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ABSTRACT

The process of deconvolution is studied by coherent,
non-coherent and numeriecal technigues. Computer
simulations have been used to model the operation of
coherent systems using different types of spatial filters,
and the effects of Gaussian distributed random noise

added to the amplitude and phase of the components are
presented. This has led, via statistical analysis of

the simulated recovered images, to a re-assessment of

the IMSE optimum deconvolution filter. The effects of
filter misregistration and the use of a filter mis-matched
to the system convolute are also modelled by computer,and
filter amplitude quantization errors are studied in terms
of their impulse responses. Using a non-coherent optical
system a new method of deconvolution is described and
experimental results of the deconvolution of a dilute

object and a Gaussian blurring function are presented,
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CHAPTER 1

THE ROLE OF COMPLEX SPATTAL FILTERS IN'SIGNAL

PROCESSING




1.1 INTRODUCTION

The processing of optical data can involve the extraction
of information from the data field by locating particular
features (such as edges in the character recognition system)
or it can involve the redistribution of the data into a more
satisfactory form. It is impossible to increase the
information content of a data field by any processing
operations. Any apparent increase in information is a
result of supplying an equivalent amount of information
about the processing operation itself. The question which
arises then is why should we perform such operations if they
do not increase the total information content? The simple
answer is that the processing cperation may help us to
recognise certain pieces of information. Although an

out of focus photograph, plus details of how points on the
photograph have suffered due to this misfocus, give us the
same information as a photograph processed to correct the
misfocus, we recognise more information when presented

with the processed photograph.

Not all operations are specifically designed to increase
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the amount of recognisable information in a data field.
Although photographic film has a high storage density
(typically 1070 bits on a 100 x 100mm® f£ilm) this cannot
be utilised directly to record combined amplitude and
phase information. In this case a processing operation
must be used to encode the information in terms of the
film's variable density or wvariable optical thickness.
However, even for wholely real data advantages may be
gained by such holographic encoding. For example,
processing of such data into the form of a Fourier
transform hologram increases the data record's resistance
to local defects and for subsequent read-put makes the

system insensitive to lateral misregistration of the

record.

This type of data encoding, storage and read-out is
analogous to coded data transmission gchemes in the sense
hat both the encoding and decoding can be chosen 1o
minimise the subsequent read-out error. This facility
to operate before and after transmission (or storage) is
a Shannon class of processing (Ref., 1). It is to be
distinguished from the Wiener form which deals only with
operations on data after transmission (Ref. 2.). In
both cases, of course, the original data may be
corrupted in warious ways by noise or system distortions

ete.
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Processing in order to more easily recognise features in

a data field can be carried out in a number of ways.

Some success may be achieved by operating directly on the
data although in many cases - particularly the deconvol-
ution situation - this can be very inefficient. Commonly
a transformation to frequency space produces an equivalent
but more efficient operation. The processed data is then
recovered by inverse transformation. Clearly there is a
trade~-off between how many operations are required in data
space for the processing and how many operations are
required to transform, process in. transform space and

retransform for the result.

1.2 NUMERICAL PROCESSING

Until 1965 the numerical Fourier transformation in which
gspace the convolution operation becomes a multiplcation
operation) was expensive to perform by digital computer.
However, the Fast Fourier Transform Algorithm (F.F.T) due
to Cooley and Tukey (Ref. 3) significantly reduced the
number of operations in the ratio of N log N/N2 for an N
point data set and made the numerical "transform, operate,
inverse transform" procéss more attractive. The Fourier
transformation is based on the expansion of a function in
terms of complete orthogonal sets of sines and cosines.

There are many other complete sets in terms of which a
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function can be expanded. Of these the Walsh functions
(Ref. 4) form a set of particular interest for computer
operations as,although taking only the values +1 and -1,
they have many properties similar to the trigonometric
sines (Ref. 5). A Fast Walsh Transform also exists.

(Ref. 6).

Even so numerical processing is still inefficient being
a sequ ental operation although some degree of parallel
processing now seems feasible following a reduction in the
cost of integrated circuit chips capable of performing the

basic mathematical operations (Ref. 7).

Va3 OPTICAL PROCESSING

For a coherently illuminated system and with certain
restrictions on their lateral extent (Ref. 8) the
amplitude distribution in the front and back focal planes
of a lens are related by a Fourier transformation. As a
lens operates in parallel on an object distribution, if
the required Fourier plane operation can be accomplished,
a pair of lenses may be used to achieve a transform,
operate, retransform type of system. The operating
speed of such an optical computer depends on the time
required to obtain a satisfactory back focal plane record
as all components in the system being passive its overall

transmission <: : I Unlike the equivalent numerical system
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the speed of the optical systems operation is independent
of the number of data points to be operated upon. The
main difficulties to be overcome in a coherent optical
processing system are the sensitivity to mnaise and the

realising of the complex operating elements.

We shall restrict ourselves to processing in transform
space and in particular in Fourier space to the techniques
of deconvolution. Both numerical and optical Fourier space
deconvolution are achieved by multiplying with a generally
complex operator (or filter) which has been optimised in
some way to minimise the effects of noise. In Chapter 2
we study the effects of noise at various stages of
deconvolution using a computer simulation. Chapter 3 is
devoted to a discussion of some of the most recent and
efficient techniques of producing complex coherent optical
elements, and the operation of these elements is simulated,
again by a computer model, in Chapter 4. A completely
different approach is taken in Chapter 5 in which a new
noncoherent optical system for performing deconvolution is
described. The system's operation is discussed and some
results of the deconvolution of a Gaussian linear blur and

a dilute object are presented.

The rest of this chapter is concerned with the deconvolution
process and with a discussion of the basic requirements of
an optical filter for its satisfactory operation. That

the real space operation of convolution becomes a

multiplication of the individual transformations in Fourier
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space is described by the Convolution Theorem (Ref. 8 )
In one dimension if EB represents convolution, and, for
brevity, T and g1 represent the operations of Fourier

transformation and inverse transformation,then

=00

el(t)= 3(1‘) 8 s =IJ(%).S('(:-K)JX 1)

-od

ﬂc(t)] = CCH) = Tﬁgdx) @ s ]

= ‘)/[Jc;o] - TIseo]

PRRERSE s Gr(ﬂ). S (1) 12

where capitals are usel for Fourier space functions.
Hence, if an operator F(H) can be realised such that
F(H) . S(H)' = D where D is a constant - 1.3
then by operating with F(H) on the spectrum, C(H), of
the convolved functions and following with an inverse
Fourier transformation a redovered version of g(x) can

be obtained.
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That is F(H) . ..C(HY = D G(H)Y . = 454

and thus i(x) = D, g(x) =4 1.5
where i(x) is the recovered image. In general the
basic operation of spatial filtering described by

equation 1.4 is a complex operation.

Physically the process of convolution produces a smoothing
of sharp features which is exhibited in frequency space as
a suppression of the high frequency components. This is
shown in Figures 1.1 and 1.2, where the convolution of a
pair of rectangle functions is shown, and in Figures 1.3
and 1.4 which are photographs of a bar chart before and
after a linear blur together with their associated

diffraction patterns.

Two further aspects of the convolution process are worthy

of note. The first is that due to the complex nature of
the operation convolution modifies the phases of the spatial
frequency components as well as their magnitudes. For the
case of a rect (X/A)() blurring function which in frequency
space has a shnﬁ/bform, the spectrum of the function
operated upon suffers phase changes of W radiang in the
spatial frequency regions where sin 8/ is negative. This
phase change can clearly be seen in the photograph of a
spoke target taken under conditions of misfocus. In this
case the frequency space operator describing the misfocus
contains a Bessel function of the first kind and order one,
and again has negative and positive regions, Figure 1.5.

The phase changes produced by the misfocus emerge in the
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blurred image as lateral shifts of the various fregquency

regions of the spoke pattern.

The second important point is a consequence of the phase
change of the blurring function as this also means that
these frequencies at which the axis is crossed are
suppressed to zero by the convolution process. This

can be seen in Figure 1.2 at the frequencies Hil ) Hiz,-un
The process of deconvolution by spatial frequency filtering
(or any other method) can thus never be perfect as these
absent frequencies represent information which has been
irretrievably lost. This is emphasised by the form of
the filter which is required to perform the deconvolution

of a linear blur.

If the linear blur is represented by rect ( X/AX) where

et (x/ox) =1 for  |X] L AX

N

= Vo }Lr- IX| = 8X

A
2
(o) for 1% > %?ﬁ

then as‘fhmu 1.3

Fthy = _D

S(
“2nee HX

rmx(%x) 2 dx

|

il

and as S(h)
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-2 KX
dX

M
©

sin( HAX)/(‘KTD

i

then S(#)

]

and  F(#) ])Tt"/si.n(KHAX) 16

Clearly as ¥ HAX tends to AT , where N is integer
then F(H) tends to infinity and cannot be realised.

Ihis is equivalent to requiring an infinite amount of
energy to recover the information lost at the suppressed
frequency points (or poles) of the filter. The form of

the inverse sine filter is shown in Figure 1.6.

Numerically the process involves forming the two dimensional
Fourier transform by F.F.T. and performing the 2(N x M)
complex multiplications, .F(H,K) , on the caleulated
spectrum before inverse transforming yields the (N x M)
filtered image intensities. At least two (N x M)

arrays have to be handled which can result in storage

problems for large arrays.

For optical deconvolution the basic two lens system is

shown in Figure 1.7.
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The coherent field distributions of the front and
back focal planes of a converging lens are a Fourier
transform pair. Hence, for an object distribution
in the front focal plane of lens Ij its complex
spatial frequency distribution can be operated upon
by a filter, F(WR,R ), in the back focal plane of lens
L,. This modified complex spectrum, in the front
focal plane of the second lens, LZ’ is retransformed by
this lens to give a filtered image in its back focal
plane. For a wavelength, k, illuminating an object
distribution, o(x,¥), with lenses of focal lengths, f,

we have

Oww = Aﬂ o(x, )] 7

where A is a constant and u=)§Hmm,V=)'ij, the distance

off axis of the frequency H lines mm—1, K lines mm |

The complex amplitude after the filter element is then

O..-.(UN) x BTT: o(x;tf)] . F(”'U) "

which after a retransformation gives an image of

LF(x,v) = C.olu,4) @ f(X;‘f) 119

where B and C, are constants and

thaw) « JEELuvY]) 110

The lenses can only perform a Fourier transformation
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with the negative exponeént denoting phase retardation

so the inverse transformation is replaced by a second
transformation which produces an inverted image. For
convenience we shall assume the axes in image space in
the opposite sense to those in object space and so avoid

negative co-ordinates.

The complex nature of all the operations requires that
the phases of all components are controlled. It is
thus usual to put the object transparency and filter
transparency in liquid gates t® "back-off" any spurious

optical thicknesses in the films.

Almost all spatial filtering involves an attenuation in

& to W% muia 4s Hue

intensity transmittance of 10~
to the form of the optical transfer function which, for
the case of the deblurring filter shown in Figure 1.6,
has a maximum to minimum amplitude transmittance ratio
of approximately 130. The intensity transmittance at
zero frequency is thus down by a factor of about 104,
compared with its pre filter value. This means the
light level of the deblurred imaze is very low. This
is common to all spatial filtering devices which are
inherently passive in operation. However, further

attenuvation may be introduced, the exact amount depending

on the method used to construct the filter.

The need to realise the required maximum and minimum

values of amplitude transmittance is also in itself a
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serious constraint on the filters. We shall discuss
this dynamic range constraint and the light efficiency
requirements in the next section which is a review of

current methods of producing spatial filters.

1a4 TECHNIQUES FOR PRODUCING .COHERENT SPATIAL FILTERS

Zernike (Ref. 9 ) used a phase contrast technique to
improve the imaging of phase objects in 1935 although
Abbe (Ref. 10 ) had realised the significance of spatial
filtering as early as 1893, A major development was the
advent of the highly coherent laser source. Marechal
and Croce (Ref. 11 ) improved the contrast of a
photographic image by purely attenuative filtering and
Tsujiuchi (Ref. 12 ) constructed a complex deblurring
filter to correct a known degree of defocus. The
absorption part of this filter was produced by rotating
- a suitable painted disc and recording its transmittance
on film, The phase control was due to a vacuum
deposition on a thin film in suitable concentric zones.
The final filter was a sandwich of these two components

accurately aligned.

