 7 in section 5. 3. lists the failure pressures and 

hoop.stresses for the tubes which contained slots. The failure 

pressure, P was taken as the pressure at the point of intersection, 

of a line drawn at 95% of the slope of the pressure versus crack 

opening displacement graph. (see Fig. 40) The failure pressure, P 

obtained in this way was used to calculate the failure hoop 

stress, Ors This is an accepted means of obtaining failure stresses 

for isotropic materials, such as most metals, The increase in 

compliance due to creck extension causes the plot to become 

non-linear. The stress determined in this way is representative 

of the stress required to cause crack extension of 2%. 

Section 6. 2. illustrated that the compliance increased 

with crack length for the tube types discussed here and justifies 

the use of the criteria normally used for isotropic materials. 

The slot did not always increase in length, but there was enough 

fibre and resin damage to increase the effective crack length; 

this caused the pressure/crack opening displacement plot to 

become non-linear, 

Further justification, for considering the onset of 

failure to have occurred shortly after the graphs became non-linear, 

is shown in plates 20 to 23. The plates show a series of events 

which took place during the pressurising of tube Gi. Fig. 40 

shows the stress at which each photograph was taken and its 

position on the stress/crack opening displacement curve. The 

sequence shows that, shortly after the curve became non-linear,



i 
P
e
r
 

§ 
, 

F 
L
h
 
e
t
 

en e
a
 

 
 Plate 21. Plate 20. 

P
s
 

y 

CO 

 
 

Plate 23. Plate 22. 

 



= 126.0MN.M.” 

4 Cae 23 

= 107.4 MN.M~ 
ee cee wa? Plate 22 

4 Ae ee rice 2! 

2 

Ge 724 UNM. K- Plate 20 

| of: 665MNMY 

95% Slope 

Ho
op
 

S
t
r
e
s
s
 

    T T T T 

Crack Opening Displacement. 

Fig.40. Hoop stress v. crack opening displacement for tube G2.



266n 

the hoop winding began to breek away from the tube. This was 

followed by catastrophic failure of the tube, illustrated in 

plate 23. The other tubes, for each category, showed this 

peheviour to lesser or greater degrees depending on the tube and 

defect types. They were consistent in that the onset of failure 

became clearly visible shortly after the curves became non-linear. 

The data for the the five different categories are 

presented in two ways. Section 2. 2. 2., in the Literature 

Survey, illustrate two criteria for the interpretation of data 

obtained by subjecting cylindrical pressure vessels to internal 

pressure (Table 2). The two important equations are: 

Equation 1 

K 24 ® ‘c oon 
= —(1+S5 )? oy (re) Rt 

Equation 2 

K 2 | * os as 
o = —- +s Sotanh stp a 

(Ic )? R 

(The factor 5 was not included in these equations since it is 

a plastic zone correction factor, not expected to be relevant 

in the case of glass reinforced plastics) 

The factor S was calculated from the equation: 

Al, 
S = 0.n9(12(4 - v2)? (Folias @)) 
A K, value was determined for a tube which had a relatively 

J * 

short slot and failed at a high pressure, P . Variations of oy 

were then computed for increasing values of crack length, c,. 

for the two equations.
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The second way of interpreting the data was similar 

to that presented in reference 3, Inspection of equations 

eTro)E. is a linear function of of /Rt 

ana c@/R 50tanhR/50t with ig and Sus the slope and intercept 

» 

4 and 2 reveals that ( oy 

respectively. (this is fully discussed in reference 3 and in 

* 
section 2. 2. 2.). Graphs of ( Ge ene) versus o°/Rt and 

en Re 50tanh R/50t were obtained and compared for different 

K, values.
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66.3. 2. de Plain : 30° helix angle tubes with full through 

wall defects (J and L tubes). 

The average value of Vv for tubes J and L was 0.230 
241 

which resulted in a value for S of 1.65. K, values were calculated 

using the deta obtained from tube If for equations 1 and 2. 

The two K, values were 4.36 and 4.35 vat aizt for equations 1 and 

2 respectively. Fig. 44 shows the variation of o with crack 

length, c. The experimental vales of oy and c are also illustrated. 

The two theoretical lines are almost identical and differ 

by about 0.4%. The values of oy predicted by equation 2 are slightly 

higher than those from equation 1. The value of the function 

oft 50tenh R/50t is smaller than the function oe /Rt for a given 

¢. In order to preserve a constant K, the value of oy for 

equation 2 must be greater than Gr for equation 1. The experimental 

measurements of Or were subject to an error of 43% as discussed 

in 6. 2. 1. The scatter of the points could be due to this error. 

