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SUMMARY

Task classification is introduced as a method for the evaluation of mon-
itoring behaviour in different task situations. On the basis of an
analysis of different monitoring tasks, a task classification system com-
prising four task 'dimensions' is proposed. The perceptual speed and flex-
ibility of closure categories, which are identified with signal
discrimination type, comprise the principal dimension in this taxonomy,

the others being sense modality, the time course of events, and source

complexity.

Tt is also proposed that decision theory provides the most complete method
for the analysis of performance in monitoring tasks. Several different
aspects of decision theory in relation to monitoring behaviour are
described. A method is also outlined whereby both accuracy and latency
measures of performance may be analysed within the same decision theory

framework.

Eight experiments and an organizational study are reported. The results
show that a distinction can be made between the perceptual efficiency
(sensitivity) of a monitor and his criterial level of response, and that
in most monitoring situations, there is no decrement in efficiency over
the work period, but an increase in the strictness of the response
criterion. The range of tasks exhibiting either or both of these perform-
ance trends can be specified within the task classification system. In
particular, it is shown that a sensitivity decrement is only obtained for
'speed’ tasks with a high stimulation rate. A distinctive feature of
'speed' tasks is that target detection requires the discrimination of a
change in a stimulus relative to preceding stimuli, whereas in 'closure'
tasks, the information required for the discrimination of targets is

presented at the same point in time. In the final study, the



specification of tasks yielding sensitivity decrements is shown to be
consistent with a task classification analysis of the monitoring

literature.

It is also demonstrated that the signal type dimension has a major
influence on the consistency of individual differences in performance in
different tasks. The results provide an empirical validation for the
'speed' and 'closure' categories, and suggest that individual differences
are not completely task specific but are dependent on the demands common
to different tasks. Task classification is therefore shown to enable
improved generalizations to be made of the factors affecting 1) perform-
ance trends over time, and 2) the consistency of performance in different

tasks.

A decision theory analysis of response latencies is shown to support the
view that criterion shifts are obtained in some tasks, while sensitivity
shifts are obtained in others. The results of a psychophysiological
study also suggest that evoked potential latency measures may provide
temporal correlates of criterion shifts in monitoring tasks. Among other
results, the finding that the latencies of negative responses do not
increase over time is taken to invalidate arousal-based theories of per-
formance trends over a work period. An interpretation in terms of
expectancy, however, provides a more reliable explanation of criterion
shifts. Although the mechanisms underlying the sensitivity decrement are
not completely clear, the results rule out 'unitary' theories such as
observing response and coupling theory. It is suggested that an inter-
pretation in terms of the memory data limitations on information pro-
cessing provides the most parsimonious explanation of all the results in

the literature relating to sensitivity decrement.



Task classification therefore enables the refinement and selection of
theories of monitoring behaviour in terms of their reliability in general-
izing predictions to a wide range of tasks. It is thus concluded that
task classification and decision theory provide a reliable basis for the
assessment and analysis of monitoring behaviour in different task

situations.
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CHAPTER O

INTRODUCTION



The experimental study of human behaviour stems from the need to understand
and develop the principles underlying human functioning in different
situations. The formulation of such principles and their embodiment within
a theory usually follows from investigations of the effects of certain
independent variables on the performance of a task sampling the particular
type of behaviour under study. By assessing the relative influence of
these variables, it is assumed that a fuller understanding of the principles

governing behaviour may be gained.

In empirical studies in human performance research, it is often the case
that investigators use a number of different tasks in the study of similar
types of behaviour. The use of a wide range of tasks should ideally
provide a rich source of data whereby the generality of a theory and its
ability to explain performance trends in different tasks may be evaluated.
Quite often, however, a given theory may be able to make only very general,
and sometimes trivial, predictions about performance. In consequence,
several difficulties may arise in attempting to evaluate the effects of
independent variables on performance in a range of tasks which sample a

similar class of behaviour.

Such difficulties may also arise in attempting to predict individual or
group performances in task situations other than the ones for which
empirical data are available. However, despite the wide range of tasks for
which performance data are available, the development of a system for
organizing tasks within a limited and specified number of categories ought
to improve significantly the ability to make reliable predictions of per-

formance. The rationale behind the use of such a task classification

system is that it may help not only to organize performance data so that
more reliable generalizations about factors affecting human performance
may be made, but also serve as a framework for guiding further research.

Many prominent psychologists have, over the years, recognized the need for



the development of such classification systems (Alluisi, 1867; Fitts,
1962; Gagne’, 1962), but efforts to organize task classification schemes
have been initiated only recently, the principal developments stemming

from the work of Edwin A. Fleishman and his associates (Fleishman, 1972,
1975a, b; Theologus and Fleishman, 1971). Fleishman has also put forward
similar arguments to the ones presented here for the need to consider task
classification systems in human performance research. Such arguments can
be formulated with reference to the general field of human performance, but
they apply equally forcefully to smaller areas of behaviour, in particular
to monitoring behaviour, which is the subject under investigation in this

thesis.

Monitoring behaviour is an area of human performance research where a
number of experimental studies have been reported (Davies and Tune, 1970).
The tasks used in these studies involve the detection or discrimination of
relatively infrequent 'signals' over a prolonged work period. The 'signals'
in monitoring tasks may be defined in a number of ways, and several types
of stimuli have been used. In most laboratory investigations, 'sensory'
stimuli have been employed, although more 'cognitive' tasks employing
verbal and symbolic stimuli have also been investigated (see, for example,
Bakan, 1959; Sipos, 1970). The diversity of signal types and stimuli
used in monitoring tasks emphasizes the need for taxonomic systems whereby
such tasks may be described. However, although some attempts have been
made to identify the common features of such tasks (Bergum, 1966;

McGrath, 1963), very little attention has been paid to the problem of the
development and evaluation of a task classification system for monitoring

tasks.

The historical antecedents of research into monitoring behaviour may be

traced to early field studies of the effects of monotony and fatigue on

different industrial inspection tasks (Wyatt and Langdon, 1932). Present



interest in the subject stems mainly from a number of laboratory experi-
ments carried out since the pioneering work of N.H. Mackworth (1848, 1850)
on the performance of radar operators. Although most of these experiments
have been concerned with the investigation of performance trends over a
work period, monitoring tasks have also been used as standard tasks in the
assessment of environmental stress effects (see, for example, Lewis,
Baddeley, Bonham and Lovett, 1970; Poulton, 1970; Wilkinson, 1968), and
in the 'diagnosis' of 'attentional dysfunctions' in children, old people
and certain categories of mental patients (Alexander, 1973; Anderson,
Halcomb and Doyle, 1973; Dardano, 1969). Furthermore, although arguments
against the relevance of laboratory research in monitoring behaviour have
been put forward (Smith and Lucaccini, 1969), applied interest in the
subject is also maintained, not only in the previously mentioned
'diagnostic! applications, but also in certain industrial situations such
as inspection and quality control, (Drury and Fox, 1975; Poulton, 1973;

Wiener, 1975b).

Research into monitoring behaviour has been the subject of periodic
reviews (Deese, 1955; Frankmann and Adams, 1962; Craig and Colquhoun,
1975), and the experimental studies reported up to 19638-70 have been
reviewed in books by Broadbent (1971), Davies and Tune (1970) and

J.F. Mackworth (19639, 1870). As has been noted previously, however, very
little of this work has been carried out within a taxonomic framework.

A major aim of this thesis is thus the development and evaluation of a
task classification system which will enable more reliable generalizations
to be made of the effects of independent variables on monitoring perform-
ance. At the same time, however, it is recognized that the potential
benefits of systematization techniques such as task classification may
not be realized if appropriate methods of performance measurement are not

available. This thesis is thus also concerned with the further development



of more reliable methods of analysing monitoring performance. More specif-
ically, it is proposed that this requirement leads to an analysis of the

decision processes involved in monitoring tasks. A characteristic of the

literature on monitoring behaviour is that such analyses are not frequently
reported. In this thesis however, it is argued that decision theory
provides the most complete method for the analysis of performance in a

wide range of monitoring tasks.

An analysis of monitoring behaviour from the point of view of decision
theory was first reported by Lgan (Egan, Greenberg and Schulman, 1861a),
Broadbent (Rroadbent and Gregory, 1963a) and J.F. Mackworth (Mackworth and
Taylor, 1963). While this type of analysis has proved to be successful in
interpreting a number of different aspects of performance in monitoring
tasks, some investigators have disputed its validity (Jerison, 1967a;
Wiener, 1973). Illowever, their objections have beern directed, in the main,
at the use of certain 'parametric' statistics (such as d' and B) of the
theory of signal detectability (TSD). As will be apparent in the following
chapters, a TSD analysis of monitoring behaviour does not necessitate the
sole use of these statistics, but, when taken within the framework of

statistical decision theory, implies a broader consideration of the

decision and response processes involved in monitoring tasks than do the
more 'traditional' (Broadbent, 1971) types of analysis. It is also shown
in this thesis that decision theory enables, within limits, the inter-
pretation of hoth tdiscrete’ measures of performance accuracy, as wall as
oF 'continuous' measures of response latency. Furthermore, it is
demonstrated that, under certain conditions, physiological correlates of
behaviour, such as evoked potentials, may also be analysed within a

dacision theory framework.

Two broad approaches to performance asseasment in monitering tasks have

thus been identified. The first, the task classiflcation approach, has




not been considered in relation to monitoring behaviour in any consistent

manner. The second, the decision theory approach, has been applied with

inecreasing success in a number of diverse research areas (see Broadbent,
18713 Swets, 1973), although there are a number of areas where the theory
is difficult to apply in its present form, such as in continuous perform-
ance tasks, in multiple-choice situations, and other more complex and
operational tasks (but see Ingleby, 1973; Luce and Green, 1972). Howaver,
one aim of this thesis is also to establish the limits of applicability of
both the task classification and the decision theowry approach to perform-

ance assessment.

The work reported in this thesis thus represents an investigation into the
influence of, and the interaction between, task classification and decision
processes in relation to performance in different monitoring situations.
The first part of the thesis, comprising Chapters 1 to 6, outlines the
theory and method behind the task classification and decision theory
approaches, and the background to the experimental work, which is reported
in Chapters 7 to 12. The literature review and outline of various
theoretical considerations begins with the following chapter, in which

task classification is introduced.




CHAPTER TWO

TASK CLASSIFICATION

Task Classification and Performance
2.1.1 Approaches to task classification
2.1.2 A brief survey of some classification schemes

Monitoring Tasks: The Major Task Dimensions

Classification Schemes for Monitoring Tasks
2.3.1 Abilities classification

2.3,2 Classification by task characteristics

Notes to Chapter Two




2.1 Task Classification and Performance

Task classification can be viewed as a method of systematization whereby a
task or a group of tasks may be described on the basis of a limited number
of classification categories. The classification categories may be

defined by the common physical features of different tasks, or by the
"processes' which are assumed to mediate performance, or in a number of
other ways. Common to all such taxonomic approaches, however, is the
assumption that classification increases the ability to evaluate or predict

performance as a function of selected independent variables.

Over the years, a number of investigators have stressed the need for the
development of reliable task classification systems (Cotterman, 1959;
Melton and Briggs, 1960; Fleishman, 1867a, b, 1872, 1975a&, b). Progress
in this field has, however, been fairly slow. Many of the task classif-
ication systems which have been proposed have tended to be very specific
in their application and limited in their objectives (Farina, 1963). On
the other hand, some taxonomic approaches have been based on such broad
categories of behaviour as to be of little use in the description of task
performance within any of the categories. For example, Alluisi (1967)
proposed a task classification system based on such categories as memory,
vigilance, communication functions, and so on. Both intuitive reasoning
and factor analytic research (e.g. Fleishman, 1967a) suggest a greater
specificity of performance than that represented by these categories.
Indeed, this thesis is concerned with the development of a task class-

ification system within Alluisi's classification category of fyigilance'.

A major research programme aimed at developing reliable taxonomies of

human performance has been initiated by Edwin A. Fleishman and associates




at the American Institutes for Research (AIR) in Washington D.C. Although
still in their development phase, the task classification systems proposed
by the AIR group have proved fairly successful in meeting the objectives
of improving predictive and organizational capacity in the analysis of
human performance in both laboratory and operational tasks. The probable
reason for this is that the AIR group have gone beyond purely descriptive
systems, and have attempted to establish an empirical basis for the various
classification categories by using a correlational-factor analytic
approach. Several classification schemes have been developed, including
classifications based on human abilities (Theologus and Fleishman, 1971),
task chapacteristics (Farina and Wheaton, 1971), information measures
(Levine and Teichner, 1971), and task strategies (Miller, 1871). A number
of reliability and validation studies for the first two classification

systems have been reported (Fleishman, 1975a).

The reliability of a task classification system may be examined by invest-
igating its efficiency and consistency in describing performance in
different tasks. Ideally, a task classification system would be applied
so that a more precise description of task performance may be achieved on
the basis of the classification categories or "dimensions' comprising each
task, rather than on the basis of existing broad categories of behaviour

such as memory, discrimination, vigilance, etc.

Somewhat inevitably, however, one may be faced with the problem of what
to identify as a 'task dimension’ (to be included in the task classif-
ication system), and what to identify as an "independent variable'. Tor
instance, the sense modality of stimulus presentation has often baen
identified as an important factor in monitoring behavicur (Davies and
Tune, 1970). The problem emerges of decilding whethay to include senss

modality in the classification scheme, or to treat it as an independent




io

variable. The problem cannot be dealt with in advance of an empirical
evaluation of the taxonomy, and this depends on the specification of the
classification categories in the first place, so that one is caught in a
kind of vicious circle. This need not present any major difficulties how-
ever, if, on the basis of familiarity with the existing literature, one
can identify some of the major task dimensions, so they may be included
in the taxonomy, while other, seemingly less important ones may be
included in the set of independent variables. Of course, some of these
latter variables may be included in the taxonomy subsequently. A task
taxonomy should not be regarded as a fixed system, but rather as a tool
which may be progressively refined as further evidence is gathered. As

"leishman has pointed out, "..... individuals who attempt classification
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Rather, they view a system of classificatio
ability to interpret, predict, or control some facet of performance....
This goal 1s to be achieved by seeking relationships between that which
is classified (e.g. tasks, processes mediating performance, etc.) and
selected variables of interest to a particular investigator'" (Fleishman,

1975b, p. 50).

5.1.2 A brief survey of some classification schemes

Wwheaton (1968) has reviewed some of the major taxonomic approaches in
several areas within the behavioural sciences. He identified two major
types of task taxonomy: specific or 'utilitarian' systems, and
"theoretical' systems. Utilitarian systems were defined as those whic
are designed to have utility for a specific, limited application araat.
Wheaton noted that most of the taxonomies in this category are conoarnad
with classification schemes for the evaluation of training methods (&.g.
Gagnd, 1962). He labelled these taxonomies 'specific' because they are

not easily applicable to the analysis of pevformance as influanoad by




other independent variables. Wheaton also noted that such systems viewed
the unit 'task' as comprising a larger and more complex set of operations
than 'tasks' as referred to in the experimental literature on human per-
formance, (See Fleishman, 1375b, for a discussion of the definition of a

task).

The other type of task taxonomy identified by Wheaton (1868) was the so-
called 'theopetical' classification systems. Such systems are assumed to
be 'theoretically based' and ‘autonomous', and capable of being applied to
a wide range of task situations. The specific application does not, in
principle, influence the form of the task classification system. These
systems may vary according to the number, complexity and other features of
the categories comprising each system; examples include the classific-
ation systems of Farina and Wheaton (1971), Guilford (1967), Miller (19867),
Teichner (Teichner, 1972; Teichner and Olsen, 1969) and Fleishman
(Fleishman, 1967a; Theologus and Fleishman, 1971). These classification
schemes appear to be of greatest pelevance to monitoring tasks, and, on
the whole, are the only ones which have been empirically tested. We shall

also see that this approach treats classification as an integral part of

the development of a theory of monitoring performance.

Teichner and Olsen (1969) developed a classification system consisting of
performance categories common to various tasks. Each performance cat-
egory was defined by a dependent measure: the performance classes of
‘searching', fswitching', ‘coding' and 'tracking' were defined by the mea-
sures detection probabllity, reaction time, percentage of coryect respon-
ses, and percentage time-on-target, respectively. The pesults of an aval~
nation study by Teichner and Whitehead (1971) indiecatsd that these categ-
ories were useful in predicting performances on tasks incorpopating thaes
performance classes. Tt would appeaw howaver, that these ocateguvies aya

too hroad to be capable of genepating any hut the most genaval and almple




predictions. Furthermore, this taxonomy does mnot take into account a
number of other dependent measures which might be employed in the des-
cription of these behaviours. Teichner has, however, claimed some success
for his approach for the problem of deriving reliable empirical relation-
ships from existing literature (Teichner, 1972, 1974). He points out that
"a frequent complaint is that the scientific literature is neither
reliable nor relevant enough.... I shall try to show that this complaint
is not justified. Rather, the problem seems tO be simply that the effort
to use the literature properly has not been made by those who complain.™

(Teichner, 1972, p. 420).
P

The abilities classification system has been developed and described by
Fleishman (1975 a, b). The rationale behind this approach is that certain
basic abilities may be identified through a determination of the perform-
ance consistencies in different tasks within a correlational or factor
analytic framework. Several such correlational studies have been carried
out, and a comprehensive set of ability categories has been developed,
covering perceptual, motor, comprehension and physical proficiency tasks

(Theologus and Fleishman, 1871).

The ability categories developed by Fleishman have undergone considerable
refinement in reliability and validity tests (Theologus and Fleishman,
1971). In particular the AIR group have shown that by the use of a ve-
fined, anchored rating scale, the ability category vatings could be used
to predict performances on a number of (laboratory) psychomotor tasks., A
similar type of result was obtained in a predictive study of operational
performance, using tasks performed by Navy sonar oparators (Wheaton,
Shaffer, Mirabella and Tleishman, 1973), Integration studies of existing

human performance data have also been facilitated with this approaah.

Two axamples concern the areas of monitoring pevformanacs (Levina, Ramashln

and Flelishman, 1871) and the effects of alchohel en performance (Teving,
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Greenbaum and Notkin, 1973). In both studies, improved generalizations
could be made regarding the effects of independent variables, and previously
obscured effects could be identified. Furthermore, throughout an integrated
series of studies carried out by the AIR group the same ability categories
have consistently appeared and accounted for performance in a wide range of

tasks.

Finally, a task characteristics classification system has been developed by
Farina and Wheaton (1971). This taxonomic approach treats the task as
incorporating a set of conditions which elicit performance, and the class-
ification is based on the (objective) properties of the task itself. It is
assumed that certain common characteristics can be identified across tasks.
The properties may include the goal or purpose of the task, the relevant
task stimuli, instructions, etc. Farina and Wheaton noted that this
taxonomy was relatively free of the subjective and indistinct descriptions
found in other task-oriented classifications. They concluded that although
the taxonomy was 'explorative', the results of a 'post-diction' study were
encouraging and suggested that further development might lead to a refined

tool.

2.2  Monitoring Tasks: The Major Task Dimensions

Having briefly discussed some of the major task classification systems, we
now turn to a consideration of taxonomic systems for monitoring tasks in

this and the following section. In this section we shall examine some of
the features of monitoring tasks and consider in further detall the class-

{fication categories proposed by Levine, Romashko and Fleishman (1871).

qince the original use of the Clock Test by Mackworth (1950), a numbap

of different tasks have been used in the {nvestigation of monitering op
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vigilance behaviour. Despite the wide range of tasks used, very little
attention has been paid to the problem of the development of taxonomic tools
that would facilitate the evaluation of performance in these tasks. This is
in keeping, as we have seen, with similar neglect in other human performance
areas. It has been left to researchers outside the monitoring field to
point to the need for developing such task classification systems

(Fleishman, 1972).

The development of a taxonomy of monitoring tasks also assumes importance
from the point of view of the evaluation of different theories of behaviour.
Tn using two different tasks in studying the same psychological mechanisms,
two investigators may obtain different empirical results supporting two
conflicting theories; for instance, theory A may predict that monitoring
performance over time is characterized by an increasing strictness in the
criterion adopted by the subject, while theory B may predict that per-
formance decrement is primarily associated with a decrease in perceptual
sensitivity over time. Each investigator may assume his task to be. fairly
representative of monitoring tasks, and his theory to be supported since
the data fit the vespective predictions. In considering both studies, we
are faced with the problem of reconciling the conflicting results, and
deciding which theory is correct, or if both theories are correct, for
certain non-overlapping situations only. There is thus a clear need for
some sort of organizing tazonomic framework. In this regard, Davies and
Tune (1970) have pointed out that 'the theories advocated by different
experimenters to explain their data appear, at least in part, to depend on
the type of task they have used. Investigators who have used stimulating
tasks tend to favour theories concerned with division of attention, whils
these who have usad unstimulating tasks tend to favour theories hasad on

the concept of arousal’ (Davies and Tune, 1870, p. 11).




Wwhile comparatively little work has been done towards the development of a
taxonomy of monitoring tasks, a number of investigators have specified
different task features as important determinants of monitoring perform-
ance. Some of these have been included into theoretical approaches to
monitoring behaviour. Others, such as the 'coupling' concept of Elliott
(1960) have been proposed as features which are present in differing
degrees in different monitoring tasks. Some of these "dimensions' are
listed in Table 2.1. Most of these task dimensions have not been evaluated

3

within a taxonomic framework. DBecause of the diversity of the supporting

n

literature, a synthesis is difficult, but a closer examination of the range

of task dimensions may prove fruitful.

