
EXACT SOLUTIONS OF EINSTEIN'S EQUATIONS 

FOR AXISYMMETRIC GRAVITATICNAL FIELDS 

by 

PAUL WILLIAM DALE 

is Dre 

9 MAY 1977 

Submitted as the thesis 
for the Degree of PhD et the 

University of Aston in Birmingham 

September 1976



‘SUMMARY 

In this thesis Einstein's equations for vacuum axi- 

symmetric, stationary, gravitational fields are considered. 

Five analytic solutions of these equations are presented. 

In each case the analytic solutions are generated by a non- 

linear ordinary differential equation of the second order. 

Some particular integrals of these generating 

differential equations are given, resulting in sme known_ 

and unknown metrics. The known.metrics are, the Kerr and 

the Tomimatsu-Sato class. In the derivation these known 

metrics are shown to have a common origin. It is further 

shown that they result from a parameter in the generating 

differential equation assuming certain eigenvalues.
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CHAPTER ONE 

INTRODUCTION 

In this thesis we shall only be concerned with obtain-— 

ing analytic solutions of Einstein's equations of gravitation 

for vacuum axisymmetrical gravitational fields, which are 

stationary. The cosmical constant is taken to be zero. 

In Chapter 2, Einstein's equations, appropriate to 

the case under consideration, are written out in a straight- 

forward manner, no use being made of either, the methods of 

differential forms, or the complex symbolism of Ernst. The 

remainder of Chapter 2 is devoted to showing that the field 

equations will be satisfied, provided the metric coefficients 

are determined by one, or the other, of two sets of equivalent 

equations. These sets of equations are called set A and set 

B. 

Chapter 3 gives an account of our abortive attempts to 

find new solutions of the field equations, working with set A. 

In Chapter 4, set B is considered and it is shown that 

it is possible, by choosing a certain 2-dimensional harmonic 

function A appropriately, to obtain five analytic solutions 

of the field equations. These are generated in each case by 

an ordinary differential equation of the seond order.



In Chapters 5, 6, 7, 8 and 9 the generating differ- 

ential equation is derived corresponding to each of these 

five possible forms for A. In each case the generating 

different ial equation turns out to be non-linear, and 

because of this we are umable to give their general solutions, 

however, some particular integrals have been obtained result- 

ing in some known and unknown metrics. 

From the physical point of view, Chapters 5, 6 and 7 

are the most important. In Chapters 5 and 6, we show that 

the Kerr-Tomimatsu-Sato metrics, are contained in our analytic 

solutions as particular cases of a more general integral. In 

our derivation of these metrics it is, however necessary +o 

consider separately the three cases when a? > m?, #< m? and 

a2? = m?, a and m being respectively the angular momentum and 

mass of the bounded source. Chapter 5 gives the results 

appropriate to a2 < m? and Chapter 6 those for a? > m?. In 

Chapter 7, we show that the Kerr metric for a? = m? is a 

particular case of our more general integral. Since in the 

limit as a? > m? all the Tomimatsu-Sato metrics reduce to 

the Kerr with a2 = m2 we can say that these are also included 

in the results of Chapter 7. 

From the forms of the generating differential equations 

of Chapters 5, 6 and 7 it seems unlikely that these general 

metrics can be regarded as three special cases of a single 

metric as is possible with the Kerr metric.
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Further, the above mentioned particular integrals 

contained in the results of Chapters 5 and 6 arise by putting 

a conmeene in our generating differential equation equal to 

-ln2 (n, a non-zero integer) pie+k- B= 1 fives the Kerr metric, 

with n = 2,3,l. we get the Tomimatsu-Sato metrics, correspond— 

ing to their classification index § taking the values 2,3 and 

4. We conjecture, with Tomimatsu and Sato that solutions 

will exist for all values of n. Although we are unable to 

prove that this will be the case,at least in our derivation 

the problem is well defined, viz. we have only to show that a 

certain ordinary differential equation of the second order 

subject to certain boundary conditions will only admit a 

solution which is a rational function of its argument. 

The metrics arising from the results of Chapters 8 

and 9 are not asymptotically flat and so can only represent 

fields inside a bounded region of space. 

_ Chapter 10 is a short note on the possibility of our 

metrics being of the special relativity type in some coord- 

inate system. 

Conclusions are summarized in Chapter 11.
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CHAPTER TWO 

DIFFERENTIAL EQUATIONS FOR STATIONARY 

AXISYMMETRICAL GRAVITATIONAL FIELDS IN A VACUUM 
  

We shall follow Papapetrou, Lewis and Van Stockum and 

write the metric in the form: 

ds? = e¥[(axt) + (ax2)°] + A(ax9)"4 oBax8axt — c(ax4) 

aos eae 

where 7, A, B and C are functionsof x+ and x? only. 

So that 

Zo eo 0) 1 0. 0 noe (ee) 

hates Ome © 

Cue OMe rea 

Om kOe WBiesc 

and 

(gid) 2 Resah om oto | sve (2.3) 

Cuce</0 7180 

0 Ochs TA 

0 Oo BA za? 

where i,j = 1,2,3,4 and



A? = AC + Be eee oan 

We note by using (2.4) that our metric (2.1) can be rewritten 

as: 

as? = e¥[(axt)?+ (axe)? ] + cae (ax9)” - o7*(Bax® - caxt)” 

sho (205) 

Using (2.2) and (2.4) we get 

g= |a5| = -elna 

me =e = ea rea (206) 

Notation 

Throughout this and the following Chapters we shall 

use the notation that suffix 1 denotes partial differentiation 

with respect to x1; suffix 2 denotes partial differentiation 

with respect to x® and a dash denotes ordinary differentiation 

of a function of a single variable with respect to its argu- 

ment. 

The three index symbols Dy » (4,4,K = 1,2,3,) can 

now be calculated by substituting from (2.2) and (2.3) in 

  

jk = 2 Kee j 
zo - " 2 Bem i “i 

ox ax? ax



the non-zero r,s being: 

Ti, = Va 

Ti, = be 

Tie = Ve 

Tie = V1 

Pg = 44) (CAs BB) 

Tia.= ya” (BA, ry AB,) 

T?, = 44 °(CB, - BC,) 

Tee oar (BB, 4 7AG;) 2 

PZ = $07(0A, + BBQ). 

Ps, = 4A (cB, = Bo,) 

@, = 4A (BB; + AG,) 

T3, = - ge AS 
Tg, = - ge YB, 
TS, ae ge", 

Tie = gee, 

T3, = Beet, 

If we now substitute from the above in the Ricci tensor, 

ae 
fle Ay Teno ES az ars, 

Ra = Ti ty4 - Ty, —plinv=@ + —S—(1w=_ - —ik 
gk rk ij jk ax” ax!ax* ax



we get, 

Rig = Rig = Res = Rog = O 

= aa = 
Ray = Var Veo2td (WeheWads) A” Aya-hd (A,0, +32) 

seca eerd) 

=4 =a =e 
Roe = WisteotA (14a Vode) tO Age ZA (A202 +B3) 

des (228) 

Ryo = AW (Wide 2d) RAS Tem Al Ay Cathy Cl 2ByB,Y tH 

wee ee 9) 

Reg = ge Hayy tty aA (A, Ay +g Ag) Sy aie 

AA”? (AC, +B2 +A Cy +B2) } 

Sa (Zama) 

- -1 

Rye =) bere! (Cy Cae Ame (CA, +02) a 

CA" (A, 0, +B2+A,C,+BZ) } 

Mee (et) 

Rog = $6 V [By +Bog-A * (ByAy +BoAe) + 

BA” (A,C,+B2+A,C,+B2) } 

sua 2le12) 

In our case the Einstein equations are Ry = 0. We 
J 

shall replac: the equations R33 = 0, R3, = 0 and Ry, = 0, 

by the set:



CRa3 - AR,, + 2BR3, = 0 vee (2o519) 

BRa. + Chaz =O pew (200) 

CRsg + ARsg = O eo onte 15) 

which are linearly independent provided C #0; A#0. This 

we shall assume to be the case throughout. In fact we shall 

assume A # constant. 

Substituting from (2.10), (2.11) and (2.12) in (2.13) 

and using (2.4) we get 

Mia + Man = 0 wee (eee) 

Substituting from (2.11) and (2.12) in equation (2.1) we 

get 

(AW C2p, aa (Ame C2 0 aan 0 Bea e7) 

where 

Dea "seme reenter) 

Now equation (2.17) is the condition for the existence of a 

function F(xt,x?), such that: 

—2 
D, = -AC F, woe (2049) 

2 De AG aay Js. (2220) 

The condition D,, = D,, then leads to the equation



+ = Fyy thot” (A, P,+A,F,) -20° (C,F,+CFy) = 0 

mee (2620) 

Substituting from equations(2.10) and (2.11) in equation (2.15) 

and eliminating A and B using equations (2.4) and (2.18), we 

get after substituting for D, and D, Aron equations (2.19) 

and (2.20): 

9 = CyytCgg th * (C,Ay+CgAQ) -C (02 +03-F2-FB) = 0 

mae 2.22) 

The remaining equations to be satisfied are R,, = 0, Rog = 0 

and R,,g = 0, the first two we replace by 

Re eee 0 coc (325) 

been (2c2u) 'g i = a ws
 

vn
 \ ° 

Substituting from equations(2.7) and (2.8) in equations 

(2.23) and (2.2h) gives: 

VodoWids = Seet JA* (As Ca +B2 Aa Ca -BB) ue Wese5) 

1,-2 
VartYae = 7A (A, Cy +B2 +A, Cy +B2) sss (226) 

where we have used (2.16).



From (2.9) Ry, = O implies 

Wade Wes = S127 le (Ay Cy +ApC,+ 2B, Bo) 

Gene, C227) 

Solving equations (2.25) and (2.27) for y, and yw, we get 

V2 (AZ +AZ) = Age tArAiat (HA) S [Ag (Ay C, +B2 -A, C, -Bg) 

— Ay (Ay Cy +Ag 0, +2B,B,) ] 

eee (2e28) 

Ya (AZ4AZ) = AgAye-AaAoo- (UA) [Ag (Ay Cy +My Cy +2B, Ba) 

+ A, (A, C,+B2-A,C,—B2) ] 

aielen (2229) 

Substituting for A and B from equations (2.4) anda (2.18), in 

equations (2.28) and (2.29), and using (2.19) and (2.20) we 

get 

(02402) = AgAge +A, Ay 2-407 Cp (A? +2) 2 222 2 

+ de”? [a, (C242 -C2-F2) +2A, (C, 0, 4F, Fy) JA L ig 42 i 4 2 

> oem 2680) 

Ws (A240) = AA, 2-AyAoo-407*C, (a2 +43) 

~2 = rig [a, (cg +Fg-cf-F2) -20, (0, 0,48, F,) JO 

par Ce.)
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We now introduce a new function S(xt 9X2) 5, aerined by: 

eV. ote (a2 + 03) wee (2-52) 

In terms of S equations (2.30) amd (2.31) read 

2(A2+A2)S, = AC {A, (C2 +F2-C2-F2) +20, (C,Co+F, Fo) Ps 2 he a 2 2 2 aS a2. 

pee (esa) 

ul 2(AZ+A2) Sy = AC” {A, (C2+F2-CZ-F3) -2A, (C,C,+F,F,)} 

ate (25 3H) 

where we have used equation (2.16). Also equation (2.26) 

becomes in terms of S, 

Si, + Spq = - 40° (C2+02 452 +82) ge (2555) 

where we have used equations (2.16) and (2.22). 