The experimental points agree reasonably well with the theoretical 

lines in view of the experimental errors and the errors encountered 

with this material due to local variations. The equations are 

useful in the prediction of failure hoop stresses for this type 

of tube containing a full through defect. For practical purposes 

equation 1 is as good as the more complex equation 2 for the prediction 

of failure pressures. 

Figs. 42 and 43 show graphs of ( c, 2to) versus of /Rt 

and oye 50tanh R/50t for equations 1 and 2 respectively. The 

graphs are very similar and show scatter around the lines of



10
0 1 

  
    T T T T T 

0 1.0 20 30 

Half axial crack length c (cms) 

Fig. 41. of, v. crack length for J and L tubes.



  

    
yi 6 

CZRE 

S
 No
d 

&
-
 

10 

Fig.42. Equation? for J and L tubes. 

Re S 

OL
 

r
c
]
 

Mi
MN
2*
 

03
 

9, 
0.

2 

* H 
Ml 

  
    ° T T T T 1 

O z 4 6 8 10 

(502/R’) tanh(R/50t) 

Fig.43. Equation 2 for J and L tubes.



-69- 

K, = 4.36 and 4.35 MANE. The discrepancies shown in the 

previous method of data presentation are highlighted by this 

method due to the form of the equations involved. The experimental 

points all lay within a band width of K = 3 and x =6 a.nd, 

This illustrates clearly that for this material only a range of 

slot lengths will give a true representation of its behaviour. 

In this way a reliable, minimum value of K, can be obtained 

for design purposes. 

The tubes failed in a similar manner irrespective of 

slot length. Plates 24 to 27 show the progressive failure of 

tube 12, which was typical of the behaviour of the other tubes. 

Plate 2 shows the tube before pressurising. At a hoop stress of 

22 wy? » plate 25 shows the initiation and propagation at the 

ends of the slot, cracks between the fibre/matrix interface and 

parallel to the fibre direction. This is the normal propagation 

mechanism for the strong fibre/weak matrix systems. Plate 26 

illustrates the crack propagation in a more advanced state, 

followed by failure as shown in plate 27. This was not the 

ultimate pressure which the tube could sustain, but the pressure 

at which leakage occurred due to the breakdown of the adhesive 

holding the thin copper sheet in place, 

The series of plates shows that the onset of failure 

was similar, in some respects, to the tubes containing no 

defects, but the initiation was started at the ends of the slots. 

The stress concentration at the ends of the slots was evidently 

more severe than the stress concentration at the reinforced 

ends,



 
 Plate 25. Plate 24. 

    
Plate 27. Plate 26. 
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6. 3. 2. 2. Plain eS 30c helix angle tubes with half through 

wall slots (K and M tubes). 

The failure mechanism for the K and M series of tubes 

was interesting, since it was observed that the initiation of 

failure did not always take place in the vicinity of the ends 

of the slots. Very rapid initiation and growth of cracks 

sometimes took place, particularly for the tubes containing 

short slots, at the ends of the tubes, close to the reinforcement. 

When this occurred, small cracks were initiated at the ends of 

the slot, simultaneous to the growth of the previously initiated 

cracks. The initiation and growth of the cracks from the slot 

ends will be discussed first. 

The average value of Vo. 4 for these tubes was 0,30). 

which resulted in a value of S of 1.62, for equations 1 and 2. 

Another equation was considered for interpretation of the data 

for these tubes, equation 3. This did not contain a correction 

factor for crack mouth bulging. 

Equation 3 

a «= _%% 
H ee 

(tie)? 

Values of or were computed using equations 1, 2 and 3 for 

increasing values of c and a fixed K value obtained from the 

test data of tube M1. The values of K, were 5.13, 5.11 and 

Aeb2 MME for equations 1, 2 and 3 respectively, Fig. 4h 

shows the variation of o with c, for the three equations, 
H 

and the experimental points.
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The theoretical lines for equations 1 and 2, while very 

similar to each other, did not lie near the experimental points. 

The line for equation 3 was a much better approximation to the 

data. It is apparent that, for this system, a correction factor 

for crack mouth bulging is not needed. The 2 43% probable error 

on Gy could explain the sonttering of the points except for 

the result from tube kK}. Local thickening of the tube, in the 

slot region, may have caused the value of oy to be high. For 

practical purposes the use of equation 3 for the prediction of 

failure pressures is reasonably adequate. 

