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SUMMARY 

The end resonant modes ae ee in solid and hollow 

cylinders, strips and plates are considered. Experimental 

results presented for solid cylinders, made of various 

materials, establish not only the position of cylindrical 

end modes, within the frequency spectrum, but also their 

dependance upon Poisson's Ratio. Additional experimental 

results, obtained for hollow cylinders of various wall 

thicknesses, indicate how the antisymmetric end resonant 

modes of solid cylinders are influenced by the presence of 

a concentric hole. 

Numerical solutions have been found, for the end resonant 

modes in plates and strips, by the method of summation of 

stresses associated with real and complex modes of 

propagation. In all, results have been obtained for eleven 

different. values of Poisson's Ratio in the range 0.1 to 0.5. 

The modulus and phase of the amplitude coefficients for 

real and complex modes are presented in graphical form. 

A general method of obtaining expressions for the 

impedance of mechanical resonators is discussed. The 

technique, based on the principal of virtual work, makes 

use Of normal mode expansions. Three examples are considered 

in detail, with special attention being given to the 

application, of the obtained impedance expressions, to an 

existing acoustic transmission line theory, as a means of 

analysing the echo technique used for the experimental work. 

An empirical equation is derived, which enables the



calculation of the natural frequencies of a pair of 

dynamically clamped rectangular plates to be carried out. 

The equation, Sikained by comparing experimental results 

with theoretical solutions for the corresponding statically 

clamped plate, relates the resonant frequency to plate 

dimensions and the known frequency factors for the static 

case.
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CHAPTER: L 

GENERAL INTRODUCTION 
  

The contents of this thesis can be divided into two 

principal subjects, trapped or end resonances of 

structures and experimental investigations of the resonant 

vibrations of dynamically clamped plates. For many years 

the resonant behaviour of structures has attracted a 

great deal of attention. As far back as 1789 mathematicians 

were making attempts to secure theoretical explanations 

for the experimental results obtained by Chladni, regarding 

the nodal patterns of vibrating plates. The topic has 

since gained momentum and with the increasing maturity 

of the industrial age it has reached great importance 

in the area of design. Problems associated with 

vibrations have become more dominant as the size and 

velocity of devices have increased and therefore the 

demand for information, experimental and theoretical 

has expanded accordingly. 

Another area which has precipitated the desire to 

obtain more information about vibrating bodies is that 

of measurements. More and more frequently, mechanical 

resonators are being applied to the field of measurements, 

either as a means of measuring the properties of the 

resonator or the change in these properties created by 

environment, 

The subject of end resonances has received only a 

modest proportion of the attention and effort given to



this topic. There are two major reasons for this. Firstly 

the phenomenon does not appear to have been observed 

until as late as 1957. Secondly, an adequate means of 

exciting and identifying such modes of vibration was not 

readily available. The later problem has been overcome 

by the use of acoustic transmission lines to transport 

energy to and from the resonator. This is the method 

used to obtain the results of this thesis. The line forms 

part of an echo system which operates on the principle 

of sending a burst of stress waves, via the line, to the 

resonator and observing the character of the returning 

echo. Resonance of the resonator is well defined 

because of the shape of echo it produces. Identification 

of the modes is achieved by the use of a second line, 

which is placed in contact with the vibrating body at 

various points. Displacement of the body produces stress 

waves in the line. These are ultimately processed by 

a receiver which gives information about the amplitude 

and phase of the displacement at different points on the 

body. Therefore a picture can be built up of the nodal 

pattern of the mode vibration. A discussion of the echo 

technique used is given in chapter three. 

End resonance, as the name suggests,is a natural 

mode of vibration, that a structure possesses, where 

all the motion is confined to one or both of its ends. 

For example, a finite solid cylinder can be made to 

resonate at one end only, most of the displacement 

taking place within the first one or two diameters of



length. The structures considered are solid and hollow 

cylinders, rectangular bars and strips. All have been 

found to have similar characteristics and parallels can 

be drawn between these modes of vibration and those of 

other structures such as discs and rings. An exact 

theory for end resonances is not known and therefore 

related discussions are usually kept within the 

framework of the general analysis of wave propagation 

in eek cncea bodies, 

The analysis of stress wave propagation through 

extended isotropic solids takes account of the existance 

of two types of wave, waves of dilatation and distortion. 

They travel with velocities having different dependances 

on the elastic properties of the medium. In general 

neither wave can exist by itself, if any part of a 

boundary is free of stress, for on arrival at a boundary 

a wave of either type will result in the reflection of 

both types of wave. 

These features are responsible for the inherent 

complexities associated with the theory of vibrations 

of many systems, particularly those of end resonances. 

In addition to the dilatational and distortional 

waves, propagation on the surface of a solid May also 

take place. These surface waves decay exponentially 

with depth and, of all three types of wave, have the 

lowest velocity of propagation. Waves of this type 

were first investigated by Lord Rayleigh and are closely 

related to seismology. It was observed that an 

earthquake consisted of three tremors, two early rather



minor disturbances corresponding to the arrivals of 

dilatational and distortional waves, followed by a 

tremor of much greater magnitude capable of creating 

significant damage. This it was considered suggested 

that the insignificance of the early tremors was a result 

of their energy being dissipated in the interior of 

the earth; therefore the third tremor must be produced 

by a wave whose energy dispersion was less rapid. This 

could only be accounted for by assuming that the 

disturbance took place mainly on the surface. It has 

since been found that waves of this type can propagate 

on the surface of most solids. 

The phenomenon of end resonance exhibits a 

character which is very similar in nature to that of 

surface waves. However it is also true to say that 

it could be described equally as well by modes that 

propagate into the body with complex propagation 

constants. Modes of this type have been indicated by 

complex solutions to the classical frequency equations, 

and have been used with good effect to locate the 

frequency of an end resonant mode of solid cylinders. 

A discussion of complex propagation is given in 

chapter two. 

The concept of dynamic clamping, considered in 

chapter seven is predominantly associated with the theory 

of flexural vibrations of plates. Two plates, joined 

together, are used to obtain the required clamping effect. The 

whole system tS constructed in such.a way that the net



momentum, of the two vibrating plates, is zero. Typical 

of dynamic clamping is the tuning fork which can be 

regarded as two plates vibrating in anti-phase. The 

effect of two plates vibrating in anti-phase at the end of a 

bar,, as in ‘thescase of a. turning fork, is the induction of. a 

propagating mode in the bar. If the frequency of 

vibration is below the cut-off frequency of the 

propagating mode, propagation can only take place with 

a complex or imaginary propagation constant. This has 

the effect of increasing the effective length of the 

vibrating plates. Comparison with results obtained 

from the classical theory for clamped vibrating plates 

gives support to this argument.
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CHAPTER 2 

PROPAGATION OF WAVES IN SOLID CYLINDERS 
  

2.3 aAntzroduction 

It is essential to the understanding of end resonances, 

where propagation may be of a complex nature, that the 

mechanism of propagation in solids is understood. THe 

contents of this chapter forms a necessary part of that 

understanding. 

Exact theories exist for the propagation of waves 

in both infinite plates and infinite cylinders aede 

because of their similarities in terminalogy and dispexsion 

curves, a discussion on either would suffice. A 

majority of the experimental work of this thesis was 

however carried out on cylinders, and because the echo 

technique used is based on the propagation of waves in 

cylindrical wires the contents of this chapter is 

confined to the later of these theories. 

The motion of elastic waves in infinite cylindtical 

rods can be described exactly by the equations developed 

by both Pochhammer (1) and Chree (2). By satisfying 

the boundary conditions, of zero stress, on the curved 

surface both authors arrived at a frequency equation 

which, at that time, would have appeared somewhat 

formidable. In fact, even though this work was 

executed in the second half of the 1800's very little 

advancement was made until the middle part of this 

century. Bancroft (3) (1941) is attributed as being



the first to make a detailed exploration of this 

frequency equation, confining his area of interest to 

the lowest axisymmetric mode. 

A year later Hudson (4) carried out a similar 

examination presenting dispersion curves for the 

lowest symmetric and antisymmetric modes, illustrating 

their behaviour at high frequencies. These results 

consolidated the conclusion by Bancroft that as the 

wavelength of the vibrations became smaller their 

phase velocity approach the velocity of Rayleigh surface 

waves. While being aware of the existance of higher 

modes neither author undertook a study of their character. 

The 1950's saw an increased interest in the higher 

modes, This was probably stimulated by the availability 

of high speed computers. Holden (5) (1951) studied the 

spectrum of phase velocities of rods, but only 

considered modes with real propagation constants. Onoe 

(6) extended this in 1955 by obtaining solutions with 

imaginary propagation constants. It would appear that 

this was simultaneously achieved by Adem (7), who also found 

an infinity of roots of a complex nature. 

A comprehensive study of the frequency spectrum, with 

illustrations of the dispersion curves for the axisymmetric 

modes has been given by Onoe, McNiven and Mindlin (8) 

(1962). More recently (1972) results published by 

Zemanek (9) include the antisymmetric modes in addition 

to the ones showing axial symmetry. 

A great deal of effort has been directed to the



study of wave propagation in cylindrical rods anda 

great deal of accompanying literature published; some 

of these are given in references (10) to (20). 

  

2.2 Elastic Constant, and Velocity Relationships 

The study of the elastic properties of solids can 

be divided into two main categories. Firstly, Lt ene 

deformations of the body are small the stress will be 

linearly related to the strains; under these conditions 

the body is said to obey Hooke’'s law. Secondly, if the 

deformations are increased elastic relationships still 

exist but cease to be linear, and therefore we have a 

region of nonlinear elastic deformation. Beyond this, 

elastic relationships no longer apply and the body 

undergoes plastic deformation. 

In the discussions that follow the strains are 

considered to be small and therefore Hook's law is 

applied. 

Generalizing, Hookés law may be written as 

OY te tiki: ks oe 

in.cylindircal co-ordinates i,4,k,2 = 4,0, 2... The 

coefficients Shed are the elastic constants of the 

‘material and since 2.1 represents nine equations with 

nine terms in each there will be 81 coefficients in 

all. However, O55 = Cas which leads to the conclusion 

Ciske = Cs ike and therefore only 36 remain. Love (p99) 

has shown that Ciske = Css aK? consequently the number of
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independent constants is reduced to 21. Because of these 

conditions four subscripts are no longer required to 

describe the stress-strain relationships and so 2.1 may 

be rewritten as 

The number of elastic constants required to describe 

a material will depend upon its axis of symmetry. In the 

case of materials which are isotropic in nature, and 

symmetry exists around any axis, the number of 

independent constants required is two. Love has shown 

this to be so by considering the strain energy function 

to be invarient to changes in co-ordinate axis. It is 

usual in the case of isotropic materials to use Lamé's 

constants (yu ,A), these are related thus 

ihe laa naat Sa Al 

Vida ne. ec. H ge 

Bao Lae, gee 

All other terms in Cin being equal to zero. Therefore 

for an isotropic solid equations 2.2 are 

Q =] A+2u A A O O : - . 
Fo] = r A+2u r O Oo O 5 

03] = A A A+2u oO O Oo E3 

Gag Oo O O u O O Ey 2.4 

o.}=| 0 O : a E, 

oe =| O O 0 O O u E6



ee 

It is sometimes found more desirable to use the constants 

Young's modulus 'E' and Poisson's ratio 'o' , the 

relationship between these and Lamé's constants are 

obtained as follows. By definition E = o,/e, with stresses 

o> and o3 equal to zero. Therefore by solving the first 

three equations of 2.4 simultaneously one obtains 

E= u(3dA + 2n)/(A + wu) 25 

and similarly for o = ~e,/e, we have 

o = /2(rd + Vv) 2.6 

Solving equations 2.5 and 2.6 for X and y gives 

E/2(1 + o) 2.7, x
 i 

and 

»
 i] oF/(1 + o) (1 - 20) 2.8 

“The above relationships hold for any extended isotropic 

medium. 

In the case of thin plates, where the assumption 

of zero stress and strain normal to the plane of the 

plate is made, a different set of relationships apply. 

Following the same procedure as before we have 

E = 4u(p + A)/(A + 2p) 2.9
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and 

Oo = A/(A + 2) 2.10 

In terms of i and u 

H. = E/2(1 + o) as before 2. h 

and 

= 2 
A= 0 E/(1 -o") 2022 

As already stated there are two basic types of wave, 

dilatational and distortional, that can propagate in elastic 

media, each being characterised by a specific velocity. If 

the medium is of infinite extent each wave may exist 

independently. In the practical case however where the 

body has finite dimensions these waves are usually coupled. 

The relationship between these velocities and the elastic 

constants are fixed and may be written down directly as:- 

dilatational velocity ei 

& distortional velocity = om = u/p 

(X-+° 210970 

From equations 2.7 and 2.11 it can be seen that the 

distortional velocity is the same for a two dimensional 

as for a three dimensional system, namely, 

a, Oo B26 tS) 2.14 

This is not so for the dilatational wave as can be observed 

from the relationships of equations 2.8 and 2.12 and therefore 

we have for unbounded media 

Ca = BUS o}/p (1.4.0) (hin 2b) 2.15
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and for plates 

2 
c ao Bypil + 07) seo N

 

It is usual to drop the 'd' subscript from equation 

2.16 and refer to this velocity as the plate velocity Cp° 

These relationships will be valid for any linearly 

elastic mddia, that is, for any body which obeys Hock's law. 

However this law has no mechanism which allows for energy 

losses due to internal friction, and as such does not 

truly represent the physical situation. For a great 

number of solids the internal energy losses are so small 

that for many purposes it can be assumed that they 

obey the elastic rules. 

If the foregoing equations are adjusted so that 

losses due to internal friction are represented the 

stress-strain relationship is said to be visco-elastic. 

Due to the structural complexities of internal friction 

an exact theory is difficult to obtain and consequently 

numerous models have been presented in am attempt to 

describe the nature of this damping. Detailed accounts 

of this topic can be found in Kolsky (21) Campbell and 

. Sherwood (22). 

One way of treating internal’ friction is by 

assuming that the damping stress is proportional to 

the rate of change of strain, this can be incorporated 

in equation 2.2 thus. 

PSG eee na eee 2717
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A medium displaying this relationship is referred to 

as a Voigt solid. Voigt (23) being one of the oridinators 

of the model. If the body performs sinusoidal 

vibrations 3. may be replaced by jw. Therefore we have 

¢. = 0% € 2.18 

where ee is complex and given by 

* = 5 Cc ria Cader J! Dar 2ai9 

It may be noted that in this situation the stress and 

strain are not in phase, and that the magnitude of this 

phase shift is dependent upon both the loss constant 

n and the frequency w. 

2.3 Equations of Motion 
  

The vector differential equation of motion for small 

deformations in elastic media can be written as 

(A + 2u)VA - 2uV x w = pu 2320 

Equation 2.20 gives some indication of the influence of 

dilatation and distortion, as represented by the terms 

containing Gua and c? respectively, Where A is the 

dilatation and w is the rotational vector. A solution 

of this equation was obtained by Pochhammer and Chree, 

a discussion of which can be found in Love. The method 

used, by these authors, was to obtain four Besselg 

equations from 2.20 in favour of the dilatation and’



ae 

three rotational components. Relationships for the 

displacements were then obtained by simultaneously satisfying 

the solutions of the Bessels equations. A more elegant 

means Of acquiring a solution is to describe the 

displacement vector in terms of potential functions. 

The resolution of a vector field in this way is part of 

a theorem by Helmholtz (see Morse and Feshback (25) p.52). 

Writing the displacement in this manner gives 

u=|V¢+VxdH, V.H = 0 On ae 

where ¢ and H are scalar and vector potentials. It can 

be shown ( Appendix A.2.3) that 2.21 is a solution of 

2.20 if > and H are solutions of the equations 

2 
cr 5 See 2:92 at 

2— 

CE eH ween 2.23 
at? 

Inserting the solutions of 2.22 and 2.23 into 2.21 gives 

the required displacement vector, the three components 

being of the form 

a, = U(r) Cos nOexp j(yz - wt) 

Up = V(r) Sin n@exp j(yz - wt) 2.24 

B= W(r) Cos nOexp j(yz - wt) 

where t is the time dimension, y is the propagation constant 

for the z direction, w is the angular frequency and n 

the number of wavelengths in the 6 direction, which 

may be equal to zero or an integer. The accompanying



functions 

U(r) 

V(r) 

W(r) 

where J'( 
n 

2 Ke 

oe Le? 

Of Beare, 

i A Jt (hr) +  B (kr) /k + nc J, (kr) /xr 
Il nA J) (hr) /r - yBn J. (kr) /kr - Cc Jt (er) 42.25 

jy A J, (hr) - 3 Bk J, (kr) 

sxe) — J, (xr) and 

(w*/c2) - ¥? h? = (w*/c2) = y 2.26 

2.4 Frequency Equations 
  

The 

obtained 

infinite 

stresses 

stresses 

for.a'cy] 

thus, 

constants A, B and C in equation 2.25 are 

by satisfying boundary conditions. For a free 

cylinder the relavdnt conditions are that the 

on the curved surface should be zero. The 

are given by equation 2.2 where the subscripts 

indrical co-ordinate system should be substituted 

Le err 

29 0.0 

3 He 

2 2eh 
Ae eee Oz 

ae 

635. > 350 

On the cylindrical surface only three stresses are 

DECSEILE, 

Oo an dq - 
2X 

one plane stress Oy and two shear stresses 

9° These are obatined from 2.4 and can be
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written as 

is Ree 2 oe p( (Ca 2c) A + 2c So) 

tS 
Cor pC, for 

ee 
oror. pC, fre 

Here the substitution A has been made for the dilatation 

a Egg + E5¢ and the relationships 2.13 inserted to 

give some physical meaning to the constants. The strains 

are related to the derivities of the displacement components 

by 

€ oor € ite. 

rr or 66 moO rE 

du du u du 
Ee 7 9 8 Zz 

yeh (han, ences i i a a eet 
ero a> 3 + 3r “ ) fz OZ 2.31 

ou ou Ou ou 
Z re 8 : iz. = ee Sale ee YY ee ee 

for 5 ( ox * OZ ) fo. 2 ( a4 eS ) 

For a cylinder of radius 'a' the boundary conditions 

will be 

Oo = 0 =o, = 0 at r=a Zuke 

Therefore, to obtain the frequency equation, 2.24 are 

substituted in 2.31 which in turn are implanted in 

equations 2.28 to 2.30. The resulting stress relationships 

are evaluated at the boundary to give three homogeneous 

equations in terms of the constants A, B and C. These 

can be represented in matrix form as



- ie. 

Se On. 13 _ 
ao) Ao a3 B =..0 2333 

a C See. Rs 

where the elements aim 2s given by Zemanek can be found 

in Appendix A.2.4. Non-~trivial solutions of these 

equations are obtained when the determinant 

la =O. a ms 1 2, 3 2.34 fe 

Expanding this leads to the required frequency equation. 

2.5 Axisymmetric Modes 
  

If n takes the value zero in 2.33 (see Appendix A.2.4) 

elements a33 =0 and 853, = 4,3- The determinant can then 

be simplified by subtracting line two from line one. 

On doing this we have 

(a), - 42)) (ayo - ag) 
es 6 2.35 

a3) A390 23 

The condition implied by putting n equal to zero canbe 

best understood by considering equations 2.24 and 2.25. 

The choice of the trigonometric terms in 2.24 is arbitrary 

and with no loss of generality one may replace the sine. 

terms with cosine terms and vice versa. Hence it can be 

seen from these equations that when n is zero the displacements 

cease to be functions of @ and therefore the motions are
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symmetric about the z axis. With this value of n 

imposed on equation 2.25 it is obvious that V(r) becomes 

uncoupled from U(r) and W(r). So we have two types of 

axisymmetric modes, one set which has displacement in 

the @ dierection only, known as the torsional modes, and 

one set in which the motions take place in the r and 

z directions only, known as the longitudinal modes. Each 

family of modes have their own frequency equation, resulting 

from the factoring of 2.35. These are, for the torsional 

modes. 

a53.= Oo 2.36 

and for the longitudinal modes. 

(a), - 8g)) (Ajo - ag) 

oat ae 

The first of these two equations is a function of two 

dimensionless variables 2 and ya, where Q2 is given by 

wa/C.. The roots of this equation are not dependent 

upon Poisson's Ratio o, although the freugency will be, 

because of the presence of es in 2. These modes 

(torsional) have no significanta in the following 

chapters; therefore any further reference to 

“axisymmetric modes" applies to the longitudinal family 

only. 

The roots of equation 2.37 depend on o in addition
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to 2 and ya; dispersion curves for o=.33 showing the relationship 

between 2 and ya are shown in Fig.2.1. It can be seen that 

the frequency spectrum occupies two planes, real and 

imaginary. Imaginary roots of equation 2.37 are shown 

as continuous lines in the imaginary plane. The dashed 

lines represent the complex roots; these are discussed 

later, 

Solutions for an infinite number of axisymmetric modes 

are contained within this equation and a method of 

labelling is required. A convenient method is that 

used by Meitzler (25) and Zemanek;, the notation numbers 

the modes in the order of which there dispersion curves 

occur in the frequency spectrum. Thus the first mode 

will be labelled L(0, 1) and the second L(0,2) where 

O represents n = O and L that it is a longitudinal mode. 

2.6 Antisymmetric Modes 
  

When n has a value other than O (i.e. n> 1) equations 

2.24 show that the displacements become dependent on 

8 and as such indicate the antisymmetric property that 

these modes exhibit. The term flexural is often applied 

to this type of propagation, but this tends to be 

misleading, since it is only the values of n = 1 and 2 

that satisfy the basic hypothesis of the Bernoulli-Euler 

theory for flextural motion of beamst That is that any 

plane cross-section initially perpendicular to the 

neutral surface remains so after deformation. Therefore 

the term ‘compound' has been used, in this thesis, to 

describe all modes with nal. The word compound
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indicating that the displacement vector is a function 

of all three co-ordinate axis. 

The method of labelling these modes is similar to 

that of the longitudinal case. For example, the lowest 

mode forthe n = 1 family is Labelled F(1, 1) and for 

n= 2 :F(2; 1) ete., this is in accordance with 

references (9) and (25). 

An examination of the elements in 2.33 will show 

that, for n2l, all are required to obtain the frequency 

equation for these modes. Figures 2.2,2.3,2.4 and 2.5, show 

dispersion curves as obtained by Zemanek from equation 

2.33. These curves, like those of the longitudinal 

modes, extend into the imaginary plane representing 

imaginary and complex propagation constants y. 

evi, Cut cOErt Frequencies 
  

The presentation of results in the manner shown 

in Figures (1) to (5) has numerous advantages. A 

feature of particular usefulness is that it provides 

simultaneous information about group and phase 

velocities. If any point on the curve is taken, for 

example, the group velocity is given by the slope at 

the point multiplied by the shear velocity. e.g. 

ie 32 
ty <a tye). 2.368 

The product of the shear velocity and the ratio 

of the ordinate to abscissa for the same point will give
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the phase velocity thus 

ic Q Coy ee es 2.39 

Considering Fig. 2-1it can be seen that by applying 

the conditions of 2.38 and 2.39, the curves display 

some interesting characteristics, for instance on curve 

L{O, 1) close to the origin there is the situation 

Ot <i 
(ya) (ya) 

and therefore the group and phase velocities have the 

same value. This condition is an essential part of the 

discussion in Chapter 3.* Another point that is presented 

particularly well by Fig.2.1 is the existence of: 6 

phenomenon described as backward wave motion. In essence 

this is a situation that arises when the group and phase 

velocities have opposite sign. Inspection of Fig. 2.1 

shows that this oscurs on the curve L(O, 2) between its 

point of minimum frequency in the real plane and the 

frequency axis. Experimental observations of this 

phenomena together with discussion are presented by 

Meitzler (26). 

