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ABSTRACT 

The process of deconvolution is studied by coherent, 

non-coherent and numerical techniques. Computer 

simulations have been used to model the operation of 

coherent systems using different types of spatial filters, 

and the effects of Gaussian distributed random noise 

added to the amplitude and phase of the components are 

presented. This has led, via statistical analysis of 

the simulated recovered images, to a re-assessment of 

the IMSE optimum deconvolution filter. The effects of 

filter misregistration and the use of a filter mis-matched 

to the system convolute are also modelled by computer,and 

filter amplitude quantization errors are studied in terms 

of their impulse responses. Using a non-coherent optical 

system a new method of deconvolution is described and 

experimental results of the deconvolution of a dilute 

object and a Gaussian blurring function are presented.
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CHAPTER 1 

THE ROLE OF COMPLEX SPATIAL FILTERS IN'SIGNAL 

PROCESSING



1.1  IN2RODUCTION 

The processing of optical data can involve the extraction 

of information from the data field by locating particular 

features (such as edges in the character recognition system) 

or it can involve the redistribution of the data into a more 

satisfactory form. It is impossible to increase the 

information content of a data field by any processing 

operations. Any apparent increase in information is a 

result of supplying an equivalent amount of information 

about the processing operation itself. The question which 

arises then is why should we perform such operations if they 

do not increase the total information content? The simple 

answer is that the processing operation may help us to 

recognise certain pieces of information. Although an 

out of focus photograph, plus details of how points on the 

photograph have suffered due to this misfocus, give us the 

same information as a photograph processed to correct the 

misfocus, we recognise more information when presented 

with the processed photograph. 

Not all operations are specifically designed to increase
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the amount of recognisable information in a data field. 

Although photographic film has a high storage density 

(typically 10'° bits on a 100 x 100mm film) this cannot 

be utilised directly to record combined amplitude and 

phase information. In this case a processing operation 

must be used to encode the information in terms of the 

film's variable density or variable optical thickness. 

However, even for wholely real data advantages may be 

gained by such holographic encoding. For example, 

processing of such data into the form of a Fourier 

transform hologram increases the data record's resistance 

to local defects and for subsequent read-out makes the 

system insensitive to lateral misregistration of the 

record. 

This type of data encoding, storage and read-out is 

analogous to coded data transmission schemes in the sense 

that both the encoding and decoding can be chosen to 

minimise the subsequent read-out error. This facility 

to operate before and after transmission (or storage) is 

a Shannon class of processing (Ref. 1). It is to be 

distinguished from the Wiener form which deals only with 

operations on data after transmission (Ref. 2.). In 

both cases, of course, the original data may be 

corrupted in various ways by noise or system distortions 

etc.
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Processing in order to more easily recognise features in 

a data field can be carried out in a number of ways. 

Some success may be achieved by operating directly on the 

data although in many cases - particularly the deconvol- 

ution situation - this can be very inefficient. Commonly 

a transformation to frequency space produces an equivalent 

but more efficient operation. The processed data is then 

recovered by inverse transformation. Clearly there is a 

trade-off between how many operations are required in data 

space for the processing and how many operations are 

required to transform, process in transform space and 

retransform for the result. 

Alisic. NUMERICAL PROCESSING 

Until 1965 the numerical Fourier transformation in which 

space the convolution operation becomes a multiplcation 

operation) was expensive to perform by digital computer. 

However, the Fast Fourier Transform Algorithm (F.F.T) due 

to Cooley and Tukey (Ref. 3) significantly reduced the 

number of operations in the ratio of N log n/n@ for an N 

point data set and made the numerical "transform, operate, 

inverse transform" process more attractive. The Fourier 

transformation is based on the expansion of a function in 

terms of complete orthogonal sets of sines and cosines. 

There are many other complete sets in terms of which a
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function can be expanded. Of these the Walsh functions 

(Ref. 4) form a set of particular interest for computer 

operations as,although taking only the values +1 and —t, 

they have many properties similar to the trigonometric 

sines (Ref. 5). A Fast Walsh Transform also exists. 

(Ref. 6). 

Even so numerical processing is still inefficient being 

a sequ ental operation although some degree of parallel 

processing now seems feasible following a reduction in the 

cost of integrated circuit chips capable of performing the 

basic mathematical operations (Ref. 7). 

1.3 OPTICAL PROCESSING 

For a coherently illuminated system and with certain 

restrictions on their lateral extent (Ref. 8) the 

amplitude distribution in the front and back focal planes 

of a lens are related by a Fourier transformation. Asa 

lens operates in parallel on an object distribution, if 

the required Fourier plane operation can be accomplished, 

a pair of lenses may be used to achieve a transform, 

operate, retransform type of system. The operating 

speed of such an optical computer depends on the time 

required to obtain a satisfactory back focal plane record 

as all components in the system being passive its overall 

transmission a Ae Unlike the equivalent numerical system
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the speed of the optical systems operation is independent 

of the number of data points to be operated upon. The 

main difficulties to be overcome in a coherent optical 

processing system are the sensitivity to moise and the 

realising of the complex operating elements. 

We shall restrict ourselves to processing in transform 

space and in particular in Fourier space to the techniques 

of deconvolution. Both numerical and optical Fourier space 

deconvolution are achieved by multiplying with a generally 

complex operator (or filter) which has been optimised in 

some way to minimise the effects of noise. In Chapter 2 

we study the effects of noise at various stages of 

deconvolution using a computer simulation. Chapter 3 is 

devoted to a discussion of some of the most recent and 

efficient techniques of producing complex coherent optical 

elements, and the operation of these elements is simulated, 

again by a computer model, in Chapter 4. A completely 

different approach is taken in Chapter 5 in which a new 

noncoherent optical system for performing deconvolution is 

described. The system's operation is discussed and some 

results of the deconvolution of a Gaussian linear blur and 

a dilute object are presented. 

The rest of this chapter is concerned with the deconvolution 

process and with a discussion of the basic requirements of 

an optical filter for its satisfactory operation. That 

the real space operation of convolution becomes a 

multiplication of the individual transformations in Fourier
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space is described by the Convolution Theorem (Ref. 8 ) 

In one dimension if @ represents convolution, and, for 

brevity, T and ol represent the operations of Fourier 

transformation and inverse transformation, then 

e(t)= 9008 sto = | grsleOae 1 

Tle] = Ca = TL geo st 

= TEpel : Tse] 

aes C (a) = GO . Sa) 1.2 

where capitals are uselfor Fourier space functions. 

Hence, if an operator F(H) can be realised such that 

F(H) . S(H) = D where D is a constant - 1.3 

then by operating with F(H) on the spectrum, C(H), of 

the convolved functions and following with an inverse 

Fourier transformation a redovered version of g(x) can 

be obtained.
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That is F(H) . C(H) = D .G(H) - 1.4 

and thus i(x) = D,g(x) =) 435 

where i(x) is the recovered image. In general the 

basic operation of spatial filtering described by 

equation 1.4 is a complex operation. 

Physically the process of convolution produces a smoothing 

of sharp features which is exhibited in frequency space as 

a suppression of the high frequency components. This is 

shown in Figures 1.1 and 1.2, where the convolution of a 

pair of rectangle functions is shown, and in Figures 1.3 

and 1.4 which are photographs of a bar chart before and 

after a linear blur together with their associated 

diffraction patterns. 

Two further aspects of the convolution process are worthy 

of note. The first is that due to the complex nature of 

the operation convolution modifies the phases of the spatial 

frequency components as well as their magnitudes. For the 

case of a rect (X%/dx) blurring function which in frequency 

space has a sin 6/0 form, the spectrum of the function 

operated upon suffers phase changes of mw radians in the 

spatial frequency regions where sin 6/8 is negative. This 

phase change can clearly be seen in the photograph of a 

spoke target taken under conditions of misfocus. In this 

case the frequency space operator describing the misfocus 

contains a Bessel function of the first kind and order one, 

and again has negative and positive regions, Figure 1.5. 

The phase changes produced by the misfocus emerge in the
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blurred image as lateral shifts of the various frequency 

regions of the spoke pattern. 

The second important point is a consequence of the phase 

change of the blurring function as this also means that 

these frequencies at which the axis is crossed are 

Suppressed to zero by the convolution process. This 

can be seen in Figure 1.2 at the frequencies Hes ? Wt2) 

The process of deconvolution by spatial frequency filtering 

(or any other method) can thus never be perfect as these 

absent frequencies represent information which has been 

irretrievably lost. This is emphasised by the form of 

the filter which is required to perform the deconvolution 

of a linear blur. 

If the linear blur is represented by rect ( x/Ax) where 

wet (x/ox) = 1 for [xX|< AK 

Ye = for® \Xle= 2X 

N 

2 

° for |x > 

Gen as from 1.3 

Fat) = _> 
SG) 

ul 

Ore HX 
and as St) r rect (X/px) € AX "i



MI
R 

—2reu KX 

then S(v) = sen (wHAK)/ C4) 

and F(A) = Dri /sin(w HDX) he 

Clearly asw HAX tends to AW , Where f is integer 

then F(H) tends to infinity and cannot be realised. 

Phis is equivalent to requiring an infinite amount of 

energy to recover the information lost at the suppressed 

frequency points (or poles) of the filter. The form of 

the inverse sine filter is shown in Figure 1.6. 

Numerically the process involves forming the two dimensional 

Fourier transform by F.F.2. and performing the 2(N: x M) 

complex multiplications, F (4K) » on the calculated 

spectrum before inverse transforming yields the (N x M) 

filtered image intensities. At least two (N x M) 

arrays have to be handled which can result in storage 

problems for large arrays. 

For optical deconvolution the basic two lens system is 

shown in Figure 1.7.
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The coherent field distributions of the front and 

back focal planes of a converging lens are a Fourier 

transform pair. Hence, for an object distribution 

in the front focal plane of lens I, its complex 

spatial frequency distribution can be operated upon 

by a filter, F(W)K), in the back focal plane of lens 

Ly. This modified complex spectrum, in the front 

focal plane of the second lens, Lo, is retransformed by 

this lens to give a filtered image in its back focal 

plane. For a wavelength, d, illuminating an object 

distribution, o(%, 4), with lenses of focal lengths, f. 

we have 

Ow”) = ATL ox.) ] 17 

where A is a constant and u=$ Han, V2 ¥f Kru, the distance 

oa : mu 
off axis of the frequency H lines mm i K lines mm, 

The complex amplitude after the filter element is then 

O, Cav) = BTL otx4)] Fduy,v) a 

which after a retransformation gives an image of 

t, (¥) = Ce olx,4) @ f0%,4) 1.4 

where B and (, are constants and 

foo = [ Flu,v) J 1.10 

The lenses can only perform a Fourier transformation
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with the negative expondnt denoting phase retardation 

so the inverse transformation is replaced by a second 

transformation which produces an inverted image. For 

convenience we shall assume the axes in image space in 

the opposite sense to those in object space and so avoid 

negative co-ordinates. 

The complex nature of all the operations requires that 

the phases of all components are controlled. It is 

thus usual to put the object transparency and filter 

transparency in liquid gates to "back-off" any spurious 

optical thicknesses in the films. 

Almost all spatial filtering involves an attenuation in 

240 10°*, ‘his is due intensity transmittance of 107 

to the form of the optical transfer function which, for 

the case of the deblurring filter shown in Figure 1.6, 

has a maximum to minimum amplitude transmittance ratio 

of approximately 130. The intensity transmittance at 

zero frequency is thus down by a factor of about 404, 

compared with its pre filter value. This means the 

light level of the deblurred image is very low. This 

is common to all spatial filtering devices which are 

inherently passive in operation. However, further 

attenuation may be introduced, the exact amount depending 

on the method used to construct the filter. 

The need to realise the required maximum and minimum 

values of amplitude transmittance is also in itself a
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serious constraint on the filters. We shall discuss 

this dynamic range constraint and the light efficiency 

requirements in the next section which is a review of 

current methods of producing spatial filters. 