The data could not be represented similarly to those of 

reference 3 since equation 3 was not of the required form. The 

K, values obtained for each tube from equation 3 were plotted 

against crack length, This is illustrated in Fig. 45. The figure 

shows that the K values obtained using equation 3 were reasonably 

constant about a mean of 4.5 WN.M Fenda 95% confidence limits of 

4.0 wen, This is further confirmation of the validity of the 

use of equation 3 for determination of K and subsequent prediction 

of failure pressures, 

The above presents a useful means of prediction of the 

initiation and growth of cracks from a half through wall slot 

in a tube of this type. Its use is limited, since the initiation 

of failure of the tube as a whole can be governed by changes in 

section. The ultimate hoop stress for tubes containing relatively 

short slots was similar to the ultimate hoop stress for tubes 

without slots (H tubes). The failure hoop stresses were subjected
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to a statistical analysis, the results of which are presented 

below: 

mean ultimate variance 
hoop stress 

H tubes (no slot) 66.96 rau? 4.86 

K and M tubes (half through 63.92 m/e 40.70 
wall slot, c<1.5cms) 

Ratio of the variances ="5.75 

'F' ratio at the 95% confidence level = 6.59 

The ratio of the variances indicates that, at the 95% 

confidence level, there was no significant difference between the 

ultimate hoop stresses for tubes with or without short slots, 

(c < 4.5cems). A similar analysis was carried out for tubes 

containing slots longer than this, c >1.5cms < 3.5cms. The results 

were as follows: 

mean ultimate variance 
hoop stress 

K and M tubes (half through 
46.73 w/e 434.64 

wall slot, c 1.5cem 3.5cm) 

Ratio of the variances = 70.76 

'F' ratio at the 95% confidence level = 5.19 

The ratio of the variances indicates that, at the 95% 

confidence level, there was a highly significant difference 

petween the ultimate hoop stresses sustained by tubes containing 

long slots and those not containing slots. 

The above illustrates that, if a short, half through wall 

slot (c <1.5cms) was present, it did not have any significant 

effect on the ultimate hoop stress. If a longer slot (ec >1.5cms 

<3.5cems) was present, then this had a deleterious effect on



the ultimate hoop stress. 

This was confirmed by observations of the mechanisms 

of failure. Plates 28 to 31 show the sequence of failure of 

tube K1, which had a half through wall slot of length, 2c = 1.318cm. 

Plate 28 shows the tube before pressurising. Plate 29 shows the 

initiation and growth of a crack from the end of the tube, 

near the reinforcement. At a higher pressure, plate 30 shows the 

growth of this crack and the initiation of a small crack from 

the end of the slot. Plate 31 shows that, at failure, the growth 

of the crack from the end of the slot was not extensive. The 

behaviour of this tube was typical of those tubes with very short 

slot lengths. 

Plates 32 to 35 show the sequence of failure of tube K3, 

which had an intermediate slot of length, 2c = 3.238cms. Plate 32 

shows the tube before pressurising. Plate 33 shows the initiation 

of cracks from the end of the slot as the tube is pressurised. 

At a higher pressure, plate 34 shows the growth of these cracks 

and the initiation of another crack, from the end of, and around 

the tube. At failure Fig 35 shows substantial growth of both 

cracks. 

Plates 36 to 39 show the sequence of failure of tube Mi, 

which had a long slot of length, 2c = 4.878cms. Plate 36 shows 

the tube before pressurising. Failure was initiated by cracks 

forming at the ends of the slot as shown in plate 37. At a 

higher pressure substantial growth of these cracks is shown 

in plate 38. The ultimate failure, shown in plate 39, shows
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Plate 31. Plate 30.
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that no cracks were initiated from the ends, near the reinforcement. 

These series of plates illustrate that, for the K and M 

tubes containing half through wall slots: 

4) For small slots failure was due, almost entirely, to cracks 

initiated at the ends of the tubes, close to the reinforcement. 

2) For intermediate slots failure was due to cracks initiated, 

both at the slot tips and at the reinforcement. 

3) For large slots failure was due, almost entirely, to cracks 

initiated at the slot tips. 

For intermediate slots, the stress concentrations due to 

section change and presence of a slot appear to be of a similar 

magnitude. At the ends of the tube bending moments are set up 

as the tube distorts. It is possible to calculate the magnitude 

of the stresses in these areas, but this is beyond the scope 

of this thesis. 

The behaviour of the tubes illustrates that the presence 

of even large defects may not be as important, for design purposes, 

as local stress concentrations due to section change. In most 

circumstences, defects of the size introduced into the tubes for 

these experiments, will not be present. Clearly, large section 

changes end small root radii must be avoided, wherever possible, 

in the design of pressure vessels with this type of lay up.
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6. 3. 2. 3. 50% * 30° ana 50% * 90° helix angle tubes with full 

through wall defects (A and D tubes). 

