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SUMMARY

A development project was undertaken by G.E.C. Machines Co.Ltd., to
improve their existing methods for predicting no-load and full load noise
levels of large induction motors. Improvements were being sought in the
calculation of the machine electromagnetics which create the forces and
the stator core dynamics which determine§ the response to these forces.
The research work reported in this thesis concerns the latter aspect which

applies to synchronous as well as induction machines.

Previous theories for calculating stator core resonant frequencies are
reviewed and shown to be inadequate when applied to large machines. A large
number of resonant frequencies were measured on sample laminations, mainly
from large machines. From these tests it was found that the main in-
accuracies in previous theories - as applied to large machines - centred
on the treatment of the teeth. A series of tests on a production machine
at various stages of manufacture is also given. These tests culminated
in a live-machine test which maximises the amount of information obtainable
about resonant frequencies without increasing the normal testing time.

A completely new theory for calculating stator core resonant frequencies
is presented and compared with the measurements described above and also with
a number of live-machine measurements made on production machines. Excellent

agreement is obtained for large and small machines.

Finally, an example is given of the use of the theory and measurement
techniques to help circumvent a noise problem that came to light mid-way

through the manufacture of a very large machine.
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CHAPTER 1

INTRODUCTION AND OUTLINE OF THE RESEARCH AND MAIN CONCLUSIONS

1.1 NOISE IN ROTATING ELECTRICAL MACHINES

In the design of any piece of electrical equipment many parameters

vie for pre-eminence in the designers considerations. These may be cost,
efficiency, safety, reliability, speed, appearance or simply ease of
manufacture but it seems that every designer is faced witﬁ ignoration or
wholesale compromise as the only means of dealing with them all., A
certain amount of engineering fashion determines which qualities are
important; and genuine scientific advance also helps to drag more out

of the dark of ignorance into the melee of compromise. Thus it is that
noise (or lack of it) has become an important design parameter ip all
aspects of engineering and particularly in the manufacture of rotating

electrical machines.

In rotating electrical machines there are three principal noise
mechanisms giving rise to what are usually called bearing, windage and
electromagnetic noise. It is the latter type of noise that is the least
predictable and which gives rise to the differences between total noise
levels with the machine loaded and unloaded. Moves within the
manufacturing industry to reduce the material content of machines have
increased the likelihood of machines giving rise to electromagnetic noise.
Another fact has brought electromagnetically generated noise to the fore,
from the manufacturers point of view. Of the three types of noise the
electromagﬁetically produced is the most expensive and time consuming to

(2]

it'usually involves the redesign and production of a new rotor
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The customers who purchase rotating electrical machines have been
requiring tighter noise 'performance' of their machines and so manufactur-
ers have been obliged to develop design tools to predict and control noise

(1)

levels As the mechanisms of noise production have been understood

so customers have written more stringent specifications. There is
considerable pressure now to have manufacturers measure noise levels on
full-load in addition to the current practice of measuring noise levels
uncoupled (no-load). Since meaningful léad measurements are difficult,
if not impossible, for most manufacturers to make,it is becoming important
for manufacturers to be able to predict accurately the difference between
no-load and full-load noise levels, It will then be possible to measure

and guarantee no-load noise levels equal to the full load specification

minus the predicted difference.

The work in this thesis is confined to noise of electromagnetic
origin. The control of bearing and windage noise has been reported by

Glew(sj.

1.2 THE GENERATION OF NOISE OF ELECTROMAGNETIC ORIGIN

The logic and the steps involved in understanding the production
and the calculation of magnitudes of electromagnetically produced noise
in rotating electrical machines have been described by Erdelyi(4). The
steps described below are applicable to all rotating machines, although
the greatest amount of work has been done on three phase synchronous and
induction machines. The basis for the calculation of synchronous machine

(5) (6) (7)

noise was founded by Carter with Jordan and Alger simultaneously

publishing work on the calculation of induction motor noise, The

methods described by these authors still form the bases of modern methods
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of calculating noise levels. A simplified approach based on equations
given by Schwarz(z) has been in use for some time by various manufacturers

but this does not give a quantitative noise analysis.

The first step is to obtain detailed information about all of the
major flux harmonics in the airgap of the machine. The frequencies pole
numbers, magnitudes and phases of between 25 and 35 harmonics are needed
for a thorough analysis. A large number of these are likely to be the
vectorial additions of components due to m.m.f effects and permeance

effects.

From the flux waves the magnetic forces are calculated. It is
usually the low order force waves that give rise to high noise levels.
From Maxwells equation it can be shown that the radial force in an

electrical machine is proportional to the square of the airgap flux wave.

The next step is to calculate radial core deflections for each of the
component force waves and then to combine those of like frequency and mode.
The usual procedure adopted for this calculation is to calculate 'static!
deflections using beam theory and then to apply a factor to account for
the dynamic response of the stator core and frame assembly. It is the
dynamic response of the stator which is very difficult to calculate and
which has been the subject of a number of papers in recent years.  This
particular aspect assumes even greater significance when it is realised
that it is usually only machines with stators forces at or near resonance

which vibrate with sufficient magnitude to produce unacceptable noise

levels.
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Having obtained vibration amplitudes the final step is to calculate
sound pressure levels for each mode and frequency of vibration and then
to relate these levels to a standard measurement so that designers have
a ready assessment of any design. Four methods have been developed for
calculating sound pressure levels from vibration amplitudes(4’5’7’8).

Each of these methods produce a noise radiation efficiency which is a
function of the machine diameter and vibration frequency for each vibration
mode. These methods are characterised by unity efficiency (compared with
a plane radiator) at high frequencies and a sharp fall to very small
efficiencies below a threshold frequency. The threshold frequency for

any mode is a function of diameter, with small machines tending to be poor

radiators and large machines good radiators.

1.3 DEFICIENCIES IN PRESENT METHODS WHEN USED TO CALCULATE LARGE

MACHINE NOISE LEVELS

The following comments apply particularly to large induction motors
although the mechanical aspects apply equally well to large synchronous

machines.

The designers approdch in the past to avoiding noise has been
relatively simple. In the knowledge that low order force waves produce
large vibration levels various rules have been formulated to avoid them.
These rules have usually involved the choice of slotting and are often a
severe limitation on the designer. As with most empirical rules the
limits have been set by problem machines and frequently prevent the use
of quite acceptable designs and occasionally fail to prevent the use of

a machine design which obeys the rules but is nevertheless noisy.



The deficiencies in this approach lead to the present day quanti-
tative approach which considers the mechanical and acoystic aspects of
noise generation as well as the electromagnetics of any design. A
comprehensive approach demands the use of a computer to execute all of
the calculations. A computer program was written by the author for
G.E.C. Machines Co.Ltd., using the logic outlined in Section 2 of this

chapter. The theory for this program was laid down by Mr. M. Tarkanyi.

The G.E.C. Machines Co.Ltd., at Rugby is concerned with the manufacture
of large rotating machines and the noise analysis program mentioned above
has been applied to machines ranging from a few hundred kilowatts to some
tens of megawatts of output power. The program field trials included a
few machines which were noisy because of core resonance. The trials showed
that improvements were necessary to give the required accuracy. This was

not unexpected.

The errors in the calculation of the stator core resonant frequencies
were sometimes quite large. The trials also showed the need for information
about damping levels in large machines. In order to improve the select-
ivity of the program it was necessary to apply a tolerance to the calculated
resonant frequencies. This automatically introduced a nominal noise level
for each force wave and a band of levels obtained by varying the dynamic
response in the frequency domain. Because of the tolerance on dynamic
response the program can identify a machine as potentially noisy which may

be acceptably quiet. The need to minimise such a tolerance is obvious.

The reason for the size of the tolerance was thought to be the fact

that all of the available methods for calculating dynamic responses were



verified with measurements on small machines. The good agreement

(4) (9)

obtained by Erdeyli and Ellison and Yang and others for the first
few modes in small machines was not translated to large machines where
one is interested in many more modes. It was the desire to produce a
better method for calculating the dynamic response of large electrical

machine stators which gave rise to the research described in this thesis.

In developing the computer program electromagnetics use was made of
measurements made at both no-load and full-load. The same components of
force are present with the machine loaded and unloaded although the magni-
‘tudes are different. Since the frequencies of these forces do not change
appreciably with load the differences in magnitudes of the various force
waves appear directly as differences in SPL. This is another way of
saying that the mechanical-plus-acoustic response is linear with force

between no-load and full-load.

This statement is certainly not true if the machine is tested at
differing speeds. Since there is a direct relationship between forces
and SPL it is possible to use the no-load/full-load measurements as a
check on the calculated forces, and thereby the calculated flux waves.

If the fluxes are calculated correctly on no-load and full-load then the
calculated differences in noise levels on no-load and full-load (expressed
in logarithmic form) will be the same as the measured differences. This

principle is used in Chapter 6 to demonstrate the accuracy of the electro-

magnetics calculations.

The step from vibration levels to radiated sound pressure levels has

been treated by various authors. Very little exhaustive experimental work



has been reported in support of any of these treatments so there is no
satisfactory basis for comparing them. In the noise analysis
program referred to above the simplest of these (due to Carteris)) has

been used and not found to be deficient.

1.4 SUMMARY OF EXPERIMENTAL AND THEORETICAL WORK

A large number of resonant frequency measurements were carried out on
short stacks of lamination from large machines. The various theoretical
methods for calculating radial mode resonant frequencies were compared with
these measurements. Each of the theories gave good or reasonable accuracy
for small machines (a number of small machines were also tested) but poor
results for large machines and especially for the higher modes in large
machines. The experimental work showed that the teeth in large machines
have a large coupling influence on the radial mode resonant frequencies.

In large machines the teeth are sufficiently long (see Fig. 3.3.1) to
resonate in the first transverse bending mode in the critical frequency
range. Previous methods have assumed either that the teeth do not flex or
that the teeth are parallel and the first tooth resonant frequency can be
determined using elementary theory. In the authors theoretical work
tapered teeth have been assumed and the first tooth resonant frequency has
been determined accounting for secondary effects such as shear, rotary

inertia and root flexibility.

In addition to the measurements on 'short cores' other measurements
were made to gauge the influence of the machine windings and frame on
resonant frequencies. Early in this part of the investigation it became

apparent that the wedges that retain the windings could have an important



influence on resonant frequencies. Further experimental work on wedges
showed that it was possible to move resonant frequencies quite considerably
by bonding the wedges to the teeth. The theoretical work was expanded to
enable the influence of bonded wedges to be accurately predicted. This
aspect has not been considered before, although bonded wedges are increas-
ingly being used. The theoretical work adduced to cover this phenomenon
allows the designer an extra degree of freedom since he can decide to bond

or not as late as the final erection-and-test stage of manufacture.

The effects of the winding were observed by making measurements on a
complete machine with and without the winding. These measurements were

also compared with those on the same laminations tested using the short core

method. The main conclusion from these measurements is that the winding
does not significantly effect the values of resonant vrequencies.  This
conclusion contradicts all previous work. Usually some fraction - often

unspecified - of the winding mass is added to the equations of motion

thereby reducing calculated resonant frequencies. The other main conclusion
from these and other measurements on complete machines is that the frame
increases resonant frequencies at low frequencies but becomes progressively
uncoupled until its influence is negligible. The uncoupling frequencies

have been measured for large machines and occur between 400 Hz and 700 Hz.

The measurements on short cores and complete machines built from the
same laminations have validated the short core method. It is believed
that this method has been used before but without experimental validation.
Since only a small number of laminations are needed and since the frame is

not required this method is practicable from the manufacturers point of view.



The short core method has already been used at G.E.C.Machines.Ltd., to
help circumvent a noise problem in a large synchronous motor (see Chapter 6).
Without the experimental validation the manufacturer would not have been in

a position to rely on the results obtained.

As well as the static vibrator measurements on the complete machine,
the live factory test was used (Chapter 6). This involves running the
machine unloaded at varying supply frequency. Back of core accelerometer
measurements are made and analysed using an instrument tape recorder and
digital analysis. Since measurements are made direct onto a tape recorder .
and analysed subsequently, the test takes only approximately 90 minutes for
twenty sets of measurements. Since accelerometer rather than noise
measurements are made, it is possible to do this test while the bearings
are being settled - this is usually done with the machine unloaded. Using
this test on the experimental machine it was possible to excite nine
different resonant frequencies, forced by the internal electromagnetics of
the machine. Parallel noise and acceleration measurements showed clearly
the improvement upon a similar technique based on sound pressure levels.
Because of the ease with which this test can be made it is proposed that
it is incorporated into the no-load test (during the time when the bearings
are being settled). In this way it will be possible to collect resonant
frequency information on a regular basis on complete, assembled and running

machines.

A new theoretical approach to calculating resonant frequencies of
stator cores has been developed. It recognises and takes account of the

important factors that influence resonant frequencies in large machines.
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These are: the use of tapered teeth; sepmented cores; the effect of wedges
and the skeleton frame into which the stator cores are built. The theory
has also been extended to include things such as axial ventilation holes,
back of core cooling fins and clamping plates. A worst-error margin has
been obtained by comparing the theory with a large number of measurements.
This is * 6% for all modes where the frame is uncoupled. The theory
developed to account for bonded wedges breaks new ground. When the theory
is applied to small machines the accuracy obtained is better than previous
theories. This is true of the present measurements on small machines and

also those reported by the authors of other theories.



LARGE MACHINE AND SMALL MACHINE LAMINATIONS

Fig. 1.1.1
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CHAPTER 2

THE CALCULATION OF THE TEST MACHINE FLUXES AND NOISE LEVELS

In Chapter 6 the results of comprehensive measurements on a production
machine are reported. These include testsat various stages of manufacture.
The most informative of these tests involved the running of the machine
supplied with rated volts. The rotating flux waves produced in this
situation gave rise to a multitude of force waves. The results given in
Section 6.3.2 of Chapter 6 have been obtained by using these force waves to
excite a number of core resonant frequencies, In order to determine the
magnitudes and frequencies of the various forces present during these tests
the computer program mentioned in Chapter 1 was used. This program predicts
induction motor noise levels from geometric and electrical data and gives

intermediate parameters such as forces and core deflections.

The production machine was tested with two rotors - the normal product-
ion rotor and one specially designed to produce high noise levels, The
results of the noise analysis computer program for these two cases are
discussed below. As with most machines only a few of the many force waves
can excite core resonant frequencies. In the interests of confidentiality
only those figures pertaining to measured core resonant frequencies are shown.

The forces of interest are detailed in Fig. 6.3.5,

2.1 THE 58 SLOT ROTOR DESIGN

The production machine was designed with a 58 slot rotor. The mechanical
details of the machine design are given in Fig. 2.1.1. In addition to the

mechanical details this abbreviated data sheet contains three extra flux

.
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densities. The program has been written to calculate the magnitudes
etc. of a large number of flux density harmonics and also to accept
additions to these at the designér's discretion. The three extras
shown in Fig. 2.1.1 are saturation and rotating eccentricity harmonics.
The saturation harmonics were obtained from another G.E.C. computer

program and the eccentricity harmonic magnitude is an assumed value.

The first step in the sequence of calculating noise levels is
to obtain the magnitudes, frequencies, phase and spatial distribution

of the significant flux harmonics. This is done using the well used

equivalent circuit technique. Butlercsg) has given a comprehensive

statement of the calculations involved in this approach. In the
G.E.C. noise analysis program certain important modifications have
been included in the equivalent circuit calculations in the light of
comparisons with noise measurements. Reference to Fig. 2.1.2(2)
shows that there are often a number of force waves of the same
frequency and spatial distribution., These must beé added vectorially
to give a resultant force wave. This means that the phase relation-
ships between all of the flux densities need to be known accurately.
The noise analysis program gives special attention to the calculations
of phase angles. In determining the various flux densities both

m.m.f. and permeance effects are considered.

A table of flux densities is given in Fig. 2.1.2(1). Only those
harmonics that feature in the excitation of core resonant frequencies

(see Chapter 6) are included. The first three columns give the origins
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and code numbers of the various flux densities. These are for identi-
fication purposes. The pole pairs (wave lengths) and frequencies take
negative and positive values., Tﬁis simply indicates the direction of
rotation. The phases are given in relation to the stator current.
Since the tests in Chapter 6 were made with the motor unloaded these

calculations relate to no-load conditions.

From Maxwell's equation the radial force in a machine is directly
proportional to the square of the airgap flux wave. Since this is a
truncated sine series the resulting radial force is the summation of a
very large number of sinusoidally distributed forces. The computer
program orders the products and cross products that result from squaring
the flux wave into ascending numbers of pole pairs. Further calculat-
ions are carried out in this order up to a maximum number of pole pairs
as determined by the user on the data sheet; in this case 10. Fig.
2.1.2(2) is an abbreviated version of the computer print out_and shows

this ordering - Column 3.

The following sequence is followed for each component of
vibration and noise caused by the force wave. The items in brackets
refer to Fig. 2.1.2(2). From the force wavelength and magnitude and
the core dimensions the static delfection (Column 5) is calculated.
Knowing the force frequency and having calculated the corresponding
core resonant frequency the amplification factor (Column 6) relating
static and dynamic deflections can be obtained. From the dynamic

deflections and the noise radiation efficiencies (Column 9) the noise
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levels (Column 7) are calculated. The radiation efficiency is a
function of the wave-length of the emitted noise, the diameter of

the core and the particular vibration pattern. If a calculated
resonant frequency is varied through the range specified (Fig.2.1.1)
the amplification factor changes. The maximum value of amplification
factor in this range is used to calculate the second noise figure -
the maximum sound intensity (Column 8). It is this latter column
which is used in judging whether a machine is likely to meet a noise
specification.  The sound intensities in Columns 7 and 8 apply to
the machine core. The dynamic response calculations in the computer
- program did not include the results of this research when these

figures were obtained.

Reference to the figures in Column 7 shows that the worst noise
level produced by this machine on no-load is 76.9 dB.  This was
acceptable, This figure (row 8 of Fig. 2.1.2(2)) is one of three
components, each with the same frequency and vibration pattern. The
resultant noise is the vectorial addition of these components and is
shown in row 11. It is noteworthy that the resultant noise level is
smaller than the largest component noise. This serves to underline
the importance of the correct calculation of the phase relationships

between all of the forces.

The difference between the two columns of sound intensities is
small unless there is a near resonance condition. A large value of
amplification factor indicates this near resonance. A good example

of this is given in the last row of Fig. 2.1.2(2) where the tolerance
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on the resonant frequency is sufficient to make it co-incident with

the forcing frequency. The difference between nominal and maximum
sound intensities is approximateiy 30 dB. This was the only resonance/
near resonance condition when the machine was run with a 50 Hz supply.
By varing the supply over a wide range of frequencies the majority of
these forces were brought into resonance. These measurements are
reported in Chapter 6.

2.2 THE 60 SLOT ROTOR DESIGN

In order to produce a very noisy motor a second rotor was designed
for the production machine described previously. By using two extra
rotor slots the major force wave (produced by fluxes coded 1 and 7)
was brought very close to the corresponding core resonance. Also the
wavelength of this force is lengthened, thereby increasing the
flexibility of the core. The rotor dimensions, including the.slots,

are the same as those of the production rotor.

A table of flux density harmonics is given in Fig. 2.2.1(1).
Again, this is an abbreviated version of the computer print out. It
can be seen from these and the corresponding figures in Fig. 2.1.2(1)
that the magnitudes and frequencies of the fluxes for both rotors afe
very similar. The parameters Gl, G2 etc., are the harmonics derived
from an analysis of the permeance of the machine airgap and apply to
| both rotor designs. The computer program uses the results given by

Freeman(lo) for calculating these harmonics.
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Although the flux density levels and frequencies are very
similar the resulting noise levels with 60 slots - (Fig. 2.2.1(2)) are
considerably greater than those with a 58 slot rotor. The reason
for this lies in the fact that the force waves resulting from the
fluxes, particularly numbers 1 and 7, have longer wavelengths. The
response of the core is very much stronger sinee it is considerably
more flexible and more nearly in resonance. When the machine was
tested the mode 4 resonant frequency was found to be 830 Hz. Thus
the mode 4 force at 849.2 Hz was able to produce a very high noise
level. In the measurements with this rotor the supply frequency was
‘over a wide range so that a number of core resonances were excited.

Clearly this design would not be acceptable as a production machine.
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INDUCTION MOTOR NOISE ANALYSIS

(ABBREVIATED MOTOR DATA)

Line voltage

Line current

Poles of machine

Supply frequency

Stator punching outside diameter

Back of teeth diameter

Air gap diameter

Stator slop opening

Stator slots

Stator winding weight, slot portion only
Overall length of core

Length of airgap

Rotor slots

Slip

Maximum force pole pairs to be considered
Number of extra fields

Are resonant frequencies to be calculated?
Young's modulus

Are intermediate parameters required?
Error in resonances, lower limit

Error in resonances, upper limit

Peak amplification factor

FIELDS EXTRA TO STANDARD SET

Frequency Amplitude Phase
Hz P.U. RAD
150 0.0463 -0.76578
250 0.0149 1.86529
50 0.05 0.0
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Code Number
of Flux
Harmonic

1

2

13
17
19
21
22
25
26
27

29

- 1B =

INDUCTION MOTOR NOISE ANALYSIS

(FLUX DENSITIES INCLUDING EXTRAS IF ANY)

58 SLOT ROTOR S

Stator Rotor B Max Pole Freq.
Order Order WB/m? Pairs Hz.
1 0 .81546 A 50
1 -13.5 .00919  -54 -674.6
1 15.5 .00800 62 774.6
-17 0 .32376  -68 50
-17 -2.5 .04068 -10 774.6
19 4.5 .03396 18 674.6
37 -6.5 .00094  -26 -2123.9
55 -3 .00286 -12 -2848.5
-71 1.5 .00039 6 3673.2
73 0.5 .00013 2 -3573.2
-5 0 .01147 =20 50
13 0 .00928 52! 50
- - .03770 12 150
= = .01215 20 250
- B .04077 3 50

Phase
Rad

-.1
-15.
27,
-3.