1.4 TECHNIQUES FOR PRODUCING .COHERENT SPATIAL FILTERS 

Zernike (Ref. 9 ) used a phase contrast technique to 

improve the imaging of phase objects in 1935 although 

Abbe (Ref. 10 ) had realised the significance of spatial 

filtering as early as 1893. A major development was the 

advent of the highly coherent laser source. Marechal 

and Croce (Ref. 11 ) improved the contrast of a 

photographic image by purely attenuative filtering and 

Tsujiuchi (Ref. 12 ) constructed a complex deblurring 

filter to correct a known degree of defocus. The 

absorption part of this filter was produced by rotating 

‘a suitable painted dise and recording its transmittance 

on film. The phase control was due to a vacuum 

deposition on a thin film in suitable concentric zones. 

The final filter was a sandwich of these two components 

accurately aligned. 

A significant step forward came when Vander Lugt (Ref.13 ) 

constructed a complex filter holographically by exposing 

a photographic film sim: ltaneously to the Fourier transform 

of the impulse response of the required filter and an 

oblique plane reference wave.
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Writing the reference wave as Ao exp(-2ntusny/>r ), 

where y is the angle between the wave vector and the 

normal to the film, then if the film is processed so 

that the resulting amplitude transmittance, T(u,v), is 

proportional to the incident intensity we can write 

“ar Bu 2 
Tlu,v) % | Fou) + Ace | Lil 

where Bs smy/d. 

Expanding we have 

2 Bu anki 
Tava Abst Fel + AP tude 2 APaie x 

The last term in the expression gives the required complex 

filter transmittance, its impulse response appearing a 

distance feta off axis in the output plane of a subsequent 

spatial filtering system. The term Ag+ | Ftu,v) |* 

appears on axis and provided a large enough value of B is 

chosen there is negligible overlap of che adjacent orders, 

The complex conjugate of the filter function is also formed 

as; the 3rd term and this makes the Vander Lugt filter useful 

for matched filtering. The complex information is held as 

an amplitude and phase modulation of the tilted reference 

wave which acts as a carrier. This is made clear by 

writing Equation 1.12 in cosine form, 

/ 
Tu) Aas | Few) | +2 AeG(uv) ws(2nuB+ Bluv)) 2 

A deblurring filter to correct for defocus was realised by
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Stroke and Zech (Ref.14 ) and Lohmann and Wehrlich 

(Ref. 15) by sandwiching a Vander Lugt hologram with 

@ purely alternating filter. The attenuating part is 

made by recording the intensity of the Fourier transform 

of the point spread function of the required filter and 

processing this with an overall gamma of 2 such that the 

resulting amplitude transmittance is « i/\ Fou,v)|*, 

Using the same system, but adding a suitable reference 

wave the holographic part is formed, and the two are 

automatically of the same scale (unlike in the scheme due 

to Tsujiuchi (Ref.12 ). When placed in series the 

resulting transmittance to one of the first image orders 

is 

* | (uv) o Foc) . 1013 
oa \ FCu,v) |* 

  

| 

Fdwv) 

Stroke and Halioua (Ref. 16 ) also made a holographic 

sandwich filter but with an absorption part & Feu, v)). 

Brown and Lohmann (Ref. 17 ) defined light efficiency as 

the ratio of the intensity diffracted into the first order 

to the total light incident for the case of a simple regular 

grating. Considered as a hologram they studied different 

techniques of producing these gratings and compared their 

light efficiencies. 

For a grey continuous tone hologram such as the Vander 

Lugt type the maximum efficiency is 6.25%. In practice,



24 

the reference wave is usually two or three times larger 

in amplitude than the object wave, (to ensure the fringe 

contrast does not extend beyond the linear region of the 

transmission versus exposure curve of the photographic 

plate). The effect of this is to reduce the maximum 

light efficiency for a grey hologram to less than 2%, For 

a deblurring filter then, the overall intensity transmittance 

is likely to be reduced by more than 404. In this case 

grain noise and scattered light can seriously reduce the 

image quality. 

1.5 COMPUTER GENERATED HOLOGRAMS 

All the techniques discussed so far require the impulse 

response of the filter to be available. A significant 

step forward in producing a general complex element was 

the development of computer generated holograms. The 

Fourier transform of the required filter's impulse response 

is calculated, the complex transmittance coded and displayed 

(typically on a graphplotter output or C.R.T. output device) 

and recorded photographically with suitable processing. 

The earliest of these computer generated holograms was 

simply a model of Equation 1.12. As information is 

contained in the carrier wave term the zero order terms can 

be replaced by a constant to reduce the computation. 

Burch (Ref. 18 ) used the form,
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Tew = Constant + Iho Glu) cos ( 2rcu B+ 8(uv)) ta 

This technique requires a grey scale display and control of 

the subsequent grey tone processing. It is also inefficient 

in its use of the available computer display, as several 

display points are needed to produce a phase modulated 

cosine fringe. 

The real development in the computer generation of 

holograms came with the invention of the binary detour 

phase coding scheme by Lohmann (Ref. 19 and Ref. 20 ) 

although the hard clipped matched filter, due to Kozma and 

Kelly (Ref. 21 ) was the first binary transmittance 

computer generated spatial filter. 

1.6 LOHMANN BINARY HOLOGRAM 

fo produce a Lohmann hologram the complex amplitude 

transmittance of the required filter is computed numerically 

by FEF. Computer limitations on storage, as discussed 

for the case of numerical filtering restrict the number of 

calculated complex amplitudes to a finite number of sampling 

points, MxN. Consequently a matrix of cells of size 

dudk is established, over each of which the associated 

complex coefficient is assumed to be constant. If the 

calculated sampled value of the filter in the (m,n) *® eell is
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F (molt, nde) = | Few adh) | 3 UPCmdh nk) yd 

then the sampled filter's transfer function is 

x at eel © OB Cmd ty nda) 
Fla) => >. | Flndiad i Se AON eiireies 

m=o nso 

where Suv) is a two dimensional delta function 

To code the complex information of each sampled coefficient 

an aperture, of size controlled by the modulus of the 

amplitude, and position by the phase of the coefficient, 

is constructed in each cell, as shown in Figure 1.8. The 

detour phase, associated with the shift in aperture position, 

is used to code the phase. Lord Rayleigh noticed the detour 

phase effect, as the appearance of "ghosts" in the spectrum 

of a diffraction grating when slight dislocations were 

present in some of the slits of the grating. For a perfect 

grating, the path length difference from adjacent slits for 

wavelets reaching the 1st diffraction order, is exactly one 

wavelength. If one of the slits is displaced towards one 

of its neighbours, its path length difference will no longer 

be one wavelength with respect to the adjacent slits. 

Hence, still seen from the first diffraction order, a 

lateral shift in a slits position by a fraction, P, of 

a grating period will produce @ detour phase of P.26 

radians, as shown in Figure 1.9. When P = 1 the shifted
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slit is superimposed on its neighbour. In terms of 

the Lohmann coding scheme a shift of an aperture (m,n) 

by xdt/2 gives an X-direction, first-order detour phase 

of tw radians associated with the (m,n) *2 coefficient. 

As seen from the zth diffraction order, into which regular 

adjacent slits diffract withs.d path difference, a shift 

of *® gives an associated detour phase of ¢ J.P20 

radians, A binary mask of suitably sized and positioned 

apertures can thus control the complex transmittance. 

The use of different diffraction orders has advantages 

which are discussed in Chapter 3 along with a more rigorous 

analysis of the Lohmann filter. 

The maximum light efficiency of a binary Lohmann hologram 

is 10% which is the maximum diffraction efficiency of a 

Square wave absorption grating (Ref. 18). In practice 

it is important to ensure that the hologram is truly binary 

as its loss will lower the light efficiency. 

Of course, a binary hologram has high resistance to noise 

and the extra advantage of independence of photographic 

processing. 

1.7 LEE HOLOGRAM 

Another technique which utilises detour phase is that due 

to Lee (Ref. 22 ). Any complex number can be decomposed
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into four positive numbers which are its components on 

the positive real, negative real, positive imaginary and 

negative imaginary axes, AY, hens BY ana B respectively. 

If every Fourier coefficient cell is divided into four 

equal parallel strips they will each transmit with a 

different detour phase. Adjacent strips will differ in 

phase, as seen from the qe diffraction order, by ie w/k 

and a complex amplitude can be simulated by weighting the 

transmittances, either by controlling the density or size 

of two of the component regions A, B, A* ana BT. 

The maximum transmittance occurs when two of the subcells 

are clear. In this case, like the Lohmann hologram, the 

light efficiency has a maximum value of 10%. 

1,8 BLEACHED: FILTERS 

Any of the filters already discussed can be bleached in 

order to improve their diffraction efficiency (Ref.23 ). 

For a continuous tone hologram that is subsequently 

bleached the maximum light efficiency becomes 33.9% - the 

diffraction efficiency of a sine wave phase grating 

(Ref. 18). Bleached binary holograms have a maximum 

light efficiency of 41% - that of a square wave phase 

grating. On bleaching, however, the amplitude information 

is lost. In this sense these bleached holograms behave 

like a Kinoform (Ref. 24 ). This is a phase only computer
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generated element in which it is assumed the modulus 

of the transmitted amplitude is unity. Under circumstances 

of a well diffused object this may be a fair assumption but 

in general this will not be the case and the resulting 

image will suffer a loss in fidelity due to this discarded 

amplitude information. The Kinoform, however, does have 

a maximum light efficiency of 100% when all the incident 

light is diverted to its single on axis image. 

1.9 PARITY SEQUENCE FILTERS 

One technique which offers high light efficiency but 

preserves fidelity is based on spectrum levelling by 

parity sequences (Ref. 25, Ref. 26). The parity 

terms form a sequence orthogonal to the required complex 

transmittance sequence from which they are calculated. 

A constraint is applied so that both the complex sum of 

and difference between the amplitude transmittance and 

its associated parity sequence term is unity. Thus if 

each amplitude and phase term is replaced by its 

associated pease of phase only terms, the modulus of the 

amplitude is levelled to a constant value of unity, and 

a high light efficiency element is the result. 

Physically the parity sequence filter operates like a 

Kinoform except in terms of the loss of fidelity in the 

image. The parity elements ensure that the light is 

diffracted either into or away from image points so that
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its fidelity is preserved. Like the Kinoform the 

parity sequence filter requires continuous phase control 

over 2W radians which demandsgrey scale display and 

carefully controlled photographic processing. 

The recent approach of binary phase filters (Ref. 27 ) 

avoids the continuous tone and processing requirements 

and involves filling each cell with an array of subcells 

in which the phase can take only two values. 

1.10 ROACH (REFERENCELESS-ON-AXIS COMPLEX HOLOGRAM) 

The loss of fidelity of the Kinoform is not suffered by 

the Referenceless On Axis Complex Hologram (Ref. 28 ) which 

uses two different emulsions in a colour reversal film such 

as Kodachrome II to control the complex wavefront, see 

Pigure 1.10. The emulsion which absorbs the colour of 

the reconstructing light is used to control the modulus 

of the complex transmittance. The phase is controlled by 

the other emulsions which do not attenuate at the 

reconstructing wavelength. The hologram is constructed by 

illuminating the colour film with the modulus and phase 

information independently through different colour filters. 

The light efficiency falls below the theoretical value of 

100% because of the attenuation by the colour dyes and in 

practice the maximum light efficiency is 50% (Ref.18 ) 

“In effect ROACH is a sandwich filter with the construction 

and alignment difficulties avoided.
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1.11 DYNAMIC RANGE 

The dynamic range for grey tone holograms is limited by 

the finite film density range. For the computer 

generated binary holograms the dynamic range is limited 

by the number of available addressable points on the 

display. For the sandwich filters (including ROACH) the 

amplitude transmittance is related to film density by 

ey 
le = 10 a Lie 

Typically the range of density over which transmittance 

is related to the inverse of the exposure linearly is 3. 

Hence, for the 1/(F) type filter the dynamic range is 

about 30:1 while for the Ka)? type of attenuation the 

dynamic range is about 30:1. For the continuous tone 

Lee hologram the dynamic range is similarly about 30:1. 

The Lohmann binary hologram with (RxR) addressable points 

per cell has a dynamic range of (R+1). The Kinoform, of 

course, has a dynamic range of 1. The Parity phase filters 

and Binary phase filters that will be discussed in more 

detail in a later chapter have more efficient coding than 

other forms of computer generated holograms and consequently 

have a higher dynamic range.