The feature displayed by these curves, that is of 

particular interest in this part of the discussion, is 

the existance of cut-off. This is the term used to 

describe the event where propagation of a mode ceases. 

Mathematically this would be represented by a zero 

propagation constant y. Graphically we see that when 

Y goes to zero the dispersion curves intersect the
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frequency axis, the points at which this occurs gives 

the cut off frequencies for their respective modes. 

All modes, except the lowest in each family, have two 

common characteristics at een to zero, that are often 

used to define this phenomenon. Firstly, the group 

velocity goes to zero and secondly, the phase velocity 

goes to infinity; this becomes apparent when the 

conditions..of 2738 and..2.39 are applied to Fige..3.1:to.2.5 

If ya is allowed to go to zero in the preceeding 

frequency equations a modified set of equations are 

obtained. The procedure is as follows. Considering 

the axisymmetric modes first, equation 2.35 reduces to 

(av seat): a! a =0 2.40 
did. ak 32 23 

where the primes indicate modification of the elements 

ia by putting ya =O. The element a53 is unaffected 

by imposing this condition on it, and so all the 

foregoing comments about it are still valid (i.e. modes 

represented by the frequency equation B53 ° O have an 

uncoupled displacement in the 9 direction). When the 

roots of the equation a45 = O are substituted into the 

displacement equations 2.25 the resulting partical 

displacement is entirely axial. For similar treatment 

of the roots from the equation (ayy - ani 

displacement takes place in the radial direction. The 

) = O all the 

modes associated with these cut off frequencies are therefore 

called axial and radial shear modes respectively. Therefore
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with reference to Appendix A.2.4 the cut off frequency 

equations become 

QT (2) - 2S, (2) = © for torsional modes 2.41 

(a2) TQ (a2) - 20°, (a2) = O for radial shear modes 

2.42 

J, (2) = O for axial shear modes 2.43 

Following the same procedure for the compound modes, 

reduces equation 2.33 to 

' ' 

Ae “ha 

1 _— a’ 35 O 2.44 

2a mee 

writing these equations in full 

' os a" 39 =O 

becomes QT 7 (2) - nJ, (2) =O 2.45 

and 
' 

oul “a 

= 0 

#21 28 

becomes 

bb, ~ bb, = O 2.46
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; where 

By Bin -1) (03: eto ng. (0) [2 aoc 1 n-1 n'S n 

b, = [a2o 4 (ae) ~ (nt+1) 5, (a2) | 

b, = J,(02)|n* - 1 - 9772| 

> te Ske Boone 0) 1). '— 200 > (@), 
4 n No 

For n = O equation 2.45 is the same as 2.43 and equation 

2.46 is the product of 2.41 and 2.42. 

2.8 Complex Propagation 
  

It can be seen from the dispersion spectrum that 

all modes have curves which terminate at the zero 

frequency plane. The path these curves take to reach 

the point 2 = O depends on the mode. In general all 

modes except the L(O, 1) and the F(0O, 1) will have 

made the journey by going into the complex plane, either 

by direct route from the real plane, or by passing 

through the imaginary plane first. The curves in the 

complex plane, shown as broken lines, represent the 

complex roots of equation 2.33. Fig.2-6shows the three 

dimensional plot given by reference 8 for the 

axisymmetric modes. It can be seen from this plot how 

each curve makes its way to the zero frequency plane. 

Because of the complex and somewhat confusing appearance 

of this figure the correct interpretation requires some 

,
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Fig. 2.6 Three dimensional plot of frequency spectrum for 
symmetric modes of propagation in a solid cylinder. 
(——): real or imaginary modes; (---): complex 
modes. o = 0.31 
(Reproduced from reference 8).
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discussion. 

When examining this frequency spectrum it is most 

important to appreciate the way in which the roots emerge 

from equation 2.35. Real and imaginary roots occur in 

pits while the complex roots occur in groups of four. 

Each real and imaginary solution has its negative 

counter-part and therefore a complete plot of the roots 

of this equation would take up four quadrants. The 

complex roots also have positive and negative solutions 

but in addition to this each has its conjugate; hence 

there is acomplex curve in each of the four quadrants. 

Because of the limits set by nature any involvement 

with the negative imaginary plane would create a 

violation of the physical problems that exist. In. 

accordance with this the frequency spectrum can only 

have any meaning in the two remaining quadrants. Therefore 

when examining Fig.2.6it should be realised that there 

exists a real plane in the negative direction which is 

a mirror image of the one drawn. This now brings us 

to the point where some meaning can be given to the 

method of labelling. 

: The numbering of the curves in the real plane is 

in the order in which these modes occur. A bar over 

a number in the real plane indicates that this portion 

of the curve extends into the negative real plane. The 

barred numbers on the complex curves have similar 

meaning in that they imply the existance of the negative 

conjugates, of the curves drawn, in the second quadrant.
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As an example therefore, if one tracks the behaviour 

of the curve labelled 9 in the real plane as it nak de 

its way to the zero frequency plane it can be seen that, 

in all, this mode has three segments in the imaginary 

plane, one in the negative real plane, one complex 

segment in the quadrant shown and two complex segments 

in.-the second Guaceeee. The physical significante of 

this can only be: described in terms of a finite’ or 

semi-infinite elastic cylinder, where a wave may 

emanate or be reflected from an end boundary. The 

imaginary propagation constants represent a non- 

oscillatory motion decaying exponentially from this 

boundary, while the complex constant gives an 

oscillatory motion which also decays spatially. It can 

be seen from Fig.2.6that the non-real segments only 

occur below cut off and if these modes are excited by 

an externally applied force, the character of the motion 

will change as the frequency of this force goes from 

that of cutvotr to, Zeros 

2.9 Displacement Distributions 
  

The displacement pattern produced when any one 

mode is propogating in a bar is dependent upon the 

frequency, and therefore no general pattern can be 

associated with any mode. This is in contrast to the 

theory of thin discs where, because each mode has a 

discrete frequency, the pattern associated with that
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frequency will identify the mode. For instance the 

inplane compound modes of discs are usually labelled, 

as the (m, n) mode. Here as in the case Of rods n refers 

to the integer number of wave lengths by which the 

circumference is divided, and m the order that modes 

occur on the frequency spectrum for a given value of n. 

That is#for n= 2 say,the modes are labelled as ft ied» 

(2 2). (3, 2) etc. The feature of disc modes that 

makes them easy to identify, by their displacements, 

is that for the (m, n) mode there will be n nodal 

diameters and m nodal circles. 

It has already been stated that the displacement 

vector for an elastic rod can be written in terms of 

scalar and vector potentials (equation 2.21). Considering 

the axisymmetric modes (because of the relative 

simplicity of the equations) the r dependent displacement 

components are, from equation 2.25. 

A(TS (AE). + Mya! (kr) /k) eat U(r) 

I Wie) = aly Ane): MkJ, (kr) ) 2.48 

where M = B/A; the value of this ratio is obtained by 

satisfying one of the boundary conditions 2.32. Making 

the necessary substitutions between equations 2.47; 

2.48, 2.24 and 2.32 the following relationship is obtained 

2.2 M = 2y 2 OPA 62 ae 2.49 

(ner oer ate 2 a! (ka)
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where 
OJ, (xa) 

Js (xa) = -——-—— and a = C./Cg 
da 

From this it can be seen that M is frequency dependent. 

The implications of this are that, since the first 

terms of equations 2.47 and 2.48 represent a displacement 

contribution from a dilatational wave and the second 

terms from a rotational wave, the displacement vector 

must itself be frequency dependent. 

A possible method of defining a mode by its 

displacement pattern can be obtained by taking a special 

solution of equation 2.49. If the value 22 = axe 

is substituted, M becomes infinite and for the 

displacements to remain finite A must equal zero. Therefore 

equations 2.47 and 2.48 become 

U(r) = = KyJy (vay ) 

2.50 

W(x) i 

: iG 
=I YI. (yas. ) 

the point to notice about these relationships is that 

they make the displacement vector a function of the 

vector potential only and as such can only describe a 

shear (distortional) wave. If 2.5 is now substituted 

into a permissible boundary condition of 2.32 the 

characteristic equation 

Jy (ya) =O ook 

is obtained, Here, as one might expect for a shear
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wave, the roots are independent of Poisson's Ratio. 

The solutions of equation 2.51 together with the 

relationship 2 = v2 (ya) gives the frequencies of 

Lamb's (27) distortional modes. Writing the roots of 

2itie OS Yn? the displacements for any mode will be 

Paci = 
ek a Kia ¥n71 (Yn? a 

2, ed, 

Il 

. r 
W, (4), sae YnI0 '%n? =) 

From these equations it is now possible to obtain a 

relationship between mode and displacement. 

The relationships that exist are:- 

For the nth mode there will be n circles at which the 

displacement U(r) is zero. The smallest of these 

circles always having zero radius. At re=a W, (¥) will 

be only a few percent of its maximum value at r = 0 

and for the present discussion can be considered as 

being a node. This being the case, at the nth mode 

the axial displacement W, (¥) will also have n nodal 

circiés* 

The practical usefullness of defining modes in 

this way is limited because of the problems involved 

in exciting a single mode in isolation. However it 

does help give a physical picture of the various modes. 

One redeeming aSpect of the method+is that if is 

immune to any variation in Poisson's Ratio and therefore 

the relationships just stated are true for all isotropic 

materials, 

The equations given in this chapter represent the
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exact analysis of wave propagation in infinite cylinders. 

Boundary conditions, on the curved surface, and equations 

of motion are satisfied by displacement relationships 

given. When a second boundary exists, as in the case 

of a semi-infinite cylinder, approximations have to 

be made to satisfy the condition of zero stress, at this 

boundary. The problems involved in trying to obtain 

an exact solution result from having to satisfy three 

zero stress conditions simultaneously. These boundary 

conditions are that 

It can be shown that if one of these conditions is 

satisfied the remainder can not be. The physical 

explanation for this is that when an incident mode is 

reflected at an end boundary other modes are generated. 

Therefore a traction-free boundary will only occur when 

the resultant of all the stresses produced by these modes 

is zero. The boundary conditions must therefore be 

written as 

oc © 8 

k-0°2m B H=0 Srzm ~ ti=o °zem . 

Where, for a given frequency, On is the stress produced 

by the mth generated mode. The limits of the summation 

indicate the need for approximation. 

Support for this explanation is given by Zemanek,



who by considering the first nine (four complex and 

their conjugates and one real) axisymmetric modes 

obtained within 0.5% the frequency of the end resonance 

for this family of modes. 

This illustrates the important role that this 

chapterplays in further discussions on end resonances.
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CHAPTER 3 

THE ECHO TECHNIQUE 

3e1 . Introduation 

The idea of using an echo to obtain information at 

a remote observation point, is implemented in a wide variety 

of situations. The complexities of the system involved, 

i using this technique, range from those of say radar 

or sonar to those of a system as rudimentary as that of 

measuring the time lapse between dropping a stone into 

a well and the returning sound of it hitting the bottom. 

In each of these systems the basic principle is the 

same, and is one of transmitting energy to a target so 

that an echo containing information about it's 

characteristics can be obtained. The medium used to 

transport the energy will depend on the system, which 

in general will be designed to suit a given set of 

environmental circumstances. 

The echo technique used to obtain the results 

discussed in the following chapters employs this 

ptinciple. ° Fig. (3.1)*is a block .dilagram of ‘the 

System used. A magnetostrictive launcher is used to 

transmit and receive a burst of high frequency stress 

waves. The burst transmitted takes the form of a 

pulse which acts as an envelope for the high frequency 

Carrier wave, the number of oscillations contained 

being selected to allow sufficient information to be |
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Fig. 3-1 Basic layout for the echo technique used to 
obtain the results of this thesis. 
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echoed. An acoustic line is used to carry these pulses 

to and from the resonator. Unlike the radar and sonar 

cases there is no spreading and the only attenuation 

arises from absorption in the material of the line and 

scattering from grain boundaries, supports and other 

impedance discontinuities. The line and launcher are 

very often constructed of the same material, thereby 

eliminating all of the problems associated with the 

discontinuities prodoaed by jointing. Line lengths are 

not important providing they are long enough to contain 

half the pulse length e.g. for a pulse of duration T 

the length 2 of the line will be given by 

> CT/2 3 

where C is the velocity of propagation in the line. At 

the other extreme the length should not be such that the 

Overall attenuation prodoued by the line becomes a 

dominant problem. Within these limits the line length 

can be tailored to suit the physical environment for 

which it is intended. 

The resonator can have a variety of geometrical 

forms, and to a greater extent the structure chosen will 

depend upon the parameter to be measured. This constraint 

is one of necessity rather than convenience and will be 

determined by the availability of empirical or theoretical 

solutions for the parameters involved. 

The method of taking measurements is to vary the 

transmitter frequency until it coincides with a natural
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frequency of the resonator. At this instant resonance 

will occur. The echo that this situation produces is 

quite distinct having a phase sensitive null and therefore 

facilitates a method of measuring resonator parameters. 

In general, when resonance occurs, information can be 

obtained in two forms; either by way of the resonant 

frequency, or of the Q factor, a particular mode may 

exhibit. The type of information required will determine 

its source. As one might expect measurements involving 

energy loss will lend themselves more readily to the method 

of observing Q's, whereas information relating to elastic 

constants of the resonator, or any parameter that may have 

an effect on them, can best be obtained by measuring the 

frequency. 

3.2 Transmission Line Theory 
  

Analogies may be drawn between the acoustic line and 

the electric transmission line provided only one mode is 

considered to be propagating. This mode, sometimes referred 

to as "Young's modulus*® mode, is the lowest axisymmetric 

mode to propagate in a cylindrical rod. The torsional 

mode, which in general is not excited by the method of 

drive, would propagate at the much lower shear velocity: 

With reference to figure (2.1) it can be seen that this 

mode, labelled L(0,1),-has no cut off frequency, and 

that for ya<l there exists a linear relationship between 

® and (ya). If this relationship is written as Q=kya
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and the substitutions wa/C. and 2ma/d, are made for Q 

and ya respectively the frequency equation 

AGF = kC., 3.2 

is obtained. The value of k can be obtained by imposing 

the restriction ya<l on the frequency equation for the 

axisymmetric modes (equation 2.37). By replacing the 

Bessel functions with their series expansion and retaining 

only the low order terms the equation 

tae C. 363 

is obtained, Where es the velocity of longitudinal waves 

of infinite wavelength in a bar is equal to VE/p. The 

steps taken to acquire this result can be found in Love 

p.289. iheretore from eqhations 3.2:7°373;, :2.38.:and 2.39 

it can be seen that for ya<l 

a & t Ce Con. Ox VE/p 3.4 

If the radius ‘a’ of the line is small (i.e. a<A/2m) 

the usual procedure may be adopted in that all displacements 

and hence their derivitwes, except those in the axial 

direction, are assumed zero. This reduces the stress strain 

relatdonships of Hook's law to 

oO = (AX + 2n) e, 
ZZ, Zs 

which by definition gives E = (X} + 2u). Also the
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rotational vector W (see Appendix A.3.2) will be zero. 

Therefore the equation of motion 2.20 becomes 

on 

u 3.6 
Zz 

ou 
ae = -% 
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The dilatational velocity for a one dimensional system is 

from equations 2.13 and 3.5 

Cc mae 

If we use this relationship in equation 2.26 it is seen 

that'h:for a thin rod is zero. . Putting h = 0 in 

equation 2.49 gives M = O which ultimately leads to the 

displacement components 2.47 and 2.48 being reduced to 

Nt Oo
 u(r) 

w(r) = jAy 

giving consistency to the assumptions previously made, 

The transmission line theory can therefore be built 

up around equation 3.6 providing a<j/2n. If losses are 

taken into account, as represented by 2.18, equation 3.6 

becomes 

atu + os ara wat oe 
92° # 92° a 

which has a solution of the form
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u(z).= (B exp 3(-qz) + B'exp j(qz)) exp.jut 3.8 

As with the electrical transmission line theory this 

wave has two components, representing two waves 

travelling in opposite directions. B and B' are the 

complex amplitudes of the waves travelling in the positive 

and negate z directions respectively. The propagation 

constant gq is also complex and is given by 

qs -0*/ (C2 + jwn/p) 300 

To make comparisons between the acoustic and electric 

transmission line theories one must give analogies 

between the respective parameters. The most convenient 

and most often used, is that of current/velocity and 

voltage/force. This therefore gives the acoustic (or 

mechanical) impedance as the force divided by the velocity. 

Using these analogies Pollard (29) obtained equations for 

input and transfer impedances, and the reflection coefficient 

showing that each has a structure identical &, those of 

the electrical theory. 

The reflection coefficient is given as 

a ' = pl R = B'/B (2, 4 )/ (4, ES 41) Zeb 

where 25 the characteristic impedance is equal to 

pa(ce + jaun/p)?, and Z, the load impedance at the end 
L 

of the line 2= 0, Equation 3.10 will therefore give
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PES. ses Oscilloscope trace showing echo from a 

Brass line resonator at its fundamental 

mode. Frequency = 25.06 KHz. Resonator 

length = 7 cm.
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the echo in terms of the system impedances and the input 

signal. The input impedance for a finite length 2% of 

line, given by reference (29) is 

‘% = Z) tan hjkk 3.11 

where k has the same function as q in 3.8. If this is 

substituted for ar in equation 3.10, the resulting expression 

gives the reflection coefficient for a line terminated 

with a line resonator, Using this, Sharp (30) obtained 

an expression for the echo resulting from a sinusoidal 

input. The results obtained give good support to the theory. 

3.3. The. Echo 

The echo system shown in Figure (3.1) was originally 

developed for resonant ultrasonic thermometry by Bell 

(31), (32). However it has since been used for many other 

applications, one being the type of work covered in this 

thesis. The input used is sinusoidal; this gives, at 

resonance, the form of echo shown in figure (3.3). Although 

the method has been used in numerous experimental works 

over the last few years no completely satisfactory 

explanation has been given of why an echo of this shape is 

obtained. The computer plots obtained by Sharp are in 

excellent agreement with experiments, but because of the 

complexities of the equations involved one cannot obtain 

a physical picture of what is happening.
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Fig. (3.4) shows a sketch of the echo together with 

the terminology used to describe its two major components. 

The echo signal is the same length as the input burst and 

therefore the echo decrement occurs aftér the last cycle 

has reflected off the resonator. To give some physical 

meaining to this picture the following simple analysis 

is given. 

If it is considered that the line is terminated by a 

lossless impedance 2 such that it has the form Ms+k/s Tet 

where M and k are parameters of the body and s is the 

Laplace operator, equation 3.10 becomes. 

R(s) = -1 + 22 s/ (Ms? + Zos + k) 3.12 

This assumes that the losses in the line are zero and therefore 

that Zo is real. The echo will be given by 

£(s) = g(s) R(s) ON 

g(s) the incident wave usugally consist of a burst of 

Sinusoidally varying displacement. Shortening the burst 

length so that it contains only one. half cycle will give 

an insight into how the system responds to the first cycle 

of the burst and how the echo is built up when a series of 

Similar negative and positive disturbances follow. Therefore 

the forcing function will be 

g(t) = H(t)A sin wt + H(t-1/w)A sin w(t-T/w) 323
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Using Laplace transforms the solution of 3.12 is obtained 

by substituting equation 3.13. On inverting back into 

the time domain, and assuming that the natural frequency 

w, of the resonator is given by VK7M. The following 

equation is obtained for the echo at resonance: 

£(t) = |H(t)A sinw t + H(t-1/w)A sinw, (t-1/w) | 

|H(t) 2A exp(-Z /2M) t sin (w2—-22/4m) *¢| 

|H(t-1/w) 2A exp (-Z0/2M) (t-1/w) 

sin (w2-22/4M”) #(t-1/w)| 3,14 

This equation can be simplified further to give a more 

readable solution, but there is one important point that 

would be missed if this weste carried out without comment. 

The first bracketed term of this equation is seen to have 

a frequency identical to the launched frequency. This 

is not so with the remaining terms which, because of 

their exponential character, must represent the natural 

decay of a body due to an initial disturbance. Ifa 

comparison is made between these terms and the example 

given by Kolsky (p. 101) it is seen that Zo has the 

same function as a damping factor. Hence it is apparent 

that the line introduces damping to the system. Therefore 

the echo decrement will not in general be at the natural 

frequency of the resonator. However 2 <<4M7w" so for 

this discussion the decrement frequency will be assumed
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to be Wat therefore equation 3.14 becomes 

£(ty = HUEJA(1 - 2exp (-Z,/2M) t) sin wit 

+ H(t - T/w, JA(L - 2exp (~Z/2M) (t -1/w)) 

sinw (t - T/w,) 3.14 

A plot of this function is shown in figure *<3% 5) 5 

With the aid of this plot it will now be possible 

to explain why the echo has its characteristic shape at 

resonance. The first half cycle is the reflection, of 

the input, from the interface between the line and resonator. 

It is inverted because the condition Z4<<2Mw, implies 

that the load impedance Zr is greater than Zo which, from 

equation 3.10, gives a negative reflection coefficient. 

Its amplitude is reduced because part of the energy, 

contained in the incident wave will have been used in 

settings the resonator in motion. The following part of the 

echo represents a wave being transmitted from the 

resonator which, by now has stored enough energy to 

enable it to perform in the same way as the launcher. 

When the incident wave hits the resonator they must both 

move in phase, and therefore the transmitted wave from 

the resonator has the same phase as the incident wave. 

This is shown to be the case in figure (3.5). To make 

this a little clearer consider the sketch in Eugure (342). 

At rest, tlie. Mane eebonaton junction is a distance x=a 

from some reference x=0O, also a displacement that increases
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x is positive and a displacement that decreases x is 

negative. Therefore if a positive half cycle, representing 

a positive displacement, impinges Sn thie “junction tt witt 

tend to increase x. If the impedance 25, is infinite there 

will be no displacement; for this to happen a wave 

representing a negative displacement of the same amplitude 

must be reflected so that the resultant at the boundary 

is zero. Reducing the impedance will allow a displacement 

to take place; however if its amplitude is less than that 

of the wave producing it, a negative displacement wave will 

still be reflected but with diminished amplitude. This is 

represented by the first half cycle of the echo plotted 

in figure (3.5). Displacing the junction through half a cycle 

brings it back to the point x=a , but the portion of Zr 

adjacent to the junction will now contain kinetic energy 

and therefore it will continue to move toward the 

reference launching a negative displacement wave, of 

half a cycle, back down the line. The process is repeated 

but next time the displacement is positive, and so it 

continues until the energy contained in Zs Ia Zero,; This” 

action is one of exponential decay, as one Might expect 

from a system containing losses (i.e. the line), and is 

indicated thus in figure (3.5), 

The effect of transmitting a burst containing one 

whole cylce can be obtained by superposition as shown in 

figure (3.6a). Waves that are launched from the resonator 

are seen to reinforce, hence increasing their amplitude. 