A significant step forward came when Vander Lugt (Ref.13 )
constructed a complex filter holographically by exposing
a photographic film sim ltaneously to the Fourier transform

of the impulse response of the required filter and an

oblique plane reference wave.
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Writing the reference wave as Ao exp(=2xcusing/ » ),
where ﬁ'is the angle between the wave vector and the
normal to the film, then if the film is processed so
that the resulting amplitude transmittance, T(u,v), is
proportional to the incident intensity we can write
“2mBu o

|

T o« | Fun) + Aoe L

wl-nere. Bs .Sw'\ V’/}‘

Expanding we have

-ch;.Su 2B
Tadel AL+ LBl + A Ftuve v hFoe

The last term in the expression gives the required complex
filter transmittance, its impulse response appearing a
distance stnf off axis in the output plane of a subsequent
spatial filtering system. The term A;L+ | FCU;V)Iz
appears on axis and provided a large enough value of B is
chosen there is negligible overlap of the adjacent orders,
The complex conjugate of the filter function is also formed
ag the 3rd term and this makes the Vander Lugt filter useful
for matched filtering. The complex information is held as
an amplitude and phase modulation of the tilted reference
wave which acts as a carrier. This is made clear by
writing Equation 1.12 in cosine form,

/

'T'(u.v) °< Aoz + 'Fc""")lz"'ZAnG(WV) ws(2tu B + BCu,v)) i

A deblurring filter to correct for defocus was realised by
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Stroke and Zech (Ref.14 ) and Lohmann and Wehrlich
(Ref. 15 ) by sandwiching a Vander Lugt hologram with
a purely alternating filter. The attenuating part is
made by recording the intensity of the Fourier transform
of the point spread function of the required filter and
processing this with an overall gamma of 2 such that the
resulting amplitude transmittance is o |/ | E(u,v)|?.
Using the same system, but adding a suitable reference
wave the holographic part is formed, and the two are
automatically of the same scale (unlike in the scheme due
to Tsujiuchi (Ref.12 ). When placed in series the

resulting transmittance to one of the first image orders

is
Setisia s o e o] o~
\ FCU,V)‘I
acptrds SR
F‘HJV}

Stroke and Halioua (Ref. 16 ) also made a holographic
gandwich filter but with an absorption part X ‘/1F(U;W”.

Brown and Lohmann (Ref. 17 ) defined light efficiency as

the ratio of the intensity diffracted into the first order
to the total light incident for the case of a simple regular
grating. Considered as a hologram they studied different
techniques of producing these gratings and compared their

light efficiencies.

For a grey continuous tone hologram such as the Vander

Lugt type the maximum efficiency is 6.25%. In practice,
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the reference wave is usually two or three times larger

in amplitude than the object wave, (to ensure the fringe
contrast does not extend beyond the linear region of the
transmission versus exposure curve of the photographic
plate). The effect of this is to reduce the maximum

light efficiency for a grey hologram to less than 2%. For
a deblurring filter then, the overall intensity transmittance
is likely to be reduced by more than 10%. In this case
grain noise and scattered light can seriously reduce the

image quality.

145 COMPUTER GENERATED HOLOGRAMS

All the techniques discussed so far require the impulse
response of the filter to be available. A significant
step forward in producing a general complex element was
the development of computer generated holograms. The
Fourier transform of the required filter's impulse response
is calculated, the complex transmittance coded and displayed
(typically on a grapaplotter output or C.R.T. output device)

and recorded photographically with suitable processing.

The earliest of these computer generated holograms was
8imply a model of Equation 1.12. As information is
contained in the carrier wave term the zZero order terms can
be replaced by a constant to reduce the computation. -

Burch (Ref. 18 ) used the form,
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T[u,v) = (Constadt +.2A0G(UJ") Cas(z“rru B+ 9('&\’)) 1z

This technique requires a grey scale display and control of
the subsequent grey tone processing. It is also inefficient
in its use of the available computer display, as several
display points are needed to produce a phase modulated

cosine fringe.

The real development in the computer generation of
holograms came with the invention of the binary detour
phase coding scheme by Lohmann (Ref. 19 and Ref. 20 )
although the hard clipped matched filter, due to Kozma and
Kelly (Ref. 21 ) was the first binary transmittance

computer generated spatial filter.

1.6 LOHMANN BINARY HOLOGRAM

To produce a Lohmann hologram the complex amplitude
transmittance of the required filter is computed numerically
by F.F.T. Computer limiations on storage, as discussed
for the case of numerical filtering restrict the number of
calculated complex amplitudes to a finite number of sampling
points, M x N. Consequently a matrix of cells of size
JHJK is established, over each of which the associated
complex coefficient is assumed to be constant. If the

calculated sampled value of the filter in the (m,n)th cell is
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F(md¥, ndk) = ]Fcndumarr.) \ e ety e

then the sampled filter's transfer function is

i Mot s SRl
) =ZZ|FcMJumm| y O AR AR e

m=o n=ov

where Sfuﬂ) is a two dimensional delta function

To code the complex information of each sampled coefficient
an aperture, of size controlled by the modulus of the
amplitude, and position by the phase of the coefficient,

is constructed in each cell, as shown in Figure 1.8. The
detour phase, associated with the shift in aperture position,
is used to code the phase. Lord Rayleigh noticed the detour
phase effect, as the appearance of "ghosts" in the spectrum
of a diffraction grating when slight dislocations were
present in some of the slits of the grating. For a perfect
grating, the path length difference from adjacent slits for
wavelets reaching the 1st diffraction order, is exactly one
wavelength. If one of the slits is displaced towards one

of its neighbours, its path length difference will no longer

be one wavelength with respect to the adjacent slits.

Hence, still seen from the first diffraction order, a
lateral shift in a slits position by a fraction, P, of

a grating period will producé 2. detour phase of F.2w

radians, as shown in Figure 1.9. When P = 1 the shifted
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£lit is superimposed on its neighbour. In terms of
the Lohmann coding scheme a shift of an aperture (m,n)
by XdWk/2 gives an X-direction, first-order detour phase

of £ radfans associated with the (m,n)th coefficient.

As seen from the Jth diffraction order, into which regular
adjacent slits diffract withd . A path difference, a shift
of X P gives an associated detour phase of + J.P 21
radians, A binary mask of suitably sized and positioned
apertures can thus control the complex transmittance.

The use of different diffraction orders has advantages
which are discussed in Chapter 3 along with a more rigorous

analysis of the Lohmann filter.

The maximum 1light efficiency of a binary Lohmann hologram
is 10% which is the maximum diffraction efficiency of a
square wave absorption grating (Ref. 18 ), In practice

it is important to ensure that the hologram is truly binary

as its loss will lower the light efficiency.

Of course, a binary hologram has high resistance to noise
and the extra advantage of independence of photographic
processing.

1.7 LEE HCLOGRAM

Another technique which utilises detour phase is that due

to Lee (Ref. 22 ). Any complex number can be decomposed
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into four positive numbers which are its components on
the positive real, negative real, positive imaginary and

negative imaginary axes, A%, 47, B

and B~ respectively.
If every Fourier coefficient cell is divided into four
equal parallel strips they will each transmit with a
different detour phase. Adjacent strips will differ in
phase, as seen from the Jth diffraction order, by T TT/Z;.
and a complex amplitude can be simulated by weighting the
transmittances, either by controlling the density or size

of two of 'the component regions A~, B~, AT and B'.
The maximum transmittance occurs when two of the subcells

are clear, In this case, like the Lohmann hologram, the

light efficiency has a maximum value of 10%.

1.8 BLEACHED FILTERS

Any of the filters already discussed can be bleached in
order to improve their diffraction efficiency (Ref.23 ).
For a continuous tone hologram that is subseguently
bleached the maximum light efficiency becomes 33.9% - the
diffraction efficiency of a sine wave phase grating

(Ref. 18 ). Bleached binary holograms have a maximum
light efficiency of 41% - that of a square wave phase
grating. On bleaching, however, the amplitude information

is lost. In this sense these bleached holograms behave

like a Kinoform (Ref. 24 ). This is a phase only computer
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generated element in which it is assumed the modulus

of the transmitted amplitude is unity. Under circumstances
of a well diffused object this may be a fair assumption but
in general this will not be the case and the resulting
image will suffer a loss in fidelity due to this discarded
amplitude information. The Kinoform, however, does have

a maximum light efficiency of 100% when all the incident

light is diverted to its single on axis image.

1.9 PARITY SEQUENCE FILTERS

One technique which offers high light efficiency but
preserves fidelity is based on spectrum levelling by
parity sequences (Ref. 25, Ref. 26 ). The parity
terms form a sequence orthogonal tc the required complex
transmittance sequence from which they are calculated.
A constraint is applied so that both the complex sum of
and difference between the amplitude transmittance and
its associated parity sequence term is unity. Thus if
each amplitude and phase term is replaced by its
associated ﬁair of phase only terms, the modulus of the
amplitude is levelled to a constant value of unity, and

a high light efficiency element is the result.

Physically the parity sequence filter operates like a
Kinoform except in terms of the loss of fidelity in the
image. The parity elements ensure that the light is

diffracted either into or away from image points so that
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its fidelity is preserved. Like the Kinoform the

parity sequence filter requires continuous phase control
over 2¥ radians which demands grey scale display and

carefully controlled photographic processing.

The recent approach of binary phase filters (Ref. 27 )
avoids the continuous tone and processing requirements
and involves filling each cell with an array of subcells

in which the phase can take only two values.

1,10 ROACH (REFERENCELESS-ON-AXIS COMPLEX HOLOGRAM)

The loss of fidelity of the Kinoform is not suffered by

the Referenceless On Axis Complex Hologram (Ref. 28 ) which
uses two different emulsions in a colour reversal film such
as Kodachrome II to control the complex wavefront, see
Pigure 1.10. The emulsion which absorbs the colour of

the reconstructing light is used to control the modulus

of the complex transmittance. The phase is controlled by
the other emulsions which do not attenuate at the
reconstructing wavelength. The hologram is constructed by
illuminating the colour film with the modulus and phase
information independently through different colour filters.
The light efficiency falls below the theoretical value of
100% because of the attenuation by the colour dyes and in
practice the maximum light efficiency is 50% (Ref. 18 ).

"In effect ROACH is a sandwich filter with the construction

and aligament difficulties avoided.



ol 1'9o14

HOVOY — WpJBOJOH — x2|dWoD — siXy— UQ — $S2]20U242)2Y




31

1.11 DYNAMIC RANGE

The dynamic range for grey tone holograms is limited by
the finite film density range. For the computer
generated binary holograms the dynamic range is limited
by the number of available addressable points on the
display. For the sandwich filters (including ROACH) the

amplitude transmittance is related to film density by

-D

—

"T = 10 2 Lk

Typically the range of density over which transmittance

is related to the inverse of the exposure linearly is 3.
Hence, for the 1/(F) type filter the dynamic range is

about 30:1 while for the VTF)z type of attenuation the
dynamic range is about . 30:1. For the continuous tone

Lee hologram the dynamic range is similarly about 30:1.

The Dohmann binary hologram with (RxR) addressable points
per cell has a dynamic range of (R+1). The Kineoform, of
course, has a dynamic range of 1. The Parity phase filters
and Binary phase filters that will be discussed in more
detail in a later chapter have more efficient coding than
other forms of computer generated holograms and consequently

have a higher dynamic range.



CHAPTER 2

ANPLITUDE AND PHASE VARIATIONS IN A COHERENT

DECONVOLUTION SYSTEM
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2.1 INTRODUCTION

In Chapter 1 some of the limitations of computer generated
holograms were mentioned, in particular those related to
the limited number of addresses in the display. These
constraints will be coasidered in more depth in Chapter 3

and 4.

