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SYNOPSIS 
The work described in this thesis is concerned with the ultimate load 

behaviour of beam and slab floor systems, using steel beams and reinforced 

concrete slabs, Three main areas cf study have been attempted within this 

general heading. 

Firstly, upper-bound plastic solutions were developed for floor 

systems, involving either non-composite design or composite design, These 

solutions were then used to design model beam and slab floor systems to 

fail by a pre-chosen mode, The agreement with experimental results con- 

firmed the validity of the theoretical methods for both composite and non- 

composite design, 

Subsequently, five different sets of assumption on degree of composite 

action were taken, These were shown theoretically to give very significant 

differences in structural and economic efficiency, An experimental program 

was then used to establish which of the five sets of theoretical assumptions 

on degree of somusk ie action gave the best agreement with the results of 

the experiments, 

Finally, a theoretical investigation was made of the advantage to be 

gained by including the composite floor system, rather than just the steel 

beams, when designing a multi-storey steel frame, The inclusion of the 

floor system was found to be particularly significant as the stiffness of 

the beam or floor system plays a significant part in the stability criteria 

for a multi-storey building,
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O HAP al nek et 

INTRODUCTION 

The impetus for the development of the multi-storey building frame 

came after the disastrous fire in Chicago in 1871, where the majority 

of the buildings were of wooden construction, During the rebuilding 

of Chicago, site values rose considerably, leading to a desire for 

taller and taller buildings, The traditional construction method of 

load bearing brickwork was exploited to its limit, leading to fourteen 

storey buildings with external walls up to nine feet thick, Eventually 

the gain in floor area arising from additional storeys was almost off- 

set by the floor area lost in thickening the walls of the lower 

storeys. In addition, the weight of such buildings was beginning to 

pose serious foundation problems, fThese difficulties led to the 

investigation of methods of supporting tall building loads by using 

framed structures rather than load bearing masonry. By 1885 the 

first iron frame building was completed in Chicago, in which the frame 

carried all the loads and the walls were reduced to panel infilling 

between the frames, By the 1890's buildings of this type, by using 

steel rather than iron for the frames, were common in Chicago. Now- 

adays, multi-storey building Patios are commonly used all over the 

world, 

1.1 AIMS OF THE PRESENT WORK 
  

During the last 100 years, therefore, there have been many ideas 

and methods of design suggested, discussed, modified, improved, and 

finally accepted or rejected, The main requisite is simplicity and 

rapidity of design of multi-storey buildings, as well as producing an 

economical and structurally efficient design.



The work presented in this thesis consists of the development of 

a method of structural design suitable for multi-storey buildings, 

originally proposed by Steel ‘t), where composite action is present in 

a continuous beam and slab floor system . The slab is connected to 

the I beam by mechanical shear connectors fastened to the I beam and 

embedded in the slab floor, The proposed plastic design mthod 

produces a more economical and structurally efficient design, as for 

simplicity and rapidity of design the use of design charts or the 

computer make the proposed method satisfy these criteria. 

The prime aim of this work is to extend, corroborate and support 

the proposed design method by an experimental study of collapse loads 

and deflections of composite beam and slab floor systems, representing 

bays of multi-storey buildings with various boumlary conditions. . The 

load applied to the beam and slab floor systems is considered uniformly 

distributed and is represented by a system of interconnected hydraulic 

jacks, 

Designs were prepared by the proposed plastic methol for various 

assumptions on degree of composite action, These designs were 

compared with each other and with the plastic collapse approach 

with no composite action, from the point of view of weight saving and 

deflection, All these comparisons were made on a series of design 

examples of beam and slab floor systems of multi-storey buildings. 

In these examples, different cube strengths and slab thicknesses were 

used to investigate their effect on weight saving and deflection in 

composite and non-composite construction, A computer program was 

written to carry out the considerable amount of computation required 

for these comparative design studies,



1.2 PROPOSED DESIGN METHOD 

For a continuous beam and slab floor system, using an upper- 

bound solution for predicting collapse load proved by Prager ‘*), the 

proposed design method used here takes into consideration three basic 

modes of failure, 

(1) Secondary beam and slab failure (Mode A), 

(2) Main "edge" beam and slab failure (Mode B), 

(3) Slab alone failure (Mode C or D), 

In deriving equations for the collapse loads of the three 

mechanisms given above, the kinematic or work equation was used 

making one or other of the assumptions given below regarding the 

degree of composite action:- 

(1) Type(1)- ignoring composite action altogether. 

(2) Considering composite action at the centres of 

main and secondary beams (i.e. regions of sagging 

bending moments) and ignoring composite action at 

the supports (i.e. regions of hogging bending moments) . 

In calculating the value of composite sagging moments 

the two following variations were also consi dered:- 

(a) Type ()- when calculating the plastic composite 

moments at the centres of main and secondary 

beams M and My the effect of slab reinforcement 

is ignored, 

(b) Type (3) - when calculating M, and M> the effect of 

slab reinforcement is taken into consideration, 

(3) Considering composite action at the centre and the 

supports of main and secondary beams, (i.e. regions 

of both sagging and hogging bending), again this was 

divided into two possible variations:-



(a) Type) - ignoring the effect of slab reinforcement 

when calculating M, and Mie 

(b) Type (5) - taking the effect of slab reinforcement 

into consideration when calculating M, and Mie 

The various assumptions regarding the degree of composite action 

of the proposed design method were investigated by an experimental 

study of collapse load and deflection of composite beam and slab 

floor models for the different failure mechanisms, It proved 

possible to use a system of interconnected hydraulic jacks to represent 

uniformly distributed loading on the models, 

A computer program was developed in Atlas Autocode for the Atlas 

Computer to design single and multi-bay beam and slab floor systems 

of multi-storey buildings, The computer program was so written that 

structural sections were chosen to give collapse loads by the three 

basic mechanisms which were identical, In this way, the most 

economical design was obtained, With regard to the above assumptions 

on the degree of composite action the validity of these was investi- 

gated in the experimental program, and their relevant significance 

in design economy was studied in the design examples carried out by 

computer, 

For given data supplied to the computer such as the number of 

bays, whether or not the bays are of equal length, length of each 

bay, width of bay, live load, yield stresses of the beams and 

reinforcement, size of the reinforcing bars to be used in the slab 

and which of the assumptions regarding degree of composite action - 

is to be adopted, the computer program automatically designed the 

main and secondary beams and printed out their sizes, together with



© 

their composite and non-composite fully plastic moments, The 

ultimate slab moment M, was also caduitiated’ together with the 

amount of reinforcement per foot run required in each direction 

for each bay. Other useful information was also printed, such 

as the depth of plastic neutral axis at the centre and supports 

of the main and secondary beams, the total horizontal shear force 

between the concrete slab and the supporting beams, this helps in 

finding the number of shear connections required on each beam, 

Deflections of the designed main and secondary beams at working 

' load webs also printed for the alternative cases when each beam 

is considered fixed ended and simply supported, the true deflection, 

wait will depend on column stiffness, lies between these two limits, 

The weights of the main beams, secondary beams, slab reinforcement, 

concrete and of the whole beam and slab floor system were also 

calculated, These various quantities were determined for different 

values of cube strength and slab thickness, 

Comparison of theoretical, experimental and computer design 

results are made in a later chapter, 

1.5 LIMITATIONS OF SIMPLE PLASTIC DESIGN 
  

The simple plastic method cannot be safely applied to the design 

of tall multi-storey frames because of the limitations imposed by the 

assumptions on which the plastic theory is based, The plastic theory 

is based on several assumptions, but the following two are of 

particular importance here:- 

(a) the equilibrium equations can ee based on the 

undeformed structure, i.e. deflections are small;



(b) instability of an individual member or of the frame 

as a whole does not occur, 

Both these assumptions are quite valid when dealing with 

comparatively small structures. However, for multi-storey frame- 

works, neither of them may be assumed to be true, particularly if 

the members of the frame carry large axial forces or if the frame 

itself is subjected to heavy applied wind loading, 

Instability of the frame as a whole has been discussed by Wood (9) 

who showed the stability of a frame deteriorates cwing to the forma- 

tion of plastic hinges as the load goes on increasing. ESS: 

therefore, possible for a frame to become unstable, after the 

formation of a number of plastic hinges, before the complete 

plastic collapse mechanism is attained, 

A plastic design method originally proposed by Gandhi ‘*) takes 

due account of instability and sway deflection under wind load by 

introducing a correction factor to the simple plastic theory; this 

has been termed the "magnifaction factor", This factor is a function 

of the stability functions derived by Livesley and Chandlar(®), Euler 

ratio (Axial load/Euler load) and relative stiffness of the selected 

members, 

The design procedure of this method consists of two stages, in 

the first stage the beams and columns are designed and sections 

selected by simple plastic theory in a way similar to that suggested 

by Calladine‘*), In the second stage these selected sections are 

checked and increased if necessary to allow for instability and sway 

deflection effects by the introduction of the magnification factor 

to the simple plastic design equations,



Tabulated values of the magnification factor were given by 

Gandhi (*) to be used for-hand computation; later a computer program 

was developed by Clough‘’) to design frames of any number of storeys 

and bays automatically using the plastic design method proposed by 

Gandhi (*), 

The effect of composite action between slab floors and supporting 

beams on the plastic design method proposed by Gandhi ‘*) will be 

discussed in Chapter 8, 

1.4. BASIC ASSUMPTIONS 
  

In the plastic design method presented in this thesis, the basic 

hypotheses of plastic behaviour of the steel beams and slab reinforce- 

ment are as follows:- 

(1) The idealised stress-strain curve for steel as shown in 

Figure 1 is assumed to apply. 

(2) Strain hardening effects are neglected. 

(3) There is no resulting axial force on the total composite 

beam section, 

(4) Effects due to spread of the plastic zone are neglected, 

(5) The steel material is homogeneous and isotropic in both 

elastic and plastic regions, : 

(6) Plane transverse sections remain plane and normal to the 

longitudinal axis after bending, the effect of shear on 

the fully plastic moment of the section is neglected, 

The general theory of the composite design of beam and slab floor systems 

is developed in Chapters 5and6. The following chapter consists of 

an historical review of associated work in the fields of plastic 

design and composite actions of structures,
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HISTORICAL REVIEW OF RELATED WORK 
  

2.1 INTRODUCTION 

During the last three decades the plastic behaviour of structures 

has attracted the interest of design engineers and research workers, 

This may partly be due to the realisation of the irrationality of the 

elastic method, 

Prior to the development of the plastic theory in a form which was 

suitable for design purposes, all multi-storey frameworks were designed 

using modifications of the traditional elastic methods. Directly or 

indirectly, these frames were generally safe, but uneconomical and 

inefficient in their structural behaviour as shown later, 

In the late twenties in this country, the reinforced concrete con- 

Peer indus try was beginning to offer serious competition to the 

steel industry. In 1929 a joint venture between the industry and the 

Department of Scientific and Industrial Research set up the Steel 

Structures Research Committee to investigate the design methods of steel 

structures, and to draft a more efficient, economical and rational 

elastic design method, It was, in fact, realised by the members of 

the Steel Structures Research Committee as they passed a rivited steel 

framework of a cinema undergoing construction in Bristol at that time 

that the elastic methods of design were far from reality. 

Furthermore, with the use of reliable strain gauges on existing 

buildings, they found that the elastic behaviour of a structure such as 

’ the cinema frame was exceedingly complex and variable, These actual 

tests on existing structures showed that even with the lightest con- 

nections possible, the joints of a framed building resembled a rigid



framework much closer than a pin-jointed framework, Obviously the re- 

dundant nature of the frame, and the loading conditions of the 

stanchion lengths could not be ignored, After seven years work in 

1936 (8), the Committee published their final report which proposed a 

design procedure which utilized the additional stiffness contributed to 

the ends of a member by those members connected to it. This was in 

sontrast with the previous methods, from which a deliberately safe de- 

sign has been obtained by underestimating the stiffness of the con- 

nections, for example by designing the beams in a framework as pin- 

ended, The Committee produced two sets of design curves ‘®), one for a 

single curvature, and one for double curvature, but these proved to 

have serious limitations, Many people considered them extremely com- 

plicated to use, even though every simplifying assumption possible was 

made, and they did not take into account what effects wind loading 

would have on the design method, Baker and Williams ‘9) remedied the 

latter objection, but the Committee itself still considered this as 

far too complicated, 

Several years later steps were taken to improve the elastic method 

of design, Wood (*°) managed to produce charts giving a speedier and 

more economical design, Other improvementsin technique and speed of 

design using substitute frames were made by Lightfoot (+t) and Naylor (**), 

which helped to reduce the design office work considerably. 

The assumptions of the elastic method are far from reality, whilst 

the exact elastic methods are too complicated for routine use in the 

design office, The introduction of the electronic computer into civil 

engineering design has given new impulse to the elastic methods, but 

apart from all this the irrationality of the method still remains.



Cee IRRATIONALITY OF ELASTIC DESIGN METHODS 
  

One of the principle reasons for the development of the plastic 

theory was the realisation that most structures designed by elastic 

method are necessarily uneconomical. The basis of elastic design is 

that the stresses developed in any part of a structure under normal 

working loads shall not exceed certain allowable stresses, as laid down 

in the British Standard Specification Mo. 49 (4), 

Working loads represent the normal loads likely to arise in the 

everyday use of the structure, and the working eas are intended to 

provide an adequate safety margin to guard against unpredictable situ- 

ations such as poor materials and workmanship. 

The irrational nature of the elastic design method may be clearly 

demonstrated (**) by comparing the relative strengths of a simply sup- 

ported beam and an encastré beam when both are designed elastically. 

B.S. 449 allows a maximum stress at working loads of 10.5 tons per 

sq.in. for a material with a guaranteed yield stress of 16 tons per sq.in. 

16 
OS) 

1.52), before yielding could occur in the extreme fibres at the most 

It followed that the loads could be increased by a factor of   or 

critical cross-section in the structure. This is true for any struc- 

ture designed in this way. Elastic analysis does not take account of 

the effect in increase of loads and thus there is a safety factor of 

1.52) against the occurrence of yield, 

| Analysis due to further loading can be made by plastic theory as 

the structure will support additional load after yielding first occurs, 

This is due to the fact that the plastic modulus of a cross-section is 

greater than the corresponding elastic modulus. The ratio of the two 

is called the shape factor, and for an I-section is approximately equal 

to 1.15. Accordingly this implies that the fully plastic moment of the 

section is 1.15 times as great as the moment at which yield first occurs, 
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Therefore, for any elastically designed statically determinate structure 

the safety factor against the occurrence of a plastic collapse mechanism 

is 1.15 x 1.524, or 1.75 times the working loads, 

Thus, in the case of a simply supported beam carrying a uniformly 3 

distributed load, where only one plastic hinge is required to cause 

collapse, the load factor (i.e. the ratio of collapse load to working 

load) has the same value as the safety factor against a plastic hinge, 

both being equal to 1.75. 

However, is the case of an encastré beam more than one plastic 

hinge is required to produce collapse. As for the simply supported 

beam the first plastic hinges occur at 1.75 times the working loads at 

the ends of the beams. In this case, however, collapse does not occur 

until a third plastic hinge forms at the centre of the beam at 2.3) 

times the working loads, and yet both elastically designed beams have a 

safety factor of 1.524, The real strength of the two beams is there- 

fore different. Obviously for steel economy the section of the en- 

castré member could be reduced until its load factor against collapse 

was 1.75 and there can be no reason for providing the encastré beam with 

a greater margin of safety. 

Any framed structure which consists of a number of beams and co- 

lumns with different end conditions and applied loads will exhibit 

similar behaviour, The safety factor for every member of the frame is 

likely to be different, This is clearly undesirable since it implies 

that the majority of the members in the frame are stronger than they 

are required to be, 

To be more precise, this means that any member designed elasti- 

cally which.is not pinned at both ends is over-designed, This will be 

true for every single member in a rigid jointed frame. 3 

With the increasing competition from reinforced and pre-stressed 
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concrete, the steel designers must provide a simple, economical and 

rational design method, Quite clearly the rational and considerably 

more economical method of design for steel frames is to select the mem- 

bers in such a way that the complete framework has some definite load 

factor against collapse. In addition, it would be desirable for every 

single member to have a similar strength, although this is seldom pos- 

sible. This is the basis of plastic design, of which the proposed 

method in the subsequent chapters is a modified form, 

Plastic design methods have the additional advantage that the ana- 

lysis techniques involved are generally considerably less demanding 

than those required for an accurate elastic design, due to the fact 

that the framework under consideration has far fewer redundancies than 

the corresponding fully elastic structure. Neal‘t*) pointed out that 

the accuracy of the plastic methods is very little affected by the pre- 

sence of residual stresses due to welding and rolling of steel sections, 

flexibility of joints, i.e. joints assumed to be rigid are in fact 

flexible, the relative settlement of the supports of a structure and 

stress concentrations, whereas they should be considered when using the 

allowable stress approach of elastic design. 

2.5 DEVELOPMENT OF THE SIMPLE PLASTIC THEORY 
  

The principle reason for the introduction of mild steel in pre- 

ference to other structural materials such as cast iron was its marked 

ductility, It had been appreciated that stress concentrations in the 

regions of rivet and bolt holes and at sudden change of cross-sections 

could be easily absorbed with a material such as this without the oc- 

currence of local Pat hire due to brittle fracture, Nevertheless, this 

ductility, which is associated with behaviour outside the elastic range, 

was completely disregarded in the conventional elastic design of the 
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major structural components, 

The first published work on the plastic behaviour of steel appeared 

in Hungary in 1914, describing what has now come +o be known as the 

formation of plastic collapse mechanisms, In this paper (15) Kazincezy 

noted that if a load on an encastré beam was steadily increased "fai- 

lure" was found to occur when three independent cross-sections of the 

beam had yielded completely. Similar observations were made by 

Kist (46) in Holland in 1917. 

Following the publications of these two papers a German named 

Grunig (+7) published a small book in 1926, but the analysis leading to 

theories on the failure conditions of pin-jointed trusses were compli- 

cated and lacked experimental confirmation, | 

At the same time as the Steel Structures Research Committee was 

sitting, Maier-Leibnitz (48) investigated experimentally the loading of 

simple and continuous beams into the plastic range. In addition, he 

was the first to show that the collapse load of a continuous beam is 

unaffected by settlement of the supports, This one fact has remained a 

powerful argument in favour of ultimate load methods of analysis. It 

is well known by engineers that considerable difficulties are intro- 

duced in elastic analysis by differential movement of supports. Thus 

it was recognised in 1936 that many of the inherent difficulties en- 

countered in the elastic design of redundant structures would disappear 

if their behaviour in the plastic range was similar to that of continuous 

beams. Maier-Leibnitz was also largely responsible for the stimulation 

of interest in plastic methods in Britain, by the publication of his 

paper in Berlin in 193649), in which he summarized much of the rele- 

vant work in the previous ten years in Europe. Following that he was 

invited to a meeting with members of the Steel Structures Research 

Committee, who became increasingly critical of elastic design whilst 
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preparing their final report (®), 

In the past three decades, there have been many investigations into 

different aspects of plasticity in design, In America, the concepts of 

plastic theory were restated ‘*°,?1) in 1940 - the technique cf design 

using plastic methods, being there termed Limit Design, Baker (??) was 

the first to realise that plastic theory was the answer to finding a 

simple and rational method of designing complex frames, Plastic theory, 

however, was not immediately accepted and it was not until 1948 that a 

clause allowing the members of a frame to be proportioned so that the 

frame had some definite load factor against collapse was introduced 

into B.S, 449(*5), This was modified in the 1959 edition of B.S, 

449 43) as follows:- 

Clause 9b(iii) "fully rigid design", This method, as compared 

with the method for simple and semi-rigid design, will give the 

greatest rigidity and economy in weight of steel used when applied 

to appropriate cases, For this purpose, the design shall be 

carried out in accordance with accurate methods of elastic analysis 

and to the limiting stresses permitted in this British Standard, 

Alternatively, it shall be based on the principles of plastic 

design so as to provide an adequate load factor, and with the 

deflections under working loads not in excess of the limits 

implied in this British Standard," 

This Clause does not consider a value of load factor (although in 

the 1948 (78) edition, it was specified as 2). However, in this country 

a load factor of 1.75 as shown earlier, is accepted as providing an 

adequate safety margin, Furthermore, as B.S. 49(43) permits an 

increase in elastic working stresses for increased stresses owing to 

wind forces, the load factor is reduced to 1.4. for such cases, 

Various approaches have helped to establish plastic design as a 

better alternative than elastic methods, lay. 1 9504s che fasrst 
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comprehensive definition of the general principles of simple plastic 

behaviour, later to be known as the kinematical, statical and uniqueness 

theorems, was given by Horne (**), this paper preceding a similar publica- 

tion in America by Greenberg and Prager (#5), Subs equently, the most 

important developments came from firstly Neal and Symonds (#6 #7 28), who 

extended the basic philosophy of simple plastic theory in producing 

several rapid methods of analysis, in particular the method of "combina- 

tion of elementary mechanisms", oe secondly from Horne (#9), who devised 

the "plastic moment distribution" technique. In 1956, all these 

suggestions were correlated by the publication of the second volume of 

"The Steel Skeleton" (8°), which deals exclusively with the plastic 

behaviour of steel structures, 

Many satisfactory structures have been designed on the simple 

plastic method, but in the case of multi-storey buildings, it has not 

always been possible to satisfy the deflection and instability comlitions, 

2.4 THE INSTABILITY PROBLEM 
  

A real understanding of the instability problem was delayed, since 

any tendency towards reduction in stiffness in complete structures owing 

to axial loads was disguised by the nature of the commonly used design 

methods, The majority of frameworks were restrained against sway and 

were therefore less susceptible to instability failure and the fact 

that the majority of structures had a large reserve of strength, owing 

to the lack of economy in their design by traditional elastic methods, 

The dangers of buckling and instability of individual members were 

appreciated long before the concept of overall frame instability was 

recognised, and several recommendations already existed in the codes 

of practice to counteract failure to individual menbers, A stanchion 

length will have a reduced load carrying capacity whenever a hinge is 

formed within its length, The instability problem of a member is 
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related to the reduction of its carrying capacity, owing to the deforma- 

tion within its length, . Heyman‘%*) pointed out that a column designed 

to take both a large axial force and a wind load will be of such a heavy 

section that its slenderness ratio for usual storey heights will be 

small, and hence the likelihood of theinstability of an individual member 

is remote, There are, therefore, only a few exceptions to be catered 

for when unusually long columns have been used for some reason or perhaps 

in the uppermost storeys of a tall building, 

Overall frame instability is a far more complex problem than that 

of individual member instability, since it becomes necessary to consider 

the interaction of every single member in the structure. Most of the 

work designed to obviate this type of failure has been carried out in 

the past fifteen years, 

Merchant (3) gave a detailed account of the instability problem in 

both the.elastic and plastic(83) range, This, together with the work 

developed by Livesley and Chandler ‘®), who have developed a wide range 

of readily applicable stability functions, helped towards a clearer 

understanding of the instability problem, 

The first detailed account of the complete frame instability 

problem was given by Merchant ($*) in 1954. As an approximate method 

for the evaluation of the elastic-plastic failure load, he suggested a 

relationship based on the Rankine formula, as applied to struts, This 

relationship is known as the "Merchant-Rankine formula", This formula, 

which is an emperical relationship between the real failure load, the 

elastic critical load, and the (rigid) plastic collapse load, was 

thought to check conservatively the plastically designed structure 

against stability. In the majority of cases, it did give a conservative 

estimate of the failure load, but its generality has been disproved by 

Low‘$5), who carried out a canprehensive series of tests on multi-storey - 

model frames at Cambridge in 1959, Wood(*), although supporting 
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Merchant's formula, indicated that the formation of plastic hinges would 

have a more profound effect than that assumed by Merchant (3#), 

The real significance of the elastic critical load was first demon- 

strated conclusively by Wood‘) in 1958. He showed that despite the 

Pact that the critical load may initially appear to be deceptively high, 

a serious deterioration in the overall stiffness of a frame may occur 

whenever a fully plastic hinge develops ina member, Using the 

hypothesis that a plastic hinge contributes no more stiffness to a 

structure than a real hinge, provided that rotation continues in the 

same direction as before, Wood suggested that a new reduced critical 

load may be obtained for the modified structure by effectively substitu- 

ting a real hinge for the plastic hinge. Furthermore, as successive 

plastic hinges form this "deteriorated critical load" becomes so low 

that failure may occur, owing to elastic-plastic instability well before 

the attainment of the rigid plastic collapse load factor, and with far 

fewer plastic hinges than are required for a complete collapse mechanism, 

Wood (3) demonstrated very clearly the danger of instability in 

plastic design, He showed, by taking practical illustrations, that a 

structure designed on the simple plastic method, neglecting the effect 

of instability, could fail at a much lower load than the plastic 

collapse load when instability is taken into consideration, This 

premature failure was sometimes applicable even to relatively simple 

structures, such as a single bay four storey frame, 

Heyman(**) suggested that the stiffening effect of cladding would 

generally be sufficient to eliminate the stability problem, although in 

the discussion on his paper (6), some doubt was expressed concerning the 

effectiveness of this safeguard. In fact, the method he proposes 

generally produces a conservative design, and this lack of economy 

contributes towards the safety of the frame, This method may however 

be criticised for its lack of direct consideration of instability, and 

6 te



in the discussion(*®) it was Calladine who suggested a possible procedure | 

for developing a rational design allowing for the instability effects. 

This was investigated further by Holmes and Gandhi(* 86), who proposed 

a design method for tall, rigidly-jointed steel building frames where 

suitable beam and column section sizes were selected, given the geometry, 

loading and required load factor, based on simple plastic theory with 

the introduction of a magnification factor to allow for instability 

eteects. An experimental research program designed to substantiate 

their work was later conducted by Clough’), who also developed a 

computer program for the Holmes and Gandhi method(* ®6) which was 

intended to reduce the quantity of repetitive work, This method was 

developed further by Holmes and Sinclair-Jones ($7 38) py introducing 

an improved and more accurate method of dealing with the boundary 

regions (i.e. upper storey, lower storey, and external bays) of a 

frame, and with the prediction of values of the magnification factors 

which greatly reduces the number of iterations or eliminates the need 

for iteration entirely, In addition, the limitations and advantages 

of this method were critically assessed by accurate elastic-plastic 

computer analysis (°9) of a series of design examples and by comparison 

with other design methods, 

The design methods that have been discussed so far all rely to some 

extent on the individual judgement of the engineer, and are based on a 

variety of assumptions and approximations, An alternative approach is 

that of automatic design by computer, The most sophisticated method 

available is that suggested by Majia and Anderson (89), This involves | 

the iterative use of a non-linear elastic-plastic analysis procedure 

which is based on the matrix displacement method, This method traces 

the actual load-deflection behaviour of a frame up to collapse. Over- 

all instability of the frame is taken into consideration as the effects 

of axial loads on stiffness are allowed by the introduction of stability 
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functions, while the loss of stiffness owing to the formation of plastic 

hinges is automatically recorded by successive alteration to the overall 

stiffness matrix as each hinge forms, The design method depends on 

first of all analysing the frame with an initially assumed set of 

sections, and then altering these sections which are either inadequate 

or oversafe, The frame is then re-analysed and the procedure is 

repeated until the method converges to a unique set of sections which 

economically satisfy the design criteria, Although the method does not 

pretend to provide the minimum weight solution, it undoubtably produces 

a very economical design and may be applied to large frameworks of 

extremely irregular shape, 

2.5 COMPOSITE ACTION 

There are many advantages to be obtained by sons tasedie a structure 

as a composite system rather then a series of individual components, 

Whenever any continuity exists between two components, thane is bound 

to be a certain degree of structural interaction, and the basic 

philosophy of composite design is that this interaction should be both 

recognised and allowed for during the design process, 

The most obvious way to produce a more economical design is to allow 

for composite action between the concrete floor slabs and the supporting 

steel beams, The intrinsic merit of this design is the rational 

disposition of the concrete slab and the steel beam materials in resp ect 

of their compressive and tensile strengths, Thus the steel beams are 

designed primarily as tension members of the framework, the slab acting 

a8 a compression member, It will be appreciated then that if such a 

method were devised of designing a steel framework, with the steel 

beams mainly in tension and concrete slab in compression, it would lead 

to a very economical design, 
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Although the concrete slab is usually connected to the I-beam through 

natural bond, such a connection is unreliable and may not provide compo- 

site action throughout the life of the structure, Thus, if the design 

calls for a composite structure, it is necessary to connect the slab to 

the I-beam by mechanical shear connections fastened to the I-beam and 

embedded in the slab. This comection transmits the shear between the 

I-beam and the slab and prevents the slab lifting away from the beam, 

The root of the shear connector transmits the horizontal shear, whilst 

the head is provided for holding down, Breakdown of shear connection 

can occur by failure of the shear connector or by crushing of the concrete 

or both.-~ Various types of shear connectors are recommended in C.P.117 

part 1(*°), these are illustrated in Figure 2.1. 

