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SUMMARY

The work described in this thesis deals with the development and

application of a finite element program for the analysis of several

cracked structures.

In order to simplify the organisation of the material presented

herein, the thesis has been subdivided into two Sections

In the first Section the development of a finite element program
for the analysis of two-dimensional problems of plane stress or plane
strain is described. The element used in this program is the six-mode
isoparametric triangular element which permits the accurate modelling
of curved boundary surfaces. Various cases of material anié}ropy are
included in the derivation of the element stiffness properties. A

digital computer program is described and examples of its application

are presented.

In the second Section, on fracture problems, several cracked
configurations are analysed by embedding into the finite element mesh
a sub-region, containing the singularities and over which an analytic
solution is used. The modifications necessary to augment a standard
finite element program, such as that developed in Section I, are
discussed and complete programs for each cracked configuration are

presented. Several examples are included to demonstrate the accuracy

and flexibility of the technique.
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In order to simplify the organisation of the material presented
herein, this thesis has been subdivided into two Sections. The first
Section deals with the development and application of a two-dimensional
plane Stress/plane strain finite element program and the second Section
deals with the adaptation and application of this precgram to the

analysis of certain fracture problems.

The numbering of Chapters, Equations, Figures, Tables and

References of both Sections is independant. The programs of

g
Section II are based on the finite element program presented in the
first Section, to which frequent reference is made. No reference 18

made to Section II in Section I.
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NOTATICH ATD LIST OF SYMBOLS

D Lidd

A list of the more commonly used symbols and their meaning follows.
All symbols are defined when introduced in the text. Vector notation
is used throughout the thesis, where { } ’ i }tt [ ] and [ ]t

refer to a column vector, row vector, matrix and matrix transpose,

respectively,
U, Vv Components of displacement
P Nodal loads
kij Stiffness coefficients
801 Element nodal point displacements
v Potential energy
8] Strain energy
L Potential energy of applied loads.

j " and L1, L2, L3 Natural coordinates

h Thickness

O.. Components of stress
13

E;.. Components of straln
13

C.. Coefficients of the elasticity mairix
1]

E,}V, G Elastic constants

X

(3 - 4) ) for plane strain

(3 -¥Y)/(1 +y) for generalised plane stress

[S] ,[fT] Trans’ormation matrices

[J] Jacobian matrix
W. Weight coefficients
i
au i erating points
L,.y Lo.s bys Gauss integrating
11 21 31
[I ] Identity matrix

[L} ' [L]t Lower and upper triangular matrices respectively.

r, © Polar coordinates with origin at crack tip.



Strlin ere ~ - . . . '
I ‘ nergy release rate with crack extension per unit length

of crac s .
ack border, Subscript I refers to opening mode of crack

extension; without subscript the mode is unspecified.

Gc Critical values of strain energy release rate.

K, KI’ KII’ KIII Stress Intensity Factors, where subscripts I, II and III
refer to the modes of crack extension; without subscript the
mode is unspecified.

K

Ic? KIIC' KIIIC Fracture toughness values

éx' 8y’ w Rigid body displacements of core element

UC Elastic strain energy of core element
O}s Uniaxial yield stress
ry Radius of crack tip plastic zone.

)L(z), ﬁ(z) Complex functions

2 4 : e a .
S] ’ K] Harmonic and bi-~harmonic operators

)\ Compliance (inverse spring constant )

r} Interface between core element and finite element mesh
T Traction vector (Ti = Cy}j nj)

n Vector outward normal

J Rice's path independent integral

RC Core element radius

N Number of nodes of core element/finite element mesh interface.



SECTION I

FORNULATION AND APPLICATICN OF TWO-DINMENSIONAL

PLANE STRESS/PLANE STRAIN FINITE ELEHENT PROGRAN




SUMMARY OF SWCTION T

The purpose of this Section is to describe the development of a
finite element program for the analysis of two-dimensional proolems of

plane stress or plane strain.

: - i ‘hict nits
A six-node isoparametric triangular element is used which perm
‘ \ Vari ses of
the accurate modelling of curved boundary surfaces. Various ca

material anisotropy are included in the derivation of the element

stiffness properties.

A digital computer program is described and examples of its

application are presented.



INTRODUCTION

Of the general finite element methods, for the solution of

continuum mechanics problems, the subclass known a§ the 'direct
stiffness method' with displacements as primary unknowns is one of the
most pcwerful and well developed. This method is employed exclusively
In this thesis and before proceeding to a general description it 1is

worthwhile to summarise the relevant steps involved :-

(4) Structure Idealisation

The behaviour of the actual continuu&, Fig. 2.1, 1s assumed to
be approximated by the assemblage of simply connected domalns, called
finite elements, Fig. 2.2. The elements are connected at a finite
number of nodal points situated on their boundaries and the displace-
ments of these nodal points are the basic unknowns of the problem.
Thus the infinite numbef of degrees of freedom of the actual structure
has been replaced by a finite number as determined by the number of

nodes present.

(B) Displacement Field Discretisation

A set of functions are chosen to define uniquely the state of
displacement within each element in terms of its nodal displacements.
The amplitudes of these nodal displacements are known as the generalised

coordinates or generalised displacements of the system.

(¢c) Derivation of Blement Stiffness

The element stiffness matrices are derived, relating element ncdal

: ia m LR . .
digplacements gg}lto the associated nodal forces {r}t , in the form :-

183 - Irh on

. S N ~ ~oometr angd t astic
giiffness matrices are ;unctLons of the geometry and the elastic

propertics of the elements.
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(D) Assembly of L
Assembly of the Stirf o T +s . : -
288emoly ol the oulifnesuquuqtlon for the Ceomnlete Structure

The individu: lem ;
dividual element stiffness coefficients contrivduting to

each nodal point are summed to obtain the total assewmblage nodal

stiffness matri ; . . . _
S rix. Finally, kinematic constraints (prescribed nodal

displacements) are introduced.

(E) Displacement Solution

The algebraic equations, assembled as in Step (D), are solved

for the unknown nodal displacement components.

(F) Stress and Strain Computation

Element or nodal stiresses and strains may be computed from the
nodal displacement solution. They are generally computed as average

values from surrounding elements or nodes.

The foundations of the finite element method, as applied to the

(1)

solution of continuum problems, were laid by Argyris and Turner et
(2) . .. \ . | |
al in the 1950s. These and other researchers derived stiffness
matrices for various elements, the derivation generally being performed
L - 3
by semi-intuitive methods. It was later recognlsed( ) that the most
important single factor which determines the eventual convergence or
divergence of the final solution was the stiffness matrix for the element
. \(3) h ‘.> 4 < fJ,h 1
employed. In his paper Melosh bases the derivation of the element
properties on the extiremum (variational) theorems of elasticity, i.e. as
the minimisation of some energy functional. In the case of the direct
stiffness method the potential energy is minimised with respect to the
element nodal displacements. This realisation and method of approach
had a profound effect on both the respectability and the subsequent
development of the general class of finite element methods, In the
first place the method was given a sound theoretical foundation, and
TG lac

. 2~ ) | ,i f A ~} . RNk e) t FAQ T (*(*‘bl (3)
among the many penefits which accrued from such a step, 1t was possible
(& ) o

o ) e ] : J : S ‘,» SR 1t 3 1 e S‘n Y AV
1o define finitc element golution bounds to the true solution econdly,



\)

it permitted greater flexibility in the formulation of different elements

(a) by using higher derivatives of displacements as generalised
displacements, e.g. curvatures and twists in the case of a
bent plate, or

(b) by using the variety of variational principles available;
in addition to the well known principles of Minimum
Potentional Fnergy and Minimum Complementary Fnergy, there

1s the more general Reissner Principle, employed in (4),

and also a number of modified principles presented in (5).

Finally, the scope of the method was broadened to include non-—
structural field problems which can be expressed in terms of a variational

principle; the method has been applied to problems of fluid mechanics,

(6).

heat transfer, electromagnetic phenomena and others

It is worth noting that there are_several alternative approaches
to finite element formulation which do not use the variational methods.

These include the methods of Point Collocation and Residuals, both of

(9). '

which are described by Zienkiewicsz

In the direct stiffness method, the variational principle used to
derive the stiffness equations is the Principle of Minimum Potential
Fnergy and can be stated : the potential energy is stationary with regard
to all kinematically admissible variations of displacements from the

equilibrium position. Displacements are kinematically admissible when they

satisfy continulty within the continuum and also the prescribed kinematic

boundary conditions. This may be written in symbolic form :-

§v = 0 (2.2)

where V = U + Q the total potential energy, U is the strain energy of

the body and Q is the potential energy of the applied loads.



Hc ) 3 1 o : . .
aving established a basis for the derivation of element stiffness

properties attention can now be centred on the selection of suitable

displaceme ' _
ple nt functions for the elecment chosen. In general, the dis-

c-placements Wwithin an element are of the form :—

u ( ny) = [N (X,y)] E&}L (2.3)
where {S}Lis a vector of element nodal point displacements (generalised

displacements) and [N (X,y)] is a matrix of suitable shape functions.

The problem was first approached by Melosh(B) who stated essential
as well as some optional characteristics for the shape functions. The

(7)

paper was subsequently reviewed by Irons and the selection criteria
for the stiffness method were listed in the now generally accepted formj
(1) It must be possible to represent all the rigid body modes of an

element.

For two-dimensional plane probléms the rigid body modes of an element
are translation in the two coordinate (x and y) directions and rotation
in the coordinate (xOy) plane. Failure to satisfy this reguirement
causes strains to be induced by the rigid body modes, an increase in the
strain energy results and the overall equilibrium conditions of the element
are violated.
(2) It must be possible to represent states of constant strain.,
This condition may be appreciated physically if the mesh 1is

sidered to be finely subdivided to the stage where infinitesimal

con

strain is constant over an element. Failure to allow for this require-

: - + ~ at 1 —
ment means that there 1s no guarantee of convergence of stirains to con

. v (8) |
{inuous functions across element boundaries; in genecral , they will

not converge at alll



Whe . o
(3) nere nelghbourlng elements meet between nodes there must be no

discontinugit -
scontinuity of displacements beiween the ad jacent elements.
Mis Gommat s s , '
This compatibility criterion ensures that no holes or overlaps
will ‘ somt i .
appear in the continuum after the solution and can be related to

the kinemati i55ibilits : ; ]
atic admissibility of displacements as previously stated in

the definition of the Frinciple of Minimum Potential Energy.

It can be appreciated at this early stage that a practical applica-
tion of the finite element procedure will involve the generation,
organisation and manipulatibn of large amounts of numbers. For this
reason the method is generally formulated using the concise matrix
notation, Indeed the method lends itself so well to this notation
that it is often classified under the general heading of 'Matrix Methods
of Structural Analysis'. Another essential adjunct to a finite
element analysis is the use of electronic digital cocmputers capable of
performing the voluminous numerical operations involved. The status
the method enjoys in the field of numerical stress analysis can be

directly attributed to the power of such computers.

The ecarliest elements used for the analysis of two-dimensional
problems were simple triangles with three nodes (the apices of the
triangles) and two displacements at each node. The stresses in these
clements are constant and consequently, large numbers of elements have
to be used in order to predict stress gradients and siress concentrations

with any reliable accuracye. With large numbers of clements, data pre-

paration becomes extremely time—consuming and therefore considerable

cffort has been directed towards discovering better types of elements.

1 ¥ ; increase the number of nodes present
One approach to the problem was to 1ncree the I

. S I ~ + oo i DA A
per element, which results in families of clements, Fig. 2.4, with more

(9) i e 30 C : t 1 o 13
. - sing these complex straight side
boundary and internal nodes . Using thes omplex straight sided

elements. fewer elements need to be used 1n an analysis but a poor
1 5, 2

. A vy ~ (0 I 191w 1 1] ,o\lt
. - an arbitrary curved boundary will result.
geometric representation of an ¢
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il .(3 { 4>.‘.~‘ ]
This difficulty was overbome

Yy T 3 3 3
@ and a new phase in finite element theory

wWas originated i ﬁ(1o)
glnated by Irons who presented a two-dimensional curved

finite eleme whi
etement which was later termed 'isoparamebric'. (The term is

derive »
d from the fact that the same parametric representation is used

to describe the element geometry and displacement paittern.) The family

was later extended by Ergatoudis et al(11) and by Irons(12). A more

general formulation was given by Argyris(13) but no numerical results

were included, a comprehensive bibliography of problems solved using

lsoparametric elements may be found in Refs. 14 and 6.