-5.

The above table of flux densities is an abbreviated version.

5078

08033

33093

21122

00311

.03910
.02695
.73007
.86341
. 74685
.04888
.14165
.76578

.86529

0

Only those harmonics that appear in the following table are given.

FIG. 2.1.2(1)
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INDUCTION MOTOR NOISE ANALYSIS

(SOUND INTENSITIES)

58 SLOT ROTOR

'Flux ! Flux Force Freq Static ' Ampl. Nominal Maximum Rad
Number Number Pole Hz . Defl. Factor S.I. S.I. Eff.
Pairs mmx10~ 6 dB dB

1 19 -2 .-3623.2 83 ,-0020 34.6 35.4 1.0
2 25 -2 -624.6 22 .0721 2 40.1 187

9 22 -2 -624.6 101 :0721 52.4 53.3 1.07
VECT. ADDN. -2 -624.6 82 .0721 50.6 51.5 1.07
7 26 2 924.6 397 .0317 60.5 61.4 1.04

9 27 -2 -924.6 107 . .0317 49.1 50.0 1.04
VECT. ADDN. 2 924.6 473 .0317 62.0 62.9 1.04
1 7 -6 824.6 63 1.3316 76.9 77.2 1.28

3 6 -6 824.6 5 1.3316 54.7 550 1:28

9 26 6 -824.6 2 1.3316 48.6 48.9 1.28
VECT. ADDN. 6 824.6 58 1.3316 76.1 76.4 128
1 21 6 -3523.2 0.2 .2820 25.4 26.5 1.03

13 27 -6 -1873.9 0.02  3.4959 22,6 | 27.3 1.11

7 29 -7 824.6 2 1,1786 40.4 40.6 0.52
1 17 -8 -2798.5 1 6.3669 67.1 77.4 1.09
17 29 -9 ~2798.5 0.06 5.4330 B8« 41.3 1 ¢
1 19 10 5723.2 0.06 14.8148 51.8 82.3 1.07

FIG. 2.1.2(2)
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INDUCTION MOTOR NOISE ANALYSIS

(FLUX DENSITIES INCLUDING EXTRAS IF ANY)

60 SLOT ROTOR

Code Number  Stator Rotor B Max Pole Freq. Phase
of Flux Order Order WB/m?2 Pairs Hz. Rad.
Harmonics '

1 1 0 .81516 4 50.0 -.25526
2 1 -14 .01524  -56 -699.2  -15.97418
3 1 16 .01333 64 799.2 28.00807
6 -17 0 .32563  -68 50.0 -3.25917
7 -17 -2 .03484 -8 799.2 -5.00737
9 19 4 .03390 16 -699.2 -2.39062
11 -35 -5 .00476  -20 1548.5 -5.01211
17 55 -5 .00342  -20 -2947.0 -1.84156
22 -5 0 .01138  -20 50 -.05772
25 13 0 .00941 52 50 3.14179
26 - - .03770 12 150 -.76578
27 - - .01215 20 250 1.86529

PERMEANCE HARMONIC ANALYSIS USED IN THE ABOVE FIGURES

Gl G2 G3 G4 S/L S/G

.6904 .0871 -.1267 -.0206 D37 8.9649

The above table of flux densities .is an abbreviated version.

Only those harmonics that, appear in the'following table are gi&en;

BlG, 2.2.1C1)
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INDUCTION MOTOR NOISE ANALYSIS

(SOUND INTENSITIES)

60 SLOT ROTOR

Flux Flux Force Freq. Static Ampl. Nominal Maximum Rad.

Number Number Pole Hz Defl. Factor S.I. S.I. Eff,
Pairs mmx10 "6 dB dB

11 22 0 1498.5 0.9 6.87 47,2 59.9 1.00

1 7 -4 849.2 458 1.66 96,2 98.8 1.24

3 6 -4 849.2 70 1.66 79.8 82.5 1.24

9 11 -4 849.2 3 1.66 51,2 53.9 1.24

9 26 4 -849.2 20 1.66 69.2 71.8 1.24

VECT. ADDN. -4 849 .2 451 1.66 96.0 98.6 1.24

2 25 -4 -649.2 2 15.68 67.5 97.6 1.28

9 22 -4 -649.,2 6 15.68 76.1 106.2 1.28

VECT. ADDN. -4 -649.2 5 15.68 74.6 104.7 1.28

7 26 4 949.2 21 1.00 65.8 67.7 1.20

9 27 -4 949.2 6.5 1.00 55.8 ST 1.20

VECT. ADDN. -4 949.2 22 1.00 66.2 68.1 1.20

This table contains only those calculated levels which are above 40 dB.

FIG. 2.2.1(2)
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CHAPTER 3

FACTORS INFLUENCING RESONANT FREQUENCIES AND PREVIOUS THEORETICAL METHODS

Sal GENERAL CONSTRUCTION OF LARGE ELECTRICAL MACHINES

In the descriptions that follow cdmparisons are made with small
machines since previous work was centred on these machines. Most large
industrial machines are radially ventilated (cooled). This means that
fhe body of the machine is made up of toroidal biscuits (packets)
separated by ventilation ducts. A typical packet would be 50 mm long
and contain 100 laminations., The laminations are made of electrical
grade sheet steel, varnished on both sides. They are held together
under pressure. In large diameter machines the laminations aré segmental
in form. Packets are built up with alternate layers of laminations
displaced circumferentially by one half of a segment. Each packet is
separated by radial spacers - usually along the centre line of each tooth.

Small machines are constructed without these ducts and spacers.

The framesinto which large machines are built are usually of a
skeleton form; that is, the frame only provides the means for maintaining
the pressure exerted by the two end clamping plates. There are a
considerable number of ways of achieving this but each of them uses very
little material between the two ends. Cover for the machine is provided

either by thin plates attached to the frame or by an overall fibre-glass
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A
cover, In small machines the frame is often cast and provides both
strength and cover, and frequently the core of laminations is an

interference fit down the whole length of the frame.

Large machines are normally for high voltage operation. This means

that the windings are much more heavily insulated than those in small

machines. In large machines the preformed consolidated windings are a
clearance fit in the slots. The radial clearance is minimised by the
wedge (Fig. 3.1.1). In small machines the lightly insulated wire is

wound directly into the slots with the wedges packing the winding tight

in the slot.

3.2 ASPECTS OF CONSTRUCTION THAT ARE SIGNIFICANT DYNAMICALLY

It is evident from Fig. 3.1.1 that the stiffness of the core to
radial bending in large machines is provided by the depth of core behind
the slot. In small machines with round bottomed slots the depth of core
is not easily defined. The extent to which segmentation of the core

reduces its stiffness has been an unknown quantity.

The teeth in electrical machines are invariably integral with the
core and therefore share the motional behaviour of the core. This means
that the teeth vibrate transversely, circumferentially and rotationally
with respect to a diameter through the neutral axis of the core (Fig.3.2.1).
The transverse motion of the teeth simply means that the teeth can be
treated as added masses. The rotational and circumferential motion of

the teeth can introduce large complications, especially if the teeth are

able to resonate in their own right.



The windings and retaining wedges may be very significant dynamically.
If they are loose in the slots it is easily imagined that they play no
part in the dynamics of radial vibrations. However, if the windings and/
or wedges are a perfect fit in the slots, it is apparent that they can
add both mass and stiffness to the core system. The continuum of teeth-
winding-teeth etc. is capable of taking strain and thereby adding to the
stiffness of the core. The extent to which the windings and wedges add
stiffness depends on the fit in the slot and the inherent stiffness of

the windings.

With a packet construction the core is evidently flexible in the
axial direction. The laminating and packeting of cores have not been
studied previously. It must be assumed that these effects could make

the use of a 3 dimensional dynamic model necessary.

Previoué methods for dealing with the influence of a frame on a core
have assumed a solid coupling between the two, With the skeleton frame
which is so often used for large machines this assumption needs
verification. There are no radial contacts at the back of the core as
in small machines. The frame coupling is through the end surfaces -

which are at right angles to the direction of motion.

In addition to these primary aspects of the machine features there
are a number of secondary aspects which may be significant dynamically.
Occasionally large machines are constructed with a number of rows of
ventilation holes in the core. Large high speed machines have deep

cores. With these cores second order bending effects become significant.
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A few machines are manufactured using a large number of grooves at the
back of the core for cooling purposes. All of these more unusual

features may be important in determining resonant frequencies.

3.3 THE DEVELOPMENT OF PREVIOUS THEORIES FOR THE CALCULATION OF STATOR CORE

RESONANT FREQUENCIES

The followipg critical analysis of previous methods is based on
experimental results obtained from a moderately large induction motor.
This approach has been chosen to give a measure of numerical reality to
the implications of various assumptions. A machine with long teeth was
chosen to emphasise the deficiencies/merits in various methods. In the

next section an explanation of the measurements is given.

3.3.1 A Typical Set of Measured Resonant Frequencies

The essential features of the laminations used in this series of
measurements are given in Fig. 3.3.1. It should be noted that the slots
are parallel sided and very deep compared with the core depth. The
slotting of this machine is such that the teeth have a taper ratio of
1.0/1.629 with fillet radii of 0.5 mm. The mass of the teeth is 2.33

times the mass of the core. The measurements were made without a winding.

The mode numbers given in Figs.3.3.1 and 3.3.2 are the number of
wavelengths in the vibrating shape. Mode 2 has 4 nodes - this is the
Jowest radial bending mode. Curves have been drawn in Fig.3.3.2 to aid
visual presentation. It is obvious that there are only a discrete
number of modes. The curves numbered 1 and 4 are measured values. Curve

1 is a complete set of radial mode resonant frequencies below the first
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tooth resonant frequency (transverse bending mode). The high radial
bending modes have resonant frequencies which are asymptotic to this
tooth resonant frequency. Curve 4 is the second complete set of
resonant frequencies and occurs above the first tooth resonant frequency.
This curve is not generally assymptotic to the tooth resonant frequency.
In this example the lowest mode resonant frequency is still some 12%
above the tooth frequency. At very high frequencies - above the second
tooth resonant frequency - there are further sets of core resonant
frequencies. These have been ignored. The shapesof curves 1 and 4
are typical of all machines. In the past the experimental evidence has
been confined almost exclusively to the first modes in the first set.
This 'break' in core resonant frequencies was first predicted by

(11)

Holzmann P

3.3.2 The Various parameters which influence core resonant frequencies

In all the theories published for calculating resonant frequencies
the core is considered to be a plain ring (or cylinder) with' added teeth.
Curve 3 of Fig.3.3.2 shows the calculated resonant frequencies obtained

(12)

by taking one of the more accurate ring theories and assuming that
the teeth add only mass. Curve 2 gives the calculated resonant
frequencies based on a derivation of the same theory, assuming that the
teeth add both mass and rotary inertia to the ring but that the teeth

do not flex. It is evident that tooth inertia becomes significant only
at the higher mode resonant frequencies. In straight beam theory the
inclusion of rotary inertia produces calculated resonant frequencies

below the values obtained excluding it. The same is true for curved

beams and rings. As the teeth begin to flex the inertia moment exerted
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by the teeth on the core, and the apparent mass of the teeth in
circumferential motion, increase above the values produced for rigid
teeth. Thus the resonant frequencies are reduced below curve 2 when

the teeth begin to flex. As the core resonant frequencies approach the
first tooth resonant frequency the teeth flex more and the asymptotic
curve 1 is produced. Above the first tooth resonant frequency the tooth
inertia moment and apparent tooth mass (in circumferential motion) reverse
sign, thus producing a curve above curve 3 which eventually becomes
asymptotic to it. As with curve 1 the flexibility effects predominate
near the tooth resonant frequency and gradually diminish to secondary
factors away from it. It is apparent that the assumption of tooth
rigidity becomes inaccurate above approximately 50% of the first tooth
resonant frequency. This figure has been confirmed in a large number of
measurements on various sets of laminations but has not been reported
previously. Also drawn in Fig.3.3.2 are the calculated resonant
frequencies using the theory developed in Chapter 4. The separate
influences of tooth flexure on the rotary inertia and circumferential mass
factors, and thereby on core resonant frequencies, are shown in curves 6
and 5 (only the resonant frequencies above the tooth resonant frequency
are shown). These curves show that the mass factor is dominant at low
mode numbers and that the inertia factor eventually assumes a similar

degree of importance at high mode numbers.

The influence of tooth flexibility is often negligible in medium and
small machines where teeth tend to be short and the first tooth resonant
frequency is well outside the usual frequency band of concern (100 Hz to
3000 Hz). In the example given, and in large machines in general, tooth

flexure must be taken into account for accurate calculation of core
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3.3.3 Basic Methods

The first method for calculating core resonant frequencies was based

on the most elementary thin ring theory and assumes that the teeth

effectively increase the density of the ring. The method is given by
Alger(ls). It is still used since it can easily be evaluated using a
calculator. The limitations of the elementary ring theory are severe,
especially for the thick rings found in electrical machines. Even the

relatively thin ring shown in Fig.3.3.1 does not lend itself very well
to the use of this method - compare columns 2 and 3 in Fig.3.3.3. At
mode 5 the error is already +18%. In the following methods the effect
of tooth inertia has been taken into account, with the exception of that

due to Erdelyi(4).

Jordan(6) seems to have been the first to try to account for the
inertia moment exerted by teeth on a ring. His book has given rise to

a number of papers on core resonant frequencies, usually with Jordan as

a co—author[14’15’16’17). His approach is well illustrated in the paper
by Jordan and Frohne(l4). The same method for accounting for the teeth
(15) (9,18)

is used by Uner , and by the latest authors on this subject.
Since 1950 all of the methods published have used Jordan's approach for
the teeth, each with a different treatment of the core to which the teeth
are attached., The major assumption made is that the teeth are additions
to the core and that the core resonant frequencies are obtained using
previously determined equations with certain multiplying factors or
boundary conditions added to account for the teeth, The teeth have not
been considered as an integral part of the core. An example of such a

factor is Frohne's Am which is the ratio of moment of inertia of the

core-plus-teeth and the core alone about the mid radius of the core.



Implicit in this factor is the assumption that the radius of the centre
of gravity of an elementary portion of the ring is co-incident with the
mid radius of the ring. This approximation is reasonable for plain thin
rings. It is far from adequate for
toothed cores or thick rings. In
the example given in Fig.3.3.3 the
/ mid radius 'a' is 0.40103 m and the
radius of the C, of G. 'R' is
i [ ; 0.36964 m. The two are obviously
;// not co-incident, Since the moment
of inertia is obtained about a
= point other than the C. of G. the
j value is too high - leading to an

excessive reduction in resonant

frequencies.

In all of the theories published the teeth have been assumed to
be parallel,. In small machines this is often true although slight
tapers are not uncommon, The suggested technique for using the various
methods with tapered teeth is to specify parallel teeth of width equal
to the average tooth width, The errors involved in this approach can
be seen by comparing columns 2 and 4 of Fig.3.3.3, Column 4 was
obtained by evaluating Frohne's equation 29. It has been found that
tooth flexure does not appreciably affect radial resonant frequencies
below 50% of the tooth resonant frequency., . This means that for the
example given modes 2-6 should be accurately calculable using theories,
such as Frohne's, that ignore tocth flexure. In fact Frohne's

calculated value for mode 6 is 14.4% low,
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Frohne mentions tooth flexure at the end of his paper but does not
give any method for including this effect. Shear, rotary inertia and
extension of the neutral layer are taken into account using approximations
that are strictly applicable to thin rings only. Uner(ls) has introduced
another class of vibrations and so refined Frohne's work although his own
experimental evidence shows that the changes decrease the accuracy of
the calculations. Both authors take account of the winding, saying that
a part (unspecified) of the winding adds both mass and inertia to the
system. No indication is given of the size of the winding mass to be
used, although an example is given where the whole of the mass is added.

t should be acknowledged that Frohne's and Uner's methods produce
solutions which are easily evaluated since they involve only the roots

of a quadratic or cubic equation.

Pavlovsky(lg) defines and uses a Bessel function solution of the
equations of.motion of a plain ring. The teeth are accounted for by
defining the boundary conditions at the inner surface of the ring in
terms of the forces and moments exerted by the teeth. The teeth are
assumed parallel and able to flex. The resulting characteristic.
equations are very complex, involving Bessel functions of the first and
second kind. He uses an unspecified numerical method to solve these
equations. No indication is given of the number of iterations needed
for obtaining a solution for each mode of vibration. Pavlovsky is the
only author to attempt to take account of the way the machine winding is
fitted into the slots. This he does by assuming that the winding mass

l1oads the teeth through a system of springs (see over),.



In physical terms the mass can

be regarded as being produced by

the copper conductors and the

springs by the flexibility of the

winding insulation.  Slightly

[ modified equations of motion are

deduced for the teeth which are

then reflected back into the

equations of motion of the ring through the changed boundary conditions.
Empirical values of spring constants are used in the numerical calculations
of four small machines. According to Pavlovsky's measurements and theory
windings reduce radial resonant frequencies but do not significantly
modify the principal tooth resonant frequency. A clear verification of
Pavlovsky's approach would have been the measurement of the two winding
resonant frequencies that are introduced as a result of the model adopted.
Calculations are given for these frequencies but no corresponding
measurements are shown. The conclusions drawn regarding the influence
of the windings in Pavlovsky's machines are quite different from those
given in Section 6.2 which apply to large machines. For large machines,
where one may need to calculate resonant frequencies as high as mode 30,
Pavlovsky's method is very complex and no indication is given of its
superiority over other methods. When the method developed in Chapter 4
is applied to Pavlovsky's examples the figures given in Fig.3.3.4 result.
These suggest that his method is unnecessarily complex.

(11) h

Holzmann as considered the core and teeth as a coupled system

and was the first author to predict clearly the break in the resonant
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frequencies shown in Fig.3.3.2. He has also shown that further breaks
occur at the second and higher tooth resonant frequencies (transverse
bending modes and longitudinal modes). These higher breaks have not
been confirmed experimentally by Holzmann but Poon(zo] has shown them
to exist for toothed straight beams. By using an energy method
Holzmann reduces the coupled system equations of motion to an eigenvalue
problem of degree eight which is evaluated for each mode of vibration.
By using a number of simplifications an extremely compact solution of
the problem is produced which does not involve iteration. The
limitations of these simplifications are not at all clear since
Holzmann's one set of measurements is given only graphically. He does
not compare his calculations with previously reported measurements. The
most -important simplifications are given below. It is those relating
to the shape of the teeth that are the most restrictive in applying this

method to large machines.

Holzmann has assumed that the radii of the neutral axis, the centre
of gravity and the mean radius of a ring are co-incident., This is a
reasonable approximation for thin rings but not for thick toothed rings
as found in electrical machines. It is also assumed that the teeth are
parallel and that second order tooth effects such as root flexibility,
rotational inertia and shear can be neglected when considering the
energies of the teeth. An approximate modal shape is assumed for the
encastre teeth vibrations. The need to assume parallel teeth is
centred round the difficulty of calculating the potential and kinetic
energies of an element of varying cross section. Holzmann uses the

average tooth width in applying his method of analysis to machines with



tapercd teeth.  Some measurements made early in the course of this
study were compared with Holzmann's calculation method. Dr. Holzmann
was kind enough to supply these calculations which are compared with the

authors values in Fig.3.3.5.

It should be underlined that in the above methods, and those that
follow, no attempt has been made to take account of tapered teeth or of
'secondary' tooth effects or to include the effects of wedges or
segmentation. In the example in Fig.3.3.5 the secondary effects alone
account for a reduction of 25% in the tooth resonant frequency. In
making comparisons between different theories and measurements the total
error band for a 95% confidence 1limit has been taken as 3.92 times the

standard deviation (or r.m.s. error),

3.3.4 Methods Including the Frame

Most of the methods below have been developed for small machines
and the assumed models of the core plus frame do not begin to approximate
to the configuration found in large machines. The essential details of
a medium machine frame are shown in Fig.3.3.6. Dynamically the two
endplates are the most important - there being only a skeleton frame

connecting them.

The first method published for taking into account the frame of the

@

machine is due to Erdelyi He assumes that the frame is represented
by a thin continuous ring connected solidly to the core by ribs. Using
a two rib example Erdelyi shows that the discontinuity of the contact

between the corc and the frame leads to a number of resonant frequencies

having the same mode number but with nodes in different circumferential
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positions. If these frequencies are reasonably separate it is possible
for a rotating force wave - the norm in electrical machines - to excite
a sensibly standing wave vibration. Such a vibration has been observed
in practice and is described in Section 6.1. Erdelyi uses an energy
method to arrive at an eigenvalue problem which is solved to obtain the
various resonant frequencies. He assumes that the core is thin,
thereby ignofing the shear and rotational inertia of the core and the
teeth. An example is given of the second and third modes only of a

small induction motor.

