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SUMMARY

In this thesis Einstein's equations for vacuum axi-
symmetric, stationary, gravitational fields are considered.
Five analytic solutions of these equations are presented.
In each case the analytic solutions are generated by a non-

linear ordinary differential equation of the second order.

Some particular integrals of these generating
differential equations are giyen, resulting in some known
and unknown metrics. The known. metrics are, the Kerr and
the Tomimatsu-Sato class. In the derivation these known
metrics are shown to have a common origin. It is further
shown that they result from a parameter in the generating

differential equation assuming certain eigenvalues.
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CHAPTER ONE

INTRODUCT ION

In this thesis we shall only be concerned with obtain-
ing analytic solutions of Einstein's equations of gravitation
for vacuum axisymmetrical gravitational fields, which are

stationary. The cosmical cons tant is taken to be zero.

In Chapter 2, Einstein's equations, appropriate to
the case under consideration, are written out in a straight-
forward manner, no use being made of either, the methods of
differential forms, or the complex symbolism of Ernst. The
remainder of Chapter 2 is devoted to showing that the field
equations will be satisfied, provided the metric coefficients
are determined by one, or the other, of two sets of equivalent

equations. These sets of equations are called set A and set

Bl

Chapter 3 gives an account of our abortive attempts to

find new solutions of the field equations, working with set A.

In Chapter L4, set B is considered and it is shown that
it is possible, by choosing a certain 2-dimensional harmonic
function A appropriately, to obtain five analytic soluiions
of the field equations. These are generated in each case by

an ordinary differential equation of the ssecond order.



In Chapters 5, 6, 7, 8 and 9 the generating differ-
ential equation is derived corresponding to each of these
five possible forms for A. In each case the generating
diffgrential equation turns out to be non-linear, and
because of this we are unable to give their general solutions,
however, some particular integrals have been obtained result-

ing in some known and unknown metrics.

From the physical point of view, Chapters 5, 6 and 7
are the most important. In Chapters 5 and 6, we show that
the Kerr-Tomimatsu-Sato metrics, are contained in our analytic
solutions as particular cases of a more general integral. In
our derivation of these metrics it is, however necessary to
consider separately the three cases when a® > m?, £ < m® and
a2 = m?, a and m being respectively the angular momentum and
mass of the bounded source. Chapter 5 gives the results
appropriate to a? < m? and Chapter 6 those for a? > m?. In
Chapter 7, we show that the Kerr metric for a® = m? is a
particular case of our more general integral. Since in the
limit as a2 -» m® all the Tomimatsu-Sato metrics reduce to
the Kerr with a® = m® we can say that these are also included

in the results of Chapter 7.

From the forms of the generating differential equations
of Chapters 5, 6 and 7 it seems unlikely that these general
metrics can be regarded as three special cases of a single

metric as is possible with the Kerr metric.
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Further, the above mentioned particular integrals
contained in the results of Chapters 5 and 6 arise by putting
a éonstant in our generating differential equation equal to
-in2 (n, a non-zero integer), €.g. .= 1 gives the Herr metric,
with n = 2,3,4L we get the Tomimatsu-Sato metrics, correspond-
ing to their classification index § taking the values 2,3 and
L. We conjecture, with Tomimatsu and Sato that solutions
will exist for all values of n. Although we are unable to
prove that this will be the case,at least in our derivation
the problem is well defined, viz. we have only to show that a
certain ordinary differential equation of the second order

subject to certain boundary conditions will only admit a

solution which is a rational function of its argument.

The metrics arising from the results of Chapters 8

and 9 are not asymptotically flat and so can only represent

fields inside a bound=d region of space.

Chapter 10 is a short note on the possibility of our
metrics being of the special relativity type in some coqrd—

inate systen.

Conclusions are summarized in Chapter 11.
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CHAPTER TWO

DIFFERENTIAL EQUATIONS FOR STATIONARY

AXTSYMMETRICAL GRAVIT ATIONAL FIELDS IN A VACUUM

We shall follow Papapetrou, Lewis and Van Stockum and

write the metriec in the form:

ds? = e2¥[ (axtf + (ax®)°] + A(ax3)® + 2Baxddx+t - c(axe)
AAEd 1S (L 5

where ¥, A, B and C are functionsof x* and x2 oniy.

So that
(g, = eV a o o BB
g e S M N &
Rk gt
W R T
and
(oY) = et o o.wo o Wil
e_ZW 0 0

0
0 0 WBEARE A
0

0 BA ZpA~ 7

where i,j = 1,2,3,4 and



A2 = AC + B® sam K210

We note by using (2.4) that our metric (2.1) can be rewritten

as.

as? = e¥[(axt)®+ (ax2)’ ] + c*a2(ax3)’® - ¢"*(Bax® - cax:)’

R )
Using (2.2) and (2.4) we get
g = |e5l = ~¢!¥n2
=F = e2Va s 12,0

Notation

Throughout this and the following Chapters we shall
use the notation that suffix 1 denotes partial differentiation
with respect to x1; suffix 2 denotes partial differentiation
with respect to x® and a dash denotes ordinary differentiaticn

of a function of a single variable with respect to its argu-

ment .

The three index symbols Tﬁk « A153 ¢ = 1,2,3.8 ean

now be calculated by substituting frem (2.2) and (2.3) in

axk axa axm

: ! 0g. e &8s
ri = 1?glm ( jm gkm o ng)



the non-zero P%k's being:

Tis = ¥
I'$s = Yo
iz = ¥
Ifz =9

I3, = 4A "(CA; + BB)

I's = % HQ(CA2 X BBz).

Ifs = % —Q(CBz 3 Bcz)

% =i1n (BB, + AC,)
T ;e-zwAe
I'3q = - %e—szi
Py, = - ¢ VB,
T3, = 3770,
r7, = 4 Ve,

If we now substitute from the above in the Ricci tensor,

: i

i i ! iy 5] - o2 aI‘..k

Ro = Ppalis - Doy —=(1o0=9 + ——(1ow=p - —45
Jk rk*i]j Jjk 3xF 8xJaxk ol



we get,

-1 =1 p R 5
Ryg = YyqHopth (WQQQ'W131)+& AV A (A101+B1)
e s (2.7)

=t =1 -2
(/PP PP A (wiﬁi"@b’z‘ﬁz)*& Ny o3 (A202+B§)

jzs)
0
)

Il

.o (2.8)
R12 = ""A_i (wiaz +1 QA‘.L) +A—1A12_&_2 (‘A'ic2 +A‘2C1+2B1B2) / L&'
o k2.9

-2 -1
Ras = e wiA—li""Azz"& (A;151+A2A2)+ ke
AA® (A, C, +B2+A,C,+B2) ]

R (P8 )
s -1
Reo = ~be in, fC oA (0N 008 )+
CA™" (A, C, +BZ+A,C,+B2) }
dee (25130
BA™? (A, C, +B3+A,C,+B2) }

SRS -0 )

In our case the Einstein equations are Rij = 0. We

shall replacs the equations Rz; = 0, Rg, = 0 and R, = O,

by the set :



CRy; - ARy, + 2BRy, = O vali 2,1 5)
BRey + CRaJ =0 siwe KSedh)
CRzs + AR, =0 e 2 15)

which are linearly independent provided C Z 0; A #Z O. This
we shall assume to be the case throughout. In fact we shall

assume A Z constant.

Substituting from (2.10), (2.11) and (2.12) in (2.13)

and using (2.L) we g=t

Byg + Bgp =0 s NEOLG)

Substituting from (2.11) and. {2.12) in equation (2.1L) we

get

(A7 630, e (A GRDY) =0 o o
where
D= B0 el T8l

Now equation (2.17) is the condition for the existence of a

function F(xt,x2), such that:

-2
Di = _&C F2 L (2.19)

-2
TR Gy voe (2:20)

The condition D,, = D,, then leads to the equation



7 o= By B+ (A, B #AF,) 207 (Cy Py 40, F,) = O
. e s e (2-21)
Substituting from equations(2.10) and (2.11) in equation (2.15)
and eliminating A and B using equations (2.4) and (2.18), we

get after substituting for D, and D, from equations (2.19)

and (2.20) :

—— -1 .
G = 0y, +Csq+8 ~ (0,0, +C,4,) =€ (C34+02-F3-F8) = O

T

The remaining equations to be satisfied are R,, = O, Ry = O

and R,, = 0, the first two we replace by

By = Bao =0 Goe (2423)

Riy + Rpp = 0 aeie (2.2&)

Substituting from equations (2.7) and (2.8) in equations

(2.23) and (2.2L) gives:

Yl iy = Bagt ﬁa‘i(Aici+B§—A202—Bg) bon KE28)

1 -2
Vaatfae = IO (A, C, +B2+A,C,+B2) v s LR 26

where we have used (2.16).



From (2.9) R,, = O implies

UsDo oy = By %@—1(A102+Aeci+ 25132)
a2 i27)

Solving equations (2.25) and (2.27) for y, and y, we get

Yo (A2402) = Dphy,+0,045+(LA) T [A, (A, C, +B2-A,C,~B2)
- 4, (A,C,+A,C,+2B,B,) ]

iee [2,28)

Uy (A34A2) = AZ0, 5D, 05~ (4A) "7 [A, (A, Cp+A, C, +2B, By)
+ A, (A,C, +B2-A,C,-B2) ]
weis’ (2.29)

Substituting for A and B from equations (2.4) and (2.18), in

equations (2.28) and (2.29), and using (2.19) and (2.20) we
get

Uo (02 +03)

Dolgp+D4 A, 5 -2CT C, (A2 4+A3)
+ 677 [, (03+F3-C2-F2) 422, (C, C,+F, F,) 1A
s a2 30

¥y (A% +A3)

1l

A A A PRATP '%‘C_l o (A2 +43)

l - a o =
- ¢ [y (Cg+Fz-c-F9) -20, (C, C, 47, F,) 16

AR - BT



=
We now introduce a new function S(x1,x2), defined by
eV c'leS(AE + AZ) ST ()

In terms of S equations (2.30) and (2.31) read

=2 ;
2(A2+02) 8, = AC {A, (C2+F2-C2-F2) +2A, (C,Co+F, Fy) ]

ik 2w B3)

1l

2(A3+02) S, = -AC {4, (C3+F3~C2-F2) -24, (C,C,+F, F,) }

oo (2.30)

where we have used equation (2.16). Also equation (2.26)

becomes in terms of S,

S,, + Syp = = AC (C3+C3+F3+F2) vie (2.38)

where we have used equations (2.16) and (2.22).

We next calculate ¢ = §,,-5,,, and S,,+S;,, using

only equations (2.16), (2.33) and (2.34). We get

¢ = A?czéﬁ(ciﬂ2—03ﬂi) "T(Fiﬁg_FzAi) I

wos (2.36)

= 0,.by equetions (2.21), =znd (2.22) and hence the consist-

ency condition S,, = §;, is satisfied.
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-—
S;4 + S35 = —3C (C§+C%+F§+FE)
AG™?

+ m i0(01&1+02&2) + T(F1&1+F2&2);

e (2A7)

which is the same as (2.35), since 0 = 7 = O. Hence, equation
(2.35) is derivable from equations (2.16), (2.21), (2.22),

(2.33) and (2.3L4), and so may be disregarded.