To facilitate the modelling of curved element boundaries, the
element is mapped from the physical X, y plane to a new &, n plane,
Fig. 2.5. This mapping can be achieved by using the basic clement shape
functions, simultaneously used for representing the variation of the
unknown displacements, and the transformation of coordinates. A standard
procedure is followed to construct the required derivatives of the
displacements and the integration necessary for forming the element
stiffness matrices is performed numerically. Tnese and other relevant
steps will be discussed in subsequent chapters when the computer programs

are described,

Apart from the obvious advantage of permitting curved element
boundaries to be modelled accurately, the method has cther important

advantages. Irons(8) refers to the idea of 'mathematical programming'

where, for example, standard subroutines are used to calculate the shape

functions and thelr derivatives and numerical integration relieves the

programmer of the tediocus and lengthy algebra required for exact integra-
S (&

oeramming effort for new elements and tlne probability of
)

(10)

tion. The pr

are thus greatly reduced. Irons also pointed out

algebralc errors

that clements need not have the same number of nodes on each side, Fig.

2.5, The theory for this type of degraded elemeni 1s 1dentical to that
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of the standard form. Bond et a1(15) present shape functions for an

18 node element which was used in the investigation of concentration of

stress which occurs in the region of a fillet radius.

In the subsequent chapters of this section the finite element
theory is applied to the analysis of two dimensicnal problems of plane
stress and plane strain. The element employed is the six-node
triangle, formed using the isoparametric approach. £ finite element
program 1s presented at the end of the Section with examples to

demonstrate its application and accuracy.



FINTTE FLEMIENT ROSMILATION

¢ retms st .

3«1 INTRODUCTION

The general principles of the method having becen discussed in the
previous Chapter, it is the purpose of this Chapter to apply these
principles to the analyss of two-dimensional plane problems using a
six-node triangular element. Relevant matrix equations are derived

in a form suitable for their implementation in a computer program.

In Section 3.2, a natural coordinate system for plane triangles
1s introduced which proves convenient in the derivation of the element
stiffness properties. The concept of interpolation is discussed 1n

Section 3.3 where the element shape functions are derived.

The importance of interpolation functions, where a function has
unit value at one node and equals zero at all other nodal points,
cannot be overstressed. These functions can be used for representing
distributed loading, thickness variation across an element and any

(20,

other variable of significance in an element

In Section 3.4 elasticity matrices are derived for various cases
of material anisotropy, the particular case of a transversely 1lsotropic
material is considered in some detail. Laminated structures4are an
important class of materials whose properties may be described as

transversely isotropic.

Finally, in Section 3.5, the overall equilibrium eguations for

the assembled structure are derived. In the process, the individual

element stiffness properties are determined and described.
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3.2 NATURAL COORDINATE SYSTEM FOR PLANT TRIANGLES

A local coordinate system is one that is defined for a particular
element, whereas the coordinate system used for the entire body is known
;as the dobal system, Fig. 3.1. A natural coordinate system is a local
system which permits the specification of a point within an element by
a set of dimensionless numbers whose magnitudes never exceed unity.

Such a coordinate system considerably simplifies the element stiffness
formulation, particularly with regard to the integration which must be

carried out over the element area.

(9)

A convenient natural coordinate system, for plane triangles y 1s

one based on areas A1, A2 and A,, Fig. 3.2. The position of a point P

3)
is defined by its natural coordinates L1, L2, L3 as P(Lq, L2, LB)' where
1 2
L=—-,L=—,L=-—3- (3.1)
and A is the total area of the triangle.

For the three node triangle, nodes 1, 2 and 3 of Fig. 3.1, the

relation between Cartesian and local coordinates is given by

1 1 1 1 L,
X = X, X, Xy L, (3.2)
y Y1 Yo Yy L3

Tt is important to note that only two of the three natural

coordinates are independent and that the sum

L., + L, + L, = 1 (3.3)

The set of coordinates L, (i = 1,2,3) are independent of the global
reference system and of the shape of the element. Eyuations Li =
constant represent lines parallel to the corresponding sides, FFig. 3.3.
The three apices have coordinates (1,0,0), (0,1,0) ard (0,0,1), the

. . : 11 11 1 1 +h - - S 111
midpoints of the sides (5,5,0), (0,5,%), (,0,5) and the centroid (5,35,



tf
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FIG.3.2 NATURAL COCRDINATE SYSTEM
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FIG.3.3  AREA COCRDINATES



33 INTERPOLATION FORMULA FOR STY=LODN TRIANGLE

To introduce the idea of interpolation it is instructive to

reconslder one of the basic concepts of the finite element method. -

The finite element method is a piecewise approximation in which
the solution to a complex problem is obtained by subdividing the region
into an assemblage of elements and representing the solution within
each element by a simple function. Theée functions are known as shape
functions and relate the displacement components within an element to

the displacements of the nodal points in the element.

To illustrate one possible method of obtaining suitable shape
functions, consider the triangular element, Fig. 3.4 and assume

polynomial expansions for the displacements in the form :

u = 061 + cch + cCBy

v (3.4)
v = + X X +

4 5 6"
where u and v are the displacement components and.&% are the generalised

coordinates.

The choice of equations 3.4 is not arbitrary since the displace-
ments must satisfy conditions of inter-element compatibility, constant

strain and rigid body modes as discussed in Chapter 2.

Substituting coordinates of the various nodes; 2 set of simultaneous

equations will be obtained.

i ]

u, 1 x1 » y1 ¢ ¢ 0 011
v, 0 0 0 1 X, Yy o<y
u, 1 x,, Y, 0 0 0 o
v, i 0 0 0 1 X5 A oy
u3 1 x3 y3 0 0 0 QS
v3 i 0 0 0 1 (3 yB | 5



o sl = [o]{] (3.6)

Formally,

I

focd = [2]7 {s], | (3.7)
Equation 3.4 may now be written as :
o] = (10} - [p][2]7" {8}, (3.8)
in which
1 x y 0 0 0

0 0 0 1 x y

Thus the shape function for the element is defined by :

el = [w]fsl, (3.9)

and the shape function matrix [N] can be found from 3

[w] = [#][o]” (3.10)

The process describea by equations 3.4 to 3.10 is frequently
employed for obtaining shape functions although considerable algebraic
difficulty is always experienced in the inversion of [D] in general
terms suitable for all element geometries. It is of value, therefore,
to consider alternative methods for obtaining shape functions Ni (x,y)
directly without recourse to the matrix operations described. Before
continuing, however, one important property of these functions will be

mentioned.
Using the defining relation, equation 3.9, and noting that this
equation is valid for all §<b}e, then :

N. = 1
i

at node i and zero for all other nodes. The typical form of the shape

functions for a six node triangle is illutrated iscmetrically for a

mid-side and corner node in Fig. 3.5
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By selecting an interpolation function to represent a shape
function the inversion of [D] , equation 3,7, may be avoided. An
interpolation function is, by definition, a function which has unit
value at one nodal point and equals zero at all other nodal points.
Interpolation functions are most conveniently cxpressed in terms of the

+ . . . . .
natural coordinates introduced in the previous section, 3.2.

In many cases, particularly for simple element shapes, the inter-
polation formulae may be written directly. For the example of Fig.

3.4,

< g

<

(3.11)

<
O
(o
O
=
O
o
<
ww DD - =

(o} - [nl{sl,

To derive shape functions for other elements in the family a simple

(9,16)

recurrence relation can be derived

Consider a triangle of order n for which the shape functions are
known, it is required to find the shape functions for a triangle of

order n + 1, Fig. 3.6. For a typical node i of the nth order triangle

n n n
N, (L1, Lo L3) (3.12)

This shape function can also be expressed in terms of the area coordinates
of the larger triangle 1 2% 3% if the area coordinates can be related.
It will then still retain a value of unity at node i and at all other
nodes of the new triangle with the exception of those along the base 2% 3*,

As L?+1 ig zero along the bpase of the larger triangle it can be seen that

L L Vo (3.13)
1 1 1

will be the desired shape funciion oproviding C is so scaled as 1o achieve
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unity at 1.

}‘.) Y # - 1 3
The scaling factor is given by

1— (3-1“1)

where 1 is the number of the layer in which node i lies below the base
* Th 4 y . . . . ) :

2% 3%, While the above process will not directly yield shape functions

for points on the base these can be obtained by a simple transposition

of 1ndices or alternatively by redrawing Fig. 3.6 such that the base of

the larger triangle becomes 1* 3* or 1* 2%,

The relation beiween the two sets of area coordirates may be found

from Fig. 3.6

Ln _ Area P13 Ln+1 _ Area P13¥*
2 = Area 123 ! 2 T Area 12%3%
therefore,
Ln _ Area P13 Areq_lgiif Ln+1
2  Area P13% Area 123 2
n)(n+1>2 n+1
= L
(n + 1 n 2
) (n + 1 ) [ (3.15a)
n 2
n n + 1 n+1 -
. _ (D L (3.15b)
Similarly L3 ( o ) 3

and by the fact that L1 + L2 + L3 = 1, equation 3.3,

n 1 n+l } 5e
Ly = ;[(n +1) Ly 1 (3.15¢)

For the first order triangle (n = 1), Fig. 3.4, the shape functions

are given by equation 3.11. Suppose it is required to find the shape

functions of the gquadratic or six node triangle (n = 2), Fig. 3.5.

From equations 3.15,

n+1 n Ln+‘|

1 . no_ h =
o (2L =) L= 2l by = 2

| by equations 3,13 and 3,14, with a cyclic permutation of the indices,
and qué S D :

AT 'i(b, = J has
the shape functions are for corner nodes N, (2 Ly 1) L1’

1) L, Ny = (2 L3 - 1) L3 and mid-side nodes N4 = 4 L1L3,

(3.16)

— 2 L
N, (

=2 - L IJ .
N[) S 4 LZLB, N() 4 3 1

5 =



The number] -
= ar arn .
ring sequence for the nodes is shown in Fig. 3.7,
T

Writing e S .
\ ing equations 3.16 in the form of equation 3.11 yields @

“’} = [N]t ggs}e A ' (3.17)

N]_ = ) > - '—1
[ MRS 0 (3.18)
0
(2L, - 1)Ly
(2L, - 1)L, 5
0
(21, - 1) Ly
2 L, -
(21, - 1) Iy 0
o —
| (2L, = 1) Ly
4 L1 L3 0
0
4 L1 I_,3
41, Ly o
0 4L, Ly
41y Ly o
L ° 4Ly by

It will prove more convenient in later sections to re-write

equations 3.17 and 3.18 in the alternative but equivalent form

gl
u N1u1 + N2u2+N3\13+N4114+1\15u§+1\16u6 = %N} léu}e

1§

(3.19)

i1
~—
=
[GS)
o
e~
o
<
(N
[}

= | N N v. + NV
v o= N1v1 + Nsz + 113\13 + 4\/4 + 5V5 66

t ~ 2 4 g A
where ZN-S = i (cL1—-1)L1 (2L2—1)L2 (.4L3-—'I)L3 ‘.-,I_,1L,3 ;L2L3 -‘rL3L1} (3.193)

Shie - netions for Tlement Mapp
3,31 Use of Shape Functions f0F Tleme

: D4 aY £ I v S ks
1t is required to find a suitable transformation function which

mAps & curved eloment from the physical x,y plane to the &, 7n plane 1n
2APS <

-~ PR A 1 . . \ )
Wh'.l.("h 1t beCOln(’,S a 1‘(){1‘111&,1“ ng‘uI‘G, 1T Lo o A &/On'\fenli,nt mcthod of

. - ~ T SITING PR R, o 3 o P D¢ o 3 .
l )‘ L l'in” { 1¢ ¢ ()C)I‘(].,ll’lil L(, {,I'd.h.){ STTNG v ons LS Yy Use th <h 5 -
Q9 e t l 1 ts v - - . 10N 3 4 A |
. . : S oagont ‘1l.\ rariabie S .L\A
) 1 ‘7/ d() 'i\/k"(l, LY'{\lL\,L 1O 165 ))v U' tO _b}.)l\,(\\.nt, 1¢ varl ]{ on Ot \

AT OV L Ous, " :



unknecwn functi Tr ) |
tion, I'he Lransformation is @

X o= N+ Nox) b Ny

N t N(,( + M. o+ N
I R A (3.20)
y = Ny, + N ~ + N. I v . N i
T e TR Ny Ky Ny

where the Ni are identical to those of ejuation 3.19%a.

Note that since the parametric forms for u,v (ezuation 3.19)

and %,y (equation 3.20) are ide entical, the

ct
6]
'y
=
W
joR)

clements are 'is0-—-

parametric!',

e (10,11) L L
It can easily be SHOWH( 1) that these shape funciions used

hi - 3 £
simultaneously to represent element displacement and gecmetiry satisfy
the conditions of consiant element strain, rigid body modes and

cempatible inter-element displacement regquired for convergence of the

final solution as discussed in the iniroduction, Chapter 2.

A CCWISTITUTIVE RELATICONS

!
.