The average value of V,, for tubes A and D was 0.218, 
24 

which resulted in a value for S of 1.66. Ky values were calculated, 

using the data for tube D2, for equations 1 and 2. The two K, 

values were 10.56 and 10.50 at." for equations 1 and 2 respectively. 

Fig. 46 shows the variation of o, with crack length, c. The 

experimental values of Gi and c are illustrated also. 

The theoretical lines for the two equations are almost 

identical and agree well with the experimental points. In nearly 

all cases the actual failure hoop stresses were higher than 

those obtained from the equations. The discrepancies with the 

theoretical lines can nearly all be explained by the probable 

error on the measurement of or of + 43%. The experimental point 

for tube 45 shows the most discrepancy and may. be due to a local 

thin part of the tube causing an underestimation of the value 

of Oye It is apparent that the equations may be used, with a 

reasonable degree of accuracy, for the prediction of failure 

pressures for tubes with this lay up and containing full through 

wall defects. 

Figs. 47 and 48 show graphs of (ce, 2rTo)i versus oo/Rt 

and oor 50tanh R/50t for equations 1 and 2 respectively. The 

graphs are very similar and show that nearly all the experinental 

points lay below the K, = 10.50 and K, = 40.56 vor. lines for 

the respective equations. The experimental point which ley
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Fig.46. of. crack length for A and D tubes.
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away from the line was the one for tube A5. The discrepancy 

shown by this point in Fig. 46 is highlighted by this means of 

presentation. These figures give confirmation to the value of 

using the equations as a basis of design. Equation 1 is as useful 

as the more complex equation 2. 

Plates 40 to 43 show the series of events leading to the 

failure of tube A3, which contained a relatively short slot of 

length, c = 0.821cms. An interesting failure mechanism for this 

system was noted. Plate 40 shows the tube before pressurising. 

The cut, hoop windings first started to break away from the z 30° 

layers. This was due to the inability of the interface to sustain 

the strain as the ss 30° layers started to bulge. This is shown in 

plate 44. To contain the volume of liquid pumped into the tube, 

further deformation of the * 30° layers was necessary. To deform 

further these layers had to push against he layers of hoop 

winding which were still intact. This resulted in the cut, hoop 

winding section splitting away completely, as shown by plate 42. 

Since the defect was relatively short the layers had to deform 

@ long way to contain the liquid. The bulge deformed to its minimum 

Giameter, i. e. it became a bulge of semi-circular cross section. 

The stresses required to deform the bulge further were evidently 

greater than those required to break off the hoop windings. 

Further pressure resulted in the removal of hoop windings and 

failure as depicted by plate 43. 

Plates 41, to 47 show the breakdown of the interlaminar 

interface of the hoop and 2 30° layers around the slot present



  

Plate 40. Plate 41. 

   Plate 43.



  

   Plate 4. 

     
Plate 46. Plate 47.
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in tube A5. The slot length, c was 2.232, Plate 44 shows the slot 

before the tube was pressurised. Plate 45 and 46 show the 

circular growth of the debonding of the interface as the tube is 

pressurised, The growth of the circles impinged and the whole 

broke away as shown in plate 47. local stress concentrations 

existed, at the notch ends, as the es 30° layers tried to deform 

outwards. This helps to explain the initiation of the debonding 

in the proximity of the slot tip, and its subsequent growth towards 

the centre of the slot. 

Plates 48 to 54 show the sequence of events leading to the 

failure of tube A}, which contained a slot of length, ¢ = 1.802cm. 

Plate 48 shows the tube before pressurising. Plate 49 illustrates 

that the hoop windings started to break away as the tube was 

pressurised. The = 30° layers had to deform to contain the 

liquid which was being pumped into the tube. The shape of the 

bulge which was created by this is shown in plate 50. Since the 

slot length was relatively long the bulge did not reach the 

critical semi-circular cross section before failure, as shown by 

plate 51. 

The failure hoop stresses, even for small slots, were low 

compared with the failure hoop stresses for this type of tube 

without slots, (approximately 10%). The cutting of the hoop 

windings had a very deleterious effect on the performance of 

the tubes and made them quite notch sensitive; the tubes 

containing no hoop winding only showed a lowering of failure hoop 

stress by about 50% for the short slots. Since the hoop windings
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are present on the outer layers, care must be taken in the handling 

of the tubes to avoid drastic decreases in performance of damaged 

tubes.



  

   
Plate 48. Plate 49. 

   
Plate 50. Plate 51.
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6. 2. 3. be 50% * 30° ana 50% + 90° helix angle tubes with 

half through wall slots (B and F tubes). 