We next calculate ¢ = S,,-S,,, and S,,+8,,, using 

only equations (2.16), (2.33) and (2.34). We get 

g= Ar do (Calta Cala) 1 (Falta Fata) | 
rAE 

«ss (2.56) 

= O,.by equetions (2.21), end (2.22) and hence the consist- 

ency condition S,, = Sg, is satisfied.



te a= 

S11 + Spo = -40~° (02403 +F2+Fg) 

=o 

+ toe {o(C,A,+CgAp) + 7(FyA,+FoAe) } 

S00 NERS: 

which is the same as (2.35), since o +7 = 0. Hence, equation 

(2.35) is derivable from equations (2.16), (2.21), (2-22), 

(2.33) and (2.34), and so may be disregarded. 

SUMMARY 

From the above argument we see that the functions 

A, F, C and S, are determined by the following, consistent 

set of equations, 

Rye Aaa O peo (2650) 

Oy 440g gt” * (C,A, + gM) -C (CZ 4+03-F2-FZ) = 0 a " 

wee (2-59) 

7 = PyytPogth * (FiA,+Fodg) 20° (C,F,+CgF,) = 0 

oes (220) 

" 

—2 

2(A 403) 8, = AC {A, (CZ+F2-CZ-FZ) +20, (C,Co+F, Fy) } 

aus, (Stee) 

2(43 +A2) eS =ACEe a (C2+F? =C2 -F2) =2h, (Cy Cy +F,F,) 

F soe este)
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This set of equations we shall _ call set A 

By considering equations (2.16), (2.33), (2.34) and 

(2.35), it will be observed that equations (2.39) and (2.40) 

are deducible from them, provided that the determinant, 

C4 A, A, Cg BLA, -F,A2 

Cy A, +Cy Ag Fi A, +P A, 

is non-vanishing. This we express in the form of a theorem. 

THEOREM 

Suppose that functions A, F, © and S, can be found 

which satisfy the following set of equations 

Op teAae =) 0) were (2615) 

2(AZ+AZ)S, = AC *{A, (C24+F2-CZ-FZ) +2A, (0, 0,4+F,F,)} 

eee (2.1) 

= 

2(A2+A2)S, = -AC” {A (C2+F2-C2-F2) -2A, (C,Co+F,F,) } 

maze (B25) 

S,44+8gq = -$C > (C2402+F2+F3) se (eS) 

and in addition the determinant 

P= {\c,4,-4,.¢, FLA, -Fy Ao eee (20117) 

01 A, +02 A, PA, +Fo A,
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is non-vanishing. Then A, F, C and S, also satisfy the 

equations of set A. 

PROOF 

From equations (2.43), (2.44) and (2.45) the cond- 

ition, S,, = &4, leads to the equation, 

o(CyA,-C,A,) + T(F2A,-FiA,) = 0 sare, (2a) 

If we calculate 8,, + S,,, from equations (2.4) and (2.45) 

and substitute the result in equation (2.46), we get, after 

using equation (2.43) 

(CA, +CgAg) + T(PLA,+FZA,) = 0 wrens (2549) 

Now since r #4 O, equations (2.48) and (2.49) give o =7T=0. 

We_shall call the set of equations (2.43) to (2.6) inclusive, 

set B. The sets A and B being completely equivalent when 

TAO.
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CHAPTER THREE 

INVESTIGATION OF THE EQUATIONS OF SET A 

We shall take the solution of equation (2.38) to be 

See. That this can always be done, without loss of 

generality can be seen from the following argument. 

Suppose we were to choose A = u(xt,x?) 4 x1, u(x*,x?) 

satisfying equation (2.38). Then the coordinate transform- 

ation x" > x? (i = 1,2,3,4) , defined by 

xt = u(xt,x2), x? = v(xt,x2), x3 = x9, x* = x# 

v(x1t,x2) being fixed by the equations, Ta omg Ug 

would not change the form of our metric, and would make 

A = xt in the X¥-frame. 

With A = x1 and using the notation, xt =p, x® =a, 

the equations of set A become: 

v20-C { (v0) "-(vF)*} = 0 rien, Ca) 

V2F-20 “yC.vF = 0 pote (ae) 

Soa dot (G +Eg -C2. Fg) ee ABeS) 

Sz = pC (Cp0z+FoFz) Ape. sail) 

_ where for any functions f(p,z) and g(p-z) we define:
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Si Se ete #to7 te " 

Vf.Vg = Pg, + tg, 

2 
and (vf) = vf.vf. 

Of the set of equations (3.1), (3.2), (3.3), (3.4), 

equations (3.1) and (3.2) are the most diffiailt to solve, 

and as there are no known techniques for handling them, all 

we can do is to proceed by trial and error. 

The case when F is a function of C has been discussed 

by Papapetrou (1) » and the case when D is a function of C, by 

: p 
Lewis (2) and van Stockum (3). 

As regards trying to find the general solution of 

equations (3.1) and (3.2), the only possibility seems to 

be that of trying to find functions €(F,°), 7(F,C) such that, 

if we take two arbitrary, but independent solutions u(p,2) > 

v(p,z) of the equation 

v2f = 0 maa 

and then by putting u = €(F,C), v = n(F,C), substituting 

these respectively in the left hand side of equation (3.5) ’ 

we can deduce equations (3.1) and (3.2) as a consequence. 

The following considerations show that this is not 

possible, and no such functions exist. For, in terms of 

F and C, the equationsy2u = O and V2v = © give, respectively,
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0 

Seis) 

il} E_V? FEV? CHE pa (VF) : +E og (V o) 42E5,V0.0F 

- 2 

NeW? FenV? Cry gy (VE) Nog (V c) +21 poVC-VF = 0 il} 

See (329) 

where a lettered suffix on € (or 7) denotes partial differ- 

entiation of € (or n) with respect to that letter. 

Now if we are going to deduce equations (3.1) and 

(22) » from equations (3.6) and (Sap) » it is clear that 

none of the quantities Eg» Em» Ng» Np can be zero. 

If we now eliminate V2C from between equations (3.6) 

and (3.7) we get, 

(Epng-Sonp VF + (nofpe Eqtey WD 

+ (nEgc-Eotee) WO + 2lngEge-EoMro VO-VF = 0 

oe ute) 

Eliminating y2F from between (3.6) and (3.7) gives, 

(Egng-Eptig) 02° + (npSpgrEptep) (VF) 

+ (ngEgo-Exticc) (VO? + 2(npSpo Ew gg) VC-VF = 0 

serene 29)



Since u and v are assumed to be independent we have 

Exc ~ Ect # 0- 

If (3.8) and (3.9) are to be identical to equations 

(3.1) and (3.2) we shall require, 

Ne&cco ~ €o%cc = © : veo a(Be10) 

Nofee ~ Ecler = © ee Se, 

no€ee ~ EoMop = ~C (Epng-Egny) ye (See) 

neéce ~ Epticg = © (Egng- ney wee (3-13) 

"gnc ~ MeoSe = ° wee (Set) 

ngfpe ~ Exige = 0 (Egnp ncSp) ae (3515) 

Solving equations (3.10), (3.11) and (3.12) we get, 

Eales acy |e! | = : n=y+pc eit |” 

where a, B, y are constants, and f is an arbitrary function 

F. Also since && #0, Ng #4 Owe have gp # O. Substituting 

these values of € and 7 in equation (3.13) we get B = 0, 

which is a contradiction. 

It would appear that to search for the general 

solutions of equations (3.1) and (3.2), is perhaps far 

too ambitious, and that we may have more success if we 

look for a method of deriving particular integrals of 

equations (3.1) and (3.2). With this aim in view, we 

take a know solution, say the Kerr solution, and try



Pan ee 

to force equations (3.1) and (3.2) to give it in the simplest 

possible form. For the Kerr solution, C and F have the forms, 

C = 1 - 2mr(r2+a2cos?¢@) ra Site: (Se) 

ty
 

tl —2macosé (r2+a? cos26) a sae CooL) 

where m and a are constants, and r,@ are functions of p,z 

defined by 

p = siné(r?-2mria2)* vena) 

z = cosé(r-m) pie (5519) 

The first thing we note is that if we calculate C-l+iF — 

(i = V-1) we get, 

C -1+ iF = -2m(r-iacosé) ~ Hee 20) 

Now the function in the bracket on the right hand side of 

(3.20) is qiite simple, it is after all just a function of 

r plus a function of 6. This suggests that equations 

(3.1) and (3.2). be combined into one equation for the 

complex function X = C+iF. We get 

  ye eee en(Gen) 
X+X 

where X = C-iF.



= 90 = 

Then from equation (3.20) we get, 

X = 1 + 2m(iacose-r) ™* eG .22) 

Although X is a fairly simple function of r, and @, r and 0 

are eetner complicated functions of p and z (see equations 

(3.18) and (3.19)) - To overcome this we must change the 

independent variables p and 2. We cannot use r and 6, 

defined by equations (3.18) and (3.19), since a and m would 

appear in the resulting equation. Instead we choose, 

p = Ksinhxsiny ees (5225) 

z = Keoshxcosy Wee. USsen) 

where x and y are related to r and 6 by r-m = Kcoshx, 

@ = y and K = Jm@=>a? (assuming m® > a2). it} 

In terms of x and y equation (3.21) reads 

a2X , 92x ox ax oxe * ay? + cothx ax + coty ay 

2 2 
2 (33) (3) | ( ——— OX\ , (2% meen (See5) 

X+X [ oy, oy, 

and in terms of x and y equation (3.22) reads 

cosy -< coshx + 1 
= me) (3-26) a Mt 

ekb
lel

s 

cosy - 4 coshx = 1 

The form of (3.26) suggests that we change the dependent



— 2] - 

variable X to Z by putting 

  eer se (See) 

and in terms of Z equation (3.25) reads 

o22Z , 972 22 a2 axe t ay2 + cothx ee coty ay 

— 2 2 
2 az a ea 002 (3e 88) 

“2-1 { a) (er) | 

where Z is the complex conjugate of Z. 

The solution of equation (3.28) which generates the 

Kerr metric is then 

Z = cosicoshx + isinicosy 2s. (5.29) 

where sind = a/m. 

Inspection of equation (3.29) suggests a further 

change of independent variables to 

x! coshx ooo MSicsts)) 

y' = cosy eee (3.31) 

Using equations (3.30) and (3.31), equation (3.28) becomes



DD ee 

MOS 12-1) 32. aon -yr2\0Z 
ax! { ( 2) al + TA Q v* Jay! 

SE A TREN soa (22) 
/ gi-1 ch i oy 

aoe (5252) 

and from equation (3.29) we know that Z = x’ cosA + iy’sind 

is a solution of equation (3.32). 

To sum up then, in order to get the Kerr solution in 

its simplest form, we first combine our equations (352) 

and (3.2) using the complex function X (= C+iF) to give — 

equation (3.21) , we then change both the dependent variable 

(xX) and independent variables (p,z) using the equations 

  

oa 
Oc eae 

p = a(x2-1) *(1-y2)* 

Zo= OXY: 

where a is any real constant. This then leads us to Ernst's 

equation 

BLO] (O)8 
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The Kerr solution is then given by Z = xcosatiysinn, 

where A is any real constant. 