In keeping with one of the primary objectiives of the project;
tc develop a general two-dimensional plane stress /atraln finite element
program, this section deals with the development of the coefficients
cral

of the elasticity matrix for various cases of materizl anisotropy.

p 3 MNeath nAat
There are many examples of structural materials, both naturally

- i 1 -3‘\’1 'O
occuring and synthetically produced which exhibit anisotropic behaviour,

i.e. in which resistance to mechanical actions is different for different
«Co 1 3l i

. N 4o . . £ :
lirections The group of materials known collectively as Tibre rein-
alrrec Se b

: FI 0ggl a e eyt ;
forced composites, which by their very nature are gressly anlsotropic,
[¢] S Oompos L

- +
3 11 watest single challenge to the stress analySu/
present probably the greatest © -

saa the freedom to desizn and siress the component in the
designer. [le has

1 way and also ~thematically! design a suiltavle composite material
normal way 34 als

Cvament s
Lo fulfill the pequirements



v

The finite y
~He Lte eleme . SN o .
cment method, m which the stiffness matrices are

formed for each indivs
2 L OT ch 3 3 dh - . . . . .
¢ ndividual clement, is particularly suited to the analysis

of anisotropic materi: L . e
b aterials, The elastic properties of each individual

element b - . . .
ement may ve assigned at will and such progerties may vary in an

arbitrary man i + oz . . ; :
A ner without affecting the normal assembly and solution

J

pProcess,

m P - e _. . . e .
[he fundamental assumption of the linear theocry of elasticity is

that each of the six components of strain at gvery poi
linear funciion of the six components of stress at that poini, this

essumpticn leads to the mzirix eguation

.

* 210 *2 *y P *5 P G x
6 a a a a a a
v 21 %22 P23 P %5 % oy

N
o
o

a a a a_ . o

31 32 33 34 35 30 z
yz B0 R %y Rg o s % T2 (3.21)

€

¥

K. . N
e 1 %52 T30 %4 P55 %56 " xa

g

x agy o %y g %5 %66 T xy

where symbols(fx, G:y,...., Oﬁx’GEN veessy etc. have their usual

conmotations.,

_ : . e e —eall R
These equations contain 30 coefficients aij' the so-called elastic

constants Tt may be shown(18), using the Principle of Conservation of
SO L . « -

R K } a3 1+ T metric
nergy that the coefficients of the above mairlx must be symmetrical and
t

{ic constants are sufficlent to describe any

. . U7
described above are related( 7) to

thal 21 indipendent elas

. ~atic conatants a. .
material. The elastic cons 1]

s e ""t'll’l’t"‘ E E etC.
the more common riechnical constantst, By B9



The numbe ' '
ne mber o as s et o . : .
f elastic consiants for any given material may be

further reduced t 31 +3
)y conslderation of planes or axes of elastic symmetry.

0

The technigque 1
, i aqu 3 11. at et , I ea . R N L. .
q 5 1llustrated by developing the two-dimensional stress/

strain relationshi ren hoH ; :
: snips for a general orthoiropic material.  Results

A

are then stat » : : .
stated for the isotropic case and for the mcre practical

s o 3 y 3 1
transversely isotropic materlal( 9>, Fig. 3.8.

3.4.2 Cthotropic Material

An orthotropic material

[N

s a material which has different propertl

3 - : . ~ PN
in three orthogonal directions. If the coordinate axes O_, C_, O_ are
x

Yy 2
taken in these directions then the material has the property that any

plane perpendicular to one of these axes 1g a plane of elastic symmetry.

C o : ; - 1 1
stress/strain relations must be obtained for coordinate sysiem Ox ’ OV '
1T s , .
C ', Fig. 3.9, which represents a rotation of the original sysiem to W
2
about O _. Referred to the new axes,
z
1 1 1 1 1 1 1
= + a + a + a + a, - +a, T 3.22
é’x a116; 120; 130; 147}2 1)7;2 16 'xy ( )

where primed components refer to the new coordinate system.

Using the equations for the transformation of stress and strain

. c 1
componants(17), for a rotation of T about OZ ’

1 1 1 1T _ _

T ey (3.23)
Xy xy
substituting the relations
A~
. - - - + &, - 3.24
G;X - a110; + a126y * aWBOs a147;z a1>$xz 1(7;y ( )

. 3 - £ e ra ~N \"
ts of cquation 3,24 with the first of equations 3.21,

U of equation 3.20 into equation 3.22,
pon

Comparing coefficien

W = a. = O
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Yvey oy 4 4 '
Treating the other five e
a similar manner and Tepe

about 6& and 0 , gives :

6 x 11 240 33 0 0 0 | o,
€y B2 Py 0 0 0 Ty
€, ay 0 0 0 T,
va - a, O 0 Ty.
¥ o SYMMETRICAL ass O T
! *y i %65 | Ty

Considering plane strain conditions, Appendix B, in surfaces

parallel to the xy-plane,

€, = ¥y -

Y2z

Substituting eguation 3.2¢ into eguation 3.22 gives :

s - -

Z a

33

Finally, inserting equation 3.27 into equation 3.25, gives :

(230, = a230'5')

- L .
g0 ° By O Ty
. A
Xxy i SYMM 33 Txy
where, 2 a a - a .a
211233 7 213 12733 13723
A, = ; Ao = a ’
11 a3y 33
2
Annd - a
2233 23 = ds,e
Ny = - ; M3 7 %o
33

lPor plane stress problems, Appendix B,

jjzy = '7/xz = 0

O‘x -

. 4 ) . . .
quations corresponding to equation 3,22 in

i . . c
ating the complete process for a rotation of W

(3.26)

(3.27)

(3.28)

(3.29)



Substituting equation 3.29 into equation 3.25H gives :

C 7
€ ot O ey
A a, O Sy (3.30)
Xx,y abb Txy
- =

In the solution by stiffness methods, it is more convenient to
solve equations 3.28 and 3.30 in order to express stresses in terms of
strains. Performing the required inversions and introducing the
technical constants, the following equations are obtained ;

(a) for plane strain,

1 (E\f —‘)yz Ez) 6 (y:;;yE\ * vx v«z z) (
x K 2 b'e E_E y
L Ey xJ
(VB Y, V8, (5, -V,,°E)
Coh iy fxz Pyzatgo, X Xz al (3.31)
y - K " R X E2
L xy X
T/xy - C;xy Egy
and 2 21? 2
X E
L ny vaxvxz))yzEz + 1 __vXZ z VYZ 2
K =38\ E ) ) By E
Xy X X y
and
(v) for plane stress,
2
2
EX N . 1 € + Yﬂ €
O, = 2 L X By J
£ -E Y Y
X yx
E B _ .32
Xy (v (x+€y> (3.32)
g 2 Xy
Y B -E Y
X yx



3 ,A “(‘* ~ 1 /s R .
3.4.3 lootropic Faterial

An isotropi :
1C m;rt S D e . .
£ Aterial is one that has point symmetry; that is,

every plane in the '
he body is a plane of symmetry of material behaviour.
The number of i ;
[ independent elastic constants is two, and the stress/

strain relations have the form :

(a) for plane strain,

Ty 1 (1-Y) o ]
Ty E (1-) V/(1-0) 1
y = — C 3. 33
. (1+y)(1-2) )
My 0 0 (1-2v)/
2(1-y)
and -
(b) for plane stress,
Tx 1 Y 0 i
o} = e
,}’ (1_v2) V 1 0 (3‘34)
T 0 0 (1-V)/2

3.4.4 Tra

w
<
o
3
0
[¢]
o
—
9]
O
o+
g}
]
C
—
Q

This is a material of considerable engineering interest,
particularly in the study of laminates or stratified rock. In such
naterials perfect symmetry is obtained about any axis perpendicular to
the plane of stratification, Fig. 3.8, The elastic properties remain

arbitrary rotation of the y and z axes about x, Fig.

B

invariant for any

3.10. The stress strailn relations may be derivead 1n an analogous

manner to the orthotroplc case discussed in Section 304,20 In the

: : 3 v T Tompa '_V' o COC A TaE
L ronsversely isotiroplc case, however, Jhen comparing coefficients,

equations of the type @
20L 2o - a. . sinclcos o
. 2 o] + a4 sin a, .
rl12 -z <l12CO 13 14
rored that this eguation iz valid for all

] ) . } > "'Y‘ s
arice and it should be yemein

oé, therelore ¢

Ny, a3 and 4
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Continuing this

6? X | a11 A5 2, 0 0
E-y a22 323 0 0
- ¢ 3 © °
K.YZ ) a44 0
5 o« SYNHM, 2(a, -2
8y

L

Proceeding in a similar manner as in the orthotrcpic

eguations 3.26 to 3,30 and upon inserting the 'technical constants'

the stress strain relations take the form

(a)

for plane strain

(]

(@]

— E
2 yy
- e 1
O‘x (1 sz ) Exx Vyx ('F)éy)
E EXY
6__ }_BH. (1 _ E....
yf = X XX XX
Ar SYMM.
Y :
where -
XX
K = = 5
5 Y
(1—+vzy) (1"vzy - < Exx Vyx )
and,

for plane stress j

(b)

— E
1 ey N
X ILXX J
1 r
K _;};Y.
oly I‘Jxx
,W )\' L

N

case,

procedure for the remaining strain components

(7).

(3.37)



where

XX

B
A v 2 )
EXX yx

(1

NOTHE: In eguati 3 ;

quations 3,36 and 3.37 the elastic constants )  and E

zy Yy
may be associated with +he plane of the strata while X) y B and (3
yx!' Txx yz
o e m B .

may ©e assoclated with the behaviour normzl to the plane of ihe strata.
3,445 Trensformation of the Elasticity Matrix Under a2 Trancsformztion of

Lne Docrdlnatle Syvsiem

N

In cases where
the global axes, Fig. 3.11, it is necessary to
matirix developed for the element in the

the global coordinzte system Xy.

t0o

If primcd cymbols are taken represen
systemn,

element may be written,

{0”1} - [c']] {513

the direction of the sirata does not coincide with

iransform the elasticity

N 1.1
system x y to

=

the element cocrdinate

then the equation relating stress and strain components for the

. : e 20
1f the angle between the coordinate systems 1s 6, then< )

I 0052 S sin2 9] -2 sin 6 cos ©
{CT} = sin2 S cos2 S 2 sin © cos ©
2 .

sin © cos 8 —sin o cos ® (cos”™ © - sin

gince the strain eners

transformation |
CA I (o3 1€]

ciuation 3.3

or from

(3.39)

oy is invariant with respect 1o coordinate
e )

(3.40)



FIG 3.11

ELEMENT IN A LAYERED MATERIAL.
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s
=
-
e’
~3
—~—
-_—
S
ey
1
R
"
=
A
—
L.__IE
oy
f(\
g~

1 17 ¢
or - = i = ;
fel - [2]7 €] (3.41)
Substituting equations 3.39 and 2.37 into esuation 3.20 and pre-

multiplying by (T)

o} = o] [¢'][r]7 1€]

therefore,

‘ T

el = [2}[c]lr] (3.42)
where [C] 1s the elasticity matrix referred to the gicbal coordinate

sy stem,

349 "D LT AD VIRCTORS

It 1s the purpose of this section tc describe, in symbolic form,

i - -

the steps involved in formulating the element and overall sysiem

Their numerical implementation is discussed in ithe fcllowing chapter.

The displacement finite element method of structural analysis is
based on the Principle ¢ Stationary Total Potential Inersy using a
modified form of the Rayleivh Ritz procedure for ovtaining approximate
solutions., In the conventional Ritz method the total potential energ

is minimised with respect to trial displacement functiions cover the entire

structure, The technique is restricted to simple shapes and is not
guitable for automatic programmning. In tne modified Ritz procedure for

1
7

the finite element method the potential encrgy is minimised with respect

to undetermined nodal displacement functions for each elemont in the

discretised structure. The above procedure will later e own to

result in a system of linear algebraic cquations of the Form

[« ] S (v}
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. - 7 . Y . § q - i 3 . .
where [R] 18 the overell stiffness matrix of dimensions ¢ x en, where
n 1s the nomber of nodes

{8} 1s the wvgistor of nodal displacement components

L7 . :
and b} 1s the generalised force vector.
1 : o) 3 : 3 + 2
The above eguations can be formed by summing contrivutions from
all the elements of the body. It is convenient, therefore, to derive

the individual element stiffness properties and later to sum these over

&)
o
]
V]
(2
D
*3
.
<
[0}
o
b
=

the body in an appropriate manner. Element eguation
section 3.5.Z2 whereas the assembly rules are discussed in section 3.5.3.
Before proceeding tc the formal derivation in section 3.5.2, the

coefficients of the mairix relating element strains to element nodal

displacement ccmponents will be derived. This matrix is uzed in the
element stiffness formulation and for clarity of presentation is

derived separately, section 3.5.1

cerent Matrix

i

WY

3.5.1 Derivation of the Strain-Blement Nodal Displ

In the section the matrix equation relating element strains to
element nodal point displacements will be developed in a form suitable

for its subseguent numerical implementation.