CHAPTER 2 

AMPLITUDE AND PHASE VARIATIONS IN A COHBRENT 

DECONVOLUTION SYSTEM
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2et INTRODUCTION 

In Chapter 1 some of the limitations of computer generated 

holograms were mentioned, in particular those related to 

the limited number of addresses in the display. These 

constraints will be considered in more depth in Chapter 3 

and 4. 

In practice the linear deburring filter will be different 

from the ideal form shown in Figure 1.6 for another quite 

different reason —- the presence of noise in the system. 

Coherent optical systems are very sensitive to the presence 

of dust or other blemishes on the components. As we have 

already mentioned, the use of a Fourier transform system 

suppeesses the effects of this coherent noise due to 

blemishes in the spatial filter. However, elsewhere in 

the system blemishes create unwanted diffraction rings in 

the image. Wolton and Redman (Ref. 29 ) have produced a 

system which suppresses this type of noise by introducing 

a@ continuous simultaneous movement of both the first
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Fourier transforming lens and the filter element. 

Also, as well as this coherent optical noise there is 

always some spatial noise, n(x), in the data. For data 

in the form of a transparency the main source of spatial 

noise is the grain of the filn. (This is also true for 

a@ numerical system which has to read the numerical data, 

typically by microdensitometer from a film record). 

The blurred object distribution, c(x), is thus modified to 

ex) where 

o'(x) = e(x) @ s(x) + n(x) 204 

As we have seen, the perfect deblurring filter is highly 

amplifying at the pole regions. (Strictly, "amplifying" 

is an incorrect term for the action of a passive coherent 

filter. We shall use "amplifying"as meaning a trans— 

mittance of approximately unity). 

As the spatial noise, n(x), will contain frequencies far 

beyond those of the signal, an operation by the ideal 

restoring filter, Figure 1.6, on a spectrum of a noisy 

object distribution, ca), will result in a high 

amplification of the noise in the regions where the signal 

to noise ratio is small - at the poles of the filter, 

There is clearly an optimum filter function the general 

form of which must be such that when the signal to noise 

power is large its operation is with the degree of
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amplification of the perfect filter but when the signal 

to noise power is small a greatly reduced amplification 

results. 

2.2 LBAST-MEAN-SQUARED-ERROR FILTER 

When n(x) is unknown Equation 2.1 cannot be solved directly. 

The most that can be done is to produce an estimate, ax), 

of the solution. If the object distribution and the noise 

are viewed as spatially stochastic processes, the best 

estimate is defined as one that maximises the posterior 

probability density of g(x), given oe! (x), as determined 

by Bayes's rule. The processes n(x) and s(x) 

are independent. If they were also Gaussian with zero 

means and known covariances, the posterior probability 

density would be greatest for the linear estimate 

$(x) - fae g(x-x!) ax! 252 

in which the estimating kernel, m(x!) is chosen to minimise 

the mean gjuared error, 

A, 

E& = H&x) - 2(x))? Be3 

between the true distribution and the estimate, where E 

denotes an expected value (Ref.30 ) 

Often the noise may at least approximately be considered 

to be a Gaussian process. However, this is rarely the 

ease for the object to be restored. It is assumed that 

if the estimator is optimum for a class of Gaussian
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processes that resemble in their structure the finest 

detail of the object to be restored, then it will be 

effective when applied to these objects as well. 

For the case of optical data, photographic grain noise 

is mostly multiplicative and only for low contrast images 

can the additive noise model of Equation 2.1 be assumed, 

Huang (Ref. 31) and Yu (Ref. 32). In addition the 

human observer, frequently the last step in an optical 

system, adds a further complication to the determination 

of a filter superior to the linear least mean square 

error estimator defined by Equation 2.2. 

Later in this chapter we demonstrate the failure of this 

LMSE criterion for the deconvolution of a linear motion 

blurred object by simlating a coherent optical system by 

computer. We also study, again by computer simulation, 

the effects of random noise processes on other parts of 

the system. 

2.3 FORM OF THE LMSE FILTER 

The estimating kernel, M(x), of equation 2.2 is determined 

by the form of the blurring function, s(x) and the noise 

and object properties. These are completely characterised 

by their spatial covariance functions - or by the Fourier 

transform of these, n(H) and Gel H) , which are the spatial 

spectral density functions of the noise and object processes
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respectively. 

The resulting LMSE filter, in the usual Wiener form 

(Ref. 2), is written as 
1, CH) 

F(x) = Fo) . oe 
2 2.4 

a + | Foe | | 

where F(H) is the ideal filter for the noise free system. 

The minimum mean square error attained by this estimator 

Pol) Gat), di gan Henan Peay | Scuy Raced + aca} 

Wiener filtering does not, of course, increase the signal 

is then 

to noise ratio.
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2.4 COMPUTER SIMULATION - DESCRIPTION OF SYSTEM 

A block diagram, Figure 2.1, shows the computer model 

used to investigate the operation of a todherent 

deconvolution system. For convenience and speed 

it was restricted to one dimension and the convolution 

process considered was limited to a linear motion blur. 

Data, after input, is first convolved with a rectangle 

function. At this stage a random variation can be 

produced in the blurred object amplitude by the addition 

of a sequence of computer generated normally distributed 

random numbers - scaled to simulate various degrees of 

noise in the object. This noisy object is then Fast 

Fourier Transformed to yield the complex spectrum. The 

transformation was performed using a standard Nottingham 

Algorithms Group Library procedure, CO6ABA. 

Fast Fourier Transformation 

The requirement of having a data sequence with a number of 

terms, N, as a power of 2 was met by using 256 sampling 

points to represent the object. It is worth noting that 

in order to ensure perfect symmetry, from a computational 

point of view, between object and Fourier space, the 

calculated spectrum has only positive frequency terms. 

The transform is still capable of operating with complex 

data, however, as the spectrum extends from zero frequency 

to a frequency of 2.Nq-1, where Nq is the Nyquist
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frequency. That is, the upper half of the zero order 

and the lower half of the positive first order of the 

total periodic spectrum are used. The spectrum 

periodicity is a result of the finite sampling in data 

space. As the most efficient sampling criterion of 

Whittaker and Shannon is implicit in the Fast Fourier 

fransform procedure the zero order frequency terms and 

the first order frequency terms abut exactly - see 

Chapter 3, section 3.2 and Figure 3.1. The first order 

terms are thus aliased frequencies of the negative half 

of the zero order period of the spectrum,and indeed are 

equivalent to these first order terms positively shifted 

by one frequency space period. As the central frequency 

of the first order of the spectrum is the alias of the 

zero frequency term (which already appears in the 

spectrum sequence) it is discarded. Hence, for N data   

points the spectrum extends from frequency 0 to (N-1)/Ax, 

where AX is the object extent and dX = AX/N is the 

separation of samples in the data. 

The procedure CO6ABA can thus perform the operations 

es I. XE ae 
F(at) = aD ives fer ALSO, U2.-N-1” 

ies 

N=l 2vi HEw HL.XZ 

ce we. F(z) 2 ON for X= Ou a Nl 2.7
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where F(HI) and £(XI) are each a pair of one dimensional 

arrays containing real and imaginary terms. 

Object Data 

Two different data sequences were used in the simulations: 

1) A dilute binary variable frequency bar chart shown in 

Figure 2.2 having bars of sizes 64, 32, 16, 8, 4 and 2 

samples, with gaps of 48, 24, 12, 6, 3 samples. A 

reduced version of this with the 5 smallest period bars 

was also used. 

2) A continuous tone but dilute object formed by 

convolving the 5 point bar chart of Figure 2.2 with a 

Gaussian distributed function having a full width at half 

maximum height of 8 samples - Figure 2.2. 

Convolution Operation 

In each case a linear convolution operation extending 

over © samples was performed to produce the blurred 

objects shown in Figures 2.3. 

The bar chart periods which have frequencies within the 

negative regions of the optical transfer function of the 

blur will suffer lateral shifts of half their periods 

induced by the 7{ radians phase change in frequency 

space. For the object considered, the bars with periods 

less than 4 units will be laterally shifted. This can 

be seen at the high frequency end of the bar chart
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in Figure 2.3. The phase terms in the deblurring filter 

have to correct for this. 

2.5 DECONVOLUDION RESULTS AND DISCUSSION 

Kinoform 
  

The necessary phase correcting element is shown in 

Figure 2.4 as a square shaped function which oscillates 

between +1 and -1. If this element operates on the 

spectrum of the blurred bar chart and corrects its phase, 

an inverse transformation will result in the imaze of 

Figure 2.5. Over all this image does not look much more 

like the original bar chart than does the blurred version. 

However, the correction of the phases in Fourier space 

has had the important effect of correctly redistributing 

the peaks at the high frequency end of the bar chart. 

It is this real space shifting property of the Fourier 

Space phase terms which makes phase control of paramount 

importance. The phase only element, used here as a crude 

deconvolution filter, is often called a Kinoform. Its 

impulse response is also shown in Figure 2.4. The general 

loss of fidelity of the image after deconvolution by a 

Kinoform is due to the Kinoform's inability to assign 

the correct weightings of the frequency components.
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Ramp Filter 

The simplest element which operates on both phase and 

amplitude and produces some degree of image sharpening 

is the ramp filter. This corrects the phase as a Kinoform, 

but also, amplifies the Fourier coefficients by a factor 

proportional to their frequencies. The larger the value 

of the constant which measure the slope of the filter's 

modulus across frequency space, the larger will be the 

ratio of high to low frequency amplification. Recovered 

images are shown in Figure 2.6. Although there is 

sharpening of the deconvolvyed images compared with the 

Kinoform recovery, there is considerable image noise due 

to the amplitude amplification errors of the filter. 

Ideal Filter 

in theideal case an element is required which operates on 

the amplitudes of the Fourier coefficients so as to 

correct them to their pre-convolution values. 

The ideal filter, the inverse of the optical transfer 

function of the blur, is shown in Figure 2.7, along with 

its impulse response. 

Operating with this filter on the blurred object distribu— 

tions of Figure 2.3 results in the optimum recoveries of 

Figures 2.8 and 2.9. These represent the best recoveries 

  

possible, as in general the presence of noise will preclude
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the use of this ideal filter function and necessitate the 

use of optimum, yet approximate filters. 

Least Mean Square Brror (LMSE) Filter 

The discussion of section 2.3 centred on the Wiener 

Least Mean Square Error Filter (IMSE) as an optimum 

recovery element. Figure 2.10 shows LMSE filters and 

their impulse responses for signal to noise power ratios, 

B = 10000, 1000, 100, 10 and 1. 

Amplitude Noise Simultation 

Two schemes were considered for the simulation of random 

amplitude noise processes in the data and filter functions. 

a) The amplitude of the random noise was made independent 

of the local amplitudes, and had a maximum excursion that 

was simply a constant % of the maximum amplitude. 

b) ‘The random noise was constrained to have a maximum 

excursion that was a constant percentage of the local 

object amplitude. 

If the random numbers n(I) are normally distributed over 

the range 0 to 1, where I is in this case a counter for 

the 256 noise values required over the field, then 

a) o!(x) O(x) +n (I) .D, for scheme a) 2.8 

and 4 
‘b) ao oe) C(x) | n(I).C(x).D, for scheme b) 2.9



        
LMSE Fitters And be ea 

Impulse Responses.
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Where D, and D5 are constants equal to the maximum 

percentage noise excursion being simulated. 

Equation 2.8 produces a noisier object distribution as no 

suppression of the noise terms occurs for low values of 

C(x). Equation 2.9 is more like a model of a grainy 

film, for a medium density range, as at low amplitude 

levels the noise is suppressed - see Figure 2.11. 

Phase Noise Simulation 
  

Phase noise was also impressed upon the filter element 

by adding random fluctuations to the filter's phase 

components. The filter thus becomes 

B'(H) = #(H) exp i (@(#) + n(I).D3) 2.10 

where n(I) is a random number distributed on the interval 

0 to 1, and D3 is a constant equal to the maximum excursion 

of the random phase variation. This random phase factor 

converts the wholely real deblurring filter into a truly 

complex element - see Figure 2.11. 