The shear connectors are usually connected to the I-beams by welding. 

Although welding shear connectors presents no technical difficulties, 

it is ordinarily time ditanutie and complicates fabrication of beams, 

It is desirable, therefore, to devise a shear connector which can be 

fastened rapidly to I-beams both in the shop and at the construction 

site. A rapid process known as electric are stud welding is available. 

The process may be accomplished in a few seconds with the aid of a stud 

welding gun, 

Figure 2.2 shows the stress depen for a concrete slab composite 

and non-composite with the steel beam, 

It will be appreciated immediately that the use of shear connectors 

increases the ultimate strength, and so for a design resulting in the 

same strength as a conventional design, a smaller beam size and slab 

thickness, can be used. Thus, aaasenige by composite methods produces 

an overall saving in steel, a reduction in the dead load, hence saving 

in foundations design, coupled with a reduction in storey height, making 

it possible on extra storeys for the same heights, 
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Investigations of composite beams were carried out as early as 1922, 

The Dominion Bridge Company of Canada at that time conducted tests on 

two floor panels, each consisting of two steel I-beams encased in 

concrete and a concrete slab, In reporting the results of the test, ~ 

Viest (#4) quoted: 

"While such beams have hitherto been designed on the assumption 

that the entire load ..... is carried by the steel, it was 

thought that the steel and concrete might really act together 

so as to form a composite beam....." 

Viest (41) reviewed much of the relevant research work carried out 

on composite steel - concrete beams in the period 1920 ~ 1958, He also 

carried out tests ‘*#) to determine the behaviour and load carrying 

capacity of stud shear connectors, 

Chapman (*% #4*) in 1964 carried out a series of tests on composite- 

beams and shear connectors, He suggested that, in view of the rela- 

tively large shape factor of the composite sections, ultimate load 

design is particularly advantageous, Chapman‘*®) suggested that shear 

connectors should be designed on an ultimate load basis, irrespective 

of the method used for designing the composite section, He recommended 

that 80 per cent of the experimentally determined ultimate capacity of 

the shear connectors should be used when shear connections are designed 

to carry the horizontal shear force existing in the beam at ultimate 

load, In the case of uniformly loaded beams, he considered uniformly 

Spacing of shear connectors is satisfactory, from experiments at Lehigh 

University and Imperial College, as composite beams behaved as well as 

beams with shear connectors spaced triangularly. Chapman (#3) emphasised 

the importance of adopting a standard testing procedure for shear 

connectors, All these recommendations were taken into consideration 

when the code of practice C.P,117 part 1 (#1) came into existence in 1965, 
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Davies ‘*5) carried out a series of tests up to collapse using a 

centre point loading on simply supported steel-concrete composite T- 

beams, Using welded studs as the means of shear connection, he 

examined the effect of varying the connection spacing and the amount 

of transverse reinforcement upon the general behaviour of the beams, 

Bernard and Johnson ‘*®) tested simply supported beams to predict 

the ultimate moment of resistance and curvature of cross-sections of 

composite steel-concrete beams, Bernard and Johnson (*7) then carried 

out tests on plastic behaviour of continuous composite beams. They 

concluded that the use cf simple plastic theory is justified for the 

design of most types of continuous beams, provided that secondary 

failure can be prevented, In their design of the shear connections, 

the stud spacing was determined by an extension of the method used for 

‘simply supported beams ‘*®), The total horizontal shear force tobe _ 

transmitted at collapse between adjacent sections of maximum positive 

and negative moments was divided by the capacity of one connector to 

give the enibar of studs required between the two sections, The studs 

were spaced uniformly, One of the objects of their tests ‘*7) was to 

check this method which leads to a more unifora spacing of the studs, 

than that based on forces between sections of maximum moments and 

adjacent points of contraflexure, At the end, they concluded that 

because of lack of sufficient experimental evidence, it was not possible 

to present comprehensive recommendations for the design of continuous 

composite beams by ultimate strength method, Johnson, Greenwood, am 

van Dalen (*®) carried out a series of push out tests on studs set in 

reinforced concrete slabs in tension, This followed by recommending 

the use of welded stud shear connectors in hogging moment regions of 

continuous composite beams, The design load per stud was taken as 

60 per cent of the design value specified in C.P.117 part 1(49); that 

is, as 6) per cent of the ultimate capacity as found in the standard 

= Oot.



push out test. The number of shear connectors required spaced uniformly 

between the hogging moment hinge and the point of sohtrattedick. i.e. 

spacing is not uniform across the length of the beam as suggested by 

Chapman (*$) and Bernard and Johnson (#7), 

. Harrop ‘*9) carried out full scale tests at Leeds University ona 

building at all stages of its erection and found considerable increase 

in its strength, owing to composite action, 

Thomas and Short (°°) tested three one-third scale model beams and 

slab bridge-decks, two including composite action and one without, They 

found a considerable increase in the strength of the effective beam- 

section, The stiffness of the system increased, owing to the higher 

moment of inertia of the composite cross-section, and resulted in 

smaller deflections at working loads, 

Johnson, Finlinson and Heyman(5*) made an interesting comparison 

of plastic and plastic composite methods of design, and with other older 

design methods in weight and cost saving on a single bay framed building 

at Cambridge University, Plastic composite design showed a clear 

advantage over the otner methods, for example, 29 per cent saving in 

weight and 15 per cent in cost over the traditional elastic non-composite 

method; 15.5 per cent saving in weight and 7.5 per cent in cost over 

the elastic composite method, and 13 per cent saving in weight and 7 

per cent in cost over the plastic non-composite method, 

Composite action in columns is also significant and is related to 

the need for concrete casing for the columns of a frame in order to 

satisfy the fire-proofing requirements (+9), If composite action is 

taken into consideration in columns, then the concrete casing would be 

assumed to carry a proportion of the total axial load in the member, 

thus relieving the steel section of a certain amount of direct stress, 
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This is especially the case in the lower regions of a frame, where 

selection of suitable columns is largely controlled by the axial load 

“in the member, considerably lighter universal columns would be found 

to be adequate, 

The description of a modern building designed by composite action 

is given by Cain‘5*), He described the Royal Bank of Canada Building 

in Montreal, where the use of shear connectors resulted in a 3 per cent 

reduction in the weight of steel over conventional design, together with 

a 50 per cent saving in cost. The saving of 63 inches per 135 feet 

‘high storey (slab to slab), caused a reduction of 4.2 per cent in the 

overall height of the building, with associated reductions in the cost 

of the columns, curtain wall, heating and cooling, 

2.6 PLASTIC COLLAPSE OF SLABS AND CONTINUOUS STRUCTURES 

Some of the earliest work on plastic theory applied to slabs was 

carried out by Ingenslev (53), ae published a paper on the strength of 

rectangular slabs in 1923, By studying some earlier tests on slabs, 

he noticed that the yielding started along the centre line and then 

spread into the corners, dividing the slab into four sections, 

Assuming that the bending moments along these lines to be maximum and 

constant, hence with zero shear force, then since the slab is in 

equilibrium, the external forces would be equated to the internal 

forces of the bending moment, Thus, he could calculate the collapse 

load and showed good agreement with the tests, By introducing a 

negative bending moment along the edges, expressions were evaluated for 

fixed or encastré slabs, Following this pioneer work of Ingenslev, 

Johannson (5*) extended the work to cover much more general cases of 

different shaped slabs, and corner effects, together with different 

yield line patterns, <A review of the work carried out by Ingenslev and 
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Johannson was published by Hognestad (55) in 1953, Mansfielda(5é) 

considered a slab with different positive and negative bending moments 

and extended the yield line theory to fit this case, The effective 

width of slabs supporting a concentrated load was studied by Ashdown (57) 

iho also studied the yield line theory applied to circular and triangular 

slabs, 

' An example of a floor designed by yield line theory is given by 

Smyth (58), who describes a warehouse floor supported by columns in a 

hexagonal pattern, To analyse this elastically as a system of beams 

with a slab on top would prove very complicated and in this paper the 

piastic analysis giving a slab of uniform depth proves the simpler 

solution, Wood(59) carried out tests to destruction at the Building 

Research Station on square, simply supported amd discontinuous reinforced 

concrete slabs supported on beams of various sizes, for aeibite modes 

of coliapse, - His work (59) on upper-bound theory will be discussed in 

the next chapter, 

On plastic collapse of continuous structures, Ockleston (®°) in 155 

carried out a series of tests to destruction on a Sen years old-rein- 

forced concrete Dental School due for demolition, He found that the 

plastic theories gave a reasonably satisfactory estimate of ultimate 

loads, where failure was due to bending in one direction, but under- 

estimated the collapse loads of lightly reinforced slabs which failed 

as a result of bending in two directions by 61 per cent. At that time 

he agreed that this large discrepancy cannot be accounted for by strain 

hardening of the reinforcement or tensile membrane action as the deflec- 

tions were small, In the case where deflections become large 

appreciable stretching of the middle surface will occur and tensile 

membrane stresses will by Catenary action‘6+ 6*) increase the carrying 

capacity of the slab, In his conclusion, Ockleston(®°) did not account 
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satisfactorily for the unexpected strength exhibited by the slab and 

mentioned that the tensile strength of the concrete which was not 

accounted for might have influenced this discrepancy, 

In 1958, Ockleston(®3) came with a rational explanation of the 

behaviour of the two-way slabs at failure, Throughout the testing, 

the deflections remained small, and he attributed the unexpected 

strength exhibited by the slab to arching action owing to the development 

of compressive membrane stresses, Arching action is most likely in 

lightly reinforced slabs in which cracking will cause large movements 

of the neutral axis, and can occur only if the deflections are small, 

and horizontal spreading at the supports is restrained, This will 

greatly increase the carrying capacity of slabs. Roberts (®*) carried 

out a series of tests to find the effect of compress ive membrane action 

by investigating the load carrying capacity of slab strips restrained 

against longitudinal expansion, He found that the ratio of the maximum 

load supported to that given by Johannson's yield line theory (based on 

failure by bending only) is as high as 17 for slabs with high concrete 

strength and a low percentage of reinforcement, to 3 for slabs with a 

low concrete strength and a high percentage of reinforcement, The 

restraint provided being not less than 83 per cent of that given by 

an infinitely stiff surround, 

The presence of compressive membrane action will be investigated 

in the experimental tests presented in this thesis, 

Steel (4) carried out tests on two and three bay one-storey frame 

models, with composite floor slabs, The tests to destruction were 

carried out using point loading by hydraulic jacks through mild steel 

plates at the centre of each bay for the main modes of collapse of beam 

and slab floor systems, The tests showed a good agreement between 

experimental and theoretical. results, 
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2./ USE OF COMPUTERS 

The idea of a calculating machine which would automatically follow 

a pre-arranged sequence of instructions is not a new one, The "Analy- 

tical Engine" which Babbage (©*) conceived in 1833 contained most of the 

logical features to be found in modern computers, but he was ignored by 

most of his contemporaries and his machine was never built. It was not 

until more than 100 years later that developments in mechanical and 

electrical engineering stimulated the translation of his ideas into 

reality. 

The first working computer (in the sense in which the term computer 

is used here) was put into service at Harvard in 1942, and the first 

computer to be built in this country was at Cambridge in 1949. 

At first most of the problems solved on computers came from the 

fields of mathematical and scientific research, but gradually it came 

to be realised that many problems of engineering analysis and design 

could be solved profitably on the new machine, 

The computer is obviously invaluable in structural research and much 

use of it then has been made at Cambridge in the work of stanchion 

behaviour amd other development of the plastic theory, In the last 

fifteen years there has been a rapid development in the design, adapt - 

ability and use of computers. 

In the application of computers to problems of structural analysis, 

Livesley ‘®®) in 1956 commented: 

"Within the last few years, however, the advent of the electronic 

digital computer has made possible a completely new approach 

to calculations, By carrying out standard mathematical pro- 

cesses automatically, the electronic computer not only cuts 

down the time required for a given calculation, but also 

provides new criteria for comparing the merits of alternative 
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processes," He then added: "It must be emphasised that any 

computer Sad only give answers to numerical problems, It can 

not consider the accuracy of the data supplied to it, nor the 

validity of the assumptions made during the calculations, To 

the structural engineer the value of a computer analysis lies 

in its speed and its accuracy relative to the initial data, but 

this mathematical accuracy does not remove the basic uncertain- 

ties of structural work, such as the value of loads, foundation 

restraints, and joint rigidities." 

In the relation of man-machine interaction, Livesley(®5) in 1960 

commented: 

"Using a standard program for his analytical work, a designer 

can rapidly see the effects of small changes in design con- | 

stants, and relations between human and machine makes the most 

of efficient use of natural abilities of both, The human 

being has a vastly greater memory than any existing machine, 

together with the ability to make judgements based on intuition 

and previous experience, These are valuzble qualities in 

design work, A computer, cn the other hand, is far better 

at the numerical caiculations which occur in analysis," 

The computer must not be underestimated, and the real problem for 

the designer is to know what kind of relationship must he and his design 

have with the computer, A computer nowadays may do in a minute what 

would take a human being months, 

With 

and hence 

essential 

adequate planning ard programming techniques, greater speed 

economy of design can be obtained without any loss of the 

judgement of the designer, 
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INTRODUCTION TO UPPER-BOUND SOLUTIONS 

3.1 INTRODUCTION 

There are two methods of predicting the plastic collapse load of a 

structure. These are termed "upper-bound" and "lower-bound" (&7) solu 

tions; each corresponds to a theorem of plastic behaviour which is 

described in the early part of the chapter. This is followed by a 

comparison of the "two" solutions in relation to non-composite and 

composite structures, and a justification of the use of upper-bound 

solutions only in this thesis, In the latter part of the chapter an 

introduction to upper-bound collapse solutions as the basis for the 

proposed method which is to be developed in the following chapters is 

made, 

Sela PUASLIC THEORY 

The plastic theory is based on the idealised stress-strain curve 

(Figure 1.1) mentioned in Chapter 1, Mibatned from a tension test on 

annealed mild steel, although the theory is also applicable to high 

tensile steel, In Figure 3.1, the proportion OA of the curve corresponds 

to the elastic range, A being the upper yield point which is neglected for 

an idealised stress-strain relationship, Further straining after this 

point has been reached results in a drop in stress to the lower yield 

point B, At this point the material has become fully plastic and there 

is no increase in stress between B and C owing to further straining, 

After C, strain hardening commences which is ignored in the basic assump- 

tions of the proposed design method, The plastic theory assumes that 

between B and C strain can continue without any further increase in the 

stress, i.e. the steel has reached its yield stress and can flow plasti- 

cally, 

- 29 -



  

  

A 

stress 
ame 

B c 

Strain 

Fig. 3.1. Stress ve strain for mild steel. 

Stress 

(i) 

a b ic oJ 

Idealised stress strain curve 

arb Sa 

  

        

% Strain 

    (ii) 

  

    

Mp 

Git)   

Ful ly plashic moment 

Plaskic hinge 

fw fi f fy 
  

    

(vy) 

            
(a) (b) =) (d) 

Stress = distribution 

Fig. 3.2. Idealised plastic relationship.



Consequently, for thé plastic theory to Bor achhsa to reinforced 

concrete, 10 is necessary for the yield point to remain constant and 

for the yield stress to be sustained during considerable increase in 

the strain, This later fact is particularly important in all but the 

simplest structure, In complex structures, the first yield may take 

place long before the structure has deflected enough to cause further 

yielding at other points and, hence, collapse. Thus, an under-reinforced 

section would conform to the plastic theory better than an over-reinforced 

section, since introduction of more reinforcement increases the area of 

concrete in compression, and causes crushing which is rather a sudden 

failure lacking ductility. On the other hand, an under-reinforced 

section will fail in tension, the steel reinforcement following the 

stress-strain pattern required for this theory. 

Figure 3.2 shows the change in the stress distribution for a simple 

rectangular beam under an increased load, 

The first distribution (a) is the working stress across the section, 

tT being the working stress at the outer fibres, increase of the load 

results in the maximum stress (in the outer fibres) increasing to the 

yield stress as shown in (b). Any further increase in load now causes 

yield to spread towards the centre and also along the beam as shown in 

Figure 3.2 (41), until eventually the beam can sustain no more load, 

owing to the whole section being at the yield stress (d). Any further 

attempt to increase the load will just cause increased deflection, the 

beam acting as though it were "hinged" at that point. A plastic hinge 

is said to have formed, and the bending moment at that point is referred 

to as the fully plastic moment, The formation of a plastic hinge owing 

to bending can be visually illustrated by coating steel specimens with a 

brittle resin, The properties of this resin are such that it cracks at 

locations where yielding of the steel has occurred, Plate 1 shows the 

formation of a plastic hinge at the centre of a beam, owing to pure bending. 

A plastic hinge is similar to a real frictionless hinge in the sense 
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that both undergo continuous rotations when a structure is subjected to 

additional loading, While the plastic hinge is capable of withstanding a 

constant bending moment equal to the fully plastic hinge moment of the sec- 

ich a real hinge cannot withstand any moment, In reinforced concrete slabs, 

these hinges can form along a line of maximum moment, when they are called 

fracture lines, These hinges can form in any sequence, but the structure will 

not collapse until the required number for a "mechanism" is present, 

360 _THROREMS OF PLASTIC COLLAPSE 

These theorems are based on the assumption that the members of a frame 

follow the stress-strain curve in Figure 1.1 when loaded and that the equa- 

tions of statics apply equally to the deflected frame, Hence, instability 

and buckling effects are ignored, which are basic assumptions of the simple 

plastic theory, 

The first theorem to be stated is based on consideration of the require- 

ments of statical equilibrium for a structure, Hence the statical theorem 

which is based on bending moments in a frame at collapse may be stated thus:- 

"If a distribution of bending moments exists in a frame which 

satisfies statical equilibrium with the external loads, and the 

moment nowhere exceeds the fully plastic moment, then the value 

of the applied loads is safe and less than or equal to the 

collapse load," 

It is theoretically possible to have a bending moment distribution induced 

by external loads, which exceeds the fully plastic moment at some point, 

thus violating the defined conditions of the problem, 

Because the set of loads corresponding to the bending moment 

distribution is safe, i,e. less than the collapse load, it constitutes 

what is termed a "lower-bound" value of the load, This statical theorem 

was first suggested by Kist(*®) and its proof was supplied by Horne (?*) 
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and by Greenberg and Prager (#5), 

The second theorem is concerned with the collapse mechanism of the 

frame, If a mechanism is assumed, and the internal work dissipated 

equated to the external work done by the applied loads, the collapse 

load value obtained is the true collapse load only if the assumed 

mechanism corresponds to the true mechanism of collapse. Hence the 

kinematic theorem as stated by Neal (**) is:- 

"For a given frame subjected to a set of loads W, the value of 

W which is found to correspond to any assumed mechanism must 

be either greater than or equal to the collapse load Wie" 

Thus, the definition of an "upper-bound" solution is one where the 

value of the applied load is greater than or equal to the collapse load, 

Thus, such soltuions are "unsafe" in that the designer may assume a high 

value of the collapse load, This theorem was first established by 

Greenberg and Prager (#5), 

Finally, the uniqueness theorem remains which is a combination of 

the statical and kinematical theorems, Since the lower-bound solutions 

produces a value which is either less than or equal to the collapse load, and 

the upper-bound solution produces a value which is either greater than 

or equal to the collapse load, then it follows that when the two solutions 

give the same value for the collapse load, then this is the true value, 

Re-stating this in more general terms, Neal (**) stated the uniqueness 

theorem as:- 

"If for a given frame and loading at least one safe and 

statically admissible bending moment distribution can be found, 

and in this distribution the bending moment is equal to the 

fully plastic moment at enough cross-sections to cause failure 

cf the frame as a mechanism, owing to rotations of plastic 

hinges at these sections, the corresponding load will be equal 

to the collapse load Wee 
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This theorem was proved by Horne (##), 

34 UPPER AND LOWER BOUND SOLUTIONS TO NON-COMPOSITE 

AND COMPOSITE STRUCTURES 

Applying upper-bound solutions to determine the collapse load of 

non-composite structures implies that a definite mode of collapse has 

to be considered, Virtual work methods are applied to find the collapse 

load corresponding to the selected pattern of yield lines, <A lower- 

bound solution, on the other hand, does not require yield lines to forn, 

but lines of maximum principle moment ee plotted to give a completely 

different "mode" to the upper-bound collapse mode for independent collapse 

of the slab, 

bn dering composite action between supporting beams and slab floor 

systems, upper-bound solutions can easily be modified by changing the ~ 

slab moments along the centre line parallel to the main beams from 

(Mp + ML) to M. the composite moment of a beam and slab of width L,. 

However, lower-bound solutions represent a distribution of moment (or 

stresses) in a slab, immediately prior to collapse, and so the problem of 

choosing such a distribution becomes much greater when the yield criteria 

vary over the slab, 

In upper-bound solutions, a definite mode of collapse is chosen, 

automatically defining and satisfying the yield criteria. Hence composite 

achion. does not enter into independent collapse of the slab. A lower- 

bound solution on the other hand does not define a mode of collapse; 

hence the yield criteria must include composite action. Choosing a lower- ° 

bound solution requires that the bending moment function also must vary 

over the slab, 

The problem of using lower-bound solutions involving composite 

action, then, consists of finding satisfactory yield criteria, This 

depends on an "effective width" concept for the composite slab and beam, 
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The moment function is then chosen to satisfy this criterion together with 

the equilibrium and boundary conlitions, This proves to be very compli- 

cated, hence a lower-bound solution was not used for the composite beam 

and slab floor systems presented in this thesis, 

3.5 INTRODUCTION TO UPPER-BOUND COLLAPSE SOLUTIONS 
  

Applying upper-bound solutions to determine the collapse load of a 

structure implies an initial assumption of the mode of collapse. As. 

explained earlier, if an incorrect mode is chosen, then the resulting 

collapse load will be high, and in fact, the true collapse load is 

obtained only if the actual failing mode is equal to the assumed one, 

This corresponds to the kinematic theorem stated earlier, Thus upper- 

bound solutions are unsafe, unless a sufficiently high load factor is taken 

over this contingency, However, Wood (59) and Johansen (5*) have shown 

that a choice of fracture lines which depart somewhat fron the correct 

mode of failure may nevertheless give results which are only slightly in 

excess of the collapse load, This error will no doubt depend on the type 

of structure, and since tests have shown that the use of fracture line 

theory, correctly applied, is still slightly conservative, it is question- 

able how important will be the actual error in predicting the collapse 

load by this intuitive approach, Reductions in collapse load owing to 

a deviation from the true mode of collapse are counteractéd by membrane 

action and strain hardening of the steel. Because of the above factors, 

the upper-bound collapse solutions prove acceptable as a design method, 

and are therefore adopted as the basis for the proposed design method, 

In order to obtain an upper-bound solution for the collapse load by 

the kinematic theorem, it is necessary to have what Prager (#) calls a 

Kinematically Admissible Velocity Field, where three conditions must be 

satisfied:- 
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(1) The system must be a proper mechanism, 

(2) The condition of incompressibility must be satisfied, 

(3) The work done by external loads must equal the internal work 

dissipated, 

It is questionable whether the condition of incompressibility as 

normally understood has any meaning in the collapse mode of a reinforced 

concrete slab where large tension cracks develop, At all events, the 

second condition is ignored in fracture line theory, 

The external work done on a system is the sum of the products, total 

load on an element times the deflection at the centre of gravity of the 

load, The internal work done is equal to the sum of the pieddotss total 

moment times the relative rotation of the two elements, If the meoment 

along a yield line is not parallel to a side of the slab, the rcleaaudhd 

of this moment on to a rectangular co-ordinate axis times the rotation of 

this axis is taken as the internal work done, 

Wood (5®) acwidid this upper-bound theory to the collapse of simply 

supported, discontinuous square, reinforced concrete slabs with isotropic 

reinforcement, The slab was assumed to be resting on edge beams, with no 

composite action between the two. Later he extended the work to cover 

rectangular slabs and considered (®®) "fan" modes of collapse. The reduc- 

tion of collapse load for uniformly loaded slab owing to the formation of 

fan modes is not great, 

By applying the yield line theory stated above, Wood(®*%) showed that 

for independent slab collapse, Figure 3.3(a), the value of the collapse 

load, plL, for a load p per unit is as follows:- 

The internal work dissipated in the yield lines = 

My [ (projected length on 1st axis of rotation) (Angular rotation 

about 1st axis) + (projected length on 2nd axis of rotation) 

(Angular rotation about 2nd axis) ] 
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Poa 
= BY tae? 

The external work done by applied load for a maximum deflection of a 

unity at the centre = p [volume of two half-pyramids + central portion] 

Pp [3 % Aseete tand x £)-+ : x 1x (L - £ tang) x e] 

By equating the internal work dissipated in the yield lines to the external 

work done by the applied load, the collapse load is found to be:- 

pbb e2h: z° tan?¢ ou Sat 

Where tan ¢ = a (7)? +3- : for a minimum value of the collapse load, 

For failure of the slab and long beams Figure 3.3(b), the external 

work done is:- 

[(p.t.305) + (p.t.365)] =p “ for a unit deflection of the centre 

yield line, 

The internal work dissipated is (My .! + 2MB ) times the central 

hinge rotation ( Wee) 

Thus equating the external and internal work done, the collapse load 
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By similar method, the collapse load for the short beam failure, 

Figure 3.3(c) is given by:- 

pih = BM # ao 3.3 
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As failure occurs at the lowest value given by equations 3.1, 3.2 

Q 
and 3.3, they may be compared to give the critical "strength ratio" for 

change over from one mode to another, Thus comparing equations 3.1 and 

3.2, collapse will be by failure of the long beams if:- 

t Mp hoe 
: AL tote Specs oh eM ats tan*¢ 

se Mp Plastic moment of the long beams 
Defining Ys =:a 1/3 

oe Plastic moment of half short width of slab 

on substituting and re-arranging, 

eee = 1 | Yp t?tan-¢ 

; = p the ratio of the sides, then 

ee 
Ys, < p*tan*¢ 1 Diet 

This gives the critical "strength ratio" of the long beam to the 

slab for collapse to occur by failure of the long beams, and equation 

3.4 may be defined as the "boundary equation" between the two modes, 

Comparing the other modes of failure results in two further boundary 

equations being obtained, Comparing equations 3,1 and 3,3 for collapse 

by short beam failure, 

3 . ice Tae 1 3.5 

Where ‘ em = 5 for short beams, 
s 

Comparing equations 3.2 and 3.3 for collapse by long beam failure, 

LP 

Pot, 6 core AAs Y,) 

Ce ee or aed 
4 26 ( “x, 3 
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Wood(59) plotted these boundary equations to give the graph shown 

in Figure 3.4 such that the mode of failure could be determined for any 

given beam to slab strength ratio and hence, the collapse load calculated 

from the appropriate equation, 

This theory will be extended in the next chapter to deal with the 

general cases of multi-bay continuous and non-continuous beam and slab 

floor systems in multi-storey buildings where composite action between 

the floor slabs and the supporting beams is not present, 
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DETERMINATION OF COLLAPSE LOADS BY UPPER- 

BOUND SOLUTIONS OF CONTINUOUS BEAM AND 

SLAB FLOOR SYSTEMS WITH NO COMPOSITE ACTION 

4.1 INTRODUCTION 

The work presented in this chapter is concerned with determining the 

ei tanks loads of structures of type (1) mentioned in Chapter 1, and 

hence the determination of the sizes of the supporting beams and design 

of the slab floors, Five different types of beam am slab floor 

systems, where composite action is not present, are considered, namely:- 

(1) Beam and slab floor system continuous in four directions, 

i.e internal bay of multi-bay continuous frame, 

(2) Beam and slab floor system continuous in three directions, 

i.e. external bay of multi-bay continuous frame, 

(3) Beam and slab floor system continuous in two directions over 

the main beams, i.e. one bay continuous frame, 

(4.) Beam and slab floor system for test M,, where the slab is 

continuous in two directions over the secondary beams, 

(5) Beam and slab floor system for test Mg, where the slab is 

continuous in one direction over one secondary beam, 

Internal and external bays of multi-bay continuous beam and slab 

floor systems are shown in Figure 4.1. It is assumed that the frame 

extends over many bays, where repeating internal bays are continuous in 

four directions, and external bays are continuous in three directions, 

For the first three systems mentioned above, collapse loads corres- 

ponding to the three basic modes of collapse are found, Equations for 

the required fully plastic moments My and My of the secondary and main 

beams for collapse by modes A and B respectively are derived, Equations 

for the ultimate moment of the slab My. for independent slab collapse by 
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modes C or D are also derived. These equations are used in the computer 

program mee aaed in Chapter 1. The program designs such systems auto- 

matically, such that collapse would occur by any of the basic mechanisms 

at the same applied load, Collapse loads for systems } and 5 above are 

also found, 

Later in the chapter, comparisons are made of the modes of collapse 

om internal bay. Boundary equations between the various modes are 

derived and shown graphically, from which the collapse mode for any given 

p value (ratio of length of sides) may be determined, Such graphs are 

given as a design aid which may be used as an alternative to the computer 

for the more simple floor system design problem, 

4.2 BEAM AND SLAB FLOOR SYSTEM CONTINOUS IN FOUR DIRECTIONS 
  

This corresponds to an internal bay of a multi-bay continuous frame, 

A typical internal bay consisting of a concrete slab on top of and con- 

tinuous over four supporting beams as shown in Figure 4.2, The structure 

is considered under uniformly distributed loading, supported on columns 

at the four corners which have been designed to remain elastic up to the 

collapse load of the floor system, The beams spanning in the X-direction 

are referred to as main or edge beams, and the beams spanning in the Y- 

direction secondary beams. The fully plastic moments of the main and 

secondary beams are taken as Mg and Mp. The slab is isotropic with equal 

reinforcement top and bottom, thus the ultimate slab moment M, is the same 

in sagging and hogging in both directions as shown in Figure 4.2. 