Ellison and Yang(g] have extended Erdelyi's method using the same
form of equations and solution. They have included the effects of shear
and rotary inertia - assuming parallel teeth which do not flex. Good

agreement is obtained between the measurements and calculations of a very

small machine for modes 2 to 5.

In their example Ellison and Yang use four ribs connecting the

L2L) start by assuming that

core to the outer frame. Verma and Girgis
the connection between the frame and the core is solid and continuous.
This type of construction is found in small flameproof motors. These
authors have generalised their treatment of this type of construction by
assuming a three dimensional model. In all other published work two
dimensional models have been assumed. The authors specify the
differential equations of the core and frame separately and equate
boundary conditions .at the frame inner surface. The solutions of the

differential equations of motion are nth order Bessel functions, The

influence of the teeth and winding is taken into account in the same
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manner as Pavlovsky, i.e. by using the motion of the teeth and winding
to specify the forces at the inner boundary of the core. No expressions

are given for these forces - they are simply stated in a generalised form.

In their second paperczz) Verma and Girgis have used Frohne's work(zs)

to obtain the forces and moments exerted by the teeth, Calculated
resonant frequencies are compared with measurements. The main body of
comparative measurements is of machines without frames. 1In solving their

equations to obtain resonant frequencies, Verma and Girgis have used a
search method - presumably by choosing a frequency and then evaluating
displacements. It is significant that for two of the machines quoted
certain modes were not traceable. The authors give no indication of
what influence the laminations have on the material strength in the axijal
direction. No measurement is given where there is any axial variation
in the vibration mode. The theory developed in Chapter 4 is compared
with the theory of Verma and Girgis (applied to machines without a frame)
in Fig.3.3.7. Dr. Verma was kind enough to supply. calculations of the
configuration shown in Fig.3.3.1. These calculations are compared with
measufements and various other theories in Fig.3.3.3. It is evident
that the use of Frohne's work to account for the teeth leaves room for
improvement. The need for a three dimensional theory has still to be
established experimentally. The measurements in Chapter 5 do not

support the use of a 3D theory.

A number of papers(24_26) have been concerned with the effect of the
frame/housing of large machines on noise levels. It is evident that the

extent of the influence of the frame is very variable because of the
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multiplicity of frame types and the variability of coupling between the
cores and frames of large machines, which are individually designed and
built up by hand. In all of these papers the endplates of the frames

have been disregarded. It is shown experimentally in Chapters 5 and 6

that this is the most important member of the frame.



WINDINGS AND WEDGES IN LARGE AND SMALL MACHINES

Fig. 3.1.1
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N

74.7
200.8
382.4
573.9
800.8

1008
1200
1349
1463
1547
1619
1668
1706
1738

2

74.5
205.2
832.3
598
845

1117
1407
1712
2028
2350
2676
3007
3336
3672

FACTORS INFLUENCING RESONANT FREQUENCIES

772.25mm, GD = 597.63mm, slots 72 x

TR

Refer to' Fig.3.3.2

3

76.7
216
411.8
661.3
962

1311
1705
2141
2617
3129
3673
4248
4849
5473

4

2095
2184
2272
2383
2522
2709
2946
3227
3607
4033
4483
4996
5458

5

74.5
205
380.5
a9 1=S
826

1068
1294
1479
1612
1699
1756
1788
1796
1802

A eraie T

2468
2468
2468
2468
2480
2548
2677
2869
3109
3380
3669
3965
4265

o

6

74.5
205.2
382
596
835

1085
1318
1501
1619
1689
1752
1763
1779
1791

13.97mm.

1883
1900
1922
1948
1976
2038
2144
2320
2581
2904
3266
3652
4052
4462

74.4
204.6
380
589.6
818.8

1047
1249
1409
1525
1609
1666
1707
1739
1763

2384
2563
2691
2788
2858
2965
3149
3398
3697
4028
4376
4735
5099
5468

Fig. 3.3.1 (Dimensions and numerical values)
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"esonant ©
I'requency, 1z,

2000¢

1000} Elementary

a

Jordan and Frohne

Verma and Girgis

Mode Number
O ] ) i ] 1 L - i —r L) 3 A S Ve

2 3 4 S 6 7 8 9 10 11 12 13 14 15

s
2

Mode Meas. Classical Frohne Verma Present
Jordan Girgis Theory
2 74.7 76.9 74.1 85 74.4
3 200.8 217.4 196.2 221 204.6
4 382.4 416.9 346.3 385 380
5 571.9 674.2 512 586 589.6
6 800.8 989 685 792 818.8
7 1008 1361 861.3 980 1047
8 1200 1791 1038.2 1138 1249
9 1349 2278 1214.6 1258 1409
10 1463 2822 1390 - 1525
11 1547 3424 1564 - 1609
12 1619 4082 1737 - 1666
13 1668 4799 1908 - 1707
14 1706 5572 2079 - 1739
15 1738 6403 2249 - 1763

Dimensions as per Fig. 3.3.1

COMPARISON OF BASIC METHODS OF CALCULATION

Fig. 3.3.3



ll. O
2000 |}
Core 4
Resonant ﬁ//
Frequencies, Hz, :
1500 | b
1000
A Chapter 4
500 | ) O Pavlovsky
Mode Number
i A . 1 }
2 3 4 6
Mode 0 2 3 4 5 6
Meas. 3244 527 1441 2642 3901 4926 )
Pavlov. 3198 547 1470 2632 3909 5133 ) Packet 1
Ch.4 3240 544 1464 2624 3861 4845 )
Meas. 2840 276 750 1394 2138 2989 )
Pavlov. 2856 269 7355 1357 2095 2900 ) Packet 2
Ch.4. 2847 270 745 1382 2138 2954 )
Meas. 2842 479 1255 2266 3334 4190 )
Pavlov. 2891 469 1256 2248 3336 4375 ) Packet 3
Ch.4. 2885 471 1268 2274 3343 4190 )
Meas. 2398 195 531 988 1524 2106 )
Pavlov. 2388 191 575 968 1493 2065 ) Packet 4
Ch.4. 2382 194 535 993 1540 2131 )

Total Error band (95% con

onfidence): Pavlovsky = 8.71%,
Chapter 4 = 4,57%

PAVLOVSKY% MACHINES (WITHOUT WINDINGS)

3001



Resonant
Frequencies, Hz. o b
© A
s
6000 6 //,
e A
) . £ /
A 4 4 *—”""“ﬂ’f
(0]
o
0] @,// 2 —
4000 | 7
A
S
2000 | é{ A Chapter 4
o Holzmann
! t'ode Number
f L i L 1 N L L + Il i b'
2 3 4 5 6 7 8 9 10 11 12
OD = 831.6mm, ID = 721,5mm, GD = 634,6mm, slots 84 x 12,97 mm.
Mode Measurements Holzmanns Calculations
Calculations from Ch.4,
2 191.5 - 191.7 4135 196 5148
3 539 - 525.2 4988 541.4 5273
4 1002 - 972.2 5263 1006 5356
5 1541 5203 1507.7 5450 1566 5410
6 2160 5317 2102 5647 2190 5441
7 2077 5444 2717 5891 2837 5511
8 3370 5794 3302 6219 3439 5703
9 3863 6283 3805 6672 3903 6088
10 4183 6924 4190 7267 4209 6672
14 4385 7672 4466 7988 4379 7399
12 4508 8568 4698 8793 4484 8201
Total error band (95% confidence) is
Holzmann = 16.1%, Chapter 4 = 9.0%

v NS CALCULATTONS



9'¢c*c *314

= s it = o o

! o el HE 4 T o

| B RS TR s

d &1 \ T o=

"l e i A T it e A
i it T e o ok i AR A

1 g T ) 7
B 5 i Y . i b v
W %

B WL N
.,...._. 3 4 (! o el -m. - i r -
Pihi s . [ W eael o TN . PO




8000
Pesonant ©
Frequencies, llz, O
O]
6000 ﬂ5»~“‘””?§#
&(//”H’
0]
A
Model I
4000 |
A Chapter 4
o) Verma and Girgis
o/

2000 ¢}

o

Mode Number

2 3 5 6 7 8
Mode 0 2 3 4 5 6 7 8 9
Meas. 6620 770 2025 3550 4800 5630 6050 6250 . -
vV § G. 6870 - 2156 3766 5275 6283 6820 7111 -
Ch.4. 6823 794.3 2118 3684 4953 5642 5967 6073
Meas, 6170 530 1400 2410 3450 4450 5180 5590 5850
V & G. 6350 - 1369 2469 3628 4703 5524 6087 6496
Ch.4. 6381 510.8 1379 2481 3639 4604 5236 5615 5835
Meas. 2009 943
V & G. 2012.6 935.4
Ch.4. 1988.3 932
Meas. - 465 1099
vV § G. = 481 1092
Cl. 4. - 462.9 1098

Total error band for all four cores (95% confidence) is:-

V & G=28.6% (19 calcs.), Chapter 4 = 10.7% (21 calcs.)

VERMA AND GIRGIS EXAMPLES

Fig,

3.5.7
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CHAPTER 4

THE THEORY OF STATOR CORE RESONANT FRLEQUENCIES

4.1 RING THEORY

In the methods described in Chapter 3 the majority of authors have
taken thick or thin ring theories and modified them to account for teeth

etc., The most recent theories(ll’lg’zl)

have departed from the modified
ring approach and are thereby restricted to the most elementary treatment
of the teeth. The present theory is a modified ring theory., This
approach was adopted so that tapered teetb and secondary tooth effects
could be included in the analysis. In view of the importance of the
underlying ring theory in any analysis of complete stator cores the
various theories were compared with Kuhl's measurements(ZT). These
measurements are for steel rings with radial thickness to outside radius

ratios (h/r ) varying from 0.1 to 1.0 and include modes 2 to 8.  This

is the most comprehensive set of ring measurements published.

The assumptions used in developing various ring theories are given
in Chapter 3. The limitations of these assumptions can be seen in the
numbérs of Fig. 4.1.1. The figures attributed to Erdelyi are based on
a later work(zs) in which he developes his original thin ring theory(4)
to include secondary effects. The calculations based on Bucken's
theory(lz) are included for comparison purposes. This theory has not

been used previously as a basis for a modified theory. Bucken suggests

a Timoshenko shear coefficient which is a function of the shape of the
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ring cross-section. For thin rectangular laminations as found in the
stators of electrical machines the value of n is 1.5. A large number of
. (29,30) . )
different values of n have been suggested; mainly without any
experimental validification. In applying Bucken's theory an empirical
value of n (equal to 1.0) has been used. This value has been derived
specifically for steel with Poisson's ratio, v, assumed equal to 0.29. It
is apparent that Buckens theory is sufficiently accurate at the modes

considered for all ring thicknesses found in electrical machines and

specifically for h/a < 0.2 + 1/k (k is the mode number).

In calculating ring resonant frequencies a correction factor Cr may
be used and defined as the 'accurate' resonant frequency divided by the
value obtained using the elementary theory. A full table of correction
factors is given in Appendix I. Such a table is most useful in the
design office where the elementary theory can be easily evaluated but

the complex theories cannot.

4.2 MODIFIED RING THEORY

4.2.1 Basic Equations

.—"‘._r—‘-———_ ‘mhh‘-‘""n-. .! -

I |}
IN-'»BN /!“i-dM
I

Fig. 4.2.).
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In developing the equations for plain rings the ring cross-section
round the circle is assumed constant. It is evident from Fig.4.2.1(a)

that the configuration found in electrical machines violates this

assumption. An artifice is required that enables the assumption that
the cross-section is continuous circumferentially. Two cross-sections
are assumed for the ring with teeth. The first of these sections,

Fig.4.2.1(b) is assumed to apply for mass and rotary inertia calculations.
The second cross-section Fig.4.2.1(c), is assumed to apply for the
calculation of the radius of the neutral layer, r, and thus the bending
stiffness of the ring. Although the ring is strictly rectangular in
cross-section the width b in Fig.4.2.1(b) is a function of the radius z

between L and T The presence of the slots means that the section

3.

between T, and r, is able to flex freely, being constrained only by the

3
root stiffness of the tooth. Strictly, the arrangement is that of a
coupled system with two principal types of vibration. In the present

analysis the additional flexure of the section T, - Tg is accommodated

by mass and inertia multiplying factors.

Consider Fig.4.2.1(a) and let derivatives with respect to 6 be

denoted by a prime. The equations of motion for an elementary volume
are:
N - Q' = -mad2w/dt? (1)
Q + N' = mwa32vfat2h

where N and Q are the normal and shear stress resultants, m the mass per
unit length along the circle of radius a (which runs through the centroids
of each section - Fig.4.2.1(c)) and w and v the radial and tangential

displacements defined on the neutral layer. The parameter Y is the

- ——



tangential displacement mass factor. Taking into account the effect of
shearing stresses the curvature is given by:

w' o+ w = -MrZ/EIc + nQ'r/AG (3)

where M is the bending moment and IC is the equivalent second moment of
area for curved beams, The constant E is Young's modulus, G the shear
modulus and n the Timoshenko shear coefficient which relates the average
shear stress on a section to the shear stress measured at the neutral

layer, which lies at a distance r from the ring centre. A is the area

of the section - Fig.4.2.1(c).

By considering the moments of the elastic and inertia forces with
. 1 . .
respect to the rings centre it is found that:

M' + N'a = maRd?v/8t? - Jr£82/8t2 w' - v)/R (4)

where R is the radius of the centre of gravity of the elementary portion
of the ring (Fig.4.2.1(b)) and Jr the corresponding moment of inertia
around the same point per unit angle 6. The inertia moment factor &
and the tangential displacement mass factor ¥ take values other than

1.0 when the teeth shown in Fig.4.2.1(a) begin to flex.

The above equations are completed by the extension of the ring
which is given by
w + v' = Nr/AE (5)
The various parameters in the above equations are evaluated as below:
From Fig. 4.2.1(c)

section area A= [ bdz (6)
A

radius of centroids a = [ bzdz/A )
' A



radius of neutral layer r = A//(b/z)dz (8)
A »

From Fig. 4.2.1(b)

radius of C. of G. R=]J bzzdz/.szdz (9)
A A
moment of imertia  J_ = (m/A)S bz(z-R)’dz (10)
A
radius of C. of Percussion Rp =z f bzsdz/f bzzdz (11)
A A

- The coefficient of mad?v/3t? in equation (4) equals the radius of the

centre of percussion by definition so that:

R
p

"

R + Jr/maR

From equations 1, 2 and 5

P 3%v'/at? - d%w/at? (12)

(w+ v' + w'" + v'"'") EA/mar

and by eliminating M, N and Q from equations 1, 3, 4, and 5 it is found

that
[(Ss+1) (w'+v'") -8 (w'"'+w')] EA/mar = 3%2/3t*[(0+1)v - E(w'-v)-séw' ]
(13)
where § = (a-r)/a, € = (Rp—R)/a, o = (R-a)/a, s = nE/G (14)

From equations 12 and 13 it can be deduced that v and w are displaced in
phase 90° with respect to 0. This gives a general solution

of the following form:

v Vk cos (k8) sin(th)

k

1]

Wy wk sin (k6) 51n(ﬂkt) (15)

Substituting equations 15 into 12 gives

2 3.1 : - = 2
wk[l_k -z]+ Vk[k k-yYkz] = O where z marﬂk/AE (16a)

e lRAC LR AR
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and putting equations 15 into 13 gives
Wk[k(55+1)-6k+6k3—e£kz—56kz]+ Vk[—k2(65+l)+e£z+(o+1)z] =0 (16b)

from which W, and Vk can be eliminated to produce the following quadratic

k
in z:
2% [(0+1)+k*P(eE+s6) +€E]
- z[K? ([k2-1] [e&+sS+P8]+ [1+Y] [85+1]) - (k?-1) (€E+0+1) ]
+ [8k%2(k%2-1)2?]) = 0 (17)
The general solution of this equation gives four roots. The two

radial flexural modes of vibration are considered significant in
the majority of cases. At this stage a simplification may be
introduced. The resulting equation is somewhat simpler.

If the ring is assumed to be inextensible then equation 5 is

replaced by the identity:

Wb v = 0 (18)

The elimination of w, N, M and Q from equations 1, 2, 3, 4 and 18 is very

tedious and eventually leads to the following expression:

EAG(VNHH + 2y 4 V”)/I‘ - [EEma+56ma)32v“”/at2
- (2Eema+moa - ¢(56+l)ma)32v”/at2

- (EZema+mR)d%v/3t%? = O (19)

The general solution of equation 19 is assumed to be a Fourier series of

the following form:

v, = chos(ka)sin(ﬂkt)

k

which leads to the following expression for Qi

Q= EASKk2 (k2-1Ymar[k* (Ee+s8) -k? (2Ee+0-(s6 +1) )+ (Ee+1+0) ] (20)

m
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It is useful to define a normalised response function.
Such a function can be used to obtain dynamic deflections at non-resonant
frequencies.  From equations 16a and 16b it is straightforward to separate
out the radial displacement Wk.
Wk[k(és+1)~6k+6k3 - €Ekz-s8kz]
+ wk[l—kz-z][—k2(65+1)+E£z + (0+1)z]/[k*-k-ykz] = O

The radial displacements W and Wk qQ are defined as the displacements
3

k,o
at zero frequency and at frequency Q for any order k. The normalised

response function Rn is equal to wk,ﬂ/wk,o 1@

R = 8k (k®-1)/[(k[6s+1] - Sk+8k®-eEkz-sbkz)
- (1-k?%-2) (-k?[8s+1]+ €&z+[o+1]2)/ (k¥ -k-ykz)] (22)

where z equals mar?/AE. A typical response function is given in Fig.4.2.2
showing clearly the influence of the circumferential displacement mass
factor and the inertia moment factor. The two resonant frequencies are

of the same type (radial flexural modes) with one occurring below and

one above the tooth resonant frequency.

In all of the calculations of resonant frequencies reported in this
thesis equation 17 has been used. The solution of equation 17 is
straightforward and presents no difficulties when using a computer so
that recourse to the simplified equation 20 is not necessary. It should
be noted that some computers lack the necessary precision in calculating the

small quantities §, € and 0 using single precision variables.

v e
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4.2.2 Applications to large machines

Implicit in the following derivations is the assumption that
axial vibrations of the core are uncoupled. The following theory applies
to oscillations in the plane of the ring only. Sections are assumed
which take into account: the core with axial ventilation holes, teeth,
endrings, solidly connected frame with cooling fins, and slot wedges.

The endrings may be in practice either the core clamping ring or the
frame endplates, as found in large machincs. The frame and cooling
fins may be the type found in small flameproof motors or they can be

the core and teeth of an inverted stator. It has been found that in large
‘machines the winding does not significantly influence the values of
resonant frequencies. For this reason the winding is not treated
separately, It may be included as an additional mass by increasing

the effective mass per unit length m.

cooling fins

N l ; ﬁ lg=r. | i
| e s s |
end"ngf (3 * ventilation holes,/ " | b4 - ; 0 l \/-.__ i D ”bﬁ'
a2 i3 1
} i i iy - |
teeth / ) | U g :
! o ERlt ! ;
by - iR |
___L_ N 7 i I N S

[ ]
i

o

=

m

. W
-
A - :
! o :
|
a b
Mass and Inertia Stiffness

Fig. 4.2.3
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It is assumed that the endrings and frame are continuous
circumferentially. It is obvious that the ventilation holes are
discontinuous and the same procedure is used to include these holes as
that adopted to account for the teeth. The nett result is that circular
ventilation holes appear as elipses in the assumed cross sections of
Fig. 4.2.3. Only one row of ventilation holes is shown although it is
usual to have two or more. All radii in Fig. 4.2.3 are geometrical
values but widths are scaled according to density ratios and Young%
modulus ratios with core values as the bases. In determining the
wedge width ww the wedge material is assumed to produce all of the
'strain in the complete ring formed by alternate teeth and wedges.

This assumption is valid as long as the teeth modulus >> wedge modulus,

Consider Fig. 4.2.3(a)

1C = nett core length = (gross core length - ducts) x stacking factor
e = ventilation hole radius
p.c.r. = pitch circle radius of ventilation holes

d = 1_xex No. holes/(mx p.c.r.)

bl = lc(l-klfé), kl = slot width x no. slots/2 - - parallel slot
= lc X kl/z 5 ki = tooth width x no. slots/2 - - parallel teeth
b2 = 1cxk2, k2 = frame length x frame dens./{lc X core dens.)
b3 = lcka/z,k3 = k2 x fin width x no. fins/2 - - parallel fins
= 1C(k2—k3/z}, k3 = k2 x slot width x no. fins/2 - - parallel
interfin space
b4 = 1C X k4, k4 = 2 x endring thk, x endring dens./(lC X core dens.)
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The following are defined: X = f bzdz, Y = [ bz®dz, and Z = [/ bz’dz
A A A

as per equations 9 and 11 so that R = Y/X and Rp = Z/Y. Only the
equations for tapered teeth and parallel fins with one row of

ventilation holes are quoted here for the sake of brevity.