The average value of V,, for tubes B and F was 0.211, 
24 

which resulted in a value for S of 1.66. K values were calculated 

using the data obtained from tube B1 for equations 1 and 2. The 

two K, values were 9,00 and 8.96 ora for equations 1 and 2 

respectively. Fig. 49 shows the variation of or with crack length, c. 

The experimental values of on and c are also illustrated. 
H 

Similarly to previous discussions the theoretical lines for 

the two equations are almost identical and agree reasonably 

well with the experimental results. Nearly all the actual failure 

hoop stresses were higher than the ones obtained from the equations. 

The probeble error estimate of = 13% on oy could account for 

the discrepancies in all of the results, except those for tubes 

B3 and B5, It was necessary to estimate the depth of slot 

which would cut through all of the hoop layer. This was determined 

by measuring the hoop thickness in the walls of the tubes. 

Difficulty was encountered in obtaining an accurate depth of 

cut since the surface of the tube was slightly corrugated. Small 

inaccuracies in the slot depth could result in large errors 

aes 
This may explain the high values of failure hoop stress measured 

particularly if the hoop winding was not completely cut. 

for these tubes. The equations are useful for prediction of 

failure pressures for this type of tube and containing a half 

through wall defect. 

Figs. 50 and 51 show variations of ( gj, te) with oo /Rt
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and oo /n* 50tanh R/50t for equations 1 and 2 respectively. The 

graphs are very similar and show that all the points, except 

two for tubes B3 and B5, lie between a band width of K, = 8 and 

K, = 12 u.M7S, The figures confirm that equations 1 and 2 are 

useful for prediction of failure pressures. For design purposes, 

the line K, = 8 WN. contains all the failures. Similerly to 

the A and D tubes, the cutting of the hoop windings has drastically 

reduced the pressure holding capabilities of these tubes. 

The failure mechanism was slightly different for different 

slot lengths as shown by the A and D tubes. Plates 52 to 59 show 

the series of events leading to the failure of tube M. This 

tube had a relatively short slot of length, 2c = 1.234cm. Plate 52 

shows the tube before pressurising. As the tube was pressurised 

the interface between the cut, hoop layers and the . 30° layers 

was broken as the + 30° layers deformed. Plate 53 shows the 

cut, hoop layers after they had broken away. As further liquid 

was pumped into the tube the volume was taken up by bulging of 

the * 30° layers. The pressure remained fairly constant at this 

point. The deformation of the layers is shown in plate 54. More 

liquid caused the layers to bulge further, until the critical, 

semi-circular cross sectioned bulge was reached. This is shown 

in plate 55. The stress required to decrease the radius of the 

bulge was greater than that to remove some of the intact hoop 

windings. The removal of some of these windings, with the 

subsequent relief of stress, is shown in plate 56. As more liquid 

was pumped in the bulge reached its new critical semi-circular
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cross section, shown in plate 57. Plate 58 illustrates that, more 

hoop windings were then stripped away. This process was repeated 

until failure occurred as shown in plate 59. This behaviour was 

typical for tubes containing short slots, (2c <2.0cm). 

The tubes with longer slots did not display this behaviour 

of splitting of hoop leyers ahead of the slot. Plates 60 to 63 

show the sequence of events leading to the failure of tube F3. 

This tube had a relatively long defect, 2c = 2.86hom. Plate 60 

shows the tube before pressurising. Similarly to the tubes with 

short slots, the pressure first caused the cut, hoop layers to 

be debonded and forced away from the = 30° layers as shown in 

plate 61. Plate 62 shows the £ 30° layers beginning to bulge 

out and decrease the radius of cross section. The bulge did not 

reach the critical semi circular cross section before failure, 

depicted by plate 63. 

Tube M had a shorter slot than tube F3, but after 

removal of hoop layers the tubes were similar. The hoop windings 

continued to be removed, even after the slot length was greater 

than that of tube F3. The = 30° layers were strained and weakened 

to allow the initial removal of hoop windings and deformed 

easily to the critical semi-circular cross section. This resulted 

in continual hoop winding removal and gross bulging at failure 

of the tube.
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be 3e 2s 5, 50% = 30° and 504 + 90° helix angle tubes with 

quarter through wall defects (C and G tubes). 

The average value of for tubes C and G was 0.222, which 
21 

resulted in a value of S of 1.66. Another equation was considered 

for the interpretation of the data for these tubes. This was 

equation 3 which did not contain a correction factor for crack 

mouth bulging. The equation was: 

  

Equation 3 

on. we i a 
A (te)? 

K values were calculated using the data from tube Ch for 

equations 1, 2 and 3. The K, values were 13.25, 13.20 and 11.00 ror 

for equations 1, 2 and 3, respectively. Fig. 52 shows the variation 

of or, with crack length, ec for the equations. The experimental 

points are also illustrated. 