It has been indicated in Chapter 1 that a continuous slab when loaded, 

can possibly collapse by any of the three basic modes, These are mode A 

which corresponds to collapse of the slab and secondary beams, mode B 

involving the collapse of the slab and main beams, and independent slab 

collapse by mode C or D, depending on the value of the sides ratio p, 
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The occurrence of one mode of collapse rather than the other depends on 

three factors, namely, the value of p and the two beam strengths, a. and 

Ype Mode A or mode B occurs with weak secondary beams or weak main 

beams, respectively, Modes C or D occur with strong supporting beams 

and relatively weak slab, Figure 4.1 shows the basic modes of collapse 

of internal and external bays under U.D.L, The collapse loads associated 

with the basic modes of failure of an internal bay are derived below, 

32.1 Mode A 

This type of failure consists of a "repeating element" of one 

secondary beam of length £, and a slab of width equal to the average 

length of the two adjacent bays. In the case of equal bays, the slab 

width equals the length of the bay L as shown in Figure 4.1. The failure 

is due to three plastic hinges forming in the secondary beam, with a 

sagging yiela line running down the centre of the slab and two hogging 

yield lines running aiong the main beams at support as shown in Figure 

436 

for a unit of deflection at the centre yield line, then 

1 2 
OS ero, 

For a U.D.L. p/unit area of slab, 

\ \ (total load on an element x 
ay deflection at the centre of gravity of the load) External work (V) 

= £ ole. ot =e Di 5X5 Ft pL 5x5 

thus V = ao ia 

(total moment along the fracture line x rotation 
Internal work (U) =/ about corresponding axis of rotation) + (plastic 

moment of the beam x rotation of plastic hinge 

at that point)
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= (at 0420 + 2M, «L.0) + (Mp 20 + Mpe20 + Mp 20) 

thus U = 2 tsst + at 1.2 

Equating the external and internal work done, an expression for the 

collapse load is obtained, namely:- 

16M. L 
8 pe = 8+ 10 He 43 

Re-arranging equation 4.3, the required plastic moment of the secondary 

beam for collapse by mode A to occur is obtained from:= 

(75, My = = ae dod 

4.2.2 Mode B 

Here failure consists of a"repeating element" of one main beam and a 

slab of width @ as shown in Figure }}.1. The failure is due to three 

plastic hinges forming in the main beam, with three corresponding yield 

lines in the slab, as shown in Figure 4,3. 

Following the previous method, for unit deflection at the centre 

Si bid Pine, 6° = 73 = 4 

fem pel 1 hence, V = ( a Xo dae oe Ce ) 

. pel thus. ve = 5 (as for mode A) 465 

and U = (M,¢.0 + Mi0,20 + M,¢.6) + (Mp. + Mp.20 + Mp.0) 

  

. vs SMel CS ue A) 
b= L L



Equating equations (4.5) and (4.6), the collapse load is:- 

16 Mie 16 Mp 

Re erie 4.7     

Re-arranging equation (4.7), the required plastic moment of the main beam 

for collapse to occur by mode B is:= 

Abe Mr = Mp = ee = att 4 8 

4.2.3 INDEPENDENT COLLAPSE OF THE SLAB 
  

For a uniformly distributed load, depending on the ratio of the 

sides, p = 2 » the two modes of collapse C or D shown in Figure }..3 

are possible, 

Applying the virtual work theory, and letting the centre fracture 

line displace a unit distance downwards:- 

te (total moment along a fracture line x rotation 
U = /, of the two elements about that line) 

Each of these products can be resolved into the sum of two components, 

namely, (the projection of the moment on to each rectangular co-ordinate 

axis x rotation of the elements about that axis), where the axes are 

parallel to the supporting sides of the rectangle, 

For mode C, occurring when p < 1.0 (see page 55) 

saree: 2 2.(h- 4 ty 2 oa U = [h.5tang M,oGt2 IM, F+(L ttang)M, F+h.5 Ms “Tang + 26(M, «Tang ] 

: eS 8 

V = p (volume of two half-pyramids + central portion) 

1 1 
Vep (3 l.ltand.1 + 5-f61.(L - ttand)) 

4 lL 
rie - (3 - ptan¢) 4.10 

-~43 -



Equating the internal and external work done, and re-arranging the 

collapse load by mode C is given by:- 

= 48 e plh.. = eG Pian) [ Pane ae ] M, 414 

Where for a minimum value of p, tan ¢ = | p? +3 -—op 

The value of Me to cause independent collapse of the slab by mode C is 

theref ore:- 

M i pet, 25 = ptand) h12 

wits ie 

Collapse by mode D, occurring when p > 1.0, can by similar means be shown 

to occur at a total applied load of:- 

pel 489 
  

7 

~, (3p = tan ¥) [ tany ~ P ] a +013 

Where for a minimum value of p, tany = [Fe Dh oe: : 

Re-arranging equation }..13 to find the value of M, to cause independent 

slab collapse by mode D, 

Me. ott (Gp _- tan y) hth 
s ‘| 

48e[ tanee e] 

4.3 BEAM AND SLAB FLOOR SYSTEM CONTINUOUS IN THREE DIRECTIONS 

This corresponds to an external bay of a multi-bay continuous frame 

as shown in Figure 4.1, For a two-bay continuous frame, each bay is 

treated as an external bay, continuous in three directions as shown in 

Figure 4.5. 

The basic modes of failure of this system are as follows:-



1 et Mode A 

This failure consists of one secondary beam and a slab of width 

equals half the length of the external bay as shown in Figure 4.1. The 

failure is due to three plastic hinges in the secondary beam, with three 

corresponding yield lines in the slab each of length 3 as shown in Figure 

4.4.  # The area on which the U.D.L. acts is ~ 3 

For a unit deflection at the centre yield line, then 

  

_2 hae oe ore 7 and Vv= p 5°5 X35 + P Bp Xx 3 

ee Ve = pels LS de 

U 20.0 + Ms .20 + Wee + MF.0 + Ml 2.20 + uA 0 

° 4M_L 8M 
i. U = = a —b ‘ 4.16 l l 

Equating equations (4.15) and (4.16), hence the collapse load by mode A is:- 

oe ‘ oe 16 417 

Re-arranging equation 4.17, the required My for collapse by mode A to 

occur: - 

R “pen MsL 4-48 

135.2) Mode: B 
y 

Here failure consists of one main beam and a slab of width ¢ as shown 

in Figure 4.1, The failure is due to three plastic hinges forming in the 

main beam, with two corresponding yield lines in the slab as shown in 

Figure 4.4. For a unit deflection at the centre yield line, then 

pel 
anda = ro" (As for mode B of the internal bay) IRS, @ ll 

tl
po
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Use M,¢.20 + Mf. + Mp.0 + M,.20 + Mp0 

  

‘ 6M! SM. 

ge ee er r ans 120 

Equating equations (4.19) and (4.20), the collapse load by mode B is:- 

12M e 16M 

Se 

  

  ptL = 424 

Re-arranging equation 4,21, to obtain the value of My for collapse by mode 

B to occur:- 

A _ pete 2Mst , Mz = My = cera i 4.22 

4.323 INDEPENDENT COLLAPSE OF THE SLAB 

  

For a uniformly distributed loading, depending on the sides ratio p, 

the two modes of collapse C or D shown in Figure 4.4 are possible. Bya 

similar method to that used for an internal bay, 

For mode C, occurring when p < 1.155, the collapse load is:- 

2h. 5p 
po p(3 - ptand) [ 2 tand + 2] M, 423 

(+) \ 

From equation 4.23, the required M to cause independent slab collapse is:- 

Mo = pel. oh5 = pans) NEN 

a atanp * 2 

Where for a minimum value of p, tan ¢ = 

F
l
u
 

For mode D, occurring when p 2 1.155, the collapse load is:- 

es ah eo Bee Gro cam) | tat 8 Ue, 1425 

Where tan y = = Re + ; p* —1 for minimum p 

-~ 16 =



Hence M, = plL estan) 4.26 

2helteny t 2 Pd 

1.4 BEAM AND SLAB FLOOR SYSTEM CONTINUOUS IN TWO DIRECTIONS 
  

This corresponds to a one-bay continuous frame, where the slab is 

continuous over the main beams as shown in Figure 4.6. The equations 

of the basic modes of failure are derived below, 

4.1 Mode A 

This type of failure consists of two secondary beams and a slab of 

width equal to the length of the bay L. The failure is due to three 

hinges on each of the secondary beams, together with three corresponding 

yield lines in the slab, as shown in Figure 4.7. By similar methods to 

those used previously, the collapse load by mode A is:- 

pa = 28 ‘= Loe eS 4.27 

: SaspteL Mab and My = My = 2 : 4.28 

4ne4+e2 Mode B 

This failure consists of one main beam and a slab of width 2, The 

failure is due to three plastic hinges in the main beam and only one 

sagging yield line running down the centre, as shown in Figure 4.7. 

  

Here:- 

plus es 8 a + 16 Mp cos 4.29 

2 p 

ane. Me =. Mes ee = re 4.30 

-7 -
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4-63 INDEPENDENT COLLAPSE OF SLAB 
  

For a U.D.L., depending on p, the two modes of collapse C or D shown 

in Figure 4.7 are possible, 

For mode C, occurring when p < Ee (see page 56) 
\ 

2 2h. ot ae 
péL — (3 oe p tan) ‘ [ tang Hie 1a M, Loo! 

Where tang = ~ ( p46 =p ) for minimum p 

Aa Sti 

and M = pet, Oi — 4.32 
abt ts +2] 

Ww 
Mode D, occurring when p 2 | 2 

\ 

2 2h. 2 
piL = Cima [ tany * P Es M, ee) 

Where tan = +, +6 = - for minimum p 

and MM sa. ofL . _(3e_- tan ¥)_ ooh. 
Ss = Z 

ohel any te J 
  

4.5 BEAM AND SLAB FLOOR SYSTEM FOR TEST M, 

This system represents a model tested to destruction in the experi- 

mental part of this work, Collapse of the system occurred by mode B, 

This represents failure of a bares ant ade building frame owing to vertical 

loads only, i.e. no wind loads, In the models M, and Mg, the slab was 

composite with the supporting beams, Collapse loads in this section and 

the next one are found for the basic modes of failure of systems M4 and Mz 

assuming that no composite action is to be present, These will be used



in a later chapter for comparison with collapse loads of similar systems 

when composite action is present, to show the advantages of such construc- 

Fi0n. 

The system comprises two main "edge" beams and two secondary beams 

with a slab at the top continuous over the secondary beams, Collapse 

loads by the basic modes cf failure are as follows:- 

4.5.1 Mode A 

This failure consists of two secondary beams and a slab of width L, 

The failure is due to three plastic hinges on each of the secondary beams, 

and one corresponding sagging yield line running down the centre, as shown 

in Figure 4.8. By similar methods, collapse load by mode A occurs when:- 

pin = SMsL , 32 Mp 4.635   

In models M, and Mg, the secondary beams are considered not rigidly 

jointed, Thus, secondary beam plastic hinges at the supports would not 

develcp, as shown in Figure 4.8, Failure would then be due to the forma- 

tion of one plastic hinge at the centre of each beam, plus a yield line 

running down the centre, For collapse by mode A, equation 4.35 then 

becomes: - 

pik We i tos 4.36 

4.5.2 Mode B 

Here failure consists of two main "edge" beams and a slab of width é, 

The failure is due to three plastic hinges forming on each of the main 

beams and three corresponding yield lines, as shown in Figure 4.8. Thus 

the collapse load would be:- 

  pin = 16Mst , 32 Mp 4.037 
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4.523 INDEPENDENT COLLAPSE OF SLAB 

For U.D.L., depending on the value of p, the two modes of collapse 

C or D, as shown in Figure 4.8, are possible, 

Mode C occurs when p < oa » and the collapse load is:- 

2 

  

2h. 2p 
péL rs e(3 7) tang) [ tan ¢ +4 ] ° M, 4.38 

Where tang = [ x9 +6 - 29 for minimum P 

Independent slab collapse by mode D occurs when p 2 » and the 

Se
 

collapse load is:- 

- 2h. see E 
eer 3p - tany [ tany * ae M, 099 

Where tany = a a eS ee for minimum p 
2 Pp Pp 

1.6 BEAM AND SLAB FLOOR SYSTEM FOR TEST Mg 

Again this system represents a model tested to destruction in the 

experimental part of this work, Collapse of this system occurs by 

mode B, This represents failure owing to a "combined mechanism" which 

is usually the critical design criteria for the intermediate storeys of 

multi-storey buildings. The system is exactly the same as that of the 

previous section, except that the slab and the main "edge" beams are not 

continuous at the windward end (L.H.S.). At that end, a hinge cancella- 

tion usually occurs in this type of failure mechanism, as shown in Figure 

4.9 (mode B), Equations of collapse loads by the three basic modes of 

failure are given below:- 

- 50.«
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4.6.1 Mode A 

This failure is exactly the same as that of the previous section, as 

shown in Figure 4.9, and equations 4.35 and 4,36 may be used to evaluate 

the collapse load, 

4.6.2 Mode B 

Here failure consists of two main "edge" beams and a slab of width f, 

A hinge cancellation is assumed at the windward end, Failure occurs owing 

to two plastic hinges only forming on each of the main beams, together with 

two corresponding yield lines , as shown in Figure 4.9. The collapse load 

is thus:- 

2M 2). Mg 
Dele = fe + a 4.4.0 

4.6.3 INDEPENDENT COLLAPSE OF SLAB 

For a U.D.L., depending on the value of p, the two modes of collapse 

C or D, as shown in Figure 4.9, are possible. 

For mode C, occurring when p < 0,82, the collapse load is:- 

. ie poe Ss 
péL 7 p(3 - p tans) [ 2 tand se ] e i. 4H 

Where tan ¢ = ~ ( [p? +2 -9 ) for minimum p 

For mode D, occurring when p 2 0,82, the collapse load is:- 

= 2h.9 fee 3 

eo 3p - tan ¥) [ tanh aoe tg M, . 4 he 

ie ee 8 af 
Where (tan 9 = 3 ( p? + 3 0 ) for minimum p 

aos. a



4.7 COMPARISON OF COLLAPSE MODES OF THE INTERNAL BAY 

The internal bay of section 4.2 was taken to illustrate the design of 

beam and slab floor systems by using charts similar to that of Figure 4.12. 

Values of the collapse load determined in section 4,2 for the internal 

bay by the various modes are compared to determine which mode will occur 

for any given p value, One method of finding this is simply to calculate 

the collapse given by these paid equations, and to select the least 

value as being the actual collapse load, However, by comparing the modes 

and combining the results on one graph, more valuable information is 

obtained as to the likelihood of the modes occurring, The various beam 

to slab strength ratios required to change from one mode to another will 

also be known by the use of such charts, 

4.7.21 COMPARISON OF MODES A AND C 

For a U.D.L., collapse will occur by mode A if the value of the 

collapse load péL given by equation }.3 is less than that given by equation 

hoi1, i.e. if-s- 

    

  

  

16 Ms L 16 Mp 1,8 0 
t é t Spee atand ) [ tanp * Vids ue 

Dividing through by M, and introducing 

o M eo Plastic moment of secondary beam 
Y, Ms.I/2 ~ Plastic moment of adjacent half width of slab 

2 6 
then, = +°00 < e 1 

p p p(S = ptang) | tang 

Ca eeepc A yg bok 
b (3 - ptang) tang 

As tan @ is a function of p, ¥; can be plotted against p to give the 

graph shown in Figure 4.10 up to the value of p = 1,0, Values of ae 
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which are under the curve in the shaded area for a given p value corresponds 

to collapse by mode A and vlaues lying above, to mode C, Hence, equation 

4.435 is the "boundary equation" between these two modes, 

4.7.2 COMPARISON OF MODES A AND D 

Collapse will occur by mode A if plL given by equation 4.3 is less 

than that given by equation 4.13, 

    

16 Ms L 16 Mp Bp 4 
o t Crees (3p — bane) erate a eee 

Se 
Using q = iis .i73 

6p? 1 then Masud @ ome ET Cee + pe 2 dy dd. 

it) can be plotted against p for values of p 2 1.0, i.e. where change 

over from mode C to mode D occurs, This gives the continuation of the 

graph of Figure 4.10 shown as a dotted line, 

4.7.5 COMPARISON OF MODES B AND C 

Comparing equations 4.7 and 4.11 for collapse by mode B, 

  

16 Ms 2 16 Mp 18 p 
G oe < Cee ntanal + tan et he Me 

fi M s : te 
Introducing a oe and re-arranging, this condition becomes:- 

- [ eae +1] -2 dealt 5 p 
tang 

Similarly, values of Yp are plotted against p, for values of p up to 

1.0 as shown in Figure 4.11. Values of Yp in the shaded area for a given 

p value correspond to collapse by mode B, and values lying above, to mode C, 

-~ 53 =



4.7.4 COMPARISON OF MODES B AND D 

Comparing equations 4.7 and 4.13, for collapse by mode B, 

  

16Mst . 16 Mp L809 4 
Cote as ee ty, | Rept ee 

M 
Veen cae wee 

6 1 
(3p - tan ¥) [ teny . P Les oe 446 < wo

 “A 

Similarly, values of Yp are plotted against p for values of p> 1.0, 

where mode D takes over from mode C, This is shown as a dotted line in 

Figure dod, 

4.7.5 COMPARISON OF MODES A AND B 

Comparing equations 4.3 and 4.7, collapse will be by mode B if:- 

16 is t 16 Mp 16 Ms 16 Mp 
L fF aie ae 1 +. Tay 

Dividing by My and introducing 

M M 
TO Weyer te t/2 

then collapse by mode B rather than mode A occurs when 

on a dy. 4-7 

This may be compared to Wood's (59) value for collapse of slab and long 

beams as opposed to slab and short beams 

45 
te : 3.6 

If a = oa then p < 1,0 from equation 4.4.7, compared with Wood's(®®) value 

of p < 1.0 from equation 3,.6for collapse by mode B, This means that the 

a oe.



chance of mode B occurring is the same when the slab is simply supported 

or continuous in four directions, 

Finally, the curves given in Figures 4.10 and 4.11 may be combined to 

give Figure 4.12, from which the collapse mode for any given p value may 

be determined, Charts for slabs with other boundary conditions can be 

similarly drawn, 

It will be seen then that once the two beam to slab strength ratios 

have been determined, the mode of failure can be found and the value of 

collapse load calculated from the appropriate equation, 

4,8 CHANGE OVER FROM MODE C TO MODE D 

Change over from mode © to mode D occurs at a value of p depending on 

the boundary conditions of the slab and is independent of "y values", 

In the case of an internal bay, where the slab is continuous in four 

tiroobions: the change over from equation 4.11 (mode C) to equation 4.13 

(mode D) occurs at p=1. In these two equations, for a minimum value of 

tan ¢ = [p43 aif and tany = [4 +3 ss 

At p=1, tang = tan y=1. Hence ¢ = 45° at the point of change over 

Pp» 

oO 
|—
 

from mode C to mode D, and f = 45° at the beginning of mode D for the same 

corner as shown in Figure }..3, Hence, 

@ + ¥ = 90° 448 

tan ¢ tan (90 - y) = cot 49 

Hence, at the point of change over from mode C to mode D 

tan ¢.tan } = 1 4.501 
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At the point of change over from mode C to mode D, the collapse load by 

the two modes should be the same, Substituting the values of tan ¢ and 

tan y at p = 1 in equations 4.11 and 4.13 gives the same collapse load of 

48 My for both modes, This satisfies equation 4,50 and proves that p = 4 

is the point of change over from mode C to mode Ds 

For slabs with other boundary conditions, change over from mode C to 

mode D does not necessarily occur at p =1. For example, in the case of 

one bay continuous frame, where the slab is continuous in two directions, 

change over Gone at p = J 2 é To find this value of p, equations 4,31 

and 4.33 must give identical values of plL at the point of change over, i.e. 

2h p sg 2 2 

o(3 = ptand) | tanp ee Lae + 0 Ls My 

_f_. 
(3p - tant) (ane + 2 oe ; 51 

p?(3 hr ptang) ( tany . p) 

  

OL 

  

Where for a minimum value of p 

tanp = } ( OT eb -p ) anttenh= [E+ 6 - 

I
N
 

Substituting the values of tan ¢ and tan in equation }..51 and solving 

for p could be very tedious, One way of solving such equations is by 

numerical methods, Thus, values of tan ¢ and tan could be found for 

a given value of p and substituted into equation 4.51. This procedure 

is repeated until a value of p satisfies equation 4.51, which will be 

the value when change over from mode C to mode D occurs. A better way 

of finding that particular value of p is by satisfying Geen 1350. 

In the case of one bay continuous frame, at p =] 2 ban. = - and 
al2 

tan} =,[ 2, Hence, tan detan ¥ = : x a] 2 = 1 which satisfy equation 
2 nN 

Ye



4.50, This shows that p =a] 2 is the point of change over from mode C 

to mode D, To prove this again substituting the values of tan ¢ and 

tan y, at p = a] 2 into equations 4.31 and 4.33, collapse by modes C and 

D occur at the same load of 2h. a] 2. Me 

4.9 DESIGN PROCEDURE FOR THE SLAB MOMENT 

AND BEAM SIZES USING CHARTS 

From the graph in Figure 4.12, it is possible to design a slab and 

obtain the sizes of the supporting beams for a given mode of collapse, 

knowing the loading and dimensions of one bay. 

Both equations 4.12 and be 1h are of the form M, = f(p).pll and, for 

convenience, Figure 4.13 shows a graph of f(p) against p. Knowins the 

value of the sides ratio p, the slab moment could easily be calculated 

with the aid of Figure 4.13, Figure 4.12 gives the critical values of 

the strength ratios ts and Ye for collapse by any mode, Thus with M> 

€ and L known, Mp and Mg can be calculated for the givenmode, For 

independent collapse of the slab, the minimum beam sizes will be given, 

and for.collapse involving the supporting beam, the minimum size of this 

beam to cause it just to fail is obtained, 

4.10 EXAMPLE 

For a load of 175 1b/sq.ft. (including an allowance for the dead load 

using a 6" thick slab) on a rectangular internal bay 30' long and 20' wide, 

Then with p = 3 equation 4,12 or Figure 4.13 gives the minimum slab moment 

equal to 3,601 lb.ft./ft. run, with a load factor of 1.75. 

From Figure 4.12, with p = 0,67, the critical strength ratios for 

independent collapse of the slab are:- 

aay (a) > 7.5 ana es Cia 28528 

aire



f (p)x 10° 

20 

1o 

  
  

P € 1.0, £(p) = 

Fig. 4.13. 

p (®-p tan 4) 

43 (eet!) 5 

Where Fan dz=[p=+3 -p 

Graph of f (?) against p 

(3P - ran yw) 
1 28? Ciiny PI 

where pn ea et 

P % 1.0, (p) =



Taking the yield stress of the steel beams to be 16 tons/sq.in., the 

required plastic moduli of the main and secondary beams are:- 

125% 5001 SO eae 
16 x 22h,0 = 90.4 in,® 

and 22325. 5601x4526 12 ack 2 3 

16 x Doh0 = 40.7 in, 

respectively. Steel tables then give the minimum sizes of these beams as 

a 16157 «50 Universal Beam and a 16 X 5,5 x 26 Universal Beam respectively. 

In the next chapter, composite action between supporting beams and 

slab floors is introduced, This will deal with cases of types (2) and 

(3) of composite design mentioned in Chapter 1, Equations for collapse 

loads of the basic modes of collapse for the various systems dealt with 

in this chapter will be modified to include these two types of composite 

design, Difficulties in using charts similar to that of Figure 4.12 will 

also be dealt with for type(3) of composite design, 
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DETERMINATION OF COLLAPSE LOADS BY UPPER-BOUND 

SOLUTIONS FOR CONTINUOUS BEAM AND SLAB FLOOR SYSTEMS 

WHERE COMPOSITE ACTION OF TYPE (2) OR (3) IS PRESENT 

  

  

  

5.1 INTRODUCTION 

An introduction to composite action was given in Chapter 2. In this 

chapter, the two types of assumptions on degree of composite action (2) and 

(3) mentioned in Chapter 1 are considered, Composite action is present at 

the centre spans of secondary and main beams, and its effect at the supports ~ 

is ignored, 

When calculating the fully plastic composite moments Me and Me at the 

centre spans of secondary and main beams respectively, type (2) ignores the 

effect of slab reinforcement and type (3) considers such an effect. 

Equations were derived in the previous chapter for collapse by the 

basic modes of failure for five different beam and slab floor systems, 

These equations are modified in this chapter, where necessary, to include 

the effect of composite action at mid-span of secondary and main beams, 

Later in the chapter, comparisons are made of the basic modes of 

collapse for an internal bay, Boundary equations between the various 

modes are derived and shown graphically similar to that of Figure 4..12 

of the previous chapter, Difficulties arising in the use of such graphs 

for type (3) of composite action are also considered, 

  

5.2 BEAM AND SLAB FLOOR SYSTEM CONTINUOUS IN FOUR DIRECTIONS 

When shear connectors are present on the secondary am main beams of 

an internal bay, the sagging ultimate moment at the centre line for collapse 

by mode A can no longer be taken as (Mp + MeL). Composite action occurs, 

resulting in the secondary beam and slab acting together as a T-beam, with 

a fully plastic moment of Me. Similarly, the ultimate moment at the 

wee.



centre line for collapse by mode B (Mg+ Mot) will be replaced by Me, the 

fully plastic composite moment at mid-span of the main beam, 

At mid-spans of the main and secondary beams at ultimate load, it is 

assumed (#9) that:- 

(1) 

(2) 

(3) 

(4) 

The whole of the area of steel beam below the plastic neutral 

axis is stressed in tension to the yield stress, fy. 

The whole of Giaga of steel beam above the plastic neutral 

axis is stressed in compression to the yield stress, fy. 

The area of concrete below the plastic neutral axis is cracked 

and is therefore unstressed, 

The area of concrete above the plastic neutral axis is stressed 

to its full compressive strength Uc, which is assumed to be 

4/9 Uy, where Uy is the cube strength of concrete, For com- 

parison with experimental results, Uc is taken as 2/3 Uy. 

To calculate the values of the fully plastic composite moments M,g and 

Me, two types of assumptions on degree of composite action are considered 

below, i.e. type (2), ignoring slab reinforcement and type (3), including 

the effect of slab reinforcement, 

5.2.1 TYPE (2) - IGNORING THE EFFECT OF SLAB REINFORCEMENT 

When calculating the fully plastic composite moment Me or Me, two 

cases arise, namely:- 

(a) Case I, Plastic neutral axis within concrete slab 

aOR (is a. < AG (Figure 5.1) 

This occurs when 

oe A, <=. bet bet 

Tensile force in steel, F ee A ky 
st Ss 

Compressive force in concrete, Fog = deb.Uc 

For equilibrium equating total tension to total compression, 

= 60
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Fig. 5.1. Section and stress diagram for a composite beam with the neutral 

axis within the concrete slab, Ignoring slab reinforcement . 
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FIG:..5.2¢ Section and stress diagram for a composite beam with the neutral 

axis within the steel beam. Ignoring slab reinforcement. 
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Figz: 5.35 Change in position of neutral axis by assuming the full effective width



  

  

i.e, Ft = “Foc 

As fy 562 * * = e 

Be b Us 

To obtain the fully plastic composite moment Mg, take moments 

about the line of action of Foc, 

Me = Pot oe 

a Gry _ t - dn 
a = oe G a oe -_ de + 2 

d dn Hence Mo = Ayefy [ 5 + 4 = x] 5.3 

Where t = slab thickness 

d = depth of plastic neutral axis below top of slab 

it Nea o Be 

A, = area of steel beam 

b = width of compression flange 

d = depth of steel beam 

d+t 
de = 9 

(b) Case II, Plastic neutral axis within the steel beam 

i.e. t <a (Figure 5.2) 

This occurs when 

Dreb < coh ‘ Diet 

In this case, the condition of equation 5.) is not likely to 

Arise, 166. A fy > b.t.U,, since the value of b.t.Uce is necessarily 

large, owing to large "b" values, thus requiring either a very 

thin slab or a very deep steel beam to fall outside the limits 

of equation 5.1. 