Referring to Section 3.2, it can be seen that three coordinates,

L1, L2 and L3 arc necessary to specify the position of a point within an

element. Only two of these coordinates are independent, however, and

it will prove convenient to replace the natural coordinates by a new

set & y M using equation 3.3, as follows :

: = o= 1 =& = o
g L, n=Ll, and L 1 - & -1 (3.43)

Wilh these coordinates the shape functions of equation 3.19a become



v, 82 g - 1)

N, nzn - 1)
‘ n gl 2
{N3=- v 1~ 238 -3 + & + 2§84+ 2q° (3.44)
N4 a4 §'q
N . v/ _ 2
5 s{m - &n - n%)
Né 4(§ - §'ﬂ - §2)

For two-dimensicnal problems of plane stress or plane strain there

are three components of the strain vectcr at any pcint.

e} -le, €, ¥ | (3.45)

where

€ du/ dx

€y= dv/ dy (3.45a)
and 3’)@,: %—j + b—:’c

These equations can be expressed in terms of the nodal values of

displacemeﬁts by using the chain rule of differentiation as follows :

du du 14 Ju @
YR I MR I % (3.46)

and from equations 3.19 and 3.44

) ON, o, o,
B% = §~— u1 + XE“ u2 + -E— u3 + ceeee 5§ u6 = NJ.“§ uj
and (3.47)
E)u Z‘N1 bNE 5N3 bNé

= o s 00530 — 1 = N .
3 I AR T I T M T 3n Y6 im 3

The repeated subscript, J, 1s summed from 1 to ¢ and subscripts &, n ,

lavd
=
(o)

on N. denote partial differentiation.
J

Equation 3.46 may now be written, using the results of equation 3.47
as
du

2 _ Ok

= N. .+ : :
3 | O0X hE 9T dx mo



LAY

An analogous procedure is followed for the remaining derivatives,

b\’/é,y, }’u/by and 6\// bx'

m 3 5 3 .
I'ne equations relating strains to element nodal displacements, u
i!
can now be constructed as s

{E} o B] {S}e (3.48)

where [B] 1s the matrix,

[s] - [ B, B, B, 3B, B B6]

with B, =
J
~ \ B}
9% Nj,g * %fL Nj’n 0
X X
X n
= —— 9 (3,484
0 E)y Nj'§ + 2)y I\j'ﬂ (3.482)
X 31 dE A1
2. N, ~— N., L2 N, + =+ N.
y D% * o, 3'm d x % dx I

It i1s necessary now to form the partial derivatives B§/ E‘)X’
B{, /5 , etc. To facilitate these calculations the coordinate transforma~-
J

tion matrix or Jacobian matrix as it is known, is constructed as follows,

Using the chain rule of differentiation,

B Ni = 2SNi 6:( 6Ni bl

—— + —

X3 Sx OF  dy dE

or bNi bNi

S S (3.49)



(3.49a)

| ) %j}i 2
whero[J} = *SIéfH% - aé g
J

The inverse of [J] is

-1
mﬁLLE_Lﬂ - f B X 5 v )
(xyy Mg, n )

or

1
!Q/
G

i
&
|

5
NI

an | [
)

o
i

X

o
Uy
[e%4
™
o
bl

|
|
|
i

0 i
Oy

(0%

e
o
=
o
[¥a

where /J/ is the determinant of the Jacobean matrix, known simply as the

Jacobian,

+ b(x V) bx b_‘\,: By_ b.\" _
[/ s S Tk e T oan oy 0

The derivatives, bx/gg , etc, may be found from equations 3.20 in
the same way as used for the displacements in equation 3.47. This
illustrates the use of the same shape functions to describe both element

geometry and element displacement patterns : the Isoparametric Concept.

Consequently from equation 3,50,

R

similarly for the others in the set.

D& oy =
7R S WA VA S W

With these derivatives equation 3,48a may be written

q . 0
1 s
B. = i [

L\’J 9



where o= (=N, N . + N N. x
})J kno € k,g Jm )
: (3.51a)
. N N. - N, N,
Cid kyn 3HE 58 gm ) Iy

Calculation of the ccefficients of the strain-nodal displacement
matrix [B] has been reduced to one involving only data for the coordinates
of the element nodal points and the derivatives appearing in equation 3.51a.
This matrix together with /J/ has to be evaluated at several points within
each element and so, for ease of programming, it is writtern as a separate
procedure, This procedure will be described in ihe subseguent chapter

on Numerical Procedures.

3.5.2 Formulation of Element Stiffness Matrix and Load Vector

The procedure described is valid for small strains and rciations,

using a linearised form of the strain-displacement egquations.

®

For any two-dimensional prodblem of plane siress or plane strain

the constitutive law takes the form :

O x CH C12 C13 53:
Gy - Coy Coo 023 Jy (3.52)
T xy | C3 C 0 33 8x; )

or
{€}= [C]M} (3.52a)
The particular form of the matrix [C:] for the material under

consideration may be found from section 3.4.

The applied external loads acting on the element, fig. 3.12, may
be

(a) distributed,

{Ht B H)x }%3 (3.53)

where F and F-Y are surface tractions per unit area, or

(b) concentrated nodal loads,
{Ij % {x1 v X0 yo

(3.54)

(o
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pX

FIG 3.12  IN-PLANE CONCENTRATED AND DISTRIBUTED
LOADING ON SIX -NODE TRIANGLE.



The total potential cnergy of the element is

Vo= U+ Q = §Wi-ve
where U is the strain energy, calculated from the strain field
associated with the displacement field,
Q is the potential energy of the prescrived lcads, and

e, Wi are the external and internal work done respectively.

From equations 3.19, 3.48 and 3.52, the total potential energy

of the elementi may be written :

Ve = zj{@t {O‘} d (vol) - ﬁﬂ'{ﬂdS- {} {g}c

Element Blement
Volume Side

= é—ige}: j [5]1 {C][Bl d(vol) {5}8 - 1',‘}};!3}[] :5833 - {-}{(g}e
N Y IR 11 R PR A N e
(x], - J {B]t [c][ 5] a(vor) (3.56)

is the element stiffness mairix,

[ pe} ( j {/D}L [w]as + {7} i C(3.57)

length

]

is the gencralised force vector, statically equivalent to the prescribed
surface forces.

For equilibrium, V must be stationary, so that setting the first

variation egual to zero, from equation 3.59,

av - 0 = H{ab b [Ke]{&a} g 380 [kl 10 8edy - fa e} {re}

e

0
or since [Ko] is symmetrical

{d&e}l' [Ko] i&} - %M ‘L[Ko] %1&3}

and hence




f§e] " o) {8l - {rel )

Q5 N
win ‘,j\f ~v1 atq ~ r a = } L. i - .
C€ vhe variations . §c§ are arbitrary, equation 3.58 yields

0 (3.58)

i

the usual stiffness eguilibrium eriations,

[xe] {§e] - {re} (3.59)

Writing the element volume as dVol = hdA, where h is the element
thickness, eguation 3,56 yields the following expression for the
element stiffness matrix,

t
(ke ] - j [5] " [c][z] naa (3.60)
Area
in the case of the six-node trianzie this is a 12 x 12 symmetric matrix,
the coefficients being derived by integrating over the area of the
element.

The integration implied in egquation 3.60 is to te performed with
respect to the global Cartesian x, y axes. Since the matrix [13] is
a function of the natural coordinates it is necessary to iransform the
integral intoc the natural coordinates. To transform the region with
respect to the natural coordinates, a standard process is used which
involves the Jacobian, det [J’] .

dA = dxdy = det[J]dL, dL,

A justification of this statement is given in Appendix A.

With due regard to the limits of integration over the triangle,

equation 3.60 becomes,
1 1-L t
[Ke] = i i 2[?3] [c][}z] h det [J]d.L1 dL, (3.61).

In practice the integrations implied in eguation 3.61 are extremely
cumbersome, if not completely intractable algebraically, anrd it is normal

to resort to numerical integration for their evaluation,



46

3543 Asuewbly of Overall Stiffrnees Matrix and Load Vector

The variational concept of the finite clement method was previously
applied to obtain the element stiffness relations, eguaiion 3.61. The
same varlational principle will be re-applied here to establish the

assembly rules for tne complete structure.

Consider a continuum idealised into E elements interconnected at
N nodes. Then with two degrees of freedom per node, the total number
of undetermined displacement components is 2N and the order of the overall

system stiffness matrix will be 2N x 2N.

Recalling equation 3,55 in which the total pctentizl energy stored
in an element was found in terms of the local numbering system of Fig. 3.7,

it is convenient to expand the element stiffnesses and loads as 2N x 2N

square matrices [Ke] and 2N x 1 vectors {Fe% respectively. The
procedure consists of a renumbering of ihe element mairices, changing

local numbers to global numbers and locating the coefficients in their

appropriate positions in the enlarged {Ke] matrix.

The total potential energy for the element can be written :

Ve = & 51t [xel 1§ - 18} {Fé}

1 x 2N 2N x 2N 2N x 1 1 x 2N N x 1

t

The total potential energy for the assemblage 1s obtained by summing

contributions from all the elements :

v - ) ve - % BEESINE TINES
AN 4 _/
e =1 e = 1 e = 1
2 i
et/ TSl - g o/ deD
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For equilibrium, V must be stationary so that :

D B
av = 0= {abl (Z[m]) s} - Z {Fe} (3.62)
e = 1 ¢ =1

Since the variations gd 8} are arbitrary, equation 3,62 yields

the overall eguilibrium stiffness equations :

(k] {8 - {F} | (3.63)

The assembly rules for the overall stiffness matrix and load

vector may then be stated,

E

[K ] = [ Ke] (3.64)

{Fi = {Feg (3.65)

The numerical implementation of equations 3.64 and 3.65 is

discussed more fully in the fullowing Chapter.
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NUMBERICAL PROCEDIRES

4.1  INTRODUCTION

In Chapter 3 the basic equations necessary for the implementation
of the finite element method have been derived, in symbolic form, for
two~dimensional problems of plane stress and plane strain.  The
element employed was the six-node triangle. It 1is the purpose of this
Chapter to develop appropriate numerical procedures for the operations
descriped in the previous chapter in a form suitable for a dizital
computer, Most computer languages allow for the subtsiruciuring of a
program, where procedures or subroutines are written separately to
perform a given operation and may be called either cnce or severzl times
later in the main program. This provides a concepiually simple program

structure and permits adaptation to other element types within the same

program,

In section 4.2 the program steps are presented for calculation

of the elasticity mairix, equation 3.52. Section 4.3 deals with the
input data, nodal coordinates and element nodal connections. The

strain-element nodal displacement matrix, derived in section 3.5.1, and
used extensively in the derivation of element stiffness equations and

calculation of stresses and strains is programmed in section 4.4.

For a reasonable solution accuracy a large nuwnber of clements are
required in the mesh subdivision, consequently computers of large

storage capacity are reguired for storage of the overall stiffness
rag L

array ‘:K] In order to minimise slorage, certain properties of this
4 C. . "

1 irst atrix 1s symmetrical and so only the
array are utilised. Firstly, the matrix 1s symmetrical and s y the

upper or lower triangle need be generated and stored. Secondly, due to

: watrix is bandec coefficients outside the
the element numbering, the matrix is banded (¢ 1ts outs
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band being zero) henec . S
& Joaence only coefficients of either the upper or lower

band need be retainec o2 o
retained, Finally, by examining the nodal cornections

of each clement it ig possible to calcu

j—r

ate the first non-zero
coefficient dccuring in any row of the overall stiffness matrix. Using
a scheme, developed by Jennings and Tuff(22), the
matrix may be stored as a one-dimensional array where
occurring between the first non-zero term in any row and the diagonal
are retained, This method uses an address seguence to reference the
positions of the coefficients in the one—dimenSional arrzy to their
positions in the conventional two-dimensional array. The method
represents a considerable improvement over the previous methods

discussed and is described in more detail, together with the procedure

for generating the zddress sequence, in section 4.5,

Section 4.6 is concerned with the assembly of the overall stffness
erquations., The principles of numerical integration are discussed in
detail with reference to the evaluation of the element stiffness

properties.,

The boundary conditions, namely applied loads and prescribed

displacements are discussed in section 4.7,

A procedure for solving the set of linear simultaneous equations

where the matrix is stored as a one-dimensional array is presented in
section 4.8.

Finally, in section 4.9 the element and nodal point values of
L5 L O ’

stregsses and strains are found from the nodal point displacements.
o D B

%

These procedures represent all the bagic operaticus necessavy

[aXate

N 1 i N 3 o - 5k P,
for the finite element program which is discussced, in cecmpleted form,

i 3 t s ) ted that all the procedures described
in Chapter 5. It Qhould be no i
i

' ] Ler rforn scessary operations autorniically without
in this Chapter perform the necessary

any interference fyrom the program user.



4.2 GINURATTON OF WLASTICITY MATRIX

The fol i . ]
llowing numerical procedure will construct stress/strain

relations for the material cases, isotropic and transversely isotropic,
equations 3.33, 3.34 and 3.36 and 3.37. In the case of isotropic materials
there are two independent elastic constanis, E and V, whereas in the
transversely isotropic case there are five, Ex, Vyx, (Oyz, Eyy and Vzy.