The first three dimensions listed in Table 2.1 might be termed "intuitive',
in that they are common to a large numher of tasks, and cannot be attyi-
huted to a single author. On an intuitive basis, accordingly, the first
item in Table 2.1, the sense modality of stimulus presentation, might be
included in any general task classification system, since modality
specific effects have been reported in a number of different behavioural
areas, including monitoring behaviour. In general, it has been noted that
auditory monitoring performance is superior to visual monitoring perform-
anceQ. A comparison of performances across modalities has been considered
to imply a critical test of the hypothesis that monitoring performance is
mediated by a 'common central process' (see Davies and Tune, 1970, pPD-

30 - 37). It has been commonly assumed, From the results of some asarly
studies, that the centrality’ hypothesis does not hold since these
studies found that monitoring performances are not corvelated across

cense modes (Buckner and McGrath, 1963b; Pope and McKechnie, 1963).
However, it has alsc been reported that performances are uncorralated
gizhigvmodaliﬁias (Raker, 1963). Moreover, some more recent studies have
found that iFf certain task factops ape controllad, a pattermn of conslst-

ency in the individual differences in different monitoping tasks smavges




(these studies are discussed in greater detail in Chapter 3).

Four studies (Gunn and Loeb, 1967; Hatfield and Loeb, 1868, Hatfield and
Soderquist, 1970; Loeb and Binford, 1971) have investigated whether one

of these task factors might be related to 'coupling', but the results were
generally inconclusive (see 3.2). Elliott defined coupling as '"an arrange-
ment of the task so as to ensure that the signal put out by the experi-
menter gets into the appropriate sensory input of the vigilant subject”
(Elliott, 1960, p. 360). It is intimately related to sense modality; 1in

general, visual displays may be said to be poorly coupled, since it cannot

he ascertained that the observer receives a representation of the signal

on each occasion (e.g. he may look away). With an auditory display, the
signal is always peripherally received (e.g. at the cochlea; see Plcton,

Hillyard, Galembos and Schiff, 1871).

The second item in Table 2.1, stimulus source complexity, may also be
sincluded on an intuitive basis in a task classification system. Although
the relationship between performance trends over time in single and multi-
source tasks remains to be fully explored, a number of authors have
stressed that this dimension effectively dichotomizes the range of mon-
itoring tasks (Howell, Johnston and Goldstein, 1966; Jerison and Wallis,
1957, Johnston, Howell and Williges, 1969), and that "simple' and

‘complex' monitoring performance need to be considered separately.

The third item in Table 2.1 refers in particular to the experimental
methods of the theory of signal detectahility (TSD). Conventionally,

only simple 'signal present' or 'Yes' responses have been required in mon-
itoring tasks, but in some studies responses to each stimulus event hava
heen vequired, in a manner similar to the Yes/No paradigm of TN {Davies,

lang and Shackleton, 1973; Parasuraman and Davies, 1878; Whittaphupgh,

Ross and Andpaws, 1956), The vating method has also oocasionally bespn
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used in monitoring studies (Broadbent and Gregory, 1963a; Loeb and

Binford, 1964; Milosevic, 1975). The evidence from detection and recog-
nition tasks is not entirely conclusive that these various procedures are
equivalent; surprisingly, however, the differences across procedures are
somewhat smaller for monitoring tasks, as we shall see in Chapter 4 (see

also Appendix D).

Tn some early studies on monitoring behaviour, some tasks were used which
were such that the signals for detection remained present until detected.

Examples of such funlimited-hold' tasks are the twenty-dials and twenty-

lights tasks (Broadbent, 1850, 1951, 1954). A distinction between tasks
in which signals are presented only briefly (transient or limited-hold

s

tasks) and unlimited-hold tasks was made in the context of Broadhent's

(1958) filter theory. Broadbent proposed that the latter type of task did
not suffer from the adverse effects of deviations in attention over a mon-

itoring periods.

Perhaps a more compelling basis for the distinction between trensient and
unlimited-hold tasks lies in the available information processing
strategies in either case. Laming (1973) has distinguished tasks in which
the sensory information is limited and unreliable (in the statistical
sense), from those where i+ is 'unlimited'. This distinction appears to
include Broadbent's classification of tasks by signal duration. 1In
tpransient tasks, it is peasonable to assume that the observer's inform-
ation processing strategies follow those assumed by fixed-sample theorles
such as TSD (see Chapter ). On the other hand, in unlimited-hold tasks,
it is likely that the observer would use a multi-sample detection
strategy that would enable, in principle, iperfact' performance ta ha
aehieved, Various Sequential—de&ision strategles may be propoasd for

this case (sse Laming, 1873).
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It is therefore important to distinguish between tasks on the basis of
which type of analysis, e.g. TSD or one based on sequential-decision models,
is appropriate. In Chapter 4, we shall see that TSD, as a specific form of
the more general statistical decision theory, is capable of being applied
in many cases, but finds its greatest relevance for tasks where the avail-
ability sensory information is limited, that is, in the so-called 'data-

limited' tasks (Norman and Bobrow, 1975).

A task dimension which has important implications for theories of monit-
oring, in particular to Broadbent's (1958) filter theory and other
'attentional' theories, is the time course of events. This may vary in a

continuum from slow, to fast, to continuous presentation. With tasks

having 'discrete' events, filter theory predicts that performance will not
suffer from the effects of deviations in attention when the presentation
rate is low, but will do so if the rate is high or continuous. Essentially

the same distinction applies to the classification proposed by Simpson

(1967), on the basis of the 'attention requirement' of different tasks;

he proposed that performance decrement is observed only for tasks requiring
'continuous' attention, that is, in high or continuous rate tasks. Despite
some inadequacies in the filter theory approach to monitoring performance,
we shall see that this task dimension is in fact an important one, and

that in certain cases the rate of stimulus presentation is an important

determinant of performance.

A general taxonomy for the analysis of performance on continuous work

tasks has been proposed by Bergum (1966). This was based on the general
conceptual framework of arousal or activation theory (e.g. see Duffy, 1962;
Welford, 1962), and distinguishes tasks on the basis of their 'total
stimulation value'. Bergum applied his classification scheme to a wide
range of continuous performance tasks, including production-line, assembly

and other monotonous tasks. As such, it is of limited value for the
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purposes of a taxonomic analysis of monitoring tasks, since the task
dimensions are too broad. The 'stimulation value' dimension is also rather
imprecisely defined, and it is difficult to provide an independent measure
of it. Nevertheless, Bergum's analysis is important for providing one of
the first attempts at task classification for monitoring and other pro-
longed tasks, and his analysis did allow some measure of predictive
capacity across classification categories. His concept of 'stimulation
value', and the proposal of an optimal value for efficient performance is
related to simllar conceptualizations such as the inverted-U relation

(Corcoran, 1965), the Yerkes-Dodson Law (e.g. Broadbent, 1965) and Poulton's

(1960) concept of 'optimum perceptual load'.

2.3 Classification Schemes for Monitoring Tasks

We have now examined a number of the task 'dimensions' listed in Table 2.1
as possible candidates for inclusion in a taxonomy of monitoring tasks.
However, the last item listed in Table 2.1 has not been discussed thus far.

This is the abilities classification system of Fleishman (1872) and

Levine et al. (1871).

2.3.1 Abilities classification

The abilities classification approach is one of an inter-related set of

taxonomic approaches to the evaluation of human performance which were i
briefly mentioned in 2.1. The abilities classification system has been

described in detail elsewhere (Fleishman, 1872, 1975a, b; Theologus and
Fleishman, 1971). Briefly, this system proposes that certaln basic

abilities can be identified as the major determinants of performance in a

The abilities are inferred from factor-analytic

variety of tasks.

analyses of performance consistencies in different tasks. Theologus and

Fleishman (1971) identified four main ability ‘'domains': cognitive,



perceptual-sensory, physical proficiency, and psychomotor. Within each of
these domains, several ability categories were identified; this forms the
major point of departure from other taxonomies, which have often only
specified a few, broad categories. In the 1971 version of the abilities
taxonomy, 37 basic abilities were postulated. Each was derived from factor
loadings on tasks sampling the ability, and refined rating scales were
developed so that the 'ability requirements' of different tasks could be
quantitatively expressed. FEach of these scales were fanchored’ with
empirically determined scale values corresponding to the ability require-
ments of different tasks. Figure 2.1 illustrates the assessment scale for

the rate control ability, which is relevant to performance in different

tracking situations.

In their application of the abilities classification tc the organization
of a portion of the literature on monitoring performance, Levine,

Romashko and Fleishman (1971, 1973) considered two ability domains, the
perceptual-sensory and cognitive domains, to be of relevance to monitoring
tasks. The former domain was accorded greater importance, and two

‘primary abilities' were selected from this domain: perceptual speed and

flexipility of closure. Perceptual speed refers to the ability to rapidly

compare successively presented patterns or stimulus configurations for
identity or degree or similarity. The sensory patterns to be compared
occur within the same sense modality and not between modalities, TFlex-
ibility of closure refers to the ability to detect or identify a pre-
viously specified stimulus configuration which is part of a more complex
sensory field. Both the relevant stimulus configuration and the 'noise

field' occur within the same Sense modality (Levine et al., 1971, p. 9).

¢ 3 y @ y oshiY1ivian ! P
Lavine et al. also sonsidered two 'secondary abilities®, gelective

Definitions of these abllitles ave as

attention, and time sharing.

B

Fellows
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RATE CONTROL This is the ability to make timed, anticipatory motor adjustments
relative to changes in the speed and/or direction of « continuously moving object.
The purpose of the motor adjustments is to intercept or follow a continuously moving
stimulus whose speed and/or direction may vary in an unpredictable manner.

Requires fine motor adjustments
relative to random changes in both
speed and direction of a target moving |

s
in three dimensions.

@ Use a sensitive knob to keep two
. inch circle around a target varying
in speed and direction in fwo
dimensions.

Adjust your work rhythm to the
ag=s conveyor belt speed. which varies
from one to three inches/second

e

«—Ride a bicycle alongside a runner
Requires motor adjustments

relative to a target moving
at a constant speed in one dimension

FIGURE 2.1 Anchored rating scale to assess requirement for Rate Control ability
(after Theologus, Romashko and Fleishman, 1970, p.192).




Selective attention

The ability to perform a task in the pres ence of distracting
stimulation or under monotonous conditions without loss of
efficiency. When dlstractlng stimulation is present in the
task situation, it is not an integral part of the task being
performed, but rather is extraneous to the task and imposed
on it. The task and the irrelevant stimulation can occur
e%t@er within the same sense or across senses. Under con-
ditions of distracting stimulation, the ability involves
concentration on the task being performed, and filtering out
of distracting information. When the task is Dbeing performed
under monotonous conditions, only concentration on the task
being performed is involved.

Time sharing

The ability to utilize information obtained by shifting
between two or more channels of information. The information
obtained from these sources is either integrated and used as
a whole or retained and used separately.

(Levine et al., 1971, pp. 9-10)

Levine et al. classified 53 monitoring tasks used in the literature on each
of the four abilities; each task was categorized by the predominant ability
required for efficient performance. Most of the tasks (50 out of 53) fell
into either the perceptual speed or flexibility of closure ability cat-
egories. Very few tasks could be assumed to require the selective attention
or time sharing abilities predominantly (hence their connotation as
'secondary'). It would therefore appear that these two abilities do not
entirely satisfy Fleishman's (1967a) criteria for a reliable classification
system, namely that the classification categories should not be too
generalized or too specific. The selective attention category appears to
fail to satisfy the first of these requirements, in that demands on
selective processing may be imposed not only in monitoring tasks, but also
in many other tasks; and one would expect to find performance spec ificity

within each of these categories, as for the vigilance and memory cat-

et e S0

agories of Alluisi (1967).
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However, the two primary abilities, perceptual speed and flexibility of
closure appear to be representative of important task features, and may
provide a neat dichotomous dimension for the classification of monitoring
tasks. Levine et al., (1971) found that there were some differences
between tasks requiring these abilities in both the mean performance trends
over time and in the effects of certain independent variables. One result
was that for tasks requiring flexibility of closure, the percentage of
correct detections declined with time on task up to a certain point of

time (about 2 hour into the vigil), and then increased, while for tasks
requiring perceptual speed performance did not reverse, but levelled off.
This is illustrated in TFigure 2.2, which suggests that tasks requiring
perceptual speed may be more susceptable to performance decrement than
tasks requiring flexibility of closure. Furthermore, the impact of
independent variables such as signal rate, sensory modality and knowledge
of results, were found to be a function of the ability requirements of
tasks.

While the theoretical import of these results is not immediately clear 45
they do point to the feasibility of the abilities classification approach
as a useful tool for the integration and generalization of research find-
ings. TFurther research appears to be needed to clarify the nature of tha
perceptual speed and flexibility of closure categories in relation to
monitoring performance. Some further insight may be gained by examining
the tasks given by Levine et al., (1973) as examples of tasks requiring
these abilities, For perceptual speed, the task used by Eason,
Beardshall and Jaffee (1965) was described. In this task subjscts wave
requived to press a switch when they detected a flagh of light appsaring
in a lneh circular hole for 0.8 seconds. The light was normally fFlashed
for 0.5 seconds, the Interval between flashes belng 3 geconds . oy
Flexibility of closure the task of Adams (1956) was desopibad. Tn this

task subjects were vequired to detect a 2 millimetys blip of light
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appearing in the centre of a 5-inch white screen.

Examination of these tasks reveals that the major feature of the task
requiring perceptual speed is that a detection of a change in the duration
of a stimulus with respect to preceding stimuli is required, while for the
task used by Adams (13956), detection of a previously specified stimulus
configuration is required. The perceptual speed and flexibility of closure
categories may thus be easily inferred from the signal and task character-

istics of each monitoring task.

2.3.2 Classification by task characteristics

The task dimensions of perceptual speed and flexibility of closure emerge
as a possible starting point for a taxonomy of monitoring tasks. These

two categories may be used to classify a number of monitoring tasks,

which may subsequently be examined for performance consistencies and

di fferences across categories. Table 2.2 lists some tasks which may be
classified in this manner. Examples of both visual and auditory monitoring

tasks are given.

T+ will be noted that of the tasks listed in Table 2.2, some are 'discrete'
tasks, and others are 'continuous' tasks. This distinction was earlier
pointed out to be an important one. We have also considered the modality
of monitoring displays as an important task dimension; and in the
following Chapter, its importance is underscored as a result of a con-
sideration of the relationships between performance consistency and

modality in monitoring tasks.

In considering the abilities classification system, we have rejected the
'selective attention' category because of its generality and imprecise

definition. What of the time sharing category? This category is also




VISUAL
TASKS

AUDITORY
TASKS

PERCEPTUAL SPEED

a7

FLEXIBILITY OF CLOSURE

1. Detect a change in the
intensity of intermittent light
flashes (Broadbent and Gregory,
1963a; Hatfield and Loeb,
1868).

2. Detect increase in deflec-
tion of meter needle (Baker,
1963).

3. Detect increase in duration
of intermittent light flashes
(Williges, 1973).

1. Detect specified con-
figuration in complex pattern
of letters (Adams, Humes and
Stenson, 1962).

2. Detect a disc of speci-
fied hue in display of six
discs (Colquhoun, 1961).

3. Detect a blip of light
appearing occasionally on a
screen (Adams, 1956).

1. Detect a change in the
intensity of intermittent noise
bursts (Hatfield and Soderquist,
1970).

2. Detect a sequence of digits
in a series of auditorily pres-
ented numbers (Bakan, 1959).

3. Detect decrease in duration
of intermittent tone (Deaton,
Tobias and Wilkinson, 1971).

1. Detect a tone embedded
in noise bursts (Hartley,
Olsson and Ingleby, 1873).

2. Detect a brief inter-
ruption in continuous white
noise (Ware, Sipowicz and
Baker, 1961).

3. Detect occasional tone

in a background of continuous
white noise (Colquhoun,

Blake and Edwards, 1968).

TABLE 2.2 Examples of visual and auditory monitoring tasks classified on
the perceptual speed and flexibility of closure task categories.

fairly broad;

and it may include time sharing both within a task (e.g.

between different sources of a multi-source task), and between a main task

and a secondary task, such as tracking (Wiener, 1975%), or memory and

encoding tasks (Tyler and Halcomb, 1974).

To limit our classification to

more specific features of the monitoring situation, we need only consider

a task dimension based on source complexity;

that is, whether the task

has a single or multiple number of stimulus sources.

We may now propose a task classification system based on the important

task dimensions we have considered.

Although two of the classification

categories form part of Fleishman's (1972) abilities classification, in
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DIMENSION EXAMPLES
Type of signal discrimination 'Speed'/'Closure'
Sense modality Visual/Auditory
Source complexity Single/Multi-source
Time course of events Discrete-slow/Discrete-fast/
Continuous

TABLE 2.3 The components of a proposed task classification system for
monitoring tasks.

the abs@nce of a correlational or factor analytic base for these
categories, we will refer mainly to the 'task dimensions' or 'task charac-
teristics'. Conceptually, the relation between task features and
hypothetical abilities may be retained, but in practice, we shall talk in

terms of a task characteristics classification system.

Table 2.3 displays some of the components of such a system, which will be

further examined in the experimental studies reported in this thesis. It
is proposed that this system is sufficiently comprehensive to cover a wide
range of tasks, while at the same time being small enough to ease
empirical investigation. It will be noted that the ability categories of
perceptual speed and flexibility of closure have been taken as part of the
task dimension 'type of signal discriminationl since they may be inferred
from such an examination of the task features. In forthcoming chapters,
these categories will often be referred to as the 'speed’ and 'closure'
categories. Reference will also be made to 'speed tasks' and 'closure
tasks'. Unless otherwise stated, this should be taken to mean that the

category represents a dominant feature or 'ability requirement' of each

task.
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While a number of other task dimensions may be identified, this task class-
ification system may be taken to represent a first approximation to a
monitoring task taxonomy, so as to limit the scope of the initial enquiry.
One may also include the dimensions of pacing and signal duration in
subsequent modifications. We believe, however that the components of
Table 2.3 represent the most important of the many task dimensions we have
considered. The one exception is the dimension of visual search, which

we have not considered before. This dimension obviously represents a
strong candidate for future research into classification systems for
monitoring tasks, since it is an important component of many inspection
and other industrial tasks. Again, it has been neglected to limit the

breadth of the empirical investigations.

The task classification system presented here has arisen primarily out of
considerations of the previous literature, and its evaluation in terms of

the reliability of various proposed task categories. The taxonomy is

intended to be a preliminary, exploratory tool, and one whose reliability

is yet to be empirically determined. It does not exclude further extension

and revision in the light of subsequent empirical evidence.

2.4 Notes to Chapter Two

t—

Utilitarian task classifications include the task taxonomic approach
known as 'task analysis' (e.g. Annett and Duncan, 1967).

2. This generalization does not always hold (for exceptions, see
Colquhoun, 1975; Kennedy, 1971). As Elliott (1960) has pointed out,
comparisons across modalities are only valid if the inputs to the
different sensory channels are 'equalized', so that the observed

performance differences can be attributed to modality factors alone.



30

The empirical data available in 1958 generally supported the filter
theory approach to monitoring performance. More recent evidence,
however, has shown this approach to be untenable, except for certain
task situations (see Chapter 5).

A major difficulty in the interpretation of these results is the lack
of an analysis in terms of independent sensitivity and bias measures
(this was not done presumably because very few studies in the

literature, at the time, reported false positive error rates).
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CHAPTER THREE

INDIVIDUAL DIFFERENCES IN MONITORING PERFORMANCE:

A TASK CLASSIFICATION ANALYSIS

General Features of Individual Differences
3.1.1 Reliability of individual differences

3.1.2 Correlates of individual differences

Inter-Task Consistency of Individual Differences
3.2.1 Type A studies
3.2.2 Type B studies

3.2.3 Discussion of type A and B studies

Interrelationships between Motivation, Task Factors

and Abilities

3.3.1 Motivation and monitoring performance

3.3.2 Motivation and the interpretation of performance

consistencies
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3.1 General Features of Individual Differences

In our discussion of the relation between task classification and perform-
ance, we have been generally concerned with the mean performance associated
with groups of individuals. It is also of interest, however, to examine
aspects of task classification from the point of view of individual per-
formances, or the variability in performance between individuals. This is
especially true for monitoring tasks, since performance in such tasks is
usually found to vary quite considerably between subjects. Marked
individual differences in performance is one of the commeonest findings in

research on monitoring behaviour (Davies and Tune, 13970).

J.F. Mackworth (1969) has identified four major ways in which individuals
may differ in performing monitoring tasks. She proposed that subjects
may differ 1) in their ability to detect a signal under alerted conditions,
or in their basic reaction time, 2) in their change in performance over
time, 3) in their chosen criterial level for responding, and 4) in their
level of arousal or activation. Studies of individual differences in mon-
itoring performance have generally sought to examine the inter-relation-
ships of these factors (e.g., the relationship between individual
differences in arousal level and detection rate), and in obtaining their

psychological and physiological correlates.

3.1.1 Reliability of individual differences

N.H. Mackworth (1950) was one of the first investigators to report the
existence of large individual differences in monitoring performance. He
noted that these differences were fairly reliable, in that they were
maintained consistently both between successive periods of a watch, and
between watches. The variability in performance in a monitoring task is
generally of about the same order as the mean level of performance.

Figure 3.1 illustrates typical values of the mean and standard deviation
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Content has been removed for copyright reasons

FIGURE 3.1 Maean and standard deviation of correct detections as a function

of time on watch in a monitoring task (from Buckner, Harabedian and McGrath,

1960) .
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FIGURE 3.2 Mean and standard deviation of values of d' as a function of
fime on task (from Experiment 1, Chapter 7).
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of the percentage of correct detections for performance in a task used by
Buckner, Harabedian and McGrath (1960). A similarly consistent but somewhat
smaller variability in performance is apparent in Figure 3.2, in which
values for the d' measure of performance have been plotted from an experi-

ment reported in Chapter 7.

The detection rate is usually found to be fairly reliably related to the
initial detection level. Mackworth (1950) reported, for instance, that the
rate of decrement in correct detections over a vigil was dependent upon the
initial level of detection. Subjects who detected a high number of signals
at the start of the vigil exhibited less decrement than those subjects who
had a poor initial performance level. In one of several experiments using
the Clock Test, Mackworth (1950, Clock Test 10) also found that subjects
who had already been monitoring the Clock for half an hour had a greater

decrement subsequently than subjects who began the vigill "fresh'.