61: hn



The stress distribution at ultimate load is shown in Figure 

Deed. 

The derivation of the formlae is simplified by adding equal 

but opposite forces to the steel beam above the neutral axis, 

giving the equivalent stress distribution shown in Figure 

502 eCe 

Thus the steel beam is assumed to be stressed in tension to 

yield throughout its full depth, the total equivalent tensile 

force Fe being balanced by the compressive force Fog in the 

concrete, plus twice the compressive force es in the steel — _ 

section above the neutral axis, 

Fe = A fy 

db 
Fec = a e fy 

oF 5c = 2 (area of steel in compression) , fy 

. : ; Ray bt - - Area of steel in compressionF =, [A -=—*" ] 5.5 
sc 2 Ss o 

d may be determined from the dimensions of the steel section, 

In the case of rolled steel section or welded plate girder with 

rectangular top flange of an area Ap = be x tp, where bp and tp 

are the breadth and thickness of the top flange respectively, 

and a constant web thickness ty, Case II may be subdivided as 

follows:- 

(4) Plastic neutral axis within top flange of steel beam 

foe. ee. ae Ce + tp) 
n 

This occurs when 

Dit. <- ohk  < ARE Beck) 5.6 
s ee 

o, AS - Dia 

qd, oe - 2Dp ox Dol 

= 60.8



Bot ty. Agedc - Dyed, (d,, - t)] 5.8 

(ii) Plastic neutral axis within web of steel beam 

7 > i.e. qa t + tp 

This occurs when 

oc (A, -2A, i> Bet Say 

a. ee ee, As - 2 Af) - b.t 5.40 
f 2 aaty 

Mo = fy [A, -dc - A, (t+ t.) = ty (a, + tp)(a, =+ > tp)] 

5.11 

52.2 TYPE (3) - INCLUDING THE EFFECT OF SLAB REINFORCEMENT 

In the experimental part of this work, beam and slab floor systems 

were tested to destruction, It was found that the actual collapse loads 

were greater than the theoretical collapse loads, Evidently that was 

partly due to the effect of slab reinforcement, When the reinforcement 

yielded in tension, it did increase the ultimate moment of the composite 

section as the plastic neutral axis was always high mn the slab (Figure 

5.4). It can also be shown from Table 5(i) that the plastic neutral axis 

is usually high in the slab for various Universal Beams and slab widths, 

In this section, the slab reinforcement is introduced when calculating 

the fully plastic composite moments Mc and Me. Equations 5.1 - 5.11 are 

modified to include this effect. It is assumed that when the plastic 

neutral axis is within the concrete slab, which is usually the case, the 

slab reinforcement is stressed in tension to the yield stress ty. In the 

case of the plastic neutral axis within the steel beam, the slab reinforce- 

ment is assumed stressed in compression to the yield stress ty, get ss 

also assumed that the slab reinforcement in the whole width of the section 

is included when the plastic composite moment of type (3) of composite 

design is calculated, 

S65 4
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Fig. 5.4. Section s stress diagram for a sagging composite beam with the neutral axis within the concrete slab. 

Slab reinforcement are included, 
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Cube strength = 6000 lbs./in,? 

  

  

    
  

              

slab | plastic (Me + Mp) kips - ft. 
Beam size width | NA. slab thickness (in,.) 

fees e Man.) ye 5 6 , 8 

Te ee my 20: Ube ht Bed. (O11 sa 9400 | 29Dee 11 Lee 1 D998 

Mp = 98.3 20 O4 1312.8 | 334.8 | 356.7 | 378.7 | 400.6 

25 O63. bog et. | so0e1 1 557 6 | 37906. 10145 

30 Dee 214.9 155055. 1950.2 1 380.2 [402 4 

15. 22a ee Te. A 0.8 — 1516.35.)547.1 4577.8. |608.5 1639.3 

Mp = 174.7 | 20 0.6. [519.3 {550.0 | 580.8 | 611.5 | 642,2 

25 O.D:. [oelelet 5510 4062 55 1615.5.1 644.0 

30 Ome 1522.2 855520 7505.7 {otk | 645.2 

16 xfow 36. UB] 415 0.0 1555.2 1586 8°51 618 5521650.1 4681.7 

Mp = 190.5 20 0.6 [558.3 |590.0 1621.6 |653.2 | 684.9 

25 0.5: .4560,2 (591.8 (1625.5 1685 4.1 6aGcy 

30 Od. 1561.5 1593.1 1624.7 (656.4 1688.0 

dh GR ee 38. UB ae 0.8 [538.7 1572.1 1605.5 |638.8 |672.2 

Mp = 183.7 20 0.6 {542.2 1575.6 |608.9 |642.3 |675.7 

25 0.5 {5s 1577.7. (641.0 TEMA | 677.8 

30 Od. 1565.7.4579 7 1642 5658 167924 

15°* 6% ROU RB pet 0593159364; 1628 .2: (66h 8698 6517556 ¢ 

Mp = 201.6 20 Oot: 459bE Sh 521: 4667 62 1702 73755 

2 O55 159929654. 1669 559 704../ 1739.8 

30 O.4 1600.8 |635.9 [671.1 | 706.2 | 741.4 

Table 5(i), Values of the sum of Composite and Beam Moment (Mg + My).



Similarly, when calculating Mc or Me, two cases arise, namely: - 

(a) Case I, Plastic neutral axis within concrete slab 
  

(b) 

Pe a ae et (Figure 5.4) 

c 
ioc As hein gs Ate Te SO bie 

Naty, + D A G = e es 28 ee 5.13 

Similarly, taking moments about the line of action of Foe 

Z d 
22 Me = Afty (5+ t-2] +d aty (t-R-0] 5 1k 

Where At = area of slab reinforcement/unit run 

ty = yield stress of slab reinforcement 

ec = concrete cover for slab reinforcement + 1 diameter 
: A 2 

of reinforcing bar 

Case II, Plastic neutral axis within the steel beam 

Tee ‘Gace. ed 
n 

This occurs when 

Betet DAG # ie eG A, sel 

Again the stress distribution at ultimate load is shown in Figure 

5.5.20. The equivalent stress distribution is shown in Figure 

Ted atte 

Similarly, the area of steel in compression 

1 : t ; 
Ber ee whe, 2 e 

dq. may be determined from the dimensions of the steel section, 

Case II may be subdivided into two sections as follows:- 

Shik



(i) Plastic neutral axis within top flange of steel beam 

Weeie a ge br. 1S dQ. <2 3G oe to 

This occurs when 

bee beh eY) <- ce ee Chit + Dek a bok ey) eel 
Cc : s rte Ue 

  

U 

+ (xc,As - b.t - bAteg”) 5.18 
dneaet = > b r 

c< 

ty/t Mc = fy [A_.de - bpd (A - t} - D.AL.ZY(2 - c)] 5.19 a Pwo y ‘2 

(43) Plastic neutral axis within web of steel beam 

1c Ors qd. Oi Gare tp 

This occurs when 

  

ty e« (A, - 2A.) > (b.t + bAt. a) 5.20 

[a(A,- 2.) - bat - body. 27] 
dn = 245 + “ ae) fe 250 tw 

Nos 2 ey [A «dc - Ap(t + tp) - ty(a, + tp) (a_- ts tp) 

ey 7% - beAys By (5 c)] 5.22 

522.3 EFFECTIVE WIDTH OF SLAB COMPRESSION FLANGE 

For elastic design according to C.P.117‘*°), three conditions are put 

forward (69) for the effective width of the compression flange, namely:- 

the least of: (1) 1/3 of the effective span of the T-beam; 

(2) distance between centres of the ribs of T-beams; 

(3) 12 x thickness of the slab + breadth of the 

rib, when the steel member is encased, 

Applying the above equations to calculate Me along the centre line of 

the main beam gives the concrete flange width b = ¢, the frame width, 

es 65.4



Similarly, when calculating Mc, of the secondary beam, b is replaced by L, 

the length of the bay for equal bays frame, If the bays are not equal 

then b is replaced by the average length of two adjacent bays to calculate 

Mce 

Figure 5.3 shows that if the ultimate composite moment is taken for 

only a part of the slab, then the ultimate slab moment must be taken for 

the remainder, The position of the neutral axis is only changed slightly 

by taking the whole width as the compression flange, This is because it 

can be shown that the effect of the extra compression concrete and the 

extra tensile reinforcement multiplied by their respective lever arms is 

negligible for an increase of the effective width above the minimum of the 

three elastic conditions. compared with the tension in the steel beam 

multiplied by its lever arm, The difference between Mc, and [M¢ + M (L - D)] 

is negligible, when Mc is calculated for the whole width of the compression 

flange, 

52.4 DETERMINATION OF NUMBER OF SHEAR CONNECTORS REQUIRED 

Sufficient shear connectors should be provided in the zone between the 

sections of zero and maximum moment to transfer the total horizontal force 

between the concrete slab and the steel beam at ultimate load, Break down 

of shear connection can occur by failure of the shear connectors or by 

crushing of the concrete or both, In the later case, the necessary number 

of shear connectors are used to transfer the horizontal force between the 

concrete slab and the steel beam at ultimate load, 

To determine the number of shear connectors required, two cases arise, 

namely: - 

Case I, Plastic neutral axis within the concrete slab 

This case may be subdivided into (i) and (ii) below. 

hb



(i) Type (2) - slab reinforcement is ignored 

i.e. the condition of equation 5.1 must be satisfied, 

From Figure 5.1, the total horizontal shear force is equal to the total 

compressive force in the concrete, and equal to Poe? the tensile force 

in the steel beam, 

No, of shear connectors required = Boo = eo 
Po Pe 

- - No, required = Bey 5425 Pe 

Where Pe = design value of one shear connector 

(ii) Type (3) - slab reinforcement is included 

| i.e. the condition of equation 5.12 must be satisfied, 

From Figure 5.4, equating the total compressive force to the total tensile 

force, hence, 

Foe: Pat x Ft 9 02h. 

from equation 5.24, the number of shear connectors can be taken as =Os, 
c 

but this number is more than necessary, Since the shear connectors are 

welded to the steel beam, then the maximum shear force the steel beam can 

take is its own tensile force Fy This indicates that the total hori- eA 

zontal shear force between the concrete slab and the steel beam cannot 

exceed. Poe Hence the number of shear connectors required remains that 

given by equation 5.23. 

Case II, Plastic neutral axis within the steel beam 

Again this case is subdivided into (i) and (ii) below, 

1) Divers 

From Figure 5.2, the total horizontal shear force is equal to the 

total compressive force in the concrete Foc, hence, 

ie



No. required = Sage Mgbets 5425 Pe Pe 

14) Type (5 

From Figure 5.5, the total horizontal shear force is equal to the total 

compressive force in the concrete Fec plus the total compressive force in 

the slab reinforcement Fg? hence, 

No, required = Sone 
c 

- « No. required = dssb,t = beAtet 5 426 c 

The number of shear comectors determined from the equations above may 

normally be uniformly spaced (*°) between each end of the beam and the section: 

of maximum moment, for U.D.L, 

i.e. spacing of shear connectors = 1f2 STS eet boce 

522.5 BASIC MODES OF FATLURE FOR INTERNAL BAY 
  

The value of collapse load by mode A, given by equation 4.3, can now 

be modified for composite design of type (2) or (3). At the ends of the 

span of the secondary beam, the slab forms the tension flange of the 

composite beam and in this chapter, this type of composite action is 

ignored; hence the end moments remain as Mp. At the mid-span where the 

slab forms the compression flange, the moment (Mp + M, L) is replaced by 

Mc. On substitution, collapse by mode A becomes:- 

nee Bute + Mp) , &Ms Lb 5.27 
e 

When composite design of type (2) or (3) is considered, My becomes the sum 

of the plastic composite moment at mid-span Mg and the beam plastic moment 

at the support Mp. Re-arranging equation 5.27, the required sum of 

ake



plastic moments My for collapse by mode A to occur is obtained from:- 

2 

My = {Mc + Mp) = — - ML 5,28 

Similarly for collapse by mode B, the end moments at supports remain 

Mg each, but the mid-span moment (Mp + Me) is replaced by Me. Hence 

equation 4,7 can now be modified for composite design by type (2) or (3) 

and becomes: - 

pits out + Mp) , SMs¢ 5.29 
L 

Similarly for type (2) or (3) of composite design, 

My = Me "ae Mp 

Re-arranging equation 5.29, the required M; for collapse by mode B to occur 

is obtained from:- 

aS 2 
Me = (Me + Mp) = eee al t 5530 

For square slabs ¢=L, and if the supporting team sizes are equal 

then Me = Mg and hence the value of the collapse load is identical from 

equations 5,27 or 5.29, This would then correspond to what Wood (5) 

calls a "junction ede: 

The values of collapse load for modes C and D remain as given by 

equations 4,11 and 4.13 respectively. 

  

48 2 is, eeu eta [ foo oS ae M 411 

489 1 and péL (Ge and) [ i oe pes M, 15 

Where for minimum p, tan = [ 6 + 3-p and tan} = a2 +3 = ; 

a



The value of M, can then be found from equation 4,12 or 4.1). depending e 

on the value of the sides ratio p. By knowing the value of M, and deciding 

on the slab thickness and cube strength to be used, then the amount of slab 

reinforcement in the longitudinal direction (X - direction) At, in?/ft. run 

to produce the necessary value of M, in that direction can be found from 

the equation below, 

M 
8 i: ete ee 

12:0, eee et tt Cae: Te) 5631 

at Ate «ae Pac. 7.4005 | : 

: : 2Uy 
For an under-reinforced section p, # Deo Oty 

Where dy, = effective depth of the section in X - direction, © 

Re-arranging equation 5,31, the value of py can be found as shown: - 

  

dy Ue e ay7 0." a Uc Ms/6 53h. 

dgaty 
  

Ras 

Once the value of p, is found, the area of reinforcement At, can be found 

from equation 5.32, remembering that the condition of equation 5.33 must 

always be satisfied, 

Similarly, the area of reinforcement in the transverse direction 

(Y - direction) Atg in*/ft. run can be calculated from the above equations 

by substituting aan the effective depth of the transverse reinforcement 

instead of d,. The values of At, and Atg can similarly be found for beam 

and slab floor systems with other boundary conditions, 

When type (3) of composite design is used, the values of At, and Ate 

are required immediately to calculate Me and Me from equations 5.12 - 5.22, 

os



5 eo BEAM AND SLAB FLOOR SYSTEM CONTINUOUS IN THREE DIRECTIONS 

The value of collapse load by mode A given by equation 4.17 is now 

modified for composite design of type (2) or (3). As before, the end 

moments remain Mp. The mid-span moment (Mp + Mye 3 ) is replaced by 

Mc, where the width of the concrete flange is taken for half of the 

external bay span, 0n substitution, equation 4.17 becomes:- 

  

pleL _ 8(Mc + Mp) 4Ms.L 
BD aS L mi bod l 

Re-arranging equation 5.35, the required My for collapse by mode A is:- 

“ _ peel _ Msh 
My pe (Mc + Mp) = eA1Ge 2 5.36 

For collapse by mode B, the end moments remain Mp , and the mid-span 

moment (Mpt M, £) is replaced by Me. Hence equation 4,21 becomes: - 

Shes BUe + Mr) je salt 5,37 

Re-arranging equatior 5,37, the required My; for collapse by mode B is:- 

LL? 

Mz = (Me +My) = BE _ Met 5.38 

The values of collapse load for modes C and D remain as given by 

equations 4.23 and 4.25, 

5.4 BEAM AND SLAB FLOOR SYSTEM CONTINUOUS IN TWO DIRECTIONS 

For one-bay continuous frame, the value of collapse load given by 

equation 4,27 for collapse by mode A is now modified for composite design 

of type (2) or (3). Once again, the end moments remain My. The mid- 

span moment (2 Mp + Mt) is replaced by 2 Mc, where Mg is Ehe composite 

mid-span moment of width (1/2) of slab ani one secondary beam. On 

substitution: - 

7



16 (Mc + Mp) 8 Ms lL 
plL i + 7 5239 

2 : 
and My = (Mc + Mp) = He - a 5 40 

For collapse by mode B, the mid-span moment (Mp + M, t) is replaced 

by Me, end moments remain Mj. Equation 4.29 is modified as show:- 

pli. = 8(Me + Mg) 5 aA 
L 

and My " 

2 

(Me + Mg) = oe Sea 

For modes © and D, equations 4.31 and 4.33 still hold, 

525 BEAM AND SLAB FLOOR SYSTEM FOR TEST M, 

Here, for collapse by mode A, equation 4.35 is modified to include 

composite design of type (2) or (3). On substitution, the mid-span moment 

(2Mp + Mh) is replaced by 2 Mc. Where Mc is of width L/2 of slab and 

one secondary beam, the end moments remain Mp. Thus the collapse loed 

would be:- 

pi, = A6c+ Mh) . bol 

Similarly, when the secondary beams are not considered rigidly jointed, 

thus plastic hinges would not develop at the ends of the beams, then equa- 

tion 5.1.4 becomes:- 

pe = 10s 5 sly 

For collapse by mode B, the end moments remain Mp. The mid-span 

moment (2 Mg + Me) is replaced by 2 Me, where Me is for width t/2 of slab 

and one edge beam, Thus equation 4.37 becomes:- 

atte is



ote 16(Me + Me) 3 Bist : 5 b5 

The values of collapse load for modes C and D remain as given by 

equations 4,38 and 4,39, 

5.6 BEAM AND SLAB FLOOR SYSTEM FOR TEST Mg 

For collapse by mode A, this failure is exactly the same as in 5.5 

and equations 5.43 and 5.4 may be used to evaluate the collapse load, 

For collapse by mode B, the right hand side end moments remain Mp 

and the mid-span moment (2Mp + Me) is replaced by 2 Me (Figure 4.9). 

Hence, for type (2) or (3) of composite design, equation ..40 becomes:- 

piles Sei Mp), wt 5.46 

For modes C and D, equations }..1 and 4.42 still hold, 

5.7 COMPARISON OF COLLAPSE MODES OF THE INTERNAL RAY 

Equations of collapse load by modes A, B, © and D, where composite 

action is present at mid-span of the supporting beams, can be compared 

to produce boundary equations, These boundary equations can be graphi- 

cally plotted, by a similar procedure to that used in the previous chapter, 

to enable the mode of collapse to be determined, 

Comparing equations 5,27 and 4.11 of modes A and C, collapse will 

be by mode A if:- 

  

8(Me + Mp) 8Ms L 18 50 ; 
t Soe Peon peane) [ tang * 1 I. M, 

Introducing a new strength ratio, am = - ae then 
s a 

ir ee eae . ! SC “ (3 ptand) [ tanp it 1 ] 2 De /



Comparing equations 5,27 and 4.13 of modes A and D, collapse will 

be by mode A if:- 

8(Mc + My) 8 Ms_L 489 4 
a <a - (3p - tany) [ tany eps Mo 

12p* 1 
(3p - tanv) [ tany * P J -2 5 8 <

 A 

Comparing equations 5,29 and 4,11 of modes B and C, collapse will be 

by mode B if:- 

8(Me + Mp)  8Ms 2 48 0 
rT See p(3 - ptand) [ tang rh Le M 

Introducing a new strength ratio, ee = - ; - then, 

  

a6 Ae p me 

#*< FG - pte) *tenp.* 11>? pe 

Comparing equations 5,29 and 4,13 of modes B and D, collapse will be 

by mode B if:- 

8(Me + Mp) 8Ms ¢ 480 4 

a eae 0 Gp band) ea CPI 

pa Meee Ml 

Using:<.."e, .M_.t/2 , “then, 

mm? 12 1 : 

6 SoG saat) tang Sie ee 5.50 

Finally, comparing equations 5,27 and 5.29 of modes A and B, collapse 

will be by mode B if:- 

moh



8(Me + Mp) , 8Mst i 8(Mcg + Mp) , Sis 
L L £ l 

Bu aere : j y _Me +™M V5 2 Mena Dividing by My and introducing '. = Mae 5 and 3 U2 then, 

2 2+ ¥c p? < \B*Xe) 5 65 

Plotting these inequalities gives the graph of Figure 5.6 from which 

the mode of collapse can be determined, hence the collapse load, Knowing 

the sides ratio, the limits of the strength ratios y¢ and Ye can be deter- 

mined for any of the basic modes of collapse, Charts for slabs with 

other boundary conditions can be similarly drawn, 

5.8 DESIGN PROCEDURE FOR THE SIAB MOMENT 

AND BEAM SIZES USING CHARTS 

Fi pure 5.6 can also be used for design purposes of type (2) of 

composite design, following the same procedure as for the design in the 

previous chapter, The difficulties of using such graphs for designs of 

type (3) of composite design will be discussed later in the section, 

M, is first determined from equation 4.11 or 4.13, depending on 

whether p < 0 or strom ad Soe 4.13. The critical values of ye and y¢ 

can then be found for a given value of the sides ratio p, and hence the 

limits of the required values of (Me + Mg) and (Mg + Mp) are found for 

collapse by a given mode, knowing the loading and the slab size, The 

sizes of the supporting beams and slab thickness can be chosen from Table 

5(i), such that (Me + Mg) and (Mc + Mp) have the required values, 

A computer program was written in Atlas Autocode(7° 74) for the Atlas 

Computer to calculate the fully plastic moment Mp, the fully plastic 

composite moment Mc, the depth of the plastic neutral axis d and the 

sum of (Mc + Mp) using equations 5.1 - 5.11. This was done for all the 
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existing steel beams ‘7*) for different cube strengths, slab thicknesses 

and slab widths, Table 5(i) shows some of the typical print out from 

this program for a limited number of Universal Beams, The flow diagram 

for this program is shown in Figure 5.7 and the program itself is show 

in Appendix 1, 

5.9 EXAMPLE 

Using the same loading of 175 1b,/sq.ft. and the same 30 mx 20 slab, 

composite with and continuous over the main and secondary beams, then 

M, = 3601 lbs.ft./ft. run as in the previous example of Chapter 4, 

From Figure 5.6, for independent collapse of the slab, then ye > 

17-20 fend ve S655. 

+M Me +M 
Hence, eae > 17.0 and 172 > 6.55 

s 

s
|
=
 

or (Me + Mp) 17.0-x 3601. x 10 lbs, ft, Vv 

> 1512.2. kines: =< 2b. 

Vv
 and (Mc + Mp) 6.5 x. 5601. x.15 dbs, ft; 

Se Oe. Kips: = tte 

For the main beam with a slab width of 20, for 6000 lbs./sq.in. cube 

strength and using the same 6 sid thickness as in the previous example, 

Table 5(i) gives the Soot sie Size of this beam as a 16 x 7 x 36 U.B. + 6 

thick slab. The value of (Me + M3 ) of the chosen composite beam is 

621.6 kips - ft., which is more than the required value of 612.2 kips - 

cag Other allowable combinations of various main beam sizes and slab 

thicknesses to satisfy the required (Me + Mg) value are chosen from 

Table 5(i) as follows:- 

15x 6 x 40 U.B. + 5" ‘thick slab 

14x 6% x 38.0,B, + 7" thick slab 

15x 6 x 35 U.B. + 8" thick slab 

= 96
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Similarly for the secondary beam with a slab width of 30', for 6000 

1lbs./sq.in. cube strength using the same 6" thick slab, Table 5(i) gives 

the minimum size of this beam as a 12 x 5 x 25 U.B. + 6" thick slab, 

The value of (Mc + Mp) of the chosen composite beam is 356.7 kips - Pk, 

which is greater than the required value of 351.1 kips - ft. Allowable 

combinations of various beam sizes and slab thicknesses for the secondary 

beam similar to those of the main beam can be made, using the original 

printed tables produced by the above mentioned program, 

For type (3) of composite design, tables similar to Table 5(i) are 

essential for the hand computation method of selecting the appropriate 

sizes of the supporting beams, Here the slab reinforcement is included 

when the plastic composite moment Me or Me is calculated, The area and 

size of slab reinforcement are in addition to the other variables of type 

(2) of composite design when Mc or Me is calculated from equations 5,12 - 

5.22, The area of longitudinal or transverse reinforcement At, or Ate 

from equations 5,32 and 5.3) depends on the value of Ms» which in turn 

depends on the loading applied and the dimensions of the slab as shown 

by equation 4.12 or 4.14, depending on the sides ratio Ps. ehence: to 

Produce tables for type (3) of composite design similar to Table 5(i) 

involves so many variables such as the area of slab reinforcement, which 

in turn depends on the loading and dimensions of the slab, cube strength, 

slab thickness, slab width, and the size of slab reinforcement used, 

Such tables could be done with the aid of computer, but prove to be very 

complicated to use. For this reason, type (3) of composite design could 

not be easily employed without the use of the computer directly. 

Using the automatic computer program mentioned in Chapter 1 for type 

(3) of composite design to solve the above example again with 6" thick 

slab and 6000 lbs./sq.in. cube strength, the computer selects and prints 

the minimum available sizes of the main and secondary beams as a 
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15 x 6 x 35 U.B. and a 12 x 4 x 19 U.B. respectively, The chosen 

(Me + MB) and (Mg + Mp) for the main and secondary beams are 645.5 

kips - ft. and 379.5 kips - ft. respectively, 

In the next chapter, composite design of types (4) ami (5) will 

be introduced, where composite behaviour is considered to be present 

at both mid-span and supports of main and secondary beams, Equations 

for collapse load by basic modes of collapse for the various beam and 

slab floor systems, dealt with in this chapter, will be modified to 

include these two new types of composite design, 

<f



HAP TER <6 

DETERMINATION OF COLLAPSE LOADS BY UPPER-BOUND SOLUTIONS 

_FOR CONTINUOUS BEAM AND SLAB FLOOR SYSTEMS WHERE 

COMPOSITE ACTION OF TYPES (),) OR (5) IS PRESENT 

6.1 INTRODUCTION 

© 

In Chapter 1, five types of assumptions on degree of composite action 

were described, In this chapter, the last two types, namely (4) and (5), 

are considered, Here the effect of composite action is considered:at mid- 

spans and supports of secondary and main beams (i.e. both regions of 

sagging and hogging bending). For both types of composite design, the 

hogging plastic composite moments at supports of secordary and main beams 

are taken as My and My respectively and their values are calculated from 

equations 6.1 - 6.11, derived in the next section, Type (4) of composite 

design ignores the effect of slab reinforcement when the mid-span sagging 

plastic composite moments Me and Me are calculated from dcnataone 514 

5.11 of Chapter 5. Type (5) of composite design takes the effect of slab 

reinforcement into consideration when Mg and Me are calculated from equa- 

tions 5.12 - 5.22 of Chapter 5, 

Equations were derived in the previous chapter for five different 

beam and slab floor systems for collapse load by the basic modes of 

failure, where composite action of type (2) or (3) is present. These 

equations are modified in this chapter to include the effect of composite 

action at the supports of secondary and min beams to make the two new 

assumptions on degree of composite action (J) and (5) mentioned above, 

Later in the chapter, comparisons are made of the basic modes of 

collapse for an internal bay. Boundary equations between the various 

modes are also derived and shown graphically in a similar manner to that 

of Figure 5.6, Difficulties arising in the use of tables (similar to 
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Table 5(i)) and graphs for type (4) or (5) of composite design are also 

considered, These difficulties are such that computers offer the only 

acceptable way of design for types (4) and (5) of composite design, This 

is illustrated at the end of the chapter by reference to the example of 

Chapter 5, 

6.2. BEAM AND SLAB FLOOR SYSTEM CONTINUOUS IN FOUR DIRECTIONS 

When an adequate number of shear connectors are provided to ensure 

full composite action at the supports, as well as mid-spans of secomary 

and main beams, resulting in the beams and slab acting together as T-beams 

along the whole length of the supporting beams, then at the supports the 

concrete flange will be in tension and the hogging ultimate moment for 

collapse by mode A (Mp + Ms L) will be replaced by My, the fully plastic 

hogging composite moment at support of the secondary beam, At mid-span 

the concrete flange will be in compression and the sagging ultimate moment 

(Mp + Ms L) for collapse by mode A will be replaced by Mc the fully plastic 

composite moment already dealt with in the previous chapter. Similarly, 

for collapse by mode B, the hogging ultimate moment at the support 

(Mg + Ms €) will be replaced by My the fully plastic composite moment at 

the support of the main beam, At mid-span of the main beam, the sagging 

ultimate moment (Mp + Ms 2) for collapse by mode B will be replaced by Me 

the fully plastic composite momamt at mid-span of the main beam, 

At the supports of the main and secondary beams at ultimate load, it 

is assumed that:- 

(1) The whole of the area of the steel beam below the plastic 

neutral axis is stressed in compression to the yield stress, fy. 

(2) The whole of the area of steel beam above the plastic neutral 

axis is stressed in tension to the yield stress, fy. 

(3) The area of concrete above the plastic neutral axis is cracked 
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and is therefore unstressed, 

(14) The area of concrete below the plastic neutral axis is stressed 

to its full compressive strength U,, which is assumed to be 

-h/9 Uy. For comparison with experimertal results Uc is taken 

as 2/3.Ues : 

(5) The slab is isotropic with equal ultimate slab moment M, in 

sagging and hogging in both directions (Figure 4.2), thus the 

top and bottom slab reinforcement at the supports and mid-spans 

of the main and secondary beams are equal. 