In practice the linear deburring filter will be different
from the ideal form shown in Figure 1.6 for another quite
different reason - the presence of noise in the system.
Coherent optical systems are very sensitive to the presence
of dust or other blemishes on the components. As we have
already mentioned, the use of a Fourier transform system
suppcesses the effects of this coherent noise due to
blemishes in the spatial filter. However, elsewhere in
the system blemishes create uawanted diffraction rings in
the image. Wolton and Redman (Ref. 29 ) have produced a
system which suppresses this type of noise by introducing

a continuous simultaneous movement of both the first
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Fourier transforming lens and the filter element.

Also, as well as this coherent optical noise there is

always some spatial noise, n(x), in the data. For data
in the form of a transparency the main source of spatial
noise is the grain of the film. (This is also true for
a numerical system which has to read the numerical data,

typically by microdensitometer from a film record).

The blurred object distribution, c(x), is thus modified to
6kx) where

cl(x) = g(x) @ s(x) + a(x) 2.1

As we have seen, the perfect deblurring filter is highly
amplifying at the pole regions. (Strictly, "amplifying"
is an incorrect term for the action of a passive coherent
filter. We shall use "amplifying"as meaning a trans-

mittance of approximately unity).

As the spatial noise, n(x), will contain frequencies far
beyond those of the signal, an operation by the ideal
restoring filter, Figure 1.6, on a spectrum of a noisy
object distribution, E(H), will result in a high
agplification of the noise in the regions where the signal

to noise ratio is small - at the poles of the filter,

There is clearly an optimum filter function the general

form of which must be such that when the signal to noise

power is large its operation is with the degree of
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amplification of the perfect filter but when the signal
to noise power is small a greatly reduced amplification

results.

2.2 LEAST-MEAN-SQUARED-ERROR FILTER

When n(x) is unknown Equation 2.1 cannot be solved directly.
The most that can be done is to produce an estimate, g(x),
of the solution. If the object distribution and the noise
are viewed as spatially stochastic processes, the best
estimate is defined as one that maximises the posterior
probability density of g(x), given 01(x), as determined

by Bayes's rule. The processes n(x) and z(x)
are independent. If they were also Gaussian with zero
means and known covariances, the posterior probability

density would be zreatest for the linear estimate

g(x) =/m(x1) g(x-x') ax’ 252
in which the estimating kernel, m(x1) is chosen to minimise

the mean sjuared error,

N
€ = EE - gx)® 2.3
between the true distribution and the estimate, where E

denotes an expected value (Ref.30 )

Often the noise may at least approximately be considered
to be a Gaussian process. However, this is rarely the
case for the object to be restored. It is assumed that

if the estimator is optimum for a class of Gaussian
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processes that resemble in their structure the finest
detail of the object to be restored, then it will be

effective when applied to these objects as well.

For the case of optical data, photographic grain noise
is mostly multiplicative and only for low contrast images
can the additive noise model of Equation 2.1 be assumed,
Huang (Ref. 31) and Yu (Ref. 32). 1In addition the
human observer, frequently the last step in an optical
system, adds a further complication to the determination
of a filter superior to the linear least mean square

error estimator defined by Equation 2.2,

Later in this chapter we demonstrate the failure of this
LMSE criterion for the deconvolution of a linear motion
blurred object by simuating a coherent optical system by
computer. e also study, again by computer simulation,
the effects of random noise processes on other parts of

the system.

2.3 FORM OF THE LMSE FILTER

The estimating kernel, M(x), of equation 2.2 is determined
by the form of the blurring function, s(x) and the noise
and object properties. These are completely characterised
by their spatial covariance functions - or by the Fourier
transform of these,#)n(H) andd%(H), which are the spatial

spectral density functions of the noise and object processes
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respectively.

The resulting LUSE filter, in the usual Wiener form

(Ref. 2), is written as

o (1)
Fiow = F(W . %—n(t’b P

7
}%%; -t-\F(H\\ i

where F(H) is the ideal filter for the noise free system.

204

The minimum mean square error attained by this estimator

¢e(“).¢n (. dH
61“'\.!\ i [{ & e

| Scwy V’.@(&) o ¢,‘Cﬂ)}

Wiener filtering does not, of course, increase the signal

is then

to noise ratio.
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2.4 COMPUTER SIMULATION - DESCRIPTION OF SYSTEM

A block diagram, Figure 2.1, shows the computer model
used to investigate the operation of a cbherent
deconvolution system. For convenience and speed

it was restricted to one dimension and the convolution

process considered was limited to a linear metion blur.

Data, after input, is first convolved with a rectangle
function. At this stage a random variation can be
produced in the blurred object amplitude by the addition
of a sequence of computer generated normally distributed
random numbers - scaled to simulate various degrees of
noise in the object. This noisy object is then Fast
Fourier Transformed to yield the complex spectrum. The
transformation was performed using a standard Nottingham

Algorithms Group Library procedure, COGABA.

Fast Fourier Transformation

The requirement of having a data sequence with a number of
terms, N, as a power of 2 was met by using 256 sampling
points to represent the object. It is worth noting that
in order to ensure perfect symmetry, from a computational
point of view, between object and Fourier space, the
calculated spectrum has only positive frequency terms.

The transform is still capable of operating with complex
data, however, as the spectrum extends from zero frequency

to a frequency of 2.Nq-1, where Ng is the Nyquist
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frequency. That is, the upper half of the zero order
and the lower half of the positive first order of the
total periodic spectrum are used. The spectrum
periodicity is a result of the finite sampling in data
space, As the most efficient sampling criterion of
Whittaker and Shannon is implicit in the Fast Fourier
Transform procedure the zero order frequency terms and
the first order frequency terms abut exactly - see
Chapter 3, section 3.2 and Figure 3.1. The first order
terms are thus aliased frequencies of the negative half
of the zero order period of the spectrum,and indeed are
equivalent to these first order terms positively shifted
by one frequency space period. As the central frequency
of the first order of the spectrum is the alias of the
zero frequency term (which already appears in the
spectrum sequence) it is discarded. Hence, for N data
points the spectrum extends from ‘frequency 0 to (N-1 )/ X,
where A X is the objcct extent and dX = A X/N is the

separation of samples in the data.

The procedure CO6ABA can thus perform the operations

Nl ,
-2l HI. XL e
F(sT) "J_.,—‘-Z )[f‘r\ > )(ar- HL=0, 1,2...N! A
B XL=0

and
N=I 2.'&“7_.“
Yi)= _L—Z T =0 N-| .
)(( ) = Fiye N for XE= 0L 2.7

RL=0



40

where F(HI) and f(XI) are each a pair of one dimensional

arrays containing real and imaginary terms.

Object Data

Pwo different data sequences were used in the simulations:
1) A dilute binary variable frequency bar chart shown in
Figure 2.2 having bars of sizes 64, 32, 16, 8, 4 and 2
samples, with gaps of 48, 24, 12, 6, 3 samples. A
reduced version of this with the 5 smallest period bars
was also used.

2) A continuous tone but dilute object formed by
convolving the 5 point bar chart of Figure 2.2 with a
Gausgian distributed function having a full width at half

maximum height of 8 samples - Figure 2.2.

Convolution Operation

In each case a linear convolution operation extending
over € samples was performed to produce the blurred

objects shown in Figures 2.3.

The bar chart periods which have frequencies within the
negative regions of the optical transfer function of the
blur will suffer lateral shifts of half their periods
induced by the T radians phase change in frequency
space. For the object considered, the bars with periods

less than 4 units will be laterally shifted. This can

be seen at the high frequency end of the bar chart
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in Figure 2.3. The phase terms in the deblurring filter

have to correct for this.

2.5 DECONVOLUTION RESULTS AND DISCUSSION
Kinoform

The necessary phase correcting element is shown in

Pigure 2.4 as a square shaped function which oscillates
between +1 and -1. If this element operates on the
gpectrum of the blurred bar chart and corrects its phase,
an inverse transformation will result in the imaze of
Figure 2.5. Over all this image does not look much more
like the original bar chart than does the blurred version.
However, the correction of the phases in Fourier space

has had the important effect of correctly redistributing
the peaks at the high frequency end of the bar chart.

It is this real space shifting property of the Fourier
space phase terms which makes phase control of paramount
importance. The phase only element, used here as a crude
deconvolution filter, is often called a Kinoform. Its
imﬁulse response is also shown in Figure 2.4. The general
loss of fidelity of the image after deconvolution by a
Kinoform is due to the Kinoform's inability to assign

the correct weightings of the frequency components.



44

21|14 wJsoloul)y
v . N- OHm
2-01% BIXY-X
Quuuu ooﬂnm ocN“N o002 03“." Qo3 ouo“— oan._._ _qqo““ ooaluun npsto 000
e T o j}j{-

S




5 ¢ 9

2 A
o =N J2A0D2Y  J21|l4  WwJO Jouly
: 4 501X SIXd-X
ocv_u phZé omoﬂw 0061 009°1 0oy 1 0od'1 0po°! G0 0090 00y °0 NGZ2°0 00
o i A i = e UL 2 | o
cl.ulll..lful.. 1 = L | | :
5 /.
VA , \
\ / \
G \z\
L
—

Gud 1 000!

(R [V

Q00 "E

000"+

WIH

(SN1N0



46

Ramp Filter

The simplest element which operates on both phase and
amplitude and produces some degree of image sharpening

is the ramp filter. This corrects the phase as a Kinoform,
but also, amplifies the Fourier coefficients by a factor
proportional to their frequencies. The larger the value
of the constant which measure the slope of the filter's
modulus across frequency space, the larger will be the
ratio of high to 1ow“£requency amplification. Recovered
images are shown in Figure 2.6. Although there is
sharpening of the deconvolved images compared with the
Kinoform recovery, there is considerable image noise due

to the amplitude amplification errors of the filter.

Ideal Filter

In the ideal case an element is required which operates on
the amplitudes of the Fourier coefficients so as to

correct them to their pre-convolution values.

The ideal filter, the inverse of the optical transfer
function of the blur, is shown in Figure 2.7, along with

its impulse response.

Operating with this filter on the blurred object distribu-
tions of Figure 2.3 results in the optimum recoveries of
Figures 2.8 and 2.9. These represent the best recoveries

possible, as in general the presence of noise will preclude
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the use of this ideal filter function and necessitate the

use of optimum, yet approximate filters.

Least Mean Sguare Error (IMSE) Filter

The discussion of section 2.3 centred on the Wiener
Least Mean Square Error Filter (LMSE) as an optimum
recovery element. Figure 2.10 shows IMSE filters and
their impulse responses for signal to noise power ratios,

P = 10000, 1000, 100, 10 and 1.

Amplitude Noise Simultation

Two schemes were considered for the simulation of random
amplitude noise processes in the data and filter functions.
a) The amplitude of the random noise was made independent
of the local amplitudes, and had a maximum excursion that
was simply a constant % of the maximum amplitude.

b) The random noise was constrained to have a maximum
excursion that was a constant percentage of the local

object amplitude.

If the random numbers n(I) are normally distributed over
the range O to 1, where I is in this case a counter for

the 256 noise values required over the field, then

a) ol(x)

C(x) + n (I).D1 for scheme a) 2.8

and 1
o) S S ¢(x) + n(I).G(x).D2 for scheme b) 2.9
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Where D1 and D2 are constants equal to the maximum

percentage noise excursion being simulated.

Equation 2.8 produces a noisier object distribution as no
suppression of the noise terms occurs for low values of
g{x)< Equation 2.9 is more like a model of a grainy
film, for a medium density range, as at low amplitude

levels the noise is suppressed - see Figure 2.11.

Phase Noise Simulation

Phase noise was also impressed upon the filter element
by adding random fluctuations to the filter's phase

components. The filter thus becomes

FI(H) = P(H) exp i (¢ (H) + n(1).D,) 2.10
where n(I) is a random number distributed on the interval
0 to 1, and D3 is a constant equal to the maximum excursion
of the random phase variation. This random phase factor
converts the wholely real deblurring filter into a truly

complex element - see Figure 2.11.