Deconvolution in the Presence of Object Amplitude Noise 

In this section the results of deconvolving both the 

blurred binary object and the blurred continuous tone 

object are presented. The noise value, ¥, represent the 

average excursions of the noise process, as a percentage 

of the maximum object amplitude for a), and as a percentage 

of the local amplitude for b). The results are in terms
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of the modulus of the recovered image amplitudes. The 

images recovered by an ideal filter for the blurred objects 

degraded by various levels of noise according to scheme a) 

are shown in Figures 2.12 a) for the binary object and 

2.13 a) for the continuous tone object. The lack of 

noise suppression is apparent in the images which are 

severely affected by quite modest values of W. For 

comparison, recovered images of the binary object, with 

noise added as scheme b), and deconvolved with an ideal 

filter, are shown in Figure 2.12 b). The ideal filter 

represents the case when the noise power, $a, is zero 

and as such the signal to noise power ratio, B ESS; 

infinity. It can be seen from the recoveries that scheme 

a) produces a more noisy image than scheme b), as would be 

expected. 

The effects on the recoveries of using Least Mean Squared 

Error type filters can be judged from the deconvolved 

images of Figures 2.14 a); 2.15 a), b); 2.16 a), b); 

2.17 a), b), for the binary object with signal to naise 

power ratios, B ,» of 1000, 500, 100 and 10 respectively 

for the noise schemes a) and b). Similarly, Figures 

2.18 a), b) to 2.21 a), b) are deconvolutions with B of 

1000, 500, 100 and 10 for noise schemes a) and b) but with 

the continuous tone object.
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Standard Deviations of Recovered Images 

In order to assess the operation of the filters used, 

curves of standard deviation of the recovered images as a 

function of object noise were calculated for both objects, 

and both noise schemes. These curves are shown in Fisures 

2.22 a), b), for the binary object, and Figures 2.23 a), bd), 

for the continuous tone object. The procedure was to 

calculate the normalized square root of the sum of the 

Squares of the deviations of the recovered images from the 

original unblurred object distribution. As a measure of 

the statistical goodness of recovery, the standard deviations 

of the original blurred noisy objects were calculated, and 

are also shown in the figures. The significance of the 

curves is that when the standard deviation of a recovered 

image becomes greater than that of the blurred noisy object, 

the recovered image is, by a LMSE criterian, a poorer 

representation of the original object than is the blurred 

version. The noise level, es at which this occurs, 

(when the two curves eross), represents the maximum noise 

tolerable in order to statistically recover the image 

according to a IMSE measure. 

The curves of Figures 2.22 and 2.23 all show a general 

reduction in standard deviation for the recovered images 

as the filter signal to noise ratio is reduced. As an 

example, for the binary object ahd additive noise, a), the 

perfect filter results in an image with a stamdard deviation 

less than that of the original, blurred noisy object up to
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a noise level of i ® 1%. For noise scheme b), 

Tnax * 2%.) With B = 1000, W., % 2% for a) and 

Aen ~ 5% for b). It should be noted that these are 

only approximate values as the standard deviation at each 

value of W will depend upon both the form of the object 

Sequence and the noise impressed upon it. Strictly a 

value of standard deviation should be obtained for a given 

¥ by calculating the ensemble average over all data 

Sequences and noise processes. (The Central Limit 

Theorem suggests that the resulting standard deviations 

will tend to be normally distributed as the number of data 

and noise sequences considered is increased, (Ref. 33 ) ). 

For each of the curves of Figure 2.22 b) different noise 

Sequences were generated by computer and used with 

weightings, N, on the object data. The resulting curves 

are thus smooth. For the Figures 2.22 a) and 2.23 a), b) 

different noise sequences were generated for each value of 

N as well as between the individual curves. In this ease 

the statistical seatter of the calculated standard 

deviations can be seen. 

The computer time required to statistically analyse the 

variation of standard deviation with data and noise 

sequences is, of course, large as for each value of 

standard deviation the whole deconvolution process must 

be performed. The available computer facilities (ICL 

19048) probibited such a study. Also, in view of the
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qualitative nature of the assessment of the recoveries, 

further statistical analysis of the variation of standard 

deviation was not pursued. 

It is also worth pointing out that a certain degree of 

ringing of the filter is apparent which results in aliasing 

of the recovered images. It is most noticeable for the 

filters with large signal to noise ratios which have 

rapid amplitude changes esuiting in impulse responses 

that do not decay to nearly zero at the edges of the image 

region, * AX/2 (see Figure 2.10). This aliasing is 

more obvious in recoveries of the noise free continuous 

tone object as the resulting amplitude ripples are then 

more apparent, see for example Figure 2.13 a) with N= 0. 

In practice it is normal to apodise the filter in order to 

reduce image aliasing. In these simulations the filters 

were not apodised; the data field was, however, reduced 

from the six element bar chart extent of Figures 2.14 b) 

and 2.16 b), in which a fraction 219/256 of the object 

field was used, to 107/256 of the object field. 

In terms of standard deviations the aliasing error results 

in the calculated values being slightly high with the error 

decreasing as b decreases. For B he 500 the aliasing is 

negligible. 

The case of a Kinoform was considered earlier and was seen 

to produce a predominantly low frequency image of poor 

fidelity. A similar effect is seen for filters with low
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signal to noise ratios. The images are recovered with 

low standard deviations as a result of the suppression 

of progressively larger high frequency regions of the 

object spectrum. This can be seen in the form of the 

filters in Figures 2.10. 

As a result of this, the calculated maximum tolerable 

noise levels, WV. ee? do not generally agree with those 

judged by an inspection of the recovered images. For 

example, the curve for B = 500 of Figure 2.22 a) gives 

a value, ieee 3%, but the recoveries of Figure 2.15 a) 

suggest eS ™% 5%. More noticeable discrepancies occur 

for small values of fh in which the standard deviation 

calculations show a high degree of tolerance to noise. 

Figure 2.22 a) shows that for scheme a) with W > 4% 

the image recovered by a filter with fh = 10 is the best 

estimate of the original bar chart object. This is not 

born out by an inspection of the recovered images of the 

blurred bar chart with 4% additive noise for the other 

LMSE filters. With hb = 1000, 500. and 100 all the 

recoveries exhibit a greater degree of image deconvolution 

than does the recovery with B = 40 « 

The discrepancy arises because deconvolution is an edge 

sharpening operation, enhancing the high frequency content 

of the image, and it is exactly this image structure which 

results in large values of standard deviation. In this 

» sense, the IMSE criterion is a poor test of the success 

of deconvolution as it primarily measures image noise
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rather than edge sharpness. 

Deconvolution in the Presence of Filter Amplitude Noise 

The same two noise schemes were used to simulate amplitude 

noise on the filter element in the linear motion decon- 

volution system. In this case, however, only the ideal 

filter was considered. The results are shown in Figures 

2.24 a) and 2.24 b) in which the Fourier plane resistance 

to noise is exhibited. The recoveries are quite different 

for the two noise schemes. This is because the filter has 

a large dynamic range. Hence, for scheme b), in which the 

average noise excursion is limited to a percentage, W, of 

the local amplitude, the noise has its largest effect where 

the filter amplitude is maximum. The additive noise thus 

tends to boost the transmittance in these regions with the 

result that little image degradation occurs Figure 2.24 b). 

This is clearly an unsatisfactory physical model. 

The noise scheme in which the average noise excursions are 

limited to a percentage of the maximum amplitude, scheme a), 

results in an image with a large low frequency content due 

to the effective suppression of the filter's high frequency 

transmittance, Figure 2.24 a)
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Deconvolution in the Presence of Filter Phase Noise 

Finally we have simulated the effects of random variations 

in the phase of the filter element. The phase noise is 

assumed to be independent of the local phase values and 

is additive. Hence, the mean difference in phase between 

the different regions of the filter remains* ™ radians. 

Figure 2.25 shows the effects of random phase noise on 

the images recovered by a Kinoform filter. An average, 

additive excursion of ~ 20° is tolerable. For the case 

of an ideal filter, the recoveries for which are shown in 

Figure 2.26, the resistance to phase errors is increased 

slightly by the improved fidelity due to the corrected 

amplitude transmittance.
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CHAPTER 3 

COMPUTER GENERATED HOLOGRAMS - ANALYSIS
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Sint INDRODUCLI ON 

As the complex element's impulse response is not required 

for the synthesis of holograms by computer this method of 

production is very versatile. This chapter is devoted to 

the study of Fourier transform computer generated holograms. 

The restriction to Fourier transform holograms is imposed 

because of their particular importance. They have the 

following properties: 

1. A lateral translation of the whole hologram produces 

no change in the intensity distribution of the image which 

remains stationary. This is a direct result of the 

property of the Fourier transform where translation in one 

space is accompanied by a linear phase shift in the other 

space, without affecting the modulus. This is, of course, 

the source of detour phase, but in the case of detour 

phase the translations are amongst the individual elements 

of the filter and not of the whole filter itself.
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2. Localised disturbances in one space are distributed 

more or less uniformly in the other space. Hence, 

localised defects in Ae hologram due to scratches and 

dust particles do not result in Peeaiised blemishes in 

the image but rather produce a slight general loss of 

fidelity in the entire image. 

3. If the Fourier transform is repeated a number of times 

side by side on the hologram, the image is not repeated, 

but approaches a sampled version and appears as a dot 

structure. This facilitates the use of detection devices 

such as photo-diodes and reduces interference between data 

elements. The repeating of the Fourier transform increases 

the redundancy, suppresses the speckle and increases the 

signal to noise ratio. Also the increased redundancy 

does not involve an accompanying increase in the number 

of detection devices in the image domain. 

The Lohmann hologram is the simplest to make and as in its 

analysis many important characteristics of computer 

generated holograms are exhibited we shall study this 

ease first. 

A new class of computer generated holograms was developed 

recently by Severcan (Ref. 27 ) following earlier work on 

spectrum levelling by Chu and Goodman (Ref. 25 ). 

Potentially the phase only filters which result have both 

high light efficiency and dynamic range. Two variations 

of these parity sequence filters are studied. An error
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in the earlier analysis of these filters is corrected 

which results in a lower bound for the dynamic range. 

A third phase only filter is also studied. This is the 

binary phase only filter (Ref.20 ) in which the 

requirements of grey tone display and processing, 

necessary for the parity sequence filters, are relaxed 

as only two phase values are assinged to the (R x R) 

gubcells in each Fourier coefficient cell. 

However, before analysing the Lohmann filter in detail 

we shall discuss the most important constraint on 

computer generated holograms - the limited number of 

addressable points on the display. 

3.2 SAMPLING RATE LIMITATIONS 

With the proviso of finite extent, AXo, the object 

distribution can be expanded as an infinite Fourier series 

of frequencies, Hy = n/AXo. Strictly, the Fourier series 

represents an infinite object distribution of periodicity 

Axo, so we must expect any subsequent image derived from 

this discrete spectrum to exhibit the periodicity KS 

If in addition to its finite extent the object distribution 

is band limited, and contains N frequencies, ndH, not. higher 

than Ag then the Fourier series representing the object 
2
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distribution has a finite number of terms. The Whittaker- 

Shannon sampling theorem points out that the most efficient 

sampling of the object and its spectrum, in order that 

faithful Fourier transformations between the two spaces 

can be effected is when 

Hn =n/AXo = ndH Sail 

i.e. dH 1/AXo 3.2 " 

and hence when 

dx = 1/Ax a3 

where éx is the sampling rate of the object. This is 

shown schematically in Figure 3.1. 

The most efficient sampling thus occurs when, 

H/ah = w = Ax,/&Xx a0) 

Hence, AH. Ako = NW 

defines the minimum number of samples necessary to 

represent an object of extent Xo which contains no 

frequencies higher than As/2. N is the so called 

space—bandwidth product and in electrical engineering 

language AH/2 is the Nyquist frequency. In principle, 

then, the resolution cell size of a spatial filter, 6x, is 

limited by the extent of its impule response, AH. Most 

holographic filters reconstruct with more than one image 

order. In particular, computer generated holograms, 

because of their square wave nature, reconstruct with many 

orders, see Figure 3.2. 