On the other hand the reflected wave from the junction is
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cancelled by a wave that would have already been in the 

line due to the previous half cycle. The net effect is 

shown in figure (3.6b). What this means physically can be 

best understood by reconsidering figure (3.5) and the 

condition that existed after the first half cycle. That 

is that the junction was at the point a and moving towards 

the reference x=O. Therefore when the negative half cycle, 

representing a negative displacement, arrives at the 

junction the wave and junction are moving in the same direction. 

Hence the impedance Zr presented to the line is reduced 

and so is the amplitude of the reflected wave. Increasing 

the burst length will further reduce Z, and the amplitude | 
L 

of the reflection from the junction. If the burst length 

is increased such that its period is five times the 

time comstant of the system (i.e. 5 x 2M/Z,) a steady state 

condition will be approached. At this point the impedance 

Z because it is assumed lossless; becomes zero, and the L! 

line resonator junction will appear as if it were a free 

boundary. On reflection from a free boundary a displacement 

wave does not change phase and shegerore the resultant 

displacement at the boundary is twice that of the wave. 

The stress wave is, of course, of reverse polarity 

fulfilling the stress free end condition. This is dealt 

with in some detail in reference (33) p.81. With the 

steady state condition reached the echo will continue 

to be thestotal reflection, without inversion, of the 

transmitted wave. Since it has gone from an impedance 

greater than that of the line, at rest, to zero impedance
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Pig. “gen Oscilloscope trace showing actual motion of 

the resonator of figure 3.3.



5 Te 

at the steady state point, Z, will at some time have been 
L 

equal to the line impedance Zoe At that instant the 

reflection at the junction will be zero and therefore so 

will the echo. The. term crossover is used to describe 

this effect. 

When the steady state condition has been reached the 

displacement of Zr adjacent to the junction must be twice the 

amplitude of the incident wave. Therefore when the burst 

comes to an end the Peaunaton (Z,) will start to launch 

a wave with this amplitude, this portion of the echo is 

called the echo decrement. 

Since it is being suggested that the echo is made up 

of reflected waves from the junction and transmitted 

waves from the resonator (Z,) it should be possible, by 

summing all the reflected waves and summing all the 

transmitted waves, as in figure (3.6a), to obtain two 

components which when superimposed produce the echo. The 

effect of doing this is shown in figure (3.7). Transmitted 

waves, on summation, are seen to rise exponentially toward 

a steady state value then,at the instant in time when the 

last reflected cycie has left the junction, decay in the 

same manner. This curve figure (3.7a) represents the actual 

displacement of the resonator, as it goes through its transient 

and steady states, due to the disturbing influence of the 

incident wave. Therefore if a second transmission line, 

used to receive@® only, is joined to the resonator, a wave of 

this shape will be transmitted. Figure (3.8) shows the 

oscilloscope trace of the received wave from this set Wis -Ehe 

only part of curve (a) representing a transmitted wave from the
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resonator is that which occurs when the disturbing force 

has ceased. i.e. the portion termed the echo decrement. 

Curve (b) is produced as a result of summing all the half 

cycles reflected from the junction. This is the echo one would 

get if the displacement of the resonator, as shown in curve 

(a), did not take place, which is tantamount to saying 

that the line is terminated with an infinite impedance 

Hence it is an inverted replica of the incident wave. 

Superposition of these curves, shown in figure (3.7c), 

does in fact give the required picture. 

Terminating Impedance With Losses 

The echo technique so far described has been used to 

Measure material losses. Pelmore (34). The method 

being to construct a resonator from the specimen material 

and use it as the terminating impedance for the line. 

Introducing losses to the end of the line can produce quite 

dramatic changes in the shape of the echo; therefore a 

brief explanation, in terms of what has already been said, 

will be given. 

It has been shown that the exponential shape of the 

echo results from the transient response of the terminating 

impedance Z. to the input burst, and therefore at a time 
L 

greater than five times the time constant a steady state 

condition will be reached. Beyond that point the 

junction, because the impedance was assumed lossless, 

was equivalent to a free boundary and hence total



  

  

  

No losses (a) 

  

a5" 25 (b) 

      

  

Fig. 3.9 The presence of losses in the resonator can produce quite 
drastic changes in the shape of the echo. 

 



Fig. 

  

aces Oscilloscope trace showing echo from the 

resonator of figure 3.3 at its third harmonic. 

The decrement is stepped and has three 

oscillations per step.frequency = 74.73.KHz
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noninverted reflection occurred,: 

Including losses in Ze, insures that its value will 

not be zero at resonance but will have a magnitude equal 

to the loss term. This being the situation the amplitude 

of the steady state part of the echo, termed Boo will be 

dependent upon the losses. Figure (3.9) shows how the 

shape of the echo varies with increased losses. Denoting 

the value of Zr, at resonance by Zor 

a Ze = Zp no reflection occurs in the steady state. 

figure (3.9b) shows that 

Sketch (c) shows that crossover is lost completely when 

os . Zee 

result in a negative reflection coefficient. 

this is to be expected since these values will 

Stepped Decrement 
  

If the impedance Zr has a harmonic spectrum of resonances, 

a stepping effect occurs on the echo for modes above the 

fundamental. An example of the type of impedance 

possessing such a spectrum would be the line resonator, 

where the frequency of resonance tn is n times the 

fundamental i.e. tn = nf). A typical echo obtained from 

this form of impedance is shown in figure (3.10). The 

number of oscillations per step will depend on the 

resonance. If the transmitter frequency is such that 

it excites the ne harmonic each step will contain n 

cycles; therefore observation of the echo shown in 

figure (3.10) will indicate that the resonance is the 

third harmonic. The magnitude of distortion to the



decrement resulting from this phenomenon is mainly 

dependent upon the bandwidth of the receiver; since this 

is tuned to have a resonant peak at the transmitter 

frequency the effect is not very great, as can be seen from 

the figure. 

To obtain a mathematical expression for this type of 

echo would require that Z used in equation 3.10, L! 

contained a spectrum of resonances of the type described. 

The solution of 3.10 would consequently be of a 

considerably more complex form than that already obtained 

and would demand a great deal more effort in its attainment. 

However two comments about its character can be made. 

Firstly, the modulation only occurs during the transient 

state, which implies that the phenomenon itself has a 

transient behaviour that decays at approximately the same 

rate. Secondly it is an effect produced predominantly by 

the fundamental mode; this is supported by the fact that 

the step period for any mode is equal to the period of 

the fundamental.
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CHAPTER 4 

RESONATOR IMPEDANCES 
  

4's). Introduction 

The concept of mechanical impedance of a system has 

been borrowed from electrical circuit theory. In the 

electrical circuit theory the impedance is defined as 

voltage divided by the current flow, using the analogy 

of the previous chapter, mechanical impedance is therefore 

force divided by velocity. Extending this analogue a 

complete family of relationships resembling those of 

the électrical theory can be obtained.. This kind of 

appreach allows mechanical systems to be described by 

more meaningful and more measurable parameters. For 

example it is far easier to measure the resonant 

frequency, Q or impedance of a system thah it is to 

measure the displacement or force fields. Similarly 

to obtain the values of the components in an L, C and 

R electrical circuit measurement of the above three 

parameters would be made, allowing the required 

information to be obtained. No one would try to obtain 

these values by measuring the magnetic and electro-static 

fields. 

The following discussion, on the impedance of 

mechanical resonators, presents a general method of 

obtaining an impedance expression in terms of the 

physical parameters of the resonator. This together 

with equation 3.10 for the reflection coefficient will
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ultimately allow more information to be obtained from 

the echo about the terminating impedance. 

An advantage to be gained by classifying mechanical 

systems in a similar way to those of electrical is in 

the application of standard techniques, used in electrical 

circuit theory, to complex mechanical systems. Such is 

the case of the Laplace Transforms .technigue which until 

quite recently was considered to be a tool more suitable 

for electrical engineers than mechanical engineers. 

Of particular ihe est in the case of the echo 

technique is the driving point impedance. This is 

defined as the applied force at a point divided by the 

resulting velocity of that point. The driving point 

impedance is therefore the impedance presented to the 

end of the acoustic line by the resonator. 

If the driving force applied at a point is 

divided by the velocity at some other point the impedance 

is then referred to as the transfer impedance. 

Expressions for the driving point impedance of 

various structures can be found in references (35) to 

(45). There appears to be no general method of 

obtaining these expressions except to say that the 

starting point is always the same, in that inevitably, 

the impedance is given as force divided by velocity. 

The problem then arises in obtaining an expression for 

the force. This is quite simple in one dimensional 

Systems, such as beams or. rods where the stresses 

at boundaries are directly related to the driving force
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and therefore can be used to obtain the required expression. 

In the case of two dimensional systems the problem 

becomes more complex and solutions are restricted to 

specific cases. An example of this is a disc driven in 

flexure. Because shear takes place along two axgs an 

expression relating force to stress becomes a function 

of two variables. To overcome this the force is 

considered to be of point application at the centre of 

the disc. This gives the system symmetry by (a) eliminating 

the possibility of exciting anti-symmetric modes, and 

(b) reducing the number of variables of position for the 

point force to one. However this solution does only 

cover the specific case of centre drive. Of the more 

general case’ of a point force at an arbitrary position 

-~within the area of the disc the author has found no 

literature. 

4.2 General Expression for Resonator Impedance 
  

The two types of vibration to be considered are 

transverse and inplane. Transverse vibrations are the 

type of motions which takes place when the body is in 

flexure. Normally to obtain this kind of motion the 

driving force is applied somewhere within the boundary. 

The governing wave equation will therefore be 

inhomogeneous, Since the application of this force 

will in no way effect the boundary conditions, they 

will be of an homogeneous nature. | 

This system of equations are in contrast to those
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describing inplane vibrations. A body performing this 

type of motion would be a rod in longitudinal mode. 

To: excite a resonator of this: type, using the*echo 

technigue previously described, the point of application 

of the force will be at one of the boundanrys. Et wit 

be the boundary conditions therefore and not the 

equation of motion that are inhomogeneous. 

The impedance expression to be formulated does not 

depend on the type of motion or the point of 

application of the force and as such can be considered 

to be guite general in its application. However, when 

a particular case is considered a decision has to be made as 

to whether the wave equation or the boundary conditions 

are modified if a final expression is to be obtained. 

Assuming that the displacement W of the body under 

consideration may be represented by a normal-mode 

expansion, the following expression can be used, 

© 

W(x,t) = =: darn 4.1 
n=1 

in which o, is a time dependent function associated 

with the nth mode, and Y, is the normal-mode solution 

of a homogeneous wave equation for the body and its 

associated boundary conditions. Yn is a function of 

space only and may be dependent upon one, two or three 

variables. In obtaining an expression for the driving 

point impedance for the body two principles will be adopted, 

the principle of virtual work and D'Alembert's principle.
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Also advantage is taken of the orthogonality property 

which exists between the normal modes Yn Therefore 

the virtual displacement produced by an externally 

applied force is 

6W(x,t) = So Y 4.2 

6 being the laygrangean symbol indicating the virtual 

nature of the variation. 

For a system with the above displacement the 

strain energy V will be proportional to [£(w) |? or 

¥ 2 v= kf |£(w) |° dv 4.3 
oO 

where £(W) is some spatial differential of W(x,t) 

such that it may be written as 

Far tal £ (Yq) |? 4.4 

The virtual work of the elasticity forces will be 

related to the variation in strain energy due to a 

virtual displacement given by equation 4.2; hence 

Ayn Oe es 4.5 
m 

9 bm 

Making the necessary insertions from equations 4.3 and 

4.4 and performing the differentiation 4.5 becomes 

v 

év = ~ 2kd 66 f J£(y,) |? av 4.6 
Oo
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The inertia forces associated with the displacement 

W(x, t) .wil Tl be 

oo oo a 

ot. =- 9 fi=1 ?n ¥ dv 4.7 

Assuming a virtual displacement 6W(x,t) the virtual 

work of the inertia forces over the whole body is 

ag v 
6T = = 6 Fs, 54, J. Rov dv 4.8 

The orthogonality property of the normal modes is 

part of the Sturm-Lioville theorem reference (46) and 

can be written as 

f Ya mty. = O (mn) 4.9 

Therefore equation 4.8 becomes 

ee Vv 

6T = - pb oof ~ dv 4.10 
oO 

The expressions given by 4.6 and 4.10 represent¢ the 

total work done by the resonator. If the vibration is 

produced by a force F, the virtual work done by this force 

will be 

F 6W(x,t) 

or 

FOO WY af 4311 

The subscript f indicates the need to evaluate Yq at
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the point of application of the force. If the motion 

were produced by a distributed force x. would be the 
£ 

value of x integrated over the area of application 

of the force, The equilibrium condition of D'Alembert 

allows the following equation to be obtained 

v 2 — 
2k 4) bBo | tayo [Yo veer ¥ 4.12 

The velocity of any point on the body will be 

u= W(x, t) Ave ds3 

or 

u= $v 
m mu 

where the subscript u implies the point of evaluation 

of Yn To obtain an expression for impedance the 

ratio F/u must be found; in it's Laplacean Transformation 

this becomes 

Z = f- (aK £cx )|? + ps*v2)av/sy 4.14 By im as v/s é 
mf *mu 

Therefore providing the strain energy function is 

known and the normal mode solutions can be obtained the 

above expression can be used to find the driving point 

or transfer impedances. For the driving point impedance 

zy 7 Meg ae and the product therefore may be replaced. 

by ae If comparison is made between equation 4.14 

and the expression for the impedance of a series L - C 

electrical circuit, the following analogues may be made:
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be? 2 
ne oak yy t/ Ynd 4.15 

and 

¥ 3 2 l/c > 28) peat dy 7 Ye. 4.16 

It should be appreciated that k represents; in part, the 

relationship between stress and strain, and as such, if 

losses are considered, may be complex. This follows 

from expression 2.18 in chapter two. Therefore 

equation 4.16 will become the sum of two terms, one 

being analogous to the resistive term in an expression 

for the impedance of a series L, C and R electrical 

CHecui ty 

4.3 Line Resonator 

The commonest and probably the simplest system to 

find an impedance expression for is the Line or Rod 

resonator. Two factors are responsible for the 

relative ease in which this problem is solved. Firstly 

the spectrum of resonances is harmonic allowing 

the infinity of solutions to be described in terms of 

harmonic functions. Secondly the line resonator can 

be considered in terms of a one dimensional system, 

providing the limits given in section 3.2 are observed. 

The wave equation for a one dimensional system is 

given by equation 3.7; using Laplace Transforms and 

including a term for the driving force, this may be



- 72- 

written as 

(E + ns) “3 - ps*W=G ASTT 

G will be a function of space and time. If the force is 

applied at one of the boundaries Gwill be zero and the 

system becomes a boundary value problem. It is not 

necessary to know its value, as it's presence in 

equation 4.17 is only to emphasize the condition of 

inhomogenity produced when the driving force lies 

between the boundaries. Assuming that one of the end 

boundaries is free (i.e. at x = O) the normal mode 

solution to this equation is 

co 

fi=1 os cosy, x 4.18 =
!
 t 

where 

2 2 
Y =- gs J (c ar sr/p) 4.18a 

The strain energy function and the inertia forces 

are 

~ Y. a2 ee tena) o) ae 4.19 
. x 

O° 

2 ec 

dT = - os nZ1 n. dv 4.20 

Using the procedure in section 4.2 the impedance can now 

be obtained. Therefore 

g aul 
= - ¥. G! Ysa Z B J My Gh dx ee tne). Yo get 42.27 

oO
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is the impedance of the line, B the cross-sectional 

area A of the line divided by s YuE va and “2° lts length. 

The expression is made up of two parts, one a function of the 

wave equation and the other a function of the boundary 

conditions. If the driving point impedance at the 

boundary x = £ is required (x = O being a free boundary), 

G' will be zero and an = Yo (Giving 
£. nu 

Z. = Aps tan Yn®/Vn 4.22 

for the transfer impedance between the two end boundaries. 

Ge 0, to eg Seow and ¥a.< = > therefore | n n nu £: 

Zn = Aps Siny, 2/y, 4.23 

Results 4.22 and 4.23 are identical to those obtained 

by..ceference (29.) “and, (35). 

The driving point impedance for a point d somewhere 

within the boundaries will be given when G'#0, xe Yn 
e 

and the second term of equation 4.21 is equal to zero. 

u 

As a result 

po s)M/2 Cos? 

    

Y,4 ni Ale Da 

where M is the total mass of the line resonator, and 

Yat nt/ ® Equation 4.24 has been obtained by reference 

(29) using the technique given by reference (39). 

The accompanying Q for solutions 4.22 and 4.24 

is the same and can be obtained from either equation 

4.18a or 4,24 and is given as
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: 2 
Oe OGL / 7,0 4.25 mn 

To obtain an expression for the echo, as described in 

Section 3.3, for a line terminated by a line resonator 

eguation 4.22 will be applicable. Insertion into 

equation 3.10 for the reflection coefficient results in 

R(s) = Lay - Apstany, 2)/(Z0y, + Apstany,/%) 4.26 

Using the Laplace transform of expression 3.13 as 

the forcing function and inverting the sum 

g(s) R(s) see 

into the time domain a relationship for the echo results. 

A standard technique for inversion of 4.27 is by 

sumation of residues about each pole, reference (46). 

Because of the infinity of poles contained in 

equation 4.26 an exact solution is not possible; therefore 

approximations have. to be made by considering only 

dominant poles. The poles of the reflection 

coefficient are found by solving for s between equation 

4.18a and the denominator of equation 4.26. i.e. 

‘ae Oe ae yk 
Ss = + 0/22 + (wi /4Q 0 ro 4.28 

where Ye is complex and a solution of 

1 at 2 2 oy tame ee 
ynlacoty,& = 0, /2Q an +(wi/4Q 0, Ync ) 45 29 

Solving these equations will give the exact position of the
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poles in the s plane; however this can only be achieved 

by numerical computation unless approximations are 

made. The problem is greatly simplified if the resonator 

material is considered lossless. This transforms 

equations 4.28 and 4.29 to 

and 

tany, 2 = ta 4.31 

where a is the ratio Zo/ApC. Putting the solutions of 

4.31 into 4.30 gives 

Cc : S=- 37 1n [(1 + a)/(1 - a) | tjw, 4.32 

The zeros are obtained in a similar way and are given as 

ee Ba ey eae A A (1 a) [+ju, 4.33 

Using the theorem 

L tF(s) = x residues of F(s)exp(st) 4.34 

a dominant pole approximation can now be obtained. The 

solution to this problem is given by references (30) 

and for the case of a lossless resonator the expression 

for the echo signal is 

f£(th-= Acein (wot + 8) 

Ww ALA 
slag? 

+ Sh exp (-A,t)sin(w t +0") 4,35 
ni 4



where 

fe ee ln te aa) / (1. - 0), 1: 2 

ES 2 2,4 Koir [Ay + w* | 

tana! 
A ah e 21% A, = [Ay + (Ww, oe) | 

ME 2% i A, = [Ay + (w te w.) | w= 

oe 

tan6é =   

  

4A, (as + (we * we)) 

ele (we - w2))? ~ -aweat 

2 Ww (as ~ (we -w_)) - 2asw, 

e A, (at (we - Ww )) + 2A,u- 

n1C/2 

As with expression 3.14 section 3.3 the first term of equation 

4.35 represents the teflection of the incident signal 

at the line-resonator boundary, and therefore has a frequency 

identical to the launched frequency. This is the echo 

that would result if the resonator were not set in motion 

. (i.e. of infinite impedance). The second term is the 

actual displacement of the resonator and unlike equation 

3.14 is seen to be at the natural frequency 

resonator 

of the 

. Therefore it would seem that at crossover the 

launched frequency and the natural frequency of the 

    

Tesonator are the same. Consider that Oo = we in 

equation 4.35 then 

£(t) = A sin (wit +6) 

os Ve aead ‘ i + 4a x exp{-A,t) sin (wit + a') 

and 

4w_A 
A, = [a2 + w? |? tan6, eee 

A, - 4) 
n 

-w A 

A, = [At + 4up/* Bae oe apr 
* Al + 20
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A condition that should follow from i eo, for 

Crossover*to occur is tan(6 - at)"= ©.. Evaluation’ o£. this 

leads to 

A, W 
tan (@- a') = - — +4, 4.37 

20 = A 
ie n 

fyom which it can be seen that the two components of 4.36 

will only be in anti-phase when A, = O, which is 
1 

tantamount to saying that the line impedance be zero. 

Therefore in the case of the line resonator the 

presence of the line does not effect the resonant 

frequency, but does produce a phase difference between 

reflected and resonator transmitted signals. 

From the experimental point of view this phase shift 

will be compensated for, in order to obtain crossover, 

by adjusting the launched frequency. Inevitably this 

will lead to the situation that Bo, FW at crossover 

and that for a:line resonator the resonant frequency 

is best obtained from the echo decrement. 

A system is very often described in terms of its 

Coupling Q and oscillations to crossover. Q is related 

to the log decrement by Q = "7\ where A is the log 

decrement and, from equation 4.36, can be shown to be 

A, 27/w, 

Therefore the coupling Q is 

Q 

Crossover is defined as the point where f(t) = 0. If
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this occurs at a time 2n, T/W, 8 the oscillations in 

that. period will be 

nyo afle an’ [eens sw) / (AS + 40d) | ? 4% 
x 4A, r n 1. n : 

2 : Z 
or Since w >> A 

n af 

cn 

The velocity of sound in the resonator can be 

obtained from the relationship 

c= w &/n T 4°41. 

From equations 4.38, 4.40 and 4.41 an expression for 

Young's modulus of the resonator can be found i.e. 

ase 4.42 

Table 4.1 shows the data used and the results obtained 

for the Brass resonator of Figure (3.10). 

  

Py 8.1x10° kg/m? Known Data 

Cy 4216x107 m/s Known Data 

Ay mLO".°/4 m? Measured 

Le 7x107? m Measured 

Ap 110~> m* Measured 

n 3 Experimental 

WO, 2074.731x10° Hz Experimental 

ny 35 13 ; Experimental 

ER 10.03x10 N/m Equation 4.42 

Cp | 3.49 x10? m/s Equation 4.41 
  

        
Table.4 aL
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4.4 Bar In Flexure 

If the force (the line) is applied to the bar so 

that it's direction is normal to the axis of the bar, and 

it's point of application lies between the end 

pbenderice: the motion produced is said to be transverse 

of flexural. Motion of this type is performed by the tynes 

of a tuning fork. 

Consider a bar of length %, cross-sectional area A 

and radius of gyration about it's neutral axis k Then 1° 

according to the Bernoulli-Euler theory the equation of 

motion has the form 

where E, p and G have the same meaning as before. Also 

the strain energy function can be written as 

v 

“a 25,2 
xe 4EK) f | 

° 

0 W et 

ox 
dv 4.44 

and the inertia force as 

we 2 
aT = ps n 1 widv 4.44 

li
m 

8 

Assuming the normal mode expression of 4.1 the impedance 

expression can be obtained directly from equation 4.14. 