X = 1 [(r5-ri)ke/2+ (x}-13)/2 + (r3-18)/2-ky (x4-10) +ky (r§-1%)/2

+ ka(rg-rs) - ﬂedp.c.r./lc] ) (23)
Y = 1_[(x3-ri)kz/3+(ri-13)/3+ (r3-13) /3-ky (r3-13) /2+ky (rd-13) /3

+ ka(ré-r3)/2 - med(p.c.1? +e2/4)/lc] (24)
Z= lc[(rg-rEsz/4+(rﬁ—rg)/4+(r§-r3)/4—k;(rg-rg)/3+ku(r§—r?)/4

+

ks(rg-rg)/s " ﬁed(p.c.r.3+3e2p.c.r./4)/1c] (25)

Consider Fig. 4.2.3(b)

b5 = chks, k5 = 2 x endring thk.x endring mod./(lc x core mod.)

o
I

= lcxké, k6 = frame length x frame mod./(lc X core mod.)

Ww = lcxk7, k7 = fit x 2mr;, x wedge mod./(lc X core mod. x no. slots),

fit € 1.0 according to tightness of fit of wedges in the grooves.

Following the definitions in equations 6,7, 8

A= 1c[(Tz-rl)k7+(Tu*ra)+(Ts-ru)ks+(ra“r7)ks- Fedflc] (26)
a= 1C[r%-r%)k?+(r%-r§)+(r%-r%)k6+(r%-r%)ks-2ned p.c.r./1 ]/2a (27)
T = A/lc[k?ﬁn(rzfrlJ+£n(rh/T3)+ksﬂn(rsfru)+k5£n(ra/r7)

- 2mp.c.r. d(1- Y/ 1-(e/p,c,r,3)/1 e] (28)
Having obtained R, R , A, a and r the quantities §, € and o can be
calculated and equations 17 and 20 solved for resonant frequencies where

the tooth flexure is not significant i.e. £ =y = 1.0,



It should be noted in passing that experimental work on large
machines shows that frame endplates can be considered to be coupled to

the complete system only at low frequencies.

4.2.3 Tangential Displacement Mass Factor

Two factors were introduced into the equations of motion of the
elementary ring to account for flexing of the teeth. In the forces
obtained by considering the tangential displacements of an elementary
ring section the mass per unit periphery m appears thus:

Q + N = maV ;
dots denoting differential with
respect to time,
This equation is adequate until the teeth

begin to flex. When this happens the force

for a given tangential displacement
increases by a mass factor .

(14

Frohne ) proposed such a factor but did not publish any expressions,
although Verma(zl) has reported using Frohne's work, The following
theory is specifically for tapered teeth - parallel teeth being a

particular case.

Consider an encastre beam vibrated at

? o | >
. A ———— — the root with a given displacement
o
e=1 A
| ;F { o2 ‘%Fln(ﬂt) and let the beam transverse
= ] ¥ . _
- ST vibration be V(X,Q}. Then the tooth
‘T\'sin(ﬂt) mass factor U :
0 t
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2
.. 2 .
wt(ﬂ) = - { h(x)V (x,0) dx/£h0C1+k0/2)Q 51n(Qt)Vo (29)

h(x) is the height of the beam as a function of x and for a linearly

tapered beam h(x) = h0(1+k0-k0x/£) (30)

In order to obtain a solution for wt with reasonable accuracy and
simplicity the Euler equations of motion for a straight beam were
chosen to obtain v(x,R). The use of these equations leads to an
inaccurate calculation of the tooth transverse vibration resonant
frequency. To overcome this deficiency the resulting v (x,R) is
scaled in the frequency domain using an accurately calculated resonant
.frequency. This scaling also allows the use of an empirically
obtained tooth resonant frequency, should this be required,

s

Euler's equation is usually written thus:

d?v
dx2

= k“v, where v = A;sin(kx)+Ascos (kx)+Assinh (kx)+Agcosh(kx) (31)

with end conditions v Vosin(ﬁt) and v! = 0at x=20
and v'" =0 and v''' = 0 at x =&

the terms A;, Az, A3 and A, are:

Ay = Vosin(Qt)[sinh(kR)cos(k£)+cosh(k£)sin(wa]/[2+2cos(k£)cosh(k£)]
= say, Vosin(ﬂt) A:

Ay = Vosin(Qt)[cosh(kﬂ)—AT[sin(k£)+sinh{k2)]]/ [cos (k&) +cosh (kL) ]

A =—vosin(9t)Af

Ag = Vosin(ﬂt)[l-cosh(ki)—A:[sin(k2)+sinh(ki)])/[cos(kﬁ)icosh(kﬂ)]]

(32)
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From equations 32 and 30 the numerator of equation29 becomes

L ¥ * *
I = -szosin(ﬂt)ho f[1+k0—k0xf£][Alsin(kx)+A2cos(kx)+Aasinh(ka+A:cosh(kx)]dx
0

- ~92vosin(9t)ho[(1+k0)A:(1-cbs(k£))/k

+

(1+k0)A:sin(k£}/k+(1+k0)A:(cosh(kR)—l)/k

+

(1+k0)A:sinh(k£]/k - kOAf(sin(kz)-kzcos(kg))/kzz

- koA:(cos(kR) _ 1+k2sin (kL)) /K22

kOA:(kﬁcosh(kz) - sinh(k2))/k2%

k Au(kPsinh (k%) + 1-cosh(k2))/Kk?2] (33)

‘In calculating the overall tangential displacement mass factor Y the

influence of the core has to be added so that

Y = (wt X tooth mass + core mass)/(mass of core plus teeth) (34) =

The use of the Euler equations is justified by the good agreement of the i
calculations with measurements - See Chapters 5 and 6. A more'elaborate,
and presumably more accurate, treatment of the tangential displacement mass
factor ¥ could be produced using Bessel function solutions of the beam

(31)

equations

It is well known that equation 31 prescribes resonant frequencies
when cos (k&) cosh(k®) = -1. The first resonance occurs when k& = 1,8751.
1
Since k is a function of Q° the tangential displacement factor is scaled

1
in the frequency domain by putting k& = 1.8751 (Q/Qt)2 in equation 33,

The tooth resonant frequency Qt is obtained previously using methods
which allow the inclusion of secondary effects such as root flexibility,

shear, rotary inertia and taper - see Section 4.4,
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If the expression for ¥ is evaluated at various frequencies i the
result is a function similar in form to 1/[1-(Q/Qt)2). In order to
minimise computer exccution time the expression for ¥ is evaluated for
any machine at regular fractions of the tooth resonant frequency and
stored in tabular form and used with an interpolation routine. A
specific interpolation routine is used with the foreknowledge that the
function has a form similar to that above. This technique requires
virtually no more computer storage facilities but produced a time saving

if 3 or more modes are being calculated.

4.2.4 Rotational Inertia moment factor

In the equation of moments of an elementary ring section, as
developed in Secticn 4.2.1, the moment of inertia Jr appears:

M' + N'a = maRv - Jr Gi' - v)/R

The term Jr can be termed the rigid moment of inertia. When the teeth
begin to flex the inertia moment increases above the rigid value by a

factor of & - the rotational inertia moment factor,

In the lumped paramecter system opposite

the moment exerted by the mass m when

the light beam is rigid equals:
M=J6 = mr?6,
T

When the beam is allowed to flex

| M = mr®9; which can be rewritten as

7 M=mrvy, or M= J m(x)x vi(x)dx (35)
X
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Consider an encastre beam of length £ built in at A such that

OA = p x 4 i.e. the beam is

pivoted about 0. Again the

-4 o 1 = P _ : : : :
A= mode of vibration is obtained
-~ I‘-—-—-—A._____________
- = A :

‘QF_ Al 2P e using the Luler equations for
. + ]

= = v
Rl _l%"_at~*“~m““~ straight beams. Let the root

-] of the beam have a displacement

VO sin (Qt). From the Euler
equation (31) and with the
following end conditions it is straightforward to obtain expressions for

Al e Ab,'

<
1

V, sin(ft) and v' = Vosin(ﬂt)/pﬁ at x = p&, (y = 0)

v'' = 0 and V"' = 0 at x = (p+1)2, (y = %)

i

In order to simplify the following expressions they are written with

reference to a new variable y = x - p&

Equation 31 thus becomes:

v = Aisin(ky) + Azcos(ky) + Azsinh(ky) + Aycosh(ky) (36)

and A,

1]

y, sin(@t) (1/kps - A:)

*
Az = y sin(Qt) (1-Ay)

Az = yosin(Qt)((Cos(kR)/kpﬁ - sin(k2)) (cos (k) +cosh (kg))
_ (sin(k2)/kp2 +cos (k2)) (-sin(k&)+sinh(k2)))/ (2+2cos (k2)cosh (kL))
= yosin(ﬂt)A:
Au = y_sin(Qt) ((sin(kL)/kpgrcos (kL)) - Aj(sin(kL)+sinh(ki)))/

(cos(k2) + cosh(kl))

*
= yosin(ﬂt)Ah (37}
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From equation 35 and assuming that m(x)o h(x) and that

h(x) = h0(1+kO - koy/R)

R‘ * *
M., i= —szosin{ﬂt)ho g(1+k0—'k0y2.)'(A1sin(ky)+A2cos( ky)
* *
+Assinh (ky)+Aycosh (ky)) (y+p2)dy (38)

= -szosin(ﬂt)ho((1+k0(1+p))[11+IZ+I3+Iq)—(15+15+Iy+Ia)k0/£)) (39)

Where
I, = A:(sin(kﬁj-(p+1)k£cos(k£)+kp2)/k2
I, = A:[cos(kR)—l+k£(1+p)sin(k£})/k2
I5 = As((1+p)k% cosh (k2)-sinh (k&)-pk&)/k>
T = A:((1+p)k£ sinh (k%) -cosh (k2)+1)/k?
Is = Af(2(1+p)k£ sin (k) +(2- (1+p)2k2822) cos (k&) -2 + p?k?22)/k?
Ig = A:((2k£+2pk222)c05(k2)+((1+p)2k2£2—2)51n(k£)—2kp2)/k3
Iy = A:[((1+p)2k2£2 + 2)cosh (k®) -2k (1+p)sinh (k®)-2-p*k?22)/k?

*
Is = A, (((1+p)?k?22+2)sinh (k&) -2k (1+p)cosh (k®)+2pkL) /k?

The tooth rotatory inertia moment factor Et’ is defined as Mt divided by
the inertia moment exerted by the rigid beam vibrated about O with a root

displacement of Vosin (2t) ,and obtained from equation 35.

P+l
- : 2
Et = —Mt/[g2vosln(ﬁt)ho ég ((1+ko(1+p)—kox/£)x /pR)dx)
since v(x) = Vox/p2

((1+k0(1+PJ)(11+12+I3+In)-(15+15+17+13)k0/3)
Ee = (40)
t ((1+3p+3p2)/3+(1+4p+6p2)k0/12)£2/p
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4.3 ZERO ORDER VIBRATION

This type of vibration is often the cause of noise in rotating

electrical machines but its calculation offers no real difficulty for
most large machines. The two main areas of application where the
classical equation for the resonant frequency becomes inaccurate are
(a) radially deep-cored machines, and (b) machines with axial

ventilation holes and/or segmental laminations.

In studying zaleks Bessel function solution for this mode of

vibration (see KuthZ?Jpage 133) it was found that a very much
simplified expression could be used. Love's classical solution is:
QO = é- E/p and the proposed equation is
Q. =i /E/p (43)
0] ;12

where a is the radius through the centroids of the ring section and R
is the radius of the centre of gravity of the ring, as previously.
Kuhl(Z?) has verified Zaceks' theory experimentally; obtaining errors

of £0.25%. A contraction of Kuhl's table S is shown below to indicate

the accuracy of equation 43.

h/a .0909 «1395 . 2439 . 3589 . 4865 . 6667 .7879 9677 1.172
% 1.000 1.005 1.004 1.012 1.020 1.038 1.053 1.080 1.109

ek 1.001 1.002 1.005 1.011 1.020 1.037 1.052 1.078 1.115

* 7aceks Bessel function solution divided by Loves classical solution,

x* present theory divided by classical theory (equals R/a)
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It is evident from the above table that equation 43 is accurate for
all h/a<1,0, Electrical machines ar; seldom, if ever, made with such
deep cores. The effect of teeth is accommodated by increasing the
density p by an amount equal to the mass of the complete laminations

divided by the mass of the core,

The effect of segmentation is to reduce this resonant frequency
and the experimental work reported in Chapter 5 shows that this effect

can be readily predicted using an artificially low value of E.
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4.4 RESONANT FREQUENCIES OF TEETH

The teeth of electrical machines are basically encastre beams
integral with the core, which is deep cnough to be considered as an
infinite half space. The teeth are sufficiently short for secondary
effects to be important. Teeth differ in two main respects from the
simple encastre beam. Firstly, the teeth have a non-uniform cross
section - the depth of the teeth tapering linearly along the length.
Secondly, the teeth are partially supported by tho wedges that are
introduced between teeth to retain the winding. Pavlovsky(lg) says
that the influence of the windings also provicdes support along the

‘length of the teeth.

The general tooth configuration is shown in Fig.4.4.1.

The spring at the tip of the tcoth
is there to represent the support
produced by the wedge, The mass

of the wedge is sufficiently small

VAN

to be ignored. In the physical

system the wedges are connected to
= ' the next tooth. In the
I T
representation of Fig.4.4.1 the
Fig. 4.4.1 wedge spring is built in.  The coil
spring at the base of thc tooth represents the root stiffness. All
electrical machine teeth are integral with the core so that the root
stiffness is at a maximum. Despite this fact it hes been found that

the root flexibility is usually the most significent second crder effoect

in determining tooth resonant frequencies. The amount of support material
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that vibrates due to the root flexibility is assumed small so that the
massless coil spring shown above represents the effects. Other secondary
effects are less ameanable to calculation., The most common of these

are cxtra mass at the tip of the teeth and set back wedge grooves. The
first of these is most common in small machines and the latter occurs in

both small and large high-specd machines.,

e e e e

In looking for a method for calculating resonant frequencies taking
the above constraints into account, as well as shear and rotary inertia,
a number of criteria were applied. It was considered desirable to have
a non-numerical solution so that the resulting equations could be used
in a design office,. This ruled out the possibility of a Bessel function
solution of the differential equaticns. It was hoped to reduce the
secondary influences to a series of correction terms presented in

graphical form.

)

; . . 32 .
An analytical integral equation 3pproach( was chosen. This
method gives a lower bound approximation to the fundamental resonant
(32) . .
frequency. Penny and Reed have applied their theory to seven types
of beams, including four with different types of taper, and shown very
good agreement with the accepted Bessel function solutions. Gains and
(33) — .

Volterra have developed a similar approach and included shear and
rotary inertia effects. Their example is that of a truncated wedge

as found in electrical machines. The method is further extended to

account for root flexibility and wedge support.



4.4.1 The Influence of Root Flexibility

o
MacBain and Genin(J4’5S)

have used 0'Donnells

(36)

work on root

stiffness to obtain resonant frequencics of uniform cantilever beams

excluding and including the effects of shear and rotary inertia. These

authors obtain an implicit function solution for the simple case and a

complex numerical solution when shear and rotary inertia arc included.

In order to produce a correction term for root flexibility a

solution is required for the tapered tooth excluding secondary effects.

No secondary effects

Fig. 4.4.2

Penny and Reed's theory can be re-stated

as

1/Q§ = [ K(x,x)dx
X
where K(x,x) = a(x,x) -m(x)
and m(x) is the mass of the beam as
a function of x and a(x,x) is the
particular flexibility influence
coefficient obtained from the

general coefficient a(x,n).

N.B. that Qt is the approximate resonant frequency, being a first lower

bound.

From Fig.4.4.2, and with a force F operating at point n, bending

moments can be equated thus:

Elxy” = F(x-n) for n <€ x < £, where

_ - 3
Ix = IO(1+L0x/£)



Integrating twice and substituting boundary conditions gives

103 = ¥ + # . . 3 ", ! 2-".- (2
ELy/P2% = (n[(hrk 2/ (o O/ Chonk e 2k -2210)
B gir 2 i e A1.292 2
(2Kk22.(1+k )2) + x(R+20Kk_-nk )/ (2k222 (1+k )2)

= (£+nk0)/(2k3(1+kox) = EIOa{x,n)/Ra (44)

The function a(x,x) is obtained by substituting x for n in equation(44).

With m(x) = pAO [1+k0x/2), and a(x,n) = y/F
% pnoz“ 1+1.5k0+k;/3+k;/12 on(l+k )
1/Qi = J K, x)dx = Wi ( : - - . ) (45)
0 0 2k3 (1+k )? 2k"
0] (0] 0]

In the limit as k0+ 0 equation 45 tends to pAOQ“/IZEIO

i.e. Q= 3.464 /mET;7EK;7£2, which agrees with Penny's expression for
a uniform beam. For all tapers found in eclectrical machines this lower

bound is in error by an approximately constant 1.5%.

Including root flexibility

In taking into account the root

P el el
- flexibility the boundary
4 n '11- i
n ,,_ﬂe——*ﬂ“”f”'*] = conditions at x = £ are:
_.—l—""'_—_'-“ o . .
TS e
e B Vo _m 1 =
e o b = =l (E"n)/*(b and = O;
T ————— ___‘______.’__. -
- X

where kb is the stiffness of

<

Fig. 4.4.3 ' the base spring.
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Integrating twice and substituting these new boundary conditions gives

2
S k(x,x)dx
0

2
1/Qt

paoz“ 1+1.5k0+k;/3+k3/12 In(l+k ) EI_(1+k_/4)

= [ - + ]
EI 3 2 4 (46)
o 2k0(1+k0) 2k0 32kb

The flexibility of the root spring is obtained from stress analysis of
the boundary between ‘the tooth and the ring. 0'Donnell shows that the
effective rotation Bm at the built in end of a cantilever due to a
moment load M equals:

8 = CM/mEh?
m

The quantity h is the effective depth of the beam at the root. Various
values of the constant C are given depending on the assumptions made
about the stress/strain distribution across the root section. For the
case of steel with v = 0.29 the values of 18, 16.49, 15.17 and 16.67 are

quoted. The spring stiffness kb is obtained from the above expression,

_ _ 2
k, = M/6_ = mER?/C (47)

O'Donnell shows that small fillets reduce slightly the deflection for a
given moment, and that there is a small additional rotation due to the
shear load at the root. The value of C = 16.49 (18(1-v?)) was chosen
after comparing calculated and measured frequencies. In this comparison
fillet radii and rotation due to shear were ignored. The comparison is
shown graphically in Fig.4.4.4 together with a normalised correction

curve for root flexibility.

It was found that the effect of root flexibility could be

represented by one curve for all normal linear tapers. This curve is
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given in Fig.4.4.4 together with the constituent points obtained for
three different tapers. The use of this curve together with Fig.4.4.5
(the correction coefficient for shear and rotary inertia effects, Cs)
produces the following simplified version of equation (46) for hand

calculations.

£, = 810.5 h (1+1.16 k ) CsC /&% kHz (mm dimensions) (48)

This expression is surprisingly accurate. It should be noted that the
influence of root flexibility is more pronounced in tapered beams than
equivalent straight beams, and even with a length/depth ratio of 10 the
correction term is already -8%. It is fortuitous that tapered teeth
Iin electrical machines have previously been treated as equivalent
parallel beams. Artificially low resonant frequencies are thereby
calculated which approximate roughly to the measured values (secondary

effects being ignored).

4.4.2 The Influence of Wedge Support

The fit of the wedges in the wedge-grooves is very variable and the
relative dimensions of wedges and teeth vary over a wide range. Because

of the complexity of the influence of wedges on tooth resonant frequencies

simple empirical factors are inadequate. In the following analysis the
wedges are assumed to be solidly connected to the teeth. The spring
constant contains a factor to account for the fit of the wedges. Each

tooth is assumed to be supported by one wedge, at the tip, which is built
in, In reality the wedge is attached to the adjoining teeth. In the
following analysis the influence of wedge support is treated separately

from other secondary factors so that the following figure depicts the

assumed configuration.
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It should be noted that the wedge

< 1 B is assumed to be acting at the tip
' |- of the tooth. This assumption is
“ n :b: s ©
. _#_4"_,"._f~—~w*-*““‘rj used to simplify the derivation of
o gm————— o
£= ;
= & - the flexibility influence coefficient.
R s - o B , ;
| %;k Ty -rf Refer to Figure 3.1.1 for a typical
= fw 3
= ! wedge and groove layout. The
;,_‘?7:.)7 2 -
% influence coefficient must be
|
v considered in two parts:
y
D x€n and n< x5 4%

0 < x<n

Equating bending moments gives
" == . . -“ .
EIxy yoka where Y, is the tip deflection

kw is the wedge spring constant

Now IX = I0 (1+k0x/RJ33nd by integrating twice

EIOY kwyo yogkw .
= In(L+k x) + + Ax + B (49)
23 k3 o 2k? (2+k X)
o o 8]
n < X <0

Equating bending moments gives

Elxy” = F(x-n) - kwyox

and integrating twice

Ely (2+k n) k vy ky?#
g ook n (&K X) - 2 B B £ S kD
FRd k3 2k% (2+k x) Fk? 4 2Tk (2+k x)
0 o} (o} (o] 0 [e]

(50)
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Substituting boundary conditions at x = £ into equation 50 and the

associated equation for slope leads to the following expressions for C

and D:

(]
I}

: . 252 2
[2F£(1+k0)+kw2yO—F(2+k0n) ka2y0(1+ko)]/2Fko£ [1+k0) (51)

2+k n k y ky?2
2 Bk dy - w00 o
© 2Fk;(£+k0£)

o
1}

1
Eg-zn(£+k0£) +

2k 3 (2+k ) " pK?
(o] 8] 0 0

+

[—2F2(1+k0)—kw£y0+F(£+kon)+ 2kw£y0(l+ka}]/2Fk;£(1+k0)2 (52)

The substitution of equations 51 and 52 into equation 50 leads to an
_implicit equation for deflecpion since the R.H.S. contains the tip
deflection, b By equating equations 49 and 50 at x = n, and also
the corresponding slope equations, expressions are obtained for A and B.