Y - 4 : 1 . . . . N
The angle of strata in the iransversely isotropic case may be inclined

to the global axes.

A flowchart and computer listing for the procedure follow and the

various steps involved are, with reference to the flowchart :-

A. - Case is read, O for plane stress and 1 for plane strain.
Angle of strata (degrees) to the global axes is read, 6 as in
fige 311,

Thickness of element or material is read.

B. -~ GElastic constants are read.

C. - Input data, as read in steps A and B is output to the line printer.
D. - Angle of strata is converted to radians.

E. - TFor either plane stress or plane strain, coefficients of the

stress/strain matrix is calculated according to equations 3.36

and 3.37. Note that equations 3.33 and 3.34 are identical to

equations 3.36 and 3.37 with Bxx = LRyy = E and Vzy = Vyx = V.
#., -~ If the angle of the strata does not coincide with the global axes

then coefficients of step E are modified eccording to eguation 3.42,



PROCEDURE : FECMATRIX(Z,CASE, A ,MATNO , TH , ANG)

START

['CASE ANG TH(MATNO)

(1) 5:>

MATNO =

N
1 )—

l

Headings

MATNO ANG
A(2) A(3)

CASE TH(MATNO)
ACh) A(5)

ANG:

=0.0174533*ANG
:C13::C33::0.0

Cc23:

CASE =

A(1)

—

CBBZ:A(B)

A(3):=A(1)/((1+A(5)) *(1-A(5)
_or(A(L)/A(1))*A(2)*A(2)))

C11:=A(3)*(1-A(5)*A(5))

C12:=A(3)*(A(L)/A(1)) *A(2)*
(1+A(5))

coo = (A(L)/A(1)) *(1-(A(L)/
A(1))*A(2)*A(2)) *A(3)

C11:=A(1)/(1-(A(k)/
A(1))*A(2)*A(2))

Cc12:=A(h)*A(2)/(1-(
ACL)/A(1))*A(2) *A(2))

c22:=A(4)/(1-(A(L)/
A(1))*A(2)*A(2))

C33:=A(3)

L— l_‘__L~_~\\

ANG = 0 »

Z (MATNO,1) :=C11
Z (MATNO,2) :=C12
Z(MATNO,3) :=C13
Z (MATNO,4) :=C22
Z (MATNO,5) :=C23
Z (MATNO,G) :=C33




be— 7

S:=SIN(ANG) C:=COS(ANG)

S2:=8*S C2:=C*C
S3:=82*5 C3:=C2*C
Slh:=82*32 Ch:=C2*C2

Z(MATNO,1)::C11*c4+2*(c12+2*C33)*02*52-4*<C13*C2+
C23*S2)*C*S+C22*Sh
Z(MATNO,z)::(sq+c4)*012+(C11+c22_h*C33)*C2*52+2*(
C13-C23)*C3*S+2*(C23-C13) *C*S3
Z(MATNO,3):=(C11-C12-2%C33) *C3*S+(C12-C22+2+C33) *
C*S3+3#(C23-C13)*527C2+C137C4-C23 7Sk
Z(MATNO,%4):=C11*Sh+C22*Ch+4*C13%C*S3+4*C23%C3*S+
2*(C12+27C33)*C2*S2
Z(MATNO,5):=(C11-C12-2%C33) *S3*C+(C12-C22+2*C33) *
C3*S+3*(C13-C23)*C2*S2+C23*C4-C13*Sh

Z(MATNO,6):=(C11+C22-2*C12-2*C33) *S2*C2+2*(C13-
C23)*C3*S+2*(C23-C13)*S3*C+C33*(ShL+Ch)

END
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4.3 FORYAT FOR INPUT DATA

s et g e AL

The objecti ' : 4 ,
J ve of this procedure is to read and print the input

ata necess s S ‘
data necessary to describe the mesh topology. Such data includes the

coordinates of the ncdes and the element nodal connections.

T 3 \ .
If the element boundaries are curved then the user must specify

the ccordinates of all nodes on o

1ch boundaries, In many cases, however,
the element sides are siraight and rather than rave the user specifying
the coordirates of midside nodes, the computer will a

polate for miszing midside nodes from the element corner nodes. In

order that the computer can identify midside nodes where interpclation

¥

1s required, the x-coordinates of all nodes are set, by the computer to
0.00C01 vefore any data is read, This value is overwritien for nodes
whose coordinates are specified and by checking x-cocrdinates after

reading the input data the computer can identify those midside nodes
at which interpolation 1s required.
A flowchart and program listing follow this text end the various
steps involved are described, with reference to the flow chart as :
A. - Various arrays used later in the program are initialised and all

v—coordinates are set at 0.00001,

0]
o
3
o}
0

(o]
o
O
-
Hh
-
®©
o
Hh
O
s}

B. - lNode numbers and global X and Y coordinate
corner nodes and such midside nodes as necessarye. Where a

in step A,

ot
ey
]
e
jos
6}
hes
<
)
—
o
[¢4]
[¢g]
[¢]
ct

coordinate is specified 1t cverwrl

C. - Element nodal connections and material number for eacn element

1 F e e Y - ana Y a >
are read Each element may be of different material and those of
al ad.

erial number, e.g. eclements 1,

o

Ti 5 the same ma’
the same material sharc tne same me

3 ) PN =] 3 i . & ;,( l . ") o
2y 3 material number 1, elements 4, 5, U material numoer 2, etc.

' A ¢o 11 ~ Yy <y OO
D For midside nodes where the X—coordinate still equals 0.00001,
e — ) NOSS] B -2

' latic coings salculate the coowrdinates of such
then interpolation b2gins to ca

nodes.



B.

Nodal coordinateg are output,

Element nodal connections are

output.
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PROCEDURE : FEINPUT(C,ADD,XX,YY,NFREE, NNODE , NSETT , KODE ,NSPEC ,

NSETFS,ULX, VLY ,NELEMT ,NODE , NMAT)

START

!
!
___-b!-
I
-
!
)

:=0 (2)NFREE »

ADD(I):=0

’1(1)NNODE>

r‘"-“—1 -
/k\l

Al

——1
::1(1)NNODE>

|
|r——<J::1(1)1\TSE'1‘FS>
|

A l KODE (T ,J) : =0

- — —_— — —

~ — < 1:=1(1)NNODE »

-
{

|

- — < J:=2(1)NSETFS >

|

! ULX(I,J):=VLY(I,J):=0.0
!

| - —_— —_— — — —

B - GSPEC

J OxXx@) Yy(QJ)
KODE (J, 1) ULxX(J,1) VLY(J,1)

e
e
e

|
l
I
L — = — —

B - @1)NELEI\'IT >

C : ]



an

- J::i?;j;t>

INODE(W,J)
——————— ~ W:=1(1)NELENT »
________ I:=1(1)3 >

XX (NODE(W,3+1))#C.00001

I = 1>
I = 2 >— Ji=1
J:=0 LJ::Z

|

XX(NODE(W,3+I))::(XX(NODE(W,I))+XX(N0DE(W,1+J)))/21
YY (NODE (W, 3+I)):=(YY(NODE(W,I))+YY(NODE(W,1+J)))/2
KODE (NODE(W,3+I),1):=0
ULX (NODE(W,3+I),1):=VLY(NODE(W,3+I),1):=0.0

_— — —
- —--<(i::1(1)NN0DE;>

I XxX(I) YY(I) KODE(I,i)-
ULX(;li;q_XEXEI,i)

—

r
|
|
|
L

r- W::l(l)NELEM$;>
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N NODAL DISPLACEWENT MATRIX

44 GUERATION OF STRATi-pLi

In order to fory
orm : :
ulate the element stiffness matrices, the values

of the coofficients of the strain-element nodal displacement matrix, [ B]

and th . ; .
e value of the Jacobian, /J/,y are required at various points within

each element . . .y
. The number and coordinates of such points are fixed by

the integ i £ ) 3 .
ntegration formula chosen to evaluate the element stiffness co-

efficients and will be described in detail in Section 4.6.

17

For simplicity of the final program structiure a procedure AUX has
peen prepared specifically to evaluaie both /J/ and the coefficients of
{jB] at certain points within an element. At input to the procedure,

the natural coordinates of the point of interest are s

x5
®
Q
=]
by
b
®
u
o

<
-«
=
)

computer, together with details of the geometry of the element concerned,
i.e. nodal coordinates and element connections. Upon exit from the
procedure, the values of the coefficients of [B] have bean calculated

tcgether with the value of the Jacoblan /J/.

A flowchart and program listing for this procedure follows and
the steps involved are, with reference to the flowchart,
A. - Coefficients of [J] are evaluated according to equation 3.49 (a);

using equations 3.44 and 3.47 with w and v replaced by x and y

respectively.
B, - /J/ ig calculated from equation 3.50 (a).
‘ -1 . :
Co = [J]is inverted to give [J’J , equation 3.50.

D — Cocfficients of [3] are formed in procedure array[ P:] as 1in

equation 3.48 (a).

) Coefficients [rom array [F] are located in their correct positions

o - e e
in strain-displacement array [B]. Step D is necessary purely for

easce of programmings



PROCEDURE AUX(L1,L2,L3,B,X,Y,U,N,Z)

START

“{ JU1,1) =X (N(Z, 1)) # (B*L1=1) 2X(N(Z.3) ) * (4 L14°L2=3) +h*L2*
X(N(Z, ) ) =4 L2*X (N(2,5) ) +h*X(N(2.6)) * (1-2*L1-L2)

JO1,2) 2=V (N(Z,1)) * (h*L1-1)+Y(N(Z,3)) * (h*L1-4*L2=3) +4 *L2*
A Y(N(Z,4))=h"L2"Y(N(Z,5)) «4*Y(N(Z,6)) *(1-27L1-L2)

J(2,1):=X(N(Z,2))* (47L2-1) +X(N(Z,3) ) * (5 *L1-4"L2-3) +4*L1*
X(N(Z,4))+5 X (N(Z,5)) * (1-1L1-2"L2) - 4" L1"X (XN (Z,6))

J(2.2):=Y(N(Z,2)) * (4*L2-1) +Y(N(Z,3) ) *(4"L1+4*12-3) 4 *L1

* Y(N(Z,4))=47Y(N(Z,5))*(1-L1-27L2)=4*L1*Y(N(Z,6))

B J:=J(1,1)*J(2,2)-J(1,2)*J(2,1)

T CHANGE:=J(1,1)
J(1,1):=J(2,2)/U
C J(1,2):==J(1,2)/U
J(2,1):=-J3(2,1)/U

# J(2.,1):=CHANGE /U

P(T,1):=J(1,1)*(4*L1-1)
pP(1,2):=J(1,2)*(4*L2-1)
P(I,3)::J(I,1)*(1~4*L3)+J(I,2)*(1_4*L3)
pP(T,4):=4*(L2*J(T,1)+L1*J(I,2))
p(1,5);:4*(J(1,2)*L3_L2*(J(1,2)+J(I,1)))
P(I,G)::h*(J(I,1)*L3~L1*(J(I,1)+J(I,2)))

e

!
_—’-H——
I

- -
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B(1,(1*2_1))::B(3,(1*2))::p(1,1)
B(3,(I72-1)):=08(2,(172)):=P(2.T)

L~

END
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4.5 STORAGE OF THE OVERALL STIFFNESS MATRIX

The method of storing the overall stiffness matrix as a one-
dimensional array, with a suitable address sequence linking the two, has
been introduced in section 4.1. This technique will be elaborated in
this section and a procedure will be presented for the derivation of the

address sequence from the element nodal connections.

As an example of the storage scheme, consider the matrix [K] .