The finding that the rate of decrement in correct detections is dependent
on the initial mean level of performance has also been reported in a
number of experiments by Buckner (Buckner, 1963; Buckner et al., 1960).
In these experiments subjects performed on 'alerted’ short-duration pre-
and post-monitoring session tests; and it was found that pre-test and
main session performances were highly correlated. Teichner (1974) has
discussed the results of studies on simple visual detection tasks in a
similar manner. By collating data from existing studies, he was able to
show a relationship between the rate of decrement in correct detections

and the initial level of detections.

While individual differences are reliable within a monitoring session, a
few studies have also found that individual performances are highly cor-
related over several sessions spent working at the same task (Buckner et

al., 1960, obtained reliability coefficients in the range .72 to .81 for
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monitoring sessions separated by up to six intervening sessions). It may
thus be taken as established that individual differences in monitoring per-
formance are maintained consistently within a monitoring session, between
pre-test and main session, and between different sessions, at least as far

as detection performance is concerned (see also Appendix B).

3.1.2 Correlates of individual differences

Given the reliability of individual differences in monitoring performance,
a number of investigators have sought to identify their correlates. On
the whole, however, such efforts have been fairly unsuccessful. Mackworth
(1950) originally reported that neither intelligence nor visual acuity was
related to monitoring performance. A number of similarly unsuccessful
studies have since been reported (see Mackworth, 1869, pp. 111-120;

Wiener, 1975b, pp. 105-107).

Despite this generally negative picture, however, some studies have found
that the introversion-extraversion dimension of temperament might provide
a possible correlate of monitoring performance; the general finding has
been that introverts detect a greater number of signals and have a
smaller decrement than extraverts (Bakan, 1959; Davies, Hockey and
Taylor, 1969; Keister and McLaughlin, 1972), for temperament as assessed,
respectively, by the Heron Personality Inventory (Heron, 1956), the
Maudsley Personality Inventory (Eysenck, 1959) and the EysencK Personality
Inventory (Eysenck and Eysenck, 1964). These studies have generally
interpreted monitoring performance within an arousal framework and
related personality, autonomic arousability or reactivity, and perform-
ance (see Broadbent, 1963). The exact form of the relationship, however,
remains to be demonstrated. It should be noted that the previously
mentioned studies have not generally reported the relationship between

temperament and bias-free performance measures; hence it is not clear
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whether the apparent superiority of introverts (higher detection rate)
represents a genuine superior perceptual sensitivity (d'). Davies and
Hockey (1966) and Davies et al. (1969) found that while introverts detected
a greater number of signals than extraverts, they also tended to make more
false alarms. In a related context, Parasuraman (1975a) showed that sub-
jects with a high level of electrodermal reactivity made a significantly
greater number of detections (at all confidence levels) on a short-
duration tone discrimination task than low-reactive subjects; however

this apparent superiority was not due to a superior ability to discriminate
signals, but a result of significantly 'riskier' criterion levels adopted
by high-reactive subjects. It thus remains to be demonstrated whether
introverts and extraverts differ in their sensitivity or their chosen

criterial level, or both.

The results included in this section do not, then, allow for any firm con-
clusions to be made regarding the relation between temperament and mon-
itoring performance. It therefore appears that while individual
differences are consistently present in monitoring performance, it 1is
difficult to identify their correlates. It has been suggested, further-
more, that it is relatively futile to seek such correlates since
individual differences are highly specific from task to task (Baker, 1963).
This view was mainly based on the results of some early studies which
found that inter-task correlations in monitoring performance were low and
not significantly different to that to be expected by chance (Baker, 1963;
Buckner et al., 1960; Pope and McKechnie, 1963). However there are some
reasons why this is probably too facile a view. We shall discuss these

in some detail in the following section, in which we shall examine the
implications of task classification in relation to performance consistency

in different monitoring tasks.




3.2 Inter-Task Consistency of Individual Differences

We have noted that one of the commonest findings in monitoring performance
is that of large individual differences. In some early studies, it was
reported that while performance differences between subjects are maintained
consistently both within and over sessions spent working on the same task,
individual differences are not consistent when subjects work with different
tasks (Baker, 1963; Buckner, Harabedian and McGrath, 1960). This finding
has generally been taken to be a characteristic of monitoring performance,
the conclusion being that individual differences in monitoring performance
are highly task specific (Buckner and McGrath, 1963b; Mackworth, 1969).
However, this view may be challenged on the basis of the findings of more
recent studies, in which generally high and significant correlations have
been obtained between performances in different monitoring tasks, at least
for some performance measures (Gunn and Loeb, 1967; Hatfield and Loeb,
1968; Hatfield and Soderquist, 1970; Loeb and Binford, 1971; Sverko,

1968; Tyler, Waag and Halcomb, 1872).

These more recent studies have generally controlled task factors more
closely by equating tasks for the type and difficulty of signal discrim-
ination. Tt is also noteworthy that in a study in which significant inter-
task correlations were obtained for all the performance measures taken
(Sverko, 1968), the monitoring tasks used were such that the dominant
ability required for efficient performance (*numerosity', or the ability

to detect a specified number of temporally spaced discrete stimuli) was
different to that normally encountered in monitoring situations but was

common to all the tasks used. It thus appears possible that tasks which

make similar demands on the subject are more likely to share common per-
formance variance than tasks which do not, although none of the existing
studies provide a direct confirmation of this view. In later chapters,

we shall be concerned with how the similarity of demands of different tasks

B\
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may be assessed.

These studies may therefore be divided into two general categories: the
earlier, or Type A studies, which report little or no correlation in per-
formance between different monitoring tasks, and the more recent, or Type
B studies, which report generally high and significant inter-modal
correlations in monitoring performance. We have seen that the feature

distinguishing these studies is the closer control of task factors in the

Type B studies. These studies are also the only ones reporting correlations

for the d' measure of performance. We shall accordingly consider the Type
A and B studies separately. The correlation coefficients reported in both

types of studies are tabulated in Table 3.1.

3.2.1 Type A studies

Tn one of the earliest studies on inter-task correlations in monitoring
performance, Buckner et al., (1960) reported low, positive correlations
in performance between visual, auditory and combined audio-visual tasks
(see Table 3.1). In the visual task, Navy personnel were required to
detect slight increments in the brightness of an intermittent light,
while in the auditory task detection of small increments in the intensity
of intermittent 750 Hz pure tones were required. Three audio-visual
tasks combining the visual and auditory tasks under three degrees of
signal redundancy were also employed. Buckner et al reported correlations
for the correct detections measure only, so we cannot determine whether
the low correlations were indicative of inconsistencies in subjects

response criteria, or of a genuine inconsistency in detection sensitivity.

Pope and McKechnie (1963) also found no correlation in performance
between visual and auditory monitoring tasks. In the visual task subjects

were required to detect a low-intensity spot of light on a frosted glass
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Performance Measures

Hits FAs d’ Log B DL
Type A Studies
Buckner et al. (1960) .24
Buckner and McGrath (1963a)
Visual task .20
Audio-visual tasks:
Redundant 22
Partially redundant . Sh
Non-redundant .23
Gruber (1964) .18 .15 42
Pope and McKechnie (1963) -.11
Type B Studies
Gunn and Leoeb (1967)
Experiment I 11 .57% Lg% .52%
Experiment II .21 .79% .68% .78%
Hatfield and Loeb (13968)
CC Visual Task .B5% .15 .34 .33 L76%
LC Visual Task .48 .21 .27 .32 .76%
Hatfield and Soderquist (1370)
CC Visual Task -.08 . 52% -.09 .50% .78%
LC Visual Task b7 .93% R .96% LT71%
Loeb and Binford (1971)
CC Visual Task .65% .15 . 36 .56%
LC Visual Task .67 .29 .88% L72%
Sverko (1968)
Light Flashes LT .57%
Pointer Deflections .66% .58%
Tyler et al. (1972) .80% LTTE .B87% L61%

TABLE 3.1

Visual-auditory correlation coefficients in Type A and B
studies (* = p « .05 or better; CC = Closely coupled; LC =
Loosely Coupled; Hits = Correct Detections; FAs = False
Alarms; DL = Detection Latency; rank order correlations
for data of Gruber computed by Davies and Tune, 13870;

partial correlations reported by Tyler et al., 1972).
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display, while the auditory task involved the detection of a low intensity
(55dB) pure tone (1350 Hz) in a continuous steady 80dB, 500 Hz tone. Both
the product-moment and rank-order correlations were low and negative, each

being - .11.

Gruber (1964) tested subjects on a visual task in which the signal was the
disappearance of a faint horizontal line on a CRT display, and an auditory
task requiring the detection of .1 second interruptions of a 1000 Hz pure
tone in noise. Gruber did not compute correlation coefficients for his
data, but this was done by D.R. Davies, who found that low visual-auditory
correlations were obtained for three measures, correct detections, false

positives and detection latency (Davies and Tune, 1970, p. 35).

A low correlation in performance was also reported by Baker (1863), who,
however, unlike earlier investigators, used two visual tasks. Baker found
that a low correlation was obtained between two dissimilar tasks, the
Continuous Clock and Dial Tasks (for descriptions, see Mackworth, 1970,

p. 158); however he also reported that if two tasks differed only in the
signal duration, then a high correlation was obtained. Baker suggested
that the low correlation was obtained because the tasks were either dif-
ferentially difficult, or dissimilar (since the Clock Task requires visual
seaprch movements while the Dial Task requires continuous visual fixation),
and concluded that individual differences in monitoring performance are

almost wholly task specific.

3.2.2 Type B studies

The study reported by Gunn and Loeb (1967) can be taken to be the first
study belonging to this category. They tested the same subjects on a
visual and auditory task in two fairly short (15 min) monitoring sessions.

Detection of intensity increments in a background of either light or white
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noise pulses were required in the visual and auditory tasks, respectively.
Unlike earlier investigators, Gunn and Loeb equated the two tasks for
difficulty by matching d' values obtained in short, 'alerted' pre-tests.

Both d' and B, which are measures of perceptual sensitivity and the response
criterion respectively in the TSD model, were found to be significantly
correlated across tasks; however the correlations for the percentage of
correct detections were not significant in either experiment (see Table 3.1).
This latter result, when compared to those of the Type A studies, indicates

the 1mportance of using a bias-free index of detection performance such as

da’.

A further series of experiments by M. Loeb and his colleagues have given
results which are, on the whole, similar to those of Gunn and Loeb (1967),
although some apparently inconsistent results have also been obtained
(Hatfield and Loeb, 1968; Hatfield and Soderquist, 1970; Loeb and Binford,
1971). These experiments used visual and auditory tasks very similar to
those used by Gunn and Loeb (1967). 1In addition, all three studies also
employed a 'closely coupled' visual task (see 2.2), which was identical to
the 'loosely coupled' task except that subjects had their eyes taped to
reduce the contribution of 'observing responses'. Significant correlations
in performance between visual and auditory tasks were obtained for subsets
of the five performance measures, but the pattern of correlations is not
consistent between studies (see Table 3.1). Hits and false positives were
correlated across tasks in 8 and 7 cases out of 11, respectively; and d'

and log ﬁ were correlated significantly in 4 and 7 cases out of 9,

respectively.

Task difficulty was controlled in the Type B studies by matching group d’

values between tasks, for the experiments reported thus far. Loeb and

Rinford (1971) and Tyler at al. (1972) however, equated task difficulty by

Loeb and Binford did not obtain high

. e g s .
matching individual d' values.
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correlations for each performance measure they took, and their results do
not resolve the inconsistencies in the pattern of correlations in the
previous Type B studies. Tyler et al. (1972) tested subjects on three mon-
itoring tasks on the same day, separated by 3-min. rest periods. They used
a visual task in which the signal was an increase in the duration of an
intermittent red light; in their auditory task a similar discrimination
for intermittent 1 KHz tone stimuli was required. Uniformly high and sig-
nificant correlations in performance between the visual and auditory tasks
were obtained, for each performance measure taken (see Table 3.1). On the
basis of their results, Tyler et al. concluded, in contrast to Baker (1863),
that individual differences in monitoring performance are not task

specific, but are mediated by a 'common vigilance factor'.

Finally, Sverko (1968) tested subjects on three rather unusual visual,
auditory and electrocutaneous tasks. In each task, subjects were asked to
monitor a series of pulses in trains of two to seven pulses, and to
indicate 'signal present' when two successive trains contained the same
number of pulses. Pointer deflections and light flashes were the stimuli
used for the two visual tasks, while click and weak electrical shock
stimuli were used for the auditory and cutaneous tasks, respectively.
Inter-task correlations in the range .57 to .84 were obtained, all cor-

relations being significantly different from zero.

3.2.3 Discussion of type A and B studies

From an examination of the reports in the literature on inter-task cor-
relations in monitoring, it is clear that these fall into two main
categories, Type A and Type B studies. These studies may be distinguished
by the fact that the Type B studies have generally controlled task
difficulty and compatibility factors more closely than the Type A studies.
The overall finding that uniformly low and nonsignificant performance

correlations are reported in the Type A studies, while generally high and
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significant correlations are reported in the Type B studies emphasizes the

importance of these distinguishing factors.

While high correlations were reported in all the Type B studies, low and
nonsignificant correlations were also obtained for some performance
measures, and overall, the pattern of correlations shows little consistency
between studies. The most consistent result was that log @ was highly
correlated across tasks in all the Type B studies, thus presumably ref-
lecting a consistency in subjects' mode of response in different tasks
(although there are some difficulties in comparing response criterion
levels on the basis of g values alone, see 4.4.2). A high correlation was
also obtained for detection latency in the two experiments where it was
recorded (see Table 3.1). Finally, Table 3.1 also reveals that 'coupling'
has no reliable effect on inter-modal performance consistency. Indeed,

if anything, the results appear to indicate that the inter-modal cor-

relations are higher for loosely coupled tasks than for closely coupled

tasks.

A methodological point which should be noted is that most of the experi-
ments we have discussed have not included a control for the possible
effects of the sequence of testing. Particularly severe sequence effects
were obtained in the experiment of Tyler et al. (1972), who tested

subjects on three successive half hour monitoring sessions separated by

3-min. intervening rest periods.

Given these drawbacks, the results nevertheless lend themselves to the
general interpretation that individual differences in performance are con-
sistent between tasks when they are equated for the type and difficulty

of signal discrimination, as in the Type B studies. The evidence also
points, albeit less forcefully, to the importance of task factors (which

might be identified within a task classification system) for determining
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performance consistency in monitoring behaviour. An evaluation of the
correlation studies in terms of the speed-closure dimension is not possible
since all the Type B studies used very compatible, similarly classified
tasks. Such an evaluation is reported in experiments described in

Chapters 8 and 10. These experiments apply a task classification approach

to the problem of task specificity in monitoring performance.

The need for a task classification approach was stressed some time ago by
H.J. Jerison at the First International Symposium on Vigilance (Buckner
and McGrath, 1963a). A glance at Table 3.1 reveals that in the Type A
studies, the reported correlations, with one exception (Pope and McKechnie,
1963), are all positive and fall in the range .15 to .54. The implication
of this fact was recognized by Jerison, as is apparent in the following
transcript of a part of the discussion following the paper by Buckner and

McGrath (1963b);

Buckner: It is an additional illustration of the task and mode
specificity of individual differences in vigilance. In every study we
have conducted, the between-modes correlation has been a low positive
value, usually between .2 and .3.

Jerison: What strikes me is that one finds consistently low, but con-
sistently positive correlations. This itself has implications; and
the matter is not quite as discouraging as it would be if we were
obtaining a distribution of correlations around zero. The implication
is that, we are not dealing with task specificity purely and simply,
but with a multidimensional problem. It is clear that some common
factor is present in vigilance performance, but changing the task adds
many factors to it.

(From Buckner and McGrath, 1963b, p. 69; italics added)

It is apparent that in order to cope with the '"multi-dimensional problem',
some sort of task classification system which specifies the important
task factors is required. We are faced with the problem of not only
identifying the 'common factor', but also those factors which are 'added'
when the task is changed. As we pointed out in Chapter 2, it is also

clear that these factors have to be related to the detection and decision
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aspects of monitoring tasks rather than to 'broad' factors common to the
monotonous and prolonged aspects of monitoring and other continuous per-
formance tasks. This point is further emphasized by the results of a
study by Baker and Ware (1966), who examined inter-task correlations for
four continuous tasks, a simple vigilance task, a bean-sorting task, an
addition task, and a simple assembly task. There were no correlations in

performance between the vigilance task and the other tasks.

We may therefore conclude that a task classification approach provides a
departure point for a further investigation of the problem of apparent
task specificity in monitoring performance. Naturally, the expectations
of this approach are that individual performances on two different tasks
will be correlated to a degree dependent on the degree of 'similarity' of
the tasks. As yet, we have no firm empirical evidence whereby we can
specify the task factors by which the degree of 'similarity' may be
ascertained. This problem is essentially the problem of determining which
factors might comprise a task classification system for monitoring tasks,
which we encountered in Chapter 2. A part of the experimental work

reported in this thesis is devoted to an investigation of this problem.

3.3 TInterrelationships between Motivation, Task Factors and Abilities

Thus far in our discussion of individual and group differences in mon-
itoring performance, we have concentrated mainly on task factors, and
only briefly on organismig_factors. However, in doing so, we have
neglected an "underlying’ variable which should be taken into account in
any evaluation of human performance, namely, motivation. Accordingly,
in this section we shall briefly consider certain influences of motiv-
ational variables on aspects of monitoring performance, and their

implications for the task classification approach.




3.3.1  Motivation and monitoring performance

Motivation has been considered to be an important variable in a number of
theoretical approaches to monitoring behaviour. However, at least one
investigator has considered it to be the principal determinant of perform-
ance (Smith, 1966). Other investigators have also reported that monitoring
performance is significantly affected by a number of independent variables
thought to influence motivation level, such as the provision of true or
false knowledge of results, artificial signals, financial incentives, etc.
(for reviews, see Davies and Tune, 1870, pp. 95-11u4; Mackworth, 1870,

pp. 109-130). Broadbent (1871) has recently also discussed the effects of
such variables on motivation and monitoring performance, within a decision

theory framework.

The theory of monitoring behaviour put forward by Smith (1966) postulates
that the major determinant of performance is the interaction between mon-
otony and motivation. On this theory, the motivation level of the
individual, and his reaction to the monotony of the monitoring situation
largely determines both his mean performance level and his performance
over time. In support of his theory, Smith argued that '"typical experi-
mental subjects differ not so much in their ability to maintain attention

as in their willingness to do so" (Smith, 1866, p. 2).

While this theory may hold for certain simple tasks and subject populations,
it does not appear to be sophisticated enough to explain the empirical

data available on the effects of various task and environmental variables

on performance. We have seen that subjects do differ in their basic
ability to detect signals, even under ‘'alerted' pre-test conditions, where
the effects of the interaction of monotony and motivation would appear to

be minimal. Moreover, Smith's theory is somewhat embarrassed by the

results of Baker and Ware (1966), who, as we have previously noted, could




find no il . .
relation between monitoring performance and other 'monotonous’

assembly and addition tasks.

Davies and Tune (13870, pp. 210-212) have nicely outlined some further
limitations of Smith's theory, which need not concern us here. The
important point is that Smith's (1966) approach to motivation does not
provide a basis for the interpretation of the effects of a number of task
and environmental variables on monitoring performance. A more fruitful
approach may be one based on decision theory, with which a relationship
may be established between motivation and variations in the response
criterion; we have already noted that Broadbent (1971) has discussed mon-
itoring performance in this way. A somewhat broader discussion of the
relationship between motivation and decision theory is to be found in an

excellent new review by Galanter (1974).

3.3.2 Motivation and the interpretation of performance consistencies

An important consideration of the effects of motivation on performance
arises out of the type of interpretation to be placed on the results of
correlational and factor analytic studies, in which certain response con-
sistencies and differences are observed. The usual method of interpretation
of a correlation in performance between two tasks is to posulate the exist-
ence of a common 'ability'! or 'factor'. Fleishman has pointed out that
igbilities are defined by empirically determined relationships among
observed separate performances. Tor example, that individuals who do well
well on Tasks B and C, but not on Tasks D, E and T,

on Task A also do

implies a common process is involved in performance on the first three

tasks, distinct from that involved in the last three tasks. To account

for these consistencies and distinctions, an ability is postulated"

(Fleishman, 1972, p. 1018).
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However, if like Smith (1966), we believe motivational factors to be of the
greatest importance, we can assert that the 'common process' is nothing
other than motivation level. We can then account for the results by
assuming that the response consistencies for Tasks A, B and C are related
to instances when the subjects were consistently motivated, while the
distinction for Tasks D, E and F arose out of the subjects being differ-

entially motivated when performing these tasks.

Such an interpretation is plausible, but rather unlikely to reflect the
true situation. The process of assigning abilities is not entirely
arbitrary. A common ability is usually attributed to two tasks sharing
certain features. The motivational interpretation must assume that
motivation levels are maintained consistently only for similar tasks, and
not for different tasks, but there appears to be little justification for
this assumption. Moreover, if we repeat our correlational study or carry
out another study in which the Tasks A to E are included as a sub-set
among other tasks, and observe the same response consistencies, the mot-
ivational interpretation cannot be reliably supported. Fleishman (1967a,

b) has reported a number of such cross-validation studies.

Nevertheless, the possible intervening effects of motivation should always
be considered, especially when a correlation in performance between only

two tasks is to be interpreted. If a high correlation coefficient is
observed, the following interpretations are possible:

1) Performance is a function of motivation level, which is maintained
consistently between subjects on both tasks, and is not influenced by

task factors or individual differences in ability.

2) Performance is a function of a 'general monitoring ability'. Motivation

may influence performance, but not differentially for the two tasks. Task

specific abilities are unimportant.

3) Performance consistency is due to the existence of a common ability
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which is related to certain features shared by the two tasks. Motivation

does not influence performance differentially.