By suitable manipulation of the terms the impedance can be 

written as 

x 2 3 
OY 0 ay aay 

> = = 2 n n n 4.45 gb: ' Eas es Be rice * ENB aiaes i oad 
° : oO
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Again it can be seen that this expression is made up of 

two terms, the second term being totally a function of 

the boundary conditions. The simple boundary conditions 

that can exist are 

1) Simply supported Y =—— =0 

2) Clamped Y = = = 0 4.46 

    

3) Free 

Therefore when the limits are inserted the second term of 

equation 4.45 is zero for any combination of the above 

boundary conditions, Considering a bar of which boundary 

condition 1) applies at both ends the normal function 

will be 

¥,, = Sing.x 4.47 

where 8. =ni/2 . Insertion into equation 4.45 leads 

to a driving point impedance of 

cok iB, 2 
+°S)2M/2 sin 6 d 4.48 

Ss n 

‘d' being the point of drive measured from one of the 

ends. Losses can be accounted for by replacing C by 

C2 + sn/p , this will then give a material Q of 

2,4 ? Q, = pv,/KT BON 4.49 

Letting 

ey C, = Coki BN,
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ip ee R, = nk{BaN/p 4.50 

N. = M/2sin“g 4 
Th n 

Equation 4.48 becomes 

Be mtb Ro, + Bs 4.51 S n n x 

This allows the reflection coefficient to be written as 

R(s) = -1 + 2(z0 + R,)s/(Ns* + (Zo + Ri)s + C,) 

4.52 

Because of the similarities between this expression and 

that of 3.13 a relationship for the echo can be obtained 

in the same way. At resonance the echo signal is 

W Lihat Be 
= whet Oe, ee os oO y+ 4 f(t) = A|sinwt 2u5 exp/( aN, )tsinw,t| 4.53 

This of course, assumes that the drive frequency is 

L 
— ie . Qo (C/N) - The frequency of the decrement w, is 

a Ae 2i/; vee 
Wy -= (or (Z - R,) /4N7) 4.54 

meaning that the actual resonant frequency of the 

resonator is lowered by both the line and internal 

friction. It can be seen that the term Z/2N, isa 

function of the line and it's position along the bar 

Ese. 

a 19 
a7 ane = Z sin Bd/M A 55 

Therefore best results are obtained by minimizing the



oe jo 

ratio Zo/M and driving at a point close to a node. 

Assuming that w, = On the total Q of the system is given 
D: 

by 

1/g,, = "4/6 IO 

fos ' et = A'/t = ZN n + RN n 

Z 2sin7g d nk? pg? 
ee ee 4.56 

w M pw : 
n n 

and the oscillations to crossover by 

Q 
he -. in2 4764 

4.5; Dise in Filexure 

The comments made in the previous section apply 

equally as well to the problem considered here. Although 

the problem here is in two dimensions, as opposed to the 

uni-dimensional systems of 4.3 and 4.4, the procedure is 

identical and there are no additional problems. The 

work however does become more involved when carrying 

out the integration of the normal mode functions. This 

is obviously because the normal mode shapes are 

described by non-harmonic functions. The property of 

orthogonality for the normal modes still applies and 

therefore equation 4.14 for the impedance can be used 

directly, 

According to the classical theory, the equation 

of motion for the transverse displacement W of a plate
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of thickness h and Poisson's ratio o0 is given by 

Dv‘ + ps*w = G . 4.57 

where 

D = Eh2/12(1 - 0) 4.58 

The strain energy function given by reference (47) for a 

circular plate with the origin at its centre is 

v 2- 2- 

Ve SMW) ~ 2(1 — og) la(VeW, — 228) 
2 2 2 

oO ox ox 
a 

0 W/r, 2 
fod C= olf 3ra0”) | dv 4.59 

the inertia force as before is 

2 co 

dT = -ps no Widy 4.60 

The normal mode function can be found by solving the 

equation 

v4y - k*y = 0 4.61 

where k* = w*/D and Y is the normal mode expansion. 

Equation 4.61 is the same as that of 4.57 with G = O and 

the displacement W, which is a function of time and 

Space, replaced’ by Y,.which is a function of space only. 

Assuming that the boundary conditions possess symmetry with 

respect to one or more diameters and that the disc contains 

no holes, the solution of 4.61 is 

oo 

Yo We Ye COS Nao 4.62 
n=0 “n 2
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Yn being the normal mode shape in terms of r and having 

the form 

AI, (kr) + Cit, (kr) 4.63 

J, is a Bessel function of the first kind and I, 2. 

modified form. AL and BL are coefficients to be 

determined by the appropriate boundary conditions. 

Utilizing the impedance expression 4.14 together 

with 4.59, 4.60 and 4.62 the following relationship 

for the driving point impedance can be obtained, 
a 

be, 20a Hem OY, 
Z. = H{ f. Gty cosné rdeédr + sf rla—M_+y v_|| de 
L QO: 70 n 26 Oe PE Dot! la 

4.64 

Me is the bending moment about the @ vector and es is 

the Kelvin-Kirchoff edge reaction. H is the plate 

thickness h divided by s Y“,, 

The three basic boundary conditions for a circular 

and ‘a' is the radius. 

plate are 

  

  

1) Simply Supported ee ee SO 
r=a 

oy, 
2) Clamped YS ee eS 4.65 

r=a 

3) Free M. =V_=0 
x x Visi 

It can be seen that for a plate possessing any one of these 

conditions the second term of equation 4.64 will be 

zero when the limits are inserted. Therefore the 

impedance becomes, after integrating with respect to 6



  

  

                        
  

m 

(First ten symmetric modes) 

Mode 0,0 1,0 250) 340 4,0 5,0 6,0 7,0 8,0 3,0 

i 10.216::/39.7#L* 189..1042}159 163 miges 005 £355 .566- 1469.0 /2.7631.914 1 799.702 §|987.216 

a a 5 : 
Table 4.2 Values of Ky = Om (p/D) * for a clamped disc. 

- 
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Mode O a 2 3 4 5 6 Z 8 7 

Oo 102216 21.26 34.88 51.04 69.666 90.739 {114.213 |140.056. |168.245 {198.756 

1 SNF EL 60.82 84.58 {111.01 ,4140-,108 4172 .803 

2 89.104 |120.08 {153.81 {190.30 

3 158 .183.1799,06 

Table 4.3 Values of «> for the first 22 modes of a clamped disc. 

~- 
9
8
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a Bs ca ae 2 2 2, mH(DK. + 98 hale Yar de 4.66 

y? wil contain products of Bessel functions, when 
n 

multiplied by r these form standard integrals, solutions 

of which can be found in reference (48). 

Consider the case of a circular plate with a fixed 

(Clamped) boundary. In satisfying boundary condition 

2) the normal mode shapes (eigen functions) are 

Pe A, (J, (kr) - J, (ka) I, (kr) /I, (ka) ) 4.67 

and the resulting frequency equation, obtained by 

satisfying both conditions and putting K = ka is 

J, (K) Ty (®) bs T (®) 544.7 (K) = O 4.68 

The eigenvalue K is a dimensionless frequency parameter, 

related to Wn by 

fe ee 
Oe Kn D"/a’ ep 4.69 

The values of Ke for the first 10 symmetric modes (i.e. 

n QO) are given in table 4.2 and for the first 22 

modes in Table 4.3. These were obtained from a more 

comprehensive set of results given in reference (49). 

Substituting expression 4.67 in equation 4.66 and 

performing the integration, the driving point impedance 

for a thin disc with a fixed boundary is 

ae otk, 

Es s 

  

a2 2 
+ S)MADID (KL) Yang 4.70 

where D' = D/p and ve is obtained by squaring equation 
d
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4.67 and evaluating at the point of drive i.e. 
No
 

P
y
 Bie ROSA) (OK 8) /TARY p AyR ed /T (89) 

4.71 

a is the ratio d/a where d is the radius of the point 

at which the impedance is to be measured, 

The expression for the normal mode shape of a 

simply supported disc is identical to 4.67, and so 

integration of ue will be the same as for the fixed 

boundary. However, because of the difference in the 

second terms of boundary conditions 1) and 2) the 

factoring of terms after integration does not take 

the same form, The resulting impedance expression 

therefore becomes 

4 
= D'k 
Ze et 2 L. + s)MA’TI 

  

(K eres 4.72 
ge 
nm 

2 
n 

where Ks now satisfies the frequency equation for a 

simply supported disc (reference 49) i.e. 

Jy (BK) T £8) + I (K)o (k) = 2KJ,, (K) I (K) / (1-9) 
n+l 

A713 

and P has the value 

2 2 
(1+2K_/ (1-0) - 2(ltn)/(l-9) - 2K ng (Km) 7 (4-9) FT, CK) 

4.74 

Comparing equations 4.70 and 4.48 it can be seen 

that they are identical in form and therefore will result 

in a similar expression for the echo produced in an 

acoustic transmission line, when the terminating impedance



a EE oles 

is a fixed disc. Therefore from equation 4.51 

4 = ! C2 D'k N, a; 75 

va 22 By? N= MALTS (K,) /Yog = M/0, 4.76 

Equations 4.54 to 4.57 can now be used without 

modification to give 

oo ee oe 
Wy = (wo, Zo/4N7) 4.77 

where Z/2N, is now ZoU,/2M 

The line to disc coupling Q will then be 

bss 2. 2 o” Toh Cate oa 4.78 

Cp is the plate velocity given by equation 2.16 chapter 

; ; 2 fixe ‘ 
two, UL is the ratio Yad nin (Km) © and p the density 

of the plate. Equation 4.57 will then give the number 

of oscillations to crossover as 

ek eee n= oh C Kp in2/v12 ZU, 4.79 

For the above expressions to have any physical 

meaning the value of UL must be known. This of course will 

vary according to the drive position on the plate. In 

the case of the rod inflexure the amplitude of Z Q 
i .cn 

orn, as a function of drive position can be obtained 

from standard Sine Tables. 

The full expression for ws can be written as 

Uy = (Fy (Ky /Ty (Ky) L,(K, 0) /T,, (Ky)? 4.80



U, FOR CLAMPED DISC 

a 

  

  

    

| MODE 0.0 o.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

c.c 10.939 10.449 9.083.287. 130 4.978 SeO LL 1.504 0.566 0.130 0.009 

O.l 0.000 0.775 2.647 4.540 5.411 4.855 3.281 1.564 0.433 0.036 

0.2 0.000 0.036 0.488 1.827 3.714 4.935 4.502 2.708 0.899 0.086 

1.0 195629 257938 129932. SOG 0.091 2.039 Jen 2.854 1.085 0.110 

0.3 0.000 0.001 0.073°, 0.593 2.054 4.039 4.964 Sd Oo 1.493 0.164 

Lod 0.000 Ser 71589156. 976 2.088 0.026 2.018 3 312 1.803 0.226 

0.4 0.900 0.000 ~0.010- 0.170 1.001 Bro O12 4.819 4.590 24116 0.274 

Le 0.000 0.288 2.9590" .6.688 See 8 0.996 0.485 2.963 2.450 0.382 

2.0 20 OL) 8.74 Sul 2.474 1.154 4.763 2.023 0,085 2.456 2.494 0.417 

0.5 0.000 0.000 0.00L 0.045 0.448 1.925. 4.284 5 i238 2.894 0.417 

zo 0.000 0,018 0.747 3.944 6.561 Je 0.008 2.132 2.944 0,578 

0.6 0.000 0.000 0,000 0,021 0.188 1,196 Boo L yee (ak 3.607 0.594 

ae. “0.000 7.623 105727 2s7ee 1.347 4,031 0.581 deed Sa: 2.852 07652 

0.7 0,000 0.000 0.000 0.003 0.076 0.710 2.856 Da OO 4.283 0.803 

1.4 0,000 0,001 0.150, 2b . 797, 52531 3.308 0.675 ee o.0 3.226 0,806 

Zoe 0.000 La26 Vol li shel se 0.144 3.026 2.282 0.217 2.856 ON.I2E 

3.0 39.478 16.269 0.124 6.383 1.109 £928 2.637 0.079 2.722 0,956 

0.8 0,000 0.000 0,000 0.001 0.029 0.406 Paley! 5.174 4.895 1.045 

2 0,000 0,000 0.026 0.696 3-034.. °6,253 2.072 0.427 ie 1.063 

2.3 0.000 0.105 3. bee 28 389 2.818 0.911 3.544 02625 2.560 ia2it 

O<9 0.000 0,000 0.000 0,000 0.021 OF227 1.649 4.869 5.469 Looe 

Bok 0,000 213771 32 7.190% 305996 4.886. 0.006 3.203 0.228 2.207 1.276 
  

TABLE 4.4 
  

0
6
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MODE 030 0.1 0.2 0.3 0.4 Oss 0.6 0.7 0.8 0.9 

0.0 10.9239 ° 20.949 9,082 7.2130 4.978 3 sQ@is 1.504 0.566 0.130 0.009 

1 saa 19:..629:* 15,988 7.994 1.560 0.092 2.039 2.581 2.854 L365 0.110 

2D 293611426451 «2.498 +154 4-963" = 2.023 0.085 2.456 2.494 0.417 

3.0 39.478 46,209 .0-4746 6.383 a k09 1.4925 2.637 0.079 Ae beg 0.956 

4.0 49.350 . 2O5972--2.562 3.469 2,41) 2.043 1.630 pe426.° 42.351 1 5623 

5.0 59.222 M.S86> 9.57% 0.125 4.014 1.956 0.706 2.766 0.072 2.216 

6.0 69.086 0.844 8.098 5.184 O.205 260 7% 34243 0.377 0.500 2- Seo 

tao 78.939 O.241" 2.242 5.360 4.854 det 0.076 O.398 2. 967 2.425 

8.0 88.811 -°3.424 :0.264 Oui SE 1.066 2.024 2.656 2.789 2.424 Le 935 

9.0 98.702 Gash < 45 7Ge 3.249 2.456 i .475 1.652 1.420 1.241 Eseoy       

Table 4.5 

=e 
1
6
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MODE 0.0 O11 0.2 0.3 0.4 O;5 0.6 0.7 0.8 0.9 

0.0 10.939, -10. 299° «~©=69.0835 72130 4.978 SUAS 1.504 0.566 0.130 0.009 

O21 0.000 On 775. © 2.647 4.540 5.411 4.855 3.281 1.564 0.433 0.036 

. 0.000 0.036 0.488 die the 7 34.744 4.935 4.502 2.708 0.899 0.086 

"0.000 0.001 0.073 0.593 2.054 4.039 4.964 -s2oo LA93 0.164 

. 0.000 0.000 0.010 0.170 L001 2.952 4.819 4.590 2.176 0.274 

. 0.000 0.000 0.001 0.045 0.448 1.925 4.284 5.23 2.894 0.417 

. 0.000 0.000 0.000 0.011 0.188 e2G6 3.8871 a. 371 3.607 0.594 

. 0.000 0.000 0.000 0.003 0.076 0.710 2.856 3369 4.283 0.803 

. 0.000 0.000 0.000 0.001 0.029 0.406 Zeal 5.174 4.895 1.045 

. 0.000 0.000 0.000 0.000 0.011 0.227 1.649 4.869 5.469 12332       

Table 4.6 

- 
C
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This equation in fact shows how the admittance varies 

as a function of d for any given mode. The condition 

that ue is zero implies that the impedance Z, is 
L 

infinite ,which will be the situation at any one of 

the nodes, Putting Se O in 4.80 results in an 

equation identical to the one given by reference (49) 

for determining the position of the nodes for a calmped 

disc. The values of UL for..the titst 22 modes. tor 

values of a between O and 1 in steps of 0.1 are given 

in Table 4.4, Table 4.5 gives the first 10 symmetric 

modes and Table 4.6 the first 10 modes containing no 

nodal circles, 

4.6 General Discussion 
  

The major purpose of this chapter is to demonstrate 

a method of obtaining impedance expressions for 

mechanical resonators. It is presented as support for 

the discussion of the echo in the previous chapter, by 

illustrating how that discussion applies to all tyves of 

resonators. An example of this would be the oscillations 

to crossover, where from the three systems considered 

it is seen that ny is proportional to the density of 

the resonator and inversly proportional to the 

characteristic impedance of the line. 

The most useful aspect of the foregoing equations 

is that they highlight the inaccuracies that may occur, due 

to the presence of the line, when measuring resonant



wd = 

frequencies. This is most obvious in the case of 

flexure, where for the rod and disc (equations 4.54 

and 4.77) the decrement frequency is seen to be lower than 

the natural frequency of the resonator. In both cases 

the magnitude of this damping is proportional to the 

characteristic impedance of the line and it's position 

on the resonator. Considering the clamped disc for 

example, the frequency of the decrement goes down as 

UE increases, This would appear to conflict with 

experiment however since as shown in the following 

table the inverse happens. 

  

a UL fn (measured) 

3 0.00 19.629 16.5931x1O* -Hz 

0.38 0:000.| 16.146x10° He 

  

0.64 3.547 £6 357 iOes ee           
Table showing how the measured frequency varies with ce 

for the 1, O mode using a 1 mm diameter line. 

The reason for this contradictory behaviour stems 

from the crossover method used to obtain these results. 

From the analogies made earlier of force/voltage and 

velocity/current it may be assumed that for frequencies 

above resonance the velocity lags the force, and for 

frequencies below resonance the force lags the velocity. 

In other words at W>W, the velocity of the resonator 

will lag the force producing it. In view of this, the 

apparent frequency anomaly in the above table can be
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explained. Consider the echo shown in Figure 3.7. As 

previously stated plot 'b' is the echo that would be 

recieved if the line were terminated by an infinite 

impedance. It.is at the same frequency 'w, as the incident 

wave but 180° out of phase. Plot 'a‘ is the actual 

displacement of the resonator and is drawn in phase with 

the incident ioe and at the natural frequency "On of 

the resonator. In the case under consideration this is 

not the situation since the displacement of the 

resonator is at Wy Therefore at the point where the 

amplitudes of plot ‘a' and plot 'b' are the same, the 

cancellation will not occur, because around this area 

the sine waves will not have a phase difference of 200. 8 

To obtain a crossover it is necessary to adjust the 

phase of plot ‘a' so that at the point of equal amplitude 

an anti phase condition occurs. This can only be done 

by producing a phase lag and to do this w must be 

increased. As -. increases therefore the phase lag has to 

increase, hence the drive frequency must be increased 

for crossover to occur, 

The error produced by this frequency damping can 

be minimised by keeping U, or ZG small. Unless an 

absolute value of w, is required, as in the case of 

measuring resonator parameters, this error will not be 

of significant magnitude to create problems. The 

natural frequency of the resonator may be obtained from 

Qa 2mup)/ (417 ~ Az)? 

where Wp and A can be measured from the echo decrement.
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Mode n, exp. ny cate. £ exp. KHz E (care. Kas 

Ove 5 4 2.93 8.76 

0,2 6 5 14.25 a8 37 

1,9 9 6 16 «265 16.38 

O53 6 6 20.07 24028 

Lyd 15 rt 23287 25.505 

0,4 8 7 atibe 20.7 

16,2 no c/fover 28 32.48 34.84 

2,2 - Ew - 36.42 

G5 ek 9 a4 .57 Jhs50 

a; '3 - PISS - AR G23 

0,6 16 13 43.04 47.05 

2a no c/fover eo 46.14 49.47 

OF? 20 18 52 .06 a           
Table 4.7 Experimental and Calculated values of n,. and 

frequency for Mild Steel clamped disc a=0.64 
! 
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Mode n, €Xp ny Caio. £ exp. Kz Cale... Kaz 

0,1 O 2 8.76 8.76 

0,2 7 6 14.05 14.37 

10 no c/over e0 LOLS 6.58 

0,3 rs 25 20523 21493 

Lye 23 10 24.09 oa0 Ge 

0,4 43 46 26.493 28.9 

Ly2 £1, 7 32.03 34.84 

270 15 10 34.7 36,72 

CES no c/fover 147 41/32 37-638 

ys 13 9 42.29 45.73 

O76 no c/fover 481 44.97 47.05 

afk 81 108 46.1 49.47 

0,7 - 1604 - Pha 

1,4 13 Ls Dace Steed 

22 no c/over 90 59.066 63.37 

3,0 sa 33 63.55 65,17 

Table 4.8 and Experimental and Calculated values of ny 

frequency for Mild Steel clamped disc a=0.38 

 



a UFor Clamped Disc 

  

  

  

a 

MODE 0.30 0.35 0.32 0.33 0.34 O%:3 9 a3 0 Oe 371. 0.38 0.39 

Oo. hols 0.917 6.702 6.487 6.270 6.095 5. OS 5 oo7d a5. 505 So L9L 

eel 4.5406 4.686 4,821 4.943 5. O52 5.148 5.230 br 297 5. 250 5.368 

Ong E8272. O07 2 Ono) 2.380 Ze on'2: 2.766 2296. 36 oA 3.345 S..032 

Yeo Ve560. 2 as 0.851 O51 9 02 361 0.196 0.082 0.018 9.000 0.026 

0:3 07593 .0 4693 0.803 0.924 £6 O5'6 i. 198 eo S 1 1 54 1,685 °2..1.866 

pe 6.996..6.556 6.099 3 a 62 5.104 4.584 4.059 5.939 3.033 2D of 

0.4 O.1 702 02205 Oe259 0.316 ©. 502 0.458 0.543 0.640 0.749 0.869 

Le 6.688 6.862 65075 15021 7.000 oo9tL 6459 6:453;3 6.251 52914 

2.0 W542.) 5615 221.02 22993 3.069 Bole 3906 4.236 4.494 4.671 

0.5. |) G2045 7705059 05077 0.099 ©. 22h 0.160 0.200 0.248 0.305 O.372 

ale 3.944 4.350 4.747 52125 52476 5192 6.063 201 6.441 6.535 

0.6 ©.O1L = 0-015 0.021 ©5029 9.040 0.053 0.070 0.091: OFELY. 0.149 

Zo M64 os Le Le) 0.628 Ones 0.065 0.000 0.069 Os257 0.548 0.918 

Os? 0.083 .0..004 0.006 0.008 0.012 0.017, O2023 02032 0.043 0-057 

1.4 1 TIT 2a ZO 2.470 2.843 3.3236 35,037 4.043 4.446 4.834 x BD 

Zee Tel eaS eee 5.468 4.580 3.698 2.059 22081, 1.405 0.846 0.423 

sae 6.383 662319) 6.174 Sep 52262 4.616 2.895 Seelk43 2.402 are. 