Row Column 1 2 3 4 5 6

1 i 1.5 i
2 0.2 1.2

3 -1.1 0 2.2

4 0 0 5.1 10.6

5 0 0 0 0 2.6

6 | 0 0 -1.2 0 0 6.1

which would be stored as,

Location 1 2 3 4 5 6 7 8 9 10 11 12 13

K [1.5 0-2 1.2 "'1.1 O 2.2 5'1 10.6 206 ‘-1.2 O O 6'1]
The address sequence becomes ,

Row No. 0 1 2 3 4 5 6

ADD [ 0 1 3 6 8 9 13}

where the row numbers refer to rows of the 2 x 2 matrix {K.]

and the coefficients of the ADD array locate the position of the diagnnal

elements within the one-dimensional [ K] array.

tlement K(1,] in the two-dimensional array would be accessed in
vler yJ

the equivalent one-dimensional array by the call,

Kk (i,5) - x[ap [ i) - i+ 3] (4.1)
for example,
K(4y 3) = k[0 (4] = 4+3] = x (7) = 5.1




(o)
o

It is essential that the cocfficients of the address array be

N

crmined be D IanIm 1 £ i
determined before assembly of the overall stiffrncus mabirix comme rces in

order that stiffness coefficients can be located direct their

"3
)
(@]
[
<
o
o

appropriate positions in the one-dimensional stiffness array according
to equation 4.1, The address array may be determined from the element
nodal numbering and the following scheme for its determination represents
the most economical in terms of computer time, of the several different

approaches attempted,

Consider the example of Fig. 4.1, where a triansular plate is
divided into four elements and 15 nodes as shownm. The form of the cverall
stiffness matrix is also shown in Fig. 4.1 where the positions of the
first non-zero cocefficient ir any row is delineated oy a dotted line.
Positions of these non-zero cocefficients can be iderntified from the
assembly rules of equation 3,964 where nodes connscted through a common
element have a connection in the overall stiffness matrix, thus node 6
is connected to node 1 through element number 1 whereas node 7 is not

connected to node 1 across any common element and hence X [7,1] = K [1,7]

=O-

. . . .. . PR . .
Note that even in this trivial example there is a 20% raduction in
storage required by the present row by row scheme as compared with the

banded scheme. The bandwidth is shown by the chain-dotted line, Fig. 4.1.

The procedure is divided into basic steps :-—

1. The number of columns occuring between the first non-zero coefficient
and the leading diagonal term is found for each row of [K] . In the
row corresponding to Node 10 of Fig. 4.1 for example, there are five
colums between the first non-zero coefficient and the loading diagonal.
The number of columns in any row is calculated by examining the

1

difference in node numbers across each element. In Fig, 4.1, Node 10

appears in element number 4 where the lowest node nurber = 6, and so
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the number of columns appearing in row 10 may be determined as

1 - o 2 . , ~ . - . .
O=-064+ 125 fThig process 1s repeated for all elementis appearing

in the mesh,

2+ The complete address array is now constructed using the information
obtained from step 1, This is accomplished by summing the number
of columns in each row, continuously from the fifst degree of freedom
to the last, in order to find the number of coefficients occuring in

[K ] up to and including the leading diagonal ccefficient in each row.

A flowchart and program listirg for the procedure ADDARRAY follows.
With the coefficients of the address array ADD having been initialised
elsewhere in the program, the various steps are, with reference to the
flowchart
A. - for the first element,
(1) Integer CH is set to the first node number from nodal
connection array NﬁDE.
(ii) All node numbers in this element are scanned to find and set
CH to the lowest node number,
(iii) Number of columns present in the overall stiffuess matrix for
each node (row) occurring in this element is calculated (see
Step 1 above). If this number exceeds the valueAalready
present in the array ADD for the row under consideration then

it 1s overwritten in order that the maximum number of columns

is obtained.
Steps A(1) to A(iii) are repeated for all elements.

B, -~ Address array coefficients are determined from the number of columns

in each row (sce Step 2 above).
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4.6 ASSEMBLY OF STIFINESS MATRICES

In this section a procedure is described which forms the individual
element stiffness matrices and assembles them in the overall one-
dimensional stiffness array. The integrations necessary to obtain

element stiffnesses are carried out numerically and are discussed

separately.

4.6.1 Numerical Interration

It is required to calculate the values of integrals of the form :

I = ‘
f (L1, L2, L3) dL1 dL2
In all the available methods for numerical iniegration

(guadrature) the integral is replaced by the sum

I = W, £f (L, ., L

11 21! L3i)

where
n is the number of points at which the function is to be evaluated
such points are referred to as integrating points.
W, are the weight coefficients

and f(L,., L

: L3.) is the value of the function evaluated at the
i i

2i?

2it Dai

integrating point L1if L
The implementation of the procedure for determining the value of
the integral I is now self-evident, once the coordinates and weighting
coefficients have been determined. There are several quadrature
formulas used in finite element analysis, details of wnich are given in
Ref. 9. The one used in this analysis 1s known as Gauss-Legendre

Quadrature and Table 4.1 gives details of the weighting coefficients and

triangular coordinates.
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LINEAR Ak\ R=0 (h?) 0 .}3'_' 0.5
[ |
g 22,0 ry
’ b iy :
QUADRATIC R=0{h3) b ?,Z,ZI g
¢ ¢ 2,0,2 6
11 27
¢ 3,3,3 20
b E'}LO 3
N
CUBIC R=0(h*) 7,02 )
¢ 1,0,0 5
f 0,1.0 » FEY)
g O/O/I v,
L
a 3,33, 0.1125
b <, PPy
c N 0066197075
d F’lapi:ml
S a
' R=0(hS) e 5 i Py
QUINTIC f P, B L 006296959
g B R%

WITH o= 0.05971587
By = 0.47014206

o, = 0.79742699

p = 0.10128651
2

TABLE.4.1  NUMERICAL INTEGRATION FORMULAL FOR TRIANGLES {REF.9.)
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Having establishe : .
aving established the integration formula the question arises as
to wha ' ' -
at order of integration should be chosen for the analyses? From
considerationg .
rations of computer time and accuracy, an ‘'adeguate minimum number’

of integrating points may be determined,

(9)

This problem has been discussed in some detail elsewhere . A

\,

detailed st ; ;
udy of convergence and computing times was beyond the scope

«t
e

f thig : : ;
of this project and apart from a few simple trials described in Chapter

> to ensure accuracy, the author was guided by the results of others(g’Tj).
. L i *
In the light of their experience the three-point Gauss rule was chosen

for performing the integrations and is used exclusively in all programs

henceforth.

£.,6.2 Element Stiffness Matrix

The element stiffness matrix was formulated in equation 3,61 as :

%] - » f f 3] [e)ls] oty e,

with the integration formula of section 4.06.1 the above equation becomes 3

n
t
(%] - n o C[3] LBl i, L, (1.2)
11 21t T3
1= 1
where n is the number of integrating points
w. ave the weight coefficients
and ( [B] [C][B] /J/)L1i; L2i’ in is understood to meaﬂ the evaluation
of ( [B]-L [C][S] /J/) at integrating point 1i.
The numerical implementation of equaticon 4.2 is discussed at the

end of the section where a program listing is presented.

x ’Q‘Lav‘,/raftc Y oen Jobie F- 1




PROCEDURE

F-1-

Ali)

A(i)
-

Aliit)
B

10

ADDARRAY (NELEMT ,NNODE , ADD , NODE )

START

r—~_-ﬂ<Wuﬂ(ﬂNMEMT>

CH:=NODE(W,1)

F- =< 1:22(1)6 »

' | XODE(W,1) < cH »
1

CH:=NODE(W,I)

J

Lo

I———~ - < 1:=1(1)6 >

Lo — - —

ADDTEMP: =NODE (W,TI)-CH+1

ADDTEMP > ADD(NODE(W,I) *2) >—~

ADD(NODE (W, I

=ADDTEMP

(- - ~<iI —1(1)NNODﬁT>

1 CH:=2*ADD(2*T)

[ W:=2*I

| | ADD(W-1) :=ADD(W-2) +CH-1
| ADD(W) :=ADD (W~1) +CH

END

) *2):
]
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46,3 nggﬁjlwﬁti”fness Matrix

r .
he numerical procedure for consiructing the overall stiffness

matrix will be illustrated using the example of Fig. 4.2. The element
stiffness equations for element number 1 are shown where the element
stiffness coefficients kij are 2 x 2 sub-matrices referring to a

particular node. Thus :

61X F1X
8e1 = and Fe1 =
8,1}, F‘!y

with 67x and siy representing displacements of node number 1 (local
numbering) in the x and y directions respectively. Similarly, FTx
and F1Y represent applied loads at node number 1,

The overall stiffness matrix [K] and lozd vector gF} are obtained,
using equations 3.64 and 2.65, by considering each element in turn,
converting the elément equation numbering from local to glotal numbering
as 1n Fig. 4.2 and locating the coefficients in their correct positions
in the overall matrix as shown. The process is repeated for all the

elements, summing contributions from each one into the overall system

equations as required.

With the address sequence for the problem it is then a simple
matter to relate element local numbering to the global node numbers and
position the element stiffness coefficients in the cverall cne-dimensional
array. The subsequent procedure 1s constructed such that an element
stiffness matrix is formed and its coefficients are inserted directly
into the overall one-dimensional stiffness array.
NOTE : By using the address array together with equation 4.1, element
stiffness cocfficients are located straight into the one-dimensional array

without intermediate storing in an overall stiffness mateix of the Torm

shown in Fig. 4.2,
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Pig. 4.2 also shows the method for assembling the overall load vector
from the individual load vectors, In the final application of the
program however, loads are applied globally to each node without first
sharing each between all elements contributing to a given node. This

is discussed in more detail in subsequent Sections,

The following procedure flowchart and program listing constructs
each element stiffness matrix and assembles the overall stiffness matrix,
the steps are describved with reference to the flowchart as :

A. - Coefficients of array W are set to weighting coefficients and
coordinates of the integrating points,
B. -~ Loop is constructed round the number of elements in the mesh,

this loop encompasses all the remaining operations in the

procedure,
C. = Coefficients of the element stiffress array KE are initialised.
D. ~ Loop on the number of integrating points is constructed;

in this case a three-point rule is employed.

E. - Procedure AUX is called to evaluate the coefficients of array [B]

and /J/ at the first integrating point.

t

- Matrix multiplications indicated by equation 4.2 are performed
using the coefficients of the elasticity matrix prevbuély found,
G, - Blement stiffness coefficients are located in their appropriate
positions in the overall stiffness matrix (as a one-dimensional
array) using the nodal connection matrix N¢DE, the address array

ADD and equation 4.1.
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5 N D TIA S ST DIMD q
PROCEDURE lLAbthHLY(NthMT,K,XX,YY,UETJ,NODE,C,T”>ADD’NFREE

b

AUX, SKEWEDCON ,NSKEW , NSETI" , ANGSK ,NOSK)

féTART

- — ~<71::1(1)6j>

W(I,1):=0.33333333

r
!
}
i
S

W(1,2):=W(1,3):=W 2,3):=W(2,4):=W(3,2):=W(3,4):=0.5
W(1,4):=w(2,2 1=W(3,3):=W(4,4):=W(5,2):=W(6,3):=0.0
Wk, 2) =Wk, 3 :=W(5,3):=W(5,4):=W(6,2):=W(6,4):=1.0

r<iI::1(1)ADD(NFREE)j>
I

i K(I):=0.0
Lo~ ]
r-——— - = — — < 2:21(1)NELEMT >
|
I - <r:i=1(1)12 >
1
l L—-—~<:J::1(1)12j>
!
l |
: KE(T,J):=0.0
l b o — ]

AUX (W(U,2),Ww(U,3),Ww(U,4) ,B,XX,YY,DETJ ,NODE,Z)

e e e = = = — T i=1(2) 1
- < L 11 >

llk_ - e = = = — I:=3(2)11 )

KE(J,I)::KE(I,J)::KE(I,J)+w(U,1)*(3(1,J)*(C(N65E(z,7),1)*
B(1,T)+C(NODE(Z,7),3)*B(3,1))+B(3,J)*(C(NODE(Z,7),3)"B(1,T)
+C(NODE(Z,7),6)*B(3,I)))*DETI*0.5*TIL(NODE(Z,7))
KE(J,T41):=KE(T+1,J) :=KE(T+1,3)+W(U,1)*(B(1,J) " (C(NODE(Z,7),2)
*B(2,T+1)+C(NODE(Z,7),3)*B(3,I+1))+B(3,J)* (C(NODE(Z,7),5)*
B(2,T+1)+C(NODE(Z,7),6)*B(3,1+1))) “DETI*0.5*TH(NODE(Z,7))
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KE(J’I)::KE(I’J)‘=KE(I»J)+W(U,1)*(B(2,J)*(C(NODE(Z,?),4)*
| B(2,I)+C(NODE(Z,7),5)*B(3,I))+B(3,J)*(C(NODE(2,7),5)*5(2,1)
ll +C(NODE(Z»7)-6)*5(3,1)))*DETJ*O.S*TH(NODE(Z,?))

l;: L = 12T>
l'l '
I;' KE(J,I+1)::KE(I+1,J)::KE(I+1,J)+N(U,1)*(B(Z,J)*(C(NODE(Z,?),2)

*B(1v1+1)+C(NODE(Za7),5)*B(3,I+1))+B(3,J)*(C(NODE(Z,7),3)*
| B(J,I+1)+c(NODE(Z,7),6)*B(3,I+1)))*DETJ*O.;*TH(NODE(Z,7))

IIL“_W_. . . L6

LT _—.._.

- .