Deconvolution in the Presence of Object Amplitude Noise

In this section the results of deconvolving both the
blurred binary object and the blurred continuous tone
object are presented. The noise value, W, represent the
average excursions of the noise process, as a percentage

of the maximum object amplitude for a), and as a percentage

of the local amplitude for b). The results are in terms
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of the modulus of the recovered image amplitudes. The
images recovered by an ideal filter for the blurred objects
degraded by various levels of noise according to scheme a)
are shown in Figures 2.12 a) for the binary object and
2.13 a) for the continuous tone object. The lack of
noise suppression is apparent in the images which are
severely affected by quite modest values of N. For
comparison, recovered images of the binary object, with
noise added as scheme b), and deconvolved with an ideal
filter, are shown in Figure 2.12 b). The ideal filter
represents the case when the noise power, én, is zero
and as such the signal to noise power ratio,}s A I -
infinity. It can be seen from the recoveries that scheme
a) produces a more noisy image than scheme b), as would be

expected.

The effects on the recoveries of using Least Mean Squared
Error type filters can be judged from the deconvolved
images of Figures 24 a); 2.15 a), b); 2.16 a), b):

2.17 a), b), for the binary object with signal to naise
power ratios,lg , of 1000, 500, 100 and 10 respectively
for the noise schemes a) and b). Similarly, Figures

2.18 a), b) to 2.21 a), b) are deconvolutions with }3 of
1000, 500, 100 and 10 for noise schemes a) and b) but with

the continuous tone object.
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Standard Deviations of Recovered Images

In order to assess the operation of the filters used,

curves of standard deviation of the recovered imagzes as a
function of object noise were calculated for both objects,
and both noise schemes. These curves are shown in Figures
2.22 a), b), for the binary object, and Figures 2.23 a), b),
for the continuous tone object. The procedure was to
calculate the normalized square root of the sum of the
squares of the deviations of the recovered images from the
origihal unblurred object distribution. As a measure .of
the statistical goodness of recovery, the standard deviations
of the original blurred noisy objects were calculated, and
are also shown in the figures. The significance of the
curves is that when the standard deviation of a recovered
image becomes greater than that of the blurred noisy object,
the recovered image is, by a IMSE criterian, a poorer
representation of the original object than is the blurred

version. The noise level, N

nax: 2t which this occurs,

(when the two curves cross), represents the maximum noise
tolerable in order to statistically recover the image

according to a LMSE measure.

The curves of Figures 2.22 and 2,23 all show a general
reduction in standard deviation for the recovered images

as the filter signal to noise ratio is reduced. As an
example, for the binary object and additive npise, a), the
perfect filter results in an image with a stamdard deviation

less than that of the original, blurred noisy object up to
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a noise level of Nm ™ 1%4. Por noise scheme b),

ax

W™ 2% With /B = 1000, ¥ __ * 2% for a) and

Nﬁax & 5% for b). It should be noted that these are
- only approximate values as the standard deviation at each
value of N will depend upon both the form of the object
Ssequence and the noise impressed upon it. Strictly a
value of standard deviation should be obtained for a given
N by calculating the ensemble average over all data
sequences and noise processes. (The Central Limit
Theorem suggests that the resulting standard deviations

will tend to be normally distributed as the number of data

and noise sequences considered is increased, (Ref. 33 ) ).

For each of the curves of Figure 2.22 b) different noise
sequences were generated by computer and used with
weightings, N, on the object data. The resulting curves
are thus smooth. TFor the Figures 2.22 a) and 2.23 a), b)
different noise sequences were generated for each value of
N as well as between the individual curves. In this case
the statistical scatter of the calculated standard

deviations can be seen.

The computer time required to statistically analyse the
variation of standard deviation with data and noise
sequences is, of course, large as for each value of
standard deviation the whole deconvolution process must
be performed. The available computer facilities (ICL

19048) probibited such a study. Also, in view of the
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qualitative nature of the assessment of the recoveries,
further statistical analysis of the variation of standard

deviation was not pursued.

It is also worth pointing out that a certain degree of
ringing of the filter is apparent which results in aliasing
of the recovered images. It is most noticeable for the
filters with large signal to noise ratios which have
rapid amplitude changes resulfing in impulse responses
that do not decay to nearly zero at the edges of the image
region, ¥ AX/2 (see Figure 2.10). This aliasing is
more obvious in recoveries of the noise free continuous
tone object as the resulting amplitade ripples are then
more apparent, see for example Figure 2,13 a) with § = 0.
In practice it is normal to apodise the filter in order to
reduce image aliasing. In these simulations the filters
were not apodised; the data field was, however, reduced
from the six element bar chart extent of Figures 2.14 b)
and 2.16 b), in which a fraction 219/256 of the object
field was used, to 107/256 of the object field.

In terms of standard deviations the aliasing error results
in the calculated values being slightly high with the error
decreasing as ﬁ decreases. For /6 < 500 the aliasing is
negligible.

The case of a Kinoform was considered earlier and was seen
to produce a predominantly low frequency image of poor

fidelity. A similar effect is seen for filters with low
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signal to noise ratios. The images are recovered with
low standard deviations as a result of the suppression
of progressively larger high frequency regions of the
object spectrum. This can be seen in the form of the

filters in Figures 2,10.

As a result of this, the calculated maximum tolerable

noise levels, N

Sy do not generally agree with those

Judged by an inspection of the recovered images. For
example, the curve for'f3 = 500 of Figure 2.22 a) gives

a value, N

nax S 3%, but the recoveries of Figure 2,15 a)

suggest Eﬁax % 5%. More noticeable discrepancies occur
for small values of /s in which the standard deviation
calculations show a high degree of tolerance to noise.
Figure 2.22 a) shows that for scheme a) with ¥ D 4%

the image recovered by a filter with ;5 = 10 is the best
estimate of the original bar chart object. This is not
born out by an inspection of the recovered images of the
blurred bar chart with 4% additive noise for the other
LMSE filters. With ﬁS = 1000, 500 and 100 all the
recoveries exhibit a greater degree of image deconvolution

than does the recovery with ﬁ5 = 0.

The discrepancy arises because deconvolution is an edge
sharpening operation, enhancing the high frequency content
of the image, and it is exactly this image structure which
results in large values of standard deviation. In this
» Sense, the IMSE criterion 1s a poor test of the success

of deconvolution as it primarily measures image noise
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rather than edge sharpness.

Deconvolution in the Presence of Filter Amplitude Noise

The same two noise schemes were used to simulate amplitude
noise on the filter element in the linear motion decon-
volution system, In this case, however, only the ideal
filter was considered. The results are shown in Figures
2.24 a) and 2.24 b) in which the Fourier plane resistance
to noise is exhibited. The recoveries are quite different
for the two noise schemes. This is because the filter has
a large dynamic range. Hence, for scheme b), in which the
average noise excursion is limited to a percentage, N, of
the local amplitude, the noise has its largest effect where
the filter amplitude is maximum, The additive noise thus
tends to boost the transmittance in these regions with the
result that little image degradation occurs Figure 2.24 b).

This is clearly an unsatisfactory physical model.

The noise scheme in which the average noise excursions are
limited to a percentage of the maximum amplitude, scheme a),
results in an image with a large low frequency content due
to the effective suppression of the filter's high frequency
transmittance, Figure 2.24 a).
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Deconvolution in the Presence of Filter Phase Noise

Finally we have simulated the effects of random variations
in the phase of the filter element. The phase noise is
agssumed to be independent of the local phase values and

is additive. Hence, the mean difference in phase between
the different regions of the filter remains®™ W radians.
Figure 2.25 shows the effects of random phase noise on
the images recovered by a Kinoform filter. An average,
additive excursion of % 20° is tolerable. For the case
of an ideal filter, the recoveries for which are shown in
Figure 2.26, the resistance to phase errors is increased
slightly by the improved fidelity due to the corrected

amplitude transmittance.
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CHAPTER 3

COMPUTER GENERATED HCLOGRAMS - ANALYSIS
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3.1 INTRODUCTION

As the complex element's impulse response is not required
for the synthesis of holograms by computer this method of
production is very versatile. This chapter is devoted to
the study of Fourier transform computer generated holograms.
The restriction to Fourier transform holograms is imposed
because of their particular importance. They have the

following properties:

1. A lateral translation of the whole hologram produces
no change in the intensity distribution of the image which
remains stationary. This is a direct result of the
property of the Fourier transform where translation in one
gpace is accompanied by a linear phase shift in the other
space, without affecting the modulus. This is, of course,
the source of detour phase, but in the case of detour
phase the translations are amongst the individual elements

of the filter and not of the whole filter itself.
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2. Localised disturbances in one space are distributed
more or less uniformly in the other space. Hence,
localised defects in thé hologram due to scratches and
dust particles do not result in locaiised blemishes in
the image but rather produce a slight general loss of
fidelity in the entire image.

3., If the Fourier transform is repeated a number of times
gide by side on the hologram, the image is not repeated,

but approaches a sampled version and appears as a dot
structure. This facilitates the use of detection devices
such as photo-diodes and reduces interference between data
elements. The repeating of the Fourier transform increases
the redundancy, suppresses the speckle and increases the
signal to noise ratio. Also the increased redundancy

does not involve an accompanying increase in the number

of detection devices in the image domain.

The Lohmann hologram is the simplest to make and as in its
analysis many important characteristics of computer
generated holograms are exhibited we shall study this

case first.

A new class of computer generated holograms was developed
recently by Severcan (Ref. 27 ) following earlier work on
spectrum levelling by Chu and Goodman (Ref. 25 ).

Potentially the phase only filters which result have both
high light efficiency and dynamic range. Two variations

of these parity sequence filters are studied. An error
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in the earlier analysis of these filters is corrected

which results in a lower bound for the dynamic range.

A third phase only filter is also studied. This is the
binary phase only filter (Ref.20 ) in which the
requirements of grey tone display and processing,
necessary for the parity sequence filters, are relaxed
as only two phase values are assinged to the (R x R)

subcells in each PFourier coefficient cell.

However, before analysing the Lohmann filter in detail
we shall discuss the most important constraint on
computer generated holograms - the limited number of

addressable points on the display.

3.2 OSAMPLING RATE LIMITATIONS

With the proviso of finite extent, AZXo, the object
distribution can be expanded as an infinite Fourier series
of frequencies, Hp = n/AXc. Strictly, the Fourier series
represents an infinite object distribution of periodicity
AXﬁ, so we must expect any subsequent image derived from

this discrete spectrum to exhibit the periodicity A}{o.

If in addition to its finite extent the object distribution
is band limited, and contains N frequencies, ndH, not. higher

than éLﬂ then the Fourier series representing the object
2
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distribution has a finite number of terms. The Whittaker-
Shannon sampling theorem points out that the most efficient
sampling of the object and its spectrum, in order that
faithful Fourier transformations between the two spaces

can be effected is when

Hn =n/l§%c = ndH 3
i.e. 45 = 1/AXo _ 3.2
and hence when
&x = 1/A= 3.3
where 8x is the sampling rate of the object. This is

shown schematically in Figure 3.1.

The most efficient sampling thus occurs when,

g/ah = N = Ax,/8 3.4
Hence, A H. AXo = ¥
defines the minimum number of samples necessary to
represent an object of extent Xo which contains no
frequencies higher than As/2. N is the so called
space-bandwidth product and in electrical engineering
language AH/2 is the Nyquist frequency. In principle,
then, the resolution cell size of a spatial filter, &H, is
limited by the extent of its impule response, A . Most
holographic filters reconstruct with more than one image
order. In particular, computer generated holograms,
because of their square wave nature, reconstruct with many

orders, see Figure 3.2.

However, as the required image in the spatial filtering

gituation is the convolution of the filter's impulse
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response with an object distribution; and overlap

(or aliasing) of the convolution of the object with
different diffraction orders is to be avoided, the
resolution cell size of the filter should be less than
1AAXF. Specifically if the required image resolution is
dx, and the object and filter impulse response isl&X.
and[&X? respectively, the number of samples required to
represent each is,

N. = Ao and N, = AX; where
Y ax F dx

generally N, << Ng .