0.38 0.001 0.001 0.001. 0,002 0.003 0.008 0.007 0.011 OX 0.021 

eo 0.696 C.87? ‘1.088 L332 1.609 1 OLS 2 coed 2.624 3.013 Bic es) 

220 845599. 6.362 S27 Te825 7.426 6.825 6 lad, 5.328 4.492 3.643 

ao, 0.000 0.050 0.000 0.001 0.001 0.001 0.002 0.003 0.005 0.008 

See 0.996. 1.687 2.453 32226 3.942 4.547 4.995 S256 SAS 5 la 3     
  

Table 4.9 

8
6



B
a
d
a
s
s
 

U,—For Clamped Disc 

  

  

    

a 

MODE |. Ox<6. 0:61. 0:62... O)636 wpcee. 90.65 Ge67... 0.68. 0.69 
|.0,0-|. 1,804. 1.889 1.298 941. 16s: ee en 0 965 0.789 0.710 0.635 

0,1. | 3.281 43.701 % 9.990. 27a eee ae Bote 1.877)" 1.718 
0.2 | 4,502 © 4.366} 45219" 9.055 — 483 63. Joe Regie 11g" 2.622 
1:0 48.s8) 3.686 31614" “65am bee. tna ca7e mam 3.152% 3.010 
0:3. | 4.964%" 4940) 542868 * a.G28.. Boge” 40814 1.33% 4.150 -. 32962 
1:2 | 20m 2.261 eet ede eee 8-879: 3.038 Bree 73.30%. 3.325 
0.4 | 42829 4g 9214. 997 Sade oS Ose, “soto Pee 2.42862 8.739 
1.2: 1°@.485.°0.712: 0.966 1.839 2 Soak. BOG 2.344 © 2.582 © 2.790 
2:0: 1).085.™ 0,212. 02387 (noe eee 40135 795 1.965. 2.223 
0.5 | 49284 4.488. 4567274 ese 22971. S2079 amen < 5.210 .$.185 
1.3 | 03008 © 0/010. G,07® 9g. 208 moo 0.635 eo og8. © 3515. 1.828 
0.6 |°35581° /3:84%- 47LOG 4,952 Gate <4-7oe Bes 5.244" .°§.327 
2.1°} 0.581 0.425." 0.148. s0.03h= Gono. c0L046 W842 --.0.576-. 0-850 
0.7. [udy8S6.  SabQB alge eocede = 4 es 2 Si aie  &.036¢% 5:22 
1/¢°[.0,678. . 0.386:.-0; 1766" pete = mewies- 20.036 @. 332. 20.575 0.864 
2.2.) 22.282 13B30) 2.402 0. $56 ate oO o5e 0.028 0.002 0.068 
2.0] 2,637 2.237\« 3.180 @ bogus eee 4 0.6265 0.137 0.023 0.004 
0.8 | 2.997 2.483. 22988 © 32097 ae 3.735 A867 4.660. 4.932 
1,5] 2.072 1.56%,. 10g O.ame 2 eetes | O.3c8 0.001 0.059 0.204 
2/313, 544° 35269. "SS. 90g. ee Ga Db. 70F ©0:384.. 0.1583 
0.9 153.649" 1.9936. D198. Soha ea e2o- 4.167 3.865 4,212 4.550 
3.1°1:32283 23.288 = 92253 32 Bees mo. 1262 1.978 0.856. 0:500 
  

Table 4.10 

66
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Tables 4.7 and 4.8 show results obtained from 

experiments carried out on a clamped mild steel disc. 

The disc, 5.5 cm diameter and 1.25 mm thick, was 

machined in and concentric with a larger disc 19.2 cm 

diameter and 3.3 cm thick. Acoustic line parameters 

are as shown in Table 4.1. Two experiments were 

carried out, one at a = 0.38 and one at a = 0-64,to 

measure the frequency at crossover and the number of 

sel ia eenens to crossover. Comparisons were then made 

with calculated values obtained from equations 4.69 

and 4.79. To compute ny for the values of a. chosen it is 

necessary to know Un in these regions. Tables 4.9: and 4.10 

show these values. 

The accuracy of the frequency measurements varies with 

mode, it is only the first three modes however that can 

be considered as satisfactory results. With the 

exception of only one all the experimental values are 

low compared with theory. This effect is due to the 

influence of rotary inertia and shear, allowance 

for which is omitted from the classical theory of 

plate vibrations. A reduction in the ratio of thickness 

to diameter for the disc would minimize the effect but 

would lower the frequency range at which the modes 

occur and create problems in measurement. 

The values of n, are very good in view of the 

dominant pole approximation that has been made and the 

distribution of the modes. A useful point to observe 

about these values of ny is their use in mode identification.
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This is extremely obvious in the case of 0, 7 andl, 4 

modes in table 4.8 where the resonant frequencies are 

the same.
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CHAPTER ‘> 

END RESONANCES OF CYLINDERS (SOLID AND HOLLOW) 

5.1: . introduction 

5.2 Discussion of Experiments 

5.3: Discussion of Results



e103 = 

CHAPTER 5 

END RESONANCES OF CYLINDERS (SOLID AND HOLLOW) 

5), ls Imeroducieit on: 

Resonant modes of vibration occur in many structures, 

in general the whole volume of the body plays a part in 

determining the natural frequency and the displacement 

field, in the.case of an end resonance: this is not so. 

The motion associated with end resonance in cylinders 

is confined to the first few diameters of length, the 

remainder being virtually unaffected. Hence the situation 

arises that the resonant frequency is a function of the 

cylinder diameter only. 

The phenomenon was first observed by Oliver ref. (50). 

Oliver carried out experiments to measure the dispersion 

of the lower modes of propogating waves in a cylindrical. 

rod, and observed a resonance associated with it's ends. 

His results showed that the end resonance was coupled to 

a propogating mode, which resulted in the gradual leakage 

of stored energy down the rod. The tosueee of this thesis 

show this to be the case for the axi-symmetric mode only. 

Of the anti-symmetric modes very little energy it lost 

to a propogating wave which explains why Oliver could 

only detect such modes with transmitter and reciever at 

the same end, 

No exact mathematical solution is known for the study 

of finite or semi-infinite rods, of which end resonance
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is part... Puplicaticns itel...(51).) (94) and, (9) do exist 

however which offer approximate solutions, the above 

three giving special attention to the computation of the 

end resonant Ce tctoye cos the literature found on the 

topic of end resonance only one made any reference to the 

anti-symmetric end modes. There are three possible reasons 

for this. 

a) They were only briefly mentioned by Oliver and it 

is probable that their existance is not well known. 

b) The problems created by the consideration of a 

third displacement component would make the mathematics 

extremely difficult to handle, and 

c) The problems involved in exciting such modes 

experimentally. The later of these has been overcome 

by the use of the echo technique described earlier. 

Non existance of exact solutions for a rod with a 

free boundary normal to it's axis arise from the inability 

to satisfy the accompanying boundary conditions, that is 

that stresses ee and a vanish. It is generally 

accepted that both stresses will only disappear simultaneously 

if higher branches of the propogating mode are generated 

at the boundary to cancel the excess sone The position 

of end resonance, for the axisymmetric mode, on the 

frequency spectrum is approximately Q = 3, Examination 

of the dispersion curves of Figure 2.1, Chapter two will 

show that there is one mode with a real propogation 

constant and an infinite number which have complex 

propogation at this frequency. Therefore an accurate
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solution is impossible, The approximate solutions of 

ref. (51), (52) and (9) are all based on this theory, 

each one considering various numbers of modes, The 

results of experimental work carried out by McMahon 

ref. (53) on the vibration of cylinders of various 

lengths, show that as the length to radius ratio h/a 

increased the inplane and corresponding flexural modes 

of discs approach a common mode, where the partical 

displacement is predominantly at the ends of the cylinder. 

His results show that this is true for both the symmetric 

and anti-symmetric modes. 

Booker and Sagar, ref. (54), for similar experiments 

have presented results of the resonant frequencies for a 

finite aluminium rod with a h/a ratio of 30. The results 

show a number of unidentified resonances. Points on the 

frequency spectrum where these modes occur, do infact 

coincide with those of the anti-symmetric end resonances. 

The anti-symmetric modes all have the common feature 

that their frequency is of the order of 10% below the 

cut off frequency of the lowest propogating mode of their 

family. For example the family of F(2,n) modes of figure 

2.3 Chapter Two have an end resonance 10% below the cut 

off frequency at the F(2,1) mode, and for the F(3,n) 

family 10% below the F(3,1) mode, The modes are easily 

identified by the number of nodal diameters they possess, 

the general rule being that the F(m,1) mode will have a 

displacement pattern, on the end boundary, containing 

m nodal diameters. These diameters are continued as
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Cut-off and Disc Frequencies 
  

Mode oO O O.1 0.2 0.3 0.4 

  

rod 2.33618 | 2.34056 | 2.34446 | 2.3794 a SD 

  

F(2,1)| disc | 2-33620 | 2.34020 | 2.34323 | 2.34559 | 2.34749 
  

OpO0999- 1: :2:,000)5« +: 1.00052: |...1 00100 |) 1.O0La2   

disc 
  

  

rod 3.94020 ‘| 3.57165) gyeodol: | 3.61455, 1° 3.63699 

  

F(3,1)} disc} 3,54522 | 3.56942 | 3.58734 | 3.60107 | 3.61189 

  

Toes 0.99999 | 1.00062} 1.00203: 1..1.@0374.| 1,00556 
disc 
  

  

rod $.2/184:.) (8.43074) 6.57730.) 8.71931 |'.8. 82962 

  

              F(8,1)) aisc!] 8.27186 | 8.41679 | 8.52994 | 8.61972 | 8.69218 

poe. 1.00000 | 1.00166 | 1.00555 | 1.01051 1.01581 
        
Table 5.1 Comparison of cut-off values of 2 for a solid 

cylinder with corresponding inplane disc 

_ values. Q = wa/C..
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nodal planes down the axis of the rod and declare 

themselves as nodal lines parallel to the axis, at the 

periphery, In addition there exist a nodal ring ata 

distance from the end face which varies according to 

frequency. 

Another characteristic which is common to these modes 

is the amplitude of the radial and axial displacements 

at the edge where the cylindrical and plane surfaces meet. 

Experiments have shown that the magnitude of these 

displacements are equal, and therefore best coupling 

to these modes is obtained when the acoustic line makes 

an angle of 45° to the axis of the cylinder ....PFigure 

5.1 shows how the line is orientated with respect to the 

maximum displacement. 

For hollow cylinders the angle of the resultant 

displacement varies according to wall thickness. Thin 

wall cylinders couple best with the line joined to the 

rod normal to the axis. 

Since the end resonant frequencies of the anti-symmetric 

mcdes bear a relationship to their cut off frequencies 

the values of the latter were calculated. This was 

achieved by using equation 2.46, Chapter Two. Computation 

of the natural frequencies for contour vibrations of thin 

discs using the equations given by Love (p 498) show, somewhat 

surprisingly, that the cut-off and disc frequencies are 

almost identical. Table 5 i gives a comparison between 

the two frequencies for the modes F(2,1),F(3,1) and F(8,1), 

and various values of Poisson's Ratio. A complete set
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of results for cut-off frequencies and disc frequencies 

for the first nine anti-symmetric modes are given in 

Appendix 5.1.1 Poisson's Ratio from zero to 0.4 in 

steps of 0.01, 

5.2 Discussion of Experiments 
  

From the equations of the preceeding chapter it can 

be shown that 

= & n, = onM, n2/7Z Set 

where Zo is the characteristic impedance of the line, 

O, the natural frequency of the resonator and M, its 

equivalent mass. The values of Mo for the three cases 

considered in Chapter 4, are as follows. For the line 

resonator 

MA a M 

where M is the total mass of the resonator. Experiments 

shows in fact that this is true since for the line 

resonator 25 oy In the case of the Bar and Disc in 

flexture M is proportional to M/2sin?B d and M/U, 

respectively, In the latter two systems it can be seen 

that M, is dependent upon mode and position of the line 

and would be infinite if the line coincided with a node, 

The line resonator however does not have this



  

  

  

    

  

    

  

    

  

  

  

  

  

  

  

  

    

    

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

      

Material |Aluminium {Aluminium |'M. Steel M. Steel Brass Brass Nickel Pyrex Glass 

o 0.33 0:83 0.285 -285 0.37 0.37 Q.315 0.195 
acm 1.75 8.5 1.75 4527 1.6 2.54 ha} ee 27, L936 

1 
£ KHz met fe 2. KAZ ae ter KE Zoo ees ze) eK ere tee KH zem fa KNZe ins} “KHz |n. 

Kaa Q ai 39 a a eR a eG "2 Q x Q a. 2 a 
2 6 oO 

= 60.663| .| 30.601] 9} 62.846; 9) 86.363 || 44.324 27.633 | S| 81.355 ” 124.806 oO 

: 207d: 212 Belde |S 2.1383 |2 21S 2.118 |2 21g Dghip be ps 

86.608] Of 43.48 | Of 86.217) 0] 118.07 |o] 64.517 40.199 | 0/114.36 0[160.534 | 
0,1 Oo OF oO OY Sa ES oO =i 

3.009} 2 3.002, |2eb 2229 3612 2 5 O17. (9 3.075 3506) eee 2.9775 |S 2.2715 

92.533] | 46.692] |} 96.006/ || 131.817 | 5] 66.585 41.720 | (123.992 190.710 
3 ; lL 4 3 — S eR aemeneeene « N aa pa wii " <aenseiplipneetiace mete ane " 

3.215| 7 3.208; Be 29) ag ae 256 be L984 BLOSsiel = 31228 3.225 

121.873| S| 61.326 126.368] of 173.621 |<| 86.744 54.439 | |162.786 
ars}: 0 oO =A OF oss v0 Ov " 

: 4.23419 £23312; 4.303| SN} 224.288 2 4.135 fps) St 4.238 

149.769] «i 75.536|o0} 155.6231/0 106 .027 66.741 | 9)200.393 | , 
NX = lat . pee Ola a 

oa 5.203 5.214/4] 5.229} 5.054 5.116 || 5.217 
177.428 89.394/o] 184.313;x 124.865 78.678 

677: " a oe mh 

6.164 6.171 6.276'6 5.952 6.031 

204.839 103.116] o}] 212.655 143.547 90.498 | x 
7d a eee Oe a OS ea —— — a 

7.116 7.118|]4 124): 6.842 6.937 | 44 
is Poor sO le ie eel 

116.6371 161.994 HO2e191.|- 5 3) 9 Eom ee . 
8.052] 4 ? Gay 7.833 | 4 

7 9,1 130.045 | 180.144 113.821 e 

8.977 8.586 Bag25 lk 

198.521 125.58 | « 

sete acl ay a                                   

‘Table 5.2 
Experimental results for end resonant frequencies of solid cylinders 2 = wa/cs 
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T
T



1a 

characteristic since the line can not be coupled to a node, 

In general therefore if ae is constant throughout. the 

experiments 

M..men /E Kk ; 52 

If the end mode becomes coupled to a propagating wave, as in 

the case of the axi-symmetric mode, the value of M, will 

become large and correspondingly so will ns This feature 

of the echo technique can be used to determine when end 

modes are coupled to propagating waves, and to obtain the 

equivalent lumped masses of each mode. The value of k 

for the 1 mm line use, data of which is given in table 

4.1, Chapter 4, is 0.193, 

Due to the shortage of information relating to 

end resonances it is necessary first of all to establish 

their frequency spectrum. Rods of a variety of materials, 

chosen to give a wide spread of Poisson's Ratio, were 

therefore prepared and, in each case, thin discs were also 

cut from the rod. These were used to obtain the cut-off 

frequencies and, using the method described by Onoe 

ref. (55) and extended by Bell and Sharp, ref. (56), to 

evaluate Poisson's Ratio. Table 5.2 gives these results. 

The equivalent lumped masses can be found using equation 

5.2. 

Experiments were then conducted on hollow cylinders. 

Identification of modes was difficult becuase of the 

availability of thin walled cylinders only. Therefore 

a solid brass bar 0.4 meters long was bored out to



  

  

  

  

  

  

  

  

  

  

  

  

                          

Pip yar [ae 1/2 3/4 13/16 7/8 192 
MODE 

2k: 27.633 22.451 3 

38 Al 3120 40.798 37.168 

4,1 54.439 54.415 521.992 48.596 

5,1 66.741 66.824 66.258 64.128 39.01 20.949 

Gyt 78.678 78.849 18352 1: 77.695 52-899 42.46 29.8 21.45 

7,1 90.498 90.702 90.409 90.238 67.529 55 622 39.774 21.085 

8,1 102.191.4| 102.383 |.-102,068 102.205 82.057 68.595 50.602 36.145 

Dk T13 2.824 i137 9e89 113.861 113.941 96.959 82.438 62.124 41.946 

10,1 125.36 125.520 =|" 125.374 seb 25:54815 -|2111 5849 96.587 74.321 54.136 

Llp. 136.933 126.543 | 110.907 86.876 67.475 

a 148.422 140.174 125.396 995 929 81.891 

13 pal 154.206 139) 782 11.3'.253 97.265 

wea 154.28 126.855 113.34 

b = inner diameter. Table 5.3 = outer diameter 

Measured end resonant frequencias for brass hollow cylinders of various wall thicknesses 
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various inside diameter, and a set of results taken at 

each stage. This procedure enabled the modes, initially 

identified for the solid cylinder, to be followed through 

to the thinwall condition. In parallel with this, a thin 

disc was cut from the bar and corresponding diameter holes 

machined in it. Details of these results are given in 

table 5.3 «and plotted’in Figure 5.2. 

The major characteristic of the axi-symmetric mode 

that sets it apart from the anti-symmetric is the extremely 

high Q iat it displays. This is evident from the inability 

to obtain a crossover for this mode. The Q for the system 

is defined as 2m times the ratio of stored energy to 

dissipated energy, if the material losses are considered 

to*be zero: the material Q becomes infinite and the system 

is described by Qu: the coupling Q, only. In other words, 

the only form of energy dissipation is via the propagating 

wave in the line. Since the line parameters are unchanged 

throughout the experiment the large Q of ene symmetric 

mode must be due to the existance of the coupled propagating 

wave along the bar. This would appear to be an anomalous 

state of affairs as a propagating wave would lead to an 

additional dissipation of energy and hence lower the Q 

value. For a semi-infinite bar this would probably be 

the situation. However the presence of a second boundary 

of a finite bar means that the stress wave is reflected 

back along the bar and in doing so sets up an end resonance. 

For a finite bar therefore the axi-symmetric end mode occurs 

at both ends, this effectively doubles the value of the
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coupling Q since there will be twice the amount of stored 

energy. This in itself however, does not explain why 

the Q of this mode is, not double but, many times greater 

than those of the surrounding modes. It must be 

considered therefore that other modes of resonance exist, 

and in fact whether the coupled L(0,1) mode is 

propagatory or not. 

Zemanek has shown that the reflection coefficient 

for the L(0,1) mode, below the cut-off frequency of the 

second axi~symmetric mode, is complex with auwmagnitude 

of unity. His theoretical results show that the phase 

angle between the incident and reflected waves is 

dependent upon frequency, and that at the end resonant 

frequency the magnitude of phase shift is tm. In other 

words the wave is reflected in antiphase when the end 

resonance exist. For a finite bar then, the L(O,1) 

mode produces a standing wave along its length, since 

the reflection of this wave at both ends will change 

phase by 180°, The interesting feature of this is that 

the bar has a resonant condition along its length at 

the same frequency irrespective of length. It is therefore 

proposed that the high coupling Q for the axis-symmetric 

end mode results from the relatively large amount of 

energy stored by the end and length resonant modes. 

An experiment was devised to test the validity of 

this pibeteal® The axi-symmetric end resonance was 

excited in a 15.24 cm long mild steel bar 3.5 cm diameter, 

Both ends became resonant and, with the aid of a probe, a_



small amplitude standing wave was observed along the 

length. The resonance was induced esi accoustic line 

coupled at one end of the bar. Heat was then applied to 

the remote end to lower its resonant frequency. Thermal 

conduction was kept to a minimum by cooling the centre of 

the bar with a stream of cold water. The lowering of 

the end resonant frequency, by heating, ensured that only 

one end could be at resonance and that at the non-resonant 

end the phase angle of the reflection coefficient would 

cease to be 180°. This would ultimately prevent a standing 

wave condition occurring along the length of the bar, and 

hence lower the coupling Q. The experiment showed quite 

definitely a fall in the Q value, but the condition was 

hard to maintain because of the propagation of heat to 

the resonant end. 

Another experiment was therefore required to give 

a more convincing result. Two bars of the same length 

and diameter but of dissimilar material were joined 

together end to end. The joint was made using Permabond. 

This gave a good joint without the need to heat the bars 

local to the join. The choice of the material of the 

bars was made so that there was a few percent difference 

between their end resonant frequencies. This of course 

would ensure that only one of the ends would become 

resonant when the symmetric mode was excited. Mild 

steel and nickel were chosen. The choice of these 

materials also has the advantage that the cut-off frequency 

for the L(0,2) mode in each bar is approximately equal. 

Together with the closeness of their Poisson's ratio this



  

  

  

  

  

  

                      
  

Nickel - Steel Composite bar driven at 

Dia 
1 9.53cm -4mm |9.8cm 5.4mm Nickel end Steel end 
eng 

Mode [Frequency KHz n, Prequency, KHZ ny Frequency KHz ny Frequency KHz ny 

2 81.355 95 86.363 104 81.557 13¢C 86.394 100 

no no no 
Onl 114.36 C/o! 118.07 ©/2°) 414.210 C/°\" 418: 402 210 

eis LZ deo oe - 131.817 126 L2ae9 a L31 .903 130 

4,1 162.736 173.621 200 162.807 2 ai ee tos 200 

Table 5.4 

Table showing results of composite bar experiment 
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Aluminium Steel Composite bar driven at 

Dia — = roe Aluminium end Steel end 
Lengt)_|35 cm LIZ cm 

Mode |Frequency KHz ny Frequency KHZ ny Frequency KHz ny Frequency KHz ny 

2,75 60.663 80 62.346 144 60.73 70 62.743 240 

no 854. 922% [NO 86.003 [no no 
Ont 86.608 ong “hes ie: EP 86.039 Ae 

86.217 86.604 

3m 92.080 110 96.006 180 32.74 70 95.82 170 

os no Jo 
4,1 2216875 126.368 = £21.83 130 a267136 240 

Table 5.5 

Table showing results of composite bar experiments 

e
e
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would minimise the influence of the joint boundaries. 

Measurements were made on both bars before jointing, and 

then corresponding reading taken on the composite bar. 

The results for this experiment are shown in table 5.4. 

A similar experiment was carried out on 3.5 cm mild steel 

and aluminium bars,table 5.5 gives details of the results. 

5.3 Discussion of Results 
  

The end resonant frequencies for the materials 

considered in table 5.2 are seen, for the anti-symmetric 

modes, to vary by only a few percent. There are many 

possible reasons for this spread, most of them 

experimental and therefore at the present time the 

dependence of these end modes upon Poisson's ratio must 

be considered as too small to be measured by the technique 

used. Support for this comment may be drawn from the 

results shown for the disc in the previous chapter, where 

the frequency was seen to be a function of Une In the 

case of the disc UL is dependent upon the line dimensions 

and point of coupling, for end resonance however added 

to this must be the angle of coupling and therefore in the 

absence of theoretical solution the exact dependence 

upon Poisson's ratio is not known. 

The results obtained for the symmetric mode can be 

considered more reliable since their coupling Q factor 

is comparatively large, and therefore the damping produced
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by the line is small. A plot of the symmetric modes 

versus Poisson's ratio is shown in Figure 5.3. The curve 

indicates an almost linear relationship between the symmetric 

end mode and Poisson's ratio. — 

It is generally accepted, as indicated by the relevant 

Literature,.that the origins of end resonance lie in the 

complex roots of the frequency equation, forming the basis 

for the approximate solution mentioned previously. There 

is no doubt that the results obtained, particularly by 

zemanek, lends support to this reasoning but there are 

other conditions that could be explained by the same 

repults.' “to maintain a stress free condition at the 

end of a semi-infinite bar the above author's results 

show that the amplitude of the first complex mode has a 

peak at the end resonant frequency. If the end resonance 

is considered as being produced by a surface wave at the 

end face of the bar the net stress at the resonant 

frequency may still be zero. In other words the apparent 

maximum displacement of the complex modes may in fact 

result from the omission of the stress produced by the 

surface wave, when summing the stress at the end boundary. 