The first of these interpretations may be rejected on the basis of previous
considerations, but with somewhat lesser confidence. If, however, a cross-
validation study confirms the observed correlation, the motivational inter-
pretation can be more confidently rejected. Interpretations 2 and 3 are
difficult to distinguish on the basis of a single result, but interpretation
3 may be chosen on the basis of our review of the correlation studies in
3.2; we saw there that the evidence points to monitoring performance being
neither wholly task specific nor wholly nonspecific, the viewpoints of
Buckner and McGrath (1963b) and Tyler et al. (1872), respectively. Instead
we can assert a third view, in the middle ground as it were, by pointing

to the influence of both a general factor or ability relating to the mon-
otonous aspect of a monitoring situation, as well as to task factors or

abilities which may be identified within a task classification system.

This section concludes the discussion of various aspects of task class-
s fication and monitoring performance. The second of our two approaches
to performance assessment, the decision theory approach, is outlined in
the following two chapters. Decision theory in the analysis of detection

and discrimination performance is introduced in the next chapter.
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4.1, Statistical Decision Theory and Detection Performance

The preceding chapters have reviewed a number of different aspects of

task classification and monitoring performance. We now turn to the second
of our two approaches to performance assessment, the decision theory
approach. This chapter is concerned with methods of analysis of detection
and discrimination behaviour within the framework of statistical decision
theory. There is a very large body of research literature in this area.
and thus the treatment here is selective, and considered for its particular

relevance to decision processes in monitoring behaviour.

4.1.1 Statistical representation of stimuli

Theoretical approaches to the analysis of detection performance commonly
assume the existence of ‘internal states’ in the observer. These are
assumed to be activated in the presence of sensory stimulation. Decisions
between alternative responses are made contingent upon some utilization

of these states. The differences between the various theories of detection
arise principally from considerations of the nature and representation of
these states. For example, they may be assumed to be 'discrete' or
'continuous', and within these broad categories further assumptions reg-

arding the exact probabilistic representation of states may be made.

Theories of detection and discrimination which can be identified along
these lines may be treated as specific forms of statistical decision theory
which is a general theory far the analysis of decision making under con-
ditions of uncertainty1 (e.g., Edwards, Lindman and Phillips, 1965). 1In
particular, the theory of signal detectability (TSD) of Tanner and Swets
(1954), which is probably the best known theory of perceptual discrim-
ination, follows naturally from statistical decision theory. The specific

nature of TSD arises from the type of the assumptions made regarding the

R




representation of stimuli and the choice of responses; in TSD the
internal states are assumed to form a unidimensional continuum, act-
ivated by each source of stimulation, and which can be represented prob-

abilistically by a random variable on a Gaussian distribution.

In the simplest form of TSO, only two sources of stimulation are consid-
ered. Thus, in the language of decision theory, TSD narrows the general
form of the statistical decision theory representation by restricting the
number of 'states of the world’ to two, and by constraining the form of
the 'evidence’ to a continuous Gaussian probabilistic representation.
These assumptions make tractable the isolation of parameters describing

the sensory and decision aspects of detection performance.

While a restriction of the possible forms of stimulus representation to

a narrow set enables the computation of desired performance metrics, it
also prompts the gquestion as to whether such restrictions can be just-
ified in a given experimental situation. If they cannot, there is clearly
a case for making less restrictive assumptions, or of abandoning them al-
together, as in the so-called 'nonparametric’ models (Richardson, 1872].
However, even in shedding many of the assumptions of TSD, the basis of

the theory in statistical decision theory remains, and a generalized TSD
analysis can thus be applied to a number of decision making situations.
Any assumptions regarding the ‘underlying' processes may then be made
EEEfLDEEH if necessary. Such an approach thus preserves the most general
tenets of TSD, which are based in statistical decision theory, without
first having to accept the ‘restrictive’ assumptions which have influenced
some researchers to deny the usefulness of TSD (Jerison, 1867a; Parducci

and Sandusky, 1370; Wiener, 1973].
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4.1.2. . Operating characteristics

In the general decision theory approach to detection performance, the
observer is assumed to respond on the basis of a decision rule which maps
the set of stimuli onto the set of responses. The pertinent analogy to
this concerns the method of choosing between alternative statistical
hypotheses on the basis of a sample of fixed size. In testing statistical
hypotheses we are usually concerned with minimizing the probability of
making either Type 1 or 11 errors, and use some decision rule for achiev-
ing this. The consequences of using different decision criteria can be
examined by plotting the points (p(S/n), p(S/sl)), where p(S/n) is either
the probability of a Type 1 error in statistical terminology., or of a
false alarm in detection terms, and p(S/8) is either the probability of

a Type 11 error not occurring, or of a correct detection. Laming (1873)
has shown that all such pairs of points form a convex set within the unit
square (1,1), and represent the totality of decision rules for deciding
between responses. The upper bound of the convex set, which is assoclated
with the operating characteristic (OC), represents the only admissible

decision rules which cannot be improved upon in a given experimental

situation.2 This is illustrated in Figure 4.1.

The OC represents the limit of an observer's discrimination performance,
and completely specifies it. Laming (1873) and Thomas (1873) have
described several general properties of the OC and its relation to diff-
erent theoretical probability distributions which may be used in the
representation of stimuli. Two general properties include the monoton-
icity of the OC (given certain classes of distribution; see Thomas,1973)
and the invariance of the OC under any monotonic transformation of the
evidence continuum. This latter property also indicates that a TSD type
analysis can be applied without any a priori assumptions of the form of

the probability distributions. The analysis of detection performance in

W




Operating Characteristic

Space of
admissible
decision rules

Probability of a correct detection, p(S/s)

(0,0) (1,0
Probability of a false alarm, p(S/n)

FIGURE 4.1 Representation of the totality of decision rules for the making of
statistical decisions. The only rules which cannot be improved upon are those

lying on the upper bound of the convex set, or operating characteristic (after

Laming, 1973, p.70).
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terms of statistical decision theory and the OC thus represents a general
type of analysis for detection, discrimination and recognition situations
in which the observer is required to make decisions on the basis of un-

reliable sensory information.

4,2. Elements of the Theory of Signal Detectability

Having discussed detection behaviour in the general terms of statistical
decision theory and the operating characteristic, we may now turn to a

more specific and detailed consideration of the theory of signal detect-
ability (TSD). As we have seen, TSD may be treated as a part of statis-
tical decision theory, in.that it makes certain assumptions regarding the
nature of the stimulus representations and the choice of responses, which
are not made in decision theory. The fundamentals of TSD have been des-
cribed in detail in several recent books (Egan, 1975; Green and Swets,
1973; McNicol, 1972), and thus only the elements of the theory are sketched

here.

4.2.1, Gaussian distributions of signal and noise

In the Gaussian model of TSD, the sensory stimulation received by the
observer (the ‘evidence') is assumed to be represented by a random variable
X which is normally distributed. In the most general case, a probability
distribution for each type of stimulus may be assumed. fore commonly,
however, two stimulus conditions are considered, 'signal’ and 'noise’;
these are represented by Gaussian probability density functions of the

evidence favouring either signal or noise, as shown in Figure 4.2.

The axis in Figure 4.2. represents the continuum along which the evidence
variable x has its range of variation. This is also known as the dec-

ision axis, for reasons which will become clear shortly. Any value of

(914
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f(x/n)

signal
distribution

noise
distribution

X de.cision
axis
FIGURE 4.2 Probability density functions of the evidence given signal and noise
in the Gaussian model of the theory of signal detectability (TSD). The choice of
criterion at x, determines the hit and false alarm probabilities . The signal and

and noise distributions have equal variance in the simple TSD model.

Z(S/s)

1 4 £

(0,0) p(S/n) (1,0) 2 1 0 -1 =2

Z(5/n)
FIGURE 4.3 Operating characteristic FIGURE 4.4 Operating characteristic
(OCQC) for the equal-variance model of (solid line) replotted in z space (normal
TSD. The slope of the OC at X is equal deviate axes). The dotted and dashed OCs
to the likelihood ratio at the criterion. are theoretical predictions of the cases when

signal variance is greater than noise variance
or vice versa . The convention adopted for
the z transformation is 03 z»0 as 3¢ p<¢ 3.



x along this axis, say X, , may be associated with a likelihood ratic

K
f(x/s)/f(x/n) K’ where f(x/s) and f(x/n) are the probability density

functions conditional upon signal and noise respectively. The likelihood
ratio represents the odds favouring the signal given the sample observation
xk. It is a cemtral concept in decision theory, and in TSD is assumed to
provide the basis for making decisions 3; the observer is assumed to use

a decision rule based on likelihood ratio which partitions the x-axis
(evidence or decision axis) into two nonoverlapping regions such that a
negative response (or a less confident positive response) is elicited

when the observed value of x 1s less than a criterion value x,_, and a

k

positive response follows if x is greater than X .
The choice of criterion thus determines the probability of a correct or
incorrect response, and thus correct detection (hit) and false alarm

probabilities may be defined:

o0 (2]
p(S/s) =~f f(x/s) dx ; p(S/n) ?\[kF(x/n] dx
*K K

Responses are thus determined by the placement of xi criteria along the

decision axis. The TSD model assumes furthermore, that

X X X X
1 1 1 1
J f(x/8) dx = jf(x/s] dx j f{x/n) dx = ff/x/n] dx

X _ X

0 oo 0

n + &5 xn +05

F(x/s) dx =J Flx/s) dx f Fx/n) dx f F(x/n) dx
X X X X ,
n-1 n-1 n=1 n-1

As xi varies over its possible range (-80,+00). pairs of probabilities
(p(8/s), p(S/n)) are generated; X, may be varied by varying instructions
or signal probability in binary choice or 'Yes/No' tasks, or several
values of Xs may be created by giving the observer a rating task, in which
responses along a scale of confidence are required (see 4.3.). As we

— have seen, if the hit and false alarm probabilities are plotted against
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each other, the operating characteristic (0C) is derived. The OC thus
represents a transformation of the decision axis. It is invariant under
any monctonic change in the axis; it is, however, dependent on the form
of the underlying distributions. The TSD model assumes normal {(Gaussian)
distributions, and if, additionally, the distributions are assumed to
have the same variance, it can be shown that the form of the OC is as
displayed in Figures 4.3 and 4.4. When plotted in the unit sqguare, the
0C describes a bow-shaped function symmetric about the negative diagonal,
and a straight line when plotted on double-probability axes, or in z

space.

Some simple but important properties can be derived from a consideration

of the OC in z space and the probability density functions for signal

and noise (see Green and Swets, 1973, 58 ff.J). In particular, independent

measures of sensitivity4 and response bias may be derived under this model

(see also Figures 4.2, 4.3 and 4.4). The sensitivity index d' is the

difference between the means of the two distributions, scaled in units

of the standard deviation of the noise distribution. It can be shown that
d'" = z{¢/n) - z(S/s)

where z{S/s) and z(S/n) are the normal deviates (or z transformed values)

corresponding to the operating probabilities p(S/s) and p(S/n) respect-

ively. This equation also defines the OC in z space.

The measure of bias ﬁ, is defined as the likelihood ratio at the operating
point (criterion), or

P = y(S/s)/y(S/n)
where y is the ordinate of the corresponding distribution at the appro-
priate z walue. By substituting for y in the above equation, a useful
relation between P, d' and the evidence variable x may be derived:

in p = dx» %d'z
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This equation. is important because it illustrates that if the criterion
is fixed at a given point on the decision axis, then p is not constant
if d' varies; on the other hand, ? may be held constant if d' varies
and if x changes appropriately. This equation is also important for
some other considerations which we shall touwsh on in later sections,
such as the provision of a reliable measure of bias, and whether a

subject chooses to fix P or x when there is a change in d'.

The above formulations have been presented for the case where the under-
lying distributions have equal variance. More often than not. however,
this assumption does not hold. For the unequal variance case, sensit-
ivity and bias measures cannot be estimated from a single pair of oper-
ating probabilities, since there are four free parameters (the two

means and the two variances] compared to only two in the egual variance

case.

The OCs in the unequal variance case are somewhat different to those for
the equal variance case. These differences can be better appreciated
for OCs platted on‘double probability axes. An important property of
such plots is that the OC has a slope which is equal to the reciprocal
standond

of the signal to noiseLdevbjion ratio. Two corollaries follow: if signal
variance uré) is greater than noise variance RT%), then the OC slope
will be less than 1, and vice-versa. This also follows from the follow-
ing equation:

d = @s/0n)z(S/s) - z(S/n)
where d is the distance between the two unequal variance distributions;
d reduces to d' when Us =0n. 0Cs for Gs £ 0n are shown in Figure 4.4.
Thus the slope of an empirical OC can be measured to test the equal

variance assumption; if an empirical OC with slope equal to 1 is obtain-

ed, then the assumption can be assumed to hold.
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The measurement of sensitivity and bias in the unequal variance case
is not as straightforward as when the variances are equal. Maximum-
likelihood estimation techniques giving values of d and 0%/0n have
been proposed (e.g., Abrahamson and Levitt, 1969; Grey and Morgan, 1872;
see also 4.4}, but there is no commonly accepted single index of sens-
itivity. Some of the indices which have been suggested are discussed in
4.4. DMeasuring bias is even more difficult, and no completely satisfact-
ory index has yet been proposed. The relationship between ﬁ, d and x

for the unequal variance case is given by

2 2 2
n@=2 01 - 1/o.7) +dx - d™/, - inoy ; (Of scaled to 1)
which indicates the difficulty of defining a measure of bias independently

of sensitivity.

4.2.2. The choice of responses

In the uéual TSD Gaussian model, the observer is assumed to decide be-
tween responses on the basis of a comparison between 1ikefihood ratio
{or some monotonic function of likelihood ratic) and a criterion. In
other words, the decision rule is to respond as if the signal were
present if the likelihood ratio exceeds the criterion, and to respond

as if noise alone were present if it does not exceed the criterion. The
criterion may be chosen so as to optimise a number of different decision
goals; Green and Swets (1866) have shown that a number of such goals,
such as maximizing expected value, minimizing the probability of an
error, and so on, can each be expressed in terms of likelihood ratio.
The decision goal which has been most commonly considered is the one 1in

which expected value is maximized; expected value is assumed to be depend-

ent on both the a priori signal probability and the costs and values

attached to the various responses.

For a given set of experimental conditions, therefore, the optimum value




of the likelihood ratio at criterion can be calculated:

= 1 ~ R
PDpt P VN/n vS/n
p V -V

where p is the a priori signal probability and the .V's refer to the costs
aseociated with the different types of response. For a symmetrical pay-
off, that is, where V =V = i

S/s N/n and VS/n VN/S' the optimum ﬁnvalue

reduces to:

(1 - pl/p
Hence an ideal observer wishing to maximize expected value would choose
a criterion according to the above equations. It has usually been
found, however, that the actual detection behaviour of subjects does not

match that of the ideal observer; subjects may be said to be conservative,

in that they choose criteria which are less extreme than that of the

ideal observer.

Some investigators have utilized this fact to suggest that detection be-
haviour is often not compatible with an all-or-none division of the
decision axis as assumed by TSD, but appears rather to reflect a prob-

ability matching strategy (Parks, 1966; Thomas and Legge, 1870). Under

"this strategy, observers are assumed to match the freguency of their
positive responses to the a priori signal probability when the payoff
matrix is symmetrical:

plYesl) = p(p(S/s)) + (1-pl(p(S/n) = p
Thomas and Legge, (1870} have reviewed some studies whose results indic-
ated that the matching hypothesis is obeyed, as far as group mean
response freguencies are concerned, for experienced subjects run with
trial-to-trial feedback. They showed that the empirical finding of the
non-optimality of detection behaviour is a specific prediction of the

matching hypothesis; or that, if p is the likelihood ratio for responses



chosen on the basis of probability matching.

P % POpt > as P

However, while the matching hypothesis appears to fit group data fairly

1T

v

well (but see Creelman and Donaldson, 1968), Duscir (1974) has shown

that there are large deviations from the hypothesis for the data of
individual subjects, and that response frequency is not constant over
different discriminability levels, as implied by the matching hypothesis.
Thomas (1975) has proposed some modifications to the model of Thomas

and Legge (1870) which can account for deviations from probability match-

ing, but the elegance and simplicity of the original model is then lost.

4.3, The Derivation of Empirical Operating Characteristics

There are a number of different ways in which changes in an observer'’s
detection behaviour may be induced so as to generate an empirical
operating characteristic (BC). These methods may be considered in re-
lation to the two major experimental paradigms of the theory of signal
detectability (TSD), the Yes/No procedure, and the Rating procedure.

A third procedure, the forced choice procedure, is used to provide a
relatively pure measure of sensitivity only, there being little concern
with the observer's decision criterion (at least for psychophysical
tasks). This procedure is thus of limited relevance to the analysis of
monitoring behaviour, since, as we shall see, variations in the decision
criterion play aﬁ important part in monitoring performance. However, it
is of value in establishing appropriate sensitivity levels either between

subjects or between conditions, prior to a monitoring session.

4.3.1. The Yes/No procedure

In a Yes/No detection task, the observer is presented with one of two

stimulus alternatives on each trial. The stimuli correspond to the



presentation of 'noise alone' or ‘signal plus noise’ in the TSD model.

An observation interval is clearly marked out with warning signals. A

simple 'Yes® or 'No® response is required on every trial. Feedback may
or may not be provided. Observers are encouraged to respond even if

they are doubtful and cannot decide which stimulus was presented.

The Yes/No method thus provides data from which a pair of operating

- probabilities may be estimated from the relative frequencies of correct
and incorrect detections over a block of trials. The OC is generated by
inducing observers to adopt different degrees of response strictness in
different sessions. For example, they might be instructed to be 'lax’

in one session, that is, to respond to any event they suspect to bes a
signal, and to be ‘strict’ in another, that is, to respond positively

only when they are absolutely sure they have perceived a signal. Other
ways of obtaining an OC include 1) varying the a priori signal probability
and requiring the observer to maximize expected value 2) varying the costs
and values attached to response outcomes and requiring a maximization of
expected gain, and 3} asking the observer to adopt the Neymann-Pearson
criterion (Swets, Tanner and Birdsall, 1961). Atkinson and Kinchla (1965)
have also obtained Yes/No OCs by varying the amount of (misinformative)

feedback in different blocks of trials.

These methods have their relative advantages, but in general, the Yes/No
procedure suffers from the drawback that the experimental effort required
to obtain a reliable OC may be large. For instance, Green and Swets
(1973, p.383) suggest that to estimate a single pair of operating prob-
abilities, a total of about 500 trials should be used; hence if an OC of
say, 5 points is desired, 2500 trials have to be run for each subject

and condition. For many experiments these demands are high; they are

virtually impossible to meet in situations where the number of signal



and noise tri i .
rials is set by other considerations, as in monitoring tasks.

4.3.2  The rating procedure

The rating procedure provides an attractive and economic alternative to
the Yes/No procedure. It is identical to the Yes/No procedure, except
that observers are required to register their confidence on a rating
scale. A Yes/No task can thus be treated as a special case of a rating
task with the number of confidence categories collapsed to two. By
allowing responses of differing confidence level, it is assumed that the
corresponding criteria held by the observer may be sampled. Presenting

a n-category rating scale ranging from 'certain signal’ and 'quite certain
signal' through to ’'certain no signal’, provides n-1 potential operating

probabilities ('potential’, since all the categories may not be used].

4.3.3 Comparison of procedures

The rating method is thus a more efficient way of determining the empir-
ical 0OC. For an m-point OC, only 500 trials are needed with a m+1 rating
scale, while 500m trials are needed with the Yes/No method. However,
while the rating procedure is undoubtedly efficient, there is some doubt
about whether it is equivalent to the Yes/No procedure, that is, whether

it yields similar OCs and values of sensitivity and bias. The evidence

on this point is conflicting.

The early promise of the rating procedure was matched with data indicating

that there were no substantial differences in the form of OCs, or in

sensitivity values, obtained Dy the rating and Yes/No procedures (Egan,

Schulman and Greenberg, 1958; Swets, 1959). More recent studies by

Emmerich (1968) and Nachmias (1968) have also supported these findings,

while the consistency of the rating method was demonstrated by Weintraub

and Hake (1962}, who obtained the same values of sensitivity using 2,




3 or 4 category rating scales. On the other hand, studies by Markowitz

and Swets (1887), Clarke and Mehl (1873) and Weitzel and Dobson (1974)
have revealed systematic differences between Yes/No and rating OCs.
Leshowitz (1969) compared the Yes/No and two-alternative forced choise

procedures, and also found differences in the obtained values of sens-

itivity.

Markowitz and Swets (1867) found that in general, Yes/No OCs had unit
slopes while rating 0OCs had slopes less than 1. They explained their
results by suggesting that Yes/No OCs are contaminated by variations in
signal probability, while in the rating method, with signal probability
fixed (usually at 0.5}, no such effects are present. Some other evidence
for this view is provided by Schulman and Greenberg (1870}, who found

a systematic co-variation between OC slope and signal probability, How-
ever, it should be noted that the sensitivity index dé was not found to

vary in this study, as well as in the Markowitz and Swets experiment.

This index is further described in 4.4.1.

There are thus some doubts as to the egquivalence of the Yes/No and

rating methods. This therefore somewhat reduces the force of our earlier
statement that the rating method provides the most efficient method of
obtaining the GC. A further drawback of the rating method is that the

OC is constrained to describe a smooth monotonic function, especially

if the number of categories is large (Watson, Rilling and Bourbon, 1964},
because of the dependence of the OC points on each other. Moreover,

while it has been demonstrated that observers are capable of simultaneous-

ly maintaining several decision criteria (for example, 9 in a study by

Gaussin, 1972), this has not been shown to be true in many of the exper-

imental situations in which TSD has been applied.




At present therefore, a choice between the Yes/No and rating procedures
can only be made by weighing their relative advantages and disadvantages
in a particular experimental application. Until further evidence relat-

ing to the similarities and differences between the two procedures has

been provided a choice between them is largely a matter of personal

preference.

4.4 The Measurement of Sensitivity and Bias

Two aspects of the analysis of detection behaviour in terms of TSD have
been considered thus far. The first concerns the treatment of TSD with-
in the framework of decision theory, whereby empirical 0OCs are obtained
and subsequently examined to see whether performance variation is due to
a change in sensitivity or in response bias. The second aspect discusses
different methods of deriving the empirical OC. A third aspect arises
from the need to compare OCs between subjects and conditions, and this

section is therefore concerned with the quantification of the 0OC.