In two dimensions, for a square object distribution of

resolution equal in each direction, every resulting

convolution term in the image has N02 + NFZ samples,.

If there is to be no overlapping, adjacent orders should
be separated by at least NO + NF samples. Thus, the

filter must have at least (NO + NF)z Fourier coefficient

cells. If there are Rh. RK subcells in each of these cells

(e.z. Ry = 4, Rg= 1 for a Lee hologram) then a total of
RH. RK (No - NF)z addresses are necessary to avoid

aliasing of the image orders.

3.3 HOLOGRAPHIC COPYING OF FILTERS

One solution to the problem of a limited number of display

addresses is to holographically copy the computer generated
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hologram, Illuminated coherently, the impulse response
of the required filter is band passed and its Fourier
transform recorded with an oblique reference wave, the
angle of which can be adjusted to give the required
resolution. The drawback to this method is that the
resulting fringes are s8inusoidal, and so the light
efficiency is limited to that of a conventional hologram,
as discussed in Chapter 1. Any dynamic range advantage
of the original filter is, however, preserved. A typical

holographic copying scheme is shownin Figure 3.3.

As the R.0.A.C.H. filter has only one on-axis image - the
other orders being considerably attenuated - the required

number of display locations, NF, only depends on the impulse

response size, AXF and the resolution éx. One of the
two-channel phase only filters to be discussed also only
needs this number of addresses. Higher space-bandwidth
products are possible with these filters, but the price
paid is that the grey tone display and processing is

critical in both cases.

3.4  LOHMANN BINARY HOLOGRAM - DIFFRACTION ANALYSIS

Consider the (m,n)th cell, of dimensions SHSK. of a
Lohmann hologram of total éxtent AHAK - as shown in
Figure 3.4. If an aperture of size c&HWmnéK is positioned

a distance PmnéH from the centre of the cell the amplitude
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This follows intuitively from the detour phase discussion
of Chapter 1. For a first order ima

\Pmn) & 2 in order to

b)

control the phase in the region - wto + Kradians. That

6

is the aperture must be moved by +% di for ' ® phase

change.,

We noted previously that this could lead to the problem

of overlapping of adjacent cell apertures with a subsequent

L

transmission error as shown in Figure 3.6. For an

aperture of width cdH, in order to avoid overlap we require

PdH + CdH di
-3 L5

2






That is c £1 - } 3.30

follows from Equation 3.29.
Maximum brightness is to be expected when C = 3 (as

C and 1-C are equivalent by Babinet's principle.)

Hence, for no overlap with C = %
J 1
;’T:ﬁ?
et ¥ g s

The image brightness is controlled by condition 3.20,
3 2
o (sw (wC(x+Ye) Jl\)

On axis, at X=0 this becomes

sin ne
xJd

which is a2 maximum when

GF, o= 2k -+ 1 . el B Y R o
7 i

The first maximum, when CJ = %, yields a brightness term
(&)
n:!')

This is maximum for J = 1.

Hence, a maximum brightness occurs when overlap error is
possible with J = 1 and C = 2. If this is avoided by
invoking Equation 3.30, and using the next available order,
Jd = 2, the image brightness is reduced by a factor of 4.
The cells of Figure 3.6 are shown again in Figure 3.6 for
the same image in the J = 2 order, awiding the overlap

error.
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The first condition, equation 3.20, which controls the
image brightness imposes a wide "sinc" function over the
whole extent of the image. This is common to all
computer generated holograms and is a result of the
assumption that the sampled complex amplitude, at point
(ndH, ndK), is constant over the whole cell (diid). As
the width of the aperture cdd is reduced the "sincH becomes
broader and the approximation of Equation 3.20 improves.
The brightness of the image does, however, decrease. The
"sing" function has extreme values at the edges of the

image X = f AX given by
2

sine (xC (J f_%_){(',i) )

where we have used Equation 3.25.

As AXdJH = 1 the image brightness changes over the image

t1 i
S 2 (s.:u (xe (T+ ¥a)) )‘

sinc (ke (T - Y2))

For CJ = % the change in brigshtness over the first order

image is 9 : 1.

In practice if the field of the image is restricted to
less than AX.BY the image brightness variation will be

less than this,.

Equation 3.21 also imposes a "sinc" over the image in the

Y direction, but this varies as the height of the aperture,

Wmn, varies. The most severe case is when ¥ =% éﬁ



130

and Wmn = 1, Then the "sine" function drops to 0.64

of its value at ¥ = 0. If the heights of the apertures,
Won, are all reduced this variation is also reduced.
However, this will lower the image brizhtness and also

restrict the dynamic range.

The final approximation to be considered is that of
Equation 3.27 that

2 ® Pmn. Xdh
e =0
This describes the variation in detour phase (due to an
aperture offset by PmndH) as the observer moves about in
the image plane.
gk

Pon has the extreme values _ and X can vary over the

A

whole image plane area of interest f 5
Hence, the phase term varies by‘j n across the image =
a total change of R radians which decreases as higher

image orders are used.

3.5 SEECTRUL SHAPING WITH PARITY SEQUENCES

The Lohmann hologram has a dynamic range restricted by
the number of display addresses per cell, Ry x RK’ and
has a low coding efficiency. The Kinoform, however, has
a maximum coding efficiency, requiring a single display

address per cell, but suffers from poor image quality.
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Although having maximum coding efficiency like the
Kinoform, the ROACH has limited dynamic range due to its
absorption amplitude control. Recently a technique has
been developed (Ref. 26 ) which has high light efficiency
like the Kinoform, but retains image quality. The coding
efficiency is between that of the Kindform and the Lohmann
filters. The method is a development of the spectrum
levelling techniques first described by Chu and Goodman
(Refi )29 ).

Instead of simply using the phase information which is
obtained by Fourier transforming the data (for the case

of a deblurring filter the data would be the impulse
response = the phase of its Fourier transform being the
Kinoform) a sequence of phase terms is generated which are
the transform phase terms modulated by terms derived from
the transform amplitudes. A particular version of this
gcheme was realised by Kirk et al (Ref. 34 ) when they
obtained a phase only filter containing amplitude inform-
ation modulating a phase term added to any periodic carrier.
The retransformation of the resulting uniform transmittance
phase only element cannot exactly reconstruct the impulse
response of the filter because of the differences intro-
duced into the original spectrum. However, it is possible
to choose the phase modulaﬁing amplitude terms in such a
way that the resulting image consists of the reguired
distribution spatially separated from the distribution

due to the spectrum levelling terms -~ the so called parity

sequence. There are many ways of coding the Fourier
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transform to achieve a flat spectrum and parity and data

gseparation in the image.

If the function to be coded has a transform

=TS
Fax) = | Feo | <

then for each Fourier space point (H,K) a complex vector
can be drawn on an Argand diagram as in Figure 3.7. The
radius of the circle defines the maximum value of F(H,K)
and thus the dynamic range. For a Lohmann hologram there
are RH.RK + 1 complex points within the circle that can be
reached by the coded vector F(H,K). These addressable
points are located on RK concentric, equally spaced circles
at angular intervals of Ett/RH radians for a Lohmann cell

of Ry.Ry display points per Fourier cell,

If for each complex vector, F(H,K) one vector, P,(H,K), is

added and another vector Pz(H,K) is subtracted, two

resultant vectors T1(H,K) and TE(H,K) will be generated,
T, (H,K) = F(HK) + P1(H,K) 3.31

Tz(HsK) F(H,K) = Pz(HsK) F

|

In order to convert the complex coefficients, F(H,K), into

wholely phase terms it is required ‘that

P, (D
"'l";(“‘“\ = O 003
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Sc
heme For Spectrum Leveling With Parity Sequences

FIG 3.7
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and

U o CHs KD
Ta (kD= € 3.34

Hence, the vectors T1(H,K) and TE(H,K), having unity (that
is levelled) transmittances will reach to the circumference
of the cirecle in Figure 3.7. Clearly there are many ways
of choosing P1(H,K) and Pz(H,K). However, if it is
desired to spatially separate the resulting Fourier
transform terms of the filter transmittance, T{H,K) +
TZ(H,K), into data, Jr-(x,y), and parity, p(x,y) terms it

is necessary to constrain P1(H,K} and PQ(H,K) further.

IflP1(H,K)| - lPE(H,K)‘ = \P{:I,K)l and

the Fourier space parity terms are made orthogonal to the
filter coefficients, 'F(H,K), then this separation can be
achieved with a particularly simple relationship between

the terms,

l2mo] = @ - lFEn | 3.35
and b, (D = S(HKO r s~ | Feaidl 3.36

P (W) = PHLD T ces” | F(H,RY 3,37
where each pair of signs are available for every (H,K).
The complex vector, F(H,K), can thus be replaced by two
phase only elements exp(i ¢;(H,K) ) and exp (¢ Ba(BHR) ),
each of which transmits % of the total light which would
be incident upon the corresponding Fourier coefficient

cell.
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3.6 PARITY SEQUENCE FILTERS

To construct a phase only filter with its spectrum
flattened by parity sequence terms it is necessary to
replace each Fourier space coefficient, F(H,K), by the

two phase terms of equations 3.36 and 3.37. This require-
ment arises because the 2(M x N) free parameters represent-
ing the modulus and phase of F(H,K) need at least 2(M x N)

free parameters to code them,

The spatial parity and data separation in image space is

a result of the cosine like addition of the data terms
accompanied by a sine like addition of parity terms for
each coded Fourier coefficient. The relative locations
of the two phase elements, ¢. (H,K) and cﬁ,_(H,K) determines

exactly how the spatial separation will occur.

For a one dimensional Fourier sequence, F(H), if each
Fourier space cell is divided into two subcells and ¢, (H)
located in one half and €@ (H) located in the other, then
on Fourier transforming the resulting distribution, the
data terms will be multiplied by a broad cosine fringe -
a period e 2/dH - and the parity terms will be multiplied
by sine fringe of the same period. Consequently around
the origin of image space the parity terms will be
suppressed to zero and will only appear at the edges of
the image region (which is of twice the extent of the
original data field). The available image area is thus

limited to the region in which the parity terms are
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satisfactorily suppressed in an analogous way to the
aliasing restrictions on other computer generated

holograms.

An alternative scheme avoids this and removes the constraint
on the image extent which can be operated upon in the

deconvolution system.

If, instead of locating the phase elements, #h(H) and
41§H), in adjacent subcells, they are again put into
gseparate parallel channels, but the channels are separated
by AH - the extent of the data (or parity) sequence
Fourier transform - then retransformation will result in
high frequency cosine data and sine parity sequence
fringes. The fringes in image space will have periods
o< '/4&“ and the data and parity terms will thus be

interleaved.

The object extent which can be operated upon for decon-
volution does not, in this case, determine the required

filter sampling rate in Fourier space.

This is determined only by the required filter resolution.

Both types of parity, phase only filters, which require
grey tone display and carefull processing, have been
realigsed by Severcan (Ref. 26 ), for both deblurring and
matched filtering operations. The second type of parity

filter described above involves diffracting the object
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gpectrum into two separate channels. This can be achieved
using a suitable grating but does result in the light
efficiency being limited due to the 1st order diffraction

efficiency of a practical grating being < 50%.

Dynamic Range.

The dynamic range, defined as the ratio of maximum to
minmum amplitude transmittance depends on how finely the
phase can be controlled. This in turn is limited by the
number of available intensity display levels. If N_
display intensities are available then the smallest_change
in phase, 81’ s, that can be prodcued is 2 ® /Hp radians.
Severcan (Ref. 26 ) calculated the resulting dynamic range
to be'sl/d¢3 with a value of % 2000 for a display of

Np = 100 intensity levels. However, such a dynamic range

can only be achieved if a phase error is associated with

the Fourier coefficient being coded.