The theoretical lines for equations 1 and 2 are almost 

identical, but underestimate the failure hoop stresses for tubes 

containing long defects. The line for equation 3 overestimates the 

failure hoop stresses for most tubes. For quarter through wall 

slots crack mouth bulging is not as pronounced and the correction 

factor, given by Folias, appears to be too large. The scatter of 

the results is probably due to the difficulty of obtaining a 

reproducable slot depth for these tubes. Small differences in 

slot depth have a pronounced effect on Gs Using equations 4 and 2 

would underestimate the failure pressures which the tubes could 

sustain for these types of defect.
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T 
T 

T 

oz 
SL 

al 
N
N
N
O
L
X
 
[
9
 

4(20)] 

10    
 

  re 

i”, 
= 

L
o
s
 wD 

& << cS 
F
o
 

G 

. 
te Ss 

> 
S 9S 

r
a
t
 

C ° 
2 

L
N
 

3S = ly 

5 
T 

T 
T 

T 
T 

9S 

2 
SZ 

KA 
St 

OL 
SO 

0 

NWNDLX, 
[
4
0
]
 

Fig.54. Equation 2.



=835 

Figs. 53 and 54. show graphs of ( ott e) versus 2 /Rt 

and oe /re 50tanh R/50t for equations 1 and 2. The graphs are 

very similar and show that most of the points lie around the 

K, = 13 and Ky ato) MVM" F Lines. The method of presentation 

emphasises the scatter shown by the previous means of interpretation. 

The graphs illustrate that designing, using equations 1 and 2, 

would underestimate the usable strengths of the tubes. K, values 

were calculated using equation 3 for the experimental data. This 

resulted in a mean K, value of 10.14 tad with 95% confidence 

limits of t 4.6 \tw"2 . This equation is of little use for the 

prediction of failure pressures for this type of defect. 

Plates 64 to 65 show the sequence of events leading to the 

failure of tube Cl.. This tube had a relatively short slot, 2c = 

2.10hcm. Plate 64 shows the tube before pressurising. Similarly 

to the other tubes containing a hoop winding, the failure 

mechanism began by debonding of the cut, hoop layers from the 

intact hoop layers. This is show in plate 65. Voids in the * 30° 

layers are also shown. The layers were strained more than they 

could sustain, but were held by the hoop layers. iwhen failure of 

the hoop layers occurred, the £ 30° layers quickly deformed to 

the critical semi-circular cross section and began to remove hoop 

layers at either side as shown by plate 66. It is clear that this 

mechanism of hoop layer removal at either side of the bulge was 

promoted easily when the t 30° layers were strained well past their 

normal maximum level. This was confirmed by the similar mechanism 

shown for longer slots. Previous tubes containing long slots did 

not show this mechanism. The hoop layers were removed continuously
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as the bulge grew until failure occurred as shown in plate 67. 

Figs. 68 to 71 show the sequence of events leading to the 

failure of tube C2. This tube had a slot of length, 2c = 2.756cm. 

Plate 68 shows the tube before pressurising. As before the pressure 

resulted in the breaking of the bond between the cut, hoop layers 

and the intact, hoop layers. The tube was capable of sustaining 

a@ pressure high enough to severely strain the = 30° layers. Plate 

69 shows the voids in these layers. When the pressure was high 

enough to break the hoop layers, the & 30° layers could deform 

quickly to the semi-circular cross section necessary to remove 

hoop layers. This is shown in plate 70. This plate was taken at 

the moment when the hoop layers failed. Almost simultaneously, 

the * 30° layers deformed and stripped hoop layers at either side. 

The bulge continued to grow, with the removal of hoop layers, until 

ultimate failure occurred as shown in plate 71. 

The failure mechanisms illustrated by the tubes containing 

hoop windings, clearly illustrated that the hoop layers should not be 

damaged before a tube is put into service. Frotection of the hoop 

layers is warranted if drastic reductions in the pressure holding 

capabilities of these tubes are to be avoided,
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6s dis Obtaining K, values from the compliance testing. 

Section 6. 3. illustrates there was strong experimental 

evidence that constant K values could be obtained for the 

materials which were the subject of this work. The K, values 

were obtained from similar equations to those used for metals, 

The expression 

Kk, = o, (nc )2 Gass o2/rt)® eevee (4) 

could be used to give reasonably constant values of Ke for 

most of the tube systems. This expression is similar to that 

used for metal pipes containing axial cracks of length, 2c: 

Kosar (x) o% selene (2) 
The constant Y is given by: 

Eo = ATMA = O64 (20/%) + (20/t)?)(4 + 8 o®/at)F 
ooeeee(3) 

and includes the Folias correction factor. For very long 

pipe lengths the value of Y can be approximated to, 

(n)2 (4+Sc Zee )?, which is consistent with equation Gp 
The compliance measurements carried out here could be used to 
obtain Ke values for the two expressions: 

actt 3 
= 2 — G eeeece a *o i (© mt 2c(1- i "ac" (see ey 

2 ( a(A a aC) i rn a Fs) 

(after Underwood et a @5))
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It is convenient to discuss the use of each equation separately. 