SUMMARY

From the above argument we see that the functions
A, P, C and S, are determined by the following, consistent

set of equations,

By R Bpgr =10 s L2958
O = Cy 40,40 * (A, +C50,) ~C (C3403-F3-F3) = O
. » (2-39)

7 = By 4F, 48" (B0, +F,A,) -2C7" (€, Fy+C,F,) = 0

o s 1 2:00)
2(p2402)S, = ACT (A, (CF+F2-C3-F2) +21, (C,C,+F, F,) }

SR AT

2(02+03) S, -ACT? {A, (C7+F -C3-F2) -24, (C, Cp+F, Fy)

s s b2 i)



o e s

This set of eguations we shall call set A

By cons idering equations (2.16), (2.33), (2.34) and
(2.35), it will be observed that equations (2.39) and (2.L40)

are deducible from them, provided that the determinant,

Cy05-04Cy Foiy -Fyi A

C A, +C A, Fyn, +Fo A,

is non-vanishing. This we express in the form of a theorem.

THEOREM
Suppose that functions A, ¥, C and S, can be found
which satisfy the following set of equations
Byy + By =0 ceien k2 1)

2(p2+03) S, = AC 7 {a, (C3+F2-C3-F2) +2A, (C, C,+F, F,) }
wister X2 il

-
2(a2+02) 8, = -ACT [, (C24F2-C2-F2)-2A, (C,Co+F, F,) }

LR A (2!&5)
S,448,, = =4C7" (C3 408 +F2 +F3) o (2.45)

and in addition the determinant
I‘ = 01&2 -Ai 02 Fz&i —Fiﬂz “ e (2-)-]-7)

CiA,+CoA, Fio0y +F A,



T

is non-vanishing. Then A, F, C and S, also satisfy the

equations of set A.

PROOF

From equations (2.43), (2.44) and (2.45) the cond-

ition, S,;, = S;;, leads to the equation,
0(C,8,-CoA,) + T(Fony -Fin) = 0 se, A241B)

If we calculate S,, + S,,, from equations (2.4) and (2.45)
and substitute the result in equation (2.46), we get, after

using equation (2.43)
0(Cn,+C305) + T(F A +F,0,) = 0 e (2549)

Now since I' # O, equations (2.48) and (2.49) give 0 = 7 = O.

We shall call the set of equations (2.43%) to (2.L6) inclusive,

set B. The sets A and B being completely equivalent when

. #.0.



CHAPTER THREE

INVESTIGATION OF THE EQUATIONS OF SET A




._.15_

CHAPTER T HREE

INVESTIGATION OF THE EQUATIONS OF SET A

We shall take the solution of equation (2.38) to be
No=a Rt That this can always be done, without loss of

generality can be seen from the following argument.

Suppose we were to choose A = u(x®,x2) #Z xt, u(x?,x?)
satisfying equation (2.38). Then the coordinate transform-

ation x+ -» x* (i = 1,2,3,4) , defined by

xt = u(xt,x2), x2 = v(xt,x2), x3 =x3, X% = x%

v(x*,x2) being fixed by the equations, Vv, = Uy, V4 = -Ug,
would not change the form of our metric, and would make

A = xt in the X-frame.

With A = x1 and using the notation, x* = p, X® = 3z,

the equations of set A become:

v2c-cT {(vO) *-(vP*} = 0 S e
V2F-2C "VC.VF = O cast £5.9)
Sp = %pc‘”(cg +Fg —CZ. -Fg)’ o %)
Sz = pC ~ (CpCz+FoFz) v (31

. where for any functions f(p,z) and g(p.z) we define:



M

Ve = fbp * Lo, + P fb

VERNE = fpgp + fzgz

2
and (V) = Vr.Vf.

Of the set of equations (3.1), (3.2, (3.3), (3.4,
equations (3.1) and (3.2) are the most difficult to solve,
and as there are no known technigues for handling them, all

we can do is to proceed by trial and error.

The case when F is a function of C has been discussed
by Papapetrou (1), and the case when D is a function of C, by

: P
Lewis (2) and van Stockum (3).

As regards trying to find the general solution of
equations (3.1) and (3.2) , the only y..ossibility seems to
be that of trying to find functions £(F,C), n(F,C) such that,
if we tske two arbitrary, but independent soluticns u(p,z) -

v(p,2) of the equation
sz = O DR (3.5)

and then by putting u = £(F,C), v = n(F,C), substituting
these respectively in the left hand side of equation (3.5),

we can deduce equations (3.1) and (3.2) as a consequence.

The following considerations show that this is not
possible, and no such functions exist. For, in terms of

F and C, the equationsy2u = 0 and Vv = G give, respectively,
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0
e L 5<6)

1l

: 2 2
ng2F+§CvBC+§FF(VF) +€0g(VO)" +264,VC.VF

2 2
nFﬁ2F+nCVQC+nFF(VF) +ncc(v0) +21pgVC-VEF = o] |
cee (3.7)

where a lettered suffix on £ (or ) denotes partial differ-

entiation of £ (or n) with respect to that letter.

Now if we are going to deduce equations (3.1) and
(3.2), from equations (3.6) and (3.7), it is clear that

none of the guantities £55 £ps 7Mg» 7Ny Can be zero.

If we now eliminate V2C from between equations (3.6)

and (3.7) we get,

(EF"?C-‘ECTFF) VR + (anFF—‘gCnFF) (VF)2
+ (N Eanoe (WO + 2(neEpcEcnpg) VO-F = O
8. (3.8)

Eliminating V2F from between (3.6) and (3.7) gives,

(cnsmegne) 170 + (npfppegnpy) (V9

+ (ngEoc=€gnge) (VO® 4 2(nEpgEpnpg) VO-VF = O

oo ADRE)



Since u and v are sssumed to be independent we have

EFlc ~ &gl # ©-

If (3.8) and (3.9) are to be identical to equations

(3.1) and (3.2) we shall require,

Neécec ~ €cllce = 0 | wee (ZLI0)
ne€rr ~ Eclpr = © e B L)
neEpe = Eclicr = ~C (EpngEcny . ook L e dE)n
neécc ~ €Flcc T -G"i(fan—ncsF) e 515
ngrc ~ Mrcér = © s L300

niEpp ~ Exlgp = O (Egne Mt | S £3.15)

Solving equations (3.10), (3.11) and (3.12) we get,

— g it )
=+ g0 8|77 4. n=prpCiElr [T,
where a, B, y are constants, and £ is an arbitrary function
F. Also since &4 £ 0, Ul #Z O we have g # O. Substituting
these values of £ and 7 in equation (3.13) we get 8 = O,

which is a contradiction.

It would appear that to search for the general
solutions of equations (3.1) and (3.2), is perhaps far
too ambitious, and that we may have more success if we
look for a me thod of deriving particular integrals of
equations (3.1) and (3.2). With this aim in view, we

take a known solution, say the Kerr solution, and try
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to force equations (3.1) and (3.2) to give it in the simplest

possible form. For the Kerr solution, C and F have the forms,

cC=1 - 2mr(r2+aecoszﬁ)_1 ¢ i NBeAB)

—2macos@(r3+a200826)-1 vwn ! (51 7)

=
1l

where m and a are constants, and r,6 are functions of p,z

defined by
p = Sin@(rz“2ﬁlr+a2)£ CRCI (3. 18)
z = cosé (r-m) L (%.39)

The first thing we note is that if we calculate C-1+iF —

(i = N-1) we get,
Qo= ¢ gki= -—2m(r’—iacos@)_1 S (3.20)

Now the function in the bracket on the right hand side of
(3.20) is quite simple, it is after all just a function of
r plus a function of 6. This suggests that equations
(3.1) and (3.2). be combined into one equation for the

complex function X = C+iF. We get

RN e - e I &

r

X + X

where X = C-iF.



= G =
Then from equation (3.20) we get,

=

v {Z.29)

X = 1 + 2m(iacosf-r

Although X is a fairly simple function of r, and 6, r and 6
are rather complicated <functions of p and z (see equatlons
(3.18) and (3.19)). To overcome this we must change the
independent varisbles p and z. We cannot use r and 6,
defined by equations (3.18) and (3.19), since a and m would

appear in the resulting equ=tion. Instead we choose,

p = Ksinhxsiny See LB 08)

z = Kcoshxcosy coe C52h)

where x and y are related to r and 6 by r-m = Kcoshx,

6 =y and K = vii¥=a2 _ (assuming m® > a2).

1l

In terms of x and y equation (3.21) reads

32X 82X X

a
5%2 T ay2 * cothx + coty == 3y

(@) e

and in terms of x and y equation (3.22) reads

cosy - % coshx + 1

(3.26)

e
Il
-l el

cosy - % coshx —- 1

The form of (3.26) suggests that we change the dependent
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variable X to Z by putting

LR = e (3-27)

and in terms of Z egquation (3.25) reads

222 227
9x= oy=2

¥/ 2%
+ cothx A% + coty 0y

= 2 2
2 82) (8Z> } (
— -—_ —— + S— - e e 3-28)
77-1 { (ax 8y
where Z is the complex conjugate of Z.

The solution of equation (3.28) which generates the

Kerr metric is then

Z = coshcoshx + isin\cosy SN sy
where sin\ = a/m.

Inspection of equation (3.29) suggests a further

change of independent variables to

x! coshx . ¢ K BBO)

v cosy ioe L3 5T)

Using equations (3.30) and (3.31), equation (3.28) becomes



ovs (3552

and from equation (3.29) we know that Z = X’ cos\ + iy’ sin)

is a solution of equation (3.32).

To sum up then, in order to get the Kerr solution in
its simplest form, we first combine our equatioﬁs (3.1)
and (3.2) using the complex function X (= C+iF) to give —
equation (3.21), we then change both the dependent variable

(X) and independent variables (p,z) using the equations

A e
Ry )
p = a(x2-1) *(1-y2)°
Z = OXYy

where o is any real constant. This then leads us to Ernst's

equation
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The Kerr solution is then given by % XcosA+iysini,

where A is any real constant.

It is now clear that even if we try to find a method
of deriving particular integrals of equations (3.1) and (3.2)
we are led in the direction of increasing complexity. BEqua-
tion (3.33) tells us very little, other thsn if Z is a

3 -1 i i
solution so are Z and Ze ", where o is any real constant.
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CHAPTER FOUR

THE POSSIBILITY OF FINDING PARTICULAR

INTEGRALS OF THE FIELD EQUATIONS Rij =0

USING THE EQUATIONS OF SET B

In the previous Chapter it was shoin that equations
(2.39) and (2.40), of set A, are very difficult to satisfy.
One way of getting round this difficulty would be to look
for solutions of set B, which satisfy the condition T £ O.
For then, by our theorem, equations (2.39) and (2.L0) would

be satisfied automatically.

In this Chapter this possibility will be investigated,

for the special case when C and F satisfy the condition,
C,0s 4 B, F, =0 Sinmikidy )

_Using (L.1) the equationsof set B become,

Ail o 3 AQQ = O L] (LL|2)

]
2(n2402)S, = M, C (CZ+F2-C3-F,2) os (1.3)
2(p2+02) S, = -AMA,C (C24+F2-C2-F2) one (lali)

;4 + Spp = - ACT (C2+02+F2+F2) sos slile )



< G
Equations (L.3) and (4.4) give,

A8y + A8 =0 Pae hst)

We shall regard equation (L.6) as an equation for S, and
since it is of the first order and of . the Lagrange type,

its general solution can be written as,

s = G(s) SAP B

where s(x1x2)= constant, is the solution of the equation

dx* dx2

Az = Al . (1.{.'8)

and G(s) is an arbitrary function of s.