It is now clear that even if we try to find a method 

of deriving particular integrals of equations (3.1) ana (3.2) 

we are led in the direction of increasing complexity. Equa- 

tion (3.33) tells us very little, Other than if Zis a 
5 —4 i : sOlution so are Z and Ze -s where a is any real constant.
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CHAPTER FOUR 

THE POSSIBILITY OF FINDING PARTICULAR 

INTEGRALS OF THE FIELD EQUATIONS Ri; =OOls 
d 

USING THE EQUATIONS OF SET B 

In the previous Chapter it was shorn that equations 

(2.39) ana (2.40), of set A, are very difficult to satisfy. 

One way of getting round this difficulty would be to look 

for solutions of set B, which satisfy the condition Tr # 0. 

For then, by our theorem, equations (2.39) and (2.40) would 

be satisfied automatically. 

In this Chapter this possibility will be investigated, 

for the special case when C and F satisfy the condition, 

C)Cy # Fue, =.0 meat iet) 

-Using (l.1) the equationsof set B become, 

Ais # Boo = 9 pise (4.2) 

ttl 

2(A2+A2)S, = AA,C (C2+F?-C2-F,?) ies (He) 

2(A2+A3) 8, = -AA, 0” (C2+F2-C2-F2) Bao (igh) 

Si, + Sgg =~ $C (C2402 +R +FR) ees sCeS)
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Equations (4.3) ana (4.4) give, 

4,8, + A,Sy = 0 oop 2h) 

We shall regard equation (4.6) as an equation for S, and 

since it is of the first order and of the Lagrange type, 

its general solution can be written as, 

S = G(s) eaten lect) 

where s(x1x2)= constant, is the solution of the equation 

  

obese ax? Ae TS eer cles 6) 

and G(s) is an arbitrary function of s. 

From equations (4.3), and (4.5) we get 

C2 + Fy = Pec? eee ole) 

C2 + F2 = Qc? wee) (110) 

whe re 

S Sine 1 P2 = -(S,,+S22) + Bat (42 +49) wae (Lhe deh) 

“eo ) = 82 (azeag) ) @? = -(8,,+S825 ~ By, (ARS meee Le 

and we assume P 4 0, Q # O.
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Now equations (4.1), (4.9) and (4.10) will be satis- 

fied if we put 

Coe ee eS) 

u, = Peost ee eC t hy) 

Ug = Qsint Py cae Oia5) 

F, = Pesint ve oni 6) 

_F, = -QeUcost pgin UNE) 

where t(% 0) is a new function of x1 and x?. 

The conditions u,, = Usz,, F,s= Fy,, give, using 

equations (4.14) to (4.17) inclusive, 

t,Qcost + t,Psint = P,cost - Q,sint esto (ibe alO) 

t,Qsint - t,Pcost = P,sint + Q,cost + PQ 

ote (lhe 9) 

Solving equations (4.18) and (4.19) for t, and t,, we get, 

& P,Q * + Psint Mater i 20) 
2 

t, = - (QP + Qcost) a (ieee n) " 

The condition ti. = te, gives using equations (1. 20) and 

(4.21) 

(oe + (eR) — Foe 80 sso (meE) 

Now, instead of investigating the conditions on F, 

C and A which do not make the determinant T vanish, it is
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simpler to find conditions on P, Q and A which make o = 0, 

q = 0. This we shall now do by direct substitution from 

equations (4.13) to (4.17) inclusive. 

From the definitions of o and + (see equations (2.39) 

and (2.40)) and equation (4.13), we can write 

6 = 6 lu, 4 tuggth (Aju, 4A,u,) +e (Bee) P.-C. 23) 

r= de® 4 (Ae UF), + (Ae “"F) 23 Pomel) 

From equations (4.14) and (4.15) we get, by differentiation, 

and using equations (4.20) and (4.21), 5 

u,, + P2sin?t = Pyoost - P,Q Psint Reels 25) 

Upe + Booe®t = Qsint - Qcosta,P sae (ie26) 

Adding equations (4.25) and (4.26), and using equations 

(4.16) and (4.17), we get 

Uy, + Ugg + © (F24F3) = (P,-99,P*) cost 

HQ Peoe 2) ciut tae (ao7) 

Substituting from equations (4.14), (4.15) and (4.27) in 

equation (4.23) gives
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o = e"{ (P,-9P ~Q,4A,A “P) cost 

+ sint(Q,-PQ Pa +A,A 4) } woe (528) 

Substituting from equations (4.16) and (4.17) in equation 

(4.2), we get 

7 =A e"f (APt, Ag Q-AQ +AU, Q) cost 

+ sint(A,P+P,A-Au,P+AQt,) } seme (reo) 

after differentiation. Substituting from equations G.1y; 

(4.15), (4.20) and (4.21) in equation (4.29), we get, 

7 = e“{cost(P@ *Pz-A,A *9-Q,) 

- sint(QP"-Q,-A,AP-P,) } ae HCN) 

Hence, from equations (4.28) and (l.30) we see that 

the necessary and sufficient conditions foro = 0, 7r=0, 

are 

a cie(deesa) ul oO P, +A,A~P - QP *Q, 

-1 -1i 
Q + AA 9 - PQ Ph = 0 Rc RCL Se) 

For the remainder of this Chapter the physical 

significance of our equations will be disregarded, and 

the variables x1, x? will be permitted to take complex
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values. All functions of these variables will be assumed 

to be analytic, so that they can be continued into the 

complex plane. 

We now make a change of variahles from x+ and x?, to 

the conjugate variables z and Zs, defined by, 

xt 4 ix2 coe (4.33) N ul 

= xt - ix? eee dle Seu 

Z, and Z being independent varisbles when x+ and x? are 

complex. From (4.33) and (4.34) we get the operators, 

  

pao Sega. (om PaO ae s/o ce 
exe = oz * i as = i(% 

Since A is harmonic (see equation (h.2)) » and is real when 

xt and x? are real, we can write 

A = f(z) + F(z) Toa(lve55) 

where f(.) is analytic and f(-) is the conjugate analytic 

fune tion. 

In terms of z and Z, equation (4.8) reads 

Bhan + 2402 = 0 
OZ OZ



or using equation (4.35), 

fidz + f'dz = 0 eee (4.36) 

where f! = df(z)/dz andi = df(z) /dz. The integral of 

(4.36) can be written as 

r(z) + 7(@) = constant, 

where 

We (- soo (Leo) 

Hence : 

s = r(z) + r(2) see (58) 

Substituting from equations (4.7), (4.35) and (4.38) in 

equations (4.11) and (4.12) we get 

P2 = 1G" + vG! vee (59) 

@? = AG"- vGr ves (ly 2140) 

where 

a = (er F) wcis, (Heli) 

ve ule + BD See (tee) 

In terms of z and @ equations (4.22), (4.31) and (4.32) 

read,



2pal (p,-a,) , + (pz - ag)s - 2lp,+a,)5 + 2pa } 

= (p,-p;) i (pa), - (na) } 

+ (ata) [(pd, + (pds } = 0 

eee (4.43) 

(p-a) , + (p-ad5 + 2p{ (na) , + (én) 5 } =0 

Aysiote (re 114) 

(p-a), - (p-a)s - 2af (ena), - (éna)5 } = 0 

«o- (4.45) 

where p = P?, q = Q? and we are using the notation 

op Eee Deane 22 

etc. 

Now, from equations (4.39) and (4.u0), 

pq S92p 4 

(p-q) z = a4 + v0) * sien (dele) 

where we have used equations (4.37) and (4.38). Substit— 

uting from equations (4.35) and (4.46) in equations (4.14) 

and (4.45) we get
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od 
a" fy(er) + v(#') en ( fee!) (eee) eat 

+ G {uty +v(f) +f) (£47) 77} = 0 eee (Lbs e7) 

Gtiv(er)  - vo) - ale) (£45) 7] 

+O fu-ve + v(er-B) (fe) = 0 wee (4.48) 

Substituting from equations (4.41) and (4.42) for \ and v 

we see that equations (4.47) and (4.48) are satisfied 

identically. 

Hence o = 0, r = O and equations (2.39) and (2.40) 

are reduced to mere identities. 

Substituting from equations (4.39) and (4.40) in 

equation (4.43) we get 

ysG(G")2 + yo (G")> + voor") + ya (G") 2G" 

+ y5(G')? + y_G"(G')2 + yrau(a')2 + y.c" (au) 2 

+ Y_G! GG" + y,o(G')2G"" + yy. (G')2(G")2 

2 Vis en ae yaa(0")* =0 

oo+ (4.49)
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where 

de 

Poe t () Gi Ge (et) eee (4.50) 

ie (%) ee) (veo) 

ys = 0 ean (52) 

Ye = 3 (4.53) 

-1 

ve =H yf en sie (ez) (ees) oe. (hasta 

ve = a(S (Bree eB (eB) - ee)... 55) 

ae (3) {ere z (e268 2\(e12) “} wee (4.56) 

hee vee (4.57) 

ve = (8) vee (4.58) 

Ps. (2) vee (4059) 

yr = 2(2) vo (4.60) 

get @) en 

encten vee (14.62) 

Now if 7} and y» were substituted from equations 

(4.41) and (4.42) in equations (4.50) to (4.62) inclusive, 

the y,'s (4 = 1,2,...,13) would become functions of the
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derivatives of f(z) and f(z), and if these y,'S8 were then 

substituted in equation (4.49) we would have one equation 

for the two unknowns f(z) and G(s). If we do not assume, 

as a prior condition, that any one of the derivatives G’, 

Gv, G”, Gv" is zero, we can make equation (4.9) into a 

differential equation for G(s), momen we choose f(z) 

such that each y; is a function of s only. 

Before investigating this possibility we note that 

if f(z) is replaced by f(z)+ia, where a is any real constant, 

A is unaltered. Hence, f(z) is arbitrary to the extent of 

additive constants, which are purely imaginary. Further, 

in terms of z and Z equation (4.1) reads, = 

C2, p2 - OG? -R2=0 bog Uets)) 

Suppose we now change from the variables z, z to the 

variables ¢, ie where, 

¢ = a(z), ¢ = w(2) 

w(z) being any analytic function of z, and @(z) the 

conjugate complex function. Equation (4.63) becomes 

(ge) (oc2+8,) - (@ “(eeanp?) gt eee Snes
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Now if we assume equation (4. 63) is form invariant 

under the above transformation we shall require 

C2 + F.? - G2 - Be? = 0 
¢ 

From equations(.64) and (4.65) we get 

eo 
oe Gs = ae Di, 

Se (his)3)) 

where a and b-are constants, a either real or purely imag— 

inary, b complex. 

It follows that equation (4.63) is only form invar- 

iant under transformations of the type 

az+bd oN
 i 

Gi y02 a 

++ (4.66) 

Since equations (4.2), (4.3), (4.4) and (4.5) are also form 

invariant under the transformation (4.66), it follows that, 

at 

a 
b
e
 

T
o
 

Spor (ray)
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are solutions of equations (4.1) to (4.5) inclusive, so are 

ee... | 

F(¢,0) 

A(¢,0) 

8(¢,¢) 

u 
diy (hase) 

o 
PDP

 
Y
a
 

ii 

However, since our metric (233) is form invariant under the 

transformation (4.66), the solutions (4.67) and (4.68) will 

give rise to the same metric. Hence, we can replace z by 

az+b, and Z by az+b, where appropriate, without affecting the 

final metric. 