However, as the required image in the spatial filtering 

situation is the convolution of the filter's impulse
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response with an object distribution; and overlap 

(or aliasing) of the convolution of the object with 

different diffraction orders is to be avoided, the 

resolution cell size of the filter should be less than 

1/AL,. Specifically if the required image resolution is 

dx, and the object and filter impulse response isAx, 

andAx, respectively, the number of samples required to 

represent each is, 

N = AXo and N, = AP where 
9 dx ax 

generally Up « No- 

In two dimensions, for a square object distribution of 

resolution equal in each direction, every resulting 

convolution term in the image has No? + Ny? samples. 

If there is to be no overlapping, adjacent orders should 

be separated by at least No + Np samples. Thus, the 

filter must have at least (No + wy)? Fourier coefficient 

cells. If there are Ry. Ry subcells in each of these cells 

(e.g. Ry = 4, Ry= 1 for a Lee hologram) then a total of 

Rue Ry (No + uy)? addresses are necessary to avoid 

aliasing of the image orders. 

3.3 HOLOGRAPHIC COPYING OF FILTERS 

One solution to the problem of a limited number of display 

addresses is to holographically copy the computer generated
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hologram, Illuminated coherently, the impulse response 

of the required filter is band passed and its Fourier 

transform recorded with an oblique referencé wave, the 

angle of which can be adjusted to give the required 

resolution. The drawback to this method is that the 

resulting fringes are sinusoidal, and so the light 

efficiency is limited to that of a conventional hologram, 

as discussed in Chapter 1. Any dynamic range advantage 

of the original filter is, however, preserved. A typical 

holographic copying scheme is shownin Figure 3.3. 

As the R.0.A4.C.H. filter has only one on-axis image - the 

other orders being considerably attenuated - the required 

number of display locations, Nas only depends on the impulse 

response size, Ax, and the resolution 6x. One of the 

two-channel phase only filters to be discussed also only 

needs this number of addresses. Higher space—bandwidth 

products are possible with these filters, but the price 

paid is that the grey tone display and processing is 

critical in both cases. 

3.4 LOHMANN BINARY HOLOGRAM - DIFFRACTION ANALYSIS 

Consider the (m,n)*® ¢¢11, of dimensions SHAK. of a 

Lohmann hologram of total extent AHAK - as shown in 

Figure 3.4. If an aperture of size cdi, OK is positioned 

a distance P nee from the centre of the cell the amplitude
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That is c <1 - - 3580 

follows from Equation 3.29. 

Maximum brightness is to be expected when C = # (as 

a C and 1-C are equivalent by Babinet's principle.) 

Hence, for no overlap with C = 4% 

Jy _1 
ems 

oye. 

The image brightness is controlled by condition 3.20, 

: 2 

C2 (sure ee (xv) SH) 

On axis, at Xs0 this becomes 

stn ne 

nv 

which is a maximum when 

Cope tke ih; ade aacklS yaa ee 
ee 

The first maximum, when CJ = 4, yields a brightness term 

(as) =) 

This is maximum for J = 1. 

Hence, a maximum brightness occurs when overlap error is 

possible with J = 1 and C = 4. If this is avoided by 

invoking Equation 3.30, and using the next available order, 

J = 2, the image brightness is reduced by a factor of 4. 

The cells of Figure 3.5 are shown again in Figure 3.6 for 

the same image in the J = 2 order, avoiding the overlap 

error.
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The first condition, equation 3.20, which controls the 

image brightness imposes a wide "sinc" function over the 

whole extent of the image. This is common to all 

computer generated holograms and is a result of the 

assumption that the sampled complex amplitude, at point 

(mdH, ndK), is constant over the whole cell (dl). As 

the width of the aperture ce#@4 is reduced the "sinc" becomes 

broader and the approximation of Equation 3.20 improves. 

The brightness of the image does, however, decrease. The 

"sinc" function has extreme values at the edges of the 

image X = 2 a given by 

sine (wo (J ae ) 

where we have used Equation 3.25. 

As AXdH = 1 the image brightness changes over the image 

tk i by the ratio of ee @oGs. Ye) Y 

Seika ak ie edi ee 

sine (we Cs -¥2)) 

For CJ = % the change in brightness over the first order 

image is 9: 1. 

In practice if the field of the image is restricted to 

less than AX. AY the image brightness variation will be 

iess than this. 

Equation 3.21 also imposes a "sinc" over the image in the 

Y direction, but this varies as the height of the aperture, 

Wmn, varies. The most severe case is when Y = a
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and Wmn = 1. Then the "sinc" function drops to 0.64 

of its value at Y = 0. If the heights of the apertures, 

Won, are all reduced this variation is also reduced. 

However, this will lower the image brightness and also 

restrict the dynamic range. 

The final approximation to be considered is that of 

Equation 3.27 that 

2% Pm Xb 

e re 

This describes the variation in detour phase (due to an 

aperture offset by PmndH) as the observer moves about in 

the image plane. 

an Pon has the extreme values ~ and X can vary over the 

Ax whole image plane area of interest c 5 

Hence, the phase term varies by z or across the image - 

a total change of R radians which decreases as higher 

image orders are used. 

3.5 SPECTRUM SHAPING WITH PARITY SEQUENCES 

The Lohmann hologram has a dynamic range restricted by 

the number of display addresses per cell, Ry x Rey and 

has a low coding efficiency. The Kinoform, however, has 

a maximum coding efficiency, requiring a single display 

address per cell, but suffers from poor image quality.
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Although having maximum coding efficiency like the 

Kinoform, the ROACH has limited dynamic range due to its 

absorption amplitude control. Recently a technique has 

been developed (Ref. 26) which has high light efficiency 

like the Kinoform, but retains image quality. The coding 

efficiency is between that of the maioseeh and the Lohmann 

filters. The method is a development of the spectrum 

levelling techniques first deseribed by Chu and Goodman 

(Rete 255). 

Instead of simply using the phase information which is 

obtained by Fourier transforming the data (for the case 

of a deblurring filter the data would be the impulse 

response - the phase of its Fourier transform being the 

Kinoform) a sequence of phase terms is generated which are 

the transform phase terms modulated by terms derived from 

the transform amplitudes. A particular version of this 

scheme was realised by Kirk et al (Ref. 34 ) when they 

obtained a phase only filter containing amplitude inform- 

ation modulating a phase term added to any periodic carrier. 

The retransformation of the resulting uniform transmittance 

phase only element cannot exactly reconstruct the impulse 

response of the filter because of the differences intro- 

‘duced into the original spectrum. However, it is possible 

to choose the phase modulating amplitude terms in such a 

way that the resulting image consists of the required 

distribution spatially separated from the distribution 

due to the spectrum levelling terms - the so called parity 

sequence. There are many ways of coding the Fourier
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transform to achieve a flat spectrum and parity and data 

separation in the image. 

If the function to be coded has a transform 

LPMHYO 
Fax) = | Fao] « ? 

then for each Fourier space point (H,K) a complex vector 

can be drawn’ on an Argand diagram as in Figure 3.7. The 

radius of the circle defines the maximum value of F(H,K) 

and thus the dynamic range. For a Lohmann hologram there 

are RyRy + 1 complex points within the circle that can be 

reached by the coded vector F(H,K). These addressable 

points are located on ad concentric, equally spaced circles 

at angular intervals of 2n/Ry radians for a Lohmann cell 

of RyRy display points per Fourier cell. 

If for each complex vector, F(H,K) one vector, P, (H,E), is 

added and another vector P,(H,K) is subtracted, two 

resultant vectors 2, (H,K) and 1, (H,K) will be generated, 

1, (H,K) = F(H,K) + P, (H,K) 3.31 

1,(H,K) = F(H,K) - P,(H,K) 3032 

In order to convert the complex coefficients, F(H,K), into 

wholely phase terms it is required that 

iG, CHK 
Tw) = & ae
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Scheme For Spectrum Leveling With Parity Sequences 

FIG 3.7



134 

and 
Uda Ct KD 

TaCwKr= € 3.34 

Hence, the vectors 2, (H,K) and 1,(H,K), having unity (that 

is levelled) transmittances will reach to the circumference 

of the cirele in Figure 3.7. Clearly there are many ways 

of choosing P, (H,K) and P,(H,K). However, if it is 

desired to spatially separate the resulting Fourier 

transform terms of the filter transmittance, (8, K) + 

1,(H,K), into data, fiay, and parity, p(x,y) terms it 

is necessary to constrain P, (a, K) and P, (H, K) further. 

rz | P, (4.x) | = |P,(zx) | = \2(a,x)| and 

the Fourier space parity terms are made orthos      
cients, 'F(H,K), then this separation can oO 

  

a particularly simple relationship between 

the terms, 

{P(a,x) | = ( - |F(3,5)4 4 2 3.35 

and PHO = $CHK) © cs"! | Feme>| 3.36 

dr (he) = PCH F cos] PCH) 3.37 
where each pair of signs are available for every (4, XK). 

The complex vector, F(H,K), can thus be replaced by two 

phase only elements exp(t ¢;Cuy«) ) and exp (¢térlte) ), 

each of which transmits $ of the total light which would 

be incident upon the corresponding Fourier coefficient 

cell.
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3.6 PARITY SEQUENCE FILTERS 

To construct a phase only filter with its spectrum 

flattened by parity sequence terms it is necessary to 

replace each Fourier space coefficient, F(H,K), by the 

two phase terms of equations 3.36 and 3.37. This require- 

ment arises because the 2(M x N) free parameters represent— 

ing the modulus and phase of F(H,K) need at least 2(M x WM) 

free parameters to code them, 

The spatial parity and data separation in image space is 

a result of the cosine like addition of the data terms 

accompanied by a sine like addition of parity terms for 

each coded Fourier coefficient. The relative locations 

of the two phase elements, , (4K) and x(4,K) determines 

exactly how the spatial separation will occur. 

For a one dimensional Fourier sequence, F(H), if each 

Fourier space cell is divided into two subcells and $, (BH) 

located in one half and 4 (H) located in the other, then 

on Fourier transforming the resulting distribution, the 

data terms will be multiplied by a broad cosine fringe —- 

a period a 2/fH - and the parity terms will be multiplied 

by sine fringe of the same period. Consequently around 

the origin of image space the parity terms will be 

suppressed to zero and will only appear at the edges of 

the image region (which is of twice the extent of the 

original data field). The available image area is thus 

limited to the region in which the parity terms are
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satisfactorily suppressed in an analogous way to the 

aliasing restrictions on other computer generated 

holograms. 

An alternative scheme avoids this and removes the constraint 

on the image extent which can be operated upon in the 

deconvolution system. 

If, instead of locating the phase elements, (2) and 

&(4), in adjacent subcells, they are again put into 

separate parallel channels, but the channels are separated 

py AH - the extent of the data (or parity) sequence 

Fourier transform - then retransformation will result in 

high frequency cosine data and sine parity sequence 

fringes. The fringes in image space will have periods 

o 1 Zan and the data and parity terms will thus be 

interleaved. 

The object extent which can be operated upon for decon- 

volution does not, in this case, determine the required 

filter sampling rate in Fourier space. 

This is determined only by the required filter resolution. 

Both types of parity, phase only filters, which require 

grey tone display and carefull processing, have been 

realised by Severcan (Ref. 26 ), for both deblurring and 

matched filtering operations. The second type of parity 

filter deseribed above involves diffracting the object
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spectrum into two separate channels. This can be achieved 

using a suitable grating but does result in the light 

efficiency being limited due to the 1st order diffraction 

efficiency of a practical grating being < 50%. 

Dynamic Range. 

The dynamic range, defined as the ratio of maximum to 

mininum amplitude transmittance depends on how finely the 

phase can be controlled. This in turn is limited by the 

number of available intensity display levels. If N, 

display intensities are available then the smallest change play Ss 

  

in phase, 8p , that can be prodeued is 2 Tk /M, radians. 

Severean (Ref. 26 ) calculated the resulting dynamic range 

to be &/d¢" with a value of % 2000 for a display of 

Ny = 100 intensity levels. However, such a dynamic range 

can only be achieved if a phase error is associated with 

the Fourier coefficient being coded. 