From equations (L4.3) , and (L.5) we get
C2 + F3 = P2C? S i 9
CZ + F2 = Q2C2 =5 ran
whe re
P2 = —(8,,+S,,) + o= (03+43) s LT
. 1

2 | ) Si( 2 2) ( )
Q = "(Sii+822 = -A_"&-I &1‘}'._"12 PR Ll-cl2

and we assume P £ 0, @ # O.
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Now equations (L.1), (L4.9) and (L.10) will be satis-

fied if we put

iy B
u, = Pcost S T D)
u, = Qsint i, soer (s B
F, = Pe'sint on 1y, 16
_F, = —Qe"cost T

where t(®2 0) is a new function of x* and x=2.

The conditions u;s = Uy49 Fia= F,y, give, using

equations (L.1L) to (L.17) inclusive,

t,Qcost + t,Psint = P,cost - Q,sint s oo KL 38)
t,Qsint - t;Pcost = Pysint + Q cost + PQ

s (haas)

Solving equations (L.18) and (1.19) for t; and t,, We get,

t, = P, * + Psint bt 20

t, - (Qip_i + Qcost) fsa AL LY

I

The cordition t,, = t;, gives using equations (14.20) and

(4.21)
(P;Q'i)2 + ("), =P =0 v e 22)

Now, instead of investi gating the conditions on F,

C and A which dc not make the determinant I' vanish, it is
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simpler to find conditions on P, Q and A which make o = O,

s+ = 0. This we shall now do by direct substitution from

equations (4.13) to (4.17) inclusive.

From the definitions of ¢ and 7 (see equaticns (2.39)

and (2.L0)) mde@mtmn(mlﬁ,wecmlmdm

O = e luy . vugpen  (Dpu, agn ) ve  (EaRe) T L. (L.23)

et e i aeT T ) 4 (aeT B 3 ootk 200

From equations (L4.14) and (L.15) we get, by differentiation,

and using equations (L4.20) and (4.21), 2

u,, + P2sin?t = P,cost - P,Q Psint vos i 25)

-
Uge + Pcoc®t Qg sint - QcostQ,P won e 26)

Adding equsztions (4.25) and (L.26), and using equations

(4.16) and (L.17), we get

Ugg + Ugy + e *V(Paurz) = (P, -QQ,P™') cost

& (0.~Pq " F) simb, | iy (.20

Substituting from equations (4.14), (L4.15) and (L.27) in

equation (L.23) gives



e CNER

g = eu{(Pi-QP-1Q1+&1A_1P)cost

+ sint(Qz-PQ-iP2+&2A‘1Q)] senilinog)

Substituting from equations (4.16) and (L4.17) in equation

(L.24) , we get

T = A e%{ (APt, -A,Q-AQ, +Au, Q) cost

+ sint(A, P+P, A-Au, P+AQt,) § oo (U4.29)

after differentiation. Substituting from equations (L4.1L),

(4.15), (L4L.20) and (L.21) in equation (L4.29), we get,

T = e cost(PQ TP,-A,AT 1 Q-Q,)

- sint(QP  Q,-A,A  P-P,) | o ailisa0)

Hence, from equations (4.28) and (L.30) we see that
the necessary and sufficient conditions foroc = 0, 7 = 0,

are

|
o

P, + A,A P - QP YQ = el 37

For the remainder of this Chapter the physical

significance of our equations will be disregarded, and

the variables x*, x2 will be permitted to take comnlex
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values. All functions of these variables will be assumed
to be analytic, so that they can be continued into the

complex plane.

We now make a change of variables from x! and x2, to

the conjugate variables z and z, defined by,

z = x1 4+ ix® ees (4.33)

M|

= xt - ix® e e, Z1)

Ty and z being independent vari-bles when x and x® are

complex. From (L.33) and (L4.3L) we get the operators,

Cose  phyag L_,{i___a_)
. g ¥ =5 = 5,
gx o0z oz ax 0% 3

Since A is harmonic (see equation (L.2)), and is real when

x* and x2 are real, we can write

A= #(z) + Fla) evo (4.35)

where f(.) is analytic and ?(T) is the conjugate analytic

func tion.
In terms of z and z, equation (4.8) reads

47 + 2847 - 0

0z 02z



=0 S
or using equation (L.35),
Trdz + £'dz = 0 o A oRE)

where £' = df(z)/dz and T* = df(z)/dz. The integral of

(LL,.36) can be written as

r(z) + r(z) = constant,
where
r o= (£)". e Y
Hence .
s = r(z) + v(2) sne (11438}

Substituting from equations (L.7), (L.35) and (L.38) in

equations (L.11) and (4.12) we get

P2 = AG" + VG vioh (e 59)

QR = AG"- PG’ e (i)
where

A o= -u(erE) T oioie. (pdit)

T

ur + 1 vee (L.42)

In terms of z and z equations (L.22), (L.31) and (4.32)

read,



QPQE(PZ“QZ)Z + (PE T QE)E % 2(Pz+qz)E + 2pa }

- (p,p2) 1 (p9) , - (pak |

+ (a,+q) i(pgd, + (pd= ] =0

ove (La13)
(p-d) , + (p-d)3 + 2p{(4na) , + (ema)z } = O

eoe (Lobly)
(p-d) , - (p-d)g - 2q{(¢nn) , - (4nd)Z } =0

e oo (Lo45)

where p = P2, g = @2 and we are using the notation

- 9p o et D
P, = oz’ Pzz — s ?

etec.

Now, from equations (L4.39) and (L.LO),

P =2 Gl
(p~q) z = 2(% i uZG=> R T )

where we have used equations (4.37) and (L.38). Substit-
uting from equations (4.35) and (4.46) in equations (L.LL)
and (L4.L45) we get |
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=il

e fu(2) ™ 4 ()T + AT (84D 7]

+ G futvz +u(£ 4F) (£+F) - N s L3N

e iu(e) ™ - (@)Y - (e -F) (84D T}

+ @ EUZ—UE +op (£ =) (£4F) —1} =0 phoc, O LY

Substituting from equations (L.41) and (L.42) for \ and v
we see that eguations (4.47) and (4.48) are satisfied

identically.

Hence o = 0, 7 = 0 and equations (2.39) and (2.40)

are reduced to mere identities.

Substituting from equations (L4.39) and (L.LO) in

equation (L.L3) we get

in(@Qz + ya (@)™ 4 y;Gm(@Qz + y, (G") 2gne
+ ys(G’)3 + ye @7 (G)2 + yqG”(G')g + ysG”(G”’)2
+ yel GG + y, o(G)2G"" + y“.(GfH(Gﬂ)2
+ yig(G)e + yilq,(G”)* =0

ees (U4.09)
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where
v =2 (@ [(rode)(2d) (2] o 5o
e (%)2 e s (61
A 5o (l552)
Ye = % (L.53)

=1

4
i .ﬁ@_ {fu‘fm- (m%) (rra&wg)] Jos (5L

e %.(;j[@afw zi-w)(f@)“i - 2B) Ll (a3)

Yo = %<§j [f”+?” ~ (ffz%E*2><f+?>ﬁi] vss Kl 56)

ve = = (4.57)
v = (&) . (4.58)
Yio = - %(_%)2 vor (11.59)
vas = - 2(3) . (1.60)
Yiz = @ oox (hs1)
yaniel | s (1. 62)

Now if A and p were substituted from equations
(4.41) and (4.42) in equations (L.50) to (L4.62) inclusive,

the y,'s (i = 1,2,...,13) would become functions of the
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derivatives of £(z) and T(z), and if these y,'s were then
substituted in equation (L4.49) we would have one equation
for the two unknowns f(z) and G(s). If we do not assume,
as a prior condition, that any one of the derivatives G’,
G, G", G"" is zero, we can make equation (L.L9) into a
differential equation for G(s), provided we choose f(z)

such that each y; is a function of s only.

Before investigating this possibility we note that
if £(z) is replaced by f(z) +ia, where g is any real constant,
A is unaltered. Hence, f(z) is arbitrary to the extent of
additive constants, which are purely imaginary. Further,

in terms of z and z equation -(L4.1) reads, ™

C2 ,F2-02-F2=0 sieie (L. 63)

Suppose we now change from the varisbles z, z to the

variables (, ? whe re,

¢ = w2, ¢ = w(2)

w(z) being any analytic function of z, and w(z) the

conjugate complex function. Equation (L.63) becomes

2 — 2
@ () @ o) -0 o wm
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Now if we assume equation (L.63) is form invariant

under the above transformation we shall require
2 + F(_Q - C"""2 - F—2 = 0 .o (LL-65)

From equations (4.6l) and (L.65) we get

2 i
() ~ (&)
a dz
.o _ w = az + b,

where a and b-are constants, a either real or purely imag-

inary, b complex.

It follows that equation (L4.63) is only form invar-

iant under transformati ons of the type

az + b

Y
il

oo (U 66)

C =az + b

e

Since equations (4.2), (4.3), (L.h4) and (L4.5) are also form
invariant under the transformation (4.66), it follows that,

it

’ e (LIBD

oo R - 2R 8-
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are solutions of equations (4.1) to (L.5) inclusive, so are

c(¢,0)
F(¢,0)
A(C,0)
8(¢..C)

1

y e ov L, 68)

oy 0 e ([
Il

Il

However, since our metric (2.1) is form invariant under the
transformztion (L.66), the solutions (L.67) and (L.68) will
give rise to the same metric. Hence, we can replace z by
az+b, and z by az+b, where appropriate, without affecting the

f'ingl metric.

THEOREM

There are just five distinct forms which f£(z) can take
in order that each y, (1 = 1,2,.-..,1%) be a function of s
only. These (apart from changes in f(z) and z of the form

mentioned above) can be written as

(i) £(z) = z
(i1) f(z) = ipz2
(iid) f(z) = iecoshz
(iv) f(z) = iesinhz
(v) £(z) = ife?

where B, € and § are all real constants.
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PROOF

(i) Ir £(z) = z then equations (L.37) and (L.38) give
B = B4Gs From equations (L.41) and (L.L2) we get

=4

N iE=ly = )—I-(Z+-Z.)hi = Lg ,

hence each y; (3 =.1,2,...513) is & funetion of & .cnly.

From now on we shall assume £’ #Z 0. In order to
obtain the results (ii) to (v) we first note that if a
function ¢ = ¢(2z,2) be expressible as a function of

s = s(z,2) only, it is necessary and sufficient that,

ﬂf_:_sl =0
B(Z,E)
i.e. SECZ—SZCE = B
or AT e oo K169

using equations (L.37) and (L.38).

Inspection of equations (L.50) to (L.62) inclusive
shows that each Yi (i = 1,2,...,13), will be a function of

s only, if equation (L.69) is satisfied by

CayiL ¢ = %

(2) ¢ = £r4Fr-(rr 24T 2)(esD)

(Frefuyr 2F0) (£41) =1 —fn T,

(%)
B
o
WL
o
{f\
|



Substituting

¢ =J{' = - ' (f+-f')_i ’

(using equations (4.41) and (L.42)) in equation (4.69), we

get

ﬁf‘fu =P 2') = (_f':-f‘-}.f..?lz) B -f’fu - ff’” =10

css (ho70h)

Now (L4.70) is to hold identically in z and E, so that if we
first differentiate partially with respect to z, and then

with respect to Z we get

.f’.f fm - P -fm — O

f iy ?m

Lo 3

e AU

Since (L.71) is identically true for all z, and z we must

have

£ = Kf* v ka2 2)

where K is any real constant.
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There are two cases to consider

Case (1) K = 0

The general solution of equation (L4.72) is in this

case

f(z) = AZ% + Bz + (¢

where A, B and C are complex constants. If we make the

transformation z - z - %BA-i we get
f(z) = Az2 + D R
=
where D' = C - B2A /.