Equation 49 is then evaluated at x = O to obtain the tip deflection Yo

(2+k 2)
)
o = k0(32—2n)+(22—n)
+ -
k3 2 2 2
S Zko (R,+kon) 2k0 £(l+k0)
Y =
EI, k, k, k (142K )
+ — fn(l+k ) - - (53)
23 k3 2k2(1+k )  2k?(1+k )? '
o (o] 0 (0] (o]

Bringing together equations 53, 52 and 51 and substituting them into
EI
equation 50 produces an unwieldy expression for ETE a(x,n). From this

expression the particular influence coefficient a(x,x) is obtained and

the first resonant frequency determined from the relationships:

I/Qi = [ K(x,x)dx; K(x,x)=a(x,x)m(x), m(x) = PA, (1+k _x/%)
X
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The resulting expression is very cumbersome and falls short of the
intention to produce equations suitable for the design office. Since

the step from equation 50 to the. expression for Qt involves only straight-
forward integration, albeit tedious, the long expression for Qt is not
reproduced here. It was evaluated using a computer and reduced to the
curve shown in Fig.4.4.6, This is a correction curve similar to those

in Figs.4.4.4 and 4.4.5 and is intended to be used as a further

multiplier Cw in equation 48,  Thus:

£, = 810.5h, (1+1.16k ) cscr;w/f.z kHz (mm dimensions) (54)

Although wedges normally increase tooth resonant frequencies by only a
.small amount, there are configurations where the wedges can produce an
increase of 100% and more. Increases of this order are typical with

bonded wedges, such as magnetic wedges. A normalised correction curve
cannot be produced for such large corrections and the expression above

for Qt must be evaluated.

In producing a wedge spring stiffness kw for dny particular

machine the fit of the wedge in the groove has to be included.  Thus

3.0 Ew X wedge depth x fit

(55)

W
wedge width

where Ew is the elasticity modulus of the wedge material, and

fit = factor € 1.0 accounting for the quality of the fit of the wedge.
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4.5 NIGH DAMPING MATERIAL WEDGES

In designing machines to avoid elactromagnetically produced noise
the approach of mismatching forcing and resonant frequencies has been
universally adopted. If sufficient damping can be introduced into the
stator of an electrical machine then attempts at mismatching frequencies
can be abandoned. In investigating various possibilities for added
damping a number of restrictive criteria were applied. A simple, low
cost method was required which could reasonably be tried in a production
machine without excessive costs. In addition to these general
requirements the materials to be used_must; have the desired properties
in the frequency range 100 - 3000 Hz, be easily handled, temperature

stable, nonmetalic, and reasonably inexpensive.

The following account gives the theoretical investigation into the
use of high damping plastic wedges to produce highly damped overall
systems. With present day materials this approach is not capable of
producing overall loss factors of B greater than # .10. The advent of

new materials may change this situation. The target value is B > 0.5.

The winding retention wedges that are a normal part of large machines
are ideally situated to impart a large amount of damping to the stator

core of a machine when it vibrates.

The strain experienced by a wedge when the core assumes a bending
deflection is amplified due to the large displacement from the neutral
layer. This means that although the bulk of the wedges is small the

damping may be large. The damping energy per cycle is proportional



to the loss modules x strain ratio.

\ : \ (re£.37) . In the measurements rcported
\ \ \
e i \ in section 5,3.8 the strain ratio y is
— — i t
\ 19.95 for a 2.44 mm deep wedge.
wedge ? neurol This is the normal size of wedge used
H | ayer
Z' ; at present. If wedges were designed
T f for a damping function then a 5 mm
i j ]
/ ' i wedge could be expected - and easily
' accommodated. This would mean that

Y would have a maximum value of
approximately 40 for normal electrical
machines. The above calculations
relate to a machine with a tooth length/core depth ratio as high as any
normal large machine. This ratio determines y. Present day viscoelastic
polymers have loss modulii which peak at approximately 1/200 times the

(37). The frequency and temperature at which the

storage modulus of steel
loss modulus is a maximum depends on the type of polymer or copolymer.

If the storage modulus of wedges are ignored the maximum value of

5] ¥/200 = 0.2. If allowances arc made for reduced performance

when 'damping wedges' are fitted on a production basis a maximum

realiscable value for B is 0.1. A normal value would be 0.025.

The loss produced in wedges in simple extension falls short of the
required value by approximately one order of magnitude. With wedges
assuming a shearing motion the loss could be incrcased.  The width/
depth ratio of a wedge is typically 3 to 1 - assuming that 'damping

wedges' are twice the depth of conventienal wedges., The loss modulus
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in shear is approximately 1/3 the value for simple cxtension. The
increascd shearing area is offset by the reduced modulus. By laminating
the wedge as shown opposite it is
possible to mugnify the shearing

area by a factor of 2 or 4, depending

on the number of laminations. An
overall increase in B of 2 or 4 can
be obtained, therefore, at the expense of the simplicity. This increase

is not sufficient to meet the target value of B > 0,5,

Since the desired loss cannot be produced by normal extension or
shear it was decided to investigate the cffect of wedge longitudinal
resonance. It was hoped that the increased strain amplitudes

associated with a resonance condition would lead to extra loss.

4,5,.1 Longitudinal Wedge Vibration

The general equation of motion of a simple beom subject to
longitudinal vibration is:

u = (Acosax + Bsinux)ejwt (57)

y
/

- 1 e e

> s | . where o = w v p/E

|~

1 .- . :

2o ] - For a displacement excitation at
LE"M—»[ j.”*ﬁ o
e each end of a wedge equal to
fr=rr——=% UOOJLLJt andeOeJmt equation 57 reduces

to:

u = U_(cosax - (1+cosad)sinax/sinat)el®* (58)
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Assuming that the viscoelastic nature of wedges allows the use of
a complex modulus, the stress and strain amplitudes as functions of x are:

jwt

strain € du/dx = (-Aasinax + Bacosax)e (59)

jut (60)

stress 0 = Ee = (E;+jE2) (-Ausinax+Boacosoax)e

Now work done w = S 0€ dt and a convenient period of time T for comparison
purposes is one peIiod, 2m/w.  Equations 59 and 60 are conjugate pairs of
equations and only the real or imaginary component equations are needed
for the evaluation of work done. If the equation for w is evaluated at
either end of the wedge (x = 0 or &) Fhen the curves shown in Fig.4,5.1
result. These have been drawn for various values of B = E»/E; with the
work done per cycle scaled by the value obtained at zero frequency, and

the frequency scale shown in units of the first longitudinal resonant

frequency.

It is apparent from Fig.4.5.1 that-there is considerable géin in
loss (work) to be obtained at frequencies above 1.3 times the first
longitudinal resonant frequency. Unfortunately the material and
geometric dimensions of wedges found in electrical machines give
resonant frequencies in the region of 15000 Hz.  This is outside
the range of interest. The value of elasticity modulus needed to
reduce this frequency to, say, 2000 Hz would give a wedge that was too
elastic to retain the windings - its primary function. Since use
cannot be made of a resonance condition to magnify the work done, any
‘damping wedges must operate below their first longitudinal resonant
frequency. From Fig.4.5.1 it can be seen that the most useful operating
range is below 0.25 x first longitudinal resonant frequency since the

loss per cycle deteriorates at highest frequencies.
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To summarise it can be said that with present viscoelastic polymers
the amount of damping that can be imparted to a stator core system by
damping wedges is not sufficient for their general use. Any significant
advances towards producing fully damped cores awaits the advent of
improved damping materials. Experimental evidence of the use of

polymethylmethacrylate wedges is given in Section 5.3.8.

4,6 ITERATION TECHNIQUES

Since the expression for core resonant frequencies - equation 4.17 -
contains terms which are frequency dependent some form of iterative
technique is needed to obtain solutions of the expression. The well
known step and half step technique is used to obtain the set of resonant
frequencies above the tooth resonant frequency. A novel technique
has been developed for obtaining resonant frequencies for the set of modes

below the tooth resonant frequency.

The efficacy of the method is that it enables an interpolation
technique to be used thereby requiring only three evaluations of equation
4,17 to obtain a solution for any mode, In evaluating 4.17 the frequency
dependent terms are obtained using the frequency X, say, and the resulting
resonant frequency is Y, say. The suffices of X and Y denote the number
of the evaluation. The value of X; is taken as the calculated resonant
frequency of the next lowest mode,which has just been calculated. To
start the sequence X; is taken as O. Because X; is below the required
resonant frequency the value of Y; will be above it. If X2 is now made

equal to Y1 the resulting Y2 is below the required resonant frequency.
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The points (X1, Y3;) and (X2, Y,)

Y
straddle the required resonant
S, : frequency, il.e. ¥ = X, A third
TR
Y1 '\\\\ p value of X is chosen between
~ Y=X
L //’ Xy and X, to produce an extra
- Yg __,‘O‘@ .
a -\\ point (X3,Y3). A convenient
1Yy Pé 'Y
value for X3 has been found to be
r (X1 + 3X2)/4. The required
7
i /
i resonant frequency is then the
! Xy X3 X, intersection of the parabola formed
1.4
L T .

X by the three points and the straight

line Y = X.

In the computer program written to calculate resonant frequencies
a check has been included to test this technique and the errors involved

are generally <0.15%.
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> CHAPTER V

MEASUREMENTS OF STATOR CORE RESONANT FREQUENCIES

(SAMPLE TESTS)

Since the principal elements (dynamically) of an electrical machine
are the laminations, it has been possible to devise a method for measuring
resonant frequencies using only a small number of 1aminations(11’ 18).
Correspondence between such measurements and similar measurements on a
complete machine has always been assumed. To test this assumption for
the case of large machines a full set of measurements was made on a
production machine in its various stages of manufacture and compared with
the method above (the 'short core' method). The complete machine
measurements are reported in Chapter 6. Quite apart from this correlation
exercise a large number of short core measurements have been made to gain
an understanding, and measure the influence, of various features on core
resonant frequencies. The short core method is ideally suited to this
since the cost and time involved in preparing a sample for test is small;
the feature of interest is easily controlled, the samplé may be tested
to destruction if necessary, and the method can be applied in the factory
ahead of the bulk of production giving time for remedial action if
necessary. The majority of the measurements reported in this chapter
relate to two designs of laminations which have the same outside diameter.

Laminations of these designs were built into a production machine as

part of the experimental work of this investigation.
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5.1 THE SHORT CORE METHOD

The first obvious features of the method are that only a short stack
of laminations is used (25mm to 50mm deep) and that the source of
excitation is an electro—mechanicﬁl vibrator. A diagramatic presentation
of the core, the vibrator and the measurement accelerometers and force

transducer is given in Fig.5.1.1. For large machines the vibrator was
attached to the core through a jig bolting on to two adjacent teeth.
For small machines a bolt was bonded to the outside of the stack of
laminations and the vibrator attached through this bolt. The most
convenient means of attaching accelerometers was found to be the
commercially available tripod magnet. Various methods of clamping the

laminations were tried and investigated for aberations of the measurements.

It was found that bolts at the bottom of every fourth or so slot had
negligible influence on resonant frequencies and were simple to use.
Tightness of the bolts had no measurable influence on resonant frequencies
of rings and very small influence on segmentéd cores., The cores were
mounted horizontally on rubber to provide a resilient mounting. No
benefit seemed to accrue from bolting the vibrator to a baseplate so

this practice was discontinued,

The procedure used for isolating resonant frequencies is to sweep
through the frequency range O Hz to 10000 Hz keeping the applied force
constant - by monitoring the force transducer output - and measuring the
acceleration at the point of attachment of the vibrator, A typical
acceleration trace is shown in Fig.5.1.2. Having obtained this curve,

each of the peaks is examined in detail to determine the mode of vibration.
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This is done by holding the frequency at the peak value and traversing
the second accelerometer round the outside of the core. Zones round
the periphery are marked as being in phase or out of phase with the
reference accelerometer. The number of zones equals twice the number
of modes. This approach was found to be quicker and more reliable than
locating nodal points. Generally speaking the peaks are sufficiently
sharp for the points of maximum velocity and maximum acceleration to be
sensibly coincident. The phase difference between the force and
acceleration signals was checked at each resonance peak and the 3dB
points measured. Sometimes it was not possible to measure a 3dB point

because of the proximity of the next resonance.

After the theory detailed in Chapter 4 was developed the prior
knowledge of calculated resonant frequencies greatly facilitated the

isolation of measured values.

5.2 TOOTH RESONANT FREQUENCY MEASUREMENTS

It was explained in Chapter 3 that tooth resonance is a major
influence in determining core resonant frequencies. The method of
measuring tooth resonant frequencies is given below. It is base& on
the knowledge that the tip deflection of an encastre tooth is considerably

greater than the base deflection.

Miniature accelerometers are attached to the base and tip of a
tooth with wax. Acceleration measurements are then made at various

frequencies.  The output from miniature accelerometers is small and

it was found helpful to make these measurements at or near to core



resonant frequeacies where the
vibration levels are magnified.
[ The ratios of the two accelerometer
e :
Sy froy outputs produce curves like those
of Fig.5.2.1. The first of these
— shows clearly the peak at the
\ resonant frequency.  The second
curve is more typical. The
main peak is reasonably clear but
there are several side peaks. The dips in this curve correspond with core
resonant frequencies. It has been possible to use this fact to mcasure
certain high mode core resonant frequencies near to the tooth resonance
which do not show up using accelerometers attached to the back of the

core.,

5.3 MEASURED VALUES OF CORE RESONANT TFREQUINCIES

All the following measurements were made using the short core method,
unless otherwise indicated. Considerable use was made of Kuhl's
measurements to verify the plain ring thcory which formed the basis of
that developed in Chapter 4. These measurements werc made with solid
rings. In order to confirm the theory for laminated rings, measurements
were made on a set of machine laminations from which the teeth were
removed. The laminations are those shown in Fig.3.3.5. The measured

and calculated resonant frequencics arve:



Mode 2 3 4 5 6 7
Measured freq.Hz 229 633 1198 1884 2684 3584
Calculated freq.Hz 228 635 1195 1886 2690 3589
Mode 8 9 10 11 12

Measured freq.Hz 4514 5624 6664 7743 9048 Error band=2.26%
Calculated freq.Hz 4565 5603 6689 7812 8963 (95% confidence)

These figures confirm the excellent agreement found in Chapter 4 (Fig.4.1.1)

and further verify the plain ring theory.

5.3.1 The Effects of Wedges

Early in the initial explofatory measurements it was found
that tooth resonant frequencies were important in large machines and that
the retaining wedges can increase these frequencies considerably.  This
fact has not been reported in any of the published work in this field and
extensive tests were instituted to investigate the effect. The first of
the two main lamination designs was chosen for these tests. This design
has long teeth and the effect of wedges is pronounced., The dimensions
of these laminations are given in Fig.3.3.1. The measuremeﬁts and
calculations with various wedges are given in Fig.S.S.lf The first two
curves in this figure are values obtained without wedges and are included
as reference values. There are two sets of resonant frequencies - one
below the fundamental tooth resonant frequency and one above it.  The
resonant frequencies shown graphically are repeated in tabular form.

Curve and row numbers correspond.

Wedges in production machines are normally a slight clearance fit

in the wedge grooves but they are blocked-up using strips of insulation



to produce a tight fit in the
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— o o radial direction. As a first

f{fh msm i _ approximation to the real
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i introduced into the grooves to

produce an interference fit.

winding %

The measured resonant frequencies

: | . ; o . .
N : for this cenfiguration are given

. i in curve 3 of Fig.5.3.1. The
TN resonant Irequencies have increased

N by approximately 24% at the low

mode numbers and 100% at the high
numbers. This means that the core stiffness has been increcased by 55%
and the fundarental tooth resonant frequency has doubled. The wedges
for this test were made from bonded fabric. High temperature machines
use glass-reinforced epoxy wedges which have a much higher modulus of
elasticity EV The mass of the wedges was negligible compared with the
mass of the laminations. The measured increases in resonant
frequencies were large and unexpected and two further tests were made to
investigate the influence of the mcthod used to fit the wedges into the
grooves. The same wedges were uséd in these threce tests and the concept
of a fit factor is introduced to describe the type of fit. The two
practical limits of 'fit' are the blocked-up clearance wedge, shown above,

and the epoxy-adhesive bonded wedge.

In order to produce the blocked-up wedge configuration without the

added complication of a massive winding, a dummy wooden winding was



produced, The mass of the wcod was only 3.6% of the mass of the
laminations, The measurements are given in curve 4 of Fig.5.3.1,

High mode number recsonant frequencies were not measurable becausc of the
high damping in this arrangement.  The low mode number frequencies are
increased by approximately 9% and the fundamental tooth frequency is
increased by 35%. There appears to be a direct rclationship between
the increased stiffness of the core and the increase in tooth resonant
frequency caused by the wedges. In this and the previous test the

zero order resonant frequency is only affected by the mass of the wedges

since the hoop stiffness is virtually unaltered.

In the next test the wedges werce made to have a clearance of O.lim
and then bonded to the grooves using a common epoxy adhesive, cured at
room temperature. This is the method used in industry when magnetic

slot wedges are installed.  The

G increasing use of magnotic slot
tooth

SR wedges makes this test significant

adhesive

in its own right. The measurements
| are given in curve 5 of Fig.5.3.1.
Working backwards from these
measurements the fit factor is 0.7.
This seems a reasonable value since

the bond is bound to be imperfect.

e The tooth resonant trequency is

\\\\\“ increased by 177% and the core

resonant frequencics are increascd

by upwards of 33%.
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Considerable care was talen in bonding the wedges to the grooves so it
was decided to produce another short core with what could be called
'production quality' bonded wedge;. Glass-reinforced epoxy wedges were
used for these measurements which are given in curve 6 of Fig.5.3.1.

The value of fit factor deduced from these measurements is 0.42. This
reduction is only partly due to the bond quality. The maximum elasticity
modulus of the adhesive is only 40% of the wedge modulus for glass

reinforced wedges.

These tests show clearly that wedges are important in determining
core and tooth resonant frequencies. For bonded wedges the contribution
is of first order magnitude. The theory developed in Chapter 4 includes
the effects of wedges i.e. the increase in core stiffness and the
elevation of the fundamental tooth resonant frequency. The calculations
in Fig.5.3.1 show excellent agreement with measurements, especially for
the modes where the resonant frequencies are below approximately.so% of
the tooth resonant frequency. The errors are nowhere very large but
there are discernible trends in these errors. The primary reason for
the errors is the deficiency in the assumed modal shape of the tooth
vibration and the effect this has on the inertia and tangential mass
factors £ and V. The calculated values of the tooth resonant
frequencies are sufficiently accurate but the classical Euler theory for

encastre beam deflection is evidently too simple,

The classical theory for beam deflection is for parallel beams.
The deflection curve at some fraction of the fundamental resonant

frequency is represented by curve 'a' on the next page. For tapered



beams, as found in large electrical

machines, the deflection at the thin

o o ———

g o end is increased above the value for
) straight beams as shown by curve 'b'.
This increased deflection would mean
larger values of £ and ¥ so that
factors based on curve 'a' produce
core resonant frequencies above the actual values when tooth flexure
becomes important., This is true unless the support provided by the
wedges at the tips of the teeth produce the deflection curve 'c'. In
this case the values of the two factors £ and ¥ based on curve 'a' are
too high and result in core resonant frequencies below the actual values.
These trends are well illustrated by the mcasured and calculated core
resonant frequencies in Fig.5.3.1. The correlation between the wedge
parameters and the increase in tooth resonant frequency is given in
Fig.5.3.2 together with the theoretical curve. The values of wedge
stiffness used to plot the measured points were obtained using fit factors
derived from the core resonant frequency measurements. The use of
bonded wedges is increasing,especially in induction machines, More
extensive tests to determine tooth resonant frequencies with such wedges
would enable a more critical appraisal of the theory developed
(Section 4.4.2). [t may be found that thick wedges should be considered

to constrain the rotational as well as the translational movement of the

tooth tip.

[lasticity moduli for the various wedge matevrials were obtained

using a vibrating beam method.  Extensometer methods were tried but these
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gave poor results, A stroboscope was used to measure the resonant
frequencies of very long clamped/free beam¢ and the moduli deduced
from them. Different samples of the same material gave a spread of

values (approximately * 15%).

Since the wedges in a machine can have such a dramatic effect on
resonant frequencies they may provide a means of adjustment, should a
machine be in resonance. It should be noted that this large influence
of wedges on the fundamental tooth resonént frequency contradicts

(19) theory. He shows than when a machine is wound and

Pavlovsky's
Wedged the fundamental tooth resonant frequency remains sensibly

constant.