: SKEWEDCON(Z ,NODE ,ANGSK ,NOSK ,
| NSKEW,KE ,NSETF)
]
=1

= == —--—<Imﬂ(1)6>
e I

I

' L - - = = = - = = = V:i=1,0

|| ]

L SUB1:=NODE(Z,I)*2-1

l SUB2:=NODE(Z,J) *2-V
| SUB3:=NODE(Z,I) *2

b sUB1 < sunzt}
| ::EE::
I | LABA

[ : K (ADD(SUB1)-SUB1+SUB2) : =K (ADD (SUB1)-SUB1+SUB2)

L +KE(T*2-1,J%2-V)

I LABA

': SU£2<< svnz3\—-mn~_m___1

: I (E;ﬁpz

:, [K(ADD(SUH3)~SUH3+SUB2)::K(ADD(SU&Z)uSUH3+SUUQ);KE(I*Q,Jwg_v
b e e e e e APE
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4.7 APPLICATICH OF BOUNDARY CONDITTIONS

1
There are two types of boundary conditions which are ccnsidered,
C P ) . :
applied leoading and prescribed displacements, The prescribed displace-
ments may be non-zeroc and can be applied at aany ancgle to the global

axes., “ach type 1s treated separately in the following subsections.

7 .
4.7.1 Applied Concentrated and Distridvuted Boundary Leading

In order to apply point loadings to a structure, it is merely
necessary to establish the degree of freedom number in the direction of
the required load at the relevant node and set the corresponding right
hand side of the eguation [KJ {8} = EFE to that load. For example,
if a load of 100 1bf is required at node number 57 in the x-direction,
then the term in the 113th row of gF’} is set to 10C . {Tetails of how

the user does this are given later where the presentation of input data

is discussed, Section 5.2).

In the case of distributed load acting on an element it is possible
to average the loads between the nodes on the boundary along which the
load acts. However, this is not a very accurate method. A better
method is to compute a set of nodal loads which do the same amount of

work on the structure as the known distrivuted load.

Recalling equation 3,57 where the element force vector was derived

for the element as ¢

t

fed - )

length

[w]as

It is more usual t>o treat each side of an element separately and for
demonstration purposcs a distributed load is ascumed to act on side 3 of
the element shown in Fig. 3.12. Tn this illustration nodal loads are
derived in the x-direction only, the proccdure is the same for the y-

direction and other [aces.
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Along the boundary of side 3 the digplacements are expressed in

terms of the nodal values on that side by the interpolation formula :

&u (L1)E

u

[L1(2 L, - 1) 4 L, (1 - L2) (1 - L1)(1 - 2L1)Jguj (4.3)

il

I.,‘
u
2

t

[NB] {Suk 3 (4.3a)

Equation 4.3 is obtained by extracting terms corresponding to

il

nodes 1, 4 and 2 from [N] in eguation 3.18 and seiting L, = O with

3
L2 =1 - L1. Note also that the shape of this side is deilermined by

the same interpolation formula as in equation 4.3.

1 X

x (L1) = [N3] x

(4.4)

<+
[

y (L) = [N'}] Yy

The limits of integration along side 3 are from O to 1 with dS

expressed in terms of dL1 as follows :

\
/.2 2 3X 2 oy 2
ds, = dx” + dy =\/(331 dL1) + (3L1 dL1)

\

2 2 ,
_ r = dL 4.
- ,\/x,\L1 + Y dL1 G 11 (4.5)

where Xy q and Y11, are formed from equation 4.4.

For straight sided elements :

2 2
dS3 = N/ (X1 - X2) + (.y,' - y2) dL1 = 13 dL1

where l3 is the length of side 3.

The distributed load %b% of equation 3.57 may be expressed in terms

of the nodal values of distributed loads using the appropriate inter-

polation functions as 3



t L A
] , o [NB]# L, (1-1) aL, (4.7)

St
Fop = N?xj 3 Gh [NB}P (1 - L1)(1 - 2L,i) dl,

where h is the element thickness

. . \ .- - 1 .
Similar expressions may be obtailned for gF&j by replacing x by ¥y
in equations 4.7. Expressions for the other two sides of ihe element

follow from a cyclic permutation of the indices.

Results are now derived for two load cases to demonstrate the
t
generation of [N3]F .
(1) Linear variation of pressure along side 3, where distributed load
! . ‘
is defined by Px]and # X5 magnitudes of distributed load at nodes 1 and
2 respecctively.
ﬁx1 T
= [L (1—L)] =[N] {#x} (4.8)

P:x 1 1 PXE 3 P
1
Mote: [Nj]f)

replaced by (1 - L1)-

represents a linear variaiion of k)x where L2 has been

Substitution of equation 4.8 in equation 4.7 and performing the

integrations, the result for a straight sided triangle 1s

b

(4.9)

al

t

{

I

o

<
o T
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If bx = # = constant, equation 4.9 rcduces to :
1. h Zp1l.h
F = F = E-—}.n.. F’ — ..-......_....—..3..—-.
x1 x2 6 ! x4 3

which i i se : : . s
. h is recognised as Simpson's Integration Rule, with two strips.

(2) Parabolic variation of}Dx (L1) defined by :

[ byl - [bs, b, b

In this case [:NB]# = N3 as defined in eguation 4.3. Substituting

in equation 4.7 and integrating gives,

FX1 | 4 2 -1 })x1
1,h
F T 2 16 2 ‘ (4.10)
X4 30 Px/ij
F -1 2 4
X2 | B PXZ

When the distribuied load extends over more than one element then
nodal loads on each element are determined and added together at the
common nodes., When the distributed load implies an equivalent load at
a node which is restrained in the direction of the load, then this
portion of the load is ignored since a load and displacement may not both

be prescribed at the same degree of freedom. These two points are
illustrated in Fig. 4.3.
The load sharing is performed manually by the user 1n accordance

with equation 4.9 or equation 4.10, and loads are input as nodal

concentrated values. The following procedure locates these loads in their

appropriate positions in the overall load vector,
A flowchart and listing of the procedure follows; the operations
are as previously described with regerd to concentrated loads, complicated

slightly by the provision for prescribed displacements.
2 € [}
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PROCEDURE :  LOADAPP(A,B,C,D,E,F)

START

D(K-1,F):=D(K~-1,F)+B

>
KLAB2

D(K,F):=D(K,F)+C
KLAB1

END
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PROCENHREY [ 0APADD (A, R, D, F,F):
R IR A I%InICI;{IF:

YiaTRLeER! Ay ELF,

YREaALY Ry
VCUUURAYY p;
Yy R G

YIDTEORRY v

I AT CTHENY eI w1 AR%:

Koo =gk

PEEY ts1 CTHES Y YeQT0 kL ang:
PlK-0, Fizniy=1,Flen;

PIED O TREY D PTHENY PGOTOY Ky ARY

KULR2 - Dik, Fle=Dik, FYe0;

Fosed- YERDY O QF LOADADPD



AeT.2  Prescrived Naodal Diepl:

Once the overall stiffness matrix Tor the structurc hLas bheen
assembled the kinematic boundary conditions (prescribed nodal displace-
ments) must be applied before a solution can be obtained. This
requirement may be appreciated physically by considering unconstrained
rigzid body modes where displacements cannot be uniguely determined for
the applied forces. The mathematical interpretaticn is that *he matrix

. . - . - PN ; :
LK] 1s singular, i.e, does not possess an inverse if the gvsitem 13 not

constrained against rigid body displacements.

In some instances the prescribed displacements may not be in the
direction of the global cocrdinates. The applicztion of such skewed
voundary conditions requires a transformation of the syster matrices for
the nodes where skewed conditions are specified.,

hdopting the notation that prime indicates skewed coordinates, the
transformation of displacements from the skewed to the unskewed coordinates

at node i (fig. 4.4) may be written,

{51} [Si]{gii} (4.11)

where .
3813 { gxi Syi f

and [iji] is the transformation matrix.

It

1l

The transformation matrix for the entire nodal displacement vector

may be constructed as :

{6} - [s1 {8} (4.12)

where [S_] is of the form,

_ - -
- (1] 0

5] - (1]
5] = .

: 1§:1.

° (1]

[Tjis the identily matrix, ordev 2 x 2 (numover of degrecs of freedom/

' X v . § B S T e, v ] Ly N EECN 0] e
node ) and Lhe munber of diaconal submaleices: cquals the rmumber of node

in the slbructuare.
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The transformations for the overall system matrices may now be

obtained as follows :—

Equating work dene by each force system, which must be the same,
1 t ¢
LI AR B AR P

Substituting equation 4.12 in the above and comparing coefficients gives :

~

(e} - [s) {+]

Pre-multiplying the equilibrium equations ( [X § {F} ) for the

118k
unconstrained system by [S ]b and substituting fo %:S} frem eguation
4.12

[s] [x] [s]198'} - [s1* {+]

from which the equilibrium equations for the skewed system may be con-

structed,

[<'] {67 - {#'} (4.13)
where ('] - [s]® £x1[s]
and {F1} - [s]* {r}

The procedure described above for the overall system equations can
be applied to the individual element stiffness matrices before they are
assembled, in such a case the overall stiffness matrix and load vector
are replaced by the element stiffness matrices and load vectors respectively
in the previous derivation. In the program described in this thesis,
the matrix operations for transforming displacements are applied to the
individual element stiffness matrices immediately after they are assembled.
The procedure which performs these operations to nodes, as specified in
the data, at which skewed constraints are imposed, is known as SKEVEDCON.
For the load vector, however, it proves more convenient to apply the
transformation of equation 4.13 to the overall load vector. To carry
out this transformation, procedure SKEWLOAD has been written, After the
tranusformations to the overall stifthess matrix have been carried out,

the values of prescribed displacements are applied using procedurve GEJNBC.
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Th > o - o i

¢ overall gystem equations can now be solved to determine values for
the nodal point displacements, Since some of these displacements are
in the skewed coordinate directions, the procedure SKENLOAD is recalled

to convert such skewed displacements back to the global coordinate system,

The final displacement components which are output are all in the global

coordinate directions,

4.7.2.1 Procedure KZWEDCON

The transformation matrix for node 1, eguation 4.11, has the form :

(gxi cos &£ —~sin ¢ ] 5xi1
1

- IShE (4- 14)
8yi sin & cos &« J Syi

where o is the angle of skew, Fig. 4.3

If the element stiffness mairix is considered as composed of 2 x 2
sub-blocks then the matrix maltiplication is simplified considerably,

i.e. from equation 4,13,

[Klj J . i [KijJ . [SJ‘} hl= 12, «. 6 (4.15)

1l
—
wn
[
| Y

where [Klj] i1s a 2 x 2 submatrix of the new element stiffness matrix.
e
1 .
[Si] is the transpose of the transformation matrix for node 1,

[ K..] i1s a 2 x 2 submatrix of the original element stiffness
134
matrix,

and [Sj ] is the transformation matrix for node Je

The skew-symmetry of the nodal transformation matrices means that
only two oflthe four coefficients need be stored, accordingly, the six
submatrices for an element are stored in a one-dimensional array S by
means of the following procedure.

A flowchart and program listing of the procedure follows and the

steps involved are, with reference to the flowchart :-—
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)

Coefficients of the transformation array S are set according to
equation 4.14 for lhe skewed node.
Matrix multiplication of equation 4.15 is performed on the element

stiffness matrix,
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PROCEDURE : SKEWEDCON(Z,NODE,ANGSK,NOSK,NSKEW,KE , NSETF )

r- = < I=1(1)6

1
|
A - < J:=1(1)NSKEW >
|
II NODE(Z,I) = NOSK(J)\\
O
l
Il S(2*I-1):=COS(ANGSK(J)*0.0174533)
! S(2*I):=SIN(ANGSK(J)*0.0174533)
! . Vi=V+1
T .
_ / _ SKLAB_ _  _| < SKLAB >
4 V = o:>
- - I:=1(1)6
B f ~ >
l K::g*I
|
F—-—= <J:=1(1)1 >
|
L::Z*J

l M:=KE(K-1,L-1)

N:=KE(K-1,L)

0:=KE(X,L~1)

l P:=KE(K,L)
Q1:=S(K-1)*M+S(K)*O
R:=S(K-1)*N+S(K)*P

S1:=-S(K)*M+S(K-1) *0
T:=-5(K)*N+S (K-1) *P
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, |

KE(K_1,L_1)::KE(L_1,K_1)::Q1*S(L_1)+R*5(L)
l KE(K—l,L)::RE(L,K—l)::~Q1*S(L)+R*S(L—1)
B KE(K,L-1):=KE(L~1,K):=51*S(L-1)+T*S (L)
l | KE(K,L):=KE(L,K):==S1*S(L)+T*S (L-1)
e L______..______

END



92

INODAIMINS J4EnUa0)8d 40 ,dN3,

S eUNd
SUL=VISA L4 LSS =AY 3 a0 d)
PLNISH L+ DL =)o LS (A L=l 3= L= 1) Y
Slr=T)swa+ VSO ess L b= Y iz [T L] AN
RN RN I BN SN IS I A A B I I R IS W
SR L= Rl AYS -] P0Rl LA iSenrl gy =-=iLs
T R R N N R I AN s AT AL L=d Sz Lt
DL AYax=Id i L=t dR=E 0
RS B IR RN I O IR I A R I
YA 1944,
DUy T g YL AN, L o gddiSy b= AR I
PlxZ= A sl 9d4d .,
) 00y 9 JHTAND . L wd3LSe b=l 204, 51934,
s NSHEL e 0 sdNg A ¢4l
SedNdy sV NS
D N3,
cHYIXS 20 L0D clAAT A

SALESN LT YR [ T INSONYINIS={Exd 1S
SYYSPLLYTUREMINSONVISOD = {L=1%¢]S siilvdd,
N3 Ly [0 IASON=LE4Z213d0w 441,
s0Ua MINSN  1TLNGY L 0d3LSe 6220 sH04. enl1934d
DU 9 1L, L sd3LS,y t=il o ,u042,
fy=iA
CaONdy 0= 0LAl)SIL=i 0TS aNIOAY . 0Us LL W VIAND, 2 4 dd48e Lzl L, u04,
SE2LA 1S sAVHav, 1vda,

ILPLSIHLOMdY I Nl IV U hi
DANIANSONY G AVadvV, L IviY, N

CALASNMIASNYZ 2 d3dvHLN
LASNZ AN HAASNIASON T ASYN

THIATPYL s MEVTINT, aNIOHEU,
SON?AUON JAVAYY ¢ U4 5LINT,

1a CALISNIMANSNYZ L EATV AL
PHUUNTZONODAEMAAS 3N 4T08d,

i

LXY
~
i



93
4.7.2.2 Procedure SKEYLEAD

The modified overall load vector for a typical skewad node i is

obtained from equation 4.13 as

1 t g
{ ¥, | - [s] {Fl} (4.16)
In this case iFiz is a 2 x 2 sub-block of the overall load vector

corresponding to node i.