Substituting (4.73) in (4.70) gives

e nel D= =D
i Since D is imaginary we can write

B real.

Case (2) K £ 0O

Putting K = a?, the general solution of equation

(4L.72) can be written as

£lz) = 8e®® L Be 7% L0 sien. Nide 75)
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where A, B and C are complex constants, and we note that a
is either real or purely imaginary. Substituting (4.75) in

(L.70) we get

ol
I
(®

'+ el 76)

AB = £B : v s o Ml 27D

Because of (L.76) there is no loss of generality in putting
C=0. Now it is clear that (L.77) is satisfied if one A,

B is zero, in that case

£(2) = pet®” . oo Bl 78)

where D is constant.

=1
The transformation z —» + a [Z+i(ﬁ/2—argD)} then 21lows

us to write (4.78) as

£lz) = ife? ceimiilll e 79)
where § 1is real.
We now assume A £Z O, B £ O and write
Az aele, B = #8e >

ay B and 6 being real constants a,8 > 0 , equation (L.77)

is then satisfied identicaily.

Substituting these values of A and B in equation

(4. 75)



T

£f(z) = aeaz+i@ + ﬁe-(az+i6) is o i1, 86)

T

The transformation z - a {z + 4én g + i(+ % - 6)] then

nal

allows us to write (4.80) as

£l2) =3ele® 1+ &2 bl BT)

Substituting for f(z) from equations (4.?&%(&.79)and(h.83 in
the other two values of ¢ ((2) and (3)), and then substit-
uting these in equation (u.69), we see that it is satisfied

identically in each case. Hence the theorem is proven.

The corresponding values of A are

(i) N = x2
(ii) A = axtx?

(iid) A = Ksinhx!sinx?
(iv) A = Kcoshx!sinx?
(v) A = ¢eX sinx?

where a, K and ¢ are real constants.

In Chapters 5, 6, 7, 8 and 9 the particular integrals
corresponding to each of these values of A will be worked
out, but instead of using the complex coordinates z and Z,

we shall return to the real coordinates xt and x=2.



CHAPTER FIVE

THE PARTICULAR INTEGRAL CORRESPONDING

0 A = K sinh x gin x°
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CHAPTER FIVE

THE PARTICULAR INTEGRAL CORRESPONDING

TO A = K sinh x* sin x2

It will simplify things a little if we Pt % = x5,

¥R= e EHO that
A = K sinh x sin y wre’ 1Uh1)

Also suffix 1 will now dencte partial di fferentiation with
respect to x, and suffix 2 partial differentiation with

respect to y.

The solution of equation (L4.8) is in this case

sinh X cosec y = constant

¥ s = sinh x cosec y . ot (5, 2)

From equations (L.7) and (5.2)
811 + S5 = {(1+s2)G” + 2sG' Jcosec?y
v (5.3)
and
EEI(A12+ A22> 2 8'1(1+89}chosecay

ool (5.&)



using equation (5.1). Substituting from (5.3) and (5..4)

in equations (L.11) and (L4.12) we get

P2 = cosec?yj- é%[(l+sQ)G’] + 8 " (1+s2) @ }

sss (545)
a =
Q@R = - cosech[EE[(l+82)Gf] + 8  (l+s2) 0@}
csv X540)
We now introduce a new funec tion ﬁ(s) defined by
- 80 = (1+s®) @ sen 5 1)

Substituting from equation (5.7) in equations (5.5) and (5.6)

we get,

P = g(s) cosec ¥y suie 5. 8)

Q = h(s)cosec y ot T ST
whe re

g2 = S"g""g' " .. (5010)
and

ne = s 92 4+ 20 iv SlEL11)

From equations (5.8) and (5.2), we get

P, = -(gs)! cosecy coty

P ’
‘ Ba = ot
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!

- e !
oo (Po@ 1)2 = {Lﬁﬁl—] sinhx cosecy cot®y + ££§l~ cosecRy
“

il

[s[igﬁli}’ + (gﬁt{]coseczy - [(Sh' } &
(using equation (5.2)). i.e.

(P *)g = é%[ﬁ é%(sg)}coseczy o é%{(ﬁﬁ%_]

ree (5019
Using equations (5.2) and (5.9), we get
Qy = h' coshx ;Osecgy s
ke QB =-§'coshx cosecy
’re (QiP—i)1 = (%{>'005e02y cosh2x +‘%'cosecy sinhx

1

b {coseCQy s n{ SN Puina B
g & g

(using egquation (5.2)). i.e.

=Ly, 4 ¢ % dh 2 e L
(Qip )1 ds (g ds)cosec R ds(sg ds

snie (5.2

Substituting from equations (5.8), (5.9), (5.12) and (5.1%3)

in equation (L4.22) gives



using equations (5.10) and (5.11) i.e.

o o 4 s T
h ds(SQ e day 7 &

and (5.1L) reduces to

d =tda =hogh) "
EE[Sh ds(sg) + 8 ds] gh = 0

éig {(gh)_i ?‘%(hz . SSgE)} = 2gh e (G415}

y d L —-14
Multiplying equation (5.15) by (gh) ™ ag(h2+82g2) and

integrating gives
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{%(h’aa-szgg) T = Lg2h? (h2+s? g2 +a) cee (5.16)

where a is the constant of integration. Substituting from

equations (5.10) and (5.11) in equation (5.16) gives

S ds

/ 2
(82+IT[S ggg +3 %%} = us 2 (s 20 26) T
[s(1+32) EE + 20 & a] Ll (o

WWe can express equation (G5X7) In'a simpler form if we make

the following substitutions

82 = v « s (518)
& = Zvd s (5:99)

vl 5%00)

Solving equation (5.20) for (, 6 can he found, in terms of

s, using equations (5.18) and (5.19), and G(s) can be



S
obtained from equation (5.7).

Al though we are unable to give the general solution
of equation (5.20), it does seem to possess a remarkable

particular integral; this being obtained by putting

a(v) = 6n§p(v)(l;v)_n2§ + constant ... (5.21)

where p(v) is a polynomial of degree n2 (n = 1,2,...), and
by teking the constant a in equation (5.20) to be -Ln2.
Substituting (5.21) in equation (5.7) gives

6 = 2{n® - (1+v)p' p.*} B e e
where we have used equation (5.18). Substituting from
equation (5.22) in equation (5.19) gives

....1;

¢ =b4vin® - (1+v)p'p sioe (5,23)

Although we are only able to prove that p(v) exists

for n=1 and n=2, there seems no reason why it should not

exist for all n. To facilitate the calculations we put
¥ 1y _
W = gp s, (Bv20)
q = v(1+v) p/ vee (Boag)
then,

¢ = Lin2v-w) siss $5.26)
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(using (5.23)). Substituting from (5.26) in equation
(5.20) gives

v2(1+v)2<%%§>2 = u<n2 - %%)(v %% - w){(l+v) %% - w]
soo (5.27)

Substituting from equation (5.24) in eguation (5.27) gives
2 2
v2 (1+v) " {p(pa”-qp”) - 2p’ (pg’-gp')}
= Uin?p2- (pa’-qp')} {v(pa’-ap’) -pa}{(1+v) (pa’ -qp') -pg}

von 5+ 28)

Now,

pa’' —-qp' = (1+v) {v(pp”-p'2) + p'p} + vp'D

vk 529

v(pa’' -aqp’) -pa = v2{(1+v) (pp”-p'2) + pp'}

e LORIR)

(14v) (pa’ —ap’) -pq = (1+v)° {v(pp"-p' 2) +pp’ }

Mot (5.31)

where we have used equation (5.25). We also note that

e a ;
pa”-qp* = ==(pg’ =~ ap') one (5.32)
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Case 1

n = 1. The appropriate form for p(v) is

p(v) = v + ¢ eves X533

where ¢ is an arbitrary constant. Substituting from equation

(5.33) in equations (5.29), (5.30) and (5.31) we get

I)q_‘ll -qp’ = Vz 4= 20V + @ e (5:3)—]-)
v(pa’ ~qp') -pq = v2(c-1) ses [65.25)
(1+v) (pa’ -qp’) -pg = c(1+v) ves (5,36)

Using (5.32),

pa”-qp” = 2(v+c) .

We also note that

p2-(pq’ -pq’) = c(e-1) veniil5 7 38)

From equations (5.34) to (5.38) inclusive, it follows that

equation (5.28) is satisfied by (5.33).

Case I1

n = 2. The form for p(v) in this case is

p(v) = vt+lev3+b6ev2+levic? e (5.39)



_50...

where ¢ is a constant. Substituting equation (5.39)

equations (5.29), (5.30) and (5.31) gives

pq’ —qp’ = L{ve+8cv7+(16c+12¢2) v8 +(20¢+36c2) vo
+ (9c+61c?) v+ (12c3+4)c?) v

+ (18¢3+10c¢?) v2+8c3v+c3]
o5 5 1 L D40)
v(pq’ -qp') =pq = Lv2 (e-1) {e(3v+2) ~v3}”
el LBTET)

(1+v) (pq’ =ap') -pq

= Le(14v)° {e(1+3v) +v2 (v43) )
oo 4 5:42)

Using equations (5.39) and (5.40) we note that,

Lp2-(par -p' @) =-be(l-c) [e-v2(2v43) |

eoe (5.43)

Also using equations (5.39), (5.40) and (5.32)

p(pa”-qp”) -2p' (pq’ -qp’)

Il

16¢(c-1) §2v° +9v8-21¢cve +9v7-9e(2c45) v°

- 9¢(5c+2) v4-21c2v34+9c3v2 +9c3v42¢3)
l6c(c~1)!c—v2(2V+3)§E0(1+3V)+V2(V+3)}

I

x {e(3v+2) - v¥)

oos KDlly)

in
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From equations (5.41), (5.L42), (5.43) and (5.4Y) it follows

that equation (5.28) is satisfied by (5.39) when n = 2.

The metric corresponding ton = 1, is the Kerr metric,
and for n = 2 the metric is the first member in a series of

new metrics obtained by Tomimatsu and Sato (L) .

Tomimatsu and Sato obtained their series of solutions,
which is characterized by a positive integer § equal to our
n, by working with Erst's equation (3.33), and by consid-
ering possible gencsralizations of a particular integral of
the Weyl class (for the Weyl class F = O in the notation

of Chapter 2) .

This is truly a magnificent achievement on the part
of these two authors. It should be pointed out, however,
that the author of this thesis, discovered equation (5.20)

before he was aware of the work of Tomimatsu and Sato.

. We shall now show that the Tomimatsu-Sato class is
included in our particular integral. According to Tomimatsu

and Sato, if we write Z = £, where Z is the dependent

o4
B
variable in equation (3.33), then the members of their class

have the following properties,

SN g B, RS
(i) P —ass  isweal

(ii) Jéi ga a 2B . g purely imaginary
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But (i) and (ii) imply that,

2 _ o (5D
.a..% = ilﬁﬁg . (5-’4—6)

where p and A are real functions of x and i

From (5.45) and (5.46) we get

3z 3% , oz

X 9 =0

er4
o9x

[
o

and using equation (3.27) we get

X0 + X = 10 o (5. 17)

and since X = C+1iF, we have the condition
C,;Cp + FyF; = 0

which is our equation (L4+1) . Hence, the Tomimatsu-Sato

metrics must be included in our particular integral.