With reference to Figure 3.8. The smallest change in 

F(H,K) is & F and occurs when either T, (H,K) or T,(H,K) 

changes by \S4]| . The resulting complex vector, 

however, is shifted in phase by be as well as in amplitude 

by SF and becomes 

UCPC + $6) 
Clecww|+ st) 2 3.38 

In order to preserve the phase of the Fourier coefficient



  

  

  
| When Tk and Tj change by -&¢4 and +§¢ respectively, 

5 becomes i= &rSAms rand DR is max, 

2. When Ts and Ta change by ~5¢ and +56 respectivelys 

F change by 5Anx and DR is min, 

/ 16, 
3, Changing J, by -86 to Ti changes \R le 7% 

|e’ | gto 48 
d . 

DYNAMIC RANGE VARIATIONS OF A PARITY 
SEQUENCE FILTER. 

FIG 3.8
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the modulus of a Fourier coeffi be changed 

  

se constant in step 

  

while keeping its pha   

  

reduction of 4x in the dynamic range calcul 

Severcan, (Ref. 26). 

The addressable locations of the Lohmann hologram, like 

those of the sandwich type holograms (including ROACH) 

are uniformly distributed in the complex plane. Equation 

3.43 shows that this is not true of the parity sequence 

filters as the dynamic range, '/34 ,» is a function of Pi 

  

hould be rem ered that in 

was assumed p (H,K) = 0.     

  

value calculated above is a 

occurs for     
imum value of dynamic range 

  

is when 8A is a maximum and [F] is % 0. It can be 

ealculated by putting $, =W in Equation 3.43. 

2 

Then ofa, = enSh 

11 values of 8¢ 

5 Amox % é¢ 

  

Hence, for s 

and the minimum dynamic range is 

ge »% le 3.45
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The dynamic range thus changes by a factor of 2/ é¢ over 

the complex plane. 

Again, for 5 =2T/,, the minimum dynamic range has a value 

of & 17 and changes by % 28x across the complex mapping 

plane. 

It is not always desirable to have equally spaced 

quantization levels. Powers and Goodman (Ref. 35 ) have 

shown that the reconstruction error rates for a holographic 

state may be minimised by particular schemes for the bounds 

of the quantization levels. 

For the deconvolution system it is desirable to have fine 

quantization in the regions of highest transmittance and 

this is automatically achieved by the parity schemes 

discussed above. This is analogous to the technique of 

companding of data in communication systems for more 

efficient use of available addresses during pulse code 

modulation (Ref. 36 ). 

For a generalised detour phase hologram (Ref. -47 ) the 

subcells are not constrained to opening in sequence. The 

result is that many more addressable points are made 

available in the complex plane. Each addressable point 

is reached by the complex summation of up to RyRy complex 

vectors - each of maximum length 1/RgRy. Severcan 

(Ref. 26 ) considered a binary phase version of this 

generalised detour phase hologram in which each subcell
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has associated with it both a detour phase, due to its 

relative position in the cell, and also a local phase - 

restricted to two values, 0 or ® radians, to relax the 

processing constraints. 

As each of the Ra Ry subeell can have 2 phase values 

RyRy 

points, again reached by the complex addition of vectors 

there are in this case 2 available addressable 

of transmittance 1/Ry-Ry. In this ease, however, as all 

subcells transmit, the summation is over all RyRy 

subcells for each addressable point. In general some 

addressable points will be located by several different 

summations and the total number of separate points in the 

complex plane will be less than oak, A computer 

search is required to map these complex points, and the 

routes required to reach them must be stored in order to 

be able to address a given complex transmittance to the 

nearest available complex location. 

As for the case of the parity phase filters,it is misleading 

to define the dynamic range only in terms of the smallest 

available change in amplitude transmittance as this will 

generally be accompanied by an associated phase change. 

Conclusions 

The Lohmann hologram is the simplest to generate, two 

examples are shown in Figures 3.9 and 3.10 for first and



143 

Negative of Lohmann Linear Motion 

Deblurring Filter. Full Size. (by FR8O). 
gale . 

   
Detail of Above. 

» FIG39



144 

  

Positive Of Lohmann Linear Motion 

Deblurring Filter ( by Graphplotter) 

Enlarged 

! 
Je 2 c-h 

FIG3.10
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second order linear motion deblurring filters (B = 1000) 

Figure 3.9 was produced using a microfilm plotter writing 

directly onto 35 mm film and consists of 641 cells across 

the 4 side lobes of the filter with a dynamic range of 

20 giving an image order separation of @ 20mm. Clearly 

to operate with this filter on an object of extent larger 

than a few mm would be holographically copied. 

Figure 3.10 is a positive of a photoreduction of a filter 

drawn by graphplotter. This realises 129 cells across 

the whole filter with a dynamic range of 30. For the 

deblurring filter, as detour phases of +T and -* are 

identical the adjacent cell overlap problem can be avoided 

by suitable choice of the phase shifts at the poles of the 

filter. 

The impulse response of the filter produced on the Atlas 

Computer Laboratories' FR80 Microfilm plotter, Figure 3.9, 

is shown in Figure 3.11 along with a microdensitometer 

tracing of its distribution. 

The phase only filters - particularly the two channel 

parity phase device which circumvents the image overlap 

problem - look attractive because of their potentially 

high dynamic range. Even the reduced value calculated 

is a large overall increase compared with that of the 

Lohmann filter. The price paid for this is the difficulty 

of continuous tene control and, for hus tnednet parity 

device, the difficulty of satisfactorily locating the two
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available quantization levels, and so-gain an increase in 

the amount of light scattered to each data point. 

This is achieved by putting 

PCO) = PLUK t cos | \ Fetnmy | 

D 
  

br (ue) = d(H + oS '] | Fere| 

    Dis a constant and 

aco 
cos D is 

    

When D=- | PF (max of the data is 

  

obtained, but a con 

    

diffracted tow: As D tends to zero 

  

to the data terms at the expe 

  

then simply a Kinoform. 

  

The generalised detour phase holograms (both binary 

absorption and phase only) require many subcells per 

Fourier coefficient and are thus not as efficiently coded 

as a Kinoform or ROACH.



 



CHAPTER 

COMPUTER SIMULATION OF A COHERENT OPTICAL SPATIAL 

FILTERING SYSTEM
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4.1 INTRODUCTION 

In an earlier chapter we studied, by computer simulation, 

the effects of random processes on the deconvolution 

operation. The filters used were LMSE constrained. In 

this chapter we present the results of a more general 

computer simulation of a coherent deconvolution system. 

In particular we look at the effects of the filter being 

computer generated and hence being of limited and quantised 

dynamic range. 

A prerequisite for deconvolution is a knowledge of the 

blurring function or its optical transfer function, (OTF). 

In some cases the degrading system is available and direct 

measurements of the OTF can be made, Nathan (Ref. 37 ). 

In cases where there are zeros in the OfF the Fourier 

transform of a blurred image may allow these zeros to 

be found, provided the noise level is low enough. Along 

with any exhibited symmetries this can be used to identify 

the OTF if it is one of the common forms, e.g. linear blur
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or defocus, Gennery (Ref. 38 ). Other techniques have 

also been suggested for determining the form and degree 

of degradation, Huang et al. (Ref.39' ), by taking 

measurements of the blurred image. 

4.2 OPTICAL TRANSFER FUNCTION ERROR IN BLUR EXTENT 

With this OTF recognition problem in mind simulation 

results are presented showing the effects of deconvolving 

a linear blur for the situation in which the filter is not 

matehed exactly to the degree of blurring. The one 

dimensional variable frequency bar chart used in the 

simulations in Chapter 2 was again used as the unblurred 

object, Figure 4.1. As no noise was present in the object 

data the perfect "inverse-sine" deconvolution filter was 

used. The bar chart was convolved with rectangle functions 

of varying extents to simulate linear motion blurs of 

different degrees - as would result from taking photographs 

with different exposure times of an object executing linear 

motion. The filter used was the ideal filter for a linear 

plur of 8 units (in units of Xo0/256). The bar chart 

object was blurred by different.amounts, 6 = 2 units to 

Bb = 16 units in integer unit steps and the resulting 

distributions Fourier transformed by F.F.1., operated upon 

py the b = & filter and inverse transformed and displayed. 

The results are presented in the form of the recovered 

deconvolved images Figures 4.2 to 4..5. There are several 

points worth noting.
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4.3 RESULTS OF COMPUTER SIMULATION 

The maximum tolerable error in matching the filter to the 

degree of blur, b, is one unit if the highest frequency 

information is to be recovered - see Figure 4.3, 

One noticeable feature of the images is the general 

difference between the recoveries for b <8 and b > 8. 

The former are far noisier than the latter which also 

show a lack of sharp edges at the bars. The reason for 

this is not difficult to discover. The gumber of positive 

frequency side lobes of the OTF describing the linear blur 

is equal to half the blur extent, b. For a blur of b= 8 

there are thus the 4 side lobes shown in Fig. 1.6. As the 

blur extent increases the correcting filter must realise 

more side lobes and thus operate with a larger dynamic 

range. A filter designed for a smaller blur than is 

present in the object will thus not enhance the high 

frequencies sufficiently, as shown in he Figures for b> 8. 

In contrast, for a blur, b <8, the filter will over amplify 

the high frequencies and produce a noisy image. This is 

not the only effect however, as the filter will also 

produce erroneous phase corrections in the spectra of the 

blurred charts. The recovered image for blur b = 16 units 

exhibits a greater degree of sharpening than do other images 

with 9 Kp <6. This is because although the amplitude 

is not amplified sufficiently at high frequencies, half
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of the total spectrum is, in fact, phase shifted correctly 

by the b = § filter,as every filter pole coincides with 

every other zero of the OfF of the blur. As a measure 

of the goodness of recovery of the images, variances were 

calculated for each degree of blur, That is, each 

recovered image point was subtracted as an amplitude from 

its corresponding object point, the result squared and the 

squares summed across the image extent and normalised to 

n-t a 

Variance, V(b) > (so h a(x) 4et 

REO 
for b=1 to 19, 

form, 

where b is the extent of the blur in units of X. The 

resulting curve of V(b) as a function of b is shown in 

Figure 4.67. The trend of a reduction in variance with 

increasing blur due to insufficient high frequency 

amplification by the filter is clear. The slight image 

recovery of Figure 4.5 for a blur, b = 16, is also 

apparent as a secondary minimum of variance. 

4.4 LATERAL MISREGISTRATION OF THE FILTER ELEMENT 

Although in a Fourier transform system both the image 

position and its intensity are invariant to translations 

of Fourier plane elements, for a deblurring operation the 

filter still has to be aligned to register correctly with 

the diffraction pattern being operated upon. Figures 4.7 

to 4.8 are the computed deblurred images of a linear
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blurred bar chart, (Figure 4.1), which has been deconvolved 

with a filter laterally shifted so as to misregister with 

the diffraction pattern of the blurred bar chart. 

As for the simulation of blurs of different extents in 

section 4,2, the misregistrations are constrained to at 

least integer frequency changes because of the finite 

number of terms in the calculated spectrum. 

The most noticeable effect is the asymmetry of the images. 

This is due to regions of the spectrum being assigned 

incorrect phases by the filter. These regions of phase 

error are of the same extent as the misregistration and 

first appear around the poles of the filter. They 

strongly influence the form of the image, even for small 

misregistrations, as it is in pole regions that the 

filter is most strongly amplifying. 

4.5 QUANTIZATION AND DYNAMIC RANGE 

The space bandwidth product relates the image and spectrum 

extents. If the address density is constant, as it is 

for a typical computer display device, then an increase 

in image order separation, obtained by a reduction in the 

Fourier coefficient cell sizes, is gained at the expense 

of a reduction in the number of addresses in each cell. 

Hence, for Lohmann coding the image order separation is 

inversely proportional to the dynamic range which in turn
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determines the number of side lobes of a deblurring filter 

that can be realised. For the filter system we have 

simulated by computer, a dynamic range of 15 is required 

to realise 4 side lobes on either side of the zero 

frequency axis of a deblurring filter with Be 1000. 