THEO REM 

There are just five distinct forms which f(z) can take 

in order that each y, (i = 1,2,-.-,13) be a function of s 

only. These (apart from changes in f(z) and z of the form 

mentioned above) can be written as 

(4) f(z) =2 

Gy) f(z) = ipz? 

(413) f(z) = iecoshz 

(iv) f(z) = iesinhz 

(v) f(z) = ife? 

where B, ¢€ and & are all real constants.
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PROOF 

(i) If f(z) = 2 then equations (4.37) and (4.38) give 

s = z+z. From equations (4.41) and (4.42) we get 

-1 
a= -h, geeli( 22) > aller s, 

hence each y, (i, = 1250.%,05) is a function of Saoniy. 

From now on we shall assume f” 40. In order to 

obtain the results (ii) to (v) we first note that if a 

function ¢ = ¢(z,z) be expressible as a function of 

s = s(z,z) only, it is necessary and sufficient that, 

CS 
a(z,2) 

i.e. 850-8 65 = 0 

or fe Ghar! ya= 0 oe. (4.69) 

using equations (4.37) and (4.38). 

Inspection of equations (4.50) to (4.62) inclusive 

shows that each y, (4 =.1,230..0,25)') will be a function jor 

s only, if equation (4.69) is satisfied by 

(I ¢ = 

- a -1 

= f4f"-(£1 244" 2) (42) =>
 

Nn
, 

LS
 

ey
, | 

= (f 2frar 2f") (£47) “4 _puBn , 

o 3 a uw i)
 

“ !
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Substituting 

G ah =- ff (£48) " , 

(using equations (4.41) and (4.42)) in equation (4.69), we 

get 

(een - £12) - (FFv-f2) + Fev - fFv = 0 

exe (a7) 

Now (4.70) is to hold identically in z and Z, so that if we 

first differentiate partially with respect to z, and then 

with respect to % we get 

Pre - fF =0 

mw pu 

+S és = een (a7) 

Since (4.71) is identically true for all z, and Z we must 

have 

fv = Kt Sis mnie) 

where K is any real constant.
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There are two cases to consider 

Case (1) K=0 

The general solution of equation (4.72) is in this 

case 

f(z) = Az® 4 Ba + Cc 

where A, B and C are complex constants. If we make the 

2B =-1 
transformation z—> 2 - BA we get 

f(z) Ag? +D wee Clee73) 

where Do=¢- Bea /4. 

Substituting (4.73) in (4.70) gives 

A= -4d, D=-D 

ie Since D is imaginary we can write 

f(z) = igze ween (71) 

8 veal. 

Case (2) K 40 

Putting K = a?, the general solution of equation 

(4.72) can be written as 

(2) = Aer? Bee + C wien, E67)
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where A, B and C are complex constants, and we note that a 

is either real or purely imaginary. Substituting (4.75) in 

(4.70) we get 

C4 C= 0 pen (info) 

AB = AB bare = al Leen 

Because of (4.76) there is no loss of generality in putting 

c=0. Now it is clear that (4.77) is satisfied if one A, 

B is zero, in that case 

f(z) = Det ese Mle) 

where D is constant. 

=1, 
The transformation z2> 4 a {z+i(w/2-argD)} then allows 

us to write (4.78) as 

f(z) = ise” oro (lee 79) 

where & is real. 

We now assume A 4 0, B # O and write 

eB $ 

a, B and @ being real constants a,8 > O , equation (4.77) 

is then satisfied identically. 

Substituting these values of A and B in equation 

(4.75)



a = 

f(z) = gente? + pe’ (24416) ue (4.80) 

The transformation z > a {zg + ten & + i(a¥ - 6)} then 

allows us to write (4.80) as 

f(z) = de(e* + e *%) Rion | (eligsab) 

Substituting for f(z) from equations (4.7u),(4.79) and (4.82) in 

the other two values of ¢ ((2) anda (3)), and then substit- 

uting these in equation (4.69) » We see that it is satisfied 

identically in each case. Hence the theorem is proven. 

The corresponding values of A are 

(3) A = xt 

(ii) & = asx 

(aii) A = Ksinhxtsinx? 

(iv) A = Keoshx? sinx? 

(v) PN te* sinx? 

where a, K and € are real constants. 

In Chapters 5, 6, 7, 8 and 9 the particular integrals 

corresponding to each of these values of A will be worked 

out, but instead of using the complex coordinates 2 and Z, 

we shall return to the real coordinates xt and x?.



THE PARTICULAR INTEGRAL CORRESPONDING 
  

TO A = K sinh xt sin x?
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CHAPTER FIVE 

THE PARTICULAR INTEGRAL CORRESPONDING 

fO_A = K sinh xt sin xe 

It will simplify things a little if we Put xt =x, 

mer yy) 80) that 

& = K sinh x gin y opnel C51) 

Also suffix 1 will now denote partial differentiation with 

respect to x, and suffix 2 partial differentiation with 

respect to y. 

The solution of equation (4.8) is in this case 

sinh x cosec y = constant 

oe 8 = sinh x cosec y + 5.2) 

From equations (4.7) and (5.2) 

Sia + Sop = { (1+?) G” + 280" }cosec?y 

eee (5.3) 

1 \ BA ( O07 a°) aNee (1482 jet cosec? y 

coe Fa)
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using equation (5.1). Substituting from (5.3) and (5.4) 

in equations (4.11) ana (4.12) we get 

P2 = cosec?y{- Al (1s?) @ J +s (1+s?) @ 3 

50, (G56) 

Qe = - cosec?y{-A (1457) a" ] fe s* (1+s2) G } 

251 (5-6) 

We now introduce a new function e(s) defined by 

- 80 = (1+s?)G! goo ear) 

Substituting from equation (5.7) in equations (5.5) and (5.6) 

we get, 

P = g(s)cosec y wee 05-8) 

Q = h(s)cosec y mame (5219)n7 

whe re 

e@ =s 32 = Sal SLO) 

and 

ne = 5 $2 4 26 Sea ood) 

From equations (5.8) and (5.2), we get 

~(gs)!-cosecy coty td
 ul 

" A Be ae - eS coty
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' 
au ' 

Be SG ee = Coa sinhx cosecy cot?y + fas) cosec?y 
a 

~[HAREY = Bponcay - flap y 
(using equation (5.2)). i.e. 

1 

(PsQ*)g = qf (52) Jeoseety ~8 ar 
~ dsj) h ds ds h 

ae (Sei) 

Using equations (5.2) and (5.9) » we get 

Q. = h cosnx Oe eceG : 

ce One x coshx cosecy 

oa (QP), = (Z ) cosecty cosh? x + 2 coseey sinhx 

" 

t\t Ne ! 
G@) cosecty + oe + (Z ) 

(using equation (5.2)). i.e. 

b mye Ge oe aihigest ab (ee )a= aa (e ge yooree?y +s $a £6 ae 

soe (5.49) 

Substituting from equations (5.8) : (5.9) s (5.12) and (5. 13) 

in equation (\.22) gives



a fs a -1 dh) _ coseety| ds ff ag (82) #2 ae] a | 

af,-* 4 -1 ah - 9 qh ag(ss) - 8g eal 

ent (S lh) 

But 

ei “a —1 ah 
Wr aetee ee ae 

" 4(sgh) *{ (ce ge) - s2 ase) | 
C 

= £ (sgh) “faa(8° zs) a ee (s $2 + 20) 

using equations (5.10) and (5.11) i.e. 

Std. tte = h qos) one Oar 

and (5.1) reduces to 

a =- a —1i dh a EA 
ae as (88) +g ae gh =0 

a {Con Ae : oe) | = Deine ee (Ges) 

Multiplying equation (5.15) by (gh) “*2 (n? +2? g?) nd 

integrating gives



Sees 

{ae(te +97) | = 4g?h? (h2+s2 g? +a) atte Sado) 

where a is the constant of integration. Substituting from 

equations (5.10) and (5.11) in equation (5.16) gives 

er. ae ao) a a 
(seailfs a +3 98] = us Ge (* Ge + 20) a 

2 {s(asse) ge +20 + 2| wee e(5.17) 

We can express equation (5.17) in a simpler form if we make 

the following substitutions 

s? =v wee (5218) 

¢ = 2ve see (5009) 

Equation (5.17) then reads 

  

2 

v2 (lev) (Ff = = (« ae cs Of a) ac = C+ a} 

    

piste (5520) 

Solving equation (5.20) for ¢, 6 can be found, in terms of 

8, using equations (5.18) and (5.19), and G(s) can be
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obtained from equation (5.7). 

Although we are unable to give the general solution 

of equation (5.20) » it does seem to possess a remarkable 

particular integral, this being obtained by putting 

G(v) = én{p(v) (Lay - + constant ... (5.21) 

where p(v) is a polynomial of degree n2 (a 21,2,. <2), ana, 

by taking the constant a in equation (5.20) to be -lin2. 

Substituting (5.21) in equation (5.7) gives 

6 = 2{n? - (1+v) pi p77} ort (522) 

where we have used equation (5.18). Substituting from 

equation (5.22) in equation (5.19) gives 

¢ = uv{n? - (14v) pp} see (5.25) 

Although we are only able to prove that p(v) exists 

for n=1 and n=2, there seems no reason why it should not 

exist for all n. To facilitate the calculations we put 

w=ap pee (Gac)) 

qa = v(1l+v) p were (5625). 

then, 

i(n2 v-w) ses (5226) 

an u
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(using (5.23)). Substituting from (5.26) in equation 

(5.20) gives 

ve (as (S28) ES une = ae we = wy (49) a - "| 

sed (Oe27) 

Substituting from equation (5.24) in equation (5.27) gives 

2 2 

v2(1+v) {p(pa"-qp”) - 2p’ (pa’-ap’)} 

= L{n?p2- (pq’-qp')} {v(pa'-ap') -pa} { (1+v) (pa’ -ap’) -pa} 

gow (She) 

Now, 

pa’ -qp’ = (1+v){v(pp’-p’2) + pp} + vp'p 

ose (5229) 

v(pq' -ap’) -pa = v?{(1+v) (pp’-p’2) + pp'} 

ejeten (5 850) 

(14v) (pa' ap’) -pq = (1+v)” {v(pp"-p! 2) spp" } 

Wet 5 251) 

where we have used equation (5.25). We also note that 

pa"-qp? = LX (vas = ap) ; mee (Sage)
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Case I 

n=1. The appropriate form for p(v) is 

piv) =vic eee (5253) 

where ¢ is an arbitrary constant. Substituting from equation 

(5.33) in equations (5.29), (5.30) and (5.31) we get 

pq’ -qp’ = vw? + 2ev +e vex (5. 5h) 

v(pq' ~qp') -pq = v? (c-1) eee (oe 35) 

(1+v) (pa! -ap’) -pq = e(1+v) oebel3533) 

Using (5.32) , 

pa"-qp"” = 2(v+e) seg Casi) 

We also note that 

p?-(pq’-pq’) = e(c-1) seis 5ie 38) 

From equations (5.34) to (5.38) inclusive, it follows that 

equation (5.28) is satisfied by (5.33). 