Further, inspection of the Tomimatsu-Sato metric for

¢ =3 5 suggests that for n = 3,

p(v) = c3+3c2 (12v5 +30vE+28v3+12v2 +3v)

+ 3¢(3ve+12v7+28v6 +30v5 +12v%) +v°
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We shall not, however, verify this as we did for the cases
when n = 1, and n = 2, for it is our belief that there is a
fundamental principle at work here, which can only be found
by further research intc the theory of ordinary differential
equations of the type (5.20). All that we can say for the
present is that wherde =lne, (n = 1,2,...) 3%t 4s very
probable that equation (5.20) has a particular integral which
is a rational function of v, of the type already stated

viz. equation (5.23).

If this turns out to be the case it may be of sig-
nificance for the theory of Rotating Stars. For if we
could also prove that in order for the metric generated B§
the general solution of equation (5.20), to represent a
physically real situation e.g. be asymptotically flat at
infinite distance, (a necessary condition for this is that
¢ be a rational function) and have mass and angular momsntum,
it is nescessary and sufficient for a to equal -Ln2®, and for ¢
to have the form given by equation (5.23), +then it may not
be too wild to conjecture, that a steady state condition is
only possible for a rotating star, when the matter generating
the fielc is in one of a possible number of discrete energy

states corresponding to n taking the values 1, 2, 3, ... .

As we have said the general solution of equation
(5.20) is uniznovn, it is however possible to give an infinite
series expansion for ¢ under certain conditions. This is

obtained by assuming the following boundary condition on (.



= 5l -~

At

d
v=0, =0 and a% = Jrac

Where c¢c is a constant, and we shall revlace a in equation

(5.20) by -La. Then by assuming

szaﬁvn ’

n=1

and substitutingzg in équation (5.20) we get non-linear
difference equations for the an's. However, if we first
differentiate equation (5.20), and then substitute the
infinite series in the resulting equation, we get simpler
difference equations for the an's (doing it this way avoids
having to square the infinite series on the 1l.h.s. of

(5.20)) . The result is

a; = lac

a; = La2c(c-1)

2{(n-1)" (n-2) a__

E

+n(n—l)(2n—l)an+n?(n+l)a

1 n+1l
where
n
T ‘
G =y - = £
5 ) (2n 23+1)an—j+1{aj-1(3 2)+del

=]

.
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<l

a (n—j)i(j—l)aj_1+ja-i

Bn = j

n-j+1

oot S
m =

whe re we define ay = La.,

It should be observed that the above equaticns
uniquely determins the coefficients a,.. Of course, if

the gbove conjecture is correct the infinite series should

converge to a rational function when,

a:lz’ 22, CIC

We shall now prove that the metric corresponding to
the solution for n = 1, is in fact the Kerr metric. When

n =1, p(v) = v+c, and from equation (5.23) we get

Lv(c-1)
L5 Twee,

Equations (5.18) and (5.19) then give

g = 2{c-l) b s

T 8% % e

Substituting equation (5.48) in equation (5.10) and (5.11)

then gives

_ 28D
& = Per-@ g (5.49)
B o et vo e (5,50
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2
where we have put ¢ = - 52 where p?+qQ® = 1.

If we put ¢ = tan 5, equations(4.20) and (L.21)

become

=k} i
¢,siny = -1(s8'h™ cosy(1+£2) +g¢ o s (5.51)

’ = -1
2¢.siny = (h-h'g coshx)£2-(hth'g coshx)

..._(5.52)

where we have used equations (5.8) and (5.9) . Substituting
equations (5.49) and (5.50) in equations (5.51), (5.52), and

noting equation (5.2) , we get the solution,

£% peoshx = 1 - agcosy
-~ a(pcoshx+l) + gcosy

where a is any constant. We shall take a = O, then

4 = tan % = q"i(pcoshx—l)secy som (5.58)

SR sint = % qcosy(pcoshx-1) won {5 54)
and
2
cost = ${q?cos?y-(pcosnx-1) ] ..+ (5.55)
whe re

2
f = (pcoshx-1)  + g2cos?y.
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Substitutins equations (5.8), (5.9), (5.49), (5.50), (5.5L4)

and (5.55) in equations (L.14) and (4.15) we get

u, = - %F {(pcoshx—l)z-q?cosgyisinhx
s s s 56
u, = Hﬁisinyposy(pCOth-i) 9 (5.57)

where
= (PQCOSh?X—l—q?coszy)i(pcoshx—l)2+qzcoszy§

The solution of equations (5.56) and (5.57) is

u = €n(p2cosh2x-1+g2cos?y) - €n{(pcoshx—1f

+ g2cos2y}

Equation (L.13) then gives

_ p2cosh®xX-1+g2cos?®y
~(pecoshx-1) 2+q2 cos? y . (5.58)

From eguation (5.21)

G(s) = ¢n(s2+c) - €n(s2+1) + constant ...
-ql?
and since we are taking C = - 02’

: G(SX = 6n(p282—q3) - en(s2+1) + 2£nmK*

(5.59)



where m is a2

B

constant.

Substituting from egquations (4.7), (5.1), (5.2),

(5.58) and (5.59) in equation (2.32) gives

ol s mzi(pcoshx—lf + g?cos?yl e (5.60)

Substituting

(2.20) gives

D,

Dy

(4.16) and (4.17) in equations (2.19) and

QAC tcost ' sver k5, 61)

PAC 'sint v o (BAED)

where we have used equation (L.13).

Substituting from equations (5.8) and (5.9) in

equations (5§

Dy

Dy

Substituting

.61) and (5.62) we get

—l
hAC cosecy cost o v (5. B3

gﬁCFicosecy sint siow- L 5.64)

from equations(5.1), (5.49), (5.50), (5.54),

(5.55) in equations (5.63) and (5.6L4) gives

Dy

2
1nd gﬁﬁ sin?y sinhx {(pcoshx-1)" -g2cos2y]

s 45.65)

= Hﬁﬁﬂ_ siny cosy sinh2x{pcoshx-1)
LA A (5‘66)
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where

2
go= (p? cosh?x-1+q2 cos?y)

The solution of equations (5.65) and (5.66) is

AR 2Kpsinh?x(pcoshx-1)
Ls qACOShX s 9y q(pﬂcoshgx—l+q?coszy)

e 5. 67

where v is a constant, we choose v = %g, then equation

(5.67) becomes,

= 2Kqsin?y(pcoshx-1)
= 5TPECOSh2X—l+q20032y) LR (5-68)

From equations (2.18), (5.58) and (5.68) we get

_ _2Kgsin?y(pcoshx-1)
g Dl (pcoshx-1) 2 +g% cos?y§ Vst Bde

To get the canonical form of the Kerr metric we put, K = m,

p = - T oot 5,70

and make the coordinate transformation,

y=0 - e (5.71)

L]
|

= -m(pcoshx-1) vas K572
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Then equations (5.58), (5.60) and (5.69) become

C =1 - 2mr(r® + a?cos26) * oo (5. 703)
B = E%Qrsin?ﬁ(rﬂ+-a?coszﬁ)-i csn 57
eV L v8 3 sfcnts : e 45, 75)

Also using equations (5.71) and (5.72) we get

% Tgmare—— ¥ dez cne \5.76)

and
A = D 'sinoNTZ-2mpraz ol (BT

Putting x3 = pp, x* = t and substituting from (5.72) to

(5.76) inclusive, in (2.5) we get

ar®
I 2 2 2 (e s T 2
ds? = (r?+a2cos 6)<r2+a2—2 = ae )

2ma2 rsin2g ) ag?
2 +32cos=0 J -

+ sin26{r2+a2+

Lmarsin?g . - 2mr 2
* T2iaZcos?o dgdt 4 r2t+a”cos2g ) 4t

e (5.078)

which is the canonical form of the Kerr metric. Although,

the metric coefficients in (5.78) satisfy Einstein's
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equations Rij = 0 for all values of a and m, our derivation

is only valid for m2 > a2 (see equation (5.70)).



CHAPTER SIX

THE PARTICULAR INTEGRATL CORRESPONDING

TO A = Kcoshx!sinx?
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CHAPTER SIX

THE PARTICUTLAR INT"EGRAL CORRESPONDING

PO Keoshx! sinx®

. As before we put x?

Ty K% = 3. 80 that
A = Kcoshx siny e (G0 T)
The solution of‘equation (4.8) is in this case
coshx cosecy = cons tant
s s = coshx cosecy e 1B2)

From equation (L.7), (6.1) and (6.2) we get
8,4+55,5, = cosec?y 5%1(52—1)G’l cis KB3)

Zgi(A12+A22) = s_i(sz—l)G'coseczy
1
T ) (6.14-)

Substituting from equations (6.3) and (6.4) in equations
(4.11) =nd (4.12) gives,

P2 - cosecgy[—'gg[(sz—l)G']+S-1(sz—l)G'}

v o (B545)
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0 e coseczy[é%[(SQ—l)G']+s"1(53—1)G']
.o (6.:6)
If we put
-s6 = (s2-1) ¢ wow A6 T)

=

equations (6.5) and (6.6) become

P = g(s) cosecy ses (BH.8)

Q = h(s) cosecy e sl b d)
where

g% = s %—% ses (6.30)

e = s L + 20 Shareak g

Substituting from equations (6.8) to (6.11) inclusive in

equation (L4.22) we get,

2 2
\ d= g dae ag/ . 46
- —_— 3._.. -— —_ -
(8 1) (s ds® ¢ ds) = Ma ds(s ds 26)

...[5(32—1)%% - 20 - a}

-

a5 ol

where a is a constant. ((6.12) is obtained in the same way

as equation (5.17) was in Chapter 5.)
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Putting

82 = -v o sia BB

¢ = 2v6 «os (6.10)

equation (6.12) reduces to equation (5.20).

Thus we may regard the particular integral of this
Chapter as being generated by equation (5.20). In particular
the Kerr-Tomimatsu-Sato class for a?® > m?, is obtained from
the results of this Chapter e.g. for the Kerr metric

equations (6.10) and (6.11) give

__ h(ec+1) 82
g = (s%+c) 2

pe - Le(c+1)
= (s2+4c)2

2
We again put ¢ = - %2 except that this time we make g2-p? = 1,

and then when

(Compare with equation (5.70)) . The remainder of the deriv-
ation then being similar to that given in Chapter 5 for the
case when a2 < m=2, This point can be best understood by

the following argument.

Suppose that the metric coefficientsfor the Kerr-

Tomimatsu-Sato class are calculated using the equations of
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Chapter 5, and we then make the coordinate transformmation

r - m = yJm? - g2 COsh X

on the understanding that
m2 > a2 soe (6,15)

In terms of r and ¢ the metric coefficients are such that
the square root in the term Ym?-a? is removed. Since the
Einstein equations are satisfied identically in r,0,m and iy
the condition (6.15) then becomss irrelevant and we can make

the coordinate transformation:

r-m=Va? - mesinh x
g= 5
thus giving us the particular integral of this Chapter.

We can put this another way, because of the form we
have taken for our metric, in which g;,, = g, the mathematics
divides the vacuum gravitational field of rotating bodies
of the Kerr-Tomimatsu-Sato type, into three distinct classes

ViZ.

(1) when m® 3 a2 for which the results
of Chapter 5 are appropriate,
(ii) when m® < a2 for which the results

of this Chapter are appropriate,
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(iii) when m® = a® for which the results of

Chapter 7 are appropriate.

Without knowing the general solutions of the
equaﬂions of Chapters 5, 6 and 7 we cannot say whether
or not the particular integrals will always lead to the
same metric in which g,, # g,. If any of the metric
coefficients contain a term like va, where o is a
cons tant not equal to an integer, the above procedure
would not be possible, and we would have distinct

solutions.
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CHAPTER SEVEN

THE PARTICULAR INTEGRAL CORRESPONDING

PO = Kex:L sinx®?