(6) The hogging slab reinforcement in the whole width of the section 

is included and stressed in tension to the yield stress, ty. 

Assumptions were considered in the previous chapter to calculate 

Mc and Me at mid-spans of main and secondary beams for type (2) or (3) of 

composite design, These assumptions are used again in this chapter to 

calculate Mg and Me for type (4) or (5) of composite design, 

When calculating the fully plastic hogging composite moment My or My 

two cases arise, namely:- 

(a) Case I. Plastic neutral axis within concrete slab 

1.6.0 One + (Figure 6.1) 

This occurs when 

A FA by : 6.1 
Tensile force in hogging reinf orcement, Fry = dAtety 

Compressive force in concrete, Feo = (t - di.) DUie 

Compressive force in steel beam, Fsc¢ = Asefy 

For equilibrium equating total tension to total compression, 
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Fig: 6.2 Section and stress diagram for a hogging composite beam with the neutral axis within the steel beam.



To obtain the fully plastic hogging composite moment My, take 

moments about the line of action of Fite hence: — 

t 

=: Ns ty (5 +t-c) + b(t - da}) Ue oe - c) 6.3 

Wiees dj, = depth of plastic neutral axis at support below top 

of slab 

Case II, Plastic neutral axis within the steel beam 

$65 <a (Figure 6.2) 

This occurs when 

Debi oty- Se esky ‘bike 

The stress distribution at ultimate load is shown in Figure 

652.0; 

A similar procedure to that of the previous chapter is adopted 

for calctilating M, when the plastic neutral axis is within the 

steel beam, The derivation of the formulae is simplified by 

adding equal but opposite forces to the steel beam above the 

neutral axis, giving the equivalent stress distribution shom 

in Figure 6.2.c,. | 

Thus the steel beam is assumed to be stressed in compression 

throughout its full depth, the total equivalent compressive 

force Fe being balanced by the tensile force FL in the hogging 

reinforcement, plus twice the tensile force Fst in the steel 

section above the neutral axis, 

Fe = Asfy 

Fut = DeAtety 

2 Fst = 2 (area of steel beam in tension) .fy 

; sae ‘ : 1 ty - . Area of steel beam in tension = 5 [As - bAtsz ] 6.5 
y; 
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dy may be determined from the dimensions of thesteel section, 

In the case of rolled steel sections or plate girders witha 

rectangular top flange, Case II may be treated in a similar 

manner to that of the previous chapter and subdivided as 

follows:- 

(i) Plastic neutral axis within top flange of steel beam 

ieee So dae ete tp) 

This occurs when 

bAtety < Assfy < (bAtety + 2 Apefy) 6.6 

a, = 4 +As x DeAtet/ty 5.7 2 bp 

Mn = fy [As (5 ++t-c) - Dp (dy. St) Gas + 64 2p)] 6.8 

(ii) Plastic neutral axis within web of steel beam 

Tee a toe tp 

This occurs when 

Agefy -2 Ansfy > DAtety 6.9 

Baim 2 he) by Je 2b et » (As = 2 Ap) = d.Ab sty/fy 6.10 dy f 2 ty 

Me = fy TAR Paso) ah (8 ae a2) n= ty lAst5 £ £ 

wy ten = to te) (dn +t, + t - 2c)] 6.11 

6.2.1 EFFECTIVE WIDTH OF HOGGING CONCRETE FLANGE AT SUPPORTS 

In the previous chapter, it was showm that, to satisfy the three 

conditions put forward for elastic design(®9), or to take the whole width 

of the section when the plastic composite moment Me is calculated, the 

difference between Mc and [M$ + Ms (L - L')] is small (Figure 5.3). 
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Similarly, when M, is calculated, if the plastic hogging composite moment 

My is taken for only a part of the slab, the ultimate slab moment M,(L - y 

must be taken for the remainder, The difference between M, and 

[Mj + Ms(L - L)] is not great when M, is calculated for the whole width of 

the tension concrete flange, 

The above equation may be modified to calculated the plastic hogging 

composite moment of the main beam by substituting ¢ for b, This applies 

for the hogging tensile reinforcement and to the concrete compression . 

flange width if dv within slab. Similarly, when M, of the secondary beam 

is calculated, b is replaced by L, the length of the bay for equal bays ~ 

frame. When M, is calculated for unequal bays frame, then b is replaced 

by the average of two adjacent bays. 

6.2.2 DETERMINATION OF NUMBER OF SHEAR CONNECTORS REQUIRED 

A sufficient number of shear connectors should be provided along the 

supporting beams for composite action at supports and mid-spans to occur, 

To determine the number of shear connectors to provide composite action at 

the supports, two cases arise, namely:- 

Case I, Plastic nevtral axis within the concrete slab 

Here the condition of equation 6.1 must be satisfied, From Figure 

6.1, the total horizontal shear force cannot exceed the compressive force 

in the steel beam, 

« « No, of shear connectors required = ak 
c 

6.12 

Where Pg = 80 per cent of design value (*®) of one shear connector 

Case II, Plastic neutral axis within the steel beam 

Here the condition of equation 6.4 must be satisfied. From Figure 

Sele =



6.2, the total horizontal shear force is equal to the tensile force in the 

hogging reinforcement Pa? hence: - 

rot bok No, of shear connectors required = pre ee 6.13 
c c 

For type (i) of composite design, the number of shear connectors found 

from equation 6,12 or 6.13, depending on the position of the neutral axis, 

may be added to the number required for mid-span composite action found 

from equation 5.23 or 5,25, again depending on the position of neutral 

axis, The total number of shear connectors required for type (4) of 

composite design may be spaced uniformly along the main and the secondary 

beams, 

For type (5) of composite design, the number of shear connectors 

required for composite action at the supports may be found again from 

equation 6.12 or 6.13, depending on the position of bho neutral axis, 

The number of shear connectors required to provide mid-span composite 

action may be found from equation 5,23 or 5.26, again depending on the 

position of the neutral axis, The rumber of shear connectors required 

to provide composite action at supports and mid-spans found from the 

appropriate equations above may be added together and spaced uniformly 

for type (5) of composite design, Such spacing was found satisfactory 

in the experimental part of the research, 

6.2.3 BASIC MODES OF FAILURE FOR INTERNAL BAY 

The value of collapse load by mode A, given by equation 5.27, can now 

be modified for composite action of type (4) or (5). Twas shown earlier 

that each of the end moments (Mp + Ms L) is replaced by M, and the mid- 

span composite moment remains as Mc of Chapter 5, On substitution, 

collapse by mode A becomes:- 
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When composite design of type (4) or (5) is considered, My becomes the sum 

of plastic sagging and hogging composite moments Mg and M, at mid-span and 

support of the secondary beam, Re-arranging equation 6.14, the required 

sum of composite moments My for collapse by mode A to occur is obtained 

from: - 

My = (Mc +M,) = Bet 6.15 

Similarly, for collapse by mode B, each of the end moments (Mp+ Msé) 

is replaced by My and the mid-span moment remains as Me of the previous 

chapter, Hence, equation 5,29 can now be modified for composite design 

by type (4) or (5) and becomes:- 

Similarly, for type (4) or (5) of composite design, 

My = Me a My 

Re-arranging equation 6.16, the required My for collapse by mode B to occur 

is obtained from:- 

2 

My; = (Me +My) = ae . 6.97 

Again, similar to composite design of type (2) or (3), for square 

slabs £ = L, and equal main and secondary beam sizes, then Me = Me and 

My = M, and hence the value of collapse load for type (4) or (5) of 

composite design is identical from either equation 6.14 or 6.16. This 

would again correspond to what Wood ‘59) calls a "junction mode", 

ee



The value of collapse load for modes C and D remain as given by 

equations 4.11 and 4.13 respectively. 

6.3 BEAM AND SLAB FLOOR SYSTEM CONTINUOUS IN THREE DIRECTIONS 

Por an external bay, the value of collapse load by mode A, given by 

equation 5.35, is now modified for composite design of type (4) or (5), 

Each of the end moments (Mp + Ms 5) is replaced by M, and the mid-span 

moment remains as Me of the previous chapter, where M, and M, are con- 

sidered for a width of the concrete flange equal to half of the external 

bay span and one secondary beam, On substitution, equation 5.35 becomes:- 

2 e 

Re-arranging equation 6.18, the required My for collapse by mode A is:- 

i a My Ve (Mc + Mn) 

For collapse by mode B (Figures 4.1 and 4.4), the main beam at the 

left hand support is not continuous and therefore yield lines Si dae the 

external side could not develop, owing to the rotation of the secondary beam 

and hogging reinforcement could be placed in that position, Hence the 

end moment at the left hand support remains as Mg, At the right hand 

support, continuity exists and therefore the end moment there (Mp + Mgt) 

is replaced by My. The mid-span composite moment Mo replaces (Mp + Ms¢) 

as in the previous chapter, Hence equation 5.37 becomes:- 

8 (Me + 0.5 MN + 0.5 Mp) 
pel i 6.20 

Now putting Mz = (Me + 0.5 My + 0.5 Mp) and re-arranging equation 

6.20, the required My for collapse by mode B is:- 

2 

Mz = (Me + 0.5 MN+0.5 Mp) = 2 6.21 
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The values of collapse load for modes C and D remain as given by 

equation 4,23 and 4,25, 

6.4 BEAM AND SLAB FLOOR SYSTEM CONTINUOUS IN TWO DIRECTIONS 

For one-bay continuous frame (Figure 4.7), the value of collapse load 

given by equation 5.39 for collapse by mode A is now modified for composite 

design for type (4) or (5). The end moment (Mp + Ms 5) is replaced by 

Mj» In the previous chapter, the mid-span moment (2 Mp + Ms L) was 

replaced by 2 Mc, where Mc and M, are the composite mid-span and support 

moments of width L/2 of slab am one secondary beam, On substitution:- 

ou = 16 (Me + My) 6.22 
l 

pé?L 
16 (Mc + My) . 6.23 and My 

For collapse by mode B, again the mid-span moment (Mp + Ms £) was 

replaced by Me in the previous chapter, The end moments still remain 

Mp as the frame is not continuous in this direction at either support 

(Figures 4.5 and 4.7). Hence, equation 5.41 still holds for collapse 

by mode B for type (4) or (5) of composite design. 

oe. pe ee 6 2h, 
L 

(Me + ug = BEE 6.25 and My 

Hence, for one-bay continuous frame over the main beams (Figure 4.5) for 

collapse by mode B, types (2) and (4) and also types (3) and (5) of com- 

posite design give the same results. This is due to the discontinuity 

at the supports of the main beam which prevents plastic hogging composite 

moments from forming there, This shows that for this type of beam and 

slab floor system, for collapse by mode B, there is no advantage in 
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changing the composite design from type (2) to (4) or from type (3) to 

(5). For modes C and D, equations 4.31 and 4.33 still hold, 

6.5 BEAM AND SLAB FLOOR SYSTEM FOR TEST M, 
  

Here for collapse by mode A (Figure 4.8), the mid-span composite 

moment (2 Mp + Ms L) was replaced by 2 Mc in the previous chapter, but 

the end moments still remain as Mp. Thus equation 5.43 may still be 

used to evaluate the collapse load for type (4) or (5) of composite design, 

bia. pli = 16 (Mc + Mp) 6.26 

Similarly, when the secondary beams are not considered rigidly jointed and 

plastic hinges do not develop at the ends of secondary beams, equation 

5.43 becomes:— 

I'@', oll. = 16 Me 6.27 

Here again there is no advantage in changing the composite design from type 

(2) to (4) of from type (3) to (5) for collapse by mode A, 

For collapse by mode B, each of the end moments (2 Mg + Ms ¢) is 

replaced by 2 My and the mid-span moment (2 MB + Ms £) is replaced by 

2 Me as in the previous chapter, where Me and My are for width t/2 of slab 

and one edge beam, Hence, for type (1) or (5) of composite design, 

equation 5.45 becomes:- 

pei 46 (Me +36) 6.28 

The value of collapse load for modes C and D remain as given by 

equations 4,38 and 4..39. 

6.6. BEAM AND SIAB FLOOR SYSTEM FOR TEST M2 

For collapse by mode A (Figure 4.9), this failure is exactly the same 

= 69. =



as that of test M, ard equations 5.43 and 5.4 may be used to evaluate the 

collapse load, It was shown in the previous section that there is no 

advantage in using type (4) of composite design rather than type (2) or 

type (5) instead of type (3) for collapse by mode A, 

For collapse by mode B (Figure 4.9), the right hand side end moment 

(2 Mp + Ms ¢) is replaced by 2 My The mid-span moment (2 Mp + Ms 2) 

was replaced by 2 Me in Chapter 5, where Me and My are of width ¢/2 of 

slab and one edge beam, Hence, for type (4) or (5) of composite design, 

equation 5.46 becomes:- 

pen = S(2 Me + ty) a 

For modes C and D, the value of collapse load remain as given by 

equations 4.414 and 4,42, 

6.7 COMPARISON OF COLLAPSE MODES OF THE INTERNAL BAY 

Equations of collapse load by modes A, B, C and D, where composite 

action is present at the supports and mid-spans of the supporting beams, 

can be compared to produce boundary equations, These boundary equations 

can be plotted graphically by a similar procedure to that used in the 

previous two chapters, 

Comparing equations 6.14 and 4.11 for modes A and C, collapse will 

be by mode A if:- 

8 (Mc + My) 18 

et ns pm eee ee 

Introducing a new strength ratio, y, = ye then, 
Se 

Yn < ve [ toes 4% ] 6.30 
(3 - ptand) + tang 

iG oc



Comparing equations 6.14 and 4.13 of modes A and D, collapse will be 

by mode A if:- 

8 (Mg + Mn) 
£ 

4.80 f 

Gp -tany) ‘fany * PJ» Ms 

Using ‘n = fo eS then, 

v‘! 12p? 4 
nS (Gp - tant) Beene 71 6.31 

Comparing equations 6,16 and 4,11 of modes B and C, collapse will be 

by mode B if:- 

f 48 p 
Con o(3 — ptang) [ tand +4]. Ms 

  

Introducing a new strength ratio, Yn = = 5 : then, 
Se 

¥ 12 Q 

N= FG = ptang) ! tang *1 J Soe 

Comparing equations 6,16 and 4,13 of modes B and D, collapse will be 

by mode B if:- 

8 (Me + MN) 18 1 
i : Ga at Pa te. es 

M 
Using Yy = ae then, 

Yu 42 ae : 
: (3p - tanh) Laat 2p J 6.33 

A 

Finally, comparing equations 6.14 and 6.16 of modes A and B, collapse 

will be by mode B if:- 

8 (Me + Mn) = 8 Me Mn) 
L 

w= Oto



: Mc + M Mo + M Rae Introducing Yn . Me si/2- and vy = feito and dividing by Ms then, 

i: 
2) 6. 3h 
N 

2 (2+ 

be. oP Pe 

  

Plotting these inequalities gives the graph of Figure 6.3. Charts 

for slabs with other boundary conditions can be similarly drawn, Knowing 

the sides ratio p, the limits of the strength ratios Yn ana N can be 

determined from Figure 6,3 for any of the basic modes of collapse, 

Although the limits of the strength ratios for any mode of collapse can be 

found easily from Figure 6,3, difficulties in finding the minimum — of 

the supporting beams with the aid of a table similar to Table 5(i) for 

type (4) or (5) of composite design will arise, Such difficulties and 

the need for the use of computer for type (4) and (5) of composite design 

will be discussed in the following section, 

6.8 DESIGN PROCEDURE FOR SLAB MOMENT AND BEAM SIZES 

To use Figure 6.3, together with tables similar to Table 5(i) of 

Chapter 5 for type (4) or (5) of composite design is very complicated, 

Ms is first determined from equation 4.11 or 4.13, depending on 

whether the sides ratio p $ 1.0 or from Figure 4.13, The critical values 

of Yn and YN can then be found for a given value of the sides ratio p from 

Figure 6.3, and hence the limits of the required values of (Me + My) and 

(Mc + My) are found for collapse by a given mode, knowing the loading and 

slab size, 

For type (4) or (5) of composite design tables similar to Table 5(i) 

are essential for the hand computation method of selecting the appropriate 

Sizes of the supporting beams in a reasonable time, To produce such 

tables involves the calculation of My, and Me if slab reinforcement is 

included, for many variables such as the area of slab reinforcement which 

in turn depends on the loading and dimensions of the slab, cube strength, 

sD
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slab thickness, slab width and size ofslab reinforcement used, Such 

tables could be drawn up with the aid of computer but prove to be very 

complicated to use. Hence, it could be concluded that type (4.) or (5) 

of composite design could not be employed without the use of computers 

directly. 

The computer program mentioned in Chapter 1 can design automatically 

beam and slab floor systems with different boundary conditions by type (4) 

or (5) of composite design as well as types (1), (2) and (3) discussed 

earlier, One facet of the computer program is to select and print 

minimum adequate sizes of the supporting beams, 

6.9 EXAMPLE 

Solving the same example of the previous two chapters by type (4) and 

type (5) of composite design, where a loading of 175 lbs./sq.ft. (including 

an allowance for dead load) on a 30' by 20' slab composite at mid-span and 

supports and continuous over the main and secondary beams, then 

Ms = 3601 lbs, Pi Be run as in the previous examples of Chapters 4 and 5, 

The same 6" slab thickness and 6000 lbs./sq.in, cube strength are assumed, 

From Figure 6.3, for independent nembenas of the slab, then 

Yn > 149.0 and Yn > 8.5. 

Me + M Mo + M 
Hence, Mesa > 1920 and Wyo > 8.5, 

or (Me + My) > 19.0 x 3601 x 10 lbs.ft. 

> 68)..2 kips - ft. 

and (Mc + M,) > 8.5 x 3601 x 15 lbs. ft, 

> 459.1 kips - ft, 

Now to select the minimum sizes of the supporting beams for type (J) 

or type (5) of composite design to satisfy the above limits of the chart 

of Figure 6,3 for independent collapse of the slab requires a table 
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similar to Table 5(i) which is rather complicated to use as explained 

earlier. 

This example is solved by the use of the computer directly for inne 

(4) and type (5) of composite design as shown below. For maximum economy 

the structural sections are chosen to give a collapse load by the basic 

mechanisms which are identical, Hence the values of the required 

(Me + My) and (My + Mn) should be equal to, instead of greater than 

684.2 kips - ft. and 459.1 kips - ft. respectively for the basic mechanisms 

to be identical, 

For type (4) of composite design the computer automatically calculates—. 

and prints the value of Ms as 3601 lbs, ft./ft. run and the areas of slab 

reinforcement in longitudinal and transverse directions At, and Atg as 

0.2386 in®/ft. run and 0.2653 in?/ft. run, For the main beam with a slab 

width of 20' the computer selects and prints the minimum size of this beam 

as a 15 x6 x 35 U.B. + 6" thick slab. The following values are also 

obtained from the computer; Me = 406.0 kips - ft., My = 299.0 kips - ft., 

My = 174.72 kips - ft, and (Me + My) = 705.0 kips - ft. for the selected 

main beam, The value of (Me + MN) = 705.0 kips - ft. is greater than the 

required value of 684.2 kips - ft. as the selected main beam is the most 

economical section available to give the nearest value of (Me + My) to the 

required one, Similarly, for the secondary beam with a slab width of 30! 

the computer selects the minimum size of this beam as a 12 x } x 22 U.B.+ 6" 

thick slab with (Mc + My) = 464.3 kips - ft. which is greater than the 

required value of 459.1 kips - ft, 

For type (5) of composite design, where slab reinforcement is included 

in calculating Me and Mc, more economical sections for the main and 

secondary beams are expected to be selected by the computer. For the 

main beam, the computer selects this beam as a 16 x 5a Bau Bao +68 

thick slab with Me = 437.8 kips - ft., MN = 285.4 kips--=ft 25 
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Mp = 161.6 kips - ft. and (Me + My) = 723.2 kips a ft., which is greater 

than the required value of 684.2 kips - ft, Similarly, for the secondary 

beam, the computer selects the minimum size of this beam as a 

12x 4 x 162 U.B. + 6" thick slab with (Mc + My) = 477.4. kips - ft, which 

is greater than the required value of 459.1 kips — tt, 

In the next chapter, a detailed account of the general computer program 

embodying the design of beam and slab floor systems by the various assump- 

tions on degree of composite action, discussed already, will be given, 

Comparisons between the various assumptions on degree of composite neon 

will be made from the point of view of weight saving and deflection on a 

series of design examples of beam and slab floor systems of multi-storey 

buildings, The effect of different slab thicknesses and cube strengths 

on weight saving and deflection of composite and non-composite construc- 

tions will also be investigated, 
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CH Ase ie BR 7 

THE DESIGN OF BEAM AND SLAB FLOOR SYSTEMS BY 

COMPUTER AND THE COMPARISON AND EVALUATION OF 

RELATIVE ECONOMY OF THE VARIOUS DESIGN SOLUTIONS 

7.1 INTRODUCTION 

A detailed account of a general computer program embodying the various 

assumptions on degree of composite action will be given in this chapter. 

The data input consists of sectional properties, values refer to the 

assumpticn on degree of composite action to be adopted, loading, yield 

stresses of beams and slab reinforcement, size of reinforcing bars to be 

used in both directions and frame properties and geometry. The machine 

output gives the ultimate slab moment Ms, ‘the areas of slab reinforcement 

Ata and Atg required in both directions and the size of the sections to be 

used for all the members of the system, together with their plastic compo- 

site moment and the depth of neutral axis at supports and mid-spans, 

Other useful information is also printed, such as the total horizontal 

Shear force between the concrete slab and the supporting beams, this helps 

in finding the number of shear connectors required on each beam, The limits 

of the mid-span deflection of the supporting beams and the total weight of 

beams, slab reinforcement, concrete and of the whole system for a given 

cube strength and slab thickness is also printed, 

The program was written in Atlas Autocode (7° 74) for use on the Atlas 

Computer, 

Designs were prepared on a series of examples of beam and slab floor 

systems of multi-storey buildings shown in Figure 7.1 for various assump- 

tions on degree of composite action. These designs were compared with 

each other and with the plastic collapse approach with no composite action 

from the point of view of weight saving and deflection, In these examples 
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the effect of slab thicknesses, cube strengths, sides ratios (p) and magne- 

tude of live loads were investigated and their influence on the weight of 

the beam and slab floor systems was determined, 

122 DESIGN PROCEDURE | 

The complete design approach by the various assumptions on degree of 

composite action has been described in Chapters 4, 5 and 6, The design of 

multi-bay beam and slab floor systems may be summarised as follows:- 

(1) The sections and frame data are read Lrg 

(2) The first cube strength is selected, 

(3) The first slab thickness is selected, 

(4) The first internal bay is selected, 

(5) The total load (dead load + live load) is calculated and multiplied 

by the chosen load factor, This factor is taken as 1.75 for all - 

the design examples, 

(6) From the limit of the sides ratio (p), the appropriate equation 

is used to calculate the ultimate slab moment Ms. The areas of 

slab reinforcement per ft. run in both directions are also calcu- 

lated, 

(7) Knowing from the data read in which assumption on the degree of 

composite action is to be considered, the appropriate equations 

are used to calculate the required M; and My for the main and 

secondary beams, 

(8) From the list of standard sections read in, suitable section sizes 

are selected automatically for the main and secondary beams with 

their My and My values equal to or greater than the required 

values, The composite moments at supports and mid-spans of the 

selected beams are calculated together with the depth of their 

plastic neutral axes, 
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(9) The weight of the main and secondary beams, slab reinforcement and 

concrete are calculated, 

(10) The maximum allowable deflections and the limits of deflection at 

mid-span of the selected main beam and secondary beam are calcu- 

lated, 

(11) Steps 5 - 10 are repeated for the next internal bay until all the 

internal bays are designed, In the case of equal bay frames, 

where the internal bays are identical, only the first internal 

bay is designed, and the weights of its selected beams, slab 

reinforcement and concrete are multiplied by the number of. 

internal bays, 

(12) The first external bay is selected and steps 5 - 10 are repeated 

using the appropriate equations of an external bay, 

(13) The last external bay is selected and steps 5 - 10 are peveateee 

In the case of equal bay frames, where the two external bays are 

identical, only the first external bay is designed and the weights 

of its selected beams, slab reinforcement and concrete are multi- 

plied by two, 

(14) The total weight of the selected beams, slab reinforcement, 

concrete and of the whole system is calculated, 

(15) Steps , - 1h are repeated for the next slab thickness up to the 

final slab thickness, 

(16) Steps 3 - 1) are repeated for the next cube strength up to the 

final cube strength, In the case of a one-bay frame, steps 1 = 

10 and step 14 are used for the various cube strengths and slab 

thicknesses, employing the appropriate equations for beam and slab 

floor system continuous in two directions, 

In the case of two-bay frames, the two bays are treated as two external 

bays with a fictitious internal bay in between. Hence the system will be 
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treated as a three-bay frame, When the system is designed, the weight of 

the beams, slab reinforcement and concrete of the internal fictitious bay 

will be ignored, 

A flow diagram of the general program which designs beam and slab floor 

systems with any number of bays for any of the five assumptions on degree of 

composite action is shown in Figure 7.2. The program itself is shown in 

Appendix 2, 

7.3 ARRANGEMENT OF THE DATA TAPE 
  

This refers to the general computer program shown in Appendix 2, One 

complete design of a frame for any of the five assumptions on degree of 

composite action is denoted as one case. Cases may follow one another in 

sequence on the data tape. 

The following data must be presented in the correct sequence, using 

consistent units, 

1. Section Data 

(a) The total number of sections presented, 

(b) For each section, in ascending numerical order:- 

(i) Area (in,?), 

(ii Depth of the section (in.), 

(iii) Plastic modulus about the major axis (in,.°), 

(iv) Flange width (in.), 

(v) Flange thickness (in.), 

(vi) Web thickness (in.), 

(vii) Second moment of area about the major axis of 

‘ bending (in,*), 

(viii), (ix) and (x) Figures presented in the steel tables (72) 

to indicate the section size, 
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an 

3. 

Ae 

be 

6. 

Number of Cases 

Live Load (1lbs./sq.ft.) 

Data Representing Which Assumption On Degree 

Of Composite Action Is Being Considered 

(a) A zero value to indicate that composite action at the supports of 

the main and secondary beams is ignored, i.e. type (1), (2) or 

(3) assumption on degree of composite action, This value will 

be 1,0 if composite action at the supports is taken into considera- 

tion, i.e. type (4) or (5) of composite design, 

(b) A value of 1.0 indicates no composite action at all, i.e. type 

(1). <A zero value indicates types (2), (3), (4) and iS). 

(c) A value of zero indicates that slab reinforcement effects are 

ignored when the plastic composite moments at mid-spans of the 

supporting beams Mc and Me are calculated, i.e. type (1) of non- 

composite design or types (2) and (4) of composite design, A 

value of unity indicates types (3) and (5) of composite design, 

where slab reinforcement effects are included when Mc and Me are 

calculated, 

Yield Stresses and Sizes of Slab Reinforcement Data 

(a) Yield stress of sections (1bs./in,?) 

(b) Yield stress of slab reinforcement (1bs./in.?) 

(c) Conerete cover for the reinforcing bars + 4 the diameter of the 

X - direction slab reinforcement, 

(a) Conerete cover for the reinforcing bars + the diameter of the 

X - direction slab reinforcement + 4 the diaméter of the Y - 

direction slab reinforcement, 

Frame Data 

(a) Frame number 

(b) Total number of bays 
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(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

(4) 

Type of assumption on degree of composite action 

A value always put in as zero except in the case of two-bay 

frames when 1.0 is used 

A value of zero indicates that the bays are of equal length, 

This value will be unity for unequal bay frames, 

Width of the frame (ft.) 

A zero value for the length of the fictitious bay before the 

first (external) bay length 

The length of each bay (ft.). In the case of equal two-bay 

frames, the length of the internal fictitious bay is the same 

as that of the external bays, For unequal two-bay frames, the 

length of the internal fictitious bay must always be equal to 

that of the left hand side external bay. 