4.4.1 Sensitivity indices

If the equal-variance Gaussian model of TSD is found to hold, then a
reliable measure of sensitivity is readily available in d'. If, however,
the equal-variance assumption does not hold, other indices have to be
sought. We may also not wish to make any assumptions about the under-
lying detection model, and therefore might wish to consider a 'non-
parametric’ measure. The best such measure is provided by the area
under the 0C, but a number of other indices have also been proposed.
Table 4.1 lists a number of parametric and nonparametric indices, as
as two indices derived from Luce's (1958) Choice Theory.

well

The first index 1isted in Table 4,1 is d', which is commonly used in the
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literature. .
€. As we have seen, its use depends on the assumption of

equal variances of signal and noise. Dissatisfaction with this res-
trictive assumption has led to a number of other indices being proposed
for the unequal variance case, where, as we noted in 4.2.1,
z(S/s) = (Un/ 0s)(z(S/n) + d ).

The separation of the means of the signal and noise distributions, d.
can be used with the signal to noise variance ratio to provide a con-
Jjoint measure D(d, On/ Ts), as Green and Swets (1966) suggest. Both of
these can be obtained from the double probability OC. While D is an

informative index since it completely describes a straight-line OC in z

space, it does not provide the desired single parameter of sensitivity.

An alternative to both d’ and D was suggested by Egan and Clarke (1966).
This 1is dé or d;f which is twice the ordinate of the intersection of the
OC with the negative diagonal (in z spacel). The justification for this
measure (see also Ogilvie and Creelman, 1968) derives from the association
of the negative diagonal with unbiased (chance) performance; thus the

negative diagonal provides a reference from which sensitivity may be

measured.

Another sensitivity index which may be related to the OC in-z space was
suggested by Schulman and Mitchell (1966). Since any line through the
origin in z space represents zero detectability, they proposed the index

DYN’ which is the orthonormal distance from the origin to the OC.

Simpson and Fitter (1973) have recently reviewed some of the parametric

measures of sensitivity, and concluded that DYN provides the basis for

the ‘best’ measure of detectability for the case when Gaussian distri-

butions with unegual variance are assumed. Simpson and Fitter appear

to have considered three criteria for a good measure of sensitivity:
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Source

(%p)
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Formulae and Notes

A.

Parametric indices assuming Gaussian distributions

dl

0(d, op/og)

Green & Swets (1966)

Green & Swets (1986)

Egan & Clarke (1966)

Schulman & Mitchell (189866)

Simpson & Fitter (1973)

Grey & Morgan (1872)

z(S/n) - z(S/s); assumes o

S
One

d and op/og are the horizontal
intercept and slope of the 0C,
respectively.

2d/(og + opl; twice ordinate
of OC at equal bias point
(negative diagonal).

d/(0f + 0*)3; orthormal _

distance to OC. Dpp = _/ZDYN.

_/ADYN; (see text).

d/(ogopn) 3.

P(A)

P(C)

P(A)

]

B. Distribution free indices

Green & Swets (1368)
Simpson & Fitter (1872)
Green (1964)

Pollack & Normasm (1964)

Haimmerton & Altham (1871)

Area under the unit sguare GC.
Normal deviate of P(A).
(see text).

Area estimate from single 0OC
point (see text). Can he com-
puted from formula given by
Grier (1871):

1

o+ (y - xJ(1 +y - x)/(4y

(1 - x)), x = p(S/n),y = p(S/s).

C= (- N}/(r - 1), where N
and n are the number of ratings
of signal and noise, and r is
the total number. d (A,B) re-
duces to p(S/s) - p(S/n) when

r = 2.

Nl

D, Sakitt (1973) (i, - 1.)/(og0p)%; ig and i
e are the mean ratings of signal
and noise. Equivalent to (d').
- y 2 2414 .
£ Simpson & Fitter (1873) /201y - ig)/(og + o7)?%; equi-
valent to z(A) and P?A].
C. Other indices
ol Luce (19859) (p(S/s)p(N/n)/(p(S/n)p(N/s)))?;
equivalent to z(A) and P(A].
CJ',M McNigol (1872) 21log ot

TABLE 4.1

Indices of sensitivity (og

=0s, o =07: OC = operating
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1} it should be equivalent to the best nonparametric index, namely

P(A), or the area under the OC; 2) it should be related monotonically
to P(C), the bias-free index of sensitivity available from the forced-
choice procedure; 3) it should reduce to d' when the variances are
equal. By restating Green's (1964) theorem, which proves the equality
of P(A) and P(C), and drawing on Schulman and Mitchell's (1866} finding

that DYN differs from its forced-choice equivalent D__. by only the

FC

- . . f
constant [2, Simpson and Fitter proved the equality of DYW and the
I\

normal deviate of P(A}. Thus they argued that DO, is the only index

YN
which meets their criteria. In order to maintain comparisons with the

two alternative forced-choice task, Simpson and Fitter accordingly sugg-

ested the use of alternative IEDYN’ or da.

The da measure thus appears to be the best available index of sensitivity.

It is equivalent to a measurement of the mean distance between the
signal and noise distributions scaled to the root mean square of the
variances. It should be noted, however, that its stability has not been
put to empirical test. We noted in 4.3.3 that one advantage of the dé
index is that it is relatively invariant with a change in OC slope, as
seen in the data of Schulman and Greenberg (1970). One minor problem

in the use of da (and dé] which may arise concerns empirical OCs which
lie in regions of z space well away from the negative diagonal. Such
OCs, which may be obtained from 'neisy! data in typical monitoring situ-
may have to be fitted by eye; if so, any error in the fit will

ations,

or d', since the OC will have to be extrapolated to
e

be magnified in da

obtain these indices (alternatively, errors in obtaining an estimate

of signal to noise variance ratio from an OC fitted by eye will be re-

flected in dé or da if the computing formulae given 1n Table 4.1 are i

used to calculate these indices].
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The sensitivity indices described thus far may be obtained after the

OC has been fitted to thewailable data. Since there is an error in
the estimation of both operating probabilities, normal curve fitting
techniques, which consider errors in only one variable, cannot be used.
Recently, however, a number of procedures borrowed from functional an-
alysis have been suggested for the fitting of empirical OCs. To be
capable of solution, such procedures must assume, a priori, a form for
the underlying distributions, subsequent to which a maximum-likelihood
estimation process can be applied to extract the detection parameters.
A number of recent papers have outlined these procedures, for both Yes/
No and rating data, and assuming both Gaussian and logistic distribut-
ions. (Abramson and Levitt, 1869; Dorfman and Alf, 1968, 1969; Grey and
‘Morgan, 1972; Ogilvie and Creelman, 1868). Abramson and Levitt's paper
discusses the most general case;, while Grey and Morgan have discussed
the use of an estimation technique based on the minimum chi-squared
estimates of the logistic function (MLC), showing that this method can
provide convergent estimates when maximum likelihood methods fail to do
so. Grey and Morgan provided detection estimates using the MLC method
for data from a vigilance task; these parameters had a large variance
due toi?gherent unreliability of probability data obtained from low
signal probability tasks. For this reason, it may not be necessary to
use the relatively sophisticated likelihood estimation technigues for
the 'noisy' data from such tasks, where typically, false alarm probab-

ilities may be estimated from a frequency of say 2 or 3 from among 200

or 300 noise trials. This point is further discussed in later sections.

The maximum likelihood and MLC methods do however provide an excellent
means of deriving the detection parameters d and 0s when reliable data

or€ available. The program provided by Grey and Morgan (1972} is probably

the most readily available and easiest to use of the different technigues.

g
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Of the distribution free or nonparametric indices listed in part B of

Table 4.1, the best measure is P(A), the area under the OC. Since the

OC is invariant under a monotonic transformation of the decision axis,
the area under the OC is not dependent on the underlying distributions;
hence the term 'distribution-free'. However, its computation may not

always be easy, especially if only a few operating points are available,
or, as in the case with monitoring performance, the operating points are

restricted to a small portion of the unit square, or if only one oper-

ating point is obtained.

Pollack and Norman (1864) and Pollack, Norman and Galanter (1964) have,
however, showed that P(A) can still be roughly estimated if only one
operating point is available. The DCApassing through a single opera-
ting point is constrained to pass through certain defined regions. This
is illustrated in Figure 4.5 for the operating point X. Lines to the
origin and (1,1) from X represent the locus of operating probabilities

if the observer were more biased toward making No and Yes responses,
respectively. Points in the regions B and W thus represent either hetter
or worse detectability than at X, and hence the OC must pass through X

in the regions Ul and U2. A rough measure of detectability can then be
taken as the mean area under the OC, or P(A). While this type of ana-
lysis is only approximate, and rests on the crucial assumption that OCs
may not cross (skewed OCs may do so), it does illustrate that some
information regarding sensitivity can be gained from even a single
operating point, more SO than the consideration of hit probability alone.
This point will be raised again in relation to "traditional’ (Broadbent,
y analyses of monitoring behaviour.

1971) and decision theor

Further nonparametric indices have been suggested by Hammerton and Altham

(1971) and Altham (1873), whose indices C and d (A,B) are besed on the
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FIGURE 4.5 The regions to which a symmefric operating characteristic (OC) passing

through X is constrained. Regions B and W represent the space of OCs with b

on: efter or
worse detectability, respectively .

: The dotted curve indicates the possible shape of the
OC, assuming the validity of the equal -variance TSD model .
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FIGURE 4.6 Three measures of sensitivity, C, <.ﬂ’ and da' as a function of
ﬂme‘geﬁ_o‘n a monitoring task (data from Experiment 4 7).
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average rating given over a block of trials to signal and to noise.

The indices DAB and E, proposed by Sakitt (1973) and Simpson and Fitter
(1873) respectively, are similarly defined, except that they are scaled
to the geometric mean and root mean square of the signal and noise
variances, respectively. (see Table 4.1). Both E and DAB are superior
to C and d(A,B), with E being the most acceptable since it is directly
related to both P(A) and das The problem with the C and d{A,B) indices
are that each reduces to p(S/s) - p(5/n) when the number of ratings is
two, as in a Yes/No task. Hence a corresponding OC, which is an iso-
sensitivity curve, would describe a straight line in the unit square;
as we shall see in 4.5, most of the available data is inconsistent with
this prediction. Altham (1873) presented data from a vigilance exper-
iment showing that values of C were monotonically related to the para-
metric index d'. However, C does not measure the same thing as d’.
since C will vary over conditions even if d' is constant across cond-
itions; this is usuwally the case across successive time blocks in a
monitoring task. The use of C would thus indicate a loss in detectab-
ility over time blocks in a monitoring task, whereas other measures of
detectability might not do so. Figure 4.6 shows performance data from
a monitoring task for three indices of detectability, d', da and C,

and for two subjects. The trends over time in the indices d' and da
are very similar for both subjects, indicating that there is no decrease
in detectability with time on task, while there is a steady decrement

in C in both subjects. The use of C cannot therefore be recommended.

Finally, two indices of detectability derived from Luce's Choice Theory
are listed in part C of Table 4.1. McNicol (1972) has shown that these

indices are equivalent to those obtained if a TSD type model with under-
lying logistic signal and noise distributions are assumed. The predic-

tions of Choice Theory are, in many instances, very similar to TSD, but




these indi e ] .
nese dices are of especial value in the analysis of so-called open-

gnded  tasks, to which TSD methods cannot be easily applied. Choice

Theory is further discussed in section 4.5.3,

4.4.2 Indices of response bias

We have now reviewed a number of indices of perceptual sensitivity
which may be used in the quantification of detection behaviour. While
several such indices have been proposed, considerably less effort has
been devoted to the development of indices of response bias. This 1is

probably due to the fact that the OC is an iso-sensitivity curve which

can be readily derived using one of the methods we have discussed in
4.3; the subsequent isolation of a reliable sensitivity index is thus
a relatively straightforward matter. However, no similar methods exist
for the derivation of iso-bias curves, and hence the identification of
a bilas parameter is less straightforward. Nevertheless, some proposals
for a bias index have been put forward, and we shall review these in
this section. It will emerge., however, that a single, satisfactory in-

dex cannot be identified.

The available indices of response bias are listed in Table 4.2. The
index P, which is the value of the likelihood ratioc at the criterion C

is probably the most widely used index of bias. When the egual-variance
TSD model is shown to hold, this provides a reliable measure of bias, al-
though, there is surprisingly little evidence showing it to be invariant
over different levels of discriminability. We shall return to a consider-
d the relationship between @, c and d'

ation of the reliability of p an

later, after first discussing the other indices reported in Table 4.2.

For rating data McNicol (1972) suggests correcting P at each criterial
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Index Source Computing Formula Notes
p Green & Swets (1986) f(x/s)/F(x/n) f is the normal
c
distribution
c h Criterion cut-off
2(S/n) o
i
g McNicol (1972) P/ Ts s taken as inverse
of OC slope
B McNicol (1972) Rating point at which p(S/s) + p(S/n) = 1 §
BI Ingham (1870) z(S/s) + z(S/n)
BH Hodos (1970) 1 - x(1 - x)/y(1 -vy) , BH ¢ 1 Computing Formulae
y(l - y)/x(1 - x}) -1 , BH-> 1 after Grier (1971)
x = p(S/n), y = p(S/s]
log b Luce (1983b) 1log(p(N/s)p(N/n)/p(S/s)p(S/n))

TABLE 4.2 Indices of response bias.

level by dividing the 1ikelihood ratioc by the signal standard deviation

€. since this occurs in the denominator of the expression for likelihood
5 e

ratio when the variances are unequal. This index (') only provides a

j 1as i it is corrected by a measure of
very rough estimate of bias, and since it is y

slope which 1s dependent on the operating points, none of which need lie
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on the OC, it .
» can be very sensitive to errors in measurement. Its in-

dependence of sensitivity has also not been empirically tested.

Another index B, suggested by McNicol (1972) also suffers from drawbacks.

This is the mean category on the rating scale corresponding to a point
of equal bias towards positive and negative responses, that is, the
category rating for which p(S/s) + p(S/n) = 1. While B has the advant-

age of being a nonparametric index, it provides only one measure of bias

in the rating scale task, whereas one at each criterion (confidence) level
1s desirable. Furthermore, comparisons of B across different rating

tasks is difficult since the absolute value of B depends on the number i
of rating categories; there will also be a tendency for the estimate of
B to improve as the number of categories increase. A final drawback of

i

8 is that it is difficult to compute when bias is such that the median

value of B falls outside the rating range (that is, when p(S/s) + p(S/n)

»1 at category 1, or <1 at category nj.

Having considered the index B, let us digress slightly to note that
henceforth we will sometimes refer to the likelihood ratio measure p as
'§' for typing convenience. This should not be confused with the B
measure of McNicol (1872), which we have just considered and rejegcted.

In the experimental part of the thesis, we shall almost exclusively refer

to the likelihood ratio as 'B’.

Ingham (1870) proposed the index BT = 7z(S/s) + z(S/n) for the measure-

ment of response bias. The rationale behind this measure is that it is

orthogonal to the index d', which is z(S/s - z(S/n). However, Ingham's

own experimental work did not provide full support for the independence

tiple to variations in d' than
of d' and BI' although BI was less suscep

while this index may be orthogonal to d’', it may not

p. Furthermore,

bo mrihaonnal to ather parametric measures of sensitivity which are
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required for the unequal variance TSD model.

Hodos (1870) has reported an index purporting to be a nonparametric

measure of bias. In point of fact, Hodos merely provides an arbitrary

measure of bias based on a similar analysis of the unit square as carried
out Dy Pollack et al. (1964). Taking the negative diagonal as the line
of zero bias, Hodos' measure is based on the relative displacement of a
single operating point from this line. For points to the left of the
diagonal, the index BH is defined as the ratio of areas (U2 - Ul}/

(Uz + B), and the ratio (U2 - U1}/(Ul + B) for points to the right of
the diagonal (see Figure 4.5 for the definitions of these areas}. The
index BH cannot be recommended for the following reasons: 1) the index
makes no reference to a sensitivity parameter to which it is orthogonal,
2) the index is not nonparametric since it yields isobias contours which
are specific to the type of detection model assumed (the most obvious
divergence is between TSD and simple threshold theory), 3] %or opérating

points below the leading diagonal, B, cannot be used although such points

H

are acceptable within the unegual-variance TSD model.

The index log b is the eguivalent of the criterion cut off c of TSD for
logistic distributions of signal and noise. The two indices are very
similar due to the similarities of the normal and logistic distributions,
and we would expect the isobias contours associated with these two

indices to be also very similar. We shall, therefore, include the

discussion of log b within that of c.

Having considered and, for the most part, rejected the majority of the

indices in Table 4.2, we are left with the indices B and c. The problem

of deciding between these two indices comes down to the problem of
=}

deciding which of these two gquantities are held constant (if at all) when
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there 1s a change in detectability. The evidence on this point is not

completely clear. One the one hand, in selective (dichotic]) listening
experiments, Broadbent and Gregory (1363b), Moray and O'Srien (1967)

and Treisman and Geffen (1967) reported that the unattended ear was

associated with a reduced d’ with no change in P- while c increased.

These results therefore suggest that subjects hold the likelihood ratié

,? constant with varying discriminability, although it should be noted
that only the data of Broadbent and Gregory (1963b) are consistent with
the assumption of equal variances, upon which this interpretation depends.
On the other hand, Hardy and Legge (1868), in an investigation of the
effect of 'emotional’ words on auditory discriminability., suggested that

c rather than ﬁ is held constant across discriminability levels. McNicol

(1872) has similarly argued in favour of c.

It emerges therefore, that we cannot confidently use any of the proposed
bias indices as a reliable measure of response bias, independent of
sensitivity. Apart from the relative neglect of isobias functions in
the literature, one reason for this is that much of the theoretical and
and empirical effort invested in developing a reliable index of sens-
itivity has not been similarly transferred to the problem of finding a
reliable index of bias. It may also be the case that with a change in

discriminability, a given bias index may be affected in different ways

according to the variable effecting the detectability change. This

might therefore account for the difference between the previously men-

tioned results of Broadbent and Gregory (1963b), Moray and O’'Brien (1867]

and Treisman and Geffen (1967) on the one hand, and Hardy and Legge

(1968] and McNicol (1872) on the other hand.

, although this may cause
It seems wisest, therefore. to use both P and c, a g y

some difficulties of interpretation if these vary disproportionately.




fowever, until ,
I ’ there are some further developments in this area, we will

have to put up with these difficulties. 1In a later section we shall

return to this point and investigate whether the use of decision laten-

cies can shed some light on this problem

4.5, Detection Models

In this section we shall consider some of the alternatives to the theory
of signal detectability (TSD). A few of these alternative theories
consist of modifications of the basic TSD model, but a number of other
theories proceeding from different starting points have also been prop-
osed. The number of extant models is fairly large, as indicated in
recent reviews by, among others, Luce and Green (13974) and Nachmias (1872].
We will only briefly sketch some of these models, and consider their
main features with particular reference to the analysis aof monitoring

behaviour.

4.5.1 Classification of detection models

The complete range of detection models may oiffer along a number af
dimensions, but only one major factor is considered here. This concerns
the nature of the representation of the stimuli in the observer,

and the relation of the responses to these representations, or ’'states’.
These states may be treated as the *input’ to the perceptual-decision

stage within an information-flow model of the observer, ana whose

. N , Lo L .
physical realization can, 1in principle, be obtained. Within this

framework, three types of model can be distinguisheds 1) 'finite’

. - , _
models, in which in the number of states is limited, 2) cont

. : f Al 5 rm a continum, and 3) stochastic
inuous' models, in which the states form s

related to continuous models, but which consider the

models, which are

by : ivate') some stochastic process
stimuli to be represented DY (or to 'acti 5
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over time. We will consider these three types of model separately.

4,5.2 Finite state models

Finite state detection models have in common the feature that stimuli

are represented by a limited number of discrete states. 1In the simple

*threshold’ models, only two states are considered. Blackwell's (1863)
high threshold model (2-HT}, which derives directly from classical
threshold theory, assumes that a threshold or limen must be exceeded
before a stimulus may be perceived. This is assumed to occur cn a

proportion p of all signal trials.

The 2-HT model also assumes that the threshold is never exceeded on the
presentation of noise alone, with the result that 'true’ false alarms
are never made; false alarms are treated as wrong guesses made when the
threshold is not exceeded. The observed hit rate is thus assumed to be
the sum of the 'true’ hit rate and the guessed hit rate, which is the
proportion of sub-threshold signals which are correctly guessed as
signals. Since false alarms can only be wrong guesses, the guessing

factor is the observed false alarm proportion, and hence the observed

hit rate p(S/s)} becomes
P(s/s) = p + (1 - p)P(S/n)

where p is the 'true’ hit rate, P(S/n) is the guessing factor and 1 - p

is the 'true' omission rate. Rearranging terms gives

p = P(s/s) - P(5/n)
1 - P(5/n)

which represents the traditional correction for guessing {psP(S/s]) as

P(S/n)—0) Thus p is a measure of sensitivity in the 2-HT model, and

the above equations can be used to obtain the theoretical 0OCs. The

own in Figure 4.7. The 0OC in z

predicted OC is a straight line as sh

space is shown in Figure 4.8.
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High threshold theory can be confidently rejected as a model for detect-

ion i i i
on and monitoring behaviour for a number of reasons. Firstly, signal

etecti i i
det on studies have shown that the index p deoes not remain invariant
over conditions in which only response bias is varied,

as would be exp-

ected of a 'pure’' measure of sensitivity. Secondly, most of the avail-

able data is inconsistent with the straight line GOC predicted by 2-HT
(see, for example, Swets, Tanner and Birdsall, 1961). In monitoring
tasks, the false alarm rate is usually low, and it is a typical finding
that changes in false alarm rate are accompanied by much larger changes
in hit rate (Broadbent and Gregory, 1963a). This is inconsistent with
the 2-HT model, which predicts a smaller change in hit rate. Finally,
when second choices are required in forced choice studies, these are

not made at random, as predicted by 2-HT, but in accordance with TSD.