Case II 

n= 2. The form for p(v) in this case is 

p(v) = vt+hev3+6ev? +hev+ce2 Bae G5 39)



- 50 - 

where c is a constant. Substituting equation (5.39) in 

equations (5.29), (5.30) and (5.31) gives 

pa’ -ap’! = Lfve+8ev7+(16c4+12c2) vo +(20e+36c?) v5 

+ (9¢+610?) v#+(12094)e2) v3 

+ (18¢3+10c2) v2+8e%v+0%} 

+s (5.0) 

v(pa! -ap') -pq = hv? (e-1) fe(3v+2) -v9}" 

eee ato): 

(1+v) (pq! -ap") -pa 

= e(1+v)” {¢(1+3v) +v2 (v43) }* 

ee ee) 

Using equations (5.39) and (5.40) we note that, 

lp?-(pq’ -p'q) =-le(1-e) {e-v? (2v+3) J 

veep (5/e1i5) 

Also using equations (5.39), (5.40) and (5.32) 

p(pa"-ap”) -2n! (pq! -ap' ) 

ut 16¢(e-1) {2v9 +9v8-21 ev +9v7-9¢6/ 204.5) v® 

- 9o(5e+2) v4-2102 v349e3v2 490e3v4+203} 

16¢(e~1) {c-v? (2v+3) }{¢(143v) +v? (v+3) } 

«x [e(3v+2) - v3} 

" 

avo Weds)
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From equations (5.41), (5.42), (5.43) and (5.44) it follows 

that equation (5.28) is satisfied by (5.39) when n= 2. 

The metric corresponding to n = 1, is the Kerr metric, 

and for n= 2 the metric is the first member in a series of 

new metrics obtained by Tomimatsu ard Sato (4). 

Tomimatsu and Sato obtained their series of solutions, 

which is characterized by a positive integer f equal to our 

n, by working withErmst's equation (3.33) » and by consid- 

ering possible generalizations of a particular integral of 

the Weyl class (for the Weyl class F = O in the notation 

of Chapter 2). 

This is truly a magnificent achievement on the part 

of these two authors. It should be pointed out, however, 

that the author of this thesis, discovered equation (5.20) 

before he was aware of the work of Tomimatsu and Sato. 

_ We shall now show that the Tomimatsu-Sato class is 

included in our particular integral. According to Tomimatsu 

and Sato, if we write Z = =, where Z is the dependent 

e
g
o
 

st
 

variable in equation (3.33 » then the members of their class 

have the following properties, 

(4) p2-« 28 is real 
ax ox 

(44) B a -a@ = is purely imaginary
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But (i) and (ii) imply that, 

2 = yg wee (5.45) 

es = ne wre (bes) 

where yp and A are real functions of x and y. 

From (5.45) and (5.46) we get 

aZ OZ , aZ aZ _ 
x ay * ay ax = ° 

&, LAT Ze Zee iaO 

and using equation (3.27) we get 

ae ec a0 sml(5 = Let) 

and since X = C+iF, we have the condition 

C,C, + FF, = 0 

which is our equation (4.1). Hence, the Tomimatsu-Sato 

metrics must be included in our partimlar integral. 

Further, inspection of the Tomimatsu-Sato metric for 

¢ =3 , suggests that forn = 3, 

pv) = 0343c? (12v5 +30v++28v34+12v2 43v) 

+ 3e(3v8+12v74+28vo +30v5 +12v*) +v9
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We shall not, however, verify this as we did for the cases 

when n = 1, and n = 2, for it is our belief that there is a 

fundamental principle at work here, which can only be found 

by further research into the theory of ordinary differential 

equations of the type (5.20). All that we can say for the 

present is Bnet avner se -ln?, (n = 1,2,...) it is very 

probable that equation (5.20) has a particular integral which 

is a rational function of v, of the type already stated 

viz. equation (5.23). 

If this turns out to be the case it may be of sig- 

nificance for the theory of Rotating Stars. For if we 

could also prove that in order for the metric generated by 

the general solution of equation (5.20), to represent a 

physically real situation e.g. be asymptotically flat at 

infinite distance, (a necessary condition for this is that 

¢ be a rational function) and have mass and angular momentum, 

it is necessary and sufficient for a to equal -ln?, and for ¢ 

to have the form given by equation (5.23), then it may not 

be too wild to conjecture, that a steady state condition is 

only possible for a rotating star, when the matter generating 

the fielc is in one of a possible number of discrete energy 

States corresvonding to n taking the values 1, 2, 3, ... . 

As we have said the general solution of equation 

(5.20) is unznovn, it is however possible to give an infinite 

series expansion for ¢ under certain conditions. This is 

obtained by assuming the following boundary condition on ¢.
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At 

Ve= Oo GC =.0) sand gf = hac 

where c is a constant, and we shall replace a in equation 

(5.20) by -la. Then by assuming 

and substituting in equation (5.20) we get non-linear 

difference equations for the aya However, if we first 

differentiate equation (5.20) » and then substitute the 

infinite series in the resulting equation, we get simpler 

difference equations for the ay 8 (doing it this way avoids 

having to square the infinite series on the l.h.s,of 

(5.20)). The result is 

a, = hac 

ag = ha?c(c-1) 

2{ (n-1) i (n-2) Bye i (n-1) (2n-1) a,tn? (n+1) a 3 n+1 

=a, + By» n22, 

where
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n 
oR oP a : Bn =) Anngyr (ed UG-Da,s_ day] 

j=1 

where we define a, = ha. 

It should be observed that the above equations 

uniquely determine the coefficients a Of course, if ne 

the above conjecture is correct the infinite series should 

converge to a rational function when, 

Q = 12, 22, a. 

We shall now prove that the metric corresponding to 

the solution for n= 1, is in fact the Kerr metric. When 

n= 1, p(v) = v+e, and from equation (5.23) we get 

lv (c-1) 
Ca aren 

Equations (5.18) and (5.19) then give 

o = Zed) wan (Gd 
APES 

Substituting equation (5.48) in equation (5.10) ana (5.11) 

then gives 

= wee (5.49) 

2 = ee we (950)
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2 

where we have put c = - * where p?+q? = 1. 

If we put @ = tan 3. equations(4.20) and (Gite) 

become 

£,siny = -4(sg)'h cosy(1+€2) +26 mon Wee) 

-1 = 

2é,siny = (h-h’g coshx) ?-(hth' g * coshx) 

wae (S52) 

whe re we have used equations (5.8) and (5.9). Substituting 

equations (5.49) and (5.50) in equations (5.51), (5.52), and 

noting equation (5.2) , we get the solution, 4 

2 = eeoshx - 1 - aacosy 
% a(peoshx+1) + qceosy 

where a is any constant. We shall take a = 0, then 

se tan $ = qa (peoshx-1) secy ... (5.53) 

a gint = 2 acosy(pceoshx-1) ase (Ss SL) 

and 

cost = 34g? cos®y-(peoshx-1) "} a eb. 55) 

whe re 

2 
f£ = (peoshx-1)” + q2cos?y.
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Substitutins equations (5.8), (5.9), (5.49), (5.50), (5.5h) 

and (5.55) in equations (4.1) and (4.15) we get 

g 2 
a, = = =e { (peoshx-1) © -q? cos? y}sinhx 

fale 5056) 

uz, = Hea ( ) ae a yeosy(pcoshx-1 ae (5257) 

where 

dX = (p?2 cosh? x-1-g? cos2y) { (peoshx-1) * +92 cos? y} 

The solution of equations (5.56) and (5.57) is 

= én(p2cosh?x-l+q2cos?y) - én{ (peoshx-1) el ! 

+ g2cos2y} 

Equation (4.13) then gives 

_ p? cosh? x-1+9? cos? 3 
G = (Socehx=1) eat eosty apie 20) 

From equation (5.21) 

G(s) = én(s?+c) - én(s?+1) + constant ... 

2 

and since we are taking C = - 2 5 

G(s) = én(p2s?-g2) - én(s?+1) + 2énmK* 

(5.59)
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where m is a constant. 

Substituting from equations (L.7), (5.1), (5.2), 

(5.58) and (5.59) in equation (2.32) gives 

eas 1? { (peo shx= 1) + gcos?y} onae (5,60) 

Substituting (4.16) and (4.17) in equations (2.19) and 

(2.20) gives 

D, = QAC “cost f sie (5560) 

Dz = PAC sint sein (0262) 

where we have used equation (a3) ‘ 

Substituting from equations (5.8) and (5.9) in 

equations (5.61) and (5.62) we get 

D, = BAG) cosecy cost asi (5s 63) 

D, = gAC* cosecy sint stron (566) 

Substituting from equations(5.1), (5.49), (5.50), (5.54), 

(5.55) in equations (5.63) and (5.64) gives 

2 

Dy, = - on sin?y sinhx {(pceoshx-1) -q?cos?y} 

e091 (565) 

Dz = ea siny cosy sinh?x{pcoshx-1) 

+» (5.66)
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where 

2 

p= (oe cosh? x-1+q? cos? y) 

The solution of equations (5.65) and (5.66) is 

Pee 2Kpsinh?x(peoshx-1) 
Dae coshx + v + G(p2cosh?x-1+q2c0s”y) 

elbsO0) 

where v is a constant, we choose v = =: then equation 

(5.67) becomes, 

2Kqsin? y(peoshx-1) 
D= STprccch#x-ieqtoostyy *** (9-68) 

From equations (2.18) , (5.58) and (5.68) we get 

2kqsin? y(pcoshx-1) 

B= SY (peoshx-1) +a" cos?y ween o- 09) 

To get the canonical form of the Kerr metric we put, K =m, 

p= - Wire Bre sare) 

and make the coordinate transformation, 

y = 0 soe (5.7) 

i MW -m(peoshx-1) vou Kee)
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Then equations (5.58), (5.60) and (5.69) become 

C =1 - 2mr(r? + a2cos?6) * bee: (5.73) 

pe ERBSrsin® (1? + a2 cos?) + coe (507) 

eV = 2 4 a®icos?6 ces £5.75) 

Also using equations (5.71) and (5.72) we get 

    + a2 dad (S67) 

and 

A= p * sinoNr®—omr+a® shes (5.77) 

Putting x3 = pd, x* = t and substituting from (5.72) to 

(5.76) inclusive, in (2.5) we get 

ane 3 = 2 —_—_— ds? = (r' +2?00s?6) (se am a0?) 

2 in2 2ma? rsin?¢ 7 ag? 
+ sin? 6{ r?+a2+ 

of r#+a?cos?6 s} 

Umarsin? 6 Ls " 2mr 2 
+ peyazcos29 GPdt 1 - yFya2cos20) at 

sie) (52078) 

which is the canonical form of the Kerr metric. Although, 

the metric coefficients in (5.78) satisfy Einstein's



a ee 

equations Rij = O for all values of a and m, our derivation 

is only valid for m2 > a? (see equation (5.70)).
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THE PARTICULAR INTEGRAL CORRESPONDING 

TO A = Kcoshxt sinx?
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CHAPTER SIX 

THE PARTICULAR IN’ EGRAL CORRESPONDING 

TO A = Keoshx*sinx? 

- As before we put xt Kak? = 30 that. 

A = Keoshx siny Bere (ee) 

The solution of equation (4.3) is in this case 

coshx cosecy = constant 

me S = coshx cosecy corallsn?) 