5.3.2 The Effects of Segmentation

Machines with outside diameters greater than approximétely
one metre are normally segmented i.e. the laﬁinations are produced as
segments of a ring. It has been stated by Uner and'Jordancls] that
measurements show that the segmented core can be assumed equivalent
to a complete ring. This statement is based on two live measurements

on a complete machine and the theory developed by these authors.

From the measurements given below it is apparent that segmentation
has a significant effect on resonant frequencies and that the near

cancellation of two opposite effects has lead to an erroneous conclusion

by Uner and Jordan.
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The principal measurcments made to investigate segmentation were
made on laminations that were originally complete rings. This approach
was chosen so that a direct comparison of measurements was possible.

The second of the main lamination designs was chosen for this test. The
laminations were machined into six segments with a 1.5 mm spacing between
segments, The core was clamped together in the normal way with two
complete ring laminations at the top and bottom of the core. The
dimensions of the laminations and the various measurements are shown in
Fig.5.5.5. At frequencies unaffacted by tooth flexure the resonant
frequencies are approximately 8.0% below the non-segmented values. At
higher modes the resonant frequencies become assymptotic to the same
tooth resonant frequency so that the difference in resonant frequencies
reduces to zero. It was also observed that slightly different resonant
frequencies could be obtained by changing the position of the vibrator.
The difference is small as can be seen from the measurements in Fig.5.3.3.
Further small differences in resonant frequencies were obtained with

different clamping pressures.

The effects of segmentation can be accommodated in the calculation
method by using an artificially low value of elasticity modulus E. Such
a value applies to the core but not the teeth since the tooth resonant
frequency is not affected by segmentation. The calculaticns with a
reduced value of E are given in Fig.5.3.3. Variations in measured
resonant frequencies with clamping pressure mean that the correlation
between measured and calculated frequencies is generally poorer with

segmental laminations compared with ring laminations.
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Two more sets of segmental laminations were tested. These cores
were of large diameter and designed for segmental construction. The
measured and calculated resonant .frequencies are given in Fig.5.3.4.

The first of these cores was constructed in two ways. In addition to

the normal 50% overlap between layers the core was also built up so that
the discontinuities were spread evenly round the core rather than at 12
points (there being 6 segments in each ring). It was found that the two
configurations produced the same results, within the limits of measurement
accuracy and repeatability. The good agreement between calculated and
measured frequencies for all three segmental designs verifies the use of

a reduced elasticity modulus.

5.3.3 Axial Ventilation Holes and Duct Spacers

Axial ventilation through holes in the core is used most
frequently in small and medium size machines. A small proportion of
large machines use this form of ventilation and so a set of laminations
with two rows of ventilation holes was tested. The differences in
calculated values with and without ventilation holes is small. These
are shown in Fig.5.3.5. The measurements confirm the accuracy of the
calculation method for all but the zero order mode. In this mode of
vibration the ring expands and contracts and the holes reduce considerably
the stiffness to this type of deformation. The averaging of the effect
of holes to produce an elipsoidal void round the whole circumference of
a lamination is not very accurate when evaluating the breathing mode
resonant frequency. The stress/strain behaviour in this mode is
analogous to a perforated bar in tension. Further work is needed to
refine the calculation method to account for the effect of ventilation

holes on the zero mode resonant frequency.
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For this particular design of laminations the nett effect of
ventilation holes was to increase flexural mode resonant frequencies.
That is, the reduction in mass of the core was greater than the reduction

in stiffness,

It has been common practice to include the mass of windings when
calculating core resonant frequencies. It is shown in Chapter 6 that
windings in large machines do not contribute to live machine resonant
frequencies. The only extra mass that should be included is that due
to the duct spacers. These spacers are usually welded to the last
laminations in each packet. They are constrained to move with the core
and teeth but add no stiffness. The spacers reduce tooth resonant
frequencies as well as core resonant frequencies so that the latter are

doubly affected.

Measurements on a core with duct spacers were made using a short
core comprising two half packets sandwiching a lamination with spacers
attached. The dimensions of the laminations used are given in Fig.3.3.1.

The measurements and calculations with and without duct spacers are given

in Fig. 5.3.6. The tooth resonant frequency has been reduced by
approximately 10%. A similar figure is obtained for the complete machine
reported in Chapter 6.  Since most machines have similar ratios of tooth

s

width to spacer width and the influence is small, an empirical factor is

appropriate in accounting for the effect of duct spacers on tooth resonant

frequencies.
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5.3.4 Thick Ring Machines

The theory developed in Cﬁapier 4 is for thick rings with
teeth, i.e. secondary effects haye been taken into account. In the
measurements and calculations quoted above the machines have had
relatively shallow cores. Two sets of measurements were made on deep-
cored machines to check the theory as applied to non-thin cores. In
the first of these measurements the teeth were short so that their
effect was not dominant. The measurements are given in Fig.5.3.7.
There are six modes below the tooth resonant frequency where the
influence of tooth flexure is negligible and the agreement between
calculations and measurements for these modes is excellent. The small
érrors at higher modes are principally due to the error in the calculated

tooth resonant frequency.

The second deep-cored machine has long teeth, with the additional
complication of set back wedge grooves. The teeth also have a.large
taper ratio so that this machine represents the normal limit of
calculation difficulty. Set back wedge grooves are not accounted for
in the calculations so that it is to be expected that the measured tooth
resonant frequency will be below the calculated value. The measurements
and calculations are given in Fig.5.3.7. Until further experimental or
theoretical work is forthcoming the effect of set back grooves can be
accounted for by an empirical factor(0.9). This value is based on one
set of measurements but is not included in the above calculations since

it must be considered as a temporary measure only,
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These two sets of measurements illustrate one of the measurement
problems encountered, i.e. the great difficulty of isolating core
resonant frequencies when these are within approximately #5% of the tooth
resonant frequency. The resonant frequencies for adjacent modes are so
close together that the peaks in the response curve merge into one. Even
when this is not so the material damping can be such as to prevent the
teeth flexing sufficiently to add enough inertia to realise a resonance

conditien. This applies particularly to the low order modes above the

tooth resonant frequency. The calculations for the second core were
limited to mode 6 since the computer program only stores rotary inertia
and circumferential mass factors for frequencies up to four times the

tooth resonant frequency.

5.3.5 Clamping Rings

The laminations in a large machine are clamped together using
rings at each end of the core which are keyed or welded to the frame.
If the clamping rings are complete (not segmented) then they can add
stiffness to the core structure. The theory developed can account for
end clamping rings. The following measurements (Fig.5.3.8) were made
on a long core (without duct spacers) using the short core method. The

endring dimensions were chosen so that their effect was pronounced.

The measurements show clearly that the endrings affect the
resonances at low frequencies only, The increase of 31% for the first
mode resonant frequency quickly diminishes to negligible proportions for
higher modes.  The endrings are effectively uncoupled above 600 Hz and

begin to uncouple at 200 Hz.
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The calculations with endrings show good agreement only at those
modes where the endrings remain coupled (modes 2 and 3 in this example).
This uncoupling effect was also observed for this and another design of
laminations built into the production machine frame (Chapter 6). The
gradual uncoupling of the endrings was observed by mapping the modal
patterns axially as well as circumferentially. This uncoupling effect
was not amplitude depcndent since the same resonant frequencies were
measured with vibration amplitudes differing by an order of magnitude,
For frequencies above the uncoupling frequency the resonances should be

calculated ignoring end clamping plates.

5.3.6 Tooth Resonant Frequencies

The measured and calculated toéth resonant frequencies for
various laminations are given in Fig.5.3.9. These cover a wide range of
linearly tapering teeth and include one rotor tooth with a root depth
smaller than the free end depth. The calculations shown use the theory
developed in Chapter 4. The root flexibility and shear correction
factors Cr and Cs have been obtained from the equations that underlie
Figures 4.4.4 and 4.4.5. Extra correction factors for effects such as
tip overhand and set back wedge grooves have not been included in these
calculations. The measurements were made using the short core method

without wedges or duct spacers.

Semi-c¢losed stator slots are common in small machines and the
proposed method overcalculates tooth resonant frequencies for the

configuration over the page.
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In order to improve the calculation,
teeth with overhangs are assumed

equivalent to slightly longer teeth

tip overhang

where the increased area equals

the tip overhang area. Until more
experimental evidence is available
the effect of set back grooves can
be accommodated by a 10% reduction
in tooth resonant frequencies,

The measured and calculated resonant frequencies show excellent
agreement and confirm the overall importance of root flexibility. In
the examples shown the root flexibility introduces reductions of between
two and three times that obtained for the classical secondary effect -
shear and rotary inertia. The overall reduction due to 'secondary'

effects can be greater than 25% for teeth of normal proportions.

Previous authors have ignored secondary tooth effects and introduced
further errors by assuming that tapered teeth are equivalent to parallel
teeth. The compounded errors that result from this approach can be

quite large. The largest error for the teeth in Fig.5.3.9 using these

simplifications is +61.3%.

5.3.7 Small Machines

In addition to the frequent use of semiclosed slots the
laminations in small machines often differ from large machines in that
they have round bottomed slots. In order to study the differences

between the two types of slots an associated research project was
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undertaken by Poon(zo). This work on toothed straight beams quantified
the effect of root flexibility and core stiffness with semicircular slot
bottoms.

In order to check the present theory

P—--m-ﬂ

(developed for large machines)
; against small machines, measurements
TSl

1 were made on the laminations shown
s *-ww-r*"-—-nj

opposite, These laminations were

’”Hdwﬁﬁﬁ also valuable for checking combined

emmEIR e

SURPRES 1 T,

;-_._v____kauﬁi axial and radial vibrations since a
SRS ST
LJHH;giﬂﬁhﬁ,ai complete core without duct spacers
was available. Measurements were
made on the complete core 210mm long and a short core 22mm long. Small

machine laminations of this sort are held together by a number of welds
down the back of the core so there is no clamping problem nor any
complication due to clamping plates. Verma and Girgis{21) make much of
vibration modes which contain axial as well as circquerential variations.
In the ﬁeasurements on the above laminations it was not possible to excite

significant vibrations with axial dimensions to the modal shapes.

The measurements are compared with calculations in Fig.5.3.10. In
these calculations the inside diameter was not reduced to compensate for
the rounded slots. Extra mass was added to account for the large fillets
at the base of each tooth and the teeth were extended to account for the
tip overhang. It was expected that the root flexibility for this type

of tooth would be much reduced. In order to offset the calculated

reduction the tooth resonant frequency was increased by 10%. Yith those



- 89 -

adjustments to the machine details the calculations show excellent
agreement with the measurements. It can be said that, apart from the
effect of root flexibility, cores with round bottom slots can be treated
in the same way as cores with flat bottom slots. There is no need to

use an artificial inside diameter.

Two more sets of measurements are given in Fig.5.3.10. There is
nothing special about these designs. They are included as further
proof that the theory developed in Chapter 4 is equally capable of

predicting core resonant frequencies of small as well as large machines.

5.3.8 Damping Factors

Past machines that have been e#cessively noisy have usually
been in a state of resonance or near resonance. When such a condition
exists the vibration levels are limited only by the amount of damping in
the system. It is important, therefore, to know what levels of damping
are connected with the different elements that comprise the stators of

electrical machines. Standard parameters have been used to determine

levels of damping.

The factor Q is defined for any mode as the peak amplitude of
vibration at resonance divided by the amplitude at zero frequency for
the same level of force. In practice this quantity is obtained by
measuring the frequencieé on either side of the resonant frequency at
which the vibration amplitude is 0.707 times the peak value, With a
point source excitation the influence of neighbouring modes on the

amplitude of vibration is not negligible and leads to inaccuracy in Q.
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This is particularly so with highly damped systems and at frequencies
where the resonances are close together.e.g. in the region of the tooth
resonant frequency. The influences of secondary dynamic effects lead
to response curves which depart from the classical shape and upset the
relationship between Q and the 3dB points. In Fig.4.2.2 a mode 8
response curve is drawn with a Q factor of 20. The measurements of the
3dB points lead to the conclusion that Q = 42.5 and 24.5 for the two
resonant frequencies. Despite these limitations this parameter was

measured at all resonant frequencies.

From a very large number of measurements, mainly on large machines,
it is possible only to observe general trends. Measured values of Q
varied between 5 and 350 with the majority in the band 10 to 100. The
largest values were obtained with the largest cores. That the vibrator
attachment and the mounting were responsible for producing reduced Q
factors was clearly demonstrated in the measurements of Fig.5.3.10.
With the same laminations the long core produced Q factors 10 times the
values obtained with a short core. The effect of the mounting
arrangement became more pronounced as the mass af the laminations

decreased.

Deep cored machines had consistently high values of Q and most

designs had values in the vicinity of 100 for the zero order vibration

mode. In most of the cores tested there seemed to be large random
changes in Q from one mode to the next, No explanation is offered for
this. Similar variations occurred when the two limitations of the

measurement method did not apply. Segmented cores gave rise, generally,
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to lower values of Q than were obtained for the majority of complete

ring laminations.

The effect of wedges on the damping factor Q was studied when making
the measurements given in Section 5.3.1. The damping factors for the
various types and fits of wedges are shown graphically in Fig.5.3.11 for
the modes below the tooth resonant frequency. A definite trend is
discernible towards higher damping with viscoelastic wedges
(polymethylmethacrylate) and blocked-up wedges. For all of the other
wedges the damping factors were eratic. The average damping factor for
the high damping wedges was approximately 20 (equivalent to B = 0.05),
ﬁhich corresponds very well with the value obtained from the theory of

Section 4.5.

It is to be expected that the presence of windings and the coat of
varnish applied to some machines will introduce extra damping cﬁmpared
with the laminations alone. The production-machine used as the basis
of all the experimental work gave Q factors between 9.7 and 18.5 for
the nine modes excited in the live machine test - see Chapter 6. It is
to be expected that different designs will increase the spread of 'normal'’
damping.factors beyond these two values. Only the systematic measurement
of machines excited by the internal electromagneticsof the live machine
(as described in Chapter 6) will produce reliable bounds for damping
factors. At the design stage the engineer is interested in the lowest
damping to be expected and until more live measurements have been made

this must be assumed to be equivalent to Q = 350+.
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5.3.9 Error Results

The main reason for instituting this research was to improve
the error margin that had to be applied to calculated resonant frequencies

of large machines when predicting noise levels.

Experience had shown that the widely used methods based on simple ring

theories required a tolerance of -10%, +40% with a 69% confidence limit.

The basic error bounds for the present theory are+ 6% with a 95%
confidence limit. A higher value (*+ 15%) should be used for the first
modes above the tooth resonant frequency. These modes are usually
unimportant. These figures are based on over 600 separate resonant
frequencies (modes 2 to 20) measured on 15 designs of large machines,
many of them configured in various ways to measure different effects.
These bounds are applicable to resonances where the frame can be.consid-

ered uncoupled and where the various dimensions arc known precisely.

For segmentazl laminations the artificial value of elasticity modulus
E used in calculating resonant frequencies is subject to a separate
tolerance to account for clamping variations. Composite error bounds
can be obtained by making calculations with the two extreme values of
E and applying the 6% bounds to them, A more acceptable method is to

have increased bounds of * 8.5% for segmental laminations.

It was shown in Section 5.3.1 that the fit of wedges in a machine

was an uncontrollable parameter and might reasonably range from 0.0 to
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0.2 for normal wedges introduced under factory conditions.  Since
wedges have differing effects on machines the error bounds should be
obtained by making calculations at the two extremes of wedge fit factor
and then applying the basic 6% to these. For many machines the increase

in error bounds due to uncertainty about wedging will be small.
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T
Resonant
Frequencies, lz,

2000

o Segmental laminations

1000 |
O Ring laminations

Mode Number

2 3 4 5 6 7 8 9 10 11

OD = 831,85mm, ID = 733.4mm, GD = 597.4mm, slots 72 x 13.97mm.

Mode ring meas. ring calcs, segmental meas. seg. calcs,
(b) (a) {b) (a) () () (a) ) (a)
%
2 153 2955 156 3095 141 142 2842 144 3095
3 443 2085 428 3222 386 392 5055 394 3221
4 806 3192 790 3308 737 740 3163 728 3308
5 1205 3318 1211 3367 1126 1134 3286 1119 3366
6 1614 3512 1645 3488 - 1475 3465 1531 3445
7 2012 3817 2015 3757 1924 1933 3758 1905 3647
8 2281 4260 2267 4193 2215 2221 4177 2180 3992
9 2461 4811 2416 4749 2410 2415 4682 2360 4466
10 2581 5538 2505 53720 2535 2536 5322 2462 5015
11 2693 6242 2553 6021 2019 2620 6024 2634 5600
0 1646 1652 1500 1507 1520
tooth 2807 2068 2807 2807 2068

*different circumferential position of vibrator. 5
Reduced modulus for segmental calculations = 174325 MWN/m™,

THE LEFFECTS OF SEGMENTATION

Fig. 5.3.3



3000

2000 |

1000 f

Pecsonant
Frequencies, Hz, p)
Core 1
(0]
#f#;,;aff“““’ﬂfp;ﬂﬂ_—_"-__ﬂﬂ o)
" 0]
Q
)
o o __
gprf””Jg#ﬂffﬂ*—‘d__ﬁm
Moasurements
d Mode Number
1 [ " _-.y
2 3 4 5 6 7 8 9 10 11 12
Core 1 OD = 1320.8mm, ID = 1168mm, GD = 1000mn, slots 108 x 13.4nm
Core 2 0D = 2959.1mm, ID = 2785,5mm,GD = 2600mm, slots 216 x 15.8mm.
) Core 1 Core 2
Mode measurements calculations Meas Calcs. Meas. Calc. Mode
(b) (a) (h) (a) (b) (b) (b) M)

2 90 2074 90.2 2291 19.0 19.2 1 997 099 13

3 258 2141 249 2380 48.6 S4 11117 1119 14

4 460 2212 463 2439 91.6 103 1215 1234 15

5 730 2278 719 2478 159 165 ¢« 1328 1538 16

6 1008 2383 1001 2507 264 239 ' 1423 1430 17

7 1287 2504 1230 2585 322 3z4 4 1506 1508 138

8 1529 2715 1517 2749 431 420 ; 1581 1572 19

9 1710 2995 1685 3006 538 s24 11627 1623 20
10 1819 3361 1791 3340 644 637 | 1651 1655 21
11 1910 3759 1855 3717 757 756
12 1943 4220 1897 4116 865 877

0 013 973 131 415
tooth 2005 1987 1800 1861

S OF SEGMENTED CORES



4000

3000 |

2090

10001

A
Resonant

Frequencies, llz,

Mode Mumher

Y

4

Sy}

OD = 762mm, ID = 568.96mm, GD = 482.6mm, slots 60 x 13.06mm,

Two rows of ventilaticn holes, 2 x 35 x 15,875mm dia. on
pitch circle diamcters of 699.3mm and 631.17mm.

Mode measurements

(b)

494
1247
2187
3168
4046
4655
4950

OO U AN

0 2004
tooth 5070

(a)

5606
5751
5977
6180
6512
7125
8002

calculations

withecut holes

(b)
482
1273
2245
3282
4213
4766
4946

2273
516

o

LAMINATIONS WITH AXIAL VENTILATICON HOLES

Fig.

(a)

5480
5562
5592
5629
5867
6513
7519

59

S

calculations
with holes
(b) (a)
488 5480
1287 5561
2263 5588
3301 5621
4228 5862
3772 6515
4943 7514
22690
5164



a
Resonant
Frequencies, Iz,
1000 }
Without spacers with spacers
500
Mode Number
2 3 4 5 6 7 8
OD = 831.85mm, ID = 772.25, GD = 597.63mm, slcis 72 x 13,97 mm
Stack length (nett) = 4Cmm, weight of duct spacers 4.5kg.
Mode. 2 3 4 5 6 7 8 9 0 tooth
meas. 74.7 201 382 572 801 1008 1200 1349 1349 1865
cale. 74.4 205 380 590 812 1047 1249 1409 1525 1863
meas. 71.5 193 364 547 - 977 1138 1231 1231 1665
cale. 71.4 196 364 565 781 993 1174 1310 12383 1667

EFFECTS OF DUCT SPACERS

Fig. 5.3.6



A
Pesonant
Frequencies, Hz, //,/’/’,/ffﬂﬁ
(o]
O
4000
3000
2000
1000
0 Mode MNumber
2 3 4 S 6 7 8 9 10 11
Core 1 OD = 920,5mm, ID=774.25mm, GD = 700.25mm, slots 144 x 7.315mm,
Core 2 OD = 1016, mm, ID=736.6 mm, GD = 508 mm, slots 60 x 15.58 mm,
Core 1 Core 2

Mode measurements calculations measurements calculations

(b) (a) (b) (a) (b) (a)  (b) (a)

2 - - 227 4980 377 1505 375 1458
3 629 - 623- 5073 914 1602 929 1537
4 1150 - 1150 5132 1160 2027 1254 1985
5 1777 5276 1777 5165 2799 2743
6 2445 5419 2465 5182 3640 3541
7 3191 5674 3156 5272 1458
8 3897 5959 3753 5528 5112
9 4342 6400 4153 6017 5499
10 4648 7054 4353 6718 5679
0 1738 1740 1637 1651
tooth 5000 4627 1203 1345

DEEP CORE MACHINES

Fig. 5.3.7



Resonuant
1500 Frequencies, Iz,

1000

Yith endrings without endrings

S00

Mode Number

A-4

2 3 4 5 0 7 8 9 10 11

OD = 831,85mm, ID = 772.25mm, GD = 597.,63mm, sloté 72 x 13.97 mnm
endring OD = 832 mm, ID = 745mm, axial length = 2 x 14.35 mm.