Similarly to Chapter 5 ® = x, X% = y.

A = KeXsiny o Al
s = e‘cosecy S i
P = gcosecy (7.3)
Q = hcosecy N (591
dag
2 =8¢ (7.5)
h2=s%%+2@ e, 1 Gl
_6 = SG' . e (?-7)
52 =V LA (?-8)
C = 2v6 O

dv=

o8 BB NE

L (?Ilo)
where a is & cons tant.

Again the general solution of egquation (7.10) is

unknown, however, it is completely integrable in the
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in the special case when a = 0, for in that case equation

'(7.10) reads

85 - (059
or
£ -2 260,
E =&
- be = (vi¢ o),

where oo is the constant of integration

L %% =y Lok o) Sl 7a11)
Putting
Y= v—'ig' + . SREC )

equation (7.11) becomes

W - (y-2° + L(a-1) Sw iy LT 2]
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Three cases can arise,

Case (i) o — 1 £ 0: and we put a-l=-pj=2.

The solution of equation (7.13) is then,

y = 2{c2(148) - vB(1-8) }/(c2-vP)

where ¢ is a constant. Using equation (7.12) we get

C = v(cz—vﬁ) z02(1+ﬁ)2 e —ﬁS} vee Uga3l)

Case (ii) a =1 > O0: and we put a-1 = B2 .

The solution of equation (7.13) is

y = 2i1+gtan[an(cv5/2)]§

o . ¢ = vi1-p2+2atan[ en(cv®/?) 1} T
using equation (7.12), where c is a constant.

Case (iii) o = 1:

The solution of equation (7.13) is,

y = 2 - Lien(c2v) ]~

where ¢ is a constant. Using equation (7.12) we get

¢ = vil - EET%E?T} RPN T Y
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Case (i)

Although it is possible to calculate the metric
coefficients for all values of B8, they are rather complic-
ated, except in the case when 8 = 1, and it is to this

value of B that we shall restrict ourselves.
When B = 1 equation (7.14) reduces to
CQ_v LRI (?al?)

Substituting from equation (g. 17 3n €2.9) gives

@ = - 202.— = s e (?-18)

82_04

where we have used equation (7.8). Substituting from

equation (7.18) in equations (7.5), (7.6) and (7.7) gives,

2es

g = o3 vee (7.19)
2¢2 '
H=te v dss L TWE0)

S = G(s) = ¢n(s2-c2) - 2¢ns + constant

vae (Te21)

Substituting from eguations (7.19) and (7.20) in equations

(7.3), (7.4) and using (7.2) we get



- Tl =

<
2
P e 2K Ce - s ® (?-22)
e - ¢2%sin®y
Q = 2c®siny vis ot L7233
s =HI
& - cRsin?y

Substituting from equations (7.22) and (7.23) in equations

(4.20) and (L.21) we get

T :
by e 2ce”(cosy + sint) ey (7.20)

5 2
e - c*sin®y

2csiny(e® - ccost)

£ i KT, 25)

2X A
3 - c®sin?y

The solution of eguations (7.2L) and (7.25) is

C+

s 2eX - c(L+cosy)

e e* + c(1+4cosy)

where € is 2 constant.

oo cost l-ii(1—69)62X+208X(1+62+2&cosy)+02(1*62)sinzyi

sest | 1+26)

it
sint = 207 {4e’-c(L+cosy) ] {e®+c(1+Lcosy) }

e (7427
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whe re

K = (1+62)62x+2exc(1—&2)+02i(l+62)(l+coszy)+u6cosyl

» oL 7 28)

Substituting from equations (7.22) , (?.23), (P26). T2
and (7.28) in equations (4.14) and (L.15) we get

u, = 2cexp-15(1-82)62x+208x(1+€2+26cosy)+02(1—62)sin?yl

i N 7:29)

uczsinyp"liéex—c(£+cpsy)iiex+c(l+5cosy)§

1l

e 7. 20)

where

Qo= (egx—czsinzy)I(l+62)ezx+2cex(l—62)

+ c2[(1+€2) (1+cos®y) +L4Lcosy]} ... (7.31)
~ The solution of equations (7.29) and (7.30) is

= ~ 6n[(l+62)e2X+2ceX(l—62)+cz[(l+$2)(1+cosgy)

+ Lécosyl} + &n(egx—czsinay) + constant

S
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Prom (L4.13) and (7.32) we get

2

L (1+69)v—1(e x—czsinzy) it 55

where the constant in equation (7.32) has been put equal to

¢n(1+42) and

&%

v = (1+€2) e“F42ce®(1-¢2) +c2{ (1+€2) (L+cos?y)

+ Lécosyl e oo T

Substituting from equations (7.1), (7.22), (7.23), (7.26),

(7.27) and (7.33) in equations (5.61) and (5.62) we get

P, = ggisinzyexi(1—69)62X+206X(1+€2+2€cosy)
+ c2(1-£2) ein2y}
a7 53)
Ne 2% . X x
Dy = e siny{¢eX-c(&+cosy) }{e”+c(1+Lcosy) ]

son ks 36)

where we have used (7.34) and

e = (1+£2) (e®F-c2sinzy) S v,
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The solution of equations (7.35) and (7.36) is

20c2

&

D= =

[sin?y[ex(l-ﬁz)+c(l+&2+2&cosy)]

- (%§008y+b)(€2X“CBSiHEY)I e AT e8]

where b is a constant, and ¢, = (1+62)*e%.

From equations (2.18), (7.33) anc (7.328) we get

2
B =~ 25 {sin?y[e™(1-¢2) +c (1442 +2¢c0sy) ]
- (%fcosy+b}(ezx-cgsin2y)i cee (7.39)

Finally from equaticons (2.32), (7.1), (7.21), (7.33) and

(7.34) we get

e2w = 0 N (=, I

- where a is a cons tant.

Hence all the metric coefficients are knovn. If we
interpret g™ as a radial spherical pclzr ccordinate we see
from equations (7.37) and (7.38) that our meotric is only
asymptotically flat (i.e. x as - + w0y ¥ Tixed) when ¢ = b = s

-In that case by putting c = m, a = 1, and by making the
transformation r-m = ex, Yy =0 we see that the metric is
the Kerr metric with a? = m® (see equation (5.78)). Thus

the Kerr solution for a? = m? is included in ecuation (7.10)

as a speeial csse.
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Case !ii)

Similarly to case (i)

6 = £1(1-2) + 28tan[en(csP) 1} . (7.41)
g = Bsecién(cs?) ] o (TeL)
h = gtan{en(esP)} + 1 s 7 3
G = 2¢nfcos(¢n(cs®) 1} + 1(g2-1) ¢ns
+ constant
. (7.00)
P = Bsecpcosecy . £7-U8)
Q = (1 + 5tan¢)co§ecy (7.46)
where
¢ = Bx + ¢enfc cosecty] (7.47)
and the equations for t are
t, = - Bsecpcosecy(cosy-sint) (7..8)
-t, = Bsecp + (1l+Btang) cosecy cost (7.49)

Integrating equation (7.48) we get

tan-;— = {¢(secg+tang) + m} (secp+tang+r) K
« (7-50)
where
£ = secy(l+siny) - « (7.51)

=
1l

secy(l-siny) £

.52)
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and £ is an arbitrary function of y. To find f(y) we put

a2-1 a+1

teng = 552 secp = %5t

then using (7.50) in equation (7.49) and equating coefficients

of powers of a, we get

B(1+¢?) + Bcosecy(1-42) = O s sl 7 55)

-{2¢! +gcoty(m-£4) ] = pg(f+me) + Beosecy(f-me)

+ (1-42) cosecy

R e De Tt

-4m' = B(1+¢2) + B(m2+f2) + Bcosecy(f2-m?)

-Bcosecy(1-€2) + L(f-mé) cosecy

(7.55)
Beoty(m-£2) + 2(fm’' -£' m)
= —5(f+m6) - COsecy[mz—f2+ﬁ(f—mﬂ)}
sos (7:56)
p(m2+£2) - Beosecy(-m2+f2) = O dse W 2557

Substituting from equations (7.51), (7.52) in equations
(7.53) , (7.54), (7.56) and (7.57) we get mere identities.
Substituting from equations (7.51) and (7.52) in equation

(7.55) we get
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' = -p(secy+tany) (1-siny) o + secyfl - Bsecyf?
s, Gi=E8)

Putting z = siny, equation (7.58) gives

(22-DL = (142 (1-2) ™" - £ + pre
Snis ki Ee 5T

We are unable to give the solution of thisRiccati
equation. Consequently, we can proceed no further in this

case.

Case (iii)

Similarly tocase (i)

6 = 1{1-2[¢n(cs) 17"} oo (7.60)

g = {fm_(cs)]—'i oo L 7.61)

- h=1- {en(es)} ™ cvins LT 62)
S = G(s) = ¢nfen(cs)} - 14éns + constant

vos (1s63)

P = cosecy{x+énccosecy) ] * it B 61D

Q = cosecyi{x-1+én(c cosecy)}ix+én(c cosecy)] ™

o 55

and the equations for t are



<

{x+én(c cosecy) }t, = coty(secysint-1) vois X 7566)

~{x+en(c cosecy) lt, = 1 + cotyi{x-l+€n(c cosecy}cost

e (7-67)
Integrating equation (7.66) gives
2. X+ m
tan o= sow ik £268)
where
¢ = secy(l+siny) Jo o NT69)
m = secy] (1-siny) £ + (L+siny) ¢n(c cosecy)}
oo'e (T 70)
p = £ + ¢n(c cosecy) s 0T

snd £ is an arbitrary function y. Using equation (7.68) in
equation (7.67) and equating coefficients of powers of x

gives
- 2¢' = (1-¢€2) cosecy sei 172
-2{¢' ¢n(c cosecy) + m' + pé' - p'e)

=1 + 22 4+ cosecyf(1-22) [en(c cosecy) - 1]
+ 2(p-¢m)} ‘ eee (7.73)

-2{pm’ - pm' + [€n(c cosecy) ](m' +pe’ -p’ €) }

2(p+em) + cosecyipe-m24+2(p-¢m)[£4n(c cosecy) -11}

orie Xl TH)
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—2(pm’ -pm’ ) ¢n(c cosecy) = m2+p2+cosecy{4n(c cosecy) -1}
(p2-m2)

et 07T

Equation (7.75) detemines f(y), for if we multiply it by

22, p Z0. (p = 0 leads to contradictions), we get

-2[¢n(c cosecy) ] %g = w2{1 + cosecy[1-¢n(c cosecy) ]}
- cosecyil - ¢n(c cosecy)}+1
cee L1VTE)
where
w = mp s KTl

Thus when w is known from equation (7.76), f(y) can be found
by substituting from (7.70) and (7.71) in (7.77) .

Unfortunately there are no known solutions of
equation (7.76) . Consequently we can proceed no further

in this cease.
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CHAPTER EIGHT

THE PARTICULAR INTEGRAL CORRESPONDING

TO A = Kx*

We put x* = p, X = z ard regard p and z as cylind-
rical polar coordinates, i.e each will have the dimensions
of length and we can put XK = 1 so that

&:p = s (8.1)

and from equations (L.6), (4.7) and (4.8) it follows that

S — G(p) « e (8-2)

Hence
By +8, = @7 S 5M B3
S1(p,240,%) = p M oo 081

Ay

Substituting from equations (8.3) and (8.L) in equations

(4.11) and (4.12) we get

P2 = -@" + pwiG' 8, 8)

Q2

gt g s 8 LR S g

Putting

’OG' = -0 P (8-7)



R

equations (8.5) and (8.6) give

P2 — (p p = 26) L (808)
=1 af
Q2 = el -d_P eus (5,9)

Since P and Q are function of p only equation (4.22) reduces
to

(G, ), <*by = 16

or

(QiP“1L_= PQ o n o0l B 1))

Multiplying equation (8.10) by QP  and integrating gives

4 2 S R

where a is the constant of integration. Hence

(92)2 = 4P2Q2(Q2+2a) ... (8.11)

Substituting from equations (8.8) and (8.9) in equation (8.11)

gives

B B)) -7 - ) e 20)

and putting p2 = v we get



e

cee (B12)

We shall now show that the above integral does not
‘belong, either, to the Papapetrou Class, or to the Lewis-

van Stockum Class.