The flowchart and program listing for procedure SKEWL%AD follow
and the steps involved, with reference to the flowchart, ave
A. - The two independent coefficients of the transformation matrix for
the skewed node i are calculated,
B. ~ Appropriate terms of the overall load vector are modified

according to equation 4.16.
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PROCEDURE : SKEWLOAD(NSETF y Q,NOSK, ANGSK ,NSKEW,OP)

START

{ - - - -<;£;:1(1)NSKEW:>

A L
| SN:=SIN(ANGSK(I)*0.0174533)
SN:=COS(ANGSK(I)*0.0174533)

l

L - - ~ J:=1(1)NSETF >

| M:=Q(2*NOSK(I)-1,J)
N:=Q(2*NOSK(I),J)
| | Q(2*NOSK(I)-1,J):=CN*M+OP*SN*N
—} I | Q(2*NOSK(I),J):=~OP*SN*M+CN*N
L

| END |




PPRUCFNDURE Y SKEWLOAD("SETFE, 0, b08K , 4068« , NSKEY,OD)
TWALUEY NSETF,NSKFW,0n; VIUTEGFRY RNSETE,LSKFL,OP
INTRGRRY VARBAYY ANSK;  PKEALY TAUTAVY 0, ANGSK]
PREGINY VINTEGFR® 1,0t PUEALY SN, CH,, N
"FOR® T:29 *STEP' 4 'OLTILY NCKFL 'pOT
"REGIEY SNyzSIA(ANGSKI[Tw0  0174A832)
CNezCOS(ANGSHXTT V%0, g3 74837)
PFORY Jr=1 YSTEPY 1 YUNTILY MSETE 'hut
"EEGINY Mr=al2x40Sx{13=-1,
ezl 2%t Gexi1Y, 00
Cl2xr0SKT I 1=, 0] MaMaliPe S a N
CO2%5CSKILY,d)=~0paSh+reCran;
'FND.
YEND!
"END' OF PROCFDURF S¥FLLCGAD

~a we

-a
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447.2.3  Procedure GRANBC

m o : L . o ,
The application of prescrived displacements to the overall equilibrium

equations is performed after the transformations for any sxewed boundary

conditions have been applied. The principle for the applicaticn of such

kKinematic displacements can be explained b

y partitioning and re-arrenging

the overall system eguations ags :

(4.17)

!
!
_—— - - 4 = =
!
i

S
Pl e
AL N
I
M‘I
:i
D )

where %813 is a vector oi unconstrained or free nodal displacemsnts and

f¢ 7 . .
1823 1s a vector containing values of gpecified displacements.

The problem is then reduced to finding the solution c¢f the system.

of equations,

for the vecior §811 , and the subseguent resubstiitution of this vector
to find the reactions at the constrained nodes, i.e,
1 \ K '
Fr\ - K,-]S '{‘[lr.] 8

ia) 12100 2z L¥2

For the particular case where the values of the specitficd displace-~
ments are zero, the procedure is considerably simplified. Tre rows and
columns of the system equations corresponding to the constrained degrees

N

of freedom are eliminated and the solution prcceeds as usual,

3

For the general case where the displacements may be non-zero, it

is more convenient to rearrange equation 4.17 in the form,

_O_,} {8} {_FL} - [K(J{é}

[ _ :
[o ] [1] 8. 182

In order to preserve iue address seguaence for [ K ] the above

process, equation 4.18, is carried ocut without the rveordering implied by

the partitiening. Rather, the contributicns to the subvector (§F1} -

fK},wgng) are first conastructed feor each prescribed displacement, then
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+ v 2 h ol r-"I‘ . .
the row and column of LK ] corresponding lo this degree of frcedom are
'y - T Y . - Lo o~ - B .
made zero, with the exception of the diggronal element wnich i1s set to
unity.  Finally, the prescribed value of the disslacement is inserted

in ihe load vector,

1 7 e ~ . ~ s o -
The above procedure may be s ummarised for 2 specified displacemant

.th
gj at the j degree of freedom, as

i o= Fy - K 83 i = 1,2, «ou N
Kin = Kgy = O no= 1,2, .uu N (4.19)
K.. = 1
JJ
and F. = .
J 6J
The subseguent flowchart and procedurs listing represents the

application of these matrix operations where the matrix [K] is stored as

a one-dimensional array. Bquation 4.1 is employed to relate eguations
4.19 to the one-dimesnsional array. The steps involved are, with raference

to the flowchart :

A. -~ Integer N represents the degree of freedom at which the prescribed
displacement is applied. Column number cof the first non-zero
coefficient in row N is calculated, CJ.

B. - The load vector and rows of the stiffness matrix are modified
according to the first two equations of equation 4.19, 1.e.
from column CJ to the leading diagonal tcrm.

C. - fThe load vector and columns of the stiffness matrix are modified
according to the first two eguations of equation 4.19. In this
case a check must be made by the procedure to ensure that the first
non-zero coefficient stored in any row 1s not beycond the degree of
speedom N under consideration, hence CJ 1s computed and compared
with N as shown.

D. - The diagonal term is set to unity and the value of the prescribed

displacement is inserted into the lead vector according to the

last two equations of equablion 4.1
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GEOMBC (U,N,R,AK ,NEQ,F,A)

START

N:‘l/\

CJ:=N-A(N)

+A(N=1)+1

— - - ‘{K::CJ(l)N>

f AK(A(N)-N+K):=0.0

| |{R(K,F):=R(K,F)-AK(A(N)-N

+K) *U

(1)NEQ:>

:=K-A(K) +A(K=-1)+1

N

| CJ <

N

' R(K,

F):=R(K,F)-AK(A(K)-X+N) *U

AK(A(K)-K+N):=0.0

|

—

LZ
AK(A(N)):=1.0
R(N,F):=U
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LUTICH OF SYSTEM BOUATIONS

4.8 S0

The methoed of storage and

solution is due to Jenninss and Tuft .
In the method the equations are stored using the variable bandwidth

.. technique discussed in section 4.5 and Choleski triangular faciorisation

is used for *their solution,

Q

During the reduction of a set of sparse eguations by any variant
nf Gaussian Elimination, the zeroes before the first ncn-zero terms in
any row remain zero if there is no row cr column interchange. The
variable band storage scheme makes use of this property by storing, for

each row, only those terms occurring between the first non-zerc term and

the leading diagcnal.

F} vields a

—*
o
oe?
H
PN

Choleski factorisation of the eguations [K]
matrix of the form

PRINEREREY (4.20)

where [I;] is a lower triangular matrix with positive diagonal terms.
Substituting equation 4,20 into [:K] gg} = {Z] gives,

(L] L]t §6§ - {F}
e [110r] - (5]
wnere [v] = [1] ‘&%
The variables in[Ylare the modified right hand side coefficients
after elimination. The back substitution process to complete the

. . €
solution is the determination of 183 from

t
(1] {83 - [+]
The matrix [L-] overwrites [K] in the store by use of recursive

relations,

i-1 1
~ 2
L K - L., for diagonal terms, and
. = 4 ik
11 11 /
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\

L. . = ; . .
1] X Z/’ L., L.. for off-diagonal terms,
N a

K =

L
.

The relationa o o .
These relations show that to form any coefficient L. 13 cnly rows i

and j of the stiffness matrix are required to be stored. This
facilitates the use of vacking store for the solution of larse problems
and 1s discussed more fully by Jennings and Tuff(ze).

A program listing is given but no flowchart is included as the

program was taken direct from (22).

4.9 CALCULATICN OF ELENENT AND NODAL POINT STRISSES AND STRAINS

c+~

Two procedures are presented in this section for the evaluation of
stresses and strains, In the first, the stresses and strains are
calculated at the centroid of each element and in the second they are
calculated at the nodal points by averzging contributicns from a3 joining
elements sharing a common node, In each case, hcwever, the basic theory
is the same and will be discussed prior to a detailed discription of the
respective procedures. The program user has a choice, therefore, of

element centroidal and/or nodal values of stresses and stirains.  This

is discussed in Section 5.2 where the input data ingtructions for the
programs are given,

The method of obtaining the stresses and sirains 1s extremely simple
once the nodal point displacements have been detecrmined, Firstly, the
coeffirients of the strain-element nodal point displacement array [B]

. 3 - m kv 4 o~ ot PR 37 -
are evaluated at the point of interest. The strains at that point are

.

determined from equation 3.48 as ¢

(€3~ [w]i8]
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Finally, the stressts at the csame point may be calculated from the

S ] s » +} et s . . .
strains using the equations of section 3.4 in the form of equation 3. 52a

{o]. [c]{é}

The two procedures which follow employ the above eguations for the
calculation of centroidal values of stress and strain, procedure FEELSTR

and nodal values of stress and strain, procedure FEN¢STR.

4.9.1 Procedure FEELSTR

The procedure flowchart and program listing follow and the relevant
steps 1involved are described, with reference to the flowchart as :

A. - Procedure AUX is called %o calculate the coefficientis of ['B]

Citks

Cilrs
-
(&

at the centroid of the first element, natural coordinates
B. - Matrix operations, equations 3.48 and 3.52a are carried out to

determine values of stresses and strains.

Steps A a.d B are repeated for each element in turn.
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PROCEDURE FEELSTR{NSETF y Qy NELEMT ,NODE , XX, YY,DETJ ,TH,C,AUX)

! START

f - - - - - - — - -<:§;:1 (1) NSRTF:>

1
- T s = = ey (1) NELEMTT>

A |
l
l

SIGXX:=SIGYY:=SIGXY:=EXX:=EYY:=EXY:=0.0

AUX(0.3333,0.3333,0.3333,B,XX.YY,DETJ ,NODE ,Z)

r— — = = = = - - —<;g:=1 (1) jj)

STR(J):=(B(J,1)*Q(NODE(Z,1)*2-1,V)+B(J,2) “Q(NODE(Z,1) *2,V)
+B(J,3) *Q(NODE(Z,2) *2-1,V) +B(J,4) *Q(NODE(Z,2) *2,V)
+B(J,5) *Q(NODE(Z,3)*2-1,V)+B(J,6) *Q(NODE(Z,3) *2,V)
+B(J,7)*Q(NODE(Z,4)*2-1,V)+B(J,8) "Q(NODE(Z ,4) *2,V)
+B(J,9)*Q(NODE(Z,5)*2-1,V)+B(J,10) *Q(NODE(Z,5) *2,V)

+B(J,11) *Q(NODE(Z,6)*2-1,V)+B(J,12) *Q(NODE(Z,6) *2,V))
*TH(NODE(Z,7))

— — -— — P - — — — —_— —

J:=NODE(Z,7)
SIGXX:=SIGXX+(C(J,1)*STR(1)+C(J,2)*STR(2)+C(J,3)*STR(3))
SIGYY:=SIGYY+(C(J,2)*STR(1)+C(J,4)*STR(2)+C(J,5)*STR(3))
STGXY:=SIGXY+(C(J,3)*STR(1)+C(J,5) *STR(2)+C(J,6) *STR(3))

EXX:=EXX+STR(1)
EYY:=EYY+STR(2)

EXY:=EXY+STR(3)

.Z EXX EYY EXY SIGXX SIGYY SIGXYI
[ —
I

l END
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