With reference to Figure 3,8. The smallest change in
F(4,K) is & F and occurs when either T1(H,K) or TZ(H,K)
changes by \§¢| . The resulting complex vector,
however, is shifted in phase by'¢z as well as in amplitude

by OF and becomes

(PO + P)
(1£cww]+ 57) < 3.38

In order to preserve the phase of the Fourier coefficient
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Hence, the modulus of a Fourier coefficient can be changed
§¢*

while keeping its phase constant in steps of 2 - a

reduction of 4x in the dynamic range calculated by

Severcan, (Ref. 26).

The addressable locations of the Lohmann hologram, like
those of the sandwich type holograms (including ROACH)

are wniformly distributed in the complex plane. Equation
3.43 shows that this is not true of the parity sequence

filters as the dynamic range, l/éﬂ , is a function of 45,

a8 well as 5¢ 7 It should be remembered that in
deriving equation 3.43 it was assumed ¢ (H,K) = 0.

Hence, ‘¢| l * lé!. [ = “5-' \Fl . The dynamic range thus

varies with | F| and the value calculated above is a

maximum - achieved by putting ¢;=5¢ . This occurs for
values of F & 1.0. The minimum value of dynamic range
is when OR 1is a maximum and IF' is & 0. It can be

calculated by putting 4’, R" in Equation 3.43.

Then 5ﬂm = GM:\ 54’

Hence, for small values of 5¢
SAmaxy % &9

and the minimum dynamic range is

<l % — 3.45
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The dynamic range thus changes by a factor of 2/ 5¢ over

the complex plane.

Again, for 8¢ ""“1(00 the minimum dynamic range has a value
of & 17 and changes by # 28x across the complex mapping

plane.

It is nét always desirable to have equally spaced
quantization levels. Powers and Goodman (Ref. 35 ) have
shown that the reconstruction error rates for a holographic
state may be minimised by particular schemes for the bounds

of the quantization levels,

For the deconvolution system it is desirable to have fine
quantization in the regions of highest transmittance and
this is automatically achieved by the parity schemes
discussed above. This is analogous to the technique of
companding of data in communication systems for more
efficient use of available addresses during pulse code

modulation (Ref. 36 ).

For a generalised detour phase hologram (Ref. 47 ) the
subcells are not constrained to opening in sequence. The
result is that many more addressable points are made
available in the complex plane. Bach addressable point
is reached by the complex summation of up to RH'RK complex
vectors - each of maximum length 1/RHRK. Severcan

(Ref. 26 ) considered a binary phase version of this

generalised detour phase hologram in which each subcell
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has associated with it both a detour phase, due to its
relative position in the cell, and also a local phase -
restricted to two values, O or ® radians, to relax the

processing constraints.

As each of the RH.RK subeell can have 2 phase values
RH’RK

points, again reached by the complex addition of vectors

there are in this case 2 available addressable

of transmittance 1/RH.RK. In this case, however, as all
subcells transmit, the summation is over all Ry.Ry
subcells for each addressable point. In general some
addressable points will be located by several different
summations and the total number of separate points in the
complex plane will be less than ZRH'RK. A computer
search is required to map these complex points, and the
routes required to reach them must be stored in order to
be able to address a given complex transmittance to the

nearest available complex location.

As for the case of the parity phase filters,it is misleading
to define the dynamic range only in terms of the smallest
available change in amplitude transmittance as this will

generally be accompanied by an associated phase change.

Conclusions

The Lohmann hologram is the simplest to generate, two

examples are shown in Figures 3.9 and 3.10 for first and
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Negative of Lohmann  Linear Motion
Deblurring Filter. Full Size. (by FRBO)_
J1 C=lh

Detail of Above.

. FIG39
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Positive Of Lohmann Linear Motion
Deblurring Filter (by Grqphp;otter)
Enlarged.

:
J=2 C=1/

FIG3.10
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second order linear motion deblurring filters (_F = 1000).
Figure 3.9 was produced using a microfilm plotter writing
directly onto 35 mm film and consists of 641 cells across
the i4 gside lobes of the filter with a dynamic range of

20 giving an image order separation of @ 20mm. Clearly
to operate with this filter on an object of extent larger

than a few mm would be holographically copied.

Figure 3.10 is a positive of a photoreduction of a filter
drawn by graphplotter. This realises 129 cells across
the whole filter with a dynamic range of 30. For the
deblurring filter, as detour phases of +® and -"K are
identical the adjacent cell overlap problem can be avoided
by suitable choice of the phase shifts at the poles of the

filter.

The impulse response of the filter produced on the Atlas
Computer Laboratories' FR80 Microfilm plotter, Figure 3.9y .
is shown in Figure 3.11 along with a microdensitometer

tracing of its distribution.

The phase only filters - particularly the two channel
parity phase device which circumvents the image overlap
problem - look attractive because of their potentially

high dynamic range. Even the reduced value calculated

is a large overall increase compared with that of the
Lohmann filter. The price paid for this is the difficulty
of continuous tene control and, for the?%hannel parity

device, the difficulty of satisfactorily locating the two
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diffracted Fourier space channels and of detecting the
resulting data amongst the parity terms of

ble with the parity filters to trade-off some

of the perfect image fidelity by reducing the number of

or
St

available quantization levels, and so-gain an increase in

m

the amount of light scattered to each data point.

-

This is achieved by putting

b, (WK = P> ¥ e T | Fenny |
D)

él(“'g) =4(ﬂ,l0 :l-' 005-. \ F(ﬂl“)l

where D is a constant and the term

=[] Feww
ws l"f"" l] is suppressed to zero if

D £ \Fiw)

When D = \F \max (= 1) maximum fidelity of the data is
obtained, but a considerable amount of light may be
diffracted towards the parity terms. As D tends to zero

more light is diffracted to the data terms at the expense

rn
=

1

of the parity terms, until the limiting case of D = 0 is
reached when maximum efficiency and minimum fidelity is

then simply a Kinoform.

fte
)]

obtained. The hologram

The generalised detour phase holograms (both binary
absorption and phase only) reqguire many subcells per
Fourier coefficient and are thus not as efficiently coded

28 a Kinoform or ROACH.
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CHAPTER 4

COMPUTER SIMULATION OF A COHERENT OPTICAL SPATIAL

FILTERING SYSTEM
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4.1 INTRODUCTION

In an earlier chapter we studied, by computer simulation,
the effects of random processes on the deconvolution
operation. The filters used were LMSE constrained. In
this chapter we present the results of a more general
computer simulation of a coherent deconvolution system.

In particular we look at the effects of the filter being
computer generated and hence being of limited and quantised

dynamic range.

A prerequisite for deconvolution is a knowledge of the
blurring function or its optical transfer function, (OTF).
In some cases the degrading system is available and direct
measurements of the OTF can be made, Nathan (Ref. 37 ).

In cases where there are zeros in the OTF the Fourier
transform of a blurred image may allow these zeros to

be found, provided the noise level is low enough. Along
with any exhibited symmetries this can be used to identify

the OTF if it is one of the common forms, e.g. linear blur
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or defocus, Gennery (Ref. 38 ). Other techniques have
also been suggested for determining the form and degree
of degradation, Huang et al. (Ref.39 ), by taking

measurements of the blurred image.

4.2 OPTICAL TRANSFER FUNCTION ERROR IN BLUR EXTENT

With this OTF recognition problem in mind simulation
results are presented showing the effects of deconvolving

a linear blur for the situation in which the filter is not
matched exactly to the degree of blurring. The one
dimensional variable frequency bar chart used in the
simulations in Chapter 2 was again used as the unblurred
object, Figure 4.1. As no noise was present in the object
data the perfect "inverse-sine" deconvolution filter was
used. The bar chart was convolved with rectangle functions
of varying extents to simulate linear motion blurs of
different degrees - as would result from taking photographs
with different exposure times of an object executing linear
motion. The filter used was the ideal filter for a linear
blur of & units (in units of Xo/256). Tiie bar chart
object was blurred by different amounts, b = 2 units to

b = 16 units in integer unit steps and the resulting
distributions Fourier transformed by F.TF.T., operated upon
by the b = 8 filter and inverse transformed and displayed.
The results are presented in the form of the recovered
deconvolved images Figures 4.2 to 4. 5. There are several

points worth noting.
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4.3 RESULTS OF COMPUTLER SIMULATION

The maximum tolerable error in matching the filter to the
degree of blur, b, is one unit if the highest freguency

information is to be recovered - see Figure 4.3,

One noticeable feature of the images is the general
difference between the recoveries for b <8 and b > 8.

The former are far noisier than the latter which also

show a lack of sharp edges at the bars. The reason for
this is not difficult to discover. The gumber of positive
frequency side lobes of the OTF describing the linear blur
is equal to half the blur extent, b. For a blur of b = 8
there are thus the 4 side lobes shown in Fig. 1.6. As the
blur extent increases the correcting filter must realise
more side lobes and thus operate with a 1afger dynamic
range. A filter designed for a smaller blur than is
present in the object will thus not enhance the high
frequencies sufficiently, as shown in the Figures for'b:> 8.
In contrast, for a blur, b <:8, the filter will over amplify
the high frequencies and produce a noisy image. This is
not the only effect however, as the filter will also
produce erroneous phase corrections in the spectra of the
blurred charts. The recovered image for blur b = 16 units
exhibits a greater degree of sharpening than do other images
with 9 <b <16. This is because although the amplitude

is not amplified sufficiently at high frequencies, half
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of the total spectrum is, in fact, phase shifted ccrrectly
by the b = 8 filter,as every filter pole coincides with
every other zero of the OTF of the blur. As a measure

of the goodness of recovery of the images, variances were
calculated for each degree of blur. That is, each
recovered image point was subtracted as an amplitude from
its corresponding object point, the result squared and the

squares summed across the image extent and normalised to

Nl "y
Variance, V(b) =;ll—-z (5&':’ i CJ&‘)) 4.1
x=0

for b=1 to 19,

form,

where b 1is the extent of the blur in units of X. The
resulting curve of V(b) as a function of b is shown in
Figure 4.€. The trend of a reduction in variance with
increasing blur due to insufficient high frequency
amplification by the filter is clear. The slight image
recovery of Figure 4.5 for a blur, b = 16, is also

apparent as a secondary minimum of variance.

4.4 LATERAL MISREGISTRATION OF THE FILTER ELEMENT

Although in a Fourier transform system both the image
position and its intensity are invariant to translations
of Fourier plane elements, for a deblurring operation the
filter still has to be aligned to register correctly with
the diffraction pattern being operated upon. Figures 4.7

to 4.8 are the computed deblurred images of a linear
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blurred bar chart, (Figure 4.1), which has been deconvolved
with a filter laterally shifted so as to misregister with

the diffraction pattern of the blurred bar chart.

As for the simulation of blurs of different extents in
section 4.2, the misregistrations are constrained to at
least integer frequency changes because of the finite

number of terms in the calculated spectrum.

The most noticeable effect is the asymmetry of the images.
This is due to regions of the spectrum being assigned
incorrect phases by the filter. These regions of phase
error are of the same extent as the misregistration and
first appear around the poles of the filter. They
strongly influence the form of the image, even for small
misregistrations, as it is in pole regions that the

filter is most strongly amplifying.

4.5 QUANTIZATION AND DYNAMIC RANGE

The space bandwidth product relates the image and spectrum
extents. If the address density is constant, as it is
for a typical computer display device, then an increase

in image order separation, obtained by a reduction in the
Fourier coefficient cell sizes, is gained at the expense
of a reduction in the number of addresses in each cell.
Hence, for Lohmann coding the image order separation is

inversely proportional to the dynamic range which in turn
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determines the number of side lobes of a deblurring filter
that can be realised. For the filter system we have
simulated by computer, a dynamic range of 15 is required
to realise 4 side lobes on either side of the zero
frequency axis of a deblurring filter with &: 1000.

Thus, 15 x 15 addresses are required in each square

Fourier cell. The coding efficiency, 1', is defined as

_ ZTotal number of values to be coded
1‘ ~ Total number of addresses required to code them
4‘2
e =1 Sl
For this case then, 'q N2R2 4.3

acd 1| < 5 x 1073,
For an absorption filter, in which the amplitude is
controlled by the film density, a continuous range of
transmittance values are available within the dynamic
range constraints. That is from a transmittance of 1
down to 1/DR. However, for the Lohmann hologram, excluding
the case of zero transmittance, the number of available
amplitude transmittance values is equal to the dynamic
range, DR. For a square celllthis is also the number of

available phase values.