From equation (4.7), (6.1) and (6.2) we get 

S44+5a9 = cosec?y Af (92-1) oJ oe (Ge 5) 

1 (A 24A 2) =s (s?-1) oe cosec®y 
BA, St 2 

van Gel) 

Substituting from equations (6.3) and (6.4) in equations 

(4.11) anda (4.12) gives, 

P2 = cos eoty{ - £1 (s?-1) G' Jis7* (2-1) @ ] 

en (Or)
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Q? = - cosectyf fel (s2-1) 0" Js“ (<2-2) 6 | 

we: (656) 

If we put 

+se@ = (s?-1)q" eos (6.7) 

equations (6.5) and (6.6) become 

P = g(s) cosecy se» (6.8) 

Q = h(s) cosecy eee (09) 

where 

Ee ae ates (600) 

ne = 5 2 4 26 Ries (On 1) 

Substituting from equations (6.8) to (6.11) inclusive in 

equation (4.22) we get, 

2 2 
pee d2@ d6\ we d6/_ 40 CG z) (: assed a) = 465 a(° ae 20) 

+f ose -1) 38 - 26 - al 

wee (6522) 

where a is a constant.((6.12) is obtained in the same way 

as equation (5.17) was in Chapter 5.)



Leis 

Putting 

B? = -V cies GeLa) 

C¢ = 2ve wee (Odd) 

equation (6.12) reduces to equation (5.20). 

Thus we may regard the particular integral of this 

Chapter as being generated by equation (5.20). In particular 

the Kerr~Tomimatsu-Sato class for a? > m?, is obtained from 

the results of this Chapter e.g. for the Kerr metric 

equations (6.10) and (6.11) give 

hi(c+1) 82 
(s? 40) 2 

ge? = - 

ne - 4elc+2) 
{s2ae)? 

2 

We again put ¢ = - 3 except that this time we make q?-p? = i, 

and then when 

a 
Cee a? (2) ne a Spit . 

(Compare with equation (5.70)). The remainder of the deriv- 

ation then being similar to that given in Chapter 5 for the 

case when a? < m?,. This point can be best understood by 

the following argument. 

Suppose that the metric coefficientsfor the Kerr- 

Tomimatsu-Sato class are calculated using the equations of
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Chapter 5, and we then make the coordinate transformation 

r-m =m? = a2 cosh x 

G6=y 

on the understanding that 

m? > 2 Gyo (Salo) 

In terms of r and 6 the metric coefficients are such that 

the square root in the term \m?-a? is removed. Since the 

Einstein equations are satisfied identically in r,@,m and a, 

the condition (6.15) then becomes irrelevant and we can make 

the coordinate transformation: 

r-m = Va — msinh x 

G=y 

thus giving us the particular integral of this Chapter. 

We can put this another way, because of the form we 

have taken for our metric, in which g,, = g. the mathematics 

divides the vacuum gravitational field of rotating bodies 

of the Kerr-Tomimatsu-Sato type, into three distinct classes 

viz. 

(i) when m? 5 a? for which the results 

of Chapter 5 are appropriate, 

(ii) when m? < a2 for which the results 

of this Chapter are appropriate,



See 

(iii) when m = a? for which the results of 

Chapter 7 are appropriate. 

Without knowing the general solutions of the 

oe ein of Chapters 5, 6 and 7 we cannot say whether 

or not the particular integrals will always lead to the 

same metric in which g,, 4 Boo- If any of the metric 

coefficients contain a term like v%, where a is a 

constant not equal to an integer, the above procedure 

would not be possible, and we would have distinct 

solutions.
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THE PARTICULAR INTEGRAL CORRESPONDING   
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TOnSe= Kee stn
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CHAPTER SEVEN 

THE PARTICULAR INTEGRAL CORRESPONDING 
  

ODA = Ke sinx? 

Similarly to Chapter 5 = x, x? = y. 

A= Ke*siny nears Grill) 

s = e*cosecy Seem (7ne) 

P = geosecy (7.3) 

Q = heosecy Seeadafat) 

dé 
B= 8 a (7.5) 

ne = s $2 4 29 Bae ree 

-@ = sG! accel oF) 

s? =v Vee 1GES8) 

C = 2ve erento) 

  

2 
2 di a 

v(Se) sad eet ae 
    

Hen (7.020) 

where a is a constant. 

Again the general solution of equation (7.10) is 

unknown, however, it is completely integrable in the
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in the special case when a = O, for in that case equation 

(7.10) reads 

(i) = 08-5) 
or 

gt -+ Biv", 

é-% 

ae ie = (v Gea), 

where a is the constant of integration 

4 a Ge Gane e711) 

Putting 

Wes wae +a vite (ile) 

equation (7 -11) becomes 

lv! = (y=2)) 4 i (a=t) eee Teas)



Gee 

Three cases can arise, 

Case (4) @- 1 < 0: and we put a-l=-p?. 

The solution of equation (7.13) is then, 

y = 2{c2 (148) - vo(1-8) 3/(e2-v9) 

,where c is a constant. Using equation (7.12) we get 

-1 

¢ = v(er-v8) foe (148)? - (1-g)} ow. (721) 

Case (4.4) a = 1 >50: am we put a-1 = pe. 

The solution of equation (7.13) is 

y = 2{lsptan[ en(ev?/%) ]} 

: -¢ = vf-g2+426tan[ én(ev?/9) J} 75) 

using equation (7.12), where c is a constant. 

Case (iii) o@ = 1: 

The solution of equation (7.13) is, 

y = 2 - lf én(c?v) ting 

where c is a constant. Using equation (7. 12) we get 

¢ = v{l - ater vee (irae)
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Case (i) 

Although it is possible to calculate the metric 

coefficients for all values of B, they are rather complic- 

ated, except in the case when 6 = 1, and it is to this 

value of 6 that we shall restrict ourselves. 

When @ = 1 equation (7.14) reduces to 

live? 
Aone eee (et)   

Substituting from equation (ap am C09) gives 

202 
o eecaee eee (7.18) 

where we have used equation (7.8). Substituting from 

equation (7.18) in equations (7.5) » (7.6) ana (7.7) gives, 

2cs 
& = yee Bon? s 19) 

BE 2 

h= — Ries (720) 

S = G(s) = én(s?-c?) - 2éns + constant 

dae (peel) 

Substituting from equations (7.19) and (7.20) in eqations 

(7.3), (7.4) and using (7.2) we get



afl 

2ce™ 

Ge Cesiney 

Q= 2c? siny 

eon - ce? sin?y 

Sen Meee) 

ws of (Tne) 

Substituting from equations (7.22) and (7.23) in equations 

(4.20) and (4.21) we get 

egal 2ce*(cosy + sint) 

# ex 2sin2 e“* - c®sin2y 

2csiny(e* = ccost) 
fo Bemis, ; 

e - ¢e?sin?y 

The solution of equations (7.24) and (7.25) is 

ic
t 7X 

fn te e(£+cosy) 

a e* + c(1+écosy) 

where @ is a constant. 

on cost 

sint = 2,7 {4e%-e(4+cosy) } fe*+-e(14+Zc0sy) } 

wed heey 

ree hoo) 

nx7*{ (1-4) oo *42ce*(14624+2€cosy) +0? (1-£2) sin? y} 

weet (7-20) 

ee G20)
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an = (1+€) o> *.26"e(1-22) +0? { (1+?) (1+co0s?y) +écosy} 

song (7-28) 

Substituting from equations (7.22), (7.23) » (126) Ce) = 

and (7.28) in equations (4.14) and (4.15) we get 

where 

= 2ce*y-*{ (1-22) e-*s2ce* (1462 +2£cosy) +0? (1-4?) sin? y} 

Per i e)) 

he? sinyy~ { e*-0(£+cosy) } {e*+e(1+€cosy) } " 

wee 47. 50) 

(e082 sin? y) { (1+42) e~*+2ce* (1-22) it 

+ 0?[(1+42) (l+cos?y) +4écosy]} ... (7.31) 

The solution of equations (7.29) and (7.30) is 

u = - €n{(1+¢2) e-*420e*(1-22) +c?[ (1+62) (1+cos?y) 

a 
+ hécosy]} + én(e“*-c2 sin?y) + constant 

oe (7-52)
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From (l.13) and (7.32) we get 

C= (1462) v7? (e?%—¢2 sin?y) eee fe dD) 

where the constant in equation (7.32) has been put equal to 

én(1+62) and 

2x 
vy = (1+€2)e 42ce* (1-62) +02{ (1462) (1+c0s?y) 

+ hécosy} Sees) 

Substituting from equations (7.1), (7-22), (7eee) ny C7226). 

(7.27) and (7.33) in equations (5.61) and (5.62) we get 

Dee 22 sin? ye™| (1-42) e?*42ce* (1442 42£c0sy) 

+ c#(1-€2) sin?y} 

Sho (ieee) 

Dy = H&eP* si nyl be*—c(£+cosy) }fe*+e(1+écosy) } 

wax (7636) 

where we have used (7.34) and 

e = (1442) (e@*%-c2sin2y) Bee eat)
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The solution of equations (7.35) and (7.36) is 

D=- 2c° | sin? yl e*(1-€2) +0(1402 +2¢c0sy) ] 
a 

- (2£cosy+b) (e**-casinzy) j a= \ te 58) 

where b is a constant, and ¢, = (1442) *e4. 

From equations (2.18), (7.33) ane (7.38) we get 

B=- 2c" sin? y[e*(1~-¢2) +0(1+€242écogy) | 

= (Zeosy+b) (e°*-c2 sin?y) 3 s+ (7.39) 

Finally from equations (2.32), (7.1), (7.21), (7.33) ana 

(7.34) we get 

ee = (av = wien CeO) 

where a is a constant. 

Hence all the metric coefficients are known. If we 

interpret e asa radial. spherical polar coordinate we see 

from equations (7.37) and (7.38) that our metric is only 

asymptotically flat (i.e. x as > + co, ¥ fixed) when @ = b = (o)5 

In that case by putting c = m, a = 1, and by making the 

transformation r-m = en, y = 6 we see that the metric is 

the Kerr mtric with a? = m? (see equation (5.78)). Thus 

the Kerr solution for a? = m2 is included in eguation (7.10) 

as a special case.
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Case (ii) 

Similarly tocase (i) 

6= 4{ (1-p2) + 2etan{ én(ce?) ]} a eel 

g= Bsec{ én(cg”) } «Ae 

nS ptan{én(cs®) } Beal - (7-43) 

ea 2én{cos[én(cd”) J} + £(¢?-1) éns 

+ constant 

- (7-44) 

P = Bsecgcosecy 2 7-45) 

Q = (1 + Btang) eeeeey, (7.46) 

where 

¢@ = Bx + énf{e cosed®y} (7.47) 

and the equations for t are 

t, = - Bsecgcosecy(cosy-sint) (7.8) 

-t, = Bsecd + (1+stang) cosecy cost (7.49) 

Integrating equation (7.48) we get 

tan 3 = [€(secd+tang) + mj (secd+tang+f) ~* 

een (250) 

where 

& = secy(1+siny) » (7-51) 

m = secy(l1-siny) f (7.52)
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and f is an arbitrary function of y. To find f(y) we put 

at—1 
eh er 

a? +1 
secg¢ = Da   

then using (7.50) in equation (7.49) and equating coefficients 

of powers of a, we get 

B(1+é2) + Bcosecy(1-€2) =0 eee e535) 

-{2e' 4gcoty(m-f2) } = B(f+mé) + Bcosecy(f-mé) 

+ (1-€2) cosecy 

ee eee feoly) 

-lm' = B(1+¢2) + 6(m?+f2) + Bcosecy(f2-m?) 