{McNicol, 13872; Swets, et al. 1961).

For these reasons, we shall not consider high threshold seriously in
our analysis of monitoring behaviour. Nevertheless, the theory has
commanded considerable attention over the years as a reference point
for the evaluation of other theories. Being derived from classical
threshold theory, it has dominated much of the research thinking in
psychophysics up to the late 1950's. The theory has been implicitly
accepted by many researchers, especially those working in the field of

monitoring behaviour. An examination of this literature reveals that

false alarm data is seldom reported, or when it is, is given a minor
treatment or given the 'guessing’ tag, so that a high threshold model is

impiicitly assumed. The experiments of Broadbent and Gregory (1963a)

and others have showed, however, the crucial importance of the false

slarm rate and the invalidity of the 'guessing’ treatment of false alarms.

The other major finite state model is the two-state low threshold (2-LT)




theory of Luce (1863a). Low threshold theory differs from high threshold

theory by assuming that the threshold can be exceeded by the presentation

of noise alone, but only on a small proportion q of the noise trials

(hence the term 'low-threshold'). Thus a two-way guessing mechanism is

assumed such that the observed false alarm rate is either greater or

A ¥ 1 - . s
smaller than the 'true’ rate according as whether the observer says 'Yes®

to a proportion of sub-threshold events or 'No® to a proportion of supra-

threshold events. Using the same rationale as that used in deriving the

N

-HT OC, it can be shown that the equations linking the observed hit

and false alarm rates and the threshold propartions p and g are

4]

P(S/s) = (p/qlP(S/n) 0¢plS/nlgg

i

P(S/s) p + (1-plP{S/n)-qg) q¢pl(S/n) ¢1

(1-q)
These equations can be used to obtain the theoretical 0C; it consigts of
two straight line segments intersecting at the point (g.p) in the unit
square, and shown in Figure 4.9. The OC in z space is shown in Figure

4.10.

The OCs predicted by 2-LT are thus different to those of TSD, but in
practice it may be difficult to distinguish clearly between the two

models. In vigilance, the results of Broadbent and Gregory (1863al) and

Egan, Greenberg and Schulman (1961) are consistent with the TSD model.

However, because of the difficulty in determining on which of the two

segments of the OC the data lie, and of locating the point g.p {(due

to the low false alarm rate), the 2-LT model cannot be entirely ruled

out. A further difficulty arises in the assumptions inherent in the use

of the rating method. In ‘the formal treatment of 0Cs in 4.1, we saw

that OC is constrained to describe a smooth monotonic function. 1In

this sontext, Larkin (1965) has argued that the rating method 1s un-

suitable for testing the predictions of 2-LT. When a large number of
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rating categories are used, as for example by Watson et al. (1364), the
smooth curved form of the OC may merely reflect the statistical depend-

ence of the OC, rather than give an indication of the form of the

representation of the internal states. The rejection of 2-LT thus

requires the assumption that there is a corresponding mapping of the
response (confidence) states and the detect states which form the input
to the decision stage. However, there is no reason that such a strategy
is used by the observer, and it is possible for him to mix strategies
(from the 'pure' strategies in the theoretical 0OC, at A, B and C) such
that the empirical OC describes a curved function in the unit square.
Such a mapping was assumed by Nachmias and Steinman (1363) and Green and
Moses (1966) (but see Wickelgren, 1968; Krantz, 1869). Luce and Green
(1974) have recently shown how such strategies, or the influence of ’'non-
sensory’ internal states on the response categories could produce a

curved OC even if the sensory detect states are assumed to be dichotomised.

Therefore, while high threshold theory can be confidently rejected, low

threshold can only be weakly rejected in favour of TSD. However, two

Ffurther criticisms of the 2-LT model can be made, which tilt the balance

in favour of TSD. The first criticism concerns the fact that in many %;

experimental situations, including monitoring tasks, fairly high hit §

i

rates can De achie&gd with a negligible false alarm rate, which implies

that g=«0. In this case 2-LT reduces to 2-HT, which has been shown to §

be untenable. The second criticism concerns the fact that g, which is

the probability that noise alone exceeds the threshold, should depend on

the nature of the noise only; yet Nachmias and Steinman (18963) obtained

ich decreased as signal strength was increased. Krantz

estimates of g wh

(1969) has also outlined similar criticisms of two state threshold

low-high threshold model (3~LHT)

theories and proposed instead a 3-state



which is & combination of 2-HT and 2-LT. At this stage in the develop-

ment of detection models, however, distinguishing between the predic-

tions of models on the basis of empirical data becomes increasingly
difficult, and more so as models with a higher number of states or a
greater number of free parameters are considered (all multi-state
guantal models of Norman, 1964, and the variable sensitivity model of
Atkinson, 1863). This applies with greater force to the evaluation of
monitoring performance, where, as we have seen, accurate OCs cannot be

obtained at the data may be of 'rough’ quality.

4.5.3 Continuous state models

Continuous state models include TSD-type models with non-Gaussian
distributions, as well as the Choice Theory model of Luce (1953, 1863bJ.
The expoilential TSD model was first proposed by Green and Swets (1866)

as an alternative to the unequal-variance Gaussian TSD model, since

the latter model suffers from the drawback that likelihood ratio is
non-monctonic with the decision axis. On the other hand, the exponential
model has the advantages that likelihood ratio is monotonically related
to the decision axi55 and is a one—parameterB distribution. The signal
and noise distributions im this model are

flx/s) = ke X, flx/n) = e * ke,
where the parameter k completely specifies the distributions. Likelihood

ratio is f(x/s)/f (x/n) or —ke‘(K ) 1)x, which is a monotonic function

of x. The hit and false alarm probabilities are

o0 } o .
p(S/s] =,j;Ke—kxdx - ek, p(s/n) =\j; e "dx = e , !
from which it follows that
p(S/s) = p[S/n]K ’
or log p(S/s) = kp (s/n).

Hence the OC describes a power function in the unit square, and a

—~ straight line of slope k when plotted on logarithmic axes. The power



relation in the exponential model was assumed by Egan et al. (1861) in

their analysis of 'free-response’ data.

The exponential model thus provides a simple, useful alternative to

the Gaussian continuous state model, and because of its relation to
counting processes, it may be an appropriate model for detection in

situations where these processes are evident (see Luce and Green 1372),

in the so-called free-response situations. Another useful advantage of

this model in these situations is that it permits an OC analysis even
though the absolute operating probabilities cannot be computed, since
the logarithmic relationship enables an analysis in terms of the number

of hits and false alarms (see also Broadbent, 1971, p.85).

The other probability distribution which has been considered (and which

is sometimes assumed in the estimation of detection parameters, see 4.4.1)
is the logistic distribution. This distribution is often taken as an
approximation to the normal distribution since it can be-specified in
closed form. It is also naturally related to the other major continuous
state model, Luce's Choice Theory, which makes certain predictions about
the 0OC which are very similar to those predicted by the normal TSD model.
In view of the similarity of the normal and logistic distributions, this
is not too surprising. The inter-relationships between Choice Theory

and the normal and logistic TSD models have been outlined recently by

McNicol (1972) and so the treatment here is brief.

Choice theory assumes that alternative responses are associated with

‘strengths’ depending on whether signal or noise is presented. If the

. . ] s § 3
relative response strength associated with responding signal’ is v

when noise is presented and av when signal 1is presented, it can be shown

that
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P(S/s) = a/la + v) P(S/n) = 1/(1 + v)

from which it follows that

i

_PLS/s) a P(S/n)
1 - P(S/s) 1-P(S/n)
This equation is analogous to that obtained if logistic distributions

in the TSD model are assumed, and both are approximations to the

function predicted by the normal TSD model {(which of course, cannot

be specified in closed form). The predictions of Choice Theory and

TS0 are thus remarkably close, although the former was formulated

from entirely different starting points. Choice Theory has found its
main area of application in the analysis of performance of so-called
open ended tasks, where the set of possible responses is not specified

a priori as in the Yes/No rating and forced choice tasks (see Broadbent,

1967; Ingleby, 1968).

Before leaving this section on continuous models, a brief mention may

be made of Smith's (1968) Cost Theory of discrimination. Under this
theory the concept of the 'cost’ of psychophysical decision is intro-
duced and related to both discriminability and bias. Smith incorporated
the cost function into two existing detection models, TSD and Choice
Theory. For the model extended from TSD, Smith proposed that the aver-

age cost is a linear function of the sum of the signal and noise prob-

ébility densities; the cost function for TSD thus describes a trough-

shaped curve with its maxima at the means of the distributions. Hence

for criteria placed within the area of the trough (relatively lax

criteria), a change in criterion implies an increase in cost, while

cautious criteria (outside the trough area) can be increased with a

concomitant loss in cost. Smith proposed this type of mechanism to

sccount for the results of Broadbent and Gregory (1865) who, as we shall

see. found that in @ monitoring task cautious criteria increase with
k4

-
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time at work while lax criteria do not (Smith's assumption being that
observers try to reduce cost over time in a monitoring situation). We

shall return to Broadbent and Gregory's findings in the next chapter,

and review the evidence bearing on this interpretation.

4.5.4 Stochastic models

In this section we will very briefly consider Luce's (13966) stochastic
model of detection, although some other models under this heading have
also been proposed, such as the so-called 'neural-counter’ models
(MeGill, 1867). In its original formulation, Luce's (1966) model was
censidered in relation to performance in free-response tasks, but it has
recently been developed to have somewhat wider applications (Luce and

Green, 1972).

In Luce's (1966} model, the occurrence of a signal is assumed to ‘gener-
ate® a series of pulses (which can, in principle, be related to neural
pulses) in the decision centre of the observer at a rate dependent on
signal intensity. The pulses are assumed to describe a Polsson process.
The pulse rate, which is the inverse of the mean inter-arrival pulse
time, completely describes a Polsson process. The pulse rate parameters

associated with signal and noise thus describe performance in a manner

analogous to d' and P in TSD. The derivation of these parameters is

dependent on assumptions regarding the decision rule used, the simplest

one being that each pulse activates a response. This was shown to be

untenable, and mere complex rules (such as one based on certain sums of
.

the inter-arrival pulse times} have been proposed in later developments

of the model (Green and Luce. 1971; Luce and Green, 18723,

Luce (1966) considered this model to be of particular value in the anal-

I Tt & ponse tasks. which include some vigilance tasks in which
ysis of free-res
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the task is not divided up .4 i
P Ainto signal and noise events {(continuous

rate tasks, see 2.2), Luce therefore thought it unfortunate that Poisson

signal schedules have not been used in any studies of vigilance, since

the use of rectangular signal schedules may introduce additional response

biases (signal probability in time is constant cnly under a Poisson

schedule).

Luce’s model is difficult to evaluate from the point of view of monit-
cring behaviour because very few studies would meet the assumptions
needed to use the model. The experimental evidence provided by bLuce and
Green themselves is by no means clear; in a number of studies aimed at
directly testing this model, a number of inconsistent and complex results
have been obtained (see Luce and Green, 1872), which suggest that either
a reworking of the theory is required, or that further extension of the
hasic model is required by introducing additional assumptions into the

original set.

4,6 A Decision Theory Model for Response Latencies

Thus far in our discussion of decision theory and detection behaviour,
we have been concerned only with 'discrete’ measures, that is, with

¥ ¥
measures of performance accuracy. However, continuous’ measures, that

is, measures of response latency, may also be recorded in detection and

monitoring tasks. Response latencies in monitoring have not been inter-

preted within a decision theory framework. In this section we shall

show that such an interpretation is possible, and shall outline a working

model whereby response latency data in monitoring tasks may be analysed.

In section 4.5., we reviewed 8 number of different models of detection

and discrimination For the most part, these models have been concerned
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almost exclusively with the analysis of discrete or categorical per-

formance measur : .
€S, such as choice proportions or response probabilities.

Only a few of the models make a provision for an analysis of the time

taken to initiate a response, and generally do not consider the impli-

cations of response latency data for the detection modsl. More recently,

this tendency for detection and latency analyses to be conducted sep-
arately has been countered in some theoretical studies by Thomas (1873;

Thomas and Pyers, 1872} in which the import of latency data for detection

models has been considered.

Some of the principal latency models in choice reaction and detection
tasks have recently been reviewed by, among others, Audley (1373},

Laming (1973) and Welford {1971). Audley reviewed a number of models
under some general headings: seqguential decision models, communication
theory models, preparation models, fast guess models, fixed-sample models,
stimulus repetition models7. He concluded that none of the models could
adequately account for all the data, and that some models made very
similar predictions for the forms of the latency distributions; this is

a familiar theme which we encountered in our discussion of detection
models in 4.5. Audley emphasised the need to clarify the range of app-

licability of the various models; one basis of classification which he

i i i imi ions and those
suggested was between tasks involving easy discrimination

involving difficult discriminations or weak signals. He was of the

opinion that "tasks involving difficult discriminations exhibit consider-

able differences from the usual choice reaction time task employing

easily distinguishable stimuli: the main one being that, for difficult

tasks, errors are made with longer average latencies than correct
»

responses (for example, see Audley, 1970; Audley and Mercer, 1568; Pike,

1968), whereas easy tasks elicit quicker errors (for example, Laming.

1968: Epeth and Smith 1967), and in some Cases both slow and guick
3 LEe ’



errors occur (Wilding, 1870). Whether the information processing

strategies used for the two kinds of task are the same is the important

guestion, and I do not believe that we yet have the data to resolve this

issue” (Audley, 1873, p 511).

This is a point that has been considered previously in this thesis in
relation to monitoring tasks, for which a distinction can be made between
tasks with transient or weak signals and those with long duration or
*hold’ signals (see Chapter 2). Although the points of difference between
the information processing strategies used in the two cases are not fully
understood, it appears that a decision theory analysis is more applicable
to the former case; and hence there is a case for supposing that the

same type of analysis can be applied to latency data in difficult-
discrimination tasks. Such a distinction between easy and difficult
tasks relating to the form of the speed-accuracy tradeoff and the rela-
tive latencies of correct and erroneocus responses has also been recently
propaosed by Norman and Bobrow (1875), who distinguish between so-called

data-limited and resource-limited processes. Although their paper is

mainly concerned with the evaluation of performance tradeoff in time-
shared situations, they make similar points to those of Audley (1973)
about differences in the latency distributions and the speed accuracy
tradeoff between tasks in which performance is limited by the quality of

sensory information, and those in which performance can be improved by

a re-allocation of the processing resources.

Monitoring tasks, are, for the most part, data-limited, or tasks where

the quality of the evidence received by the observer is relatively

imperfect. Thus an analysis which emphasises the influence of the

quality of the evidence on both choice proportion and response time

. h tasks. It is thus pertinent to ask
measures may be appropriate to suc
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whether signal detection theory, which has been applied to the analysis

of cholce probabilities, can be extended to the analysis of response

times as well. There are several ways in which this can be achieved,
and two broad classes of the latency models discussed by Audley (1973)
can be considered to be consistent with decision theory: sequential

decision models, and fixed sample models. A latency model falling in

the latter category is considered here: there are some reasons why fixed

sample models might be more appropriate for the analysis of latency data

in monitoring tasks. Firstly, there is some evidence in the literature
that fixed sample models are particularly relevant to task situations
involving difficult discriminations with weak, transient signals (Gesheider,
Wright and Evans, 1968) while sequential decision models appear to handle
well data from tasks having easier discriminations and where performance

can be improved by successive sampling of the input (Laming, 1968).
Secondly, slower error responses are predicted by fixed sample models,
whereas sequential decision models generally predict that errors have
faster or the same latencies as correct responses (although with some modif-
ications, slower errors can also be explained in some cases; see Laming,
1968, 1873). Some recent studies have shown that errors, especially

false detections, have consistently longer latencies than correct

responses in visual monitoring tasks (Colgquhoun and Goldman, 187&; Davies
and Tune, 1970, p.l7; Parasuraman, 1875b; Parasuraman and Davies, 1875).
Finally, since monitoring behaviour has been analysed in terms of T3D, it

would be expedient if the same model can be used to analyse both detection

and latency aspects of performance.

When latency measures have been considered in relation to monitoring

behaviouy, usually only detection latency has been examined (Buck, 1866].

is a tendency for detections and
As Buck's review demonstrates. there 1

and Buck suggests that these two

latencies to be inversely related,



to account for both detectability and response latency measures. Ideally,

latencies associated with a1l I'esponse categories would be considered,>
but it has been usual to take measures of detection latency only. The
unlike the

reason for this is that in the usual monitoring situation,

. . . .
Yes/No detection situation, only one response, 'signal present’ or 'Yes'

has been required of subjects, so that latencies associated with the

other responsé categories (correct rejections and omissions) have not

been recorded. Latencies associated with false alarms may be recorded

in the single response case, but have rarely been reported in vigilance

(but see Colquhoun and Goldman, 1972). Latencies corresponding to responses
made with different confidence levels may also be recorded. Although

trends over time for detection latency have been reported, there are few
data on latency changes with time on task for the other response categories

{(see Davies and Tune, 1970, pp. 17-18).

In the TSD analysis of detection performance in monitoring tasks, it is
assumed that the observer takes a sample (an 'observation') of the ‘evi-
dence’ presented on noise alone or signal plus noise trials (Green and
Swets, 1966; McNicol, 1972). A decision is then made between the response

"Yes® and ‘No' on the basis of a comparison between likelihood ratio at

the observation point (or some monotonic function of likelihood ratio)

and the response criterion. In other words, the closer the likelihood

"evi * the observer has to respond
: . i evidence
ratio is to the crigerion, the less

positively to signals. This implies that the time the observer takes to

respond may be related to the relative strength of the evidence, or the

relative distance of the observation point from the criterion; thus the

shorter the distance, the weaker, relatively speaking, the evidence, and
orter the ’



hence, the longer the decision time

The extension of TSD to include latency data can thus be made by
assuming response latency to pe inversely related to the distance, in

decision space, from the response criterion. It should be emphasised

that this interpretation of latency rests on the further assumpton that
variations in the time taken to gather evidence (in the TSD sense) of
differing strengths are small compared to the overall decision time.

Hence this model is a fixed-sample model.

The assumption that input sampling time9 does not form a major part of
the observed response time appears reasonable as a first approximation,
and in view of the reasaons which we put forward regarding the applica-
bility of fixed-sample models to monitoring tasks. Hence, with the
further assumption relating latency to criterion distance, a response
latency function of the form f(x - c) may be gensrated. It is possible
to consider certain forms of such a function, just as we considered
forms for the representation of the distribution of signal and noise in
the TSD detection model. It is also possible to consider other features
of the function, such as its symmetry about the criterion, and its res-
ponse to changes in the form of the distributions in the TSD detection
model. We will not offer any such theoretical speculations however, but
te the model in its simplest form; any modifications will be

merely sta

considered in the light of the evidence we obtain in subsequent exper-

iments This is consistent with our treatment of TSD within the general

framework of decision theory.

The general concept of a relationship between response latency and the

rceptual judgment was re-

: e
degree of responsiveness OT confidence in p

s century, by, among others,

cognized as early as the beginning of thi



, g ‘
Henmon (1811} and Lemmon (1827), More recent statements of this concept

are to be found in Cartarette, Friedman and Cosmides, (1965), Emmerich,

Gray, Watson and Tanis(1972), Gesheider, Wright and Evans (1968) and

Thomas and Myers (1872).

For the decision theory model, the relation between response latency and

criterion position may be easily worked out: for a change in criterion
position, for example, to one of increased caution, the latencies of
Yes responses or of responses made atconfidence levels pointing to the '
detection of a signal, will, on average, increase, since the observer
now demands that the evidence be stronger before he responds to signals.
On the other hand, the latencies of No responses will, on average, de-
crease, since No responses will be distributed, on average, further away
from the criterion than before. The increase in Yes response latencies
and the decrease in No response latencies as the criterion shifts to the
right along the decision axis is illustrated in the upper half of Figure
4,11. These predicted trends hold only if the relative distance between
the means of the signal and noise distributions in the 75D model remains
constant, that is, if detectability is constant. This latency model

praovides testable predictions concerning trends in latencies associated

with different response categories, resulting from a change in criterion

placement, given constant detectability., as for example has been demon-

strated both as a result of time on task and with variations in signal

probability.

On the other hand, if a change in signal detectability does occur, the

model predicts that the trends in the latencies will be somewhat differ-

ent. With a loss in detectability. for example, the distance between

ns is reduced, as shown in

the means of the probabllity density functio

A decrease 1in sensitivity will thus be

. the lower half of Figure 4.1l

(G}
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associated with a change in the mean latencies of responses to the

signal distribution; for Yes responses the mean latencies will increase

since, on average, Hit responses will be distributed nearer the criterion

as the signal distribution shifts left, while the opposite will occur

1 . v
for No responses (omissions). Assuming criterion position remains in-

variant with respect to the noise distribution, latencies associated with
responses to nonsignals (false alarms and correct rejections) will not
change significantly. However, these predicted trends hold strictly only
given the rather strong assumption that the criterion ¢ is held constant
with a change in detectability; we saw in Chapter 4 that the evidence on
this point was equivocal, and it remained an empirical question whether
the criterion or the likelihood ratio was held constant with a change in
detectability. The decision theory analysis of latency data thus prov-

ides a potential means of clarifying this problem.

The relative ranking of the latencies we have shown in Figure 4.11 at
each criterion position is arbitrary; the latency model does not specify
differential latencies for Yes and No responses, unless asymmetric
normal distributions are assumed. For instance, if signal variance 1s
greater than noise variance, Yes response latencies may be shorter than

No response latencies, at least for certain criterion positions. The

model does, however, predict different mean latencies for correct and

incorrect responses. If criterion placement is such that probability

correct is greater than probability incorrect, error responses will be
[=}

distributed nearer the criterion than correct responses and will have

h 'thin s !BS“H S 5 OFFQCt dete t‘ Will
i i ce Wl L Y es C ( 10ns
lOlgBr 1ate ClES« e

have mean latencies shorter than those associated with false alarms,

while for No responses; correct rejections will have shorter latencies

than those associated with omissions. The prediction of different

latencies or correct and incorrect responses distinguishes this model
2
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from random walk models which predict equal latencies for correct and

incorrect responses (Audley and Pike, 1965)

We have t ; X
e have thus provided a working model whereby response latency data in

monitoring tasks may be interpreted. Although it is likely that it is

probably too simple in its present form, the model does indicate that

both detection and latency data may, in principle, be interpreted within

the same decision theory framework.