Like all pulse-code modulated (PCM) systems, these holograms
thus suffer from quantisation error as a result of the
analogue to digital conversion. With Ry X Ry addresses

per Fourier cell the dynamic range (including zero
transmittance) is Ry + 1 and there are Ry values of phase

available to the 1st image order. The amplitude
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transmittance can change in 1/RK steps and the phase can
change by J.2 ¢ /Ry radians for Ry even, and J.2 N /Ry~1)

th order.

radians, for RH odd, as seen from the J
In Chapter 3 it was noted that in order to obtain maximum
image brightness and at the same time ensure that apertures
of adjacent cells do not overlap it is necessary to use an
image order J ;>2. However, as the phase is only to be
controlled over 2nradians, the use of a high order image
reduces the number of available phase quantization levels
by approximately 1/J and has the effect of increasing the

phase quanitization noise.

The deblurring filter is a special case of a wholely real
element. As the phase needs controlling with only two
values, O or K radians, the filter does not suffer from
phase quantization errors, unless an image order, J, is

chosen so large that J.2 & /RH radians,

4.6 ANPLITUDE QUANTIZATION IN A DEBLURRING FILTER

The results of quantizing the amplitudes of different
IMSE deblurring filters are shown in Figures 4.10 to 4. 27,
(even numbers) along with their associated calculated
impulse responses (odd numbers). The amplitude quantiz-
ation error is the difference between the amplitude of the
ideal and coded filters. An xample of its variation is

shown in Figure 4.28 for DR =:10, P =:1000. The maximum
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quantization error is, of course, 50/DR%. For a dynamic
range DR = 50 then, the modulus of the amplitude of the
filter is everywhere within 1% of its value for a continu-

ously variable amplitude system.

The effects of amplitude guantization can be Judged by
comparing the impulse responses of the quantized filters
(odd numbered Figures 4.11 to 4.2T) with those for the
corresponding continuously variable amplitude filters
shown in Chapter 2, Figure 2. 10. Their close
similarity shows the deblurring filter's insensitivity

to quantization noise. This is to be expected in view of
the results of Chapter 2 in which it was shown that the
recovered images were not very sensitive to random noise
modifying the modulus of the filter amplitude. A value
of about 40% of the maximum filter amplitude was tolerable
for the maximum excursion of the random amplitude noise -
approximately equivalent to a dynamic range of DR = 4.
This is in agreement with the quanitzation noise bounds

calculated analytically and numerically by Naidu (Ref. 40).

The Kinoform (Ref. 23 ) represents the most extreme form
of amplitude quanitzation as the modulus of its amplitude
transmittance can take only one value of unity. The
Kinoform for a deblurring filter is show in Figure 2.4
and is simply the phase part of a "sinc" filter. It is
similar to the quantized filter Fs-z 100. DR = 20 except
at the low frequency region of the spectrum which the

Kinoform transmits, along with all other frequencies,
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with unity amplification. This low frequency
transmittance is responsible for the slewly varying

form of the recovered image of Chapter 2, Figure 2.5.

The Kinoform is not, of course, used as a deblurring
element because of this inability to conserve image
fidelity. It is used specifically as a coding device
as it has a maximum coding efficiency, | = 1, only
requiring one address per cell. Like ROACH, which is
also capable of maximum coding efficiency, the Kinoform
does require continuous phase control to obtain this

value of q = M3
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5.1 INTRODUCTION

The process of image formation is most frequently thought
of in terms of the two stages of diffraction discussed in
the previous chapters. The Fourier transform description
linking the object plane, back focal plane and image plane
of an imaging system is satisfactory only with the proviso
that the object is transparent and coherently illuminated

by a source of very limited size.

A more general approach views the image as the re-transform-
ation of the partial coherence pattern of the object. In
this case the object generates a partial coherence pattern
in the entrance pupil of the imaging system. This

partial coherence pattern is then taken in whole or part

by the imaging system which forms a whole series of Young
fringes of appropriate visibility, period and orientation

in the image plane of the system. The exact form of the

image depends on the way in which the entrance pupil of
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the imaging system samples the partial coherence pattern.
This chapter describes how a mask of suitable weighted
imare depends on the way in which the entrance pupil of
the imaging system samples the partial coherence pattern

f This chapter describes how a mask of suitable weighted |

———

apertures positioned in the entrance pupil plane can be
used to sample the partial coherence pattern in such a
way that some degree of deconvolution can be effected.
The description of the imaging process followed here has
been developed in some detail by Rogers (Ref. 41 ) after
a similar treatment by Hopkins (Ref. 42 ) and Born and

Wolf (Ref. 43 )

5.2 IMAGE FORMATION AS A SUPERPOSITION OF YOUNG FRINGES

As a preliminary to discussion the operation of non-
coherent filter consider a Young fringes type experiment
shown schematically in Figure 5.1. A monochromatic point
source of wavelength,?\.situated on the optic axis coher-
ently illuminates a pair of small pin holes positioned a
distance P apart in the entrance pupil plane of a lens.
The resulting Young fringes in the image plane of the
system subtend an angle )\/P at the lens and are for the
case of the source point plane and image plane being
conjugate cosine fringes being symmetrical about the optic
axis. The fringes are invariant to a translation of the
pin holes but move in the opposite sense to a translation

of the point source along the direction of a line parallel
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to that joining the pin holes, Consider now more point
sources positioned along this line adjacent to the first
point source. If they have an angular separation of A/P
at the lens then the sets of fringes produced by each will
be in exact register and will add noncoherently to give
maximum visibility. Point sources at intermediate
positions will produce fringes which are out of register
and these will tend to reduce the visibility as shown in

Figure 5.2.

For an extended source, composed of a large number of
noncoherent point sources, the visibility of the fringes
it forms will decrease as the angular size of the source

increases.

As the fringe period varies inversly as the separation of
the pin holes the fringes of highest frequency containing
information about the fine detail of the source are formed
by pin holes of maximum possible separation. A mask of N
pin holes separated by distances Py will thus form 2N (N-1)
sets of fringes in the image plane. If thePK are selected
at random and N is sufficiently large a good image of the J1

source will be produced.

This suggests that it is possible to sample the partial
coherence pattern with a mask of suitably sized and
positioned apertures so as to modify the frequency content

of the image in some desired way. However, the ways in

which the frequency spectrum of a source can be modified
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by such a sampling mask are severely limited. As the
phases of the diffracted amplitudes from the source

cannot easily be modified the mask can only operate

as a real, positive frequency filter. Any phase changes
produced at the apertures of the mask will laterally shift
the sets of fringes and in general ruin the image in a
similar way to inserting a diffuser in the entrance pupil

of a lens.

5.3 DECONVOLUTION OF A GAUSSIAN FUNCTION

For convenience in this section a brief restatement of

the deconvolution operation is given.

For a one dimensional source intensity distribution, s(x),
convolved with.a blurring function, g(x), resulting in a
distribution, B(x),

b(x) = 8(x) @ g(x) 51
in Fourier space we have, denoting the frequency space
functions by capitals,

B(u) = 5S(u).G(u) 5.2
We can thus recover s(x) from b(x) (ﬁrovided we know the
form of the blurring function, g(x),) by multigying the
the frequency distribation, B(u), by a filter, F(u), such
that

F(u) = D/G(u) 5.3

where D is a constant 1less than "
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If g(x) is such that its frequency spectrum is positive
definite then noncoherent deconvolution may be attempted
using a pupil plane mask constructed to transmit the

various frequencies as required by equation 5.3.

A blurring function of Gaussian form
g(x) = exp(-c?x%) 5.4
is suitable for noncoherent deconvolution as its Fouder
transform is also of Gaussian positive definite form,
G(u) = A exp(—Czuz) 5.5
The filter must operate so as to weight the frequencies
reaching the image plane as

=1

F(u) = 4 exp(CzuZ) 5.6

where ¢, C and A are constants.

5.4 THE NONCOHERENT DECONVOLUTION MASK

Consider a pupil plane mask of N apertures. Each of the
2N(N-1) pairs of apertures will transmit a frequency which
is inversely proportional to the separate of the pair Pk.
If the mask operates only in say the x direction as a
frequency filter then the weighting of the transmitted
frequencies can be controlled by the lengths of the

apertures perpendicular to the x direction.

The problem in making a filter is one of finding the weighted

lengths of Jns of the N apertures for a chosen set of
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spacings, Py, such that the resulting #N(N-1) frequencies

are transmitted in the proportions of equation 5.6.

Formulated as a set of highly redundant simultaneous
equations the best solutions are easily found by standard
numerical methods (Ref. 44 ). One of the twice
redundant difference series (Ref. 45 ) was found to be
satisfactory when the solutions were based on the lowest
24 differences only. The filter then takes the form

T By AR TS PN FORS ST Ty S0
where the numbers denote the separations of PK of the

apertures of length Yoy in arbitrary units.

At the expense of further overweighting the redundant

frequency corresponding to spacing PK = 8 the lengths

of the apertures ¥4 and yg were increased by 30% and 60%
respectively in order to produce a higher powered filter,
Table 5.2 shows the solutions of the redundant equations
for the Yo and the modified solutions after increasing Y4
and Jg and Figure 5.3 shows the form of the filter after
modification and the inverse Gaussian filter to which it

approximates,

5.5 CONSTRUCTION AND OPERATION OF THE NONCOHERENT FILTER

In practice a filter was made to the above specifications
by photoreducing onto Ortho-Lith type 3 film from an original

made of suitable lengths of black tape mounted on white card



Amlitude

Transmitted

Inverse

Gaussian

Filter

x
|
®
Filter Realised:— %
®

- - - ——f—
10 Spatial Frequency (see text for units). 40

FIG5.3



193

as shown in Figure 5.4. The object used, s(x), was a
five element variable frequency bar chart which was
numerically convolved with a Gaussian distribution, g(x),
having a full width at half maximum height of 8 times the
width of the smallest bar. The resulting distribution,
b(x), was displayed as a graph of y = b(x) and the region
between the curve and the line y = O was blackened. The
bar chart, Gaussian blurring function and the resulting
convolved function are shown in Figure 5.5. The variable
area input function was converted to a variable density
record corresponding to b(k) by imaging the display onto
a continuous tone photographic plate using a cylindrical
lens (Ref. 46 ). The resulting unblurred and Gaussian

blurred bar chart objects are shown in Figures 5.6 and 5.7.

The optical system used to perform the deconvolution is
shown schematically in Figures5.8. It consists of a

sodium lamp and diffuser illuminating the object distribution
b(x), with a collimating lens L, throwing a parallel beam
into the camera lens L. The filter F is mounted in a
Xylene liquid gate to remove any phase changes between the
apertures which would produce unwanted lateral shifts in

some of the fringes, and the liquid gate is positioned

between the lenses L1 and LZ‘

The scaling of the system is such that the maximum solved

spacing of the filter, P = 24 units, is related to the

max
angle, 9

ain? subtended at the lens by the smallest. bar,
i

mins DPY



™A

¥°Soid

42314

U2J2yooucy

10 2MIDB2N

p2fupju3




S'S 9ld
{x) uey) Jeg

L

uey) Jeg paunig ueissnen

‘1(“4

ey

(x)s -Ausuany

“(x)q ‘Ausuaiu



Negative Of Bar Chart..
FIG5.6

NQQC]tWG Of Gaussian B’U[“[‘Qd Bar Chqrt.