A member of the Papapetrou Class satisfiies the

condition

C,Fs - C.F;, = 0 el kb o13)

and if our integral satisfied this condition we would have,
substituting from equations (L.13) to (L4.17) inclusive, in
equation (8.13) PQ = O, which contradicts our hypothesis
P#0O, Q# 0. If our integral were to be a member of the

Lewis-Van Stockum Class it would satisfy the condition

Xl(Fgcz ot Fici) = CF-}_ "o (8-1L})

which would imply, substituting from equaticns (L.13) to

(4.17) inclusive, in equation (8.1L),

(P2 - @2)sin2t - 2Pzint =0
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i.e. either

. . o A Yl P
(1) T = =5 or (ll) Tt = e0s EO_(PQ_-QQ)_]

would have to be the general solution of equations (L.20)
and (L.21). However, inspection of equations (4.20) and

(4.21) shows that this is not the case (see below) .

Although the general solution of equation (8.12) is
not known, it is completely integrable when a = 0. With

a = 0, equation (8.12) reads

2

2
a2\ _ o(de a0 _ =
(&) @) F-0)

or
ng d@z
(dv> e 2§<E?> 3. (B.15)
whe re
C:'Vg'%‘—ﬁ .. (8-16)

The solution of equation (8.15) is

2
2( = (6 S & b) . s (8-1?)
where b is the constant of integration.

Substi tuting from equation (8.16) in equation (8.17)

gives

2v %% = (b))t = {2bel) e (R 1 8)
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Three cases can arise:

Case (1) : 2bel =0

The solution of equation (8.18) is

6 = -3 - {¢n(ev) ]

where ¢ is a cons tant.

Case (ii) : 2b+1 > O

If we write 2b+l = a® the solution of equation (8.18)
is

Fics %[cz(a—l)g— (a+1) va}(va—cz)h

where ¢ is a econstant.

Case (iii) : 2b+1 < O

‘Put ting 2b+1 = -a2 the solution of equation (8.18) is

IR

)}

6 = $(a2-1) + atan{sn(cv

where ¢ is a constant.

We shall now calculate the me tric coefficients

corresponding to each of these cases.
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Case (i)
6 =- 3 - {en(cp) ] ol (8:19)
(v = p2).

Substituting from equation (8.19) in equations (8.7),
(8.8) and'(8.9) gives

G = enf{gp en(cp)} .e. (8.20)

where g is a constant.

P =4 Ep&n(Cp)Zfiil+6n(0p)3 Jes . (821)

Q= +{pen(co) 1™ ... (8.22)

Case (ii)

-
-

5 = 3len(a=1)" = (ar)he T o onl

swie B 2%

since v = p=%.

Substitutins from equation (8.23) in equations (8.7),
(8.8) and (8.9) gives

6 = €nigp 2 (%)} e (8.20)

where B is a cons tant.
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P = + p-i(p20t - 09)—1i(a+1)p2a + (o=1) c2}
| S (B 25)
Q = + 2acpa~1(p2a;c2)_1 vt (8426)
Case (113)
6 = %(az—l) + atan[&n(cpa)l eie (8.2?)

using v = p=.

Substituting from equation (8.27) in equations (8s2) ,

(8.8) and (8.9) gives

G = (a2-1) enp - &n{cos[&n(cpa)]I + constant

.i. (8.28)
P =+ p_lil - tan[&n(cpa)1i s liB:29)
Q = + ap—lsecién(cpa)l il B0

It is possible to express the metric coefficients in
terms of P, @, and G. From equation (8.10) we have
Q,2 = P2Q® therefore Q; = x PQ,in the event both signs lead

to the same result, we shall take the +ve sign, i.€.

Q, = PQ B3

Substituting from equation (8.31) in equations (14.20) and



T

(L.21) gives
t, = 0, sint e (B.32)

ty, = -Q(1l+cost) e B E%)

The solution of equations (8.32) and (8.33) is

tan % = - ZQ
sint = - 2zQ(1+22Q2) ~* sos (B3

cost (].—ZEQQ)(1+296,12)'_i s | CBTERY

Substituting from equations (8.3L) and (8.35) in equations
(4.14) and (L.15) gives

u, = P(1-22Q2)1+2z2Q2) ~* cos (B36)

Uy =-2202 (1+22Q2) ~* o L8.B P
The solution of equations (8.36) and (8.37) is

u = ¢n(a®) - en(1+22Q2) ... (8.38)

where a is a constant.

From equations (4.13) and (8.38) we get

¢ = aQ(1+z2qQ2) " cve (8639)
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Substituting from equations (L.16), (L.17), (8.1), (8.3L),
(8.35) and (8.38) in equations (2.19) and (2.20) gives

D, = 2(1-22Q2) S onit LB HO)
2
D, =~ =Pz : waam(8L0T)
equation (8.41) can be integrated to give
D= -Z o2 4 n(p) (8.12)
=T b + h(p -

where h(p) is an arbitrary function of p. Substituting
from equation (8.42) in equation (8.40) gives

dh _ z®

4 S MRS
do a dp(Pp) n.a a pR7

. 2 a =

et %’E:‘g*iEPQQ'E(Pp)ﬁ

But

pQR - ==(Pp) = sl td,2p08 - . (pege)]
1 B ioah, A .

= 5pp1P? (9 - g5(F*p?) ] (using (8.31))
___l_ge("igfﬂ_-agﬁ
= BoP eos dp

i
(@]

L h = 5=(p?+m) vos (8.143)
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where m is the constant of integration.

Substituting from equation (8.43) in equation (8.42)

gives

D = é%(p2+m—2szz) : wae CBLHL)

From equations (2.18) and (8.4L4) we get
-1

B = Q(p2+m-2Ppz?) (1+27Q2) on s ((BLE):

Substituting from equations (8.1), (8.2) and (8.39) in

equation (2.32) gives

Q

&
g 25(1+2202) oo (BoLB)
Hence, all the coefficients are known in terms of P,
Q and G. It will be observed that none of these metrics is

asymptotically flat.
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CHAPTER NINE

THE PARTICULAR INTEGRATL CORRESTONDING

ROVNT= Kx1x®?

Similaﬁyﬁo Chepter 5 @ = X1, ¥ = X7

A = Kxy s v 09:1)

6 = =Y. . oo s (2]
-s6 = (1+s2) @ v 19.3)

P =gy s0dr (Pelt)

Q = hy cer (9.5)

g = o532 ' S P
h?® = s-g-‘% +.20 ok G

and the differential equation for { is the same as in Chapter

5, viz. equation (5.20) .

In the case when a (see equation (5.20)) < 0, it is
possible to express the metric coefficients explicitly in terms
of G, g, and h. To see this, we choose s and y as new

coordinate variables, using (9.2) we have

x = BY voe (948)

In terms of s and y equations (L.20) and (L4.21) read

yty = -{h 1s(sg)‘+g“1h*] + sgsint - hecot

eer (9.9)



S

where we have used equations (9.4) and (9.5) and

_ ot _ 9t
L= gy " ts = ds
. Theorem
TF
_....l._._d_ 2 2 g2
o =— ha ds(h + s2g2) 4. 19,130
and
_ Bg + .20
o= S8 # 0. 3p)

where the constant a in equation (5.20) is equal to -LnZ.
Then the solution of equations (9.9) and (9.10) is given

by

tang e L S8 )

Proof

Since t is a function of s only 6y = 0, also

; 24 1-42
Slﬁt:—w, COS‘l‘.:i_:"g—2



». equation (9.9) gives

i 1o a8 i
e 2 2 o
£ 55 dS(S g 2+h )-h{ + 2sgd + h

1l
o

22 (a+h) - 2sgf + a - h
(using (9.11) .
2 —_
)

{e-sg(h+a) ] +{a2-h? -2 g2la+h e

But equation (5.16) gives

0(.2 - (h2+82 g2): 8 = "—Lmz
2o tie ~—lag +2n)(a+h)—1i16 - (sg-2n) (a+h) "} = ©
which is satisfied by

O (sg-z-.?n)(owrh)h1

The refore equation (9.9) is satisfied identical ly.
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Now

o
1+2°

Therefore equstion (9.10) gives

L = %h_l(sg)'(l+83)+g& ws & - Deiblt)

To prove (9.1).0 we first note that ¢ satisfies the equation,

(a+h) €2 +a-h = 2sge s s {9.15)
and
a' = -hg s .o (9.16)
(see equation (5.15). Now
¢ (hta)” = (h+a) (sg) ' -(sg+n) (1’ +a’) (using (9.12))
= (h+a) (s@ ' =(sg+2n) (n’ -hg)
where we used (9.16). Nowh’ = g(hs) " (sg)' (obtained by

eliminating 6 from between equations (9.6) and (9.7)).

L €' (h+o) v

I

(h+a) (sg) ' -(sg+2n) {(_:I%LL - (h+o) +a]g

1l

(h+a) (sg) ' +(sg+2n) g(h+o)
- (sg+2n) g{o& :h) 4 }
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¢ = gé+(o+h) "2[(h+a) (s ' -(sg+2n) {o& Lg-ﬁ)z—’:l ]
s £9:17)
But

a_+.(_zi§l.’.: _ilﬁil(sg):,ﬂ_é_ - - (s9

(s
sh

where we have used (9.12) and

'} S -—g.. i
h' = hs(sé_ .

Substituting (9.18) in (9.17) gives

‘g.a'

It

gt+(a+h)  { (n+a) (sg) ' +(sg+en) sgh™ (s9)'}

gé+(a+h) ~ (s ' h ™t {h(heo) +sg4(hta) ]

(using (9.12))

g+ iégl—hhi(a+h)-i(2h+2sg6)

gl+ —@251'—1{1 (h+a) “*{2h+ (a+h) £2+(a-h) }

(using (9.15))

¢ = ge + 1(s®'h (1442)

1l

which is equation (9.14) . Therefore equation (9.10) is

identically satisfied.
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Substituting from equations (9.4) and (9.5) in equations

(L4.14) and (L.15) gives

u, = gy cost . on 19.719)
u, = hy sint ew s 1(9.20)
Now
u, = yu,; = geost (from (9.19))
{.e u, = g%'i%z-)- . (from (9.13))
Sale 4 9523)
ug = suy + U
g s yu,, = sgeos t+hsint (using (9.19) and (9.20))
i.e. yu, = (1+¢2) *{sg(1-¢2) -2¢h]}
Vw19, 20)

Now using (9.11), (9.12) and (5.16) we can also write ¢ in

the form
a-h
¢ = .
2(sg-2n) = a-h = a+h-2h
¢2(sg-2n) = £(a+h) - 2he
= sg+2n - 2h¢d (using (9.12))
-2n(€24+1) = sg(1-42) - 2¢h

: (£241) ““{sgli-£2) -28h] = -2n ... (9.23)
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Substituting from equation (9.23) in equation (9.22) gives

yu. = -2n PR (- 1

The solution of equations (9.21) and (9.24) is
u = en(£y 2P AR (Bhos)
where
= (sgg2+h2)—éexp{—2§[sg9(szg2+h2)_1ds]
ee (9.26)

where we have used (9.11), (9.12) and (9.13). From equations

(9.25) and (4.13) we get

C = f‘y_zn PRI (9-27)

Substituting from equations (L4.13), (L4.16) and (L4.17) in

equations (2.19) and (2.20) we get

D AQC tcost veos (9428)

=

D, = APC  sint wse . 19529)

Substituting from equations (9.1), ($.4), (9.5 in equations
(9.28) and (9.29) gives

S = §%5 y2n+1cost
D, = §%5y2n+lsint

. D, = 28,2 Cgint cos (9530
. = §£—Z—Ej-]-.s(shcost+g_:sfmt)

AT s 19.31)



_97_

The solution of equations (9.3%0) and (9.31) is

KS-E(n+1) | 1 . ; R
Py = E?%ﬁ:iy__ {sa(h2-g2)-2nhg(1+s2) ] (s2 g2 +h?)