Thus, 15 x 15 addresses are required in each square 

Fourier cell. The coding efficiency, q> is defined as 

  

- Zotal number of values to be coded 
i ~ Total number of addresses required to code them 

4.2 

Wes oe 
For this case then, ul NeRe 4.3 

acd fj <5 x 1073. 

For an absorption filter, in which the amplitude is 

controlled by the film density, a continuous range of 

transmittance values are available within the dynamic 

range constraints. That is from a transmittance of 1 

down to 1/DR. However, for the Lohmann hologram, excluding 

the case of zero transmittance, the number of available 

amplitude transmittance values is equal to the dynamic 

range, DR. For a square cell this is also the number of 

available phase values. 

Like all pulse-code modulated (PCM) systems, these holograms 

thus suffer from quantisation error as a result of the 

analogue to digital conversion. With Ry x Ry addresses 

per Fourier cell the dynamic range (including zero 

transmittance) is Ry, + 1 and there are Ry values of phase 

available to the 1st image order. The amplitude
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transmittance can change in 1/Ry steps and the phase can 

change by J.27% /2q radians for R, even, and J.2 WK /2y-1) 

die order. radians, for Ry odd, as seen from the J 

In Chapter 3 it was noted that in order to obtain maximum 

image brightness and at the same time ensure that apertures 

of adjacent cells do not overlap it is necessary to use an 

image order J >2. However, as the phase is only to be 

controlled over 2nradians, the use of a high order image 

reduces the number of available phase quantization levels 

by approximately 1/J and has the effect of increasing the 

phase quanitization noise. 

The deblurring filter is a special case of a wholely real 

element. As the phase needs controlling with only two 

values, 0 or M radians, the filter does not suffer from 

phase quantization errors, unless an image order, J, is 

chosen so large that J.2" / Rey radians. 

4.6 AMPLITUDE QUANTIZATION IN A DEBLURRING FILTER 

The results of quantizing the amplitudes of different 

IMSE deblurring filters are shown in Figures 4.10 to 4.27, 

(even numbers) along with their associated calculated 

impulse responses (odd numbers). The amplitude quantiz- 

ation error is the difference between the amplitude of the 

ideal and coded filters. An xample of its variation is 

shown in Figure 4.28 for DR = 40, B =°1000. The maximum
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quantization error is, of course, 50/DR%. For a dynamic 

range DR = 50 then, the modulus of the amplitude of the 

filter is everywhere within 1% of its value for a continu- 

ously variable amplitude system. 

The effects of amplitude quantization can be judged by 

comparing the impulse responses of the quantized filters 

(odd numbered Figures 4.11 to 4.27) with those for the 

corresponding continuously variable amplitude filters 

shown in Chapter 2, Figure 2.10. Their close 

similarity shows the deblurring filter's insensitivity 

to quantization noise. This is to be expected in view of 

the results of Chapter 2 in which it was shown that the 

recovered images were not very sensitive to random noise 

modifying the modulus of the filter amplitude. A value 

of about 40% of the maximum filter amplitude was tolerable 

for the maximum excursion of the random amplitude noise - 

approximately equivalent to a dynamic range of DR = 4. 

This is in agreement with the quanitzation noise bounds 

calculated analytically and numerically by Naidu (Ref. 40). 

The Kinoform (Ref. 23 ) represents the most extreme form 

of amplitude quanitzation as the modulus of its amplitude 

transmittance can take only one value of unity. The 

Kinoform for a deblurring filter is show in Figure 2.4 

and is simply the phase part of a "sinc" filter. It is 

similar to the quantized filter B= 100. DR = 20 except 

at the low frequency region of the spectrum which the 

Kinoform transmits, along with all other frequencies,
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with unity amplification. This low frequency 

transmittance is responsible for the slowly varying 

form of the recovered image of Chapter 2, Figure 2.5. 

The Kinoform is not, of course, used as a deblurring 

element because of this inability to conserve image 

fidelity. It is used specifically as a coding device 

as it has a maximum coding efficiency, = 1, only 

requiring one address per cell. Like ROACH, which is 

also capable of maximum coding efficiency, the Kinoform 

does require continuous phase control to obtain this 

value of | = it
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5.1 INTRODUCTION 

The process of image formation is most frequently thought 

of in terms of the two stages of diffraction discussed in 

the previous chapters. The Fourier transform description 

linking the object plane, back focal plane and image plane 

of an imaging system is satisfactory only with the proviso 

that the object is transparent and coherently illuminated 

by a source of very limited size. 

A more general approach views the image as the re-transform- 

ation of the partial coherence pattern of the object. In 

this case the object generates a partial coherence pattern 

in the entrance pupil of the imaging system. This 

partial coherence pattern is then taken in whole or part 

by the imaging system which forms a whole series of Young 

fringes of appropriate visibility, period and orientation 

in the image plane of the system. The exact form of the 

image depends on the way in which the entrance pupil of
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the imaging system samples the partial coherence pattern. 

This chapter describes how a mask of suitable weighted 

image depends on the way in which the entrance pupil of é 

the imaging system samples the partial coherence pattern apes 

| This chapter describes how a mask of suitable weishted _ | 

apertures positioned in the entrance pupil plane can be 

used to sample the partial coherence pattern in such a 

way that some degree of deconvolution can be effected. 

The description of the imaging process followed here has 

been developed in some detail by Rogers (Ref. 41 ) after 

a similar treatment by Hopkins (Ref. 42 ) and Born and 

Wolf (Ref. 43 ) 

5.2 IMAGE FORMATION AS A SUPERPOSITION OF YOUNG FRINGES 

As a preliminary to discussion the operation of non- 

coherent filter consider a Young fringes type experiment 

shown schematically in Figure 5.1. A monochromatic point 

source of wavelength, A, situated on the optic axis coher- 

ently illuminates a pair of small pin holes positioned a 

distance P apart in the entrance pupil plane of a lens. 

The resulting Young fringes in the image plane of the 

system subtend an angle A/P at the lens and are for the 

case of the source point plane and image plane being 

conjugate cosine fringes being symmetrical about the optic 

axis. The fringes are invariant to a translation of the 

pin holes but move in the opposite sense to a translation 

of the point source along the direction of a line parallel
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to that joining the pin holes. Consider now more point 

sources positioned along this line adjacent to the first 

point source. If they have an angular separation of A/P 

at the lens then the sets of fringes produced by each will 

be in exact register and will add noncoherently to give 

maximum visibility. Point sources at intermediate 

positions will produce fringes which are out of register 

and these will tend to reduce the visibility as shown in 

Pigure 5.2. 

For an extended source, composed of a large number of 

noncoherent point sources, the visibility of the fringes 

it forms will decrease as the angular size of the source 

inereases. 

As the fringe period varies inversly as the separation of 

the pin holes the fringes of highest frequency containing 

information about the fine detail of the source are formed 

by pin holes of maximum possible separation. A mask of N 

pin holes separated by distances Py will thus form $N(N-1) 

sets of fringes in the image plane. Le the Py are selected 

at random and N is sufficiently large a good image of the h 

source will be produced. 

This suggests that it is possible to sample the partial 

coherence pattern with a mask of suitably sized and 

positioned apertures so as to modify the frequency content 

of the image in some desired way. However, the ways in 

which the frequency spectrum of a source can be modified
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by such a sampling mask are severely limited. As the 

phases of the diffracted amplitudes from the source 

cannot easily be modified the mask can only operate 

as a real, positive frequency filter. Any phase changes 

produced at the apertures of the mask will laterally shift 

the sets of fringes and in general ruin the image ina 

similar way to inserting a diffuser in the entrance pupil 

of a lens. 

5.3 DECONVOLUTION OF A GAUSSIAN FUNCTION 

For convenience in this section a brief restatement of 

the deconvolution operation is given. 

Por a one dimensional source intensity distribution, s(x), 

convolved ee piecping function, g(x), resulting in a 

distribution, b(x), 

b(x) = s(x) @® g(x) Bil 

in Fourier space we have, denoting the frequency space 

functions by capitals, 

B(u) = S(u).G(u) Bie 

We can thus recover s(x) from b(x) (provided we know the 

form of the blurring function, g(x),) by multipying the 

the frequency distribution, B(u), by a filter, F(u), such 

that 

F(u) = D/G¢(u) 5a 

where D is a constant less than 1.
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If g(x) is such that its frequency spectrum is positive 

definite then noncoherent deconvolution may be attempted 

using a pupil plane mask constructed to transmit the 

various frequencies as required by equation 5.3. 

A blurring function of Gaussian form 

g(x) = exp(-c?x*) 5.4 

is suitable for noncoherent deconvolution as its Fourier 

transform is also of Gaussian positive definite form, 

G(u) = A exp(-07u2) 55 

The filter must operate so as to weight the frequencies 

reaching the image plane as 

F(u) = a7! exp(c?u?) 5.6 

where c, C and A are constants. 

5.4 DHE NONCOHERENT DECONVOLUTION MASK 

Consider a pupil plane mask of N apertures. Each of the 

4N(N-1) pairs of apertures will transmit a frequency which 

is inversely proportional to the separate of the pair Pye 

If the mask operates only in say the x direction as a 

frequency filter then the weighting of the transmitted 

frequencies can be controlled by the lengths of the 

apertures perpendicular to the x direction. 

The problem in making a filter is one of finding the weighted 

lengths of Yn, of the N apertures for a chosen set of
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spacings, P,, such that the resulting 2N(N-1) frequencies 

are transmitted in the proportions of equation 5.6. 

Formulated as a set of highly redundant simultaneous 

equations the best solutions are easily found by standard 

numerical methods (Ref. 44 ). One of the twice 

redundant difference series (Ref..45 ) was found to be 

satisfactory when the solutions were based on the lowest 

24 differences only. The filter then takes the form 

ps8 Ve) Os Beigel aes ee Sem Ti) MG 
where the numbers denote the separations of Px of the 

apertures of length vn in arbitrary units. 

At the expense of further overweighting the redundant 

frequency corresponding to spacing Pe = 8 the lengths 

of the apertures vy and Yg were increased by 30% and 60% 

respectively in order to produce a higher powered filter. 

Table 5.2 shows the solutions of the redundant equations 

for the Ta and the modified solutions after increasing J4 

and Jeg and Figure 5.3 shows the form of the filter after 

modification and the inverse Gaussian filter to which it 

approximates. 

5.5 CONSTRUCTION AND OPERATION OF THE NONCOHBRENT FILTER 

In practice a filter was made to the above specifications 

by photoreducing onto Ortho-Lith type 3 film from an original 

made of suitable lengths of black tape mounted on white card
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as shown in Figure 5.4. The object used, s(x), was a 

five element variable frequency bar chart which was 

numerically convolved with a Gaussian distribution, g(x), 

having a full width at half maximum height of 8 times the 

width of the smallest bar. The resulting distribution, 

b(x), was displayed as a graph of y = b(x) and the region 

between the curve and the line y = 0 was blackened. The 

bar chart, Gaussian blurring function and the resulting 

convolved function are shown in Figure 5.5. The variable 

area input function was converted to a variable density 

record corresponding to b(k) by imaging the display onto 

a continuous tone photographic plate using a cylindrical 

lens (Ref. 46). The resulting unblurred and Gaussian 

blurred bar chart objects are shown in Figures 5.6 and 5.7. 

The optical system used to perform the deconvolution is 

shown schematically in Figures 5.8. It consists of a 

sodium lamp and diffuser illuminating the object distribution 

b(x), with a collimating lens i, throwing a parallel beam 

into the camera lens Lp. The filter F is mounted in a 

Xylene liquid gate to remove any phase changes between the 

apertures which would produce unwanted lateral shifts in 

some of the fringes, and the liquid gate is positioned 

between the lenses L, and L,. 

The scaling of the system is such that the maximum solved 

spacing of the filter, P max = 24 units, is related to the 

angle, one subtended at the lens by the smallest. bar, 

2 min> by
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Brin aN (8) a 
max 

where Nis the wavelength of sodium light. For a lens iy 

offocal length £, 

aut 5 - 4 (9) 
max 

  

In practice reasonable sealing was produced by a pair of 

914 mm focal length lenses used with a filter having a 

minimum spacing of 0.103 mm and an object with a minimum 

bar of 0.217 mm. 