Mode Measurements Calculations
No endrings With endrings No endrings  With endrings

(b) (a) (b) (a) (b) (a) (b) (a)
2 74,7 2095 97.6 2100 74,4 2384 97.3 2393
3 201 2184 255 21381 205 25063 268 2587
4 382 2272 118 2267 380 2691 495 2734
5 572 2383 613 2376 590 2783 761 2846
6 801 2522 838 2523 819 2858 1036 2968
7 1008 2709 1032 2T 1047 2965 lsarae 3203
8 1200 2946 1222 2962 1249 3149 1460 3534
9 1349 3227 1369 3275 1409 3398 1583 3931
10 1463 3609 1488 3640 1525 3697 1665 4364
1 1547 4035 1572 4059 1609 4028 1715 4812
12 1619 4483 1644 4522 1666 1376 1754 5268

Letters in brackets indicate below or above tecoth resenant frequency

THE INFLUENCE OF END CLAMPING RINGS

s D e D
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length

2. mm

43,48

84

37
64

43,
114,

68

.31

.26

18
D

TOOTH RESONANT FREQUENCIES

Fig. 5.3.9

—‘_n—___*‘__“—“‘““-~—~—__________ﬁ_h

b______________————ﬂ**——""*"“__"*'_——Fﬂﬂ

}

ra— -2

height  taper shear root meas.,
corraection  correction

hoxnm ko CS Cr Hz
10,76 .302 <919 .817 4600
15.69 311 950 .853 2005
12,11 .629 .958 .874 1865
7.96 .203 . 945 . 840 5000
21.36  -.242 935 .807 2340
12.21 <370 . 887 1935 5070
11.02 1.086 0T . 895 1203
12:10 491 .944 .351 2807

calc,

Hz

4680
1987
1863
4627
2330
5471
1346

2668

Comments

semiclosed

rotor teeth
semiclosed

set back
grooves



A
'csonant
Frequencies, Hz.
3000
2000/
1000
! 1 ! ! l‘;rh
2 3 4 5 6 7
Core 1 Core 2 Core 3
OQutside dia. 473 mm 596.9 mm 596,9 mm
Inside dia. 418,08 mm 525.74 mm 494,6 mm
Airgap dia. 336.5 mm 400.1 mm 374,55 mm
Slots 72x6.17mm* 72x9.2 nm 48x11.96 mm

* parallel teeth, semiclosed slots.

Core No. Mode 2 3 4 5 6 7 8
1,meas. b 261 TS5 1308 1966 2626 3032 3307
a 4076 4192 4352 4592 5043 5693 6635
Eyeale. b 263 719 1316 1988 2613 3054 3321
a 4447 4678 4837 4988 5370 6041 6944
2,meas, b 204 555 995 1467 1894 2164 2340
a 2945 3024 3163 3384 3795 4556 5120
2 cale, b 206 560 1016 1507 1918 2176 2315
a 3015 3169 3276 3446 3817 4406 5128
3 ,meas, b 340 906 1592 2306 2044 3318 3458

a 4321 4481 4733 5084 5610 5433 7472
3y calte, b 335 900 1607 2343 2809 3274 3444
a 4197 4356 4449 4611 5053 5796 6722

SMALL MACHINE CORE RESONANT FREQUEXCIES

Fig. 5.3.10
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* CHAPTER VI \

MEASUREMENTS OF COMPLETE MACHINE RESONANT FREQUENCIES

The separate effects of different features of electrical machines on
stator core resonant frequencies are reported in Chapter 5, in as far as
these have been measurable using the short core method. In the present
chapter the measurecments on complete large machines show the nett effect
.of all the contributing features. The laminations that formed the basis
of the short core measurements were built into a production machine.

This was tested at various stages of manufacture including the final test
before dispatch. These tests show clearly the effects of frames and
windings. Tests on other past noisy production machines are included to

illustrate the level of errors produced by the theory of Chapter 4.

6.1 THE INFLUENCE OF STATOR FRAMES

Measurements were given in Section 5.3.5 showing the rapid uncoupling
of clamping rings. At low frequencies the clamping rings moved with the

main body of laminations and had a full effect in determining resonant

frequencies. Above a certain uncoupling frequency the influence of
clamping rings was negligible. The same phenomenon was observed with
laminations built into a frame. Above the uncoupling frequency complete

core and frame assemblies produce resonant frequencies which are very

close to those of the laminations alone.
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The two principal designs of laminations (Figs.3.3.1 and 5,3.3)
were built into the same production frame and tested beforc the winding
was inserted. Resonant frequencies were obtained using a vibrator
connected to two adjacent teeth.in the centre packet of the machine.
The measurements are shown in Fig.6.1.1. With the weak laminations
the frame increases resonant frequencies by 100% for the lowest mode and
by less than 10% above 600 Hz, It should be remembered that this design
of laminations had a very shallow core so that the influence of the
frame is exaggerated. The final production laminations have a larger
depth of core and the same frame increased the lowest resonant frequency
by only 17%. The uncoupling frequency for this configuration is
approximately 600 Hz. The other production machine measured resonant
frequencies (all > 830 Hz) confirm that calculations should be made
considering the frame and/or endplates uncoupled. The nature of the
slotting of normal induction motors is such that forces likely to produce
significant noise have frequencies in excess of 600 Hz. This means that
calculated resonant frequencies can be obtained ignoring the frame and

endplates.

This generalisation is not true of synchronous machines or special
induction machines (such as multi-speed machines) and for these cases
the frame etc. must be considered. For resonances below the uncoupling
frequency the calculated resonant frequency should be taken between the
frequencies obtained ignoring and including the frame etc. The method
in which the calculations should transfer from 'with the frame' to
'without the frame' must be determined from further measurements on

production machines. Although the uncoupling frequency has been
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approximately 600 Hz for the three sets of measurements quoted it is
probable that different frame constructions will have different values.
For large machines with skeleton frames the frame is best approximated

to two clamping rings for calculation purposes.

During the measurements using the production frame it was found
that there were a number of resonant frequencies for each mode depending
on the circumferential position of the vibrator. This effect was more
pronounced with the weak laminations. The varying stiffness of the
main members of the frame produces a number of resonant frequencies for
any mode depending on the position of the antinodes of the vibrating
force. This effect is only noticeable at frequencies below the frame
uncoupling frequency. An unusual example of this multiplicity of
resonant frequencies was exhibited by a particular slow speed fractional-
slot induction motor. A winding sub-harmonic produced a large vibration
amplitude at 120 Hz. The resulting vibration was stationary although
the force was rotating in space. This occurs when a given mode of
vibration has different resonant frequencies for different circumferential
positions of the modal shape - as can occur with frames of electrical
machines. In this example the frame influence was obviously large since
the measured resonant frequency and the calculated resonant frequency

of the laminations alone were 129 Hz and 96.3 Hz respectively.

The measurements in Fig.6.1.1 underline the effect of duct spacers

measured in Section 5.3.3.  For both machines the resonant frequencies
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\
are asymptotic to a lower tooth resonant frequency when spacers are used.
In both series of measurements with frames the resonant frequencies were
difficult to isolate, especially compared with the easc of making short

core measurements.

6.2 THE EFFECTS OF WINDINGS

After the tests with the production laminations in the frame the
machine was wound with a 6.6 kV, 8 pole, double layer consolidated
winding. The total mass of the winding was 323 kg,of which 52% was
embedded in the slots. The slot wedges were nominally 2 mm deep.
 Measurements of resonant frequencies were made, after the machine had

been wound, using a vibrator attached to the inside of the core.

The results of this test were slightly ambiguous. A full set of

resonant frequencies was measured below the corresponding values without

a winding. In addition a number of resonant frequencies were measured
that were very close to those without a winding. This second set was
incomplete and unexpected. These measurements are shown in Fig.6.2.1

together with the calculated values including the winding and wedges but
ignoring the frame. In these calculations the full winding mass has

been used. Both the measurements and the calculations show a reduction

in the region of 13% at low mode numbers due to the mass of the winding and
a slightly increased tooth resonant frequency due to the wedges which
offsets the reduction caused by the duct spacers. The ambiguity was
further underlined by live-machine measurements which produced resonant
frequencies which were virtually the same as those without a winding.

It appears that it is possible to excite two resonances for each mode,
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one in which the winding moves and one where the winding is stationary.
With the complete machine excited using a vibrator the lower resonant
frequencies are excited, although a limited number of the other
resonances were also excited. With the machine excited electro-
magnetically the higher resonant frequencies only are excited. The
difference between the two types of excitation is that one is stationary
and the other rotates in space. It is assumed that the winding is
unable to 'follow' the vibrations when the force wave rotates and so the
machine behaves as though the winding was absent. This explains why
the calculations without a winding give the best correlation with live-
.machine measurements. The zero order force wave does not rotate by

definition so that calculations with the winding mass give the best

correlation with live measurements for this mode of vibration.

Live measurements on two very different large machines are reported
in Section 6.4, In one the zero order resonant frequency is measured
and in the other a radial bending mode resonant frequency is measured.
For these two machines the best correlation with measurements is obtained
by calculations including the winding for the zero order mode, and

excluding the winding for the radial bending mode,

These conclusions about the influence of the winding on resonant
frequencies apply to large machines and may not apply to small machines.
The reality of the influence of windings in small machines will be
revealed only in live-machine measurements. Almost all of the
measurements given by the various authors have been vibrator excited.

It has always been assumed that windings add mass and lower resonant

frequencies.  The measurements referred to above are consistent and



» B9 =

reasonably conclusive that this is not so for radial bending modes,

but true for the zero order (breathing) mode only.

6.3 THELIVE-MACHINE METHOD OF MEASURING RESONANT FREQUENCIES

It is well recognised that the only definitive measurements of
core resonant frequencies are those made on cbmplete machines which are
energised and rotating, and that regular measurements are very desirable.
In the past, occasional measurements of this sort have been made by
analysing the noise spectra emitted from machines. To make these measure-
ments requires additional tests and can often only be justified when
+a machine fails to meet its noise specification and remedial work has

to be done.

A number of useful measurements have been made using this technique
and these are reported in Section 6.4 together with some of the dangers

inherent in the methods used.

The technique of noise spectral analysis has two disadvantages
which make it unsuitable for routine testing to obtain resonant
frequencies. Noise anélysis is only suitable for machines which
produce electromagnetically generated noise levels well above background
levels. This means that a machine may excite a number of resonant
frequencies during such a test but none of them at a sufficient level to
be measurable. The other important disadvantage is that a separate
test is required which often has to be carried out at an unusual hour
to minimise background noise. Most manufacturers are very hard pressed
to meet delivery dates by thé time a machine gets to the test department

and 'inessential' tests are very difficult to implement.
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A test technique has been used which is based on core vibration
measurements and can be incorporated into an existing standard test so
that testing time is not increased. The use of vibration rather than
sound measurements means that minor vibration peaks can be isolated. It

also means that background noise levels are unimportant.

6.3.1 The Test Method

The test involves supplying the machine with a varying
supply frequency and making back of core vibration measurements. In
order to minimise the test time and enable the use of digital signal
analysis, the vibration signals are recorded with an F.M. instrument

tape recorder,

One of the first tests the complete machine undergoes is the bearing
test., The machine is run for approximately two hours to bed the bearings.
The resonance test is carried out during this time. Unusual windage or
bearing noises that sometimes occur during this test are of no consequence

since only vibrations are being measured.

The supply frequency is varied between the minimum set by the supply
alternator speed-control and the test machine overspeed capabilities. At
each frequency the voltage is adjusted so that the quotient of supply
frequency and voltage is constant and equal to the rated voltage divided
by the rated frequency. This is done to keep the flux levels constant.
One or more piezoelectric accelerometers are attached to the back of the
core using a tripod magnet. A high speed recording of approximately 10
seconds duration is made of the accelerometer outputs, suitably amplified,

at each frequency. A number of accelerometers may be used to check on
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modal shapes but it has been found that the electromagnetics of machines
(and particularly induction machines) aie such that each frequency of
vibration is associated with a unique mode number. It is usually
necessary to have only one accelerometer, Analysis of the

accelerometer signals can be greatly facilitated by recording a reference
signal on the tape before and after the main body of measurements, This
is done with all of the amplifier and tape recorder settings as per the
main series of measurements and with the accelerometers attached to a

calibrated vibration table.

Each measurement is analysed by replaying the recordings, usually
at a reduced speed,and digitising the accelerometer signals using an
A/D convertor. Digital Fourier transforms of the signals, plotted
automatically, condense and abstract the information into a manageable
form. From these plots it is relatively easy to obtain the amplitudes
of.the different components of acceleration and to plot a response curve
for those components that span a resonance. Having a reference signal
on the tape means that each transform can be scaled easily before plotting.
It also means that measurements can be stored in a self contained format
with no need to attach notes and labels regarding calibration facfors etc.
This is an important advantage if the test is to be carried out by

personnel who are not familiar with the parameters being measured.

It is useful to monitor accelerometer signals using an oscilloscope
so that obvious peaks in one component can be recorded using a finer
variation of the supply frequency. It is important to note, however,

that some resonance peaks will not be obvious from the oscilloscope and
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a full range of measurements should always be made. It is to be

expected that most resonances measured in this way will not be associated
with a discernable noise peak. In the measurements reported in the next
section only one of the nine measured resonant frequencies was associated

with an obvious noise peak.

6.3.2 An Example of the Test Technique

The production machine used throughout this research was
designed with a 58 slot rotor. This machine was tested in its production
form using the technique described. It was also tested with a 60 slot
rotor which was designed especially for this research to produce a very
high noise level caused by the near coincidence of a major force wave
and the corresponding resonant frequency. The tests described are more
detailed than that proposed in the previous section since these were
prototype tests. The tests with the two rotors were duplicates so that
the results only of the test for the 58 slot design are given. It is
significant that this 'quiet' machine produced five of the nine resonant

frequencies measured in these tests.

The 60 slot rotor machine produced a large mode 4 force at 850 Hz
when supplied at 50 Hz. This produced a large level of vibration and
high sound pressure levels (SPL) - 120 dB at the core surface.
Measurements were made to determine the axial variations in the mode of
vibration. It was found that these measurements could be analysed
using a voltmeter instead of the digital analysis because of the pre-
dominance of this vibration component. The axial variations in

vibration amplitudes were small and confined to the end packets. This
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confirms the conclusion in Section 6.1 that above approximately 600 Hz

the frame is uncoupled.

In the measurements two accelerometers were used together with two
precision microphones. The accelerometers were calibrated using a
reference table vibrating at 250 Hz and 9.81 m/sec2 (peak). The
microphones were calibrated using a Pistonphone. They were fixed near
to the core in a radial position and used to compare vibration and sound

pressure levels.

Measurements were made at supply frequencies varying between 34 Hz
and 60 Hz in steps of 2 Hz using a four channel tape recorder. Some of
the signal levels were such as to require'changes of sensitivity. These
were achieved using precision range switches (built into the tape recorder)
and the voice channel of the recorder to note them. The adjustment of
the supply between each set of measurements was very straightforward.

The frequencies were set only approximately and the requirement concerning
the supply frequency/voltage quotient was automatically met by leaving

the supply alternator excitation constant,

Measurements were also made at constant frequency (50 Hz) and
varying supply voltage to study the effects of saturation harmonic flux
densities, Background and windage noise levels were measured with the

machine stationary and rotating at the rated speed and de-energised.

The signal analysis was carried out using a suite of programs

developed for a mini-computer at the University of Aston in Birmingham
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by C.S.Sunnersjé. Each Fourier transform was made using a 1024 point
sample with the tape-relay speed and tﬂe A/D convertor sampling rate
adjusted to give a real time sampling frequency of 10 kHz, This
produced an upper frequency-resolution limit of 5 kHz. In order to
improve the selectivity of the transforms the samples were pre-processed

with a Hanning window.

Typical Fourier transforms (FTs) are shown in Fig.6.3.1. These two
measurements were made with the supply frequency equal to 44 Hz and 48 Hz
and show how the various component accelerations vary with proximity to
the corresponding resonant frequency. Resonant frequencies were obtained
from the whole family of FTs by plotting component amplitudes as functions
of frequency. The resulting curves for the mode 4 resonant frequency
are given in Fig.6.3.2. For this machine there are two significant mode
4 force waves with frequencies of = 17 x supply and # 19 X supp}y. Both
forces excite this resonance when the supply is varied from 36 Hz to 60 Hz.
In each case a smcoth curve results and the resonant frequency is easily
deduced. In addition to the predominant mode 4 vibrations three other
components pass through resonances. These are the zero order, mode 4,
and 8 above the tooth resonant frequency. Each of these is marked in
Fig.6.3.1 together with the associated resonant frequencies. No
measurements have previously been published which show machines exciting

modes above the tooth resonant frequency.

The FTs for the production rotor (58 slots) contain large numbers
of components of vibration, five of which passed through the associated

resonant frequencies. The values of the resonant frequencies measured
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in this way are given in Fig.6.2.1. The FTs for 44 Hz and 50 Hz supply
are shown in Fig.6.3.3. When the microphone signals were analysed it
became clear that the sound pressure measurements produced signals
containing a lot of extraneous information which obscured the components
of interest. Also, some of the components of vibration were inefficient
radiators of sound so that these were not discernable at all, Vibration
modes 2, 8, 9 and 10 (Fig.6.3.3.) give unreliably small sound pressure
levels. The complete noise spectrum at 50 Hz is shown in Fig.6.3.4
together with the bearing and windage noise (machine at full speed but
de-energised) and the background noise. The windage and background
measurements were made at the end of the measurements so that comparisons
must be made with caution. The superiority  of vibration measurements
over sound pressure measurements for obtaining core resonant frequencies

is obvious,

In addition to the measurements of rescnant frequencies it was also
possible to glean important information about certain flux densifies.
From Fig.6.3.2 it is clear that the magnitude of the second mode 4 force
is 5.50% of the main force. The fluxes that produce these two forces
(one at 850 Hz and the other at 950 Hz) are listed in Fig.6.3.5. The
rotor slot harmonic flux density produced by a first order stator slot
harmonic is common to both forces so that the ratio of the other pair
of fluxes should equal 5.5%. This means that the saturation harmonic
should be 5.5% of the fundamental flux density. The fundamental is
known accurately so these results give an indirect measurement of the
saturation harmonic flux density. There are two saturation based

forces that add vectorially to prcduce the mode 4, 950 Hz force. Using
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the noise analysis program mentioned in Chapters I and 2 the calculated
ratio of the two forces is 4.9%. This compares favourably with the
measured value of 5.5% and establishes the accuracy of the saturation

flux harmonics calculation.

From the resonance peak of the mode 4 vibration (Fig.6.3.2) it is

possible to deduce the damping factor Q and use this to find the core

deflection at zero frequency. This gives a deflection of 1,25um for
the 850 Hz vibration component. Static core deflections are calculated
using beam theory and previously obtained flux densities. If the beam

theory part of this calculation can be considered accurate then the
Ealculated and measured static deflections give a direct measure of the
accuracy of the flux densities. The static deflection calculated by
the noise analysis program is 1.16 um. This calculation involves
directly a mutual rotor slot harmonic and the good agreement confirms

the values given in Chapter 2.

The origins of the various important component'vibrations produced
by the 58 slot rotor (Fig.6.3.3) are given in Fig.6.3.5. This list
serves to show that some‘of the more 'exotic' flux densities can be
significant. Saturation, eccentricity and the slotting
harmonics feature in a large proportion of these components. There

has been a tendency in the past to ignore such effects.
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6.4 OTHER PRODUCTION MACHINE MEASUREMENTS

The following accounts apply to large machines tested live in a
manufacturers works. The accepted(ls) method for measuring pure tone
noise components is to use a precision microphone coupled through a
high selectivity filter to a direct reading sound pressure level meter.
Test equipment of this type is available commercially. With the micro-
phone fixed in one position the machine supply frequency is varied as
much as possible and components of interest in the noise spectrum traced
and measured (usually in units of dB). This technique was used in the
following measurements as that proposed in Section 6.3 had not then been

adopted as the preferredmethod.

6.4.1 A 12 Pole Synchronous Motor

This machine was tested at full voltage (6.6 kV) uncoupled
and with the excitation winding current adjusted to the calculated full
load value. The machine emitted a pure tone noise at 1000 Hz when the
supply frequency was 50 Hz. The noise peak varied as showﬁ in Fig.
6.4.1 when the supply was varied between 46 Hz and 60 Hz, The shape of
this curve is somewhat unsatisfactory and results from the interference
caused by standing waves. The machine was tested with a moderate
amount of test equipment near the machine which produced reflections
and thereby complicated the noise field. Despite these complications
the resonant frequency was easily discernable and equal to 1091 Hz.

The irregularities in Fig. 6.4.1 could have been removed by making a
large number of measurements at each speed and averaging the results.

With ad-hoc measurements such as these the time available prohibits

such detail.
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The calculated resonant frequency excluding the winding mass is
1136 Hz. (4.12% high). In this calcuiation the nominal wedge dimensions
have been used and an average wedge fit factor assumed. The calculation
was repeated including the winding mass to check the conclusion in
Section 6.2 that live machine resonances (apart from the zero mode) are
best calculated with the winding mass excluded. Including the winding
mass produced an error of -9.26% in the calculated value (990 Hz). The

smaller error confirms the conclusion drawn.