A zero value for the length of the fictitious bay after the 

last (external) bay length 

This completes the data for any one case, Further cases (i.e. any of 

the other assumptions on degree of composite action, or another frame 

altogether for any of the five types of assumptions on degree of composite 

action) may be designed by repeating sections (3) to (6) for each case, 

The data tape is terminated with 

3K a hi 

74 EXPLANATION 

This refers to the preparation of the data tape in the previous section, 

74.1 SECTION DATA 

The properties of all the sections presented are stored in an array 

form, row by vow for each section, (two dimensional array). This data 

could be stored permanently on a magnetic tape so that it can be used as 

required, 
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In the design examples attempted seventy four Universal Beam sections 

were used, i.e, all the Universal Beam sections available in the steel 

tables(7#), Owing to the lack of availability of a complete range of 

sections, from the point of view of weight per unit length, and for more 

accurate comparison between the various assumptions on degree of composite 

action in weight saving, the six joists available in the steel tables (72) 

were also used, 

The data for the lightest beam is input in the first row followed by 

that of the next heaviest in the second row and so on. Where more than one 

beam section has the same weight per unit length, then the data of the sec- 

tion with the smallest plastic modulus, which is usually the shallowest, is 

input first. It was found for beam sections having the same weight per 

unit length that the plastic modulus was directly proportional to both their 

plastic moment and the sum of their plastic moment at support and mid-span 

(i.e. My or My) for the various assumptions on degree of composite action, 

Hence the beems selected by the computer, according to the section's input 

data sequence, are the most economical sections available, 

There are several limitations imposed upon the standard sections which 

could lead to the rejection of several of them:- 

(a) Plastic hinge action is not permitted in a section (whether it is 

to be used as a beam or a column) if the flange width to thickness 

ratio exceeds 15 in the case of high yield steel or 18 in the case 

of mild steel to B.S,15(’5), Exceeding these limits will lead to 

premature local buckling in the plastic range, For mild steel 

(used in all the design examples) all the standard sections are 

satisfactory in this respect. If high tensile steel is to be 

used, then several sections are unsuitable, (These may be found 

in the steel tables ‘??), 

(b) Premature web buckling may occur (7*) if the mean axial stress 
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exceeds a value related to the size of the section, and if the web 

‘depth to thickness ratio exceeds 4 in the case of high tensile 

steel or 53 in the case of mild steel, No Universal Beam sections 

are liable to such buckling if used as beams, 

(c) Where beams are not laterally restrained by the floors, a limit is 

set to the slenderness (=) ratio, The limit is 13.5 /T (75) with 

a maximum value of 150, where T is a measure of the torsional 

stiffness of the beam, In all the designs attempted for type (1) 

assumptions on degree of composite action (where canposite action 

is assumed not to exist between floors and the supporting beams ) 

lateral restraintis assumed to exist, For the other four assump- 

tions on degree of composite action, composite action is present 

and hence lateral restraintis also present, - 

As mentioned earlier, there are seventy-four Universal Beams given in 

the steel tables(’*), However, if there is no restriction on the depth of 

the sections selected, then the most economical design from the point of 

view of weight and deflection for any of the assumptions on degree of com- 

posite action may be obtained by using a limited range of thirty-one of 

these, Each of the remaining forty-three sections has a plastic modulus 

which is less than that of one of the other thirty-one, with a weight per 

unit length which is at least as great, Thus, in this case, none of these 

forty-three beams needs to be considered, since, when selecting a beam, there 

is always another section which is stronger (whether composite or non-compo- 

site), yet no heavier. For reference purposes, the sectional properties 

of this limited range of Universal Beams is given in Table As). only 

these thirty-one beams are used instead of the above mentioned seventy-four 

beams, then a considerable amount of computer storage and time will be saved, 

fe4.2 YIELD STRESSES AND SIZES OF SLAB REINFORCEMENT DATA 

(a) Mild steel to B.S.15‘73) is assumed for all the beam sections, 

ae $D3: =



  

  

  

                    

Ref, EOE ho of en Width of seer ees . 

No oe aoe Modulus Be orron tree asp of Area |Serial Size * | Ga)] Ga) [Gn sy] Gn) | Ga.) ] Gn.) 102% 
4 4.40 | 10,00 16.0 4.0 0.269 10,230 68.8 |10 x kh x 15 

2 4.86 | 12,00 20.6 1,0 0.269 10.230 405.5 112 x hi. 16a 
3 5.62 | 12516 24.8 401° FO. 549: 10520 130.0 112% he x49 

4 6,40 25472 32.8 e900 10.6555.:10 9059 1.96 62} Ade 5 x: 22 

5 hen 1.44.96 D269 4.864 10.421 |0,28), 1A S112 x 5x: 2 
6 | 7.64 | 15.64 | 43.9 | 5.582 |o.s40 |o.an9 | 298.1 [16 x 52 x 26 
7 8.81 | 13.86 471 64733 |0.383 |0.270 | 289.6 | 14 x 63 x 30 
8 Pele AT 5h. 61 5.605 |0.440 |0.272 S{hate) 16x 5S. 4.51 

9 10,00 | 14,00 54-5 6.75C 10.453 |0.287 oI oti 1h..x 62 Roe 
10 10.29 | 15.00 58.5 6,000 {0.490 |0.306 SBaEooT 15. x! Geax 35 

14 10.59 | 15.85 63.8 6.992 10.428 |0,229 146.3116 x 7x 36 
12 + 77 1°16 ,00 72.7 Tae 0.503 10.307 Stott x 7. UD 

4a 1) 13,23 1 17,86 89.6 | 7.476 |0.500 }0.334 | 704.8 18 x 7h x 45 
14 | 14.71 | 18.00 | 100.9 | 7.500 0.570 }0.358 | 800.6 |18 x 7% x 50 
15 Wont F420 ,.00 125.2 8.216 10.520 [0.376 | 1137.6 | 21 x 84 x 55 
16 18,23 | 20.99 41dDy 91 8.24 |0.615 |0.400 | 1326.8 | 21 x 84 x 62 
v7? 20,08 1 23.78 175.6 8.961 0.582. 10.416.1.1815.1 | 2k x 9% 68 

18 eS Vil a oot 200.3 8.985 |0.682 |0.40 | 2096.4 ]24 x 9x 76 
19 24.71 | 26.69 A563 9.962 10.637 10.462 | 2827.7 127 x 10 x 84 
20 27.05" | 26.9 277.8 9.990 |0.747 |0.490 | 3266.8 | 27x 10x 9h 
24 29.11 | 29.68 315.1 | 10.444 10.690 10.580 | 4049.4 | 30 x 104 x 99 

ee DF oe Shes 542e7 | 10,070 10.932 {0.570 | 4080.5 | 27 x 10 x 114 

25 5491.35.24 * 50.00 FL fad 140,50" 4.0 850 10.564) AS19711 30% 102 x 446 

2h. Sige De a7 AAA? | 11.482 |0.740 |0.552 | 5896.0 | 33 x 113 x 118 
25 38.26 | 33.10 | 465.9 | 11.510 |0.855 10.580 | 6699.0 | 33 x 114 x 130 

26 5069 435.55 D7—ee | 11:.9hb. 105795 10.597 |. 7801.5 1°36 x 12 x 135 
27 4.16 | 358k 580.0 | 11.972 |0.940 }0.625 | 9012.1 | 36 x 12 x 150 
28 49,98 | 36.16 667.0 | 12,027 {1.100 |0.680 | 10470.0 | 36 x 12 x 170 
29 57 At Pe ses 766.8, | 12.417 |'1.260-10.770192103<0 | 36 x12 % 19k 

30 67.754 35.88 W205 | 16.475 |1.260 10.765 | 14988.0 | 36 x 164 x 230 
34 76.56 | 36.24 [4076.0 | 16,555 11.440 10.845 |17234.0 | 36 x 164 x 260 

Table 7(i). Sectional properties of 31 Universal Beams 

 



giving a yield stress of 16,0 tons/sq.in, 

(b) Mild steel is assumed for the slab reinforcement in all the design 

examples, giving a yield stress of 36,000 lbs./sq.in,. in accordance 

with Table II of C.P. 114.(69), 

(c) According to C.P, 114.(6°) a minimum concrete cover not less than 

2 inch nor less than the diameter of the reinforcement must be 

used, Assuming 3 inch diameter bars for the slab reinforcement 

in both directions for all the design examples, The concrete 

cover + half the diamter of reinforcement is therefore taken as 

0.75 inch, This value is input in the data to determine the 

effective slab depth in the (longitudinal) X - direction 

(t - 0.75), where t is the slab thickness, 

(ad) Similarly, the value cf the concrete cover + one and a half times 

the diameter of reinforcement, as slab reinforcement is equal in 

both directions, is taken as 1.25 inches, This is the value 

input in the data to determine the effective slab depth in the 

(transverse) Y - direction. 

Wielhe Se ORAME, DATA 

Failure by mode A of an internal bay (Figure 4.1) consists of cae 

secondary beam and a slab width equal to the average length of the two 

adjacent bays, This slab width equals the length of the bay for equal 

bay frames, For an external bay failure by mode A (Figure 4.1) consists 

of one secondary beam and a slab width equal to half the length of the 

external bay, The average of the two adjacent bays is always taken auto- 

matically by the computers for each bay. For this reason, a zero value 

for a ficitious bay length is always input in the data tape before the 

first (external) bay length and the average of the two adjacent bays, in 

this case, is the same as half the length of the external bay. For the same 

m4 Oho



reason, a zero value is input after the last (external) bay length, 

In the case of two-bay frames, the reason for having a fictitious bay 

inbetween the two bays is to enable the secondary beam between them (Ly(2)a, 

Figure 7.3.a)to be designed, The width of the slab on the top of this 

beam for failure by mode A is the average length of the two adjacent bays 

as shown in the shaded area Figure 7.3.a. The width of the slab on the 

top of the same beam for the frame with the ficitious internal hay inbetween, 

shown shaded in Figure 7.3.b., must always be the same as that of Figure 

7e3ea. ‘For this reason the length of the ficitious internal bay for unequal 

two-bay frames must always be the same as that of the left hand side external 

bay. In the case of equal two-bay frames (e.g. Frame No, 6 Figure 7...a) 

the length of the fictitious internal bay is the same as that of the exter- 

nal bays as shown in Figure 7.4.b. In the case of two-bay frames, a value 

of 1 is input in the data tape in position 7.3.6.(d). Hence the weight of 

the internal fictitious bay beams Ix(2)b and Ly(2)b, slab reinforcement and 

concrete shown in Figure 7.3.b, will be ignored and the canplete design will 

be that of a two-bay frame, Figure 7.3.a. 

The frame data for the unequal two-bay frame 5, Figure 7.3.a, shown 

with the fictitious bay inbetween in Figure 7.3.b, for type (2) assumption 

on degree of composite action are shown below:- 

(a). o> fe). .-5) 3 Ot ease 

Cg) = CL) 20. 3060 “SO 48 03 6 

The (g) -> (i) frame data values for the two equal bay frame 6, Figure 

74.8, are:- 

0 26,0 2670 26.0 0 

The frame data for the one-bay frame 4. for type (3) assumption on degree 

of composite action are shown below:- 

fa s(t) bot: 3 OO CoeS 

Cz) => (4) 0-30.00 
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In the next section, a typical output of the computer program for the 

complete design of frame 1 (Figure 7.1) for type (5) assumption on degree 

of composite action will be shown, The complete data for this design is 

as follows:- 

80 
Number of beams 

4.32 3.0 41.539 2,0 0,22). Properties of 

Oa 2,0 560 260 Lo 5 SOx Be Jost 

Section properties for the other five joists 

4.40 10 46-0 4.0 0.269 Properties of 

0.250 888 100 140 31:5 50 1Oex x et B 

Section properties for the other seventy-three Universal Beams 

1 Total number of cases 

100 : Live load 

+0... 0.5" (a) -> (c) Data for type 

(5) of composite design 

35840 36000 0,75 1,25 (a) -> (d) Data for yield 

stresses and slab rein- 

forcement 

$95 Oi Oe 6,0 (a) -> (#) Frame data 

F900. 500g gO). SOs: Ae Oe (g) -> (i) Frame data 

KART 

7.5 TYPICAL OUTPUT OF THE COMPUTER PROGRAM 

Frame 1 (Figure 7.1) is used to demonstrate a typical output of the 

computer program for the complete design of a frame, Frame 1 consists of 

five equal bays of length 30 feet. The width of the frame is 20 feet, 

Hence the sides ratio (p) is 0.67, which implies mode C independent slab 

collapse for the internal and external bays. A live: load. of 100 lbs./sq.ft. 

is applied, with an assumed cube strength of 4,000 lbs./sq.in. and a slab 
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thickness of 5 inches, Consideration is given to type (5) assumption on 

degree of composite action, 

The computer selects the first internal bay (bay no, 2) and calculates 

its ultimate slab moment per unit run Ms, hence the area cf reinforcement 

in both directions At, and Atg. The main beam Ix(2) (i.e. beam spanning 

in the X - direction (bay no, 2)) and the secondary beam Ly(2) (i.e. beam 

spanning in the Y - direction (bay no. 2)) are then designed and their com- 

posite properties are calculated, Since all the internal bays are identi- 

cal, the computer designs only the first internal bay, The first external 

bay is then selected and similarly designed, Since the two external bays 

are identical, the design of the whole ftaue is complete, Finally, the 

weight of the beams, slab reinforcement, concrete and of the whole frame 

are printed. The complete output design of Frame 1 for type (5) assump- 

tion on degree of composite action is shown below:- 

Frame 1 type (5) 

Cube strength = 4000 lbs./sq.in, 

Slab thickness 5 inches 

Bay No. 2 

Ms(2) = 3,38 kips - ft./ft.run (equation 4.12) 

Ata 0.28 in.?/ft.run 

(equation 5232) 
Ate = 0.33 in.?/ft.run 

Required Mz(2) = 639.84 kips - ft, (equation 6,17) 

Required My(2) = 430.83 kips - ft, | (equation 6,15) 

CHOSEN BEAM SIZE IN Ix(2) DIRECTION = 16 x 54 x 31 UB. 

Mg = 161,58 kips - ft. My= 283.14 kips - ft, Me =) 596 26. kips.=ft; 

Chosen M;(2) = 679.4 kips - ft. 

dy (at mid-span) = 1.24) inches dj, (at support) = 5,31 inches 

Distance of point of contraflexure from support = 3,54. feet 

, Horizontal shear force in Lx(2) direction due to mid-span composite action 

= 145.9? utoens 
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Horizontal shear force in Ix(2) direction due to support composite action 

= 90,39 tons 

Second moment of area of Ix(2) composite section = 1410.56 in.# 

Maximum allowable deflection at mid-span = 1,0 inch 

Limits of mid-span deflection = 0.89" -> 0.17" (i.e. limits of mid-span 

deflection at working load of the composite section if considered simply 

supported or encastré depending on the stiffness of the supporting columns) 

CHOSEN BEAM SIZE IN Ly(2) DIRECTION = 12 x 4 x 164 U.B. 

Mp 194.62 kips - ft. Me = 251.3 kips - ft. iT] 61.53 kips - ft. M, 

4..72 inches dy = 0.82 inches dn 

Distance of point of contraflexure frame support = 2.9 feet 

Horizontal shear force in Ix(2) direction due to mid-span composite action 

=f .(6 bons 

Horizontal shear force in Ly(2) direction due to support composite action 

=377.70 tons 

Second moment of area of Ly(2) composite section = 562.6 in,* 

Maximum allowable deflection at mid-span = 0.67 inches 

Limits of mid-span deflection = 0,659" -> 0,132" 

Bay No, 1 

Ms(1) = 3.73 kips - ft./ft.run (equation 4.24) 

Avge 0131 inv7/?fti ren Atg<= 0536 ing? /Ptie 

Required My(1) = 639.8) kips - ft, (equation 6.21) 

Required My(1) = 215.41 kips - ft. (equation 6.19) 

CHOSEN BEAM SIZE IN Lx(1) DIRECTION = 15 x 6 x 35 U.B. 

Mp=174.72 kips -ft. My= 305.4) kips - ft. Me = 42923 kips - ft, 

Chosen M;(1) = 669.39 kips - ft. 

d, = 1.39 inches dn = 5.34 inches 

Distance of point of contraflexure from support = 5.53 feet 

Horizontal shear force in Lx(1) direction due to mid-span composite action 

= 164.6) tons 
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Horizontal shear force in Lx(1) direction due to support composite action 

=-100,25 tons 

Second moment of area of Ix(1) composite section = 14,7,22 in,* 

Maximum allowable deflection at mid-span = 1,0 inch 

Limits of mid-span deflection = 0.87" -> 0,17" 

CHOSEN BEAM SIZE IN Ly(1) DIRECTION = 6 x 34 x 114 JOIST 

Mp = 25,92 kips = ft, - My = 90.47 kips - ft. Mo = 128.65 kips - ft, 

Chosen My(1) = 219.13 kips 

1 

dn = 0,99 inches dy = 4.77 inches 

1G. 

Distance of point of contraflexure from support = 2,3) feet 

Horizontal shear force in Ly(1) direction due to mid-span composite action. 

= 54.08 tons 

Horizontal shear force in ly(1) direction due to support composite action 

= 54.08 tons 

Second moment of area of Ly(1) composite section = 174.38 in,# 

Maximum allowable deflection at mid-span = 0,67 inches 

Limits of mid-span deflection = 1,06" -> 0,21" 

Total weight of beams in Lx direction = 2,183 tons 

Total weight of beams jin Ly direction = 0.795 tons 

Total weight of all the supporting beams in the frame = 2.978 tons 

Total weight of slab reinforcement in Lx direction (longitudinal) = 1.593 tons 

Total weight of slab reinforcement in Ly direction (transverse) = 929etons 

Total weight of all slab reinforcement in the frame = 3,522 tons 

Total weight of all the concrete in the frame = 80.357 tons 

Total weight of the whole frame = 86.857 tons 

The time taken to design this frame for four different cube strengths 

and four slab thicknesses on the Atlas Computer is 30 seconds, Hence the 

computer time taken to design the complete output above (i.e, one cube 

strength and one slab thickness) is approximately two seconds, 
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The results of the complete design of frame 1 by type (5) composite 

design, together with the designs by the other four assumptions on degree 

of composite action are shown in Figure 7.5, All these designs are con- 

sidered for a live load of 100 lbs./sq.ft., a cube strength of 4000 lbs./ 

ae and a slab thickness of 5 inches, Figure 7.6 also shows the results 

of the complete design of frame 1 by the five types of assumptions on degree 

of composite action for the same applied live load and cube strength, but 

for a slab thickness of 7 inches, 

7.6 DESIGN EXAMPLES 

In order to test the capability of the program to design single-bay and 

multi-bay beam and slab floor systems, twelve frames were deliberately 

devised, These frames were used to investigate the effects of various 

parameters on their weights, These frames were also used to compare the 

various assumptions on degree of composite action from the point of view of 

weight and deflection savings, The geometry of every frame is shown in 

Figure 7.1. A brief discussion on each frame is given below, 

Frame 1:- 

This is a five equal bay frame, The sides ratio (p) is 0.67, hence 

independent slab collapse occurs by mode C for both internal and external 

bays. The designs of this frame, together with that of frame 2 below for 

various types of composite action are ieiewtt ated in detail to study the 

effects of varying the slab thickness and cube strength on the weight of 

beam and slab floor systems, Comparisons between the beams selected by 

the various types of assumptions on degree of composite action from the 

point of view of deflection, overall structural efficiency and failure load 

are made using this frame, 

Frames 2 and 3:- 

Frame 2 is an unequal six-bay frame, where the two external bays and 

the first and last internal bays are identical, This was devised to check 

= 110 =



  

  

              

  

  

              

  

  

              

  

  

              
                    

  

  
  

  

  
          
    

' 

6 IBx7Bx 45 Be Bx & x4S5ua 
3 5 a 3 

‘9 x we 9D) 
a x tt * e ¥ un 03 nyP t % ne ‘ee 

Ct) a t 40 a0 

(463° 0-294) |(\-430> 0-287) 

WB = 4-24T WR = 3 -6OT Wc .=. 80: 367 WF = 88-257 

mirr ox +2 use lox ?x Bousa 

3 5 
hype 0 Nt up 4o : a 48 36 t a a (2) x q 09 9 

q C2:775"=0.15S")1 (Q-“Kkel"= 0-152") 

WB = 3°08 T WR = 3: 32r WF = &7- 367 

pnlSx © x 35 UB) 'ISx &x 35ue 

‘ad : 
rype t a ' Hen 

; f ‘gs ee 
(3) t $ a= es r v oo go 

(0-605 —0:173 ) (0-S68"= 0-173) 

We = ven eo. 7: WR a ear WF = 86-87 7T 

Oh Fe SOhe ‘Sx & x 35u8 
type YP a ‘“ fl 

x : SO WG 
a a (4) tg : v0 zo 0 a 99 49 

© 8650-193) o-195 0155) 

WRB > 3-427. WR os 3-63 T WF = 87- 427 

hySx ox 35uB , lex SSxBlus 
-I 

kype = “IN I 
x 273 nN -1 x as 

(5S) m si i oi 4 Si 9 Nv 0 
(0:687-0:177) (9.66055 0:193 

We =. ¢ S37 WR = 3:52 7 WF = 86- BOT 

m-a-d = |-0” 

Ms (332 ) [Ms (3-72 ) 15 
any Ac, (0-283) JA, (0: 313 ) z 

Ar, (0: 326) Ar, (9-363) 9 

é 
a “ or | sa | 
: 30! Bo’ ao’! Bo* | Agi at 

Slob bhickness =: 5S inches 
Frame | ‘: 

Fig. 75. The complete design of frame | 
types of assumptions on degree 

Cube strength 

load live 

4000 Ibs /inZ 

100 Ibs | Fr 

for each of the five 
of composite action.



  

  

              
  

  

              
  

  

              

  

  

             
  

  

  

                    

  

              
  

afi6x &« SS us 1 18x b x 5SO0us 

G als 5 a : ato 9 8 
type a ~ 9 + 

% x a t 

= (ois o-2037) I(0:844°- 0: 189) 

Wiss Saves oo, NNee See Wits. Liek.S: °F WE: 3 1202 OSner 

ISx © x 40uga 115 «x © x 4oup 

J Sly 0) aa 

type} @ * ‘ : x mn a 2! 
+ K t 4 (2) z ¢ 4 & 
o (0'525* 0:119°) 1(0. 535 0-119) 

We. s 3. 88:4 WR 2 2:43 7 WE = 118°807 

ox Tx 36 up 1ISx & x 35uBn : h as ~ 
oe Ma ® 2 type t ¥| 5 3 = x vt PS. @ 

(3) t ¥ ¢ ? ¥ 1) 6 0 C = 
A ~~ 

(9:674"-0:135)) (0-@11" 0-122") 

WRyot 3 aihet WIR Sh tae ae. oT, Wikies Vel otasr 

ols *% G6 x dOusjlo x 7 x Soup ' 
3 a ea 

hype : xP ° 
k x Me ¢ Ps. 

(4) i * a 
O r 2 
a Coit" = O-12251 6.885" 9-115) 

WE * SST WR = 2:04 7 WEi eee As 

h ’ 
tS % © * BSupy lox 53 x 3lus 

type = a a a -iNls 
x 4 Q 

(Ss) =n . x - a t 
g x x : 

9 N o& 
(0'@98"~ 9° 140) ]|(0.074~0:135) | 

madso” 4 

Ms (3° 59)1*) Ms (4-30) 2 

20 At, (0: 216) Ay, (0-238) |v 
Ar (9-230) | Ay, (9:20) : 

a : I ! at aa | 
' 30 ate a0° = (eee Son ra On 

Frame | 
Slab FhicknessS = 7 inches 
cube Strength = 4000 Ibs} in? 

live load = 100 Ibs/ £+2- 

Fig. 76. The complete design of frame | for each of the five 
types of assumptions on degree of composite action.



the accuracy of the program, Independent slab failure of both internal and 

external bays of this frame occurs by mode C, Figures 7.7 and 7.8 show the 

results of the complete design of frame 2 by the five types of assumptions 

on degree of composite action for two slab thicknesses 5 inches and 7 inches 

and the same cube strength of 4000 lbs./sq.in. and live load of 100 lbs ./ 

sq.ft. The time taken on the Atlas Computer to design frame 2 by any of 

the five types of assumptions shown in Figure 7.7 or 7.8 for one cube 

strength and one slab thickness is approximtely four seconds, 

Frame 3 is another six unequal bay frame with different sides ratio (p) 

for each bay, The sides ratio (p) of the internal bays vary between 0,57 

and 1.33, hence independent slab collapse occurs by mode C or D depending 

on whether the sides ratio (p) 2 1.0. 

Frame 4:- 

This is a one-bay frame devised to test the capability of the program 

for the design of Single-bay frames, Figure 7.9 shows the results of the 

complete design of this frame by the five types of assumption on degree of 

composite action for a slab thickness of 5 inches, cube strength of 1,000 

lbs./sa.in, and live load of 100 lbs./sq.ft. 

Frames 5 and 6:- 

Both of these frames are two-bay frames, where a fictitious bay has to 

be inserted inbetween the two bays for the frame to be designed by the com- 

puter program, Hence each frame is treated as a three-bay frame with the 

weight of the internal fictitious bay ignored, 

Frame 5 has two unequal bays, the frame data preparation for it is 

shown in section 7.)..3 (Figures 7.3.a and 7e3eb). Figure 7.10 shows the 

results of the complete design of this frame for the five types of assump- 

tions on degree of composite action for slab thickness of 5 inches, cube 

‘strength of 4.000 lbs./sq.in. and live load of 100 lbs ./sq.ft. - 
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five types of assumptions on degree of composite 
action.



Frame 6 has two equal bays. This frame was devised to test the 

capability of the computer program for the design of equal two-bay frames, 

As the two bays are identical and treated as two external bays with ficti- 

tious internal bay inbetween, the computer designs only one of them, The 

data arrangement for the lengths of the bays is shown in Section 7.4.3. 

Frames 7 and 8:- 

These two frames are both three-bay frames; where frame 7 has equal 

bays and frame 8 has unequal bays, Figure 7.11 shows the results for the 

complete design of frame 8 by the five types of assumptions sii degree of 

composite action for slab thickness of 5 inches, cube strength of 4,000 

lbs./sq.in. and live load of 100 lbs./sq.ft. It can be show from Figure 

7.11 of frame 8 that the main beam Ix(2) and the secondary beam Ly(3) 

selected are always the same, as the conditions for modes A and B on the 

secondary and main beams Iy(3) and Ix(2) respectively are always identical 

(i.e. width of slab, span and ultimate slab moment are identical in both 

directions), 

Frames 9 and 10:- 

These two frames are both four-bay frames; where frame 9 has equal 

bays and frame 10 has unequal bays. Frame 10 is chosen, together with 

frames 1 and 3, to investigate the effects of extreme loading conditions 

on the weight of beam and slab floor systems, 

Frames 11 and 12:- 

These two frames are both five-bay frames with equal bays. Frame 11 

has sides ratio (p) of 0.5, whereas frame 12 has sides ratio (p) of 2.0. 

Both frames have equal total areas and equal individual bay areas, These 

two frames were chosen to investigate the effect of extreme values of sides 

ratios on the weight of beam and slab floor systems having the same slab 

p 412"
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thickness, cube strength and loading, Figures 7.12 and 7.13 show the 

results of the complete design of frames 11 and 12 respectively by each of 

the five types of assumption on degree of composite action, 

7./ EFFECT OF VARIATION OF SLAB THICKNESS ON 

THE WEIGHT OF BEAM AND SLAB FLOOR SYSTEMS 

  

Four slab thicknesses inches, 5 inches, 6 inches and 7 inches were 

used to investigate the effect of increasing slab thicknesses on the whole 

beam and slab floor system (i.e. supporting beams, slab reinforcement and 

concrete). 

Figures 7.5 and 7.6 of frame 1 show that the weight of the supporting 

beams designed by types (1), (2), (3) and (4) assumptions on degree of com- 

posite action increases, and those designed by type (5) keep constant when 

the slab thickness increases from 5 inches to 7 inches. Similar observa- 

tions are made from Figures 7.7 and 7.8 of frame 2, except that in this case, 

there is a slight reduction in the weight of the supporting beams designed 

by type (3) assumption for the same increase in slab thickness, 

Figures 7.14 - 7.17 show for frames 1, 2, 5 and 8 the weights of the 

selected supporting beams of these frames for each of the five types of 

composite action for the four slab thicknesses used. It can be seen from 

these figures that in the majority of cases the weight of the supporting 

beams either increases or keeps constant with increasing slab thickness, 

Figures 7.5 and 7.6 of frame 1 show an increase in the weight of the 

internal bay beam Lx(2) (i.e, main beam spanning in the X - direction, bay 

no. 2), designed by type (2) assumption, owing to an increase in slab thick- 

ness from 5 inches to 7 inches, Table 7(ii) shows the size of this section, 

together with the required My moment, the selected section My; moment and the 

excess in the strength (chosen M; moment) of the selected section compared 

to the required section for each of the four slab thicknesses used, It can 

be seen from Table 7(ii) that at t = 4", the selected section is a 

AVS 08
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Excess in the 
Slab Selected Required Chosen My, Chosen My Moment 

Thickness Beam Size My Moment Moment than the Required 
Inches US Be kips es TG: kips e ous kips ~- Go 

5 46 72 56 DIe Te. 585.28 13.14 
Tex. 7: 36 616.15 616.91 0.76 

7 15.%.6 x 40 660.16 696 .58 36 42       

Table 7(ii). Excess in the strength (chosen My moment) of Ix(2) beam than 

  

  

the required for various slab thicknesses, Frame 1 Type (2) of composite 
design, 

Excess in the 
Slab Selected Required Chosen My Chosen My Moment 

Thickness Beam Size M;, Moment Moment than the required 
inches UisBie kips - ft. kips - ft. kips —-£ti. 