This leads to the possible situation that the propagatory 

modes, of a real, complex or imaginary propagation 

constants, do not have a maximum amplitude at the end 

resonant frequency because of the existance of a surface 

mode. The possibility of this concept may seem more 

acceptable in terms of the anti-symmetric modes. Because 

these modes do not couple to a real propagatory wave 

they can only be excited at.the boundary at which they
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occur, this leads to the question of whether a surface 

mode induces complex waves in the bar, thereby maintaining 

a zero stress condition, © 

The resuits for the hollow cylinders given in table 5.3 

are plotted in Figure 5.2. The cut-off frequencies for 

the first six modes are indicated by the broken curves. 

Results of the experiments carried out on the rings, shown 

as circled points, are seen to coliow the cut-off 

freqiacted quite closely. Joining the points for the 

end modes results in the continuous curves of this 

£1 Gere. 

As the ratio of inner to outer diameter gets larger 

(i.e. the wall thickness gets smaller) the modal 

frequencies fall and converge to produce a denser spectrum. 

For values of b/a less than 1/32 the frequency spectrum 

remains virtually unchanged. The degree to which a mode’ 

is effected by an increase in this ratio depends upon its 

order, the higher ones being the less sensitive for values 

of b/a less than 1/2. Since the broken curves represent 

the cut-off frequencies for the lowest mode in each family 

F(m,n),it would appear that cut-off is the highest 

frequency that an end mode may occur. The results obtained 

for the first four modes (Figure 5.2) shows that beyond 

the points at which the broken and continuous curves would 

appear to cross these modes could not be excited, implying 

therefore, that above cut-off an end resonance ceases to 

exist. If, as discussed above, the frequency of the end 

mode is dictated by the resonance of a surface wave, and
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that this wave induces complex modes in the bar, it 

would follow that at frequencies above cut-off, energy 

storage. in the surface mode is prevented by the existance 

of a propagatory wave along the bar, 

The results for the composite Nickel Steel bar, shown in 

Table 5.4, are consistent with the proposals made. Given 

in the table are the results of frequency and crossover 

measurements made before the bars were joined. These 

results indicate that in the case of both bars a crossover 

for the symmetric mode could not be obtained. Joining 

the bars together, in the manner mentioned, and taking 

readings from each end in turn the results obtained are 

seen to be quite different. In the case of steel the 

value of n, goes from a number much greater than 

oscillations in the burst to 210, whereas driving from 

the nickel end has an apparently unmeasurable effect. 

In fact from the shape of the echo it was obvious that for 

the nickel, when joined to the steel, the value n, was far 

greater than that of the isolated bar. Figure 5.4 shows 

results obtained by Zemanek for the phase shift between 

the incident and reflected L(0O,1) mode at the end face 

of a cylindrical bar. The two features of these curves 

which are of particular interest in this part of the 

discussion are:- 

a) The 180° phase shift that occurs with end resonance 

and b).. The difference in the shape of the curves above 

and below resonance, in particular the plateau 

region above the-end frequency. 

It has already been commented that when both ends of a bar
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are at resonance a standing wave is set up along the 

whole length, resulting in a high a. for this mode. 

Consideration of the results given in Table 5.4 will 

show that, when the composite bar is driven from the 

nickel end, the end resonance of the nickel bar is 

excited. This frequency being below that of the end 

resonance of the steel bar, the latter is not excited at 

the remote end. Because of this it would be expected 

that Q. fall in value. However Figure 5.4, shows that at 

frequencies below end resonance the phase shift drops 

steeply to zero. Therefore a wave arriving at the end 

face of the steel bar will be reflected in phase, which 

is the behaviour expected from a clamped boundary. With 

the 180° phase shift at the drive end a standing wave 

condition will result along the length of the bar, hence 

the high On obtained. 

When the bar is driven at the steel end the situation 

is reversed, the drive frequency is now above that of the 

end resonance at the remote end. At frequencies above end 

resonance it is seen (Figure 5.4) that the phase shift 

does not fall directly to zero, therefore for this 

eaieig uration A standing wave does not occur. This situation 

is similar to that obtained in the heated bar experiment. 

Since energy is only stored at one end, as with the 

anti-symmetric modes, Qe falls giving the value of n, 

shown in, Table. 534.
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The results obtained for the aluminium and steel 

bars, given in Table 5.5, show that when the end resonant 

frequencies are close to each other a large amount of 

energy is stored when driven from either end, implying 

a standing wave condition along the length.
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CHAPTER 6 

END RESONANCE OF PLATES AND STRIPS 

6... Inmtroduckion 

The study of wave propagation in infinite plates has 

developed in much the same manner as has the theory for 

infinite cylinders. This coincidence of histories is not 

altogether surprising because of the similarities that 

exist between the two fields. Discoveries made for one 

geometry would, by applying the same reasoning, automatically 

lead to similar findings for the other. 

Early theories for the propagation of waves in plates 

were published independantly in-1889 by Rayleigh (57) and 

Lamb (58). Except for a later study by Lamb (59), in 1917, 

the topic appears to have remained virtually undisturbed untii 

the 1950's. Since the publication of Holder's (5) work: in 

1951, involving a study of longitudinal modes in cylinders 

and slabs, the two topics have become strongly linked. As 

with cylinders, the frequency spectrum for modes of real, 

imaginary and complex propagation has been extensively explored, 

resulting in an almost complete understanding of the 

behaviour of their dispersion curves. 

The introduction of a second pair of surfaces to 

assimilate the geometry of an infinite bar of rectangular 

cross-section, greatly increases the complexities involved 

in the theory of vibrations of plates. In the case of an 

infinite cylinder the problem of satisfying boundary conditions



iw LAO 

on two pairs of surfaces does not arise and therefore 

solutions can be obtained. A general solution for infinite 

rectangular sectioned bars however has not yet been obtained. 

This. is not peculiar to’infinite bars, for if comparison is 

made with thin plates, the solutions of flexural and inplane 

vibrations of discs can be obtained without great difficulty , 

whereas general solutions for similar motions in plates with 

rectangular boundaries can not. Exact solutions for specific 

ratios of width to depth of an infinite rectangular bar 

have been obtained by Mindlin and Fox (59), the results 

allow a limited number of points to be found within the 

frequency spectrum. The slope of the dispersion curves at 

these points can also be obtained from the equations given. 

How these curves behave between these points and how curves 

relating to complex propagation behave is not resolved. 

Unlike cylinders, strips and plates have been found, 

experimentally, to support only one end resonant mode. In 

the case of cylinders it was found that each family of 

propagating modes, except for the lowest anti-symmetric 

family, had its associated end resonance. The modes of 

propagation in strips or plates form only two families, one 

symmetric and one anti-symmetric, and therefore it is not 

surprising that only one end resonant mode should exist, 

and further more that it should be associated with the 

symmetric family. Because of the similarities in the 

displacement fields of the anti-symmetric modes, in that 

they all have a common node in the middle plane, it is 

thought that they couple to the lowest mode, which has zero



» [30:4 

eut-off frequency, hence preventing a storage of energy 

in an end resonance, A similar relationship does not exist 

between the symmetric modes therefore an end resonance 

associated with these modes occurs. 

It was stated in the last chapter that the mechanism of 

end resonance is generally explained in terms of modes with 

complex propagation. The spacial decay of such modes does 

not signify a dissipation of energy, but simply the character 

ef the mode. That the wave decays on propagation into the 

body does indeed lead to the question of destination of the 

energy possessed by the mode. It would appear that early 

investigators rejected the possibility of such modes on the 

grounds of this apparent anomally. However, since the complex 

propagation constants have negative conjegate counterparts, 

at any frequency, within the range that they exist, two waves, 

propagating in opposite directions but decaying in the same 

sense, will be generated. The net result is that the complex 

modes only occur as standing waves, and hence do not represent 

a transportation of energy. Therefore at the end of a 

semi-infinite cylinder or the boundary of a semi-infinite 

plate an infinite number of standing waves of this nature 

exist. 

The presence of these modes is also used to explain 

the problems involved in obtaining solutions for plates or 

cylinders of finite volume, in; that the’ stresses at. the 

boundaries will be zero only when all these modes are taken 

into account. 

Edge resonances of plates were first reported by 

Shaw (60). His observations of these modes were made while
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carrying out vibrational experiments on Barium titanate 

discs. The results show that, for discs with radius to 

thickness ratio greater than 1, a mode exist for which the 

frequency is independant of the disc radius and the motion 

of eibes tidn takes place mainly at the periphery. 

Using a second order theory, developed in reference (61), 

Gazis and Mindlin (62) obtained, numerically, a value for 

the edge resonant frequency of a circular disc and a semi- 

infinite plate. The plotted results indicate that, in a 

similar way to semi-infinite cylinders, the reflection 

coefficient for an incident wave impinging on the boundary 

undergoes a phase change of 180° at the edge resonant 

frequency, and that the amplitude ratio of the first complex 

mode has a peak value at this frequency. 

Onoe (63), using an approximate theory based on an 

energy principle, arrived at a frequency value for the end 

resonance of a finite strip. His computed and experimental 

results show that the techngiues used are in good agreement, 

however the results obtained relate specifically to the 

anisotropic case and therefore are not really applicable 

to the considerations of this chapter. 

The theoretical results obtained by Torvik (64) for a 

semi-infinite plate with a Poisson's Ratio of 0.31 agree very 

well with the results given in this thesis and those obtained 

experimentally by McMahon (53) and Shaw (60). Torvik used 

a similar approach to Onoe in that his method involved 

minimising the work done at the boundary by suitably 

choosing coefficients for the modes involved. His results
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take into account 22 modes, eis incident and reflected 

lowest symmetric mode and the first ten complex modes and 

their negative conjugates. The plotted results display 

identical characteristics to those given in reference (62). 

The theoretical work of this chapter is based on that 

of Rayleigh and Lamb, the values for the end resonances of 

semi-infinite plates and strips were obtained using the 

method employed by Zemanek in the case of semi-infinite 

cylinders, Stress summation has been considered for 12 

modes, two real and ten complex. In the case of the semi- 

infinite plate the end resonant frequencies, have been 

obtained , for eleven values of Poisson's Ratio between 

O.1 and 0.5. For the semi-infinite strip nine values were 

computed within the same range of Poinsson's Ratio. In both 

cases the values have been found to lie on almost straight 

lines, and therefore a plot of the results allow intermediate 

points to be obtained graphically. 

To test the accuracy of using twelve modes results were 

computed taking account of 22 modes at a value of 

Poisson's Ratio of 0.35, the results were then compared. 

6.2 Basic Theory 

The starting point for the treatment of wave propagation 

in infinite plates is identical to that adopted for cylinders, 

Equations 2.20 to 2.23 therefore are applicable as they 

stand to the theory of plates. The solutions for the 

displacement component, obtained by solving equations 2.22
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Fig. 6.1(a) The orientation of strip and plate with respect to the co-ordinate axis. 
Wave propagation takes place in the x direction only. 
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and 2.23..and. inserting the results into equation 2.21, will, 

because of the geometry, now be described in terms of 

trigonometrical and hyperbolic functions. 

Considering a plate lying in the x - z plane, with 

plane wave propagation in the x direction, the plane strain 

solution for the symmetric displacement components are 

u, = j|ByCosay + CBCospy| expj(yx - wt) - 

Me -|BoSinay - CySinfy| expj(yx - wt) a 

u, =O 
iz 

and B and C are constants with respect to x and y. The 

symbol 6, the ratio of the shear and dilatational velocities, 

will depend upon the system considered. That is for an 

infinite plate this ratio will be C.s/Cg, where Cg is, as given 

by equation 2.15, the dilatational velocity in an unbounded media, 

and for an infinite strip Cs/Cpr where Cp is the plate 

velocit- given by equation 2.16. The arrangements for strip 

and plate are shown in figure 6.1(a). For a plate or strip, 

with boundaries y = tb, the conditions to be satisfied are 

that both the plane and shear stresses at these boundaries 

be zero. The expressions for the stresses at the boundaries 
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are obtained from equations 2.4 by substituting the 

subscripts 

+ xX 

oY 

ZZ G25 

& 
WwW
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wey 2 

5 x 

Or >. xy 

and expressing Lame's constants in terms of velocities. 

A is the areal dilatation et Sat The strain. components 

May be written as 

du, du 

Cot ap marnc! “vy ~ dy 6-8 

du du, 
and ¢€ ey ©: 

xy dx y 

Making the substitution of 6.1 and 6.6 into equations 6.3 

and 6.4 and evaluating at the boundaries y = +b, results in 

the following frequency equation. 

tangb/tanab = 4aBy2/ (82 = yr 6.7 

This is the Rayleigh-Lamb frequency equation for the 

propagation of symmetric waves in an infinite plate. The 

frequency equation for. an infinite strip is identical to 

6.7 with the value of cs in equation 6.2 changed i.e. in 

non dimensional form 6.2 becomes 

23:2 2 2 2,2 GF eye, B2b? =07 - yb 6.8 Eb: = §2



where 07 = w*b*/c2 

For a plate the dilatational wave will travel at the buik 

velocity and therefore the ratio §, in terms of Poisson's 

Ratio, will be 

Bee Gi =. 25) /2tk Sc) 6.9 

from equations 2.14 and’ 2.15....in the case of the strip; 

the wave will travel at the plate velocity giving a ratio 

of 

$%.ea{1 <0) /2 6.10 

from equations. 2.14 and 2.16. If, in, either case, the 

dimension 2b is small compared to the wavelength in the y 

direction the frequency equation 6.7 reduces to 

w = 2yC,(1 - 67)% ent 

For a thin plate therefore, e has the value given by 6.9 and 

equation 6.11 becomes 

¥(B7o(1.- o7))% I a) 

using equations 2.14 and 2.16. Substituting 6.10 in 6.11 

gives the limiting case for the strip. As the dimension 

2b becomes small, the strip becomes a rectangular bar. The 

resulting frequency equation from equation 6.1i is
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= ¥(E/p) * 2
 | 

eyes 6.13 

where a is the longitudinal velocity for waves of infinite 

wavelength in a bar. 

The Rayleigh-Lamb equation has real, imaginary and 

complex solutions. Figure 6.1 shows part of the frequency 

spectrum obtained from this equation. Computations were 

made using a value of 67 = 0.335, thus .for.a -strip.g = 0.33 

and for a plate o = 0.248. 

The cut-off frequencies are obtained by allowing yb-0O 

in equation 6.7, this produces 

Sin8BbCosab = O 6.14 

which has the solutions 

Q = nt 6.15 

Q = (2n + 1)1/267 6.16 

(HO. LH 2p. Se o's GEC) 

Modes having solutions 6.15 are 'thickness-shear' modes 

having only one component of displacement uy: The solutions 

6.16 give 'thickness-stretch' modes with displacement u 

only. 

The intersection of the complex dispersion curves with 

the zero frequency axis can be found by allowing 2 to 

approach zero with yb remaining finite, in equation 6.7. 

Following this procedure the resulting frequency equation, 

given by Jones and Ellis (65), is



ooo 

Sinh(2yb) = - 2yb Oe 17 

The first 20 roots of this equation are given in Table 6.1 

  

      

Modes Re (yb) | Jm (yb) 

“2 aad .3 a 12576 2.10620 

4 and 5 SS Loa, 5. S002 7 

6 and= «7 Le tiao4 8.53668 

o and... 9 1.92940 17699 128 

1O -and. 11 2.04685 14 .85406 

12 and 13 2.14189 18 .00493 

147 and =15 Ane al doe Zeke Los ao 

6. andl 7 2.29055 24 .30034 

HS and 9 2.3505 27.44620 

20 and 21 2.40501 30 25 91:30 

22,.and 236 2.45372 33 3735.84: 

24 and 25 2.49810 36 .87909 

26. and 2:7 2.53887 40 .02363 

28 and 29 2.57656 43.16709 

30 -and si 2.00NL. Ga: 46 .31032 

327 and, 33 2.64436 49 .45337 

34and 35 26 75 LO D2 9.02,/ 

364and 37 2.70407 55). / 3903 

$8 and .39 2.73144 58 .88168 

40 and 41 22 1S HLO 62 .02424 

  

Table’ 6 wk 

Special solutionsof the Rayleigh-Lamb 

  
equation are
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those of the Lame modes. These are analogous to the Lamb 

modes discussed in Chapter 2. Consideration of equation 

6.7 will show that when 8=y the solution is 

Bb = yb = (2n + 1)1/2 6.18 

and the frequency equation using 6.8 becomes 

Oe (n+ 1)n/i2)* 6.19 

Writing the stresses 6.3 and 6.4 in full 

pC? | (y?~B7) Bcosxy + 2ByCCos By | expj (yx - wt) 

  

io = 

“Ps 
6.20 

ae 28 : . é 
Oxy. = joce| (y -B°)CSinBy - 2ayBSinxy|expj (yx - wt) 

and lying the bound onditions o =o = 0 t applying e ndary condition xy yy a 

y = +b the amplitude ratio 

a atin: B _ _2y8CosB8b ay. ~8")SinBb 6.21 
Cc (y7~8*) cozab 2yaSinab 

is obtained. Therefore when the condition 6.18 is substituted 

in 6.20 and 6.21 the stresses become 

2 
o 2pC_ByCCosBy exp (yx - wt) yy. 7 AOC g By y expj (y 

Oxy =O 6.22 

and the displacements from equation 6.1 for the Lam'e modes 

become 

uy = jCBCosBy expj(yx - wt) 

6.23 

u. = CySinBy expj (yx - wt)



The important features of the foregoing equations are 

that a). the wave operating is a shear wave, b) the phase; 

velocity is /2 Cor and c) the shear stress is zero 

everywhere. Because of the latter of these it follows that 

for a bounded plate there remains only one boundary condition 

to. be, satistied.1.ec:¢ =O. This may be written as 
XX 

mf 222 : Cee -2pC_8 CosBy expj (yx - wt) 6.24 

For the incident and reflected waves the pane stress becomes 

Cam : 
Wee oe -2pC 8 Cos8yCos8x expj (-wt) 6.24 

where B= (2n + 1)1/2b. 

The stress Moz therefore will be zero when 8x = (2p + 1)1/2, 

OF x. = -<b2p.it Lh) m/ (ono; 1) 6.25 

iD Sole 2, 3; etc) 

For frequencies satisfying equation 6.19 a plate, of infinite 

extent in the z direction, or a thin strip will have all 

boundary conditions satisfied if the dimension in the x 

direction satisfies equation 6.25. In addition to being 

important solutions, from the point of view that they are 

the only exact ones known, it will be seen that these modes 

have interesting effects on the computed values of end 

resonances, in the following section.
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6.3 End Resonances of Semi-infinite Strips and Edge 
  

Resonances of Semi-infinite Plates. 
      

The frequency spectrum shown in figure 6.1 has a character 

very similar to that obtained by Zemanek, shown in Chapter 

2, for the axi-symmetric modes in cylinders. As with cylinders 

the complete frequency spectrum takes up four quadrants 

resulting from the identical way in which the roots occur. 

Since the Rayleigh-Lamb frequency equation only contains. 

terms in 7 it is obvious that the real and imaginary values 

of y can be positive or negative for the same solution. For 

the complex roots, consideration of the equation used to obtain 

their zero frequency intercepts (equation 6.17) will show that 

any combination of positive and negative real or imaginary 

parts of yb will result in the same solution. This becomes 

more apparent if 2yb is eesiecea by a + jc:and the, whole 

equation expanded. The following symultaneous equations 

are obtained. 

Cos (c) = - (a)/Sinh (a) 

Cosh. (a).— = (ce) 7Sin. (c} 

from which it is seen that, since both right and left hand 

sides are even functions, the sign of a or c do not affect 

the solutions. Therefore the complete spectrum is made up 

of real modes that occur in pairs, imaginary modes that 

occur in pairs, and complex modes that occur in groups of 

four. In infinite plates, strips or cylinders the non-real
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modes will only be encountered in problems of transient 

waves or non-uniform loading. For finite or semi-infinite 

bodies the imaginary and complex modes are also associated 

with edge vibrations. 

In considering edge or end resonance it should be 

appreciated that imaginary and complex modes are only 

admissable if they represent a spacial decay on propagation 

into the body. Therefore the imaginery part of y must 

always be positive, this eliminates one of the imaginary 

modes and one pair of the complex modes. 

Consider a semi-infinite body extending to x = ~» with 

a boundary at x = 0. Since the stresses Oe and Pxy cannot 

both be made zero by assuming the reflection of one mode, 

account must be taken of cancellation effects produced by the 

stresses of other modes. Hence the boundary conditions at 

x = O are written as 

Cc co 

a Seen 2 Oxym =© 6.27 

m0 m=O 

The end resonances of strips or plates have been found 

experimentally to occur only below the cut-off frequency 

of the second symmetric mode, marked s(2) figure 6.1. Below 

this frequency there are two modes with real propagation 

constants and an infinity of complex modes. Considering 

only frequencies in this region of the frequency spectrum 

these modes alone need be accounted for. It is obvious 

that the infinite number of complex modes cannot be included 

in the summation and that some realistic figure must be
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chosen. For all the results obtained 12 modes were taken 

into account. To check whether the accuracy would be 

improved by considering more modes, a duplicate set of 

results were cbtained for a value of “e = 0.325 using 22 

modes. The resonant frequency was found to be only 0.02% 

in error and was deemed, therefore, not worth the extra 

cost of obtaining all results with this number of modes. 

When considering the problem of end resonances it is usual, 

references (9), (64) and (66), to assume that a source at 

x = » excites the s(l) mode, which upon reaching the stress 

freé:-boundary: at x = Q, is reflected with reflection coefficient 

A. In doing so complex modes are generated thereby maintaining 

a zero stress condition. This approach, while being satisfactory 

for situations in which end resonances couple to propagating 

modes, as for symmetric modes in cylinders, is inadequate 

for strips, where the end mode in general has not been found 

to couple with a propagating wave. Also, since the driving 

force is applied at the stress free boundary, as for the 

experiments of this thesis, the remote source idea is 

unrealistic. The approach to be developed here, will be that 

all modes emanate from the free boundary. Two modes, with 

real propagation constants, will be generated, one relating 

to the positive value of y and the.other to the negative 

Y value. These two modes would correspond to the incident 

and reflected waves of the remote source approach, but in 

this case both modes travel in the +tve x direction but with 

apposite sign propagation constants, Because the complex 

values of y form negative conjugates the same reasoning may
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be applied. There is no difference, mathematically, whether 

the wave travels in +ve x direction with a -ve y value or 

a -ve x direction with a +ve y value, but the point should 

be made if the physical situation is to be truely represented. 