FIG5.7



B85 914

‘W23sAS

Ip213dO 30 wpdbbig

— —] by —
s ‘3wl | _ _
Q3AT0ANOD3A (%)q
31V9
ainoi 304NOS
NI "31714 43sn4d4id WNIQ0S
NV 1d SN3 SN31 INVd
JOVIAI 123rgo



1 C

Pg*S old

'Wa3sAg

[p213dO

10

ydoibojoyy




198

8111:1.411 > A
Ima

X

where )\is the wavelength of sodium light. For a lens L1

of focal length f1

Thin = P)‘f‘I (9)
max

In practice reasonable sealing was produced by a pair of
914 mm focal length lenses used with a filter having a
minimum spacing of 0.103 mm and an object with a minimum

bar of 0.217 mm,

5.6 EXPERIMENTAT. DECONVOLUTION RESULTS

A microdensitometer trace of the image of the deconvolved
bar chart is shown in Figure 5.9 along with a trace of the
image of the blurred bar chart. The latter was obtained
with an aperture stop limiting the maximum frequency
transmitted to the highest filter freguency corresponding
to P = 39 units, The measured slopes of the bar edges
and the relative heights of the bars are tabulated in
Table 5.1. There is some sharpening of the edges and a
slight peak height enhaneement. On the right hand side
of the recovered image 1t is just possible to pick out the
first order image separated from the zero order image by the
beat frequency period. This can be clearly seen in the

recoveries shown in Figures 5.10 and 5.11.

The analysis has assumed that the filter operates on the
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TABLE 1
Angles included by peak edges (leading and trailing)

from microdensitometer traces : Figure 7

Peak Width Blurred Deblurred
32 81.83 86.85
16 81.81 85.85
8 71.72 83.82

Peak heights normalized to peak width 32 units

from microdensitometer traces : Figure 7

Peak Width Blurred Deblurred
32 1.00 1.00
16 0.97 1.09
8 0.34 0.82
TABLE 2

(Gaussian F:i.].ter)'-1 solutions for 24 simultaneous

equations.

Aperture Aperture Length (Modified)
Y, 33.06 43.06
Y, 11.49 11.49
Y, 9.32 9.32
Y4 8.73 8.73
Y5 10.01 10.01
Yo 13.87 13.87
Y, 7.41 7.41
i d 16.00 26 .00




discrete frequencies 1 to 24 units only. In practice
there is a spread of % % frequency units about each frequency
as each aperture has a width of % of the smallest aperture
separation. There is also a zero to %-frequency units
contribution from each aperture acting individually.
Although solved for 24 frequencies, as Figure 5.4 shows the
system transmits frequency 31 (which is redundant and
receives contributions from 2 pairs of apertures) and
frequency 39. Inclusion of these two highest frequencies
in the equations to be solved resulted in both positive

and negative solutions for the aperture lengths Yk. The
phases of the apertures have to be held equal by using the
filter in a liquid gate and to avoid the further complic-
ations of phase shifting some of the apertures by W radians
to produce the required negative contributions a set of all
positive solutions were pursued. Basing the equations on
the lowest 24 frequencies resulted in the positive solutions
shown in Figure 5.3. It should be pointed out that removal
of the constraint on the sign of the solutioﬁs does result

in a slightly better fit.

5.7 DISCUSSION AND CONCLUSIONS

The difficulty of finding good solutions to the filter
function arises because the N apertures operate in
parallel, each one contributing to (N-1) frequencies. A

highly over determined set of simultaneous equations is the
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result. For the filter considered and the difference
series chosen 24 equations were solved for only 8

variables.

An alternative scheme would be to operate with suitably
sized and space apertures exposed to give the correct
frequency weighting but used sequentially in pairs.

This would allow an exact fit to the filter function for
each frequency and at the same time would remove the
difficulty of redundant frequencies. We have considered
the image to be built up from the noncoherent addition of
sets of cosine fringes from each source point. More
correctly each source point produces in the image plane
an intensity distribution which is the coherent summation
of the contributions from each aperture of the mask. It
is weighted versions of this whole pattern which are added
noncoherently for each noncoherent source point. This
process is not modelled by the sequential use of pairs of
apertures which adds all the individual cosine fringes
noncoherently. The image produced by this operation will
thus have low visibility even though the frequencies will

have been corrected more accurately.

Finally, to end on a practical note, as the effective
aperture of a system with a mask is very small the exposure
times necessary are rather long, typically several hours

using HP3 film,
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We have simulated a deconvolution system and demonstrated the
breakdown of the LMSE criterion as a measure of the quality of
deconvolved images. This incompatibility is a result of deconvolu-
tion being a process which primarily produces increases in edge
slopes. This is inevitably accompanied by high frequency noise

which produces a large mean squared error.This effect is particularly
noticeable in binary objects as a large amount of image energy
occurs in the high frequencies of the spectrum and is suppressed

by the convolution process. In the continuous tone object there is
little change in the spectrum due to the convolution operationand

consequently little change in the form of the object distribution.

The maximum tolerable noise levels for the dilute object recovered
by filters optimised using a LMSE criterion for various levels

of signal to noise ratio,BF, are summarised in Table 6.I for both
noise independent of and proportional to the local object amplitude.
Visually estimated maximum tolerable average noise percentages,Nv,

are compared with statistically calculated maximum tolerable average
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noise percentages,Ns,. The latter,Ng, are the intercepts of the curves
of recovered image variance with the curve of blurred object variance
shown in Fig 2.22a) and Fig 2.22b).

Although the high Bp filters amplify signal and noise throughout the
spatial frequency spectrum, there is initially a good signal to noise
ratio throughout which allows a tolerable level of noise to be

added.

A similar statistical and visual comparison of maximum tolerable
noise levels for the case of the simulated continuous tone object is
given in Table 6.2. The values of N, are in this case the intercepts
of the curves of recovered image variance with the curve of blurred
object variance deduced from Fig 2.23a) and Fig 2.23b). In this case,
however, the visual estimation of tolerable recoveries is more
difficult due to the lack of easily identifiable features. For the
binary, bar chart object recovery can be judged by an inspection of
the sharp edges of the bars. Such features are not generally to be
expected in continuous tone objects and this difficulty highlights
the role of recognition of information in an optical signal
processing system.

Consequently in Table 6.2 the maximum tolerable noise level is that
for which the general structure of the object can still be seen,
irrespective of the degree of rezovery. Hence, Tables 6.1 and 6.2

can not be compared directly.

The use of high Bp filters with the continuous tone object results

in very noisy images. This is because, although they correct the
spectrum as required, the high Bp filters transmit strongly in the
high frequency regions of the spatial frequency spectrum where the

signal to noise ratio is low, even when the object is distorted by
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very modest amounts of noise. A low Bp filter can be used to reduce
this sensitivity to noise but the resulting image, although having

a low statistical variance, will then show little restoration.

For the case of amplitude noise added to an ideal filter such

that the noise is independent of the local amplitude a mean noise
level of 10% was found by computer simulation to be tolerable.
Similarly, for noise proportional to the local amplitude a mean noise

level of 20% was tolerable.

A maximum random phase excursion of 20° about the correct phase value
was acceptable in the case of a Kinoform element used to recover

a dilute bar chart object and for a similar recovery using an ideal
filter a maximum phase excursion of 50° about the correct phase value
was tolerable. In both cases no other socurces of noise were present

in the computer simulations.

The operation of computer generated holograms has been discussed and
some details of their operation studied. In particular the dynamic
range of parity phase only filters has been analysed in terms of its
variation over the complex plane. It has been noted that the dynamic
range with the constraint of a constant Fourier coefficient phase is
4X less than that obtained if a slight phase change is allowed in the‘
coefficient. The dynamic range of a parity phase only filter was

found to vary by a factor of 2/8¢ across the complex plane, where 6¢

is the quantised phase interval of the phase only element.

In general the complex addressable points will have to be mapped (most
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conveniently by computer search) in order to ascertain the character-

istics of generalised detour phase holograms.

The effects of deconvolving with a misregistration of the filter
element and with the filter element mismatched to the degree of

object blurring were studied and maximum tolerable errors estimated.
For misregistration' this was “12% in the simulation (measured in terms
of the maximum tolerable filter misregistration from the correct
position as a percentage of the distance off-axis of the first filter
pole- the point at which the first phase inversion occurs).

For the mismatched filter an error of * 12% could be tolerated in
matching the size of the blur for which the filter was designed to

the actual size of the blur which occurred iﬁ the object being
deconvolved (calculated as:|Correct blur-Tolerable blurleOO/CorrectBlur%).
In the case considered a filter designed for a blur of 8 units would
just operate satisfactorily on objects blurred both by 7 units and 9
units as well as the filter’s optimum of 8 units.The recovered images
are considerably more sensitive in terms of calculated standard deviation
to filtering with an element designed for a larger blur than

occurred, than to filtering with an element designed for a smaller
blur than occurred. This is because in the former case high frequencies
are over amplified and these contribute heavily to the variance of

the resulting image.Whenever the blur extent is an integer multiple

of the blur for which the filter is designed, a subsidiary minimum is
formed in the image variance against blur extent curve. When scanning
for a minimum of variance in order to determine the extent of a blur

it is thus better to scan out,starting from a filter matched for a

small blur in order to miss the subsidiary minima.
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For the deblurring system the filter is insensitive to filter amplitude
noise and a comparison of the impulse responses of amplitude quantised
filters - simulating dynamic range limited computer generated holograms
- and an ideal filter shows that the low dynamic range elements are
permissible.This is in agreement with the measured impulse responses

of a Lohmann binary filter generated by microfilm plotter and having

a dynamic range of 20.

The results of a non-coherent deconvolution show that some degree of
image sharpening can be produced but the analysis shows that this is
only to be expected for dilute objects which have suffered blurs which
can be expressed as positive definite functions.It may be possible to
produce improved noncoherent deconvolution by using phase shifted
elements in the mask as this results in a better solution to the
filter function, and consequently a slightly more powerful element.
An alternative approach of using a sequential filter to build up the
image would eliminate redundancies in the filter frequency response,
and at the same time increase its dynamic range.However, this would
probably be offset by an overall reduction in image visibility due

to the extra, highly non-coherent additions involved.
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TABLE 6.1
BINARY BAR CHART OBJECT
MAXIMUM AVERAGE TOLERABLE NOISE PERCENTAGE, N%

Noise scheme a). Noise scheme b).
(Noise independent of (Noise proportional to

the local amplitude). the local amplitude).

Filter
Signal/Noise Statistical Visual Statistical Visual

Ratio, Measure,ﬁs% Estimate, Maasure,ﬁs% Estimate,
Bp (seeFig2.22a)). Nv% (seeFig2.22b)). Nv%
LS 1.8 3.0 2.5 6.0
1000 25 5.0 ol 120
500 3.0 5.0 6.6 8.0
100 5.0 740 >9 >9
10 >9 8.0 >9 /

Comparison of statistically calculated with visually estimated
maximum tolerable average noise levels resulting from the
computer simulations of the deconvolutions of a dilute binary
bar chart object using LMSE filters having different signal/
noise ratios, BF'

Although high B filters amplify both signal and noise through-
out the spatial frequency spectrum, there is initially a good
signal/noise ratio throughout which allows a tolerable level

of noise to be added, see Figs 2.2 to 2.11.
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TABLE 6.2
CONTINUQUS TONE OBJECT

MAXIMUM AVERAGE TOLERABLE NOISE PERCENTAGE,ﬁ%
Noise scheme a). Noise scheme b).

(Noise independent of (Noise proportional to

the local amplitude). the local amplitude).
Filter

Signal/Noise Statistical Visual Statistical Visual
Ratio Measure,ﬁs% Estimate, Measure,ﬁs% Estimate,
Bp (seeFig2.23a)). Ny% (seeFig2.23b)). ﬁv%

o 0 2.0 0 2.0
1000 0.4 < 40) 0.4 3.0
500 0.7 4.0 a7 5.0
100 1.8 5.0 Dl 8.0
10 >5 8.0 >5 >9

Comparison of statistically calculated with visually estimated
maximum tolerable average noise levels resulting from computer
simulations of the deconvolutions of a continuous tone object
using LMSE spatial filters having different signal/noise
ratios,BF.

The high Bp filters produce strong distortion(resulting in low
ﬁs values) because there is a low signal/noise ratio at the high
frequency end of the spatial frequency spectrum which causes

distortion with very little additional noise, see Figs 2.12 - 2.21.
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