A. 15.0.6 e595 590.62 627.90 37.28 

0 oy Oe ea 639 8. 669.38 29 5k 

6 45 x 6x 35 689.06 109.92 20.86 

‘i Po bx: 35 1398 62D 150.03 AT 9e               

Table 7(iii). Excess in the strength (chosen Mz moment) of Lx(1) beam than 

  

  

the required for various slab thicknesses, Frame 1 Type (5) of composite 
design, 

Excess in the 
Slab Selected Required Chosen My Chosen My Moment 

Thickness Beam Size My Moment Moment than the required 
inches Joist kips - ft. kips - ft, kips - ft. 

¥ Px ipa 1h 127 S72 155.91 28.19 
5 iP Sei Nese 145 150.017 1 /Aedd 55.076 

6 6 x 33x 118] 149.01 1523) 5033 
7 6 4.58 RATE 459,65 166.16 6.51               

Table 7(iv). 
the required for various slab thicknesses, 
design, 

Excess in the strength (chosen My moment) of Ly(1) beam than 
ue) 

Frame 2 Type (3 of composite



16 x 7 x 36 U.B. with an excess in its strength of 25.52 kips - ft. relative 

to the: required: section, At t = 6", the same section is selected but the 

excess in strength in this case is only 0.76 kape.~ 2t. At. t-o°7" 7m 

bigger section was selected, viz. 15 x 6 x 40 U.B., as the previous section 

was not adequate, Similar observations can be made from Table 7(iii) for 

the external bay beam Lx(1) of frame 1 (Figures 7. Sand 7.6), designed by 

type (5) assumption, where for higher slab thicknesses the excess in the 

strength selected to that required decreases when the same section is 

selected, Hence, for sections which have not a large excess in strength of 

selected over required, then heavier sections have to be selected at greater _ 

slab thicknesses as in the case of the beam Lx(2) of frame 1 (Table 7(ii )). 

This is due to the fact that when a greater slab thickness is used, then the 

increase in the required My or My moment resulting from the extra dead load 

is greater than the increase in the strength of the same section resulting 

from an increase in the lever arm of the composite section, This is true 

for all the composite T-beams of beam and slab floor systems, However, in 

the case of composite L-beams (i.e. the secondary beams of the external bays), 

the increase in the composite section strength (chosen My moment), owing to 

the increase in the lever arm of the composite section, is increasing at a 

greater rate than that of the required My moment, This occurs because of 

the extra dead load which results from the increasedslab thickness, as shown 

in Table 7(iv). Owing to this phenomenon, in certain cases a slight reduc- 

tion in the weight of the secondary beams of the external bays results when 

the slab thickness increases, This can be seen from Figures 7.7 and 7.8 

and Table 7(iv) of frame 2 type (3) assumption, When the slab thickness 

increases from 5 inches to 7 inches, a lighter section, viz. 6 x 5g x NE 

Joist is selected for the L-composite beams Ly(1) and Ly(6) (i.e. the 

secondary beams of the first and the last external bays of frame 2) instead 

of the previous section, viz. 7 x 4 x 143 Joist, 

- 14h. =



For type (1) design, where composite action is assumed not to be 

present, Figures 7.14 - 7.17 of frames 1, 2, 5 and 8 show that when the 

slab thickness increases, the weight of the supporting beams selected by 

this method of design also increases in all cases, This is brought about 

bye the fact that, as the slab thickness increases, with no composite action 

assumed to be present, then the increase in the required My or My moment, 

resulting from an increase in the dead load, is not counteracted by an 

increase in the strength (chosen My or My moment) of the section, as this 

is constant for type (1) design. 

The weight of the hogging reinforcement is assumed to extend to the 

point of contraflexure of the supporting beams, For this reason, the total 

weight of slab reinforcement for the whole system will vary slightly from 

one type of design to another, as shown in Figures 7.5 - 7.13. 

A considerable reduction in the slab reinforcement wanent results from 

an increase in the slab thickness for the same ultimate slab moment Ms, as 

shown in Figure 7.18(a). Figure 7.19 shows the percentage reduction in 

slab reinforcement of frame 1 to produce the same ultimate slab moment when 

the slab thickness increases from ). inches to 7 inches for various cube 

strengths, 

When the slab thickness increases from 5 inches to 7 inches for frame 

1 (Figures 7.5 and 7.6), then there is 40% increase in the weight of con- 

crete, together with 14.4%, 5.32%, 0.86, 1.1% and zero% increases in the 

weight of the supporting beams designed by types (1) - (5) respectively. 

Also, owing to this increase in slab thickness, heavier supporting colums 

and more substantial foundations would be required, Against all this, 

there is only a 27% reduction in the weight of slab reinforcement for the 

Same ultimate slab moment for the same increase in slab thickness. This 

indicates very clearly the disadvantages in increasing the slab thickness 

on the whole economy of non-composite and composite constructions, 

~ 4455



    

    
s
l
a
t
 

t
h
i
c
k
n
e
s
s
 

in
 

i
n
c
h
e
s
 
~
—
—
—
—
 p 

    
  

a b. ee a) wk of slab reinforcement V. 
Slab Fhickness Uy = 4.000 

b). wk of slob reinfarcement V. ¢ 

cube strength & = 5” ¢ 
Gite 4} O000 F 

2 

‘ 
4L -|4000 4 

v 
A 
a 
U 

2k 42000 

live load = loo Ibs| $b 

° t f t f L ! 

°o | 2 > 4 5 (e) 

wk of slob reinforcement in tons =e ee 

Fig. Z 18. Decrease in the wt. of slab reinforcement of frame! 
owing to an increase In slab thickness or cube strength, 
to produce the same ultimate slab moment Ms. 

  
  

» OD 6 
oe Se a 

»* 

| 8r 

a 

i 
c 
a 
a 
gc. ¢ 

4 
a 
mt] 

3 27k. based on a slab Fhickness of 4 inches 

live laad = too }hs|ft?- 

° J i j f J 
2 lo 20 3° To) 50 

“fy reduction in the weight of slab pate West 

reinforcement 

Fig. 7.19. Percentage reduction in the wt. of the slab reinforcement 
of frame | at higher slab thicknesses than four inches, 
to produce the same ultimate slab moment Ms, 

for different cube strengths.



Figure 7.20 of frame 2 shows the total weight of the system designed 

by each of the five types of degree of compusite action for various slab 

thicknesses, A fairly linear relationship is seen from this figure 

between the increase in the total weight of the system and the increase in 

slab thickness, This can be attributed to the great weight of the concrete, 

which is directly proportional to the increase in slab thickness, compared 

to the weight of the slab reinforcement and the supporting beams, For the 

same reason, the total weight of the system designed by each of the five 

types mentioned above are very close to each other, 

7.8 EFFECT OF VARIATION OF CUBE STRENGTH ON 

THE WEIGHT OF BEAM AND SLAB FLOOR SYSTEMS 

Four cubestrengths, 3000, 4000, 5000 and 6000 lbs./sq.in. were used to 

investigate the effect of increasing the cube strength on the weight of the 

supporting beams and sa reinforcement of beam and slab floor systems, A 

constant slab thickness of 5 inches was used for all these frames, 

Figures 7.21 and 7.22 of frames 1 and 2 show that the weight of the 

supporting beams is usually constant when the cube strength increases, In 

some cases, a Slight reduction in the weight of the supporting beams occurs 

when the cube strength increases, e.g. frame 1 designed by type (3) degree 

of composite action (Figure 7.21) when the cube strength increased from 

3,000 to 4,000 lbs./sq.in. 

When the cube strength increases, the plastic composite moment of the 

section increases, owing to the rise in the depth of the plastic neutral 

axis in the slab, At a cube strength of 3,000 lbs./sq.in., the main beam 

of the external bay Lx(i) of frame 1 for type (3) degree of composite action 

is a 16x 7 x 36 U.B. with a strength (chosen My moment) of 632,43 kips - ft., 

where the required My moment is only 602.54 kips - ft. At the same cube 

strength, a lighter section (15 x 6 x35 U.B.) is available, but this has an 

- 116°3
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My moment of 593.2 kips - ft., which is slightly less than the required, 

At a cube strength of 4,000 lbs ./sq.in., the 15 x 6 x 35 U.B. gained 

slightly less than a 2% increase in its My gone and became 604.02 kips - 

ft., which is slightly greater than the required of 602.54 kips - ft, 

Hence, this lighter section (15 x 6 x 35 U.B.) is selected when the cube 

strength increases to 4,000 lbs./sq.in. This is how the slight saving in 

the weight of the supporting beams of frame 1 type (3) design shown in 

Figure 7,21 occurred when the cube strength increased from 3,000 lbs./sq.in. 

to 4,000 1bs./sq.in. For similar reasons, a reduction in the weight of the 

supporting beams of frame 2 occurred in some cases, owing to the increase in 

the cube strength, as shown in Figure 7.22. 1 - 4% reduction in the weight 

of tee a encore beams, owing to the increase in cube strength, is made in 

the cases of Figures 7.21 and 7.22 of frames 1 and 2, This slight reduc- 

tion in the weight of the supporting beams only occurs in rer cases where 

there is a lighter section which could not be chosen at certain cube strength 

because its My moment is slightly less than the required, but at a higher 

cube strength, it will be adequate, Hence, it may be concluded that there 

is no advantage in increasing the cube strength on weight saving in the 

supporting beams, In the case of type (1) design, where composite action 

is assumed not to be present between supporting beams and slab floors, 

higher cube strengths have no effect whatsoever on the weight of the 

supporting beams, 

The weight of the slab reinforcement of frame 1 at a slab thickness of 

5 inches for various cube strengths is shown in Figure 7.18(b). A slight 

reduction in the weight of slab reinforcement results from using higher cube 

strengths, Figure 7.23 shows the percentage reduction in the slab rein- 

forcement of frame 1 for higher cube strengths than 3,000 lbs./sq.in. For 

example, an increase in the cube strength from 3,000 to 6,000 lbs./sq.in. 

for frame 1, only results in a 5.3% reduction in the weight of the slab 

reinforcement, This figure reduces to 2.7% when a slab thickness of 7 
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inches is used to produce the same ultimate slab moment Ms. The percentage 

reduction in the weight of slab reinforcement of frame 1, when greater slab 

thicknesses than 4 inches are used to produce the same ultimate slab moment 

Ms, is shown in Figure 7.19 for several values of cube strength, 

7.9 DEFLECTION OF NON-COMPOSITE AND 

COMPOSITE BEAM AND SLAB FLOOR SYSTEMS 

According to C,P,117 (#9), ie ett ira allowable deflection of composite 

sections, owing to working loads other than the weight of the structural 

floors or roof, steel work casing, if any, is the same as that of non-compo- 

site sections and shall not exceed 1/360 of the span(t8), 

In beam and slab floor systems, the real deflection of the supporting 

beams, whether non-composite as in type (1), or composite as in types (2) - 

(5), must lie between the limits for simply supported and encastré spans, 

depending on the stiffness and type of connection of the supporting columns, 

For simply supported non-composite and composite sections, the central 

deflection is weet where W is the applied working live load, L is the 

span of the section, E is the elastic modulus of steel and I, is the sum of 

the second moment of area of the beam section and that of the slab for non- 

composite construction (type (1)) or the second moment of area of the compo- 

site section for composite construction (types (2) - (5)), for hori eee in 

steel units, The central deflection of the composite section when considered 

encastré will be approximately 1/5th of the simply supported deflection, 

Figures 7.5 and 7.6 show in parenthesis the limits of the central deflection 

of the selected supporting beams of frame 1 designed by the various types of 

degree of composite action for slab thickness of 5 inches ae 7 inches, 

together with their maximum allowable deflection, 

The external bay main beam Ix(1) of frame 1 designed by type (1), where 

composite action is assumed not to be present, is an 18 x 74 x 45 U.B. fora 

slab thickness of 5 inches (Figure 7.5) and have the limits of central 
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deflection lie between 1.44 inches and 0,29 inches, whilst the maximum allow- 

able deflection is 1,0 inch, The real deflection of this beam is nearer to 

0.29 inches (encastré) than to 1.4 inches (simply supported) and it is 

reasonable to assume that this beam satisfies the deflection criterion, 

For the case of full composite action of type (5), where the lightest 

sections are selected, a 15 x 6 x 35 U.B. is selected for the same span with 

limits of central deflection between 0.86 and 0.17 inches, Even if this 

Soe section is assumed simply supported, which it is not, it will. 

satisfy the deflection criterion, In this particular case, there is a 

39.7% reduction in deflection on top of the 22 2% saving in weight when-- 

composite, rather than non-composite construction is used, This shows 

very clearly the great advantages of composite over non-composite construc-— 

tion in reducing the deflection of the supporting beams as well as in saving 

of weight, 

At a slab thickness of 7 inches for the same frame, none of the sections: 

selected by any of the five assumptions on degree of composite action 

violates the deflection criterion, even if the beams are assumed simply 

supported, as shown in Figure 7.6. 

A reduction in the deflection of composite sections occurs when the 

Same section is selected at higher slab thicknesses. In the case of the 

external bay beam Lx(1) of frame 1 selected by type (2) of composite design, 

when the slab thickness increased from 5 inches to 7 inches, the same 

section, a 15 x 6 x 40 U.B. is selected with 28.4% reduction in deflection 

(Figures 7.5 and 7.6). 

740 EFFECT OF THE SIDES RATIO (po) ON THR 

WEIGHT OF BEAM AND SLAB FLOOR SYSTEMS 
  

  

Frames 11 and 12 are both five equal bay frames and have equal floor 

areas, but their sides ratios (p) are 0,5 and 2.0 respectively. In these 

two frames, the extreme values of the sides ratios are used to investigate 
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the effect of sides ratio on the weight of the supporting beams and slab 

reinforcement, Figures 7.12 and 7.13 show the results of the complete 

designs of these frames by the various assumptions on degree of composite 

action for a slab thickness of 5 inches, a cube strength of 4,000 lbs./sq.in. 

and a live load of 100 lbs./sq.ft. 

At the internal bays, as the slab is continuous in four directions, 

change over from mode C to made D occurs at p = 1.0 for independent slab 

collapse, and the end conditions of the main and secondary beams are similar, 

symmetry will exist, For this reason, the ultimate slab moment Ms and hence 

the areas and the weight of slab reinforcement are equal for frames 11 and- 

12, Also, the sizes and hence the weights of the selected supporting beams 

by the various types of degree of composite action are the same for both 

frames, However, the selected beam sizes will be in different directions, 

as shown in Figures Vel 2cend o/s 

At the external bays, since the slab is only continuous in three direc- 

tions, symmetry there does not exist, For this reason, the ultimate slab 

moment Mg is different Are frame, The discontinuous side of the 

external bay at p = 2,0 has a longer side (40 feet) than at p = 0.5 (20 feet), 

Hence the ultimate slab moment Ms required to produce the same collapse load 

by mode c for the external bays of both frames, is higher for frame 12 at 

p = 2,0 than that for frame 11 at p = 0.5, viz. 4.92 kips - ft./ft.run and 

4.53 kips - ft./ft.run at slab thickness of 5 inches for frames 12 and 11 

respectively, Because of this, a greater area and hence weight of slab 

reinforcement is required at p = 2,0 of frame 12 than at p = 0.5 of frame 11 

as shown in Figures 7.12 and 7.13, 

In addition to the variation in the ultimate slab moment of the external 

bays for both frames, the end conditions of the main and the secondary beams 

are also different, For the secondary beam (spanning in the Y - direction) 

continuity is assumed to exist at both supports, whereas for the main beam 

(spanning in the X - direction) continuity only exists at the R.H.S. as at 
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the L.H.S, the beam is not continuous (modes A and B of the external bay 

Figure 4.1). Also, the main beam at p = 0.5 (frame 11) carried the whole 

external bay area for collapse by mode B, and when it becomes a secondary 

beam at p = 2,0 (frame 12), it will only carry half the external bay floor 

area for collapse by mode A (Figure 4.1), For all these reasons, as well 

as the availability of sections, the weight of the supporting beams of the 

external bays vary when the sides ratio (p) changes from 0.5 to 2.0 for the 

same floor area, 

  

  

  

                  

Slab igeme Sides WB WB WB WB WB WR 
Thickness|") Ratio|(type 1)} (type 2)|(type 3)| (type 4)|(type 5) A 
(inches)}| ~°* | (p) tons tons tons tons tons re 

44 0.5 230 6.38 5.96 6,12 5D Pope 
5 

a2*} 2.0 7.2/0 6 43 6.05 6.29 See Sure 

Az 055 825 6.90 6.21 6.38 5.80 3.86 } 

AZ alee) 8.60 OT 6.16 6 43 Dee 1444 

  

Table 7(v). Weight of the selected supporting beams and slab reinforcement 

of tramess (1aand: “ec. 

The weights of the supporting beams designed by the five types of 

degree of composite action, together with weight of slab reinforcement 

for slab thickness of 5 inches and 7 inches and cube strength of 4,000 

lbs./sq.in. are shown in Table 7(v). In all cases, except that of type 

(3) of composite design at t = 7", the weight of the supporting beams is 

greater at sides ratio (p) = 2.0 (frame 12) than at sides ratio (p) = 0.5 

(frame 11). 

at p = 0.5 for both slab thicknesses, 

The weight of slab reinforcement is greater at 0:-=.2),0° than 

Hence, for the same floor area, in 

this case, it is slightly more economical to use the frame 11 arrangement 

which has smaller sides ratio (p) = 0.5 than the frame 12 arrangement which 

has sides ratio (p) = 2.0, 

foe 

 



7.11 EFFECT OF INCREASING THR APPLIED LIVE LOAD 

ON THE WEIGHT OF BEAM AND SLAB FLOOR SYSTEMS 

Three live loads, 50, 100 and 200 lbs./sq.ft. were applied on frames a5 

3 and 10 to study their effect on the weight of the supporting beams and 

slab reinforcement, Two slab thicknesses, 5 inches and 7 inches, were 

used for each case and a cube strength of 4,000 lbs./sq.in, was used in 

all the design examples. 

The three frames adda have a different number of bays and different 

sides ratios, hence different beams will be selected for each frame for each 

of the five assumptions on degree of composite action, This will give a 

fairly accurate averaging effect on the weight of the supporting beems, when 

the applied live load increases. 

Figure 7.2) shows the weights of the selected supporting beams of frame 

1 for the five types of degree of composite action and the weight of the 

slab reinforcement for the three applied live loads, A steady increase in 

the weight of the selected supporting beams and the slab reinforcement is 

seen from this figure and the relationship. is approximately lineer for all 

the cases considered, 

Table 7(vi) shows the percentage increase in the weight of the selected 

Supporting beams of the three frames for each of the five types of degree of 

composite action, owing to an increase in the applied live load at a slab 

thickness of 5 inches and a cube strength of 4,000 lbs./sq.in., The percen- 

tage increases in the weight of the selected supporting beams for the five 

types of design for the three frames are fairly close for increases in the 

applied load from 50 -> 100 lbs./sq.ft. and 50 -> 200 1bs./sq.ft. The 

small difference is due to the lack of availability of a complete range of 

Sections, It is interesting to note from Table 7(vi) that the percentage 

increases in the slab reinforcement for the three frames are very close for 

both increases in the applied live load, 
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slab thickness = 5 inches cube strength = 4,000 lbs./sq.in. 

  

  

  

                

Increase in % % % % % % 
Applied Live | Frame|Increase |Increase |Increase | Increase | Increase | Increase 
TOAda OMe. s | NOs |bn Wal in «WB. fin eWeet Ins. We | in WB lore WR 
(1bs ./sq.ft.) (type 1) |(type 2) |(type 3) |(type 4) | (type 5) 

1 2547 32 61 be a 350 2h2 48.9 

50 -> 100 A 22165 oe we cae 28.7 Ze eh 48 hy 

10 32 oly. re a Bef 2565 28 1 48.5 

1 10.3 Thee 89.6 Dh lh. 81.2 43599 

D0... 200 5 6539 The ot OF es 77.6 61.8 152.6 

10 18.9 88.3 82.2 72,1 had 153 oH     

Table 7(vi). Percentage increase in the weight of the supporting beams 

and slab reinforcement of frames 1, 3 and 10, owing to an increase in the 

applied live load, 

  

  

  

              

Increase in |Slab % % % % % % 
Applied Live | Thick | Increase |Increase |Increase |Increase | Increase |Increase 
Load From... | -ness in.oWB.| In WB: |-In WB ejtin WB4)) In.< WB Ek we 
(1bs./sq.ft.)|(ins.)|(type 1) |(type 2) |(type 3) |(type 4) |(type 5) 

3 26.42 20.09 30.2 29.01 2h, 8 48 .6 
50 -> 100 

if, 20.8 27.6 27.0 24.46 20.8 5065 

5 71 aD 84.62 80 4. 81 oh 1238 15D e7 

50 -> 200 

¥ 62 4. 1643 Vee 69a 66 9 14544     

Table (vii). 

  

Average percentage increase in the weight of the supporting 

beams and slab reinforcement of frames 1, 3 and 10, owing to an increase in 

the applied live load. 

 



It can be seen from Table 7ii) that, in general, the average increase 

in the weight of the supporting beams for the five types of design is 

greater for a slab thickness of 5 inches than for a slab thickness of 

7 inches, This again is due to the availability of the sections, 

It is interesting to note from Table 7(vii) that the percentage 

increase in the weight of the supporting beams and slab reinforcement for 

an increase in live load of 50 -> 200 is 23 to 3 times as much as for an 

increase in live load of 50 -> 100 for each of the five types of design at 

both slab thicknesses of 5 and 7 inches, For the slab reinforcement, this 

increase will be nearly three times as much for both slab thicknesses. 

7.12 COMPARISON BETWEEN THE VARIOUS 

ASSUMPTIONS ON DEGREE OF COMPOSITE ACTION 

The twelve beam and slab floor systems shown in Figure 7.1 were 

designed for each of the five assumptions on degree of composite action 

with the aid of the general computer program of Appendix 2, Comparisons 

in weight saving between these five types of assumption were made for each 

of the twelve frames, An applied live load of 100 lbs./sq.ft. and a cube 

strength of 4,000 lbs./sq.in. were assumed, and four slab thicknesses 

4 inches, 5 inches, 6 inches and 7 inches were used for each frame, 

Type (1) assumption tances composite action altogether, This leads 

to heavier selected sections for the supporting beams than those selected 

by the other four types, where composite action is present, Comparisons 

between each of the four assumptions ((2) - (5)), where composite action is 

present, and that of type (1) in weight saving are made for each of the 

twelve frames, Tables 7(viii) and 7(ix) show the percentage saving in the 

weight of the selected supporting beams by each of the four composite types 

¢{2). + (5)) relative to the non-composite type (1) for slab thicknesses of 

4,5, 6 and 7 inches, 
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cube strength = 4.000 lbs./sq.in,. live load = 100 1bs./sq.ft. 
  

  

  

  

  

Comparison with type Comparison with type 
(1) in weight saving (2) in weight saving: 

Slab Frame| ” S@Ving|% saving]% saving]% saving |% saving]% saving|% saving 
Thickness by by by by by by by 
(inches)| “°+ | type (5) | type _(3)] type (4)| type (2) type (5)| type (3)|type (4) 

4 26) 221 22.5 1 Diee 16.6 &4 8.6 

2 26.0 18.6 1645 12.2 15.0 6.5 het 
3 27 ott 20.8 17.1 13.9 15.7 8.0 5ef 

d. AA cei 21: 61 B7 el. 14.6 14.6 tes 

5 25.0 20.6 16.3 fer: 17,6 14.1 945 
4 6 25.6 25.6 20:57 19 <4 Sy 8.1 AeO 

t eed 18.8 17.0 23 14.5 10.5 8 4 
8 26.1 19.8 19.8 441.65 16.5 9 dt 2 ol. 
9 rs ie 1369 13.9 a9 14.8 Lop Ly gl. 

10 20D 29 ite 1743 16.0 16.0 16.0 1.6 

11 235 18.4 1645 to 060 2.9 04 

12 ahel 2053 17.8 iD 1 14.2 aot 25 

1 Poet 22 6 197.2 1 jae 19.1 10.8 6.9 
2 26 .8 oO VSD 17.7 Aso 6.5 oop 

3 28 .6 2h. 8 5 ie 17 4 13.6 849 A) 

4 26 8 26 8 1548 14.63 14.46 11.46 141 

5 26 .1 229 18.8 10S 17.6 Ae oon 

Di 6 Dig: 2145 ante], AAs 2d Sv 2,0 

ih 25a 2:56 20.6 1D UE, Oe5 6.6 

8 30.9 25.0 SP 17.3 16.5 9 4 5.6 

9 3267 24.05 24.45 21.3 They 4.0 4.40 
10 29-55 22.55 {HOP 16,0 16.0 16.0 355 

14 19.8 18 2. 16.3 A2y5 8 4. bef 4.3 
2, 25.5 /. ZAeO 18.6 16.5 Seif py 26D                   

Table 7(vi 13): 
LARLY VA he ORT RR 

Comparison between the five types of assumptions on degree of 

composite action in weight saving of the selected supporting beams of frames 14 

to 12 for slab thicknesses ) inches and 5 inches, 

 



cube strength = 4000 lbs./sq.in. live load = 100 lbs./sq.ft. 

  

  

  

  

  

Comparison with type Comparison with type 
(1) in weight saving (2) in weight saving 

slab Rritie % saving]% saving]% saving|% saving] % saving % saving]!% saving 
thickness No by by by by by by by 
(inches)| “"" |type (5)| type (3)| type (4)| type (2)| type (5)| type (3)l type (4). 

1 5409 27 6 22,8 19.5 19.1 10.1 4.0 
2 31 8 29.2 2h-69 17.9 16.9 167 8 A 

. 33.0 29 ot 26.1 20 2 16.0 11.45 7 ot 
4. 28.7 2537 Tieo 16.6 14.46 14.46 1.1 

5 3142 rg Oy) 20.4 1655 1.767 12.9 47 
6 6 DO, 7 Zed 22 oh Adve Ae Sx0 20 

7 cle 26 21 18.2 160 14.5 12.7 5 oh 
8 D265 28 .8 22.8 19.6 4 tales 5 UF 0 

9 5520 2728 Coad, 19-52 AGiat 10.6 ee. 

10 30.8 30.8 anu 19.2 1d 1h. i 

5p 20 63 27.0 24.48 Teo 156) 1351 1? et 

12 29.3 ye 25.61 17.0 14.67 Tf 97 

1 38 .6 5146 26.3 2044 2564 11.6 Teo 

re 37.9 50.5 26 .0 17 18.9 195.9 10 4. 

2 53.3 aN 65 27 20e9 15.7 Tae aad 
hy 28.1 28 1 16 4. 15.5 14.49 14.9 1,0 
5 365 31.8 25.3 Sted 17.6 12.9 4e7 

if 6 35 ot 55 lt 28 .0 19.6 19.7 Jaf 10 4 

7 53 61 Aiea 2h..5 21.8 14.5 12.8 5 ot. 

8 5425 25.1 31.5 20.5 +7 6 13.9 5.8 
9 36.0 S062 Ze 2A oo TO 10.6 Lig 

10 Dees Seat 2045 21 1h. 14. Ge 
14 29:20 2.46 Zener 452 D6 3 nO Wes 

12 50.7 29.41 25.0 Ti<D 16 0 14.41 ael                   

Table 7(ix). 

  

Comparison between the five types of assumptions on degree of 

composite action in weight saving of the selected supporting beams of frames 

1 to 12 for slab thicknesses 6 inches and 7 inches, 

 



Type (2) assumption embodies the simplest form of composite action(*), 

In this type, composite action is assumed only at mid-spans of the suppor- 

ting beams and the effect of slab reinforcement at mid-span is ignored when 

Me or Me are calculated, In the other three types (3), (4) and (5), the 

effect of slab reinforcement at mid-spans or the effect of composite action 

at supports or both are included, This leads to more economical sections 

being selected for the supporting beams, Comparisons between the three 

types (3), (4) and (5) and type (2) in weight saving were also made for each 

of the twelve frames, and these results are also shown in Tables 7(viii) and 

7(ix) for various slab thicknesses, 

For any of the five types of assumption, when a section is selected, 

there is always an excess in its strength (My or My moment) over that 

required, The reason for this excess is due to the lack of a complete 

range of sections ‘’*) and the amount of the excess depends on the section 

selected, In the twelve frames designed, many different sections were 

selected for the same type of assumption, all with different levels of excess 

between required and selected sections, Hence, the average of the percen- 

tages in weight saving of all the twelve frames was determined to give a 

more accurate picture of the relative economy of the various types of 

assumption; this is shown in Table 7(x). 