6.4.2 A 48 Pole Synchronous Motor

The tests on this machine were carried out with the machine
acting as a short circuited generator. It was during other tests under
these conditions that the pure tone noise component was most noticeable.
Back of core vibration measurements were made to discern the modal shape
of the displacement causing the noise. These confirmed that a zero
order force Qave created by a high order saliency harmonic was giving
rise to the 600 Hz noise. Variable speed measurements produced the
displacement curve shown in Fig. 6.4.2. The secondary peak at 540 Hz
observed using noise measurements only had been mistaken for the resonant
frequency. The measured resonant frequency obtained from the complete
sweep of frequencies using vibration measurements is 307 Hz.  This
value is well below the frame uncoupling frequency and it is to be
expected that the frame influence will be significant. The calculated
resonant frequency ignoring the frame but including the winding is 280.4
Hz, which indicates that the frame is indeed coupled and adds stiffness
to the core. It seems reasonable also to assume that the non uniformity
of the frame gives rise to the two secondary peaks in Fig. 6.4.2 - the

flux levels were kept constant throughout this test.
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The initial erroneous conclusions drawn about this machine and the
distortion of measurements caused by standing waves, as illustrated by
Fig. 6.4.1, underline the inefficiency of the sound pressure measurements
in determining resonant frequencies. In addition to these problems a
microphone in a fixed position is likely to be phased differently,
relative to the peaks in the sound pressure waves, as the frequency is
varied. This has the effect of modulating the measured sound pressure

levels.

6.5 A NOISE PROBLEM CIRCUMVENTED

Routine noise calculations on a synchronous motor indicated a
possible source of noise caused by a very high order saliency harmonic.
The then current method for calculating resonant frequencies showed a
reasonable margin between the forcing frequency and the corresponding
core resonant frequency, especially considering the etherial nature of
the noise source. The theoretical work described in Chapter 4 was
nearly complete as this machine was starting manufacture and new
calculations were carried out. The calculated resonant frequency for
this mode was 1507.9 Hz, with the winding and wedges ignored. The
laminations had been made, unfortunately, but not built into the
machine frame. It was decided to measure the core resonant frequencies
in the factory using the short core method. The measured and calculated
resonant frequencies for a large number of modes are shown in Fig.6.5.1.
The measured mode 18 resonant frequency was 1506 Hz.  The correspon-
dence between the calculated and measured resonant frequencies provided
convincing evidence that the new theory was reliable and 3 way of over-

coming the problem was sought using the theory as the main aid.
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Three possible solutions were considered.

(1) Increasing the resonant frequencies by using thick bonded wedges
produced a calculated change of +27.1%. This approach was
favoured by the author since it required no modifications to
the laminations, with the consequential loss of time and
electrical performance. Also, it would have provided eloquent
proof of the influence of wedges, which have previously been

ignored.

(2) Reducing the resonant frequencies by removing 12.5 mm from the

bottom of the slots gave a change of -20% for mode 18.

(3) Removing the same amount from the back of the core gave a

reduction of 9.4%.

The first solution was ruled out mainly because the bonding of
wedges makes subsequent winding repairs almost impossible - should they
be necessary. The third solution was preferred as the press

operations needed no special dies and considerably less time, and

therefore money.

The profile of the modified laminations is given in Fig. 6.5.2.

A short core was constructed using these laminations and the reéonant
frequencies measured - see Fig. 6.5.1. The expected reduction was
only partly achieved. The mode 18 measured and calculated resonant
frequencies were 1421 Hz and 1365 Hz respectively - an error of

-3.9%. The laminations were built into the frame and the resonant
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frequencies were measured again before the winding was inserted.
These measurements show clearly the uncoupling phenomenon discussed
in Section 6.1. For mode 18 the frame influence is very small.

The resonant frequency was 1462 Hz.



‘r Pesonant "
Prequencies, Hz
2000t
1000 }
viade Munmber
2 3 4 5 6 7 8 a 10
Measurements
Mode short in short in
core frame cors frame
2 74.7 143.3 152.9 178.7
3 200.8 %1208 443.3 456.9 See Figs. 3.3.1
4 382.4 467.4 805.8 789 and 5.3.3 for
5 571.9 639,2 1205 1188 dimensions
6 800.8 833 1614 1575
7 1008 1042 2012 1920
8 1200 1187 2281 2198
9 1349 1282 2461 2350
10 1463 1338 2581 2455
0 1349 1460 1646

THE INFLUENCE OF FRAMES ON RESCHANMNT FRIQUEMCIES

Fig. 6.1.1



A
Resonant
Frequencies, !z
2000 o
/ with winding
o clectromannetically excited m
1000 o complete mochine calceulations
A vWith winding calculations
4 Mode Mumber
: -~ : -
2 3 4 5 6 7 8 9 10
Measurements Calculations *
Mode short live short in with live with without
core  machine core frame wdg. machine  wdg. wdg,
a a b b b b b b
2 29055 2700 153 179 168/177 132 L5 X
3 3085 443 457 411/455 362 414
4 5192 3210 806 789 720 830 669 765
5 3318 1205 1188 1065 1032 LYy
6 3512 3520 1614 IS75 1428 1640 1424 1610
7 3317 2012 1920 1815 1505 2002
8 4260 4200 2281 2198 2105 2310 2125 2291
9 4811 2401 2350 2450 2552 2479
10 5535 2581 2455 2501 2586
0 1646 1428 1450 1390 1592

* wedge fit factor 0.05, spacer § winding mass 323 kg & ©0 kg,core length 543mn

RESONANT FREQUENCIES OF THE COMPLETE MACHINE

Fig. 6.2.1
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CHAPTER 7

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

It was stated in Chapter 1 that improvements were needed in the
method of calculating noise levels in largé induction machines, and in
particular the core dynamics. This aspect has been studied in detail
and the main conclusions are given below. For detailed conclusion refer

to the main body of the thesis.

7.1 CONCLUSIONS

The measurements reported in Chapters 5 and 6 show that the tapered
teeth found in large machines play a very important role in determining
stator core resonant frequencies. The dimensions of large machines are
such that the fundamental tooth resonant frequency comes in the middle of
the frequency range of interest in calculating noise levels. In the thecory
developed to calculate stator core resonant frequencies full account is
taken of the tceth. This is the first theory, to the authors knowledge,
which considered the teeth as an integral part of the core. Flexing of the
teeth is accounted for, together with secondary tooth effects such as root

flexibility and shear. The resulting equations are basically simple.

The experimen£a1 investigations revealed that the winding retention
wedges in large machines can play a major role in determining core resonant
frequencies. This is particularly true with bonded wedges which are increas
ingly being used.by some manufacturers. Wedges add stiffness to the core and

also increase the tooth resonant frequency. In one examplc of bonded wedges
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the stiffness was increased by 55% and the tooth resonant frequency by
100%. These two effects of wedges are included in the theory and examples
are given showing good correlation between measurements and calculations.

The importance of wedges has been completely overlooked by previous authors.

It has always been assumed that the winding mass, or some proportion
of it, should be included in the equations of motion of stator cores.
Measurements on a number of live machiﬁes show that the winding does not
move with the core except for the zero order mode. This means that

calculations of radial bending mode resonant frequencies should be made

ignoring the winding mass. This conclusion applies to large machines
with consolidated windings. It may not apply to small machines.
Frames of large machines are very varied. However, in all of the

machines tested the frames increased the core stiffness and thereby the
core resonant frequencies. Measurements of cores within and without
frames have shown clearly that this increase applies only at - low
frequencies. In the examples given the framesbecame completely uncoupled
above approximately 600 Hz. These are the first reported measurements
showing the influence of frames on resonant frequencies. The uncoupling
is attributed to the method of connecting the core to the frame. In
large machines the main contact between the two is through the core clamping
rings i.e. in a plane perpendicular to the direction of motion. The
mechanism of the uncoupling is not understood. Calculations with the
frame (or endrings) coupled and completely uncoupled show excellent
agreement with measurements. Further experimental and theoretical work

is needed to predict accurately the core resonant frequencies with inter-

mediate frame coupling.
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The non-uniformity of frames is shown to produce a number of resonant
frequencies close together for each mode. A live-machine measurement is
given where this phenomenon resulted in a standing wave vibration excited

by a rotating force wave.

In all of the resonant frequency measurements damping factors were
observed.  These showed that the damping was generally very light and
unpredictable.  The use of high damping wedges is explored theoretically
and experimentally. It is shown that present day damping materials are

unable to impart sufficient damping to produce a critically damped system.

A new live-machine test technique was adopted for measuring core
resonant frequencies of production machines. This may be incorporated
into the normal test routine so that the testing time is not increased.
Other noise based methods for measuring core resonant frequencies are

shown to be inefficient and potentially misleading.

Experimental evidence is given of the effects of various secondary
factors such as axial ventilation holes, segmentation, duct spacers, over-
hung teeth and set back wgdge grooves., Each of these effects are accounted
for theoretically or empirically. Excellent agrecment is obtained between
calculated and measured resonant frequencies throughout the research.

Over 600 different core resonant frequencies were measured. The factors
that influence large machine dynamics have been investigated and
quantified and the calculation methods produced for obtaining resonant

. 3 o,
frequencies are considerably more accurate than previous nethods ( % 6%

for 95% confidence limit).
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7.2 SUGGESTIONS FOR FURTHER WORK

Further experimental work is required to understand the mechanism
of frame uncoupling. The theoretical analysis of coupled frames is given
in Chapter 4, but more work is needed to be able to predict the way in
which resonant frequencies progressively transfer from the coupled to
the uncoupled calculations., For skeleton frames the coupled resonant
frequency caléulations are made by considering the frame as equivalent to

two large endrings - see Fig.4.2.3.

The effects of wedges on tooth resonant frequencies are discussed in
Sections 5.3.1 and 4.4.2. The calculated increases in resonant
frequencies show reasonable agreement with the measurements. However,
there are only three measurements and these were made on only one design
of tooth, with different wedges. More measurements of tooth resonant
frequencies with wedges would enable a more critical appraisal of the

theory developed.

The live-machine test described in Section 6.3 is suitable for the
routine factory measurement of core resonant frequencies. It is hoped
that its further use will give rise to extra information with which to
measure the accuracy - or otherwise - of the calculation methods. The
conclusions drawn about the effects of windings may also apply to small
machines. Live-machine measurements on small machines are necessary to

test these conclusions.



"116"

\

The theory for calculating the zero order resonant frequency for
machines with axial ventilation holes was found to be inaccurate. The
deformations in this mode of vibration are similar to those in a perforated
bar in tension. The holes reduce the stiffness of the core and the zero
order resonant frequency. This effect is not accounted for in the theory

presented.  Further work is needed to refine this particular calculation.

In accounting for the flexing bf teeth the Euler equations of motion
were used. With very tapered teeth or bonded wedges this simplification
can lead to appreciable errors. Improved calculations may be obtained
with an alternative system of equations for the vibration of teeth. For
large machines the improvement would be evident only at high mode numbers

in cores with bonded wedges.
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%?ge 2 3 4 5 6 7 8 9 10
.Ula .9998 .9995 .9991 .9986 .9979 .9972 .9963 .9953 .9941
.02 .9993 .9981 .9965 .9943 .9918 ,9888 .9853 .9815 ,9772
.03 .9984 ,9958 .9921 .9874 ,9818 .9752 .,9678 .9597 .9508
.04 .9972 .,9925 .9861 .9779. .9683 .9572 .9449 ,9315 .9172
.05 .9956 .9884 ,9785 .9662 .9517 .9355 .9177 .8988 .8789
.06 .9937 .9834 ,9695 .9524 ,9327 .9109 .8875 .8631 .8381
.07 .9914 .9776 .9591 .9368 .9116 .8842 ,8555 .8261 .7965
.08 .9888 .9711 .9477 .9199 .8890 .8562 ,8225 .7888 .7556
.09 .9860 .9639 .9352 .9017 .8654 .8275 .7895 .7522 .7161
.10 .9828 .,9560 .9218 .8828 .8411 .7988 .7570 .7168 .6786
221 .9793 .9476 .9077 .8632 .8166 .7703 .7255 .6830 .6434
.12 .9756 .9386 .8931 .8432 .7922 .7424 .6952 .6511 .6106
13 .9715 .9292 .8780 .8231 .7681 .7154 .6662 .6212 .5802
.14 L9673 .9194 ,8626 .8029 .7444 .6894 .6388 .5931 .5520
.15 .9628 .9092 .8470 .7830 .7214 .6644 .6129 .5669 .5260
.16 .9581 .8987 .8313 .7632 .6990 .6407 .5886 .5425 ,5020

S .9531 .8880 .8155 .7439 .6775 .6180 .5656 .5198 .4798
.18 .9480 ,8771 .,7998 .7250 .6568 .5966 .,5441 ,4987 .4593
.19 .9427 ,8661 ,7843 7065 .6369 ,5762 .5239 .4790 .4403
.20 .9372 .8550 .7689 ,6887 .6179 .5570 .5050 .4607 .4227
) .9316 ,8438 ,7537 ,6713 .5997 .5388 .4872 .4436 .4064
.22 .9259 .8326 ,7388 .6546 .5824 .5216 .4706 .4276 .3912
23 .9200 .8214 .7243 .6384 .5658 .5053 .4549 4127 3771
.24 .9140 .8102 .7100 .6228 .5500 .4899 .4402 .3988 .3640
+25 .9080 .7991 .6961 .6078 .5350 .4754 .4264 .3857 .3517
.26 .9018 .7881 .6825 .5934 ,5207 ,4616 ,4133 ,3735 .3402
b4 .8956 .7772 .6693 .5796 .5070 ,4486 .4011 .3620

.28 .8894 .7665 .6564 .5662 ,4940 .4362 .3895 ,3512

29 .8830 .7558 .6440 .5534 4817 .4246 3786

.30 .8767 .7454 .6319 .5412 ,4699 .4135 ,3683

«31 .8703 .7351 .6201 .5294 .4586 .4030

52 .8640 .7250 .6088 .5181 .4479 .3930

¥ .8576 .7150 .5978 .5072 .4377

.34 .8512 ,7053 .5871 .4968 .4279

¢35 .8449 ,6958 .5768 .4868 .4186

. 36 .8385 .6864 ,5668 .4772 .4097

.37 .8323 ,6773 .5572 .4680

.38 .8260 .6684 ,5479 ,4591

.39 .8198 .6597 .5389 .4506

.40 .8136 .6512 .5302 .4425

.41 .8075 .6429 ,5217

.42 .8015 .6348 .5136

.43 .7955 .6269 ,5058 THICK RING RESONANT FREQUENCY
.44 .7896 .6192 ,4982 4 ,

"4 7837 6117 4908 CORRECTION FACTORS

.46 .7780 .6044 .4838

<47 .7723 .5974

.48 +71667 5905 The above correction factors are to be used to
.49 .7613 .5838 multiply resonant frequencies calculated by the
.50 .7559 5772 classical theory (Hope) to obtain the results
51 .7506 .5709 of the theory elaborated in Chapter 4. Applies
52 .7453 .5648 to steel rings of rectangular cross section only.
55 .7402 ,5588

.54 .7353 .5530

.55 .7304 .5474



lMode 11 12 13 14 15 16 17 18 19 20
h/2a

.01 .9929 .9916 .9901 .9886 .9869 9851 .9833 .,9813 .9792 .9770
.02 .9726 .9675 .9622 .9565 .9505 .9442 9377 .9309 .9238 .9166
.03 .9413 ,9311 .9205 .,9094 ,8979 .8861 .8740 .8618 .8493 .8368
.04 .9022 ,.8865 ,8703 ,8538- ,8371 .8203 .8035 .7867 .7701 .7536
.05 .8584 .8376 .8165 ,7955 .7746 ,7540 ,7338 .7140 .6948 .6761
.06 .8128 .7876 .7626 .7382 .7144 .6914 .6691 .6477 .6272 .6076
.07 .7673 ,7387 .7110 .6843 .,6587 .6343 .6111 .5891 .5682 .5485
.08 .7233 .6924 .6628 .6348 .6084 ,5834 ,5600 .5380 .5173 .4979
.09 .6817 ,6492 ,6186 .5900 .5633 ,5384 ,5152 .4936 .4735 .4548
.10 .6428 .6094 .5784 .5497 .5232 ,4987 .4761 .4551 .4358 .4178
el .6068 .5730 .5420 .5136 .4876 .4637 .4418 .,4216 .4031 .3859
.12 .5736 .5399 .5092 .4813 .4560 .4328 .4117 ,3923 .3746 .3583
i3 .5432 .5098 .4796 .4524 .4278 .4054 .3851 .3666 .3497 .3341
.14 .5153 .4824 ,4529 ,4264 .4026 .3811 .3616 .3439 3277

.15 .4897 .4574 ,4287 .4030 .3800 .3593 .3406 .3237

.16 .4663 ,4347 .4068 .3819 .3597 .3398 .3219

" .4448 ,4140 .3869 .3628 .3414 3222

.18 .4250 .3950 .3687 .3454 3248

.19 .4068 3776 .3521 .3296

.20 .3900 .3616 .3369

21 .3745 .3469

.22 +3601 .3333

23 . 3468

.24 . 3344

Ring resonant frequency for the kth-mode (k>2)

hk (k?-1)2 .
f = ———— / E ;
k - Viz & 1 126 x correction factor
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a(x,x)
a(x,n)
A

A
o

AI’AZ’AB’A4

* Ak Ak AR
AI’AZ’A3’A4

B

dB

NOHENCLATURE

radius of core section centroid

particular flexibility influence coefficient
generalised flexibility influence coefficient
core section area; integration constant

tooth tip section area

coefficients of tooth displacement function

integration constant

core section width

tooth section width

frame section width

cooling fin section width

endring section width

modified endring section width

modified frame section width

core depth as fraction of tooth length

constant in root flexibility formula; integration constant

tooth res.freq. correction factor accounting for root
flexibility

tooth res.freq. correction factor accounting for
shear etc.

tooth res.freq. correction factor accounting for
wedge support

half width of elipse
Integration constant
decibel

half height of elipse



alternatively

k

alternatively

K(x,x)

5
0

Ky ,ky kgoky

ks’kﬁ’k7

modulus of elasticity, E = El + JE

storage modulus

loss modulus

force

tooth resonant frequency, Hz
factor denoting quality of fit of wedge in the groove
shear modulus

radial thickness of ring

depth of tooth; depth of tooth base

depth of tooth at tip

denotes integral |

equivalent second moment of area of a curved beam
second moment of area of a tooth as a function of x
second moment of area at tooth tip

integrals in calculation of rotary inertia factor
complex operator

moment of inertia

mode number

slot opening factor; length constant

base spring stiffness

tooth pitch factor

core taper factor

wedge spring stiffness

mass-flexibility product

tooth taper factor

section width correction factors



L length of tooth

Zn natural logarithm

gc nett core section length

m mass per unit lecngth; mass

M bending moment

Mc core moment

Mt tooth moment

n Timoshenko shear coefficient

N normal stress resultant

p machine pole pairs

alternatively pivot point as a fraction of the tooth length
P pitch circle radius of ventilation holes

Q shear stress resultant

alternatively damping factor, El/E2

T radius of core section neutral layer

R radius of core section centre of gravity (C. of G.)
alternatively- number of rotor slots

T, outside radius of ring

Rn normalised response function

Rp radius of core section centre of percussion
r gap radius

T inside wedge radius

r, outside wedge radius

Tg slot bottom radius

T, core outside radius and frame inside radius
Te frame outside radius

Te fin outside radius

r, ‘ endring inside radius

T endring outside radius



SPL

alternatively

X

Y

alternatively
Y
%
alternatively

Z

shear constant

sound pressure level(s)

time interval

time

rotor slot pitch

wedge displacement

end of wedge displacement amplitude
tangential d15placeﬁent of core

tooth displacement

tooth displacement as a function of x and Q
peak tangential displacement amplitude, mode k
tooth base displacement amplitude

radial displacement of core

work done in displacing wedges

peak radial displacement, mode k

peak radial displacement at zero frequency, mode k

peak radial displacement at frequency 2, mode k
slot width

effective wedge width

length variable

intermediate integral

length variable

tooth displacement

intermediate integral

radius variable

normalised resonant frequency squared

intermediate integral



o length constant

B damping ratio Ez/El

¥ strain ratio |

8 radius ratio

€ radius ratio

alternatively wedge strain

n force position variable

il rotation

Bm rotation due to a moment

u harmonic order (rotﬁr)

v Poisson's ratio

alternatively harmonic order (stator)-

(3 rotational inertia moment factor

Et rotation inertia moment factor of teeth alone
p density

a radius ratio

alternatively wedge stress

1] tangential displacement mass factor

e tangential displacement mass factor of teeth alone
Q frequency, rad/sec.

Qk core resonant frequency, mode k

ﬂt tooth resonant frequency, rad/sec

Q core resonant frequency, zero order mode,



SUBSCRIPTS AND SUPERSCRIPTS

c core
er endring
£ frame
k mode number
S slot
t tooth
w wedge
" uth harmonic order
v vth harmonic order
Q at frequency, 9
. differential with respect to time

! differential with respect to length
or rotation (x or 8)