5.6 EXPERIMENTAL DECONVOLUTION RESULTS 

A microdensitometer trace of the image of the deconvolved 

bar chart is shown in Figure 5.9 along with a trace of the 

image of the blurred bar chart. The latter was obtained 

with an aperture stop limiting the maximum frequency 

transmitted to the highest filter frequency corresponding 

to B = 39 units. The measured slopes of the bar edges 

and the relative heights of the bars are tabulated in 

Table 5.1. There is some sharpening of the edges and a 

slight peak height emhaneement. On the right hand side 

of the recovered image it is just possible to pick out the 

first order image separated from the zero order image by the 

beat frequency period. This can be clearly seen in the 

recoveries shown in Figures 5.10 and 5.11. 

The analysis has assumed that the filter operates on the
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TABLE 1 

Angles included by peak edges (leading and trailing) 

from microdensitometer traces : Figure 7 

Peak Width Blurred Deblurred 

32 81.83 86.85 

16 81.81 85.85 

8 71.72 83.82 

Peak heights normalized to peak width 32 units 

from microdensitometer traces : Figure 7 

  

  

  
Peak Width Blurred Deblurred 

32 1.00 1.00 

16 0.97 1.09 

8 0.34 0.82 

TABLE 2 

(Gaussian Filter)" solutions for 24 simultaneous 

equations. 

Aperture Aperture Length (Modified) 

Yy 33.06 43.06 

Yo 11.49 11.49 

Yy 9.32 9.32 

Y, 8.73 8.73 

Ys 10.01 10.01 

Ye 13.87 13.87 

Y, 7.41 7.41 

Mi 16.00 26.00 

   



discrete frequencies 1 to 24 units only. In practice 

there is a spread of s t frequency units about each frequency 

as each aperture has a width of t of the smallest aperture 

separation. There is also a zero to = frequency units 

contribution from each aperture acting individually. 

Although solved for 24 frequencies, as Figure 5.4 shows the 

system transmits frequency 31 (which is redundant and 

receives contributions from 2 pairs of apertures) and 

frequency 39. Inclusion of these two highest frequencies 

in the equations to be solved resulted in both positive 

and negative solutions for the aperture lengths Y_. The 

phases of the apertures have to be held equal by using the 

filter in a liquid gate and to avoid the further complic-— 

ations of phase shifting some of the apertures by W radians 

to produce the required negative contributions a set of all 

positive solutions were pursued. Basing the equations on 

the lowest 24 frequencies resulted in the positive solutions 

shown in Figure 5.3. It should be pointed out that removal 

of the constraint on the sign of the solutions does result 

in a slightly better fit. 

5.7 DISCUSSION AND CONCLUSIONS 

The difficulty of finding good solutions to the filter 

function arises because the N apertures operate in 

parallel, each one contributing to (N-1) frequencies. 4A 

highly over determined set of simultaneous equations is the
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result. For the filter considered and the difference 

series chosen 24 equations were solved for only 8 

variables. 

An alternative scheme would be to operate with suitably 

sized and space apertures exposed to give the correct 

frequency weighting but used sequentially in pairs. 

This would allow an exact fit to the filter function for 

each frequency and at the same time would remove the 

difficulty of redundant frequencies. We have considered 

the image to be built up from the noncoherent addition of 

sets of cosine; fringes from each source point. More 

correctly each source point produces in the image plane 

an intensity distribution which is the coherent summation 

of the contributions from each aperture of the mask. It 

is weighted versions of this whole pattern which are added 

noncoherently for each noncoherent source point. This 

process is not modelled by the sequential use of pairs of 

apertures which adds all the individual cosine fringes 

noncoherently. The image produced by this operation will 

thus have low visibility even though the frequencies will 

have been corrected more accurately. 

Finally, to end on a practical note, as the effective 

aperture of a system with a mask is very small the exposure 

times necessary are rather long, typically several hours 

using HP3 film.
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We have simulated a deconvolution system and demonstrated the 

breakdown of the LMSE criterion as a measure of the quality of 

deconvolved images. This incompatibility is a result of deconvolu- 

tion being a process which primarily produces increases in edge 

slopes. This is inevitably accompanied by high frequency noise 

which produces a large mean squared error.This effect is particularly 

noticeable in binary objects as a large amount of image energy 

occurs in the high frequencies of the spectrum and is suppressed 

by the convolution process. In the continuous tone object there is 

little change in the spectrum due to the convolution operationand 

consequently little change in the form of the object distribution. 

The maximum tolerable noise levels for the dilute object recovered 

by filters optimised using a LMSE criterion for various levels 

of signal to noise ratio,B., are summarised in Table 6.I for both 

noise independent of and proportional to the local object amplitude. 

Visually estimated maximum tolerable average noise percentages mye 

are compared with statistically calculated maximum tolerable average
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noise percentages ,N.,. The latter,N,, are the intercepts of the curves 

of recovered image variance with the curve of blurred object variance 

shown in Fig 2.22a) and Fig 2.22b). 

Although the high fp filters amplify signal and noise throughout the 

spatial frequency spectrum, there is initially a good signal to noise 

ratio throughout which allows a tolerable level of noise to be 

added. 

A similar statistical and visual comparison of maximum tolerable 

noise levels for the case of the simulated continuous tone object is 

given in Table 6.2. The values of N, are in this case the intercepts 

of the curves of recovered image variance with the curve of blurred 

object variance deduced from Fig 2.23a) and Fig 2.23b). In this case, 

however, the visual estimation of tolerable recoveries is more 

difficult due to the lack of easily identifiable features. For the 

binary, bar chart object recovery can be judged by an inspection of 

the sharp edges of the bars. Such features are not generally to be 

expected in continuous tone objects and this difficulty highlights 

the role of recognition of information in an optical signal 

processing system. 

Consequently in Table 6.2 the maximum tolerable noise level is that 

for which the general structure of the object can still be seen, 

irrespective of the degree of recovery. Hence, Tables 6.1 and 6.2 

can not be compared directly. 

The use of high Br filters with the continuous tone object results 

in very noisy images. This is because, although they correct the 

spectrum as required, the high Bp filters transmit strongly in the 

high frequency regions of the spatial frequency spectrum where the 

signal to noise ratio is low, even when the object is distorted by
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very modest amounts of noise. A low 8, filter can be used to reduce 

this sensitivity to noise but the resulting image, although having 

a low statistical variance, will then show little restoration. 

For the case of amplitude noise added to an ideal filter such 

that the noise is independent of the local amplitude a mean noise 

level of 10% was found by computer simulation to be tolerable. 

Similarly, for noise proportional to the local amplitude a mean noise 

level of 20% was tolerable. 

A maximum random phase excursion of 20° about the correct phase value 

was acceptable in the case of a Kinoform element used to recover 

a dilute bar chart object and for a similar recovery using an ideal 

filter a maximum phase excursion of 50° about the correct phase value 

was tolerable. In both cases no other sources of noise were present 

in the computer simulations. 

The operation of computer generated holograms has been discussed and 

some details of their operation studied. In particular the dynamic 

range of parity phase only filters has been analysed in terms of its 

variation over the complex plane. It has been noted that the dynamic 

range with the constraint of a constant Fourier coefficient phase is 

4X less than that obtained if a slight phase change is allowed in the 

coefficient. The dynamic range of a parity phase only filter was 

found to vary by a factor of 2/5 across the complex plane, where $$ 

is the quantised phase interval of the phase only element. 

In general the complex addressable points will have to be mapped (most
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conveniently by computer search) in order to ascertain the character- 

istics of generalised detour phase holograms. 

The effects of deconvolving with a misregistration of the filter 

element and with the filter element mismatched to the degree of 

object blurring were studied and maximum tolerable errors estimated. 

For misregistration this was “12% in the simulation (measured in terms 

of the maximum tolerable filter misregistration from the correct 

position as a percentage of the distance off-axis of the first filter 

pole- the point at which the first phase inversion occurs). 

For the mismatched filter an error of * 12% could be tolerated in 

matching the size of the blur for which the filter was designed to 

the actual size of the blur which occurred in the object being 

deconvolved (calculated as:|Correct blur-Tolerable biur}x100/correctB1ur’) 

In the case considered a filter designed for a blur of 8 units would 

just operate satisfactorily on objects blurred both by 7 units and 9 

units as well as the filter’s optimum of 8 units.The recovered images 

are considerably more sensitive in terms of calculated standard deviation 

to filtering with an element designed for a larger blur than 

occurred, than to filtering with an element designed for a smaller 

blur than occurred. This is because in the former case high frequencies 

are over amplified and these contribute heavily to the variance of 

the resulting image.Whenever the blur extent is an integer multiple 

of the blur for which the filter is designed, a subsidiary minimum is 

formed in the image variance against blur extent curve. When scanning 

for a minimum of variance in order to determine the extent of a blur 

it is thus better to scan out,starting from a filter matched for a 

small blur in order to miss the subsidiary minima.
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For the deblurring system the filter is insensitive to filter amplitude 

noise and a comparison of the impulse responses of amplitude quantised 

filters - simulating dynamic range limited computer generated holograms 

- and an ideal filter shows that the low dynamic range elements are 

permissible.This is in agreement with the measured impulse responses 

of a Lohmann binary filter generated by microfilm plotter and having 

a dynamic range of 20. 

The results of a non-coherent deconvolution show that some degree of 

image sharpening can be produced but the analysis shows that this is 

only to be expected for dilute objects which have suffered blurs which 

can be expressed as positive definite functions.It may be possible to 

produce improved noncoherent deconvolution by using phase shifted 

elements in the mask as this results in a better solution to the 

filter function, and consequently a slightly more powerful element. 

An alternative approach of using a sequential filter to build up the 

image would eliminate redundancies in the filter frequency response, 

and at the same time increase its dynamic range.However, this would 

probably be offset by an overall reduction in image visibility due 

to the extra, highly non-coherent additions involved.
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TABLE 6.1 

BINARY BAR CHART OBJECT 

MAXIMUM AVERAGE TOLERABLE NOISE PERCENTAGE, N% 

Noise scheme a). Noise scheme b). 
(Noise independent of (Noise proportional to 

the local amplitude). the local amplitude). 

Filter 

Signal/Noise Statistical Visual Statistical Visual 

Ratio, Measure ,N,% Estimate, Measure,N.% Estimate, 

Bp (seeFig2.22a)). Ny# (seeFig2.22b)). NLe 

Co 1.0 3.0 25d 6.0 

1000 2.5 5.0 565 7.0 

500 3.0 5.0 6.6 8.0 

100 5.0 7.0 >9 29 

10 29 8.0 >9 / 

Comparison of statistically calculated with visually estimated 

maximum tolerable average noise levels resulting from the 

computer simulations of the deconvolutions of a dilute binary 

bar chart object using LMSE filters having different signal/ 

noise ratios, Bp. 

Although high Bp filters amplify both signal and noise through- 

out the spatial frequency spectrum, there is initially a good 

signal/noise ratio throughout which allows a tolerable level 

of noise to be added, see Figs 2.2 to 2.11.
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TABLE 6.2 

CONTINUOUS TONE OBJECT 

MAXIMUM AVERAGE TOLERABLE NOISE PERCENTAGE »N% 

Noise scheme a). Noise scheme b). 

(Noise independent of (Noise proportional to 

the local amplitude). the local amplitude), 

Filter 

Signal/Noise Statistical Visual Statistical Visual 

Ratio Measure Ng% Estimate, Measure »N,% Estimate, 

Bp (seeFig2.23a)). Ny% (seeFig2.23b)). Ny% 

= 0 2.0 0 2.0 

1000 0.4 3.0 O.4 3.0 

500 0.7 4.0 0.7 5.0 

100 1.8 5.0 2.1 8.0 

10 >5 8.0 >S >9 

Comparison of statistically calculated with visually estimated 

maximum tolerable average noise levels resulting from computer 

simulations.of the deconvolutions of a continuous tone object 

using LMSE spatial filters having different signal/noise 

ratios,p. 

The high Bp filters produce strong distortion(resulting in low 

Ny values) because there is a low signal/noise ratio at the high 

frequency end of the spatial frequency spectrum which causes 

distortion with very little additional noise, see Figs 2.12 - 2.21.
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