4.7 Physiological Concomitants of Decision Processes

We have now examined a number of different aspects of the decision theaory
approach to detection behaviour. Such an approach proceeds., as we have
seen, from a form of TSD based in statistical decision theory. Moreover
this form of TSD may achieve greater efficacy in its potential ability

to interpret both detection and latency data, as we have seen in the

last section.

Given this approach to the analysis of detection and monitoring tasks,
it is pertinent to ask whether there is any physiological evidence of
the decision making activity in such tasks. It would be expedient to

have available, for example, independent physiological indices of the

sensitivity and bias aspects of performance. We could then, in principle,

examine the decision making model by investigating the effects of

certain variables on both these indices. Of course, the utility of this

approach rests on the assumption that the physiological indices do in

fact reliably reflect the psychological processes they are intended to

measure, and that any variations in the indices do not proceed independ-

ently of the processes under study. As we shall see, it is difficult

to identify any indices which meet these requirements completely; and
o ide
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even 1n using the test available index we may be faced with problems

of ruling out alternative sources of variation in the index, and in

justifying the psychological basis of such variations. Nevertheless,
a physiological approach, when appropriately applied, may shed further

i . .
light on the nature of the decision making processes in monitoring

tasks.

4.7.1 Physiological correlates of vigilance

Physiological studies of vigilance abound in the literature. Several
indices have been employed, including skin conductance and other elec-
trodermal measures, various measures of the electroencephalograph (EEG)
and the evoked potential, electromyographic measures, heart rate and the
concentrations of certain substances in the blood, such as adrenalin and
noradrenalin (see Davies and Tune, 1870, and Mackworth, 1369, for refer—l
ences). The majority of these studies have been interpreted within an
arousal or activation framework. The rationale behind such an arousal-
based approach is as follows: during a long monitoring session, the
observer becomes less aroused as the task proceeds, and this might result
in him missing some signals. If a physiological index of arousal also
shows a trend over the run indicative of a drop in arousal, then there

is some evidence for the influence of arousal on the vigilance decrement.

This type of interpretation forms the basis for a number of reports in

the literature. There are a number Of difficulties with arousal theory

and the design of these experiments that make an unequivocal interpretation

of these studies somewhat difficult. Firstly, there is no way of exlud-

ing the possibility that the observed trend in the physiological index

10y 1-
proceeds independently of the overt performance trends. ence, a

though the physiological index may indicate a loss in arousal with time

al link with the decrement in

at work, this does not establish a caus

detecti rate or latency. Moreover, when some task variable has been
etection
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varied to produce a change in performance, there may be little change

in the recorded physiological index. For instance, both signal freq-

uency and noise have been shown to affect detection rate in vigilance

tasks, but there is no evidence from the physiological studies that

the change in performance is accompanied by changes in arousal (Davies

and Treacher, 1868; Eason , Beardshall and Jaffee, 1965; Stern, 1966).

A further problem arises from the finding that performance may be eff-

icient at both high and low levels of arousal, and that there are in-
dividual differences in the optimum level of arcusal within the so-called
U-shaped continuum (Davies and Hockey, 1966). Some further problems witﬁ

arousal theory are discussed by Broadbent (13963) and Jerison (1967b).

An alternative approach to the type of experiment where parallel trends

in performance and an arousal index are reported is the one where subj-
ects are classified according to individual differences in a physioclogical
index and performance. In three such studies, reported by Coles and Gale
(1971), Siddle (1872} and Verschoor and Van Wierengen (1870]), it was

found that subjects with a high physiological reactivity on tonic and
phasic measures of electrodermal activity had higher performance levels
and lower decrements than low-reactive subjects. A problem with these

vigilance studies, however, one common to many vigilance studies, is that

false alarm data were not reported; hence the reported superiority of

reactive subjects might not be due to a genuine superiority in sensitivity.

This was the exact result obtained by Parasuraman (1875a) in a related

contexts in a short-duration tone discrimination task, it was found that

although reactive subjects (as indicated by several electrodermal meas-

ures) detected a significantly greater number of tones at all confidence

levels, their discrimination sensitivity (d']) was almost exactly equal to

that of low-reactive subjects. The apparent superiority of high-reactive
o -

subjects was entirely due to their relative riskiness in responding, and
jects
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not due to & genuinely superior discriminative ability

A further alternative in the design of psychophysiological experiments
in vigilance is to investigate the relationship between short term or
time-locked changes in physiological indices and performance indices.
Some examples of this type of study are reported by Daniel (1867), Groll,
(1966), Haider, Spong and Lindsley (1864) and Wilkinson, Morlock and
Williams (18866). These studies used EEG measures, and found that while
correct detections were associated with periods of high arousal, phys-
iclogical activity just preceding an omission was indicative of lowered
arousal. Un the other hand, Opton (1964) found the reverse, his study
indicating that omission errors were asscciated with EEG activation in
certain paced inspection tasks, especially in older subjects. We shall,
however, consider this type of study in further detail in the following

suyb-section.

4.7.2 Evoked potentials and decision-making activity

The studies reported by Haider et al. (1964) and Wilkinson et al. (1366)
made use of averaged EEG measures, that is, of evoked responses, or
evoked potentials. In both studies it was found that components of the
evoked potential (EP), obtained by averaging the EEG over a number of

trials, showed a trend over the work period which was indicative of a

decrease in arousal; again, however, a reliable link between the physicl-

ogical index and performance was not demonstrated. Moreover, while in
o

both studies it was noted that the form of the EP was different according

to the type of response trials in which the EP was averaged, the implic-

atiors of this finding were not fully explored.

' \ . . S
Si these early 'pioneering’ studies, however, a number of investigator
Since thes 1



I
@

(@]

nphasi .
have empnaslsed the need tg obtain separate EPs by pooling trials aris-

ing from different behavioural categories (Donchin and Lindsley, 1869;

1 . 3 ~
Paul and Sutton, 1373; Squires, Squires and Hillyard, 1875a:). Thus the

recording of EPs contigent upon different types of response may provide

a better means of examining the physiclogical concomitants of the 'under-

lying' information processing and decision making strategies than the
gross averaging of EPs regardless of the type of response. This type

of analysis of EPs has been applied to a number of substantive areas in
psychology (for a bibliography, see Price and Smith, 1974); however little
or no research has been reported in the area of monitoring behaviour (but

see Ritter and Vaughan, 1968; Wilkinson and Haines, 1370),

The basic premise in the use of EPs in psychological research is, that

by averaging the EEG in a 'time-locked' fashion to either the stimulus or
response events, some information may be gained of the processing and
decision making mechanisms linking these events. This itself depends on
two assumptions: firstly, that the methoa of averaging the EEG provides

a reliable index of the underlying cortical processes, and secondly that
a link between the EP and a psychological process may be established.

Although both these assumptions have been challenged, for example, in the

former case by Sayers, Beagley and Henshall, (1874), and in the latter

by Clark, Butler and Rosner (1870]), it is beyond the scope of this review

11 ; _
to consider these studies in detail . Although only the second class

of objection to the EP has been adequately answered (Donchin and Sutton,

1970: Paul and Sutton, 1973), we shall, as the majority of investigators

in this area, take both assumptions to be valid.

Early investigators of the Ep tended to think of these averaged brain

tivity triggered by external

potentials as purely reflecting cortical ac

~ y i d
stimuli Since the influential report of Sutton, Braren, Zubin an



John (1865],

howeve f i
OWEVEr, much evidence has gathered that the EP may also

be associated with data processing activity within the cortex, that is

with 'psychological %
psy g processes' rather than with 'sensory processes’

alone. Certain ’late’ components of the EP, in particular a positive-

going complex peaking approximately 300 m.sec. after the stimulus

{variously termed 'P3%, 'P300’ or 'association cortex potential’l}, has

been reported to be extremely sensitive to the influence of a large
number of ’'psychological variables’, while being relatively unaffected
by the physical properties of the stimulus. These psychological varia-
bles include the concepts of 'information delivery','task relevance’,
'stimulus uncertainty', ‘'selective attention', and others (see Karlin,
1870). It is clear that P300 reflects 'endogenous’® cortical processes,

but there is little congensus concerning their nature.

The P300 component of the association corftex potential has been disting-
uished from earlier components, which may be identified with sensory
evoked potentials, on the basis of both latency range and intercranial
origin (Vaughan and Ritter, 1870). Vaughan and Ritter alsc state that
“the association cortex potentials differ importantly from the (sensory)
evoked potential in respect to the factors determining their latency and

amplitude: (sensory]) evoked potential parameters being primarily defined

by stimulus variables, and the association cortex potentials by task

variables or stimulus significance” (Veughan and Ritter, 1873, p. 141J.

The overall EP can thus be viewed as reflecting a dual process; firstly,

a sensory stimulus processing stage, followed by a more labile, diffuse

potential which, when present, represents either the code or the sign

(Uttal. 1967) of some data processing activity associsted with certain

categories of stimulus and response. The major problem is in evaluating

the rolisbility of the many psychological veriables wnich have been

examined The literature is full of a confusing welter of results, and

=
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at least one major investigator in this field has besn forced to remark

God only knows what P300 igi® (quoted in Nsatanen. 1975). The same

investiga h
investigator has, however, proposed a similar two-process view of EPs

{Hillyard and Picton, 1974) as that suggested by Vaughan and Ritter (1373).

In such a climate of uncertainty regarding the nature of P300, it might

szem foolhardy to pr ' : . .
y propose another ‘variahle' as the major one associated

with P300. However, there is growing evidence from very recent studiss

that variatlons in decision-making activity may play an important role

in determining P300 amplitude and latency (Davies and Parasuramari, 19763
Squires, Squires and Hillyard, 1975a, b). Oecision making may be treated
either in the specific sense of TSD (as suggested by Squires et al. 1975a,b]l,
or in a more general sense, in which case, P300 may be related to the
activity of a general purpose 'decision’ or 'cognitive’' processor

(Donchin, Kubovy, Kutas, Johnson and Herning, 1873). In the former
treatment, an analogy may be made between the two-process view of EPs

and the two-process theory of signal detectability; in the latter, Oonchin

et al. (1973) draw the analogy of a floating point processor {attached

to a general purpose computer) which might be invoked if the many in-

coming programs possess a single, broad criterion in common.

The two-process analogy between the EP and TSD is almost certainly too

simplistic, but this gross relationship might serve to elucidate, to a

1 i ing detection
first degree, some of the phy51ologlca1 processes underlying

and discrimination behaviour. Certain points of similarity are present:

g itivity 1 1 nstant for a
for example, in the TSD model, sensitivity 18 usually co

given observer and for fixed sensory stimulation. In these conditions,

is also remarkably stable. On the other

the sensory evoked potential

hand, variations in decision behaviour in the TSD model are due to
which may be affected by a large

Con
variations in the response criterion.
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number of 'psychological! i
g variables. The same psychological variables

have been shown to influence the form of P300 and other late component

potentials.

A number of recent studies have attempted to obtain an empirical basis
for this analogy by recording EPs in signal detection tasks. Paul and
Sutton (1972) for instance, manipulated the response criterion by vary-
ing both the a priori signal probability and the payoff matrix, and

found that the amplitude of P3 was systematically related to the strict-
ness of the response criterion. Similar results have been reported in
experiments on auditory detection within an EP-TSD framework by Hillyard,
Sguires and associates (Hillyard, Sguires, Bauer and Lindsay, 1971;
Squires et al., 1875a,b). Perhaps the most impressive result demonstrated
by this group is the one illustrated in Figure 4.12. Here the EPs to
correctly detected signals are plotted in an order corresponding to the
appropriate criterion cut-off (c) on the associated group of trials, and
without regard to the method by which the criterion was derived (ratings
or variations in signal probability). This result strongly supports the
contention that for such tasks the amplitude of the P3 component is

closely related to the subjecfs psychophysical decision that a signal is

present.

While the majority of the EP studies we have reviewed have used measures

of the amplitude of EP components, latency measures have received very

1ittle attention. Since P300 and the other components of the association

cortex potentials have been related to aspects of decision making, the

peaking time of such components might be expected to reveal some inform-

ation about the temporal aspects of the decision activity; using DBonchin

et al.'s (13873) analogy. the computation time in the floating point pro-

cessor might give us some further information regarding the nature of
2SS m
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the program, and hence of the decision making process.

A few experiments have reported that late component latency measures
are sensitive to both between and within subjects variations in decision
time (Conchin and Lidsley, 1866; Squires et al., 1975a,b). Ritter,
Simsen and Vaughan (1872} also briefly reported a relationship between
latency in a discrimination task and late component EP latencies. At
this point, however, we have reached the borders of knowledge on this
subject, and must seek fresh evidence in support for our speculations.
We shall accordingly report an experiment later in this thesis where
decision latencies and EP component latency measures are examined in
relation to each other within a decision theory framework. Although
the studies reviewed in this section are only suggestive, it may be
possible to analyse LP measures in a monitoring situation within the

type of model linking EPs to TSD which we have discussed.

In summary, we may conclude that EPs may provide a more 'central’ index
of cognitive activity than other physiological indices, and may be re-
lated to decision making activity. although the mechanilsms underlying
the relationship are not fully understood. Examination of the latencies
of EP components, as well as the amplitudes, might serve to glucidate
the nature of the relationship.

4.8 Assumptions in the Application of Decision Theory

Having discussed the several aspects of theories of detection and dis-
(=]

. : r 1 f e
crimination, we now return to a consideration of T3D and declsion theory

from the point of view of the implicit and explicit assumptions they

make. The theory has not undergone a major revision since the original

prescription of the model for the analysis of detection performance with




weak auditory signals. Recently, efforts have been made to emphasize

the generallity of the theory (Swets, 1973), but the original model of
Tanner and Swets (1354) may still be considered to hold. The problem
thus arises of the suitability of the theory to describe psychelogical
phenomena not envisaged in its original conception, and consequently,
objections to the use of TSD have often been raised. The counter to
this is that the original model was specified in too narrow a context,
and that a generalized statement of TSD can be made in terms of the

broader tenets of statistical decision theory.

Nevertheless, the problem of the validity of the assumptions in TSD and
decision theory must be dealt with. In this context, it might be ex-
pected that the use of TSD in the analysis of monitoring behaviour,
which is not unrelated to detection behaviour, would be less open to
objection than the use of the theory in less related fields, such as
recognition memory. However, if anything, the reverse is true, a number
of objections having been raised to the use of TSD in monitoring be-
haviour. (Jerison, 1867; Wiener, 1873). Some of these have been useful,
insofar as it is important to determine the limits of applicability of
TS0 (cf. the concepts of 'strong’ and 'weak' applications of TSD in
Broadbent, 1371). Others, however, have been mainly directed at the

use of the TSD parameters d' and p (Jerison, Pickett and Stenson, 1898651},

but as we have seen, a TSD type of analysis need not be restricted to

the use of these parametric indices.

In considering the assumptions in the use of TSD, we may consider three

sources: assumptions in the use of decision theory, those in the app-

lication of TSD to psychophysics, and those in the application of TSD to

monitoring behaviour. A hierarchy of assumptions may thus be built up.
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A. Decision theory assumptions

B. TSD assumptions in psychophysics

C. TSD assumptions in monitoring

A. Decision theory assumptions

The use of statistical decision theory to describe human behaviour in-
volves some very general assumptions about human functioning which may
be disputed, out which are not particularly amenable to empirical test.
Other assumptions involve the rationality and cooperation of the observ-
er in an experimental situation, and the way in which he uses his decision
rules to achieve his decision goals. We will list five assumptions re-
garding decision rules and goals:

1) The subject partitions the elements of the set of 'evidence’

into response classes on the basis of a decision rule.

2] The decision rule is used to satisfy some goal, such as the

minimization of error.

3) If the subject has at his disposal two decision rules P and O

such that P oetter satisfies the goal than Q, the subject consist-

ently chooses P unless otherwise instructed.

12

4) The decision rules and goals inferred from performance data

bear a relation to those actually used by the subject.

5) Decision goals do not fluctuate from trial to trial.

B. TSD assumptions in psychophysics

The assumptions under this heading include those under A as well as some

additional ones:




1) The amount of sensory information received by the subject

is limited (c¥. ‘data-limited' tasks, Norman and Bobrow, 1875).

2) The 'evidence' received by the subject can be uni-dimengionally

represented.

3) The probability density distributions of signal and noise
are Gaussian (although this need not be assumed a priori, see
4.2 and 4.5).

4]} The criterion used by the subject remains constant in a
given block of trials.

5) The various experimental paradigms of TSD (Yes/No, rating,

forced-choice) are all formally equivalent (see 4.3).

C. TSD assumptions in monitoring

The additional assumptians in the application of TSD to the analysis
of monitoring behaviour are:
1) The subject has a clearly marked decision interval in which
signal or noise may occur.
2) The evidence received by the subject conforms to that of the
TSD model and is not distorted by other (possibly attentionall

factors (again this need not be assumed a priori).

Having rather baldly stated these assumptions, let us consider their
implications for a decision theory analysis of monitoring behaviour.
It is evident some of the assumptions are of no conseguence, some are
met, while others may be questioned. As far as the assumptions in

decision theory are concerned, probably the only ones which may be ser-

iously gquestioned are assumptions 4 and 5, regarding the equivalence of

the inferred decision rules to the actual decision rules, and the invar-

jance of decision goals. It will be recalled that there is some evidence

s NS b o Y Y MO o R i il K5
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that subjects may not respond with the aim of maximising expected value,
. e - o
but appear to match the frequency of their responses to the frequency of

signals (Thomas and Legge, 1970). Whether this holds for monitoring tasks

is a matter for empirical investigation.

Assumption Bl is also worthy of closer consideration. The statistical
F o b o > N £ : ~ . . . - . -~ :
limitation of the sensory information is a crucial assumption for a fixed

ot

sample theory of decision making, as in T3D0. If the available sensory
information is not limited, then performance need not lie within the
convex set in Figure 4.1. This assumption is almost certainly not valid
for the so-called unlimited-hold tasks, where the signal remains present
until detected (ses 2.2). The assumption of limited sensory information

is also important as far as a decision theory analysis of response latency

in monitoring is concerned, and we shall return to it at varicus other

points in this thesis.

Apart from being a fixed-sample model, TSD 1s also a fixed-criterion

model. Variations in the criterion are only considered across conditions
where there are grounds to assume a change in response bias, such as

across different signal probability levels. Recently, however, a few
investigators have considered the effects of trial-to-trisl criterion vari-
ation within a TSD context (Ingleby, 13868; Thomas, 1973; Thomas and Myers,
1972). Ingleby (3358) has shown that hhe effect of criterion variance

is to increase the signal to noise variability in the TSD Gaussian model,
so that apparent decreases in sensitivity might be obtained. Broadbent

and Gregory (1867) put forward a similar interpretation to explain

their finding that subjects have a decreased sensitivity to emotionally

toned words. Thomas and Myers (1972) have also discussed some of the

effects of criterion variance on the 0OC. On the whole, criterion varlance

has received very little attention in the literature. In the TSD
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Gaussian model, estimating the effects of criterion variance is diff-
icult since at least one further parameter has to be estimated. In a
related context, the increase in the criterion over a block of trials
is a worthy candidate for further investigation by detection theorists,
especially since a decision theory analysis of monitoring reveals, as
we shall see in the next chapter, that performance is associated with

an increase in the criterion with increased time at work.

0f the other assumptions in A, B and C, some have been discussed prev-
iously, for example the assumption regarding the eqguivalence of TSD
procedures. The assumptions in C will be given further consideration
in the following chapter. It is clear that all the assumptions we have
listed are not completely met, but we have circumscribed the fypes of
task in which these assumptions may hold, and on the whole, we may assert
that a non-rigorous form of TS0, based in decision theory, is appropriate
for the analysis of monitoring behaviour. Some of the other assumptions
4
we have listed needﬁbe taken a priori, and can be discarded 1f the
experimental data so dictates. What is important, however, is that these
assumptions be considered and rejected, if necessary, in any particuler
application. In subseguent chapters we shall make freguent reference

to them and attempt to justify our decision as to whether they influence

or have no effect on the type of behaviour wonder study.

This section concludes the discussion of aspects of detection behaviour

and decision theory. In the next chapter, we shall relate these consider-

ations to the analysis of monitoring behaviour, and review a number of

studies in the literature from a decision theory point of view.




4.

frab
(BN

Notes to Chapter 4
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Theories may also be identified in which decision uncertainty arises
out of the choice of particular stimuli from a larger set (Garner,

1374), or in a choice of responses as a 'function’ of different

stimuli (Anderson, 1974).

The OC represents the best possible performance only if stimulus

information is limited (see Laming, 1873, p.77).

Whether the decision rule in TSD is based on likelihood ratio or on
the evidence variable is a matter for continuing debate. The two

are equivalent only in the equal-variance TSD model.

The terms sensitivity, detectability and discriminability will be
used interchangeably, although strictly we speak of the sensitivity
of the subject and the detectability or discriminability of the

signal.

A monotonic relationship between likelihood ratio and the decision
variable holds, not only for the normal and exponential distributions,
but alsc for the chi-squared and gamma distributions, as well as

for simple ramp and gate distributions (see Egan, 1975).

The parsimony gained by reducing the number of free parameters in a
detection model to one may be cancelled by the fact that such models

fit fewer data than two-parameter models.

Two models not reviewed by Audley (1973) which may be classified
generally as 'sequential sampling or counting’ models, are the ones

proposed by Luce and Green (1872) and Vickers, Nettleback and Wilson

(1972).