The plane and shear stresses produced by each mode can be, 

by utilising equations 6.1 to 6.6 and 6.21, written as 

(2a*-w*/c2) CosBb 

  

Gl: % Coc72B| Cosay - Cosfy|expj (yx-wt) 
XX s Be 

(y~-B) Cosab 

6.28 

ee og et eyes oe ties 59 Ee jCpce (y°-B ) |Singy Snape iney |expj (yx wt) Mesh 

where C is the amplitude coefficient, which in general will 

be complex. If the bracketed Cosine and Sine terms are 

represented by C(y) and S(y) respectively and the etine 

dimension is dropped equations 6.28 and 6.29 may be 

abbreviated to 

(y,x) 
: 2 : 

Odo A, expj >, pC 2y8C (y) expj yx 6.30 

Sxyn (¥rX) = jAexpj >, 0Ce (y?~8) 8 (y) exp3 ¥x 6.31 

where C is represented in complex form as A expj¢. Using the 

mode with the real +ve y value as reference for all other 

modes by chosing an amplitude modulus of unity and a phase 

of zero, the summation of (n + 1) stresses will result in 

nh unknowns. To evaluate these, therefore, n equations containing 

the unknowns are required. This is achieved by summing the 

stresses Tome and Oxy at a total of n points along the half
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thickness b of the plate (strip). Proceeding in this 

manner the plane stresses are set equal to zero at (n + 1)72 

equally spaced points and the shear stresses at (n - 1)/2 

equally spaced points. From equation 6.29 it is seen that 

the shear stress is zero at y = tb goand therefore will 

in fact be zero at (n + 2) points along the thickness of the 

plate. If n for the reference modes is 0, so that A, = 1 and 

, O, the unknown coefficients will. be A,exPi oy where 

n=1, 2, 3 etc. The mode propagating with a -ve y value will 

be represented by n = 1, and the first complex pair by 

h = 2 and 3 and so on. The simultaneous equations to be 

solved are, therefore 

Ges iP r, 70) 0) 

where r is the ratio y/b having a value of 

r= 2(i-1)/(n- 1), 

and 

°xyp (b r).10) 

k = Ne 2, 3 eee (n - 1)/2 6.433 

where 

a , 2 (aR = 17 (a Le
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These equations were solved for n = 11 and velocity ratio 

squared 67 = 0.45, 0.4, 0.375, 0.355, 0.325, 0.315, 0.295, 

OR 2157, On 7 and 'O7.0% 

6.4 Discussion of Results 
  

All calculations were carried out on an I.C.L. 1904S 

computer. Initially results were obtained for $720,335 

(i.e. for ’a“plate o'= 0.248 and for a’ 6trip -o. =: 0733) “ana 

frequencies @ = 1.5 (0.01) 2.56. The values of yb were 

evaluated to six significant figures for these results, but 

for smaller subdivisions of AQ this was increased to eight. 

The results obtained for the amplitude coefficients AL for 

n= 1, 2 and 3 are shown in figure 6.2. 

From the two curves it is seen that Ad = Ay = 1 also 

A, = Az, this was not unexpected since this behaviour was 

reported by Gazis-Mindlin and Zemanek. In fact for all cases 

considered it was found that A = AY on where m= 1, 2, 3 etc. 
2m+1) 

Because Of the interpretation of how the modes are formed, 

ie. that all modes emminate from the boundary at which 

the energy source is applied, it might be expected that the 

energy distribution should be equal between like modes and 

hence have equal moduluss In the frequency interval Q=2.222 

to 2.225 there occurs a minimum for the amplitude of the first 

pair of complex modes. The significance Of this:is that it 

is the frequency of the Lam'e mode, that is Q=n/ (2) 4 = 2.2214 

and since all boundary conditions can be satisfied by the 

existance of the two real modes alone, it is in order that
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the contribution of modes of a complex nature should be a 

minimal. Finally, the amplitude coefficient of the first 

pair of complex modes is seen to have a maximum peak at 

Q = 2.25, at which A, (A3) /A, a> 5. ALthough: figure 6.2 

shows the value of this maximum at approximately 10, a more 

detailed exploration, in the vicinity of this frequency, 

shows that the peak has a maximum of 156.6 and occurs ata 

frequency of 2 = 2.24911. Figure 6.3 displays the behaviour 

of the curve in the frequency interval 2 = 2.245 to 2.255. 

The curves shown in figure 6.4 are the amplitude values for 

the second and third complex mode pairs, A, (Ag) and Ag (A.). 

It is seen that at this frequency all the complex modes have 

‘peak amplitudes and hence produce an end or edge resonance. 

The real and imaginary parts of expjo, are shown in figure 

6.5. For frequencies <<. the two modes propagating with 

real values of y are almost in phase. As end resonance is 

approached the phase shift becomes 180° and, when Q>>00, 

becomes small again. All ten complex modes were found to 

have the same Q value of approximately 18.75 x Gee 

A computed set of results obtained for 6? = 0.275 

(strip o = 0.45, plate o = 0.31) allowed direct comparison 

to be made with those given by Torvik. His results were 

computed for a plate with a Poisson's Ratio of 0.31 and 

show a resonance to occur at 2 = 2.3295, with an amplitude 

ratio of approximately 35. The values obtained by the author 

were 2 = 2.3279 and Ay (A3)/A, (A) = 26. This amounts toa 

frequency difference of less than 0.07% and a difference 

in amplitude of around 27%. The real and imaginary parts
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$7 o(strip) o (plate) Q, A, (A3) Q 

0.45 bt 0.091 2, 07276.0) 6a 0 4 ae.574K107 

0.4 0.2 0.167 2.15304 | 205.8 9.787x107 

0.375 0.25 0.2 2.19325, ) 26240. 2) 33,20\x10> 

0.355 0.29 0.225 3 2207E FP 3L6<3 

0.335 0.33 0.248 2.24998 4156.6 1 Lay 75. 2107 

0.325 oe 0.259 2.2629 94.18 | 7.8 x1l0° 

02315 O. 39 0.27 2.2764 64.7 4.139x10? 

0.295 0.41 0.291 2.3027 37.8 1.59 x10? 

0.275 0.45 0.31 2.3279 25.8 0.776x107 

0.17 0.398 2.4464 9.6 0.107x107 

0.0 0.5 2.5995 cis 0.052x10° 

Table 6.2 

Theoretical values of 2. (end resonant frequency), A, (A3) 

(amplitude ratio for first complex mode pair) and Q 

(quality factor calculated from Qf (2, - Q))). 
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of expj >, and the amplitude coefficients A,(A3), for this value 

2 
of 6°, are plotted in figures 6.6 and 6.7 respectively. Q 

has a value of 0.776 x in. 

Except for bere 0.355 all other values of 6° resulted 

in curves of.identical character and therefore no’ benefit 

will be nines by presenting them. Table 6.2 gives the 

relevant information relating to these solutions. The values 

of Q, calculated by means of the equation Q = Ne/ (25-24) 

where 25 and Qy are the frequency values at Ove, are also 

shown graphically in figure 6.8. For 6% around 0.355 Q 

becomes extremely large. This region of the curve has greater 

relevance to the strip than the plate, since it occurs at 

the more useful values of Poisson's Ration. If, as Gazis 

and Mindlin suggest, these resonant modes have a finite 

amplitude because they are coupled to a propagating mode,it 

appears that for strips made of the more common metals this 

coupling becomes very small. This was found to be the case 

experimentally. In fact if the propagating mode existed 

at all it contained insufficient energy to excite an end mode at 

the remote end of the strip. 

The dependance of resonant frequency on Poisson's Ratio: 

is shown in figure 6.9. Using this figure in conjunction 

with that of 6.8 it is seen that the high Q values occur 

at frequencies of the Lam'e mode. When considering figure 6.2 

it was seen that the amplitude of the complex modes became 

very small, if not zero, at. this frequency since all the 

boundary conditions could be satisfied by the modes with 

real propagation constants. Therefore since the minimum
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of figure 6.2, independant of Poisson's Ratio, will always 

occur at a=n/(2)%, the prospect is now faced that maximum 

and minimum may be coincident at the relevant value of 

o. Results obtained for §7= 6.355 are shown in figure 6.10 

Unlike solutions for other values of - the results do not 

form a smooth curve, but do show a major resonance at 

Q=2.22071. In practice internal friction would prevent 

this structure from being resolved. 

It has been suggested (Zemanek) that the complex modes are 

generated at an interface in sufficient amplitudes as to 

cancel the residual stress left by the propagating mode. 

In context of the above results this would not appear to be 

wholly the situation since at values of 2 = tathic Polegate: 

an end resonance would not exist. Also in the vicinity 

of the Lam'e mode it would be expected that the amplitudes 

be smaller than elsewhere in the frequency spectrum and not 

the reverse since residual stresses are a minimum. It is 

therefore suggested that at the interface the complex modes 

are generated, to satisfy the boundary conditions, whether 

it be from within, by the S(1) mode or by an external source, 

but that the amplitude peak is pertaining to their resonant 

mode and not as a result of stress in balance. Figure 6.11 shows 

the way in which the real and imaginary parts of expo. and 

expj>3 behave around resonance. For. frequencies lower than 

Re 

~expjo3 = -exp (-j $5) Gin 32
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and for frequencies above Me 

expj>, = exp(-j¢,) 6.33 

writing equations 6.30 and 6.31 as 

Ca AY eX) = A,expje_T, (y) expjyx 6.34 

and 

Pxeyn (Yr) = A.expj?,S, (y) expjyx 6:35 

where it can be shown that 

To, ly) ee TS a1 (Y?) 6.36 

and 

Bogle Say y? 6.37 

Therefore the sum of the stresses for the two complex modes 

is totally imaginary below and above resonance but with 

180° difference in phase. As resonance is approached the 

amplitude coefficients cease to be conjugate pairs and hence 

the sum of the modes becomes complex, which is tantamount to 

a propagating wave in both the x and y directions. From 

figure 6.11 it is seen that at resonance 

expjo3 = -exp(-j¢,) 6.38 

which results in the sum of the stresses, produced by these 

two modes, being totally real. 

In short then, for frequencies above and below resonance
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the complex modes form standing waves in quadrature to the 

driving source and therefore do not store energy. This 

mode of vibration could be termed an anti-resonance. At the 

end resonant frequency these modes form a standing wave, in 

phase with the exciting force, and therefore are at resonance. 

22 Mode Solution 

The summation of 22 modes was considered for 6? = 0.325. 

This value as was chosen because of its reasonably high Q. 

Too higher value of Q would of course make pinpointing the 

resonance costly, and too lower Q would reduce the resolution 

between the peak obtained for 22 modes and that obtained 

for 12 modes. Figure 6.12 shows the details of the two 

peaks in the vicinity of resonance. The curves show an 

increase in frequency of 0.02%, a drop in amplitude of 2.73 

and a drop in Q of 5%. Results obtained by Zemanek for 5, 

7 and 9 mode considerations, for the axi-symmetric end 

resonance of a cylinder, display identical type of 

behaviour. 

6.5 Experimental Results 
  

Frequency measurements were made on eight strips. In 

all cases the dimensions were such that the length was at 

least six times the width. The materials used were chosen 

to give as wider spread of Poisson's Ratio as possible. Discs 

were cut from six of the strips to enable values of shear
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velocity and o to be calculated. The dimensions and results 

obtained are shown in table 6.3 and plotted in figure 6.13. 

  

  

                    

Material | o C, m/s | Frequency Width (2b) 2 Q 'S 
theory 

Brass 0.300, 12162 els202 BH Se) MOM Sees Lever ool “ad 

Brass OO. 366.2102 Bi 300 KHZ 5 / SEO 4.2.2798:12 ae red .3i 

Aluminium |0.34 JES 3 40,042 KHz 5 01D. CH 2 SOR sian 25 Ge mea 

Copper 04325 | 2280 28.222 KHz 5..801¢6m. }:2.256 14.245. |.-O.5 

Mild Steel|0O.31 3258 41.968 KHz 5 .497cm 2.225 2.235 41 +0). 2 

Mild Steel|O.291 | 3235 7692-KRH2 [:1:2..7.-em | 2.2067 | 2.22laetond 

Mild Steel]O.291 | 3235 29.812. KHz de, Or @CMiel 2 ZOOS | 2 2210 O29 

Glass O C2201) 3400 3155677 KHz 7 6259¢Cm 12 6t995) 2 169-4 +ia4 

Table 6.3 

The percentage difference in frequency is seen to lie 

between -2.3 and +1.4. It is thought that the cause of the 

error comes mainly from the experimental results, for two 

reasons. a) The problems associated with obtaining absolute 

values of frequency, by the echo technique used, was outlined 

in Section 4.6, Chapter. 4. -Itds obvious,,,from the table 

showing the change in frequency with position of coupling, 

that the measured frequency may be as much as 3% in error 

when coupling at an anti-node (a=0). The more accurate value 

being at a=0.38 (since this is almost on the node i.e. 

U,=0.0). Therefore since the end resonant frequencies were 

measured by coupling at the end of the strip, which is the 

point of maximum amplitude, it is to be expected that errors
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occur. It was also pointed out in Seetion 4.6 that not only 

does the point of drive have an effect but so also does the 

ratio of characteristic impedance to resonator density. This 

would appear to be the situation, for as table 6.3 shows the 

largest error occurs for the materials with the lowest 

densities (i.e. Aluminium and Glass). 

b)’ .ALE the strips used were cut from rolled stock, hence 

introducing a certain amount of orthotropy. This would effect 

the value of velocity and o depending upon the orientation 

of the strip. 

In conelusion the theoretical results are compared with 

those obtained experimentally by McMahon (53).for edge 

resonances of discs. Table 6.4. where the theoretical values 

  

  

            
  

Material] o Cy & (McMahon exp.) | Q2(theory) | % Difference 

Aluminium |0.344 | 5150 m/s 2.369 euola 0.2 

Mild Steel|0.293 | 5170 m/s 2.300 2.304 0.2 

Table 6.4 

of 2 are obtained from figure 6.9 or by linear extrapolation 

of the results in table 6.2. 
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CHAPTER 7 

DYNAMIC CLAMPING 

7A. Interoduct Lon 

The recent use of tuning fork resonators in the field 

of ultrasonic thermometry, Seth (67), Bell (31, 32), 

Fathimani (68), has created a demand for information relating 

resonator parameters to their natural frequencies, for this 

geometry. Because of their complex shape, theoretical 

solutions are not readily obtainable, and design is based 

solely upon empirical results. Though not specifically 

aimed at solving the problem it is thought that the contents 

of this chapter offers, in part, insernabibn relevant to 

this topic. 

Dynamic clamping is a condition that is created by the 

opposing motion of two bodies vibrating in anti-phase. A 

typical exampie of a structure possessing this phenomenon is 

the tuning fork where, at the base of the tines, because of 

the constraining effect one tine sets on the other, the 

angular momentum of one tine exactly balances that of the 

other. The static equivalent is the clamped reed where it 

is postulated that the clamp is sufficiently massive to react 

to momentum changes without energy absorption. Consider 

the geometry shown in Figure 7.1. When the two tines 

perform the kind of motion indicated the displacement at 

point p will be in the x direction only, since the resultant of 

that in the y direction will be zero. In addition the 

differential.of the displacement in the y direction will be 

zero. Therefore since
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at y = O it seems reasonable to assume that the kind of 

boundary condition that exists should be related to that of 

clamped. Where the (unrealisable) static clamp gives a 

boundary condition that 

at the line origin ,for the dynamic case where the origin 

cannot be precisely define, the positions where these 

conditions are realised is uncertain. The results are 

interpreted by developing a dimensionless frequency factor 

of the form 

frequency x (a dimension) 
  

(a velocity) 

where h and b are used directly but where "a" can have a 

correction which is a function of h and b. Of necessity 

any formula must obey Rayleigh's "Scaling Law" (similitude) 

and approximate to the classical reed formula when 

a>>b>>h. The results are expected to extend data to dimension 

ratios where h is comparable to a and b. In practice the 

only condition not covered is the case where h>>b and a. The 

first two reed modes (having transverse nodal lines) have been 

explored. For the two configurations considered the 

experimental results have been ‘compared with theoretical 

solutions obtained for plates of the same dimensions but with 

statically clamped boundaries. In the case of the resonator
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shown in Figure 7.1, for example, each tine is compared 

with a rectangular plate having a thickness h, length a, 

and width b, with C.F.F.F. (Clamped, ee Free, Free,) 

boundary conditions. : 

For the case of rectangular plates with boundary 

condition other than simply-supported, exact solutions 

are not known, therefore numerical results have to be 

found using approximate techniques. The values that have 

been used here, presented by Leissa (69), were evaluated 

using the Ritz method. This is a variational technique 

which is based on minimizing the ratio 

w*U/T i 

where U and T are the maximum values of potential and 

kinetic energies respectively. The expressions for U and 

T are obtained by assuming that the deflection of the plate 

Ww can be expressed as a linear series of beam functions. 

Coefficients relating to these functions are then -chosen 

so as to minimize equation 7.2. A comprehensive discussion | 

on the method is given by Young (70). 

  

7.2 Tuning Fork (as clamped plates) 

The tuning fork, as shown in Figure 7.1, is particularly 

well suited to a discussion on dynamic clamping, since it 

allows the effect to be presented, not only in terms of



  

  

    

      

  

    

    

Fig. 7.2 The vibrations of the tines tend to generate a propagating mode 

with the displacement field shown. 
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flexural vibrations of plates, but also in terms of 

propagating waves in rectangular strips. For example, 

from the classical theory of plates, the assumption is made 

that for low amplitude vibrations there exists an 

underformed middle surface “neutral plane" for which the 

inplane strain is zero. Therefore when the two tines are 

ibe ind in anti-phase the displacement field that they 

produce, at the end of the strip to which they are joined, 

will be of the form shown in Figure 7.2. Hence there 

is a tendancy for a propagating wave of this character to 

be generated in the strip. However, if the frequency of 

vibration is well below the cut-off frequnency of the s(2) 

mode (see Figure 6.1) this type of motion will only couple 

to the complex modes. This situation then ensures that 

the energy stored by the vibrating plates is not leaked away 

to the rest of the structure via a propagating mode. 

Experimentally this was supported, for it was found 

that resonant modes for the tines, which should have 

occurred at frequencies above cut-off for the s(2) mode, 

could not infact be excited, and when this frequency range 

was explored the whole system was set in motion. 

The tuning fork type resonators were manufactured from 

1.27 cm square bar, by machining a narrow longitudinal 

slot in one end. Tine length and thicknesses were adjusted 

by increasing the depth of the slot or reducing the thickness 

of the bar respectively. In all cases the overall length was 

23 cm. 

From the classical plate theory the angular frequency
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for a plate of length a and thickness h is given by 

2 
w = AhC, /a v¥12 rs2 

where } is the frequency factor obtained by satisfying the 

equation of motion and boundary conditions, or as in this 

instance by the Ritz method. Values of i are given in 

reference (69) for all the 21 possible combinations of boundary 

conditions that exist for a rectangular plate. Using the 

substitution Q = wh/C., and rearranging the terms, 

equation 7.3 can be written as 

% 
dS < vec. "ane Lee 

Yee si
m 

This form of equation is arranged to allow the "a" end 

correction to be investigated. For a change in aspect ratio 

a/b from 0.125 to 2.0 the value of i, for the fundamental 

mode of a C.F.F.F. plate, varies almost linearly from 

3.5134 to 3.4575 (Leissa). Therefore chosing a value of 

3.49 gives an error, over the above range of a/b, of less 

than 1%. A plot of 1// versus a/h for i = 3.49 and 

Poisson's ratio o=0.29,using equation 7.4 is shown in 

Figure 7.3. Initial experiments were carried out on mild 

steel specimens with various tine lengths a. The measured 

frequencies for the fundamental mode together with their 

corresponding a values are shown in Table fale yt Was 

calculated using a shear velocity for mild steel of 3235 

meters/second. —
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Frequency KHz | a cm b* cm 4h. cm a/h 1L/VQ 

8.604 74, LO}S\/) a2 0.616 3.299 Bal] 

12.015 Ole 6.6: 27 0.616 2.680 2.030 

21.276 34:3 eZ? 0.616 1.856 1.982 

47.826 05,635 27. O76 106 O33: 322 

108.842... O6254. 41 oF) @c61b* | :Oc4i2 | Ose79 

180.355 0,000 W277 0.616 0.000 0.681                 

  

Table.7. 1 Experimental results for mild steel tuning 

forks, of various a values. 1.1 mode. 

The last frequency value in Table 7.1 is an average 

value of measured Bia resonances. Unlike thin strips, 

which have been found to support only one end resonant 

mode, a bar of square cross-section has three. The lowest 

of these has two nodal lines parallel to the sides of the 

bar and at right angles to each other. This is identical 

to the nodal pattern displayed by the lowest flexural 

mode of a completely free square plate. For a rectangular 

plate with length greater than the width the lowest 

flexural mode has a displacement pattern similar to the 

end resonant mode of a strip, that is two parallei nodal lines 

across the shortest dimension. When the plate becomes 

Square this mode splits to form the second and third modes, 

the lowest has two nodal lines at right angles to each other 

passing from corner to corner and the higher has a nodal circle.
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An identical behaviour has been found to exist for the end 

mode of a strip as it approaches the dimensions of a 

square section bar, therefore the average of these two modes 

has been taken to obtain the last value in Table 7.1. The 

values of a/h and 1//2 in this table are plotted as circled 

points in Figure 7.3. For values of 2 less than one the 

two curves have approximately the same target. The crossed 

points on the same curve represent results obtained for 

measurement made on similar specimens with varying values of 

the parameter h. These results are shown in Table. "7.2 

  

  

              

Frequency KHz | h cm bcm | acm a/h 1/VQ 

eS ee 0.616 2a Lae ervod 2.142 

15.453 hie 465 ee 2h i eee/ 2.062 eo6 17 

HL. 5O08 0.287 De 2a7, L.27 4.425 3.948 

8.906 0.211 J 27 ee 2a 6.020 5.234 

  

Table 7.2 Experimental results for mild steel tuning forks 

of various h values. 1.1 mode. 

Since both sets of results lie on the same straight 

line and the tangent of both curves is the same it may be 

assumed that the frequency expression for the dynamically 

clamped plates is of the form 

L 

a ee = [Ge +k) 7.5 iL 
do Wx
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where k from figure 7.3 has a value of approximately 0.68. 

Rearranging 7.5 to give an expression similar to equation 

7.3 results in 

w = AhCp/Y12 (a + kh)? 7.6 

From which it is seen that, by comparison to statically 

clamped plates, the length a is apparently increased by 

a factor proportional: to the thickness h‘of the plate. 

An identical set of experiments were carried out on 

the same specimens to observe the second reed type mode 

of a, C.F.F.F. plate. This mode has :.a nodal line parallel 

to the clamped edge... Its A:value has,.been taken. as 21.76, 

giving the same degree of error over the same range as for 

the lower mode. Table 7.3 gives the experimental results. 

  

  

  

Frequency KHz h cm b cm acm a/h 1/VQ 

46.172 0.616 ie 217. 22 O32 33299 1.345 

51.342 Os212 AL O49) oe 6.024 2.18 

61.249 0.616 eT, 1.65 J: 2.680 £5168 

652357, OFZ 6.7, eee a eae 4.425 1.683 

96.05 0.616 LL Ae 1.143 Ls856 0-933             
  

Table 7.3 Experimental results for mild steel tuning forks. 