-pcosecy(1-£2) + (f-mé) cosecy 

«++ (7.55) 

Booty(m-f£2) + 2(fm'-f' m) 

= -B(f+mé) + cosecy{m?-£2+¢(f-mé) } 

+++ (7.56) 

B(m?+f2) - Bcosecy(-m?+f?) = 0 mole ils D0) 

Substituting from equations (7.51), (7.52) in equations 

(7.53) ’ (7.54) , (7.56) ana (7.57) we get mere identities. 

Substituting from equations (7.51) and (7.52) in equation 

(7.55) we get
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f' = -pB (secy+tany) (1-siny) rc + secyf -— Bsecyf? 

oe aneoe) 

Putting z= siny, equation (7.58) gives 

(22-2) $& = p(a+d (1-2) * - + pre 

eerem Kens) 

We are unable to give the solution of this Riccati 

equation. Consequently, we can proceed no further in this 

case. 

Case (iii) 

Similarly tocase (i) 

4{a-2[ n(es) 77} ee (7.260) a " 

ae 
g = {én(cs) Me O61) 

h= 1 3 $én(es)] Selene OD) 

S = G(s) = énfén(cs)} - 4éns + constant 

wee (e605) 

P = cosecy{x+énecosecy) }~* sens GGeGly 

lie 
Q = cosecy{x-l+én(e cosecy) }{x+én(c ecosecy) 

cae, Meets)! 

and the equations for t are



L785. o 

{x+¢n(e cosecy) }t, = coty(secysint-1) xe (7.66) 

-{x+én(e cosecy) } tz 1 + coty{x-1+én(c cosecy}cost 

  

vee (7-67) 

Integrating equation (7.66) gives 

ten # = +8 SLi 7-68) 

where 

& = secy(l+siny) ice. CTe69) 

m = secy{(1-siny)f + (1+siny) én(e cosecy)} 

w ctee Ait eit) 

f + én(e cosecy) ewe ae hl) ‘3
 " 

and f is an arbitrary function y. Using equation (7.68) im 

equation (7.67) and equating coefficients of powers of x 

gives 

— 26 = (1-42) cosecy soaker) 

~2{4 én(c cosecy) +m + pe’ - pe) 

1+ 2 + cosecy{ (1-82) [én(c cosecy) - 1] 

+ 2(p-ém) } : Wie G7 a7S), 

-2{pm' - pm’ + [én(c cosecy) ](m' +pé"-p! €)3 

2(p+ém) + cosecy{ p?-m?+2(p-ém) [ én(e cosecy) -1]} 

Races)
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-2(pm! -pm') én(c cosecy) = m@+p?+cosecy{£én(c cosecy) -1} 

(p?-m?) 

moe C07) 

Equation (7.75) determines f(y), for if we multiply it by 

pp, p40. (p = 0 leads to contradictions), we get 

-2[én(e cosecy) J Pe w2§1 + cosecy[1-én(c cosecy) ]} 

- cosecy{1 - én(e cosecy)} +1 

Beer (Pore) 

where 

w= mp sere OT =U) 

Thus when w is known from equation (7-76) , f(y) can be found 

py substituting from (7.70) and (7.71) in (7.77). 

Unfortunately there are no known solutions of 

equation (7.76). Consequently we can proceed no further 

in this case.
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CHAPTER EIGHT 

THE PARTICULAR INTEGRAL CORRESPONDING 

TO A = Kx* 

We put xt = p, x? = z ami regard p and z as cylind- 

rical polar coordinates, i.e each will have the dimensions 

of length and we can put K = 1 so that 

Ap ee MCCA) 

and from equations (4.6), (4.7) and (4.8) it follows that 

S = G(p) oe (Gee) 

Hence 

S.4+5,, = 67 ba ((es5) 

aot (A, 2482) = pe a! Soh Gish) 
A, 

Substituting from equations (8.3) and (8.4) in equations 

(4.11) and (4.12) we get 

Pe = =G/ +p) pe (8.5) 

Qe “Vi pa eemor 6). 

Putting 

pG' = -0 Sono.)
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equations (8.5) and (8.6) give 

ee pp a - 20) eee (88) 

Q? = ye a ven (8.9) 

Since P and Q are function of e only equation (1.22) reduces 

to 

-1 

(GP), 98a) = 0 

or 

1 

(QP), = PQ os) (Ge 10) 

Multiplying equation (8.10) by onDin and integrating gives 

—1,2 
(Q,P)” = Q2 + 2a 

where a is the constant of integration. Hence 

(Q?2)2= WP2Q2(Q242a) ... (8.11) 

Substituting from equations (8.8) ana (8.9) in equation (8.11) 

gives 

a/,-1 a6\)" 3 40/ a9 + 40 [abr ae)} = 4° $8(e8E - e0)(0* 28 + 2a) 
and putting p? =v we get
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goa coe Le) 

We shall now show that the above integral does not 

belong, either, to the Papapetrou Class, or to the Lewis- 

van Stockum Class. 

A member of the Papapetrou Class satisfies the 

condition 

Che 1- Cah a=10 tensed 5) 

and if our integral satisfied this condition we would have, 

substituting from equations (4.13) to (4.17) inclusive, in 

equation (8.13) PQ = 0, which contradicts our hypothesis 

P40, Q0. If our integral were to be a member of the 

Lewis-Van Stockum Class it would satisfy the condition 

xt (B,C, + F,C,) = CF, Ceol) 

which would imply, substituting from equaticns (4.13) to 

(4.17) inclusive, in equation (8.1h), 

p(P2 - Q2)sin2t - 2Psint = 0
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ive. certher 

(ae t= a, or (ini t= cos | mary | 

would have to be the general solution of equations (4.20) 

and (4.21). However, inspection of equations (4.20) and 

(4.21) shows that this is not the case (see below) . 

Although the general solution of equation (8.12) is 

not known, it is completely integrable when a = 0. With 

a = 0, equation (8.12) reads 

2 2 

Ge) _ (a6 ao _ 2 w(ae) = 8) (a - *) 

or 
ac 2 a0 2 

(#) = 2¢(G) Eee osdo) 

whe re 

cavii-s ge (8.16) 

The solution of equation (8.15) is 

2 

2¢ = (6 + b) me aes 17) 

where b is the constant of integration. 

Substituting from equation (8.16) in equation (8.17) 

gives 

av $2 = (expe) - (2d+1 ine (8.16)



= ele 

Three cases can arise: 

Case (i) : 2b+1 = 0 

The solution of equation (8.18) is 

6 = -4 - {én(av) RTE 

where c is a constant. 

Case (ii) : 2b+1 > 0 

If we write 2b+1 = a? the solution of equation (8.18) 

is 

=—1 

O= 1\c (a=1)" - (+1) v™} (v%-6?) 

where c is a constant. 

Case (iii) : 2b+1 < 0 

Putting 2b+1 = -a? the solution of equation (8.18) is 

a 

@ = £(a?-1) + atan{ én(ev®) } 

where c is a constant. 

We shall now calculate the metric coefficients 

corresponding to each of these cases.



ae 

Case (i) 

@ el ealcp ia sae) (8519) 

(v = p?) < 

Substituting from equation (8.19) in equations (8.7), 

(8.8) and (8.9) gives 

G = én{gp*én(cp) } £2. (8220) 

where B is a constant. 

Pad {pén(cp) }~* {1+4n(ep) } wes (Geen) 

Q = 4{pén(co) ie ee (22) 

Case (ii) 

Cn dic? (go) = (aang Mg toca 

wie) (8425) 

Bance Vi = p*. 

Substituting from equation (8.23) in equations (8.7), 

(8.8) and (8.9) gives 

G = én{Bp 2 (p?*c?) } aoa (8.2) 

where @ is a constant.
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Peat Bar (a oc?) { (a+) p?* + (a-1) c?} 

pee (O.25) 

Qa 2acp™ * (p°*-c?) a yaar (8626) 

Case Ad 

@ = $(a?-1) + atan{ én(ep%) 3 veo (8027) 

using v = p?. 

Substituting from equation (8.27) in equations (8.2 ’ 

(8.8) and (8.9) gives 

G = $(a2-1) eno - énf cos[ én(cp*) ]} + constant 

Fea (8.28) 

PH peda - tan[ én(cp%) } wes (8529) 

Q=z ap see{én(cp%) } wae (8. 50) 

It is possible to express the metric coefficients in 

terms of P, Q@, and G. From equation (8.10) we have 

Q,2 = P®Q? therefore Q, = + PQ,in the event poth signs lead 

to the same result, we shall take the +ve sign, 1.6. 

Q, = PQ Py (8e51) 

Substituting from equation (8.31) in equations (4.20) and



=o 

(4.21) gives 

t, = %@ sint oes (8.52) 

tg = -Q(1l+cos t) een (S555) 

The solution of equations (8.32) and (8.33) is 

t 
tan BB =r 2Q, 

cS sint = - 220(1+22Q92) * Sees (B51) 

cost = (1-22Q2) (1+2292) ze wee (0555) 

Substituting from equations (8.3) and (8.35) in equations 

(4.14) and (4.15) gives 

u, = P(1-22Q2X1+22Q2) oh seuss (Be56) 

ay =-22Q2 (142292) ~* wre (Oa DET 

The solution of equations (8.36) and (8.37) is 

u = én(aQ) - én(1+22Q2) ... (8.38) 

where a is a constant. 

From equations (4.13) and (8.38) we get 

C = aQ(1+z2292) * «os (8.39)



Zee 

Substituting from equations (4.16), (4.17), (8.1), (8.34), 

(8.35) and (8.38) in equations(2.19) ana (2.20) gives 

D, = 2(1-2292) cay (Gals) 

D, = - 28s eee (8.42) 

equation (8.41) canbe integrated to give 

Dee p2? + h(p) a is) a 

where h(p) is an arbitrary function of p. Substituting 

from equation (8.42) in equation (8.40) gives 

  

dh Ze d ‘D1 ee Ze 
dp a Gp (Pe) Camere 

2 

“ ee ee Bet 

But 

Q? - (Pp) = a sf 202 PQ? = (pe 2)} 
RB 2 2oP' ap? 

1 jee dl : = Bopp? a 62”) ap (P2°?) } (using (8.31)) 

1 -1 a26 -2 46 
a ee a 

a29 _ dé, : - (p ap? aS } (using (8.8) and (8.9)) 

=O 

; h = sh(p? 4m) ) ; = oy \e? +m sa Sh GOALS



ean 

where m is the constant of integration. 

Substituting from equation (8.43) in eqation (8.2) 

gives 

D = Be (2 4m-2Pp 2) by | sce (Oui) 

From equations (2.18) and (8.44) we get 

a1 . 

B = Q(p?+m-2Pp 2?) (14279?) ++ (8-45) 

Substituting from equations (8.1), (8.2) ana (8.39) in 

equation (2.32) gives 

G 
evs Bg (1+2? a) wes (8.46) 

Hence, all the coefficients are know in terms of P, 

Q and G. It will be observed that none of these metrics is 

asymptotically flat.
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CHAPTER NINE 

THE PARTICULAR INTEGRAL CORRESFONDING 
  

OVA = Ka xe 

Similarlyto Chapter 5 x = xt y =x 

A = Kxy oes (900) 

See See Seer COR) 

-s0 = (1+s?)G eee) 

Bl py ele (Onl) 

Qa ihy eoennis 5) 

e = off ; Oricon s 

h? = og aed sSoUles) 

and the differential equation for ¢ is the same as in Chapter 

5, viz. equation (5.20). 