6. 4. 1. Crack opening displacement measurements. 

Equations (2) and (4) can be equated to each other by 

assuming that the expression (3) will hold for the tubes 

pressurised here. This results in: 

4477 (4-0et (20/1)+(20/L)*) (448 o@/at)® 

EL ay 
Serra oo i 

By algebre and integration an expression for C'' is 

obtained; 

c't = (448 o2/Rt)= 2) (3.47071 ..7107451 «930° 

54284 .220°) “16.700 

Using average values for the constants in the above equation 

for tubes with and without hoop windings, two graphs of C'' versus 

erack length, c were obtained. These are shown in Figs. 55 and 56. 

The experimental values of compliance for the individual tubes 

are illustrated also. 

The figures show that, in the range, c = 0 to 5ems, the 

rate of change of compliance with crack length is very small. 

The experimental values were slightly higher than the theoretical 

ones. The determination of rates of change of compliance for 

this range of crack lengths is difficult.
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6. 4. 2. Volume change measurements. 

Equations (2) and (5) can be equated to each other, by 

assuming that the expression (3) holds for the tubes which are 

the subject of this work. This gives: 

2 2 $ 
4077(4-0.4(2c/L)+(20/L)*)(4 + 8 o°/Rt) 

att 2 Bt? a(Av/P) ye 

G-")er* 

By algebra and integration an expression for V/P is obtained: 

2 2 (qe 
Bv/P = (448 0° /Rt)? uaF yt (4.57¢7~0.8407425. 700% 

2Bt 

-8.27074139.200°) 
Using average values for the constants in the above equation, 

for tubes with and without hoop windings, two graphs of AV/P 

versus crack length, c were obtained. These are shown in Figs. 

57 and 58, The experimental values of AV/P are illustrated also. 

In the range of, c = 0 to 5 cms, the rate of change of 

AV/P with crack length is very small. The experimental values 

agree with the theoretical line reasonably well, but it must 

be remembered that the scale of the Y axis is large compared 

to these. To determine the rate of change of compliance with 

crack length is seen to be very difficult for this range of 

¢ values, since it is so small. 

Agreement between the theoretical lines appears to be 

better for volume change measurements than the displacement 

method. The volume change increments are larger than the 

displacement increments and may serve to reduce overall errors.
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7. Conclusions, 

7» 1. Young's Modulus and Poisson's ratio. 

The use of the two theories presented by Wallis and Tsai 

was found to be limited. Neither theory was significantly better 

for the predictions and both were found to be poor for Poisson's 

ratio predictions. In general the predictions of Young's moduli were 

lower than the actual moduli for both theories. Estimates of the modulus 

for both theories were conservative and components could be overdesigned. 

7. 2. Compliance measurements. 

Both methods of estimating the compliance relied on several 

assumptions and this must be remembered when reaching the following 

conclusions. The compliance of the tubes was found to increase with 

increasing slot length for both measurements. The rate of change of 

compliance was greater, the greater the depth of the slot. 

7. 3. Pressure testing of the tubes. 

When designing pipework for the conveyance of liquids under 

pressure the engineer needs to know what defect size levels are 

tolerable and when section changes are critical. Section changes are 

inevitable in such places as junctions between one pipe and another. 

This is normally carried out by the use of flanges which are bolted 

together. 

This work has shown that section changes can have an important 

influence on the failure of glass reinforced plastic tubes. Both 

the plain helical and the mixture of helical and hoop wound tubes 

failed at the ends near to the reinforcement. Indeed it was found 

that for a plain helically wound tube containing a half through wall 

defect, the stress concentration due to section change could be more 

important than the presence of the slot. Defects arising due to 

mechanical damage may be similar to the part through wall defects
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introduced into the tubes. 

The failure strength of a tube containing no artificial defects 

was found to be increased by a factor of ten by the incorporation of 

50% hoop windings. This is to be conrad since there was no longitudinal 

stress present because the ends of the tubes were allowed to slide on 

the seals. The axis of the hoop windings was in the direction of the 

hoop stress. Damage of the hoop windings is critical because of this 

and when testing tubes with artificial defects present the failure 

hoop stress decreased markedly. 