2.1 mode.
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Plotting results in the same way, and comparing curves with 

that of the 2.1 mode for a C.F.F.F. plate, shows that 

equation 7.6 may also be applied to this mode. In this 

case however k has a value of around 1.14. It is obvious 

therefore that the difference in frequency between the 

static and dynamically clamped plates is not only a function of 

the dimensions of the resonator as suggested by equation 

7.5, but also of the mode of resonance. In terms of 

Figure 7.3 this would mean that the two curves have to be 

made coincident by movement along both axis. Therefore 

equation 7.5 should be written as 

oF oe en = 3) |% [¢S + Q) + PYAl6(1 - 3) {7 
Wc FA h 7.7 

where P and Q are constant, and may be determined from the 

values of k obtained for the two experiments, by solving 

the following simultaneous equations 

== : 
Qe Pre (6-0) |: a= ko 7.8 

SATA 3.49 k) = 0.68 (first experiment) 

and 

Ay = 21.76 ky = 1.14 (second experiment) 

For a value of o=0.29 P and Q have the vaiues 0.236 and 

0.373 respectively. Hence for dynamically clamped plates 

the natural frequencies can be obtained from equations 7.6 

and 7.8. In particular for o=0.29
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 It “AnC,/¥12 (a + kh 

where 

k =.0.373 +.0.164 YA t16 

Figure 7.4 shows a plot of the factor wavl2/C,, versus 

a/h, as obatined from equations 7.9 and. 7.10 and experiment, 

for the 1,1 and 2,1 modes so far considered. 

The 1,1 and 2,1 modes are affected very little by the 

ratio a/b, this is in fact common to all modes containing 

no nodal lines at right angles to the clamped edge. If 

equations 7.9 and 7.10 are applied to another mode and in 

particular one without the symmetry displayed by the 1,1 

and 2,1 modes the extent to which they may be used could be 

determined. The lowest anti-symmetric mode is the 1,2 

mode, this has one nodal line at right angles to the 

calmped edge. Its i value varies from 3.85 for a/b = 0.2 

to 17.988 at a/b = 2.5. Two experiments were carried out 

on this mode, one in which a/b remained constant and h 

varied, this would produce a curve similar to those already 

plotted since ki and hence k would be constant, and 

one in which h was held constant and a/b varied. 

Table 7.4 gives results of the experiments.
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Fig. 2.5 Frequency curves for 1,2 mode in tuning fork type resonator. Indicated points: 

are experimental results given in table 7.4. (——): a constant; (---): h constant. 

The curve for the statically clamped plate was obtained from equation T= 3 

€
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Frequency KHz h cm bcm] acm a/h wavl2/C,, 

27.506 Q.616 (et.27 .}o-032 |. 3.299 | 2.34 

33. 161 GO. 616 17027 | 1268ae 13.68 25195 

46,126 G-616<h 1 aes 1 Pad eees6) 2cKes 

75.044 @.616.|° 1527 | Geese) Los 1.9% 

132.45 0.616.) .1:27 | On2540 oO. 410") 1,349 

41.937 @.606 F lear -( E87 FY Hoes. |9 196 

36.469 O.4654. 2.97.1: 27+) eee a oe? 

28.047 GO upd 27. |. 22-s ededee) Lada 

22.097 ©. FP: bc87' 27 S090 + 38               
Table 7.4 Experimental results for mild steel tuning forks 

in 1,2 mode. 

The results of table 7.4 and those of equations 7.9 

and. 7*%10 are plotted:in figure.7.5.° Points. for the 

theoretical curve were obtained using \ values given by 

references (69) and (49), remembering that a/h is related 

to A(a/b) by a/h = (b/h) (a/b) for h constant. 

Figure 7.5 also shows curves for the same mode ina 

C.F.F.F. plate. A logrithmic scale has been used to 

enable all four curves to be presented. The results for . 

the anti-symmetric mode are remarkably good, since both the
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constants of equation 7.10, which was used to obtain the 

curve, were arrived at independently. Comparison with the 

curves for a statically clamped plate indicate how well 

equation 7.9 represents the dynamic situation. At a = 2h, 

for example, where the modified equation is seen to be still 

quite accurate, the difference between the two sets of curves 

is 100%. 

The effect of Poisson's ratio on the foregoing solutions 

is small as can be seen by the results obtained for 

Aluminium and Copper tuning forks, shown in Table 7.5. 

Investigations carried out by Leissa on the effect of o 

upon the frequency parameter \ show that the sensitivity is very 

much a function of the ratio a/b and mode. However, in 

the range of o for the more common materials, say 0.25 to 

0.35 the error is probably less than 4% by using the 

centre value. | 

It is obvious from the ee that unlike the statically 

clamped plates the dynamic structure reaches a maximum frequency 

as h is increased. The maximum value can be obtained by 

differentiation of equation 7.9 to give 

c 
= ep | ee Tell 

a + kh le
 

! 

Vidia + kh)” 

from which it is seen that w is a maximum when a = kh, the 

maximum frequency is given by 

I he 

4/12ak
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‘*
 

ae
. 

ae



- 187 - 

or 

wavl2 _ X 
ap aR | a 

where k has the value shown in equation 7.10. The right 

hand side of equation 7.13 then becomes totally a function 

of 4, hence the anti-symmetric modes have a maximum only 

when a/b is constant. 

7.3 Dynamically Clamped (C.F.C.F.) Plates 

The geometry for the resonator is shown in Figure 

7.6. In effect the structure is made up of two tuning forks 

end to end, for the experiments however, the complete system 

was machined from the solid. Because of the problems of 

manufacture, the possiblity of carrying out experiments 

on the lines just discussed, were not contemplated, therefore 

experiments were aimed at obtaining practical docile. 

to test the usefulness of the equations, obtained in the 

previous section, when applied to this geometry. 

The equations for the tuning fork were obtained by 

deriving an expression for the experimental curve in 

Figure 7.3. This was achieved by modifying the theoretical 

equation to make the two plots coincident. It was found that 

the required condition could only be met if the curve were 

translated along both axis, one representing an apparent 

increase in a/h and the other an apparent decrease in 

frequency. Two assumptions will be made for the resonator 

under consideration.e, Firstly, the relationship 

between dynamic and static clamping for the



kee oe 

C.F.C.F. plate is the same as for the C.F.F.F. plate 

(i.e. Figure 7.3). Secondly the apparent increase 

in a/h is double that of the tuning fork, because of the 

two clamped boundaries that exist. From the first assumption 

therefore, 

w = AhC,/¥ 12 (a + kh) 2 7.14 

and from the second 

k = 2(0.373) + 0.164 YA 75 

Table 7.5 gives the results of experiments carried out on 

a mild steel specimen together with calculated results 

using the above equations for the same dimensions. 

  

  

  

Mode | a/b x Ftc. Fvcs Ps | £ (exp) f (theory) 
plate) KHz KHz 

Lok 5739 22.21 eS.51 162125 10.216 

1,2 12a 29.34 Lies 3 13.428 i ae 

2,1 1.435 61.33 34 eae 26.077 25.883 

2,2 1326 71273 43.65 30.608 29.758 

2a x35 132276 74.7 47.885 47.697             
  

  

Table 7.5 Comparison of measured frequencies with calculated, 

from equations 7.14 and 7.15 and equation for 

C.F.¢.F. plate. . Plate: dimensions h =,0.748 cig 

a= 4.046 cm, d= 2.0 cm and Gah 5420 m/s. 

The agreement between results are good, the maximum error



  

  

  

  

                      

1,1 mode 1,2 mode 2,2 mode 

Material oO acm C_ m/s : 

P f KHz wav12/C,, f KHz wav12/C,, f KHz wavl2/C,, 

M/S O229 Lo 43 5,420 212716 0.977 46° 127 Zoek] 130.983 6052 

. Aluminium O34 27 5, 410 183338 0.937 40.086 2.048 v6 7s 5.964 

Copper 0.34 Ve27 3,900 S359 0.945 29.56 2.095 85.854 6.085   
  

Table 7.5 Experimental results for tuning forks having h=0.6l6cm and b=1.27cm. 

- 
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being 3% for the 2,2 mode. Of course the experimental 

values are likely to be high rather than low, this being 

one of the characterisitics of the measuring technique, 

but since the constants of equation 7.15 were evaluated 

using the same set of experimental conditions the net difference 

in results, created by this, should be small. The values of the 

constant themselves may not be optimum, as only more 

experiments will tell, but the sensitivity of frequency 

to changes of k show that the values must be reasonably 

close. For. example differentiation of equation 7.1 with 

respect to k gives 

el
e “ 2k/(a/h + k) 7.16 

Therefore the sensitivity of frequency to changes of k is 

a function of both k and a/h, which means that the lower 

modes are least effected. Also as a/h becomes large the 

sensitivity gets less, which is to be expected, since LZ 

the plate is extremely long the type of clamping will be 

OL di ¢tise consequence, and if extremely thin the clamping 

will approach that of the static situation. Considering 

mode 2,3 of table 7.5, which will be the most sensitive 

to changes of k, the percentage change in w is given by 

= -O.4 Oa ; ely 

Hence a 5% change in k will result in a 2% change in. wo°or
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Fig. 7.7 Displacement patterns for m,n modes. Clamped edges are considered to be’ 

at the left and right hand sides of each sketch. 
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05379 - 2, 391 

0.164 - 0.172 

47.697 > 46.648 

Finally, the maximum sensitivity, according to equation 

7.16, will occur when a/h = O, however equation 7.14 is 

probably only reliable up to the point a/h = k leaving 

the maximum dependence of w at 

Other results relating to experiments of this section 

are shown in Table 7.6 together with associated calculated 

results. The significance of the mode numbering i.e. 1,1 

and 1,2 etc. is shown in chart form in Figure 7.7. 

  

  

Mode | a/b teal piste) ez |-rae, | ae 
5k 1.84 SAeiie 13.53 aya LOGZ29 

2,1 1.84 , 61.3 37.3 255-03 25.872 

eS a 384 120.6 73.38 47.34 46.829 

Live 1.84 34.5 215. OO 15.40 iSn Sf 

2,2 1.84 13.9 48.62 33. eo 32.734 

oy x 1.84 142.4 86.65 55. 7a 53.4956 

Lj3 1.84 96.9 58.96 42.00 38.76 

373 ee 4 214.3 530539 tases 75.86       
    

  

      
Table 7.6 Measured and calculated frequencies of mild steel 

specimen h = 0.4 cm, a = 4.046 cm, d= 2.0 cm 

and - = 5420 m/s.
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7.4 Comments 

The empirical equation derived offers an easy means 

of obtaining, if not accurate, approximate values for the 

natural modes of vibration for the structures considered. 

In terms of percentages the maximum discrepancy between 

experimental and calculated results was 77% for the 1,3 

mode table 7.6. The majority of the results showed an 

error of less than 3%. It is thought that the large 

errors in the last two modes of table 7.6, i.e. 1,3(7.7%) 

and 3,3 (4.6%) is due to interpolation of }\ between 

a/b = 2 and 1.67. As already discussed modes posessing 

nodal lines at right angles to the clamped edges are 

very sensitive to changes in the ratio a/b, the more nodes the 

greater the sensitivity as can be seen by the changes of 

\} for the above two values of a/b. 

I ll Il a/b = 2.0 A(1,3) = 109.2 KAZ, 3h 2a) 66 

a/b = 1.67 .A(1,3), = 82-5 A(3,3) = 196.9 

The range of a/h to which equation 7.9 may be applied 

will depend mainly upon the mode of vibration, and the 

accuracy of the computed values of A. In the upper limit, 

as the tine approaches the dimensions of a reed, equation 

7G eedices tO that of 730, providing .k<<a/h.™ The 

validity of the equation for small values of a/h is 

predominantly dependant upon the accuracy of A. For the 

modes considered, theory and experiment were found to depart
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noticeable for a/h<k. This departure is obviously brought 

about by the limitation of the thin plate theory used to 

compute the values of A. In conclusion therefore the lower 

limit, in the absence of more representative values of i, 

must be considered to lie in the region of a/h =k.
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APPENDIX A.2.3 

Equation 2.20 can be written as 

" zt 
2 vy Gag 

Ss . 
Cc a a. = 26 

where V is the vector operator "del". The dilatation 

A is the divergence of the displacement vector u written 

as V.u. In terms of displacement the rotational vector 

® is expressed as half the curl of u or in symbolic 

form as }V x u.. Performing these operations on equation 

2.21 gives 

V.u = V.VO + V.V x A 

Since V.V x H = O we have 

V.eu = ¥7¢ A.3 

alao &V x u = 4V 4.¥¢ +°4V°% V x A 

using the fact that V x Vd = O and V.H =0. 

~ De 
BV x u = -4V°H A.4 

Substituting A.3, A.4 and 2.21 in Al gives 

L V(C7 4979 - #44 Vx (C9 H.-y ao A.5 

This equation is satisfied if each bracketed term 

vanishes, requiring therefore that 

oo A 
CVG = 9 

and G7 vee a 

i.e. equations 2.22 and 2.23.
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APPENDIX A.2.4 

The determinant 2.33 is written as 

ai oe 

APY Oh F535 ie 

Pal ae 935 

where 

2 2 DutZ 
a4,.= (nan = Lie 2/2 + a‘), (ha) 

e a ee 
aj = (n a k"a )J,, (ka) 

< a ce <> ee a,3. = 2(n 1) (kad, _, (ka) nd (ka) ) k"a J, (ka) 

ao, = had _ (ha) - (n+ 1) J, (ha) 

Aaoo = kad _j (ka) - (n + 1) J, (ka) 

% 2 2.2 se 
a53 = (2n” + 2n - k*a ) J, (ka) 2kaJ_, (ka) 

az) = haJ__, (ha) ~ nJ_ (ha) 

ve Ae 2 Dee? is aso = (1 (Q°/2y"a )) (kag, _) (ka) nd. (ka) ) 

oo ae 
a33 = nd, (ka)
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APPENDIX A 3.2 

The rotational vector w is half the curl of the 

displacement vector u or 

2 0 = Vxu : a 24k 

Expanding the righthand side of this expression gives 

where 

z ou, : du, 

Or r 00 dz 

nee z du, , 

8 az Ons 

ou 
ck. oleae a 

ag = or. 6 r 90 ) 

Therefore if ol Uy =O and ul# (er. 6)) 

el
 

I oO
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APPENDIX 5.1.1 

  

P~HODE | p(2,1) P(S,1) fe Fl4,2).1 Ps) Petes) | ort we) 
  

  
  

0.00 203362004213 .54520 4.57078 5.52881 6.45681 7.36901 8.27184 
0.01 2.33667 3.54802 4.57665 9<03 750 6.46824 7.38298 8.28823 
0.02 2<33/710 3.55079 4.58241 5.54623 6.47959 7.239.685 8.30451 
0.03 2-33405 3553553 4.58813 5.55481 6.49084 7.41062 8.32069 
0.04 2,33799 3.55623 4.59378 Seb633 1) 6.50200 7242429 8.33675 
0.05 2.33845 3.55889 4.59936 5657172 6.51306 7.43785 8.35271 
0.06 2.33887 3.96152 4.60487 5.58005 6.52402 7.45130 8.36855 
0.07 2.33930 3.56411 4.61031 5.58829 6.53480 7.46465 8.38428 
0.08 2.633973 3.56666 4.61568 5.59644 6.54566 7.47789 8.39988 
0.09 2.34015 3.96917 4.62100 5.60451 | 6.55632 7.49102 8.41537 
0.10 2.34056 3.97L05 4.62625 5.61249 6.56688 7.50403 8.43074 
OelT 2.34097 3.57410 4.63143 5.62038 6.57735 7.51694 8.44598 
0.12 2.34138 3257652 4.63654 5.62818 6.58770 Ted2oay 8.46109 
0.13 2.34178 3.57888 4.64159 5.63590 6.59796 7.54239 8.47608 
0.14 2.34217 3.58123 4.64657 5.64353 6.60811 7.55494 8.49094 
0.15 2.34257 3.58354 4.65149 5.65108 6.61816 7.56738 8.50566 
0.16 2.34295 3.58581 4.65635 5.65853 6.62810 7.57969 8.52026 
On 7 2.34334 3.58806 4.66114 5.66590 6.63794 Te59189 8.53472 
0.18 2.34371 35,9027 4.66587 5.67318 6.64767 7.60396 8.54905 
0.19 2.34409 3.59246 4.67054 5.68038 6.65730 7.61592 8.56324 
0.20 2.34446 3.59461 4.67514 5.68749 6.6682 7.62775 8.57730 

0.21 2.34482 3.59673 4.67969 5.69451 6.67624 7.63946 8.59122 
0.22 2.34519 3.59882 4.68417 5.70145 6.68555 7.65105 8.60501 

0.23 2.34554 3.60088 4.68860 5.70831 6.69476 7.66251 8.61865 
0.24 2.34590 3.60292 4.69296 5.71508 6.70386 7.67386 8.63216 
0.25 2.34625 3.60492 4.69727 5272176 6.71285 7.68508 8.64553 

0.26 2.34659 3.60690 4.70152 5.72837 6.72175 7.69618 8.65876 

0.27 2.34694 3.60885 6.70571 5.73489 6.73054 7.70716 8.67186 

0.28 2.34727 3.61078 4.70984 5.74132 6.73922 7.71801 | 8.68481 

0.29 2.34761 3.61267 4571392 5.74781 6.74781 7.72875 8.69763 

0.30 2.34794 3562455 | 4.72795 5.75029 6.75629 1 sf 3936 8.71031 

0.31 2.34827 3.61659 4.72192 5.76015 6.76467 7274985 8.72285 

0.32 2.34859 3.61821 4.72583 5.76627 6.77295 7.76023 8,73525 

0.33 2.36892 3.62001 4.72970 5.77231 6.78112 7.77048 8.74752 

0.34 2.34925 3.62178 43/339 1 Del Pols 6.78920 7.78062 8.75965 

0.35 2.34955 3.62353 4.73727 5.78416 6279719 7.79064 8.77165 

0.36 2.34986 3.62525 4.74093 D139 97 6.80507 7.80054 8.78351 

0.37 2.35017 3.62695 4.74464 579570 6.81286 7.81032 8.79523 

0.38 2.35047 3.62865 4.74825 5.80137 6.82055 7.81999 8.80683 

0.39 2.35077 3.63029 4.75181 5.80695 6.82815 7.82955 8.81829 

0.40 2.35107 3563192 4.75532 5.81247 6.83565 7.83899 8.82962 

“ 

                
  

Table of Qe values for a solid ‘rod. Q, = wa/C .
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EP la ey ys aaa F(4,1) F(5,1) F(6,1) F(7,1) F(8,1) 

0.00 | 2.33620 | 3.54522 | 4.57080 | 5.52883 | 0.45683 | 7.36903 | 8.27186 
0.01 | 2.33665 | 3.54801 | 4.57659 | 5.53749 | 0.46815 | 7.38286 | 8.28809 
0.02 | 2.33710 { 3.55070 | 4.58221 | 5.54591 | 6.47917 | 7.39633 | 8.30389 
0.03 | 2.33753 | 3.55331 | 4.58765 | 5.55408 | 6.48988 | 7.40944 | 8.31930 
0.04 | 2.33794 | 3.55584 | 4.59293 | 5.56202 | 6.50031 | 7.42221 | 8.33431 
0.05 | 2.33835 | 3.55828 | 4.59805 | 5.56974 | 6.51046 | 7.43465 | 8.34894 
0.06 | 2.33874 | 3.56065 | 4.60302 | 5.57725 | 6.52033 | 7.44677 | 8.36320 
0.07 | 2.33912 | 3.56294 | 4.60785 | 5.38456 | 6.52995 | 7.45857 | 8.37711 
0.08 | 2.33949 | 3.56517 | 4.61253 | 5.59164 | 6.53931 | 7.47008 | 8.39067 
0.09 | 2.33985 | 3.56733 | 4.31708 | 5.59854 | 6.54842 | 7.48129 | 8.40389 
0.10 | 2.34020 | 3.56942 | 4.62150 | 5.60525 | 6.56730 | 7.49223 | 8.41679 
0.11 | 2.34054 | 3.57145 | 4.62580 | 5.61179 | 6.56596 | 7.50289 | 8.42938 
0.12 | 2.34087 | 3.57342 | 4.62998 | 5.61815 | 6.57439 | 7.51328 | 8.44165 
0.13 | 2.34120 | 3.57534 | 4.63404 | 5.62435 | 6.58260 | 7.52342 | 8.45364 
0.14 | 2.34151 | 5.57720 | 4.63799 | 5.63038 | 6.59061. | 7.53331 | 8.46533 
0.15 | 2.34182 |.5.57901 | 4.64183 | 5.63626 | 6.59842 | 7.54296 | 8.47675 
0.16 | 2.34211 | 3.58077'| 4.64557 | 5.64198 | 6.60604 | 7.55238 | 8.48789 
0.17 | 2.34240 | 3.58248 | 4.64921 | 5.64756 | 6.61347 | 7.56157 | 8.49878 
0.18 | 2.34269 | 3.58414 | 4.65276 | 5.65300 | 6.62072 | 7.57054 | 8.50941 
0.19 | 2.34296 | 3.58576 | 4.65621 | 5.65830 | 6.62779 | 7.57930 | 8.51970 
0.20 | 2.34323 | 3.58734 | 4.65957 | 5.66348 | 6.63469 | 7.58786 | 8.52994 
0.21 | 2.34349 | 3.58887 | 4.66285 | 5.66852 | 6.64143 | 7.59621 | 8.53985 
0.22 | 2.34375 | 3.59037 | 4.66605 | 5.67344 | 6.64801 | 7.60438 | 8.84954 
0.23 | 2.34400 | 3.59182 | 4.66916 | 5.67825 | 6.65444 | 7.81236 | 8.55901 
0.24 | 2.34424 | 3.59324 | 4.67220 | 5.68294 | 6.66071 | 7.62015 | 8.56827 
0.25 | 2.34448 | 3.59463 | 4.67517 | 5.68751 | 6.66684 | 7.62777 | 8.57732 
0.26 | 2.34471 | 3.59598 | 4.67806 | 5.69198 | 6.67284 | 7.63522 | 8.58618 
0.27 | 2.34494 | 3.59730 | 4.68088 | 5.69635 | 6.67869 | 7.64251 | 8.59484 
0.28 | 2.34516 | 3.59858 | 4.68364 | 5.70061 | 6.68441 | 7.64963 | 8.60331 
6.29 | 2.34538 | 3.59984 | 4.68633 | 5.70478 | 6.69001 | 7.65660 | 8.61161 
0.30 | 2.34559 | 3.60107 | 4.68896 | 5.70886 | 6.69348 | 7.66341 | 8.61977 
0.31 | 2.54581 | 3.60226 | 4.69152 | 5.71284 | 6.70084 | 7.67009 | 8.62766 
0.32 | 2.34601 | 3.60343 | 4.69403 | 5.71673 | 6.70607 | 7.67661 | 8.63544 
0.33 | 2.34621 | 3.60457 | 4.69649 | 5.72054 | 6.71120 | 7.68300 | 8.64305 
0.34 | 2.34640 | 3.60569 | 4.69888 | 5.72426 | 6.71621 | 7.68926 | 8.65061 
0.35 | 2.34659 | 3.60678 | 4.70123 | 5.72790 | 6.72112 | 7.69529 | 8.65781 
0.36 | 2.34678 | 3.60785 | 4.70352 | 5.73147 | 6.72592 | 7.70139 | 8.66497- 
0.37 | 2.34696 | 3.60889 | 4.70576 | 5.73496 | 6.73063 | 7.70726 | 8.67198 
0.38 | 2.34714 | 3.60991 | 4.70796 | 5.73837 | 6.73523 | 7.71302 | 8.67885 
0.39 | 2.34732 | 3.61091 | 4.71010 | 5.74172 | 6.73974 | 7.71866 | 8.88558 
0.40 | 2.34749 | 3.61189 | 4.71221 | 5.74499 | 6.74417 | 7.72419 | 8.69218 

Table of 25 values for disc. 2, = wa/C 
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