1=
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ror recent elaborations of the sequential sampling model for latency,

see Link and Heath (13753,

L= <) ¥ ¥ Co - . . >
samples’ or 'observations® may either refer to stimulus sampling

. ) s

in the 'observing response’ sense, or in the sense of samples drawn

from an iconic store of the stimulus (Sperling, 13980).

The problem also arises of deciding between physiological indices
exhibiting differing trends over the monitoring period. Thus a
number of studies have found that while ore physiological index shows
a trend indicative of a loss in arousal, for example a decrease in
skin conductance, other physiological indices, simulteneously rec-
orded, may show no change or an increase in arousal (Coules and

Avery, 1866; Opton, 1864; Stern, 1966). This is the problem of

directional fractionation of response (Lacey, 1367).

Methodological and psychological issues in EP research are treated

in greater depth in Naatanen (1875} and Sutton and Tueting (1975]).

The decision rule inferred from deta gathered over a number of trials
is not necessarily the one used by the subject for a single trial;
the optimum decision rule for a single trial is the one which is

correct for that trial, and this may not be the same as that inferred

from block trial data.
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5.1 Decision Theory Analysis of Monitoring Performance

We have seen that the theory of signal detectability (TSD) of Tanner and
Swets (1954) may, in general, be treated in two different ways. We may
choose to interpret the theory in a specific way, with reference to
Gaussian probability distributions, or in a broader sense within the frame-
work of statistical decision theory, in which case the forms of the prob-
abilistic representation of stimuli need not be specified a priori. The
former treatment may lead to the formulation of sensitivity and bias
parameters such as d' and B, while the latter implies a more general
analysis in terms of the operating characteristic (OC). In the application
of TSD to the analysis of monitoring performance, most investigators have

employed the specific form of TSD (but see Broadbent, 1971).

In most of these applications, empirical validations of the assumptions
concerning the Gaussian form of the probabilistic representations have not
been carried out. In consequence, some of the results obtained using the
parametric measures d' and B may be unreliable; the question therefore
arises as to whether they are preferable to the more traditional measures
such as the detection rate and reaction time. GSome investigators do not
think they are (Jerison, 1967, Wiener, 1873), and object to the analysis
of monitoring performance using TSD. However, their objections are mainly
directed to the use of d' and B, and, as ve have stated many times, a TSD

analysis is not restricted to the use of these measures.

Tt can readily be acknowledge that d' and B are not the exact equivalents
of the parameters of psychophysical detection, but then in monitoring

situations we are not usually concerned with obtaining precise fits to

psychophysical functions, but with evaluating the trends over time in both

sicnal sensitivity and response bias. The main contribution of TSD has
g itivi

. 3 ini t 1 aspects of performance
been to point out the need for examining both these aspects of per ,
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and to re-e 13 e . 3 .
= e-establish the importance of the false detection rate. TSD, or
more e leciad . . ) )

more correctly, decision theory, provides a sound basis for interpreting

oth 2 o7 . ) 1
both correct and false detection data, and a means of 'encapsulating' both

ty

ie]

n

7{: at 1 t . .
es of data in the OC. As we have also noted previously in 4.4.1, merely

tti i 1 Y . . . .
plotting a single pair of hit and false alarm probabilities provides more

i i i 3 > ) . . s .
information than does a consideration of the 'traditional' hit rate alone.

An analysis of monitoring performance in OC terms need not be dependent on
the restrictive assumptions underlying the use of d' and B. Such an
analysis might also benefit from some newer techniques of isolating
independent measures of sensitivity which are less affected by departures
from the equal variance model of TSD, or from methods of obtaining non-
parametric measures (see 4.4.1). We are primarily interested in knowing
whether a given performance difference between two conditions represents

a change in bias or a change in sensitivity, or possibly both, or neither.
Such differences are better evaluated on the basis of OCs than by a con-
sideration of hit rate alone. Figure 5.1 shows both sensitivity and
criterion changes for OCs plotted in the unit-square and on double pro-
bability axes. As we shall see, a re-interpretation of the vigilance
'decrement' shows that performance changes within a monitoring session in

most monitoring tasks are associated with the latter type of change, that

is, a change in the response criterion at invariant sensitivity.

In signal detection tasks, the OC may be obtained by a number of

different methods; some of these were reviewed in 4.3, in which it was

concluded that the rating method was the most efficient procedure for

the derivation of 0Cs, although its equivalence to the standard Yes /No

paradigm has not been reliably demonstrated. For monitoring tasks, two

studies have found only minor differences between d' values obtained by

single response and rating procedures (Guralnick and Harvey, 1970; Loeb
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FIGURE 5.1 (a) An illustration of how, in principle, an operating characteristic
(OC) analysis can be used to determine whether a given change in performance

is due to a change in criterion or sensitivity. Movement along the OC from A to
A' represents a change in criterion so that fewer events are responded to positively,
while @ movement from A to A" represents a fall in sensitivity, primarily. In
practice, these changes may nof be easy to distinguish if the false alarm rate
restricts the OC to the left of the dotted line, although they may be easier to
distinguish in z space, as in (b).
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and Binford, 1964), although corresponding 0Cs were not compared (see also

Appendix D).

The number of studies which have analysed monitoring behaviour in OC terms

is small, but in most of these it has been found that the empirical OCs
conform fairly well to the predicted TSD Gaussian form; it will be re-
called from Chapter 4 that such OCs describe a continuous monotonic function
in the unit square, and a straight line in z space. Such straight line

OCs have been obtained in monitoring situations (Broadbent and Gregory,
1965, re-analysed by Mackworth, 1970; Loeb and Binford, 1964; Milosevic,

1974, and personal communication; see also Chapters 7 and 9).

Loeb and Binford (1964) derived both single-response and rating scale
operating probabilities and plotted them on normal deviate co-ordinates.
All the points were well fitted by the equation -

z(S/s) = 1.05 z(S/n) + 2.94
which is in accordance with the equal-variance model of TSD. This assump-
tion has not often been empirically checked in studies in the monitoring
1iterature which have used the parametric TSD measures d' and B. While
these results suggest that the departures from the assumption of equal
variances are not great, further experimental work is required, possibly
within a task classification framework, to enable an evaluation of the
possible types of tasks for which the assumption does not hold. There

is already evidence from signal detection tasks that . visual tasks

invariably have skewed 0(s, but this needs to be confirmed and extended

to monitoring tasks. At the same time, it should be noted that there is

some evidence that the equal-variance TSD model holds up remarkably well

even in the performance on certain operational monitoring tasks, such as

1
industrial inspection (Sheehan and Drury, 1971; Wallack and Adams, 1969)-.
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One of the first studies to analyse monitoring performance within a TSD
framework was reported by Egan, Greenberg and Schulman (196la). They used
highly trained subjects to examine the detection of tones in background
random noise in 2-min. listening periods, separated by brief rest pauses.
The subjects were required to respond with varying degrees of confidence in
different listening periods. Egan et al. found that sensitivity, as
measured by d', was invariant over conditions, and that the OC described a
downward concave curve consistent with the Gaussian TSD model. The authors
concluded that the temporal uncertainty of signals (which is also a major
feature of more typical monitoring tasks) exerts a major influence on
detection strategies in the so-called 'free-response' tasks; in another
study this view was confirmed, as it was observed that there was a pro-
gressive fall in d' as the interval of time uncertainty during which signals
might occur was increased (Egan, Schulman and Greenberg, 1961b). Mackworth
(1970) has emphasized the relationship between the interval of time
uncertainty and the rate of presentation of events in 'discrete' tasks.
Hence, this study also provided some evidence for the importance of the
event rate in determining sensitivity trends in monitoring; we shall
consider these in a later section. However, Egan et al. found no change

in d' between confidence levels, in accordance with TSD. Thus while the
tasks used by Egan et al. were not monitoring tasks in the strict sense
(because of their short duration and since rest pauses were provided),
their studies are important in providing the first empirical evaluation
of a TSD analysis in free response tasks, and for indicating the pos-
or similar analyses of prolonged monitoring tasks.

sibilities f

Bproadbent and Gregory (1963a) and Mackworth and Taylor (1963) reported

the first experiments in which TSD was applied to the analysis of per-

formance in more typical monitoring tasks. Broadbent and Gregory used

two monitoring tasks; in their visual task the detection of a brighter

flash appearing on one of three flashing lights was required, while the




auditory task involved the detection of a pure tone presented at unpredict-

able times. A TSD analysis of performance with both tasks showed clearly

that the decrement in detections with time on task (the 'traditional

gl 1 . e .
vigilance decrement') was not due to a loss in sensitivity over time, but

rather, was associated with an increase in the response criterion over the

work period. This important result, which was also earlier suggested by
Egan et al. (1961a), has since been confirmed in further experiments
(Baddeley and Colquhoun, 1969; Broadbent and Gregory, 1965; Colquhoun,

1969; Levine, 1966; Milosevic, 1974; Williges, 1969).

On the other hand, Mackworth and Taylor (1963) reported that for subjects
working with the Continuous Clock, a display in which brief cessations in
the continuous movement of a clock hand have to be detected, there was a
significant decline in sensitivity (d') over the monitoring period.
Again, some studies have since also reported that there is a decrement in
sensitivity within sessions, although this aspect of monitoring perform-
ance has not received as much attention in the literature (Deaton, Tobias
and Wilkinson, 1971; Hatfield and Soderquist, 1869; Leob and Binford,

1968; Mackworth, 1965a, b), and remains to be verified.

There are thus two interpretations of the 'vigilance decrement' which
receive support in the literature; the first, which is by far the more

widely held view, is that sensitivity is invariant over a monltoring

period. and there is an increase in the criterion, while the second pro-
i 3

poses that there is a genuine decrement in sensitivity. These need not

necessarily be conflicting views, if it can be demonstrated that they are

relevant to different categories of task. It is therefore clearly

important to establish the relative influence of criterion and sensitivity

. - i car. his
shifts, and the types of task in which these effects might appear. Thi

forms the concern of the following sections and of some of the experi-

i shall
i hesis. In the next two sections we sha
mental work rveported in this T
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consider various : : .« s . . . .
aspects of criterion and sensitivity shifts in monitoring.

5.2 Criterion Shifts and their Interpretation

We have seen that a TSD analysis of monitoring performance leads to a
separation of sensitivity and the response criterion. The criterion can

be taken to more or less equivalent to the criterion in signal detection,
depending on whether one assumes the narrow or broad interpretation of TSD.
In Chapter 4 we mentioned some independent variables which exerted important
influences on the response criterion in signal detection tasks, such as the
a priori signal probability, the payoff matrix, instructions, and certain
types of feedback. These and other variables have also been shown to
similarly affect the criterion in monitoring tasks, and thus we shall

briefly examine them.

5.2.1 Variables affecting criterion placement

One 'variable' which has been shown to influence criterion placement in
monitoring has already been mentioned: this is time on task, which leads
to an increase in the response criterion. The increase has been shown to
be maximal for strict criteria, that is for those responses assoclated
with a high level of confidence (Broadbent and Gregory, 1963a, 13865;
Levine, 1966; but see Milosevic, 1974, 1975). We shall consider the time
on task variable in more detail when we come to interpret criterion shifts
However, a number of other variables, common to detection and

over time.

monitoring tasks have been investigated:

Signal probability

The change in the criterion with a change in signal probability leads to

the derivation of the OC, as we saw in Chapter 4. In monitoring tasks,

althouch the complete range of the OC has not been spanned, it has

generally been shown that an increase in signal probability leads to a

priskier criterion, as predicted by TSD. We shall reserve a fuller
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consideration of the influence of signal probability until section 5.4,

h . ) i
where the available evidence will be reviewed in greater detail.

Instructions

Another way of generating the empirical OC is the method where observers
are asked to adopt different degrees of responsiveness in different
sessions. Colquhoun (1967) used this method in a monitoring situation, by
asking his subjects to report signals (sonar reports) which they were
completely sure of, or, in a separate session, of anything, however doubt-
ful. As predicted by TSD, the criterion was significantly lower in the
"doubtful' session, a finding which is inconsistent with a simple thres-
hold model of monitoring behaviour (see 4.5). Williges (1973) has also
reported that if observers are asked to be more or less cautious in a

monitoring situation, B shifts in the appropriate direction.

Cost and values

Central to TSD and decision theory is the view that decisions are
influenced by the relative costs and values attaching to alternative
responses. Thus in making a statistical decision, we may be concerned
with the costs attached to the making of Type 1 and Type II errors, and
utilize these to maximize or minimize some goal value. In monitoring,
there is some evidence that response probabilities are influenced by the
values attached to the various response alternatives. Levine (1966)
varied the costs attached to making a false detection or an omission, and
found that B increased as both costs were increased, although there was
no interaction with the rate of increment in B over the monitoring

period. The finding that B increases even when the cost of missing a

sienal is raised is rather surprising since subjects should (ideally)

adopt riskier criteria (that is, increase their positive response rate);

this result is thus directly the opposite of that predicted by decision

theory. Williges (1971) has also reported that the effects of costs and

values of signals are not as marked, and sometimes not in the same
- o

dipection as that predicted by TSD. On the other hand, Davenport (1969),
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usin ib : . .
g a vibtrotactile monitoring task, found that by varying the costs of
1 s .
false alarms and omissions and the value of a hit, B changed in the

a asl : .
ppropriate direction (although not as much as on an expected value model),

while d' remained constant,

Other variables

Some other variables have been shown to influence the response criterion in
monitoring, including knowledge of results (Wilkinson, 1964, re-analysed by
Mackworth, 1970; Williges and North, 1972), noise (Broadbent and Gregory,
1963a, 1965), induced hyperthermia (Colquhoun and Goldman, 1372), sleep

deprivation (Deaton et al. 1871) and other stresses (Poulton and Edwards,

1974) .

0Of these, the results of Broadbent and Gregory (1963a, 1965) are probably

the most reliable, primarily because they employed a method enabling an

analysis in terms of the 0C. Their results are complex, but can be
summarized by saying that the effect of noise is to move risky and strict
criteria closer together (that is, to effect a contraction of the decision

axis). We shall consider the implications of this result at various

points in the following chapters.

5.2.2 Interpretation of criterion shifts

A number of variables influencing criterion placement in monitoring tasks

have now been identified. Most of the results of the studies reviewed

have been in agreement with the general predictions of TSD; the best

established result is probably the increase in the response criterion

Wwith time at work and with diminished signal probability. However, while

the latter effect and those due to some of the other variables reviewed

(for example, instructions) can be readily interpreted on the basis of

explanations of the effect of time at work must go beyond TSD

TSD alone,

and invoke certain theoretical constructs.
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One construct 1 . . .
which may be examined in relation to criterial shifts in mon-
itoring 1is .
& expectancy, which has also been proposed as a general mechanism

underlying monitoring behaviour by some investigators (Baker, 1959; Deese,

1955; see also Broadbent, 1971). Support for expectancy theory, as taken
within a decision theory context, has come from a number of important
experiments demonstrating the critical importance of the expectancies
established during training sessions for monitoring tasks (Colquhoun and
Baddeley, 1964, 1967; Williges, 1969). These experiments showed that, for
both visual and auditory tasks, if a training session using a high signal
rate is given, then a greater within-session decrement in hits and false
alarms is observed during the monitoring period than if a training session
using a low signal rate appropriate to that used in the monitoring session
is given. The frequency of signals expected by subjects, which is
established during training, exerts an important influence on within-
session trends in performance in the monitoring period. If therefore,
subjects are trained with an inappropriately high signal rate, they find
that signals occur much less frequently than they expected, and con-
sequently revise their criteria towards greater strictness; this might

therefore result in a sharp decline in both hits and false alarms and a

rise in B, as has been reported by a number of investigators.

We might therefore suppose that if subjects were given appropriate

training, and allowed to have practice sessions to stabilize their

critepion. then there should be no increase in the criterion with time
ion, ti

on task In fact, however, an spnerease in B is still found, even though

subjects have been 'expectancy matched' (Baddeley and Colquhoun, 1969;

Milosevic. 1975; Parasuraman, 1975b3 Williges, 1973). Do these results
- °

>
therefore argue against the expectancy approach?
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No, since -
> ceé we can propose another form of expectancy, a variant of the

mechanism originally préposed by Baker (1959) in a related context. Since

signal probability is usually low in monitoring situations, it may be

assumed that a subject always under-responds to signals (that is, for signal

probability p¢ 0.5, p(Yes) ¢ p is implied by the expected value TSD model).
If, in addition, we assume that the subject monitors his own responses in a
self-feedback loop, and takes his response rate as reflecting the
approximate signal rate, he will revise his criterion since he is under-
responding. Revision of his criterion to one of greater strictness will
result in a lower hit and false alarm rate, leading to further stricter
revision of his criterion, and so on in a 'vicious circle' (Broadbent,
1971). This explanation can also be applied to the finding that there is

a greater increase in the strict criterion than for lax criteria, if we
assume that in a rating task the subject would be more likely to base his
estimate of signal probability only on his confident (strict criterion)

reports.2

Such an expectancy interpretation assumes that the observer follows the

behaviour of the ideal TSD observer. Williges (1969, 1973) has proposed

that this relationship holds, at least for weak signals. As we have seen
in Chapter 4, there are, however, suggestions that subjects may not
follow the TSD model of maximizing expected value; the often noted find-
ing of the conservativeness of subjects (namely that they usually do not

adopt as high or as low criteria as that predicted by TSD) may be an

indication of probability matching strategies rather than those assumed

by TSD (Thomas and Legge, 1970). It is also conceivable that a subject

begins a monitoring session by over-responding, that is, sets riskiler

epiteria than that used by the ideal TSD observer (B¢ (1-p)/p for a

symmetrical payoff matrix); then, by the 'vicious circle' argument, he

(further) over-responds Dby feedback and revision of his criteria towards
u Y
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riskiness. thus ih3 3 .
, thu exhlbltlng a éEEEEEiS in B over time. However this would

mean that the rate of positive (Yes) responses would be greater than the

si 1 . .
signal rate, and would become more so during the session, but there is no

evidence of this in most of the experiments which have reported both hit

and false alarm rates.

One implication of the 'vicious circle! expectancy approach is that an

opposite trend in B over time should be observed if a priori signal prob-
\

ability is greater than 0.5 (assuming subjects begin by over responding
initially). Broadbent (1871) considered this a crucial test of the expect-
ancy approach, and, on the basis of an unpublished study by Simpson (1967),

who obtained a within-session B increment even for p» 0.5, concluded that

the expectancy explanation was not acceptable. However, Williges (19689,
1971, 1873) has shown in a series of experiments that there is no sig-
nificant rise in the criterion with time at work if signal probability is
increased beyond 0.5; these studies therefore support the vicious circle

expectancy interpretation, and we shall consider them in some detail.

Williges (1969) used a task in which subjects were required to detect
a periodic transient increase in the duration of intermittent visual
stimuli. Critical signals were either presented with a low probability

(.16), or a high probability (.84). These conditions were combined

. .. . v .
factorially with two conditions of pre-tralning in which subjects were
'

either provided with accurate or inaccurate expectancies regarding mean

. . s . .
signal frequency. In the 'accurate' conditilon, an appropriate signal
[o=) ~

pate was used to provide a set for the subjects (either .16 or .84),

hi i i 3 ' iti tects received signals with a
while in the 'inaccurate condition subj g

probability of .5. The results for B conformed to that predicted by the

expectancy model, and are illustrated in Figure 5.2. When subjects

monitored under accurate instructions, B increased in the low signal

brobability condition and decreased (non-significantly) in the high
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FIGURE 5.2 Trends in likelihood ratio (B) as a function of pre-session expectancy
(Accurate or Inaccurate) and signal probability (low or high). From Williges
(1969, p. 65).
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FIRE “5.3 Trends in B as a function of low (1/10) and chance level (1/2) signal

mondiﬁons, and a condition in which signal probability changes in the

session (1/10, 1/2). From Williges (1973, p. 183).
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signal probability condition. Furthermore B was higher in the former

.y 5 ) '
condition. Both these results are as predicted by TSD and expectancy theory.

When subjects receive an inaccurate set, B did not vary over time (the
trend apparent in Figure 5.2 for the highest B values (High-Inaccurate) was

not significant), and B was higher in the high signal probability con-

dition. These results are thus consistent with the assumption that sub-
jects use self-feedback to adjust their criteria during a watch.

Williges (1969, 13976) has also interpreted his results as suggesting that
é trends in B represent attempts to reach optimal behaviour since the

obtained B values approached the optimum B value for a symmetric payoff

during the end of a session (see Figure 5.2).

There is thus somewhat more evidence for the expectancy theory approach
than Broadbent (1971) put forward, and in a further experiment Williges
(1973) confirmed his findings for both low and high signal probability
conditions and for a condition in which signal probability changed half-
way through a session (see Figure 5.3). The unexpected result by
Simpson (1967) from which Broadbent (1971) concluded that the expectancy

interpretation is untenable, cannot be easily explained, except by

suggesting that individual differences may be a neglected factor in this
area. Some subjects might exhibit a decrease in B over the run, while a
fewer number of subjects show an increase; since there may be a 'cellar'

effect for decreases in B, as Figures 5.2 and 5.3 appear to show, the

larger increases in B might outweigh the decreases, and a group incre-

ment in B might be observed.

What evidence is there for alternative interpretations of the criterion

incpement in monitoring tasks? One alternative interpretation 1s one

based on arousal theory; this has been considered in detail and

I 71 t consider it here, since
rejected by Broadbent (1971), and so we will mot ¢ ,
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1 £ 1 1 The eneral
sh idence Since Broadbent's review. g

problem of arousal theory, which has been pointed out elsewhere (Broadbent,

1963; Jerison, 1967b), is the need to resort to the concept of over-

arousal. It is almost a truism that virtually any result can be explained
by arousal theory on the basis of the inverted-U function. This will be
especially evident when we come to discuss sensitivity shifts in monitoring
performance in the following sections. However, it should be emphasized
that we are only rejecting arousal as a major theory for the interpretation
of performance trends over the run; it remains of value in the explanation

of monitoring performance changes between conditions where there are good

reasons to suppose that arousal changes.

An explanation of the criterion increment in terms of the costs and values
of responding has been suggested by Broadbent (1971)