Defects are always present in structural materials and are 

expected in glass reinforced plastic tubes due to the method of 

manufacture and curing. For isotropic materials linear elastic fracture 

mechanics has been successfully applied for the prediction of failure 

of plates and pipes containing defects. It has been found that the 

equations can be used for the tubes which were the subject of this 

work for most of the defect types. Deviations from these equations 

were found when the defects were only part through the wall of the 

tube. This was probably because these defects were treated as though 

they were full through defects. The design of pipes which contain 

part through defects would be conservative. The equations, which 

contained Folias correcfion factors for crack mouth bulging, are 

useful to the engineer for designing pipe systems. It must be 

remembered that a change in the helix angle or lay up may affect the 

response of the tubes and invalidate the use of the equations. 

All the tubes tested here had no longitudinal stress present 

due to the free ends. Whilst this applies in many circumstances it 

must be remembered that pipes could be subjected to biaxial stresses 

due to restraints. These restraints may derive from the jointing



  

-90- 

systems and supports or the tubes may be buried. It is important that 

the method of loading is taken into consideration when designing the 

pipe ectens 

A further test for the validity of the use of the equations was 

made by attempting to obtain the geometrical factor,Y for this material. 

It was found that the range of crack lengths studied here was too 

small for the rate of change of compliance with crack length to be 

measured accurately. Y calibration curves could only be determined 

by testing tubes in the range c = 5 to c = 30 ems(i.e. c/W = 0.1 to 

c/W = 0.6).
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8. Suggestions for further work. 

8. 1. Compliance Testing. 

Compliance tests should be carried out on tubes with 

larger slots than those in the work presented here. Y calibration 

charts, determined in this way, could be compared with those 

obtained from equation (3) in 6.4. It is suggested that the 

variation of compliance obtained from a range of slot lengths 

from c = 5 to c = 30cm be investigated. 

8. 2. Subjecting tubes to internal pressure. 

The investigation into the effects of various types of 

defects on the two types of tube has been fairly exhaustive. 

The effects of the presence of these types of defects on tubes 

of other ley ups should be determined. Since the cutting of the 

hoop windings has been found to have a marked deleterious effect 

on the failure pressures of the tubes, it is suggested that 

various hoop lay ups be investigated. Damage to the tubes is far 

more likely on the outside and it is important to find a glass 

lay up which does nat incorporate 100% of the hoop windings there. 

A similar test programme to the one presented here should 

be created for tubes containing mixtures of carbon and glass 

fibres at various helix angles. It may be found that a thinner 

carbon fibre hoop winding inside the tube could replace much of 

the glass hoop layer on the outside and thus produce a less 

damage sensitive tube. Pressure tests should be carried out on 

tubes with carefully designed lay ups of the two fibres in 

order that an optimum be found.
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Appendix 4. 

Derivation of the equation to give Ky from crack opening 

Gisplacement_ measurements. 

Consider an infinite cylindrical pressure vessel containing 

an axial slot of length, 2c. The slot can increase in length when 

the rate of change of energy with crack length, dE/de is equal 

to the rate of release of elastic energy. i. e. 

cE io (= (Gt eoeeee(1) 

where G is the rate of release of elastic stored energy per unit 

area of crack advance, and 

+ is the wall thickness of the vessel. 

= = i ac/dc Saeeeee) 

where dC/dc is the rate of change of couplience with crack length, 

and F is the hoop force applied to the pipe of length,L. 

ise. 

fe mamace al seeeee(3) 

Defining compliance, C as u/F; where u is the displacement 

resulting from the applied force F, 

co 6s [UU eoecee (te) 

Combining (3) and (4) we obtain: 

u Gnas ait sapeaetd) 

Let Ct ter: Ts weeeee(O) 

then 
cos oeeeee(7)
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Combining (1), (2), (3) ana (7) we obtain: 

Gt “ss + (g,t)°L a0'/ac eseeed (8), 

but, 

pS ee vee) 
where K is the stress intensity factor. 

substituting (9) for G in (8) we obtain: 

x = #(,,t)°L act/ac +sva=(10) 

: 2. 

ge, Ce a 7 
ati) % 

Tet c'' = Cit eoesetie) 

Th act* tac! 
om: saat ace waseetta) 

substituting 4C''/de for tac'/de in (41) gives: 

  

Eo. 
c+ (—e, ay 2(4-v") . 

or, 

. # (_EL__ sot! y$ 
= 6, ( 

c H 2(4-v") de 

where d4C''/dc is the rate of change of compliance at crack length, c. 

The compliance C'' is the slope of the line obtained on the 

plot of G, versus crack opening displacement.