In the case when a (see equation (5.20)) < 0, it is 

possible to express the metric coefficients explicitly in terms 

of G, g, and h. To see this, we choose s and y as new 

coordinate variables, using (9.2) we have 

x = sy ster (OWS) 

In terms of s and y equations (4.20) and (4.21) read 

yty = -{n-'s(sg)'4g hf } + sgsint - heot 

2+) (9-9)
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ts = =n (s )' 4 gsint Paso) 

where we have used equations (9.4) and (9.5) ana 

= ot che 
Bis ay 2 MES os 

Theorem 

Lt 

ope ae 2 2 2 a =- ne de? + s2g?) ees (960) 

and 

= 88+ 2n ee Bere Oeck2) 

where the constant a in equation (5.20) is equal to -lin?. 

Then the solution of equations (9.9) and (9.10) is given 

by 

4 tang = -€ pur. 3) 

Proof 

Since t is a function of s only ty = 0, also 

: 2t 1-£2 
sint = - 77g > cost = i7gr



’. equation (9.9) gives 

ee Alstg 24h?) 1] + 2sg6 +h 

" oO £2(a+h) - 2sg6 +a-h 

(using (9.11). 

{é-sg(h+a) rie + {2 —h? 52 g2}(ath) eae 

But equation (5.16) gives 

a? - (h?+s?g2)= a = -lin? 

o. {2 - (sg +2n) (ath) 3 {2 - (sg-2n) (a+h)~*} = 0 

which is satisfied by 

& — (sg+2n) (a+h) 2 

Therefore equation (9.9) is satisfied identically.
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Now 

2t! 
1+? 
  Ceo 

Therefore equation (9.10) gives 

& = th * (sg) (1462) +6 ee DoE) 

To prove (9.14) we first note that @ satisfies the equation, 

(a+h) €24a-h = 2sgé sos (9705) 

and 

a! = -hg : vee (9.16) 

(see equation (5.15). Now 

é! Gon = (ht) (sg)’-(sgen) (h' +a’) (using (9.12)) 

= (hia) (sg) '-(sg+2n) (nh! -hg) 

where we used (9.16), Nowh’ = g(hs)~“(sg)* (ovtained by 

eliminating 6 from between equations (9.5) and (9.7)). 

i t! (hac) * " (hia) (98) ~(egr2n) (GB (sg) _ (h+a) as 

(hic) (sg)! +(sg+2n) g(hic) 

- (sg+2n) ef as ca 

tl



eo 

foe é! = gt+(ath) *| (sa) (sg) '-(sg+2n) fo ae | 

ne eC ele) 

But 

eee oe - Gs?) (59, (sd =- X(sQ° 
sh 

where we have used (9.12) and 

hi = nese) 5 

Substituting (9.18) in (9.17) gives 

é! gé+(a+h) mi (h+a) (sg)'+(sg+2n) sgh (so 

gé+(a+h) a (sg) 'h *{n(hia) +sgé(hea) } 

(using (9.12)) 

gl+ pee (oth) ~* (2h+2s g6) 

get {sg)',-* (h+a) ~*{ 2n+ (+h) £2+(a-h) i 

(using (9.15)) 

é = g6+4(se'h (1462) " 

which is equation (9.14). Therefore equation (9.10) is 

identically satisfied.
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Substituting from equations (9.4) and (9.5) in equations 

(4.14) and (4.15) gives 

wu = gy cost S6a Br) 

up, = hy sint 4 (9:20) 

Now 

Ug = YU, = geost (from (9.19)) 
-£2 

ae us = a (from (9.13)) 

rete C9120) 

Uy = SU, + Up 

i.e. yay = sgcos t+hsint (using (9.19) ana (9.20) ) 

i.e. yuy = (1442) ~*{sg(1-¢?) -2¢n} 

Senn, ee) 

Now using (9.11), (9.12) and (5.16) we can also write @ in 

  

the form 

a-h 
© = Sg-on° 

aA é(sg-2n) = a-h = a+h-2h 

ae €2(sg-2n) = €(a+h) - 2hé 

= sg+2n - 2hé (using (9.12)) 

ve ~2n(€241) = sg(1-€2) - 2¢n 

2 (4241) “*{se(1-42) -2en} = -2n =... (9.23)



Seco 

Substituting from equation (9.23) in equation (9.22) gives 

yu, = -2n - +e eh) 

The solution of equations (9.21) and (9.2u) is 

u = én(fy 2") ee Gr25) 

where 

f= (22 gene) ~‘exp{ -2n] sg? (5g? +n?) as} 

meen (oe ee) 

where we have used (9.11), (9.12) and (9.13). From equations 

(9.25) and (4.13) we get 

6 =e Da See) 

Substituting from eqations (4.13), (4.16) and (4.17) in 

equations (2.19) and (2.20) we get 

D HK AQC* cost wae (9628) 

D, = APC sint wei 9s29) 

Substituting from equations (9.1), (9.4), (9.5) in equations 

(9.28) and (9.29) gives 

shk _2n+1 

ae e 

Dy = Sahyemt 1 sine 

ost 

ee Dy = Seay??? sint vee (9530) 
2n4é1 

ae AZ —s(sheos tr gs int) 
oe (925i)
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The solution of equations (9.30) and (9.31) is 

2(n+1) 
Se { sa (h? -g?) -2nhg(1+s?) } (s? g2+h2) a 

ay 

(using (9.12) and (9.13). Where T is a constant, we shall 

take T = 0 so that 

2(n+1) 
tae Scrip el sa (h2-g2) -2nhg(1+5*) } (9? g? +h?) 

eet 9252) 

Equations (9.27), (9.32) and (2.18) give 

B= ees { sa(h?-g2) -2ngh(1+s?) 3 (s? g2+h2) 

oho (Sloss) 

Substituting from equations (9.1), (9.27) in equation (2.32) 

we get 

ev = xe efy2 (nt) (l+s2)f pee (Omah) 

where we have used equation (9.2). 

Also since x = sy 

dx?4dy2 = (lis?) dy? + 2sydsdy+y2ds? 

sae (9.355) 

Substituting from equations (9.1) and (9.27) in equation 

(2.4) gives
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A = y°Se* (Ka 52 y4—B2) wes (9:36) 

Final form of the metric when a = —lin? 

Substituting from equations (9.27), (9.33), (9.35) 

and (9.36) in (2.1) we get 

do? = weeds) yo (ned) £(1+s2) { (1+s®) dy?+2sydsdy+y?ds?} 

+ yoMen* (s2K2 y4-B2) ag? +2Bdgat-fy Tat? 

soe (9-57) 

where we have put x9 = ¢, x* = t. 

Whe re 

=1 
B =9n5 { sa (h?-g2) -2nhg(1+s?) } (3? g?+h?) 

vale (9258) 

f= (s8 ge she) “texp{~2a/ sg? (54 g@-+n#) tas} 

aon (Cbs) 

and 

=e Sis PB (52 g2 +h?) vee (9.10) 

Since the generating differential equation for this metric 

is the same as that of Chapter 5, we can use the resultsof 

that Chapter to express G, B andfinterms of s and y, e.g. 

when n = 1G is given by equation (5.59). Substituting from 

equations (5.9) and (5.50) in equations (9.38), (9.39) and
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(9.40) gives 

tee a(s?p2-q3(s*p2+q2) ~~ ee (9.41) 

when a is a constant. 

Q " 2pq(1+s?) (p2s?-q2)* sen (9.h2) 

B = -s?pay?K(1+s?) (s*p2402) 7” 

When n= 2, the results are rather complicated e.g. f involves 

the integral 

[owe (or ee ane) “as : 

f v(p2v3 - 3q2v - 2q9) Pav 
2 2 

= 2 | p?v2 (p2 v9 -3q2v-2q?) © +g? (2p2 v9 +3p2v2 +g?) 

where s® = v, and we are unable to evaluate this integral.



CHAPTER TEN 

A CONDITION THAT THE METRIC (2.1) 

SHALL NOT BE OF THE SPECIAL RELATIVITY TYPE 

IN_SOME COORDINATE SYSTEM



= 100F—= 

CHAPTER TEN 

A CONDITION THAT THE METRIC (2.1) 
  

SHALL NOT BE OF THE SPECIAL RELATIVITY TYPE 

IN_ SOME COORDINATE SYSTEM 

If the mtric (2.1) is that of special relativity in 

some coordinate system, it is necessary that all of the 

components of the Riemann-Christoffel Curvature Tensor Ri je 

vanish identically. 

Thus if one of these is not zero for the metric (Gay 5 

then it is not special relativity in any coordinate system. 

If we calculate R,2,>5, using the results of Chapter 2 

we get 

Rioie -e yey tle LOCH) 

where 

= a2 ge 2.=-— _ 

V" = Oxtoxt * 9x2dx? 

Thus from (10.1) Rygig 4 O if 

V2y 4 0 mre (LOee) 

The result (10.1) is also obvious from the metric (2.1), 

which if we allow x* and x? to be complex, and introducing the
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complex conjugate variables z and & definea by 

Z= xtpix? , GZ = xt-ixe 

the metric (2.1) becomes 

ds? = eVazaz + ete. Pape (10.3) 

Making the coordinate transformation 

2=f(w), Z = £(w) 

where f(w) is analytic and F(w) the conjugate analytic 

funetion (10.3) becomes we 

2y(w wi) ae a dwdw + ete. Waa 
dw 

ds? =e 

Jest 1O. 11) 

If the metric (10.4) is special relativity in the 
w-frame we shall require 

eV) 9, F, = constant 

As 2u(w,w) = - énf'-énF’ + constant 

. =O 5 
awow 

2 aS =i = 6 
anda
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or 

v2y = 0 

which is the same as equating R,2,. to zero. 

If we calculate V?y for each of: the metrics of 

Chapters 5,7,8 and 9 we see that V?y 40. Hence, none 

of them is trivial.
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CHAPTER ELEVEN 

CONCLUSION 

The results of Chapter 4 show, just as with the other 

equations of Mathematical Physics, nett is possible even 

in General Relativity, to have everything depending on the 

solution of just one ordinary differential equation. The 

danger here is that an equation like equation (4. 1) is not 

generally coordinate invariant, and so we run the risk of not 

being able to tell whether or not two different solutions 

will not after all give rise to the same metric, by making 

suitable coordinate transforma tions. 

The ordinary differential equation of Chapter 5 

seems to indicate that certain non-linear differen tial 

equations may have eigenfunction solutions of a particular 

(in this case rational) form when a parameter assumes 

certain eigenvalues. From a purely mathematical point of 

view this is a very interesting possibility. However, 

further research will be required to decide whether this is 

‘true or not. The present theory of non-linear differential 

equations is mainly concerned with equations which possess 

non-movable singularities in their solutions. We, however, 

are interested in equations which have movable singularities, 

in fact movable poles. 

The results of Chapters 5, 6 and 7 show that the 

very complicated metrics of Kerr and Tomimatsu-Sato have
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a common origin. In our view the methods we have used 

give the simplest and most natural way of generalizing the 

metrics of Schwarzschild and Weyl. 

Although we have concerned ourselves only with vacuum 

pointiena: it is clear from the work of Ermst, that all the 

solutions obtained can be generalized to include certain 

types of source free electromagnetic fields as well. In 

this generalization our generating differential equations 

are unaltered and so we can say, for example, that equations 

(5.20), (6.12) and (7.10) generate the metrics for a 

charged rotating body according as m2 > a2 + e2, m? < a? + e? 

or m2? = a2 + e2 where e is the total charge.
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