+ T
(using (9.12) =and (9.13). Where T is a constant, we shall

take T = 0 so that

2(n+1)

D= Eg?rﬁ;irﬁisa(hz—gz)—znng(1+sz);(s2g2+h2)
AR L -

Equations (9.27), (9.32) and (2.18) give

1

B = % {sa(h2-g2) -2ngh(1+s2) ] (s? g2 +h2)

aos (9.33)

Substituting from equations (9.1), (9.27) in equation (2.32)

‘we get
o2V - x2e0y2(n+1) (1 oy p oo (9.31)

where we have used equation (9.2).

Also sinece X = sy

dx2+dy® = (1+s2)dy® + 2sydsdy+y2ds?

ees (9.35)

Substituting from equations (9.1) and (9.27) in equation

(2.4) gives
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A = y°Rr ™t (K252 y+-B2) i (9E76)

Final form of the metric when a = -Ln®

Substituting from equations (9.27), (9.33), (9.35)

and (9.36) in (2.1) we get

+ y2Rr ! (s2K2y+-B?) d¢® +2Bdgd t-Fy ~Tdt2
.o (9.37)
where we have put x° = ¢, x%* = t.

Whe re

—1

B =2%%%%)Esa(h?—gz)—2nhg(1+sz)l(52g2+h2)

coe (9.38)

£ = (32g2+h2)'*expi‘znjsé?(828?+h2)_1d85
coni £9.39)

and

1

o m = -a%(sSg2+h2) “ne (9-LI-O)

Q
Il

Since the generating differential equation for this metric
is the same as that of Chapter 5, we can use the resultsof
that Chapter *to express G, B andf in terms of s and y, e.g.
when n = 1 G is given by equation (5.59) . Substituting from

equations (5.49) and (5.50) in equations (9.38), (9.39) and
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(9.40) gives

£ = a(82p2~q3(s*p2+q2)"1 cee (9.41)

when a is a cons tant.

Q
1l

2pq(1+s?) (p2s2-g2) ~ " | wons (902

and

B ~-52pqy2K(l+sz)(s‘*p2+q2)_,1

When n = 2, the results are rather complicated e.g. £ involves

the integral

fsg2(s2g2+h2)—1ds .
2
v(p2v3 - 3g2v - 2g3) “dv
s 2 2
= 3 fpzvz(pzvs._:sqzv_ng) +g2 (2p2v3 +3p2v2 +q2)

where s2 = v, and we are unable to evaluate this integral.
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CHAPTER TEN

A CONDITION THAT THE METRIC (2.1)

SHALL NOT BE OF THE SPECIAL RELATIVITY TYPE

IN SOME COORDINATE SYSTEM

If the metric (2.1) is that of special relativity in
some coordinate system, it is necessary that all of the
components of the Riesmann-Christoffel Curvature Tensor Rijk&

vanish identically.

Thus if one of these is not zero for the metric (2.1),

then it is not special relativity in any coordinate system.

If we calculate R,5,5 using the results of Chapter 2
we get
2
Boeis = ~o Vyau ol & G

where

e 92 ™ a2
V" = 3xiaxt 9xX29x°2

Thus from (10.1) R,,,, £ O if

vy £ O Cos K102

The result (10.1) is also obvious from the metriec (2.1),

which if we allow x* and x® to be complex, and introducing the
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complex conjugate variables z and z defined by
g = x2pixd Z = x1-ix?
the me tric (2.1) becomes
ds? = eWazaz + ete. | PR i (o9
Making the coordinate transformation
Zz = f(w) , Z o= ?(G)

where f(w) is analytic anda f(w) the conjugate analytic

function (10.3) becomes .l

2y (w,w) ar 4af

aw aw

ds? = e dwdw + eta.

“e (10.L)

If the metric (10.4) is special Pelativity in the

Ww-frame we shall require

ezw(w’W)f’?‘ =constant

o 2yr(W,w) = - enf'—enP + constant
2
-.o _% = 0
oWOW
2
L WU f

@
i
@
tal
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or

which is the same as equating R,,,, to zero.

If we calculate V2y for each of the metrics of
Chapters 5,7,8 and 9 we see that V2y # O. Hence, none

of  them is trivial.
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CHAPTER ELEVEN

CONCLUS 10N

The results of Chapter L show, just as with the other
equations of Mathematical Physics, that it is possible even
in General Relativity, to have everything depending on the
solution of just one ordinary differen tial equation. The
danger here is that an equation like equation (L.1) is not
generally coordinate invariant, and so we run the risk of not
being able to tell whether or not two different solutions
will not after all give rise to the same metric, by making

suitable coordina te transforme tions.

The ordinary differential equation of Chapter 5
seems to indicate that certain non-linear differential
equations may have eigenfunction solutions of a particular
(in this cas= rational) form .when a parameter assumes
certain eigenvalues. From a purely mathematical point of
view this is a very interesting possibility. . However,
further research will be required to decide whether this is
true or not. The present theory of non-linear differential
equations is mainly concerned with equations which possess
non-movable singularities in their solutions. We, however,
are interested in equations which have movable singularities,

in fact movable poles.

The results of Chapters 5, 6 and 7 show that the

very complicated metrics of Kerr and Tomimatsu-Sato have
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a common origin. In our view the methods we have used
give the simplest and most natural way of gener=zlizing the

metrics of Schwarzschild and Weyl.

Although we have concerned ourselves only with vacuum
soiutidns, it is clear from the work of Ermst, that all the
solutions obtained can be generalized to inciude certain
types of source free electromagnatic fields as well. In
this generalization our generating differential egquations
are unaltered and so we can say, for example, that equations
(5.20) , (6.12) and (7.10) generate the metrics for a
charged rotating body according as m > a? + e2, m® < a® + e*

or m? = 22 + e2 where e is the total charge.



1.

LEVY H

LEWIS T

VANSTOCKUM W J

TOMIMATSU A and

CARTER B

MORGAN A J A

MAJUMDER 8§ D

_105_

REFERENCES

Classifiication of Stationary Axisymmetric
Gravitational Fields.

Nuovo Cimento. Series 10B Vol.56 (1968)
Some Special Solutions of the equations
of axially symme tric gravitational fields
Proc.Roy.Soc.London A.136.176 (1932)

The gravitational field of a distribution
of particles rotating about an axis of
symme try.

Proc.Roy.Irish Acad.135 (1938)

SATO H New Series of Exact Solutions
for Gravitational Fields of Spinning
Masses.

Prog.Theor.Phy.Vol.50 No.1 95 (1973)
Hamilton-Jacobi and Schrodinger Separable
Solutions of Einstein's Equations
Commun.Math.Phys. 10 280 (1968)

The reduction by one of the number of

independent variables in some systems

-of partial differential equations

Quart.J.Math. Oxford (1952) pp.250
A Class of Exact Solutions of Einstein's
Field Equations.

Phy.Rev. 72 390 (1947)



10.

11.

12.

1%,

1.

15.

16.

- 106 -

BONNOR W B A Class‘of Stationary Solutions of the
Einstein-Maxwell Equations
Commum.Math.Phys. 34 77 (1973)

NEWMAN E and PENROSE R An Approach to Gravitational
Radiation by a Method of Spin Coefficients
J.Math.Phys 1 566 (1962) '

KINNERSLEY W  Type D Vacuum Metrics
J.Math.Phys 10 1195 (1969)

ERNST F J New Formulation of the Axially Symmetric
Gravitational Field Problem
Phy.Rev. 167 1175 (1967)

ROBINSON I and SCHILD A Generalization of a Theorem by
Goldberg énd Sachs.

J.Math.Phys L L84 (1963)

DEBNEY G C; KERR R P and SCHILD A Solutions of the
Eins tein and Einstein-Maxwell Equations
J.Math.Phys 10 1842 (1969)

KERR R P Gravitational Field of a Spinning Mass

| as an Example of Algebraically Special
Metrics.
Fhy.Rev.Lett 11 237 (1963)

ROBINSON J; TRAUTMAN A Some Spherical Gravitational
Waves in General Relativity.

’ Proc.Roy.Soc.(London) A.265 L63 (1961)

KERR R P and DEBNEY G C Einstein Spaces with Symmetrical
Groups

J.Math.Phys. 11 2807 (1970)



i F

18l

19.

20.

21'

22.

235.

ISRAEL W
SYNGE J L
ERNST F J

...107._

Differential Forms in General Relativity
Communications of the Dublin Institute
for Advanced Studies. Series A. No.1l9
(1970)

Complex 3-Space and the Petrqv—Prirani
Classification l

Communications of the Dublin Insti tute
for Advanced Studies. Series A. No.1l5
(196L)

Complex Potential Formulaticn of the
Axially Symme tric Gravitational Field
Problemn.

J.Math.Phys 15 1409 (197L)

ONENGUT G and SERDAROGLU M Two-Parameter Static and

Five-Parameter Stationary Solutions of
the Einstein-Maxwell Equations

Nuovo Cimento Series B Vol.27 pp 213
(1975)

ROBINSON I: ROBINSON J R and ZUND J D Degenerate

PERJES Z

CARTER B

Gravitational Fieldswith Twisting Rays
Journal of Mathematics and Mechanics

Vol.18 No.9 (1969)

Spinor Treatment of Stationary Space-Times

J.Math.Phys 11 3383 (1970)

The Commutation Property of a Stationary,

Axisymetric System.

Commun.Math.Phys.17 233 (1970)



2l

25«

26‘

27 .

28.

29.

30.

-~ 108 ~

MISRA R M; PANDEY D B; SRIVASTAVA . D E and TRIPATHI
New Class of Solutions of the Einstein-
Maxwell Fields.
Phy.Rev.D 7 1587 (1973)

DAVIES H and CAPLAN T A The Space-Time Inside a
Rotating'Cylimier‘
Camb.Phil.Soc. 69 325 (1971)

HOFEFMAN R B Stationary Axially Symme tric Generaliz-
ation of the Weyl Solutions in General
Relativity
Phy.Rev. 182 1361 (1969)

KINNERSLEY W Limits of the Tomimatsu-Sato Gravitational
Field -
J.Math.Phys 15 2121 (197L)

JANIS A I and NEWMAN E T Structure of Gravitational
sSources
J.Math.Phys 6 902 (1965)

JANIS A I and NEWMAN E T Note on thes Kerr Spinning-
Particle Metric
J.Math.Phys. 6 915 (1965)

GLASS E N Structure of the Tomimatsu-Sato
Gravitational Field

Phy.Rev. D.7 3127 (1973)