Table 7(x) shows that type (5) assumption, where full composite action 

is present at supports and mid-spans and the effect of slab reinforcement at 

mid-span is included, produces the highest average percentage saving in the 

weight of the selected supporting beams for the four slab thicknesses, For 

example, at a slab thickness of 5 inches, the average percentage savings in 

the weight of the selected beams by type (5) relative to types (1) and (2) 

are 27.9% and 13.7% respectively, Type (3) assumption, where canposite 

action is present at mid-span only and the effect of slab reinforcement is 

included when Mc and Me are calculated, proves to give the second highest 
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cube strength = 1.000 lbs./sq.in. live load = 100 lbs./sq.in, 

  

  

  

Average Comparison with Average Comparison with 
type (1) in weight saving type (2) in weight saving 

Slab Average % Average % Average % Average % Average % Average % Average % 
Thickness Saving b Saving b Saving b Saving b Saving b Saving b Saving b (Inches) | type (5) | type (3) | type (i) | type (2) | type (3) | Type “(| tyre “(us 

4 25.5 20.8 16.8 12.7 14.6 9.3 1.6 

5 27.9 2h. 44 20.0 a5 .7 137 9.6 Hoke 

6 17,0 28.1 22 J2 18.0 1539 W2e2 5 et 

7 5363 50.1 252 AD et 16.9 13.9 6.2                   

Table 7(x). Average comparison between the five types of assumptions on degree of composite action 

in weight saving of the selected supporting beams of the twelve frames for various slab thicknesses, 

 



average percentage of saving in the weight of the selected supporting beam 

for all the slab thicknesses, For the same slab thickness of 5 inches, the 

average percentage of weight saving by type (3) relative to type (1) and type 

(2) are 24.1% and 9.66 compared with 20.0% and 4.4% for type (4). This 

shows that type (3) assumption is more economical than type (4) assumption, 

where composite action is present at the supports and mid-spans, but the 

effect of slab reinforcement is ignored when M. and Me are calculated, 

The percentage in weight saving by types (2), (3), (4) and (5), where 

composite action is present, relative to type (1), where composite action 

is ignored, increases when the slab thickness increases as shown in Table 

7(x). As explained earlier, this is due to the fact that when the slab 

thickness increases, then heavier sections are required for type (1) assump- 

tion which ignores composite action, whereas for the other types, as compo- 

site action is present, the same sections or only slightly heavier ones will 

be selected at higher slab thicknesses, 

Figure 7.12 of frame 11 shows that the secondary beam Ly(2) selected for 

both types (1) and (2) is the same, ive. a 16 x 54 x 26 ULB, For type (1); 

where composite action is ignored, the total mid-spar. plastic moment of the 

beam and the yield line (Mp + Msé) for collapse by mode A is 293.3 kips - 

ft, For type (2), where the Simplest form of composite action is present, 

the plastic mid-span composite moment of the same section for the same mode 

is 288.9 kips - ft., which in fact is less than that of type (1), where 

composite action is ignored, This is because the width of the compres sion 

Slab at mid-span is very large (40 ft.). For this reason, the same section 

is selected by both methods, Hence, in cases like this, where the compres- 

Sion flange is very wide, there is no advantage in using composite action of 

type (2) rather than the non-composite action case of type (1). For types 

(3),° (iy end (5) with a higher degree of composite action, lighter beams are 

selected, These are:- 

2x4 x 22 U.B., 14 x 5 x 26 ULB, and 10 x 4 x 19 U.B. respectively. 
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Table 7(xi) shows a clear picture of the overall saving in extra 

strength, weight, deflection and depth between the various assumptions on 

degree of composite action, where different sections are selected by each 

of the five types of design for the main beam of the external bay Lx(1) of 

frame 1, For example, the overall savings by type (5), where a15x6~x es 

U.B. is selected, over type (1), where an 18 x 73 x 45 U.B. is selected are:- 

23.3 kips - ft. extra strength (chosen Mz moment), 22.2% saving in weight, 

39.7% saving in deflection and 2.9 inches saving in depth, 

Similarly, the saving by the same section 15 x 6 x 35 U.B,. selected by 

type (5) over type (2), where a 15 x 6 x 40 U.B, is selected, are:- 

6.8 kips - ft, extra strength, 12.5% saving in weight, 13.7% increase in 

deflection and a very slight saving in depth, The section selected by type 

(3) is the same as that selected by type (5), where that sedected by type 

(4) is heavier section a 16 x 7 x 36 U.B. 

Finally, comparisons between the various assumptions on degree of compo 

site action are made from the point of view of failure load for the same 

weight of the supporting beams, When the same section selected by type (1) 

assumption, where composite action is not present, is used in conjunction 

with the other four assumptions, where composite action is present, for the 

Same span, higher failure loads are expected for the same mode of collapse, 

For the internal bay main beam Lx(2) of frame 1 (Figure 7.5), the computer 

selects this beamfor type (1) as an 18 x 6x 45 ULB. for a collapse load 

of 78.6 tons for collapse by mode B, If the same section is used for 

collapse by the same mode for types (2), (3), (4) and (5), the collapse 

loads will be 102.5 tons, 108.3 tons, 105.8 tons and 111.7 tons respectively. 

This shows that type (5) assumption gives the highest collapse load for a 

constant section, The next highest collapse load is that of type (3), as 

in weight saving this type of composite design comes next to type (5) in 

efficiency as well as in weight saving, 
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Frame 1. Bay. NO<e-1 5 Main beam Lx(1) 

slab thickness = 5 inches cube strength = 4.000 lbs./sq.in. live load = 100 lbs./sq.ft. 

  

Comparison with the beam 
selected for type (1) 

Comparison with the beam 
selected for type (2) 

  

  

  

  

  

    

Type of Excess in| Extra 
assumption Mz moment| excess % % Saving {Extra % % Saving 
on degree Selected | Required | Chosen than in My saving | reduction in excess | saving Increase in 
of compo- beam My moment | My moment | required | moment in in depth |in My in in dep th site action size kips-ft. | kips-ft. | kips-ft, | kips-ft.| weight | deflection |(inches) |moment | weight | deflection (inches) 

Type (4) 18x73xh5 26),.0 267.6 3.6 <2 = oe = ” 

Type (2) 15x6 x0} 602.5 626.3 2567 16.5 Ta 47.0 27 - ~ wa é. 

Type (3) 15x6 x35} 602.5 604.0 T5 -5.8 Be 39.7 Gam “peed 2 ]5 12.5 137 0.2 

Type (4) 16x7 x36 | 639.8 652.7 1249 5a 20,0 46 41 2.0 -10.9 | 10.0 2.0 -0.7 

Type (5) 15x6 x35 | 639.8 30 .6 <2 <n Rear 2.9 6.8 3255 13.7 0.2       669 4         5967             

Table nea Overall comparison between the five types of assumptions on degree of composite action, 

(The negative sign indicates that type (1) or type (2) has greater excess in My, moment 
than the other types). 

 



Table 7(xii) shows a comparison between the collapse loads of frame 1 

for the five types of assumptions on degree of composite action for collapse 

by mode B, using the same sections selected by type (1) shown in Figure 7.5. 

The same table also shows weight saving of the selected supporting beams for 

the same collapse load, 
  

Comparison with type (1) 
  

type (2) | type (3) | type (4) | type (5) 
  

% Increase in 

  

the collapse load 29.8 cD 3.9 2a 

% Saving 
in weight 46 ob DD. 32: DAs fed               
Table 7(xii). Comparison between the five types of non-composite 

and composite design in collapse load and weight saving. Frame 1. 

Higher percentage increases in collapse load than in weight saving 

are seen in Table 7(xii) for each of the four types of compcsite design, 

when compared with that of type (1) of non-composite design, For example, 

42.7% higher collapse load by type (5) than type (1) compared with 27 

saving in weight. This is expected as, when comparisons are made for — 

collapse loads for the five types of assumptions on degree on composite 

action, the same set of sections is used for each type and hence a true 

comparison is made between these assumptions, For the case of weight 

saving comparisons, these are not really true comparisons as they depend 

to some extent on tho sqatiEh ete oe the section from the range of sections 

available in the existing tables(7*), Other than saving in weight, in the 

latter case, there will be saving in depth, deflection and extra strength 

than required, 

From the various design examples of beam and slab floor systems dealt 

with in this chapter, the following may be concluded:- 

(1) Increasing the slab thickness results in a heavier or the same 

section being selected for the supporting beams, and also heavier 

Oa



(2) 

(3) 

(4) 

() 

columns and more substantial foundations, Against this, there is 

only some saving in the weight of slab reinforcement to produce the 

same ultimate moment Ms. This indicates very soe the disad- 

vantage of increasing the slab thickness on the whole economy of 

non-composite and composite construction, A minimum slab thick- 

ness to provide the required Ms value with the under-reinf orced 

condition is recommended in the design of beam and slab floor 

systems, 

There is no advantage in increasing the cube strength in terms of 

saving in weight of the supporting beams, Only a slight reduction 

in the weight of the slab reinforcement occurs when the cube 

strength increases, to produce the same ultimate moment Ms. A 

minimum cube strength is recommended for the design of beam and 

slab floor systems, 

A considerable reduction in the deflection of the selected suppor- 

ted beams, as well as saving in weight, results by using composite 

rather than non-composite construction, 

For beam and slab floor systems having the same floor area, d 

slight reduction in the weight of the supporting beams and slab 

reinforcement can be obtained by using the system with the smaller 

sides ratio (p). 

The relationship between live load and the weight of the selected 

supported beams and slab reinforcement is approximately a directly 

proportional one, For an increase in the live load from 50 -> 100 

lbs ./ft.* there is 25-30% increase in the weight of the selected 

beams and 48.6% increase in the weight of the slab reinforcement 

at a slab thickness of 5 inches, When the live load increased 

from 50 => 200 lbs./ft.* (three times as much as the previous 

hice aget: the percentage increases in the weight of the selected 

beams and slab reinforcement increases by three times as much as 
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the previous percentages, At a higher slab thickness of 7 inches 

these percentage increases reduce for the same increase in the 

live load, 

(6) Type (5) assumption on degree of composite action gives the most 

economical sections for the supporting beams compared with the 

other assumptions, after type (5), type (3) is the most economical 

assumption (Figures 7.14 - 7.17). This is also true for overall 

structural efficiency, 

In the experimental part of this research work, type (5) assumption, 

which has the greatest degree of composite action and gives the most econo- 

mical design, was used in the design of the beam and slab floor systems M, 

and Mz which were tested to collapse, Recommendations as to which of the 

various assumptions regarding the degree of composite action most accurately 

describes the cbserved experimental behaviour will be made is Chapters 10 

and 11, 

In the next chapter, the effect of composite action between the slab 

system and the supporting beams will be introduced into the plastic design 

method originally proposed by Gandhi (*) for the design of multi-storey 

buildings, Also the effect of composite floors on the stiffness of the 

beams will be considered, 
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CHAP BER 8 

THE SIGNIFICANCE OF COMPOSITE ACTION 
BETWEEN BEAVS AND FLOOR SLABS IN THE 

DESIGN OF MULTI-STOREY BUIIDING FRAMES 
  

8.1 INTRODUCTION 

In the previous chapters, the effect of composite behaviour with its 

various assumptions on the degree of colipeadae action, is considered between 

beems and floor slabs representing bays of multi-storey buildings for collapse 

owing to vertical loading alone, In this chapter, the effect of composite 

action between the slab system and the supporting beams of type (2) or (3), 

where composite action is assumed present at the mid-spans of the supporting 

beams only, will be introduced into the plastic design method originally 

proposed by Gandhi ‘*) for the design of multi-storey buildings, The design 

approach of this method is based on the simple plastic theory with the effects 

of instability introduced at the outset by introducing only one extra factor 

(magnification factor A), The effect of the composite floors on the stiff- 

ness of the supporting beams and hence on the magnification factors will also 

be considered, 

8.2 PLASTIC DESIGN OF MULTI-STOREY BULLDINGS 

Simple plastic theory has been used in the past as a convenient tool for 

the design of rigid jointed frameworks, including building frames of low 

height. It was mentioned in Chapter 1 that simple plastic theory cannot be 

safely applied to the design of multi-storey frames because of the limita-— 

tions imposed by the assumptions on which the plastic theory is based, Two 

of these assumptions are of particular importance here:- 

(a) The equilibrium equations can be based on the undeformed structure, 

i.e. deflections are small; 

(b) Instability of an individual member or of the frame as a whole does 

not occur, 

Both these assumptions are quite valid when dealing with comparatively 

small structures, However, for multi-storey frameworks, neither of them may 
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be assumed to be true, particularly if the members of the frame carry large 

axial forces or if the frane itself is subjected to heavy applied wind loading, 

A plastic design method originally proposed by Gandhi ‘*) takes due 

account of instability and sway deflection under wind load, The design 

procedure consists of two stages; inthe first stage the beams and columns 

are designed and sections selected, by the simple plastic theory in a way 

somewhat similar to that suggested by Calladine‘®), In the second stage 

these sections are checked and increased, if necessary, to allow for insta- 

bility and sway deflection effects; this is done by using the m, n and o 

instability functions (5), 

This design method starts with given geometry, loading and required 

load factors, Member sizes are then selected in such a way that:- 

(a) The framework shall be capable of withstanding dead load plus 

vertical live load at some load factor A, of 1.75. 

(b) The framework shall be capable of withstanding a combination of 

dead load plus live load plus wind load at some load factor Ag 

of 1.4. The reduced value of dg corresponds to the 25% increase 

in the allowable stresses in the presence of wind loading, as per- 

mitted in B.S.449(*8), 

(c) The frame shall be fully elastic at working load, 

(d) Plastic hinges shall not occur in the columns below the design load 

factor under either system of loading; so for the purpose of 

analysis at any intermediate stage of loading, the columns are 

elastic. 

The selection of section sizes in accordance with the above design 

criteria limits the number of possible plastic collapse failure mechanisms 

to three. These are indicated in Figure 8.1 for typical internal bays and 

storeys, The type of mechanism which will occur in any given instance is 

governed by the magnitude of wind shear to vertical load ratio; where this 
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is small, see Figure 8.1(a), a beam mechanism will occur; for intermediate 

values, Figure 8.1(b), a combined mechanism will occur; and for larger 

values, Figure 8.1(c), a sway mechanism will occur, Thus, in multi-storey 

frames, the selection of member sections may be such that the upper storeys 

fail by Zone I mechanism, the middle storeys by Zone II mechanism and the 

lower storeys by Zone III mechanism, 

It was found possible (*) to group the corrections to the simple plastic 

theory owing to instability into one factor, This has been termed the mag- 

nification factor (viz., A) which is a function of the m, n and o stability 

functions, Euler ratio (axial load/Euler load) and relative stiffnesses of 

members, Hence, the magnification factor can be defined as the degree by 

which the bending moments are modified, owing to the instability effects, 

Thus the beam and column sections finally designed are the simple plastic 

theory sections increased, where necessary, to allow for instability effects 

by introducing the magnification vactor into the simple plastic theory 

equations, 

This method is developed further by Sinclair-Jones (87) which includes an 

improved and more accurate method of dealing with the boundary regions (i.e. 

upper storey, lower storey and external bays of a frame), Also this 

improved method predicts values for the magnification factor which generally 

reduces the number of iterations or eliminates the need for iterations 

entirely. 

8.3 SIMPLE PLASTIC DESIGN 

The theory will be developed for a general rigid jointed sway frame 

having r bays, each of span L, and q storeys, each of height h, The assump- 

tions concerning the structure and its loading are as follows:- 

(1) The number of bays and number of storeys are large, hence the 

effect of the unsymmetrical loading conditions of the end bays 

on a typical internal bay is negligible, 

(2) The span loading is uniformly distributed and of magnitude W per 
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bay at working load (considered as a central point load equal to 

half the applied uniform load), 

(3) No bending moment and therefore no shear forces are induced in the 

internal columns by the vertical loading, as implied by (1). 

(4) The wind shear is resisted entirely by frame action and no wind 

bracing is provided in the form of cladding etc, An equal shear 

force, H, is induced in each internal column in a storey by the 

application of wind loading, H is defined as the sum of all the 

applied wind forces above the storey in question, divided by the 

number of bays, 

(5) Owing to wind loading, the columns bend in double curvature in such 

a way that points of contraflexure exist at their mid-heights. 

(6) The axial forces developed in the beams are small and may be 

neglected, 

(7) The axial force in an internal column is equal to the force in a 

column above, plus half the loads on the adjoining beams, 

The derivation of the simple plastic design equations is as follows:- 

8.3.1 FAILURE UNDER VERTICAL LOADING 
  

The only possible mode of failure under this type of loading involves 

the independent collapse of each beam as shown in Figure 8.2(a). Mp is the 

fully plastic moment required for this simple beam mechanism to occur at a 

load factor A, and may be obtained by equating the work done by the loads to 

the work absorbed by the plastic hinges, Thus, referring to Figure 8,2(a) 

for any beam:- 

Mp (20°+ 6 + 6) - MT 2.0 

.. Me = 04, 861 

Theoretically, since the internal columns carry only axial load, their 

required value of plastic moment C_ may be taken as zero, 
z 

This type of failure is demonstrated by test M, in the experimental part 
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of this research, with the effect of composite action between the floor 

system and the Daiioetais beams included, 

8.3.2 FAILURE UNDER COMBINED MECHANISM 

Under a combination of vertical and horizontal loading the subassemblage 

may be reduced to a mechanism in one of two ways, both of which are accom- 

panied by sway deformation, Only two plastic hinges are required in each 

beam to create these mechanisms, In both cases, a hinge is bound to form 

at the leeward end of the beam, since at this location the bending moments 

induced by the vertical and horizontal loadings act in the same sense, and 

are therefore cumulative, The position of the second plastic hinge that is 

required to cause failure depends on the relative magnitudes of the moments 

induced by the two types of loading, In general, this second hinge forms 

in the span of the beam, producing the "combined mechanism" shown in Figure 

8.2(b). It has been assumed (87) that this second hinge forms exactly in 

the centre of the beam, This assumption is sufficiently accurate for design 

purposes, However, in cases of very heavy wind loading, the second hinge 

may form at the windward end of the beam, producing the "sway mechanism" 

shown in Figure 8.2(c). 

Considering first the combined mechanism in Figure 8,2(b), if the column 

Sways through a small angle 0, each plastic hinge rotates by 20, and work is 

done by both vertical and horizontal loads, The corresponding work equation 

is:- 

ABW UL h h 4 MB.6 =-3- 25 0 + hg Hy oa « 0 + Ag He 23 <0 

: oy ORD a ee 
ee Mp = Ag = Cget WL ] 8.2 

Whence : (Hh) av = Hy hy + He she 

The quantity (Hh) av is hereafter referred to as the "wind ratio" 

representing the relative intensities of wind loading and vertical loading, 

Consider now the sway mechanism of Figure 8.2(c),. In this case, if 

wid Sie



the column sways through an angle 6, the plastic hinges both rotate by 0, 

and the vertical loading does no work, The resulting work equation is:- 

2 MB.O = Xe Hi. BY.0 + Ag Hy 22,9 

: MB = Ag (Hh) av ge ee =z 3 

For either the combined or sway de shaten, the maximum column moments 

occur at the level of the beam and are simply equal to the shear in the 

column multiplied by the distance from the joint to the assumed point of 

contraflexure at its mid-height. Therefore, for both types of mechanism, a 

plastic hinge will not form in the colum if:- 

C a Ae ae 8A 

Where Cy represents the reduced plastic moment of the column in the presence 

of ‘axial load, 

8.3.3 SEIECTION OF THE CRITICAL EQUATIONS 
  

The point at which change over from beam mechanism to combined mechanism 

occurs is given by the intersection of equations 8,1 and 8,2, 

: WL, WL pt, (Hh)av 
i.e. when ry ries Ae 7; Ly eer J 

Since Ay = 1.75 and Ag = 1.4, hence A, = 2 Eos 

e 

Je Pree = we CL + ey , 
i a 

. ee (Hh) av 
1.e. when 7. WL 

When the wind ratio is greater than this value, failure will be by combined 

mechanism, 

Similarly, the point at which the wind loading becomes predominant is 

given by the intersection of equations 8.2 and 8,3, 

c i.e. when rg (HhJev he a [ i + (hla ] 

155) =



i.e. when (Hh)av at 
Wis. 4 

When the wind ratio is greater than this value, failure will be by side sway 

mechanism. 

Hence the design of structure can be split into three zones, as described 

in the previous section, The simple plastic design equations are summarised 

below, 

ZONE I when a (ih) ay c at 

Le 76 
8.1 

ZONE II when ib < (hay Z 4 

Ma = he RD 5 + GH | 8.2 

ZONE III when 2 < ex 

In all zones, 

Ci de 8 sh 

It is quite possible, depending upon the design wind ratio, for a 

building to have varying numbers of storeys designed in all three zones or 

to be designed as falling entirely in one zone, 

For design in all zones, the column size is selected using equation 

Bree This equation, which is based on the shear force in the column, is 

independent of the wind ratio, Under vertical load alone, the colum 

carries only axial forces, and so equation 8.4 always dictates the required 

plastic moment, and automatically satisfies the final design criterion given 

in section 8,2, 

8.4. MODIFICATIONS TO THE SIMPLE PLASTIC DESIGN PROCEDURE 

The simple plastic design approach used so far is adequate for frames 

in which there are small axial loads in the columns and also small sidesway 

deflections, This is not usually the case for tall structures where premature 
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instability failure can occur and therefore a certain number of modifications 

must be made to the simple plastic design method, 

84.1 PS EFFECT (WITHOUT JOINT ROTATION) 
  

Figure 8.3 shows a column subjected to an axial dona P and a horizontal 

shear H, If the horizontal deflection of the column is neglected as in 

Figure 8,.3(a), then taking moments about A gives:- 

M, + Me = Hh 

In fact some horizontal deflection must occur, as shown in Figure 8.3(b), so 

that in reality:- 

M, + Mg = Hh + PS 

Merchant (°*) nas shown that the additional moment PS, owing to axial load and 

sway deflection, can be allowed for by using a factor m such that:- 

M, + Me = Hh + P56’ =mHh 

The variable m is a function of the ratio of the axial load in the 

column to its Euler load (f = =) Values of this factor have been tabu- 

lated by Livesley and Chandler(5), ‘Thus, if Hh is replaced by mHh in 

equations 8,1 to 8.4, these equations will take account of the P& effect 

(neglecting joint rotation). 

8.4.2 OTHER EFFECTS 
  

The further modifications to the simple plastic design discussed here 

involves consideration of the following factors:- 

(i) Reduction in column stiffness, owing to axial load; 

(ii) Sidesway deflection, owing to joint rotation and hence 

additional moment; 

(iii) Reduction of effective beam stiffness, owing to the formation 

of a plastic hinge, 

The combined results of the above effects can be allowed for by taken 

factors A for beams and A, for columns, These factors are known as the 

magnification factors and their values depend upon which zone is under con- 

teldersta oh? The detailed oth ninite bee of the factors A aml A, is given 

in section 8,7, 
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Thus, the effects considered in sections 8.4.1 and 8.4.2 above will 

introduce factors mA and mA, into equations 8.1 to 8.4. Hence the modified 

design equations, which are assumed to allow automatically for the instabi- 

lity effects, may therefore be summarised as follows:- 

ZONE I when os A(mH h)av un 

WL ~ 16 

ZONE II when = < AGE b)av 4 

= ie 

IN 

F
i
s
 

= Bw | >» 0 A 

2 A(mH h)av 

WL 

iy Ne A(mH h)av 8.7 
2 

ZONE III when 

fe 

4 

In all zones, 

c, > ty Aone 8.8 
The above equations relate to the case of a typical inner bay of a frame 

and therefore the design of the external columns does not occur, Most frames 

however, have only a small number of bays and the design of columns then 

becomes of importance, In all three zones, a plastic hinge will not form 

in the external column if:- 

C, > > 8.9 

For the top storey, where there is only one column, then:- 

C2 MR 8.10 E 

Where Cy represents the reduced plastic moment of the external column in the 

presence of axial load, 

The above two equations are assumed adequate for the design of the 

external columns, More accurate methods of dealing with the external 

columns, upper storey and lower storey, are found elsewhere (°7) 
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8.5 INTRODUCTION OF COMPOSITE ACTION 
INTO THE DESIGN OF MULTI-STOREY FRAMES 

The effects of types (2) and (3) assumptions on degree of composite 

action, where composite action is assumed present at the ee ae of the 

supporting beams only, will be introduced into the plastic design equations 

8.5 6: 8 AG; 

For both types of assumptions (2) and (3), the mid-span plastic moment 

Mg will be replaced by Me, the plastic composite moment at mid-span, At 

the supports, the plastic moment will remain as Mp and the hogging or sagging 

ultimate slab moment Msé (Figure 4.1, mode B) will be ignored here for 

simplicity, although there is no reason of principle preventing its 

inclusion if desired, 

For vertical load failure (Figure 8.2(a)), when type (2) or (3) of 

composite action is introduced, equation 8.5 becames:- 

0.5 (Me + Mp) = AX Ze 8.11 

For combined mechanism (Figure 8,.2(b)), when type (2) or (3) of compo- 

site action is introduced, equation 8.6 becomes:- 

055 (Me 4 Ma) ro Bp p+. ABH ew ] 8.12 

For sway mechanism (Figure 8.2(c)), a plastic hinge will not form at 

mid-span, and type (2) or (3) of composite action has no effect on the beam 

design, Hence, equation 8.7 remains as:- 

of Ata H h)av 8.13 
2 

The design equations for the internal and external columns renain as 

given by equations 8.8, 8.9 and 8,10, 

The critical equations for the change over from one zone to another 

will now be different from that of the bare steel frame, as shown below, 

As the composite plastic moment Me is present in both equations 8,11 

and 8,12, the change over from Zone I to Zone II will be the same as that 
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of the bare steel frame, 

fa) when P= meh) an 
i6 WL 

Change over from the combined mechanism to the sway mecahnism will be 

different from that of the bare steel frame and is given by the intersection 

of equations 8,12 and 8.13, 

i.e. when X, A@@Hblav _ AgWL | A@mHh)av _ y 
2 res * 2 . 

M 1 “ coccinea ane tee 1.@€. when WL S 

Hence the modified design equations, including the effect of composite 

action of types (2) or (3) (ignoring the effect of the hogging or sagging 

ultimate slab moment Msé at supports), may be summarised as follows:- 

ZONE I when o< A(mH h) av < 4 WL cs 46 

0.5 (Me + Mp) = Ay au 8.11 

ZONH II when a < eae Bat and a7 < 5 

0.5 (Me + Mn) = Xe V2 [ p + Atathdey | 8.12 

M 
—8 ZONE III when LWL, 2 

Mp = dq Ati bday ay nay 8.13 

‘ 

CO
 

In all zones, 

tars he Acm Hh 8th 
uk 2 

MB 

Se? 8.15 

For top storey, C, > MB 8.16 

The detailed determination of the above magnification factors A and A, 

is given in section 8,7, and the magnification factors will be compared with 

those for the bare steel frame, 

The design equations 8,11 to 8.16 apply for composite action of poth 
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types (2) and (3). If type (2) of composite design is to be adopted, the 

plastic composite moment Me is calculated using equations 5.1 to 5.11, where 

the effect of slab reinforcement is ignored. For type (3) of composite 

design, Me is calculated using equations 5.12 to 5,22 to include the effect 

of slab reinforcement, 

The ultimate slab moment Ms is normally designed for vertical load 

failure at a load factor A, = 1.75. If the reduced value of Ag of 1.4 

is used to design the ultimate slab moment M, for Zones II and ITI and if 

the yield line rotation at the support is assumed to be the same as that of 

the joint under consideration, then the ultimate slab moment along the yield 

lines at the supports Msé (Figure 4.1, mode B) can be taxen into considera- 

tion into equations 8.11 to 8.13. 

Using the same assumption of Chapter 4, Figure 4..2, that the slab is 

isotropic, then the sagging and hogging ultimate slab moments are equal. 

Therefore, by including the effect of the ultimate slab moment Msé at the 

supports, equations 8.11 to 8.13 become:- 

WL 0.5 (Me + MB + Mgl) = 4 rT 8 441- 

0.5 (Me +Mp+ Met) =r FP [p+ A(t h) ev ] 812° 

(Mp + Mgt) =r» Atal blav ne az 8.13 

The critical equations for Zones I, II and III will be the same as that when 

the Ms values at the support are ignored, 

The effect of types (4) and (5) of composite action, where full compo- 

site action is assumed at mid-spans and supports, on the plastic design 

equations 8,5 to 8.7 can be included in a similar manner to that of types 

(2) and (3). Inthis case, the mid-span plastic moment Mp will be replaced 

by Me as for types (2) and (3), and the support plastic moment Mp will be- 

replaced by My, the plastic composite moment at supports. 
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8.6 DIRECT MOMENT DISTRIBUTION 

The traditional moment distribution method uses stiffnesses which are 

related to arbitrarily assumed conditions at the far end of a member, For 

example, the stiffness at one end of a member with the far end fixed is 

a, If the far end is pinned, the effective stiffness becomes oad, 

If, however, stiffnesses are related to the real rotations which occur at 

the ends of a member when it forms part of a structure, the moment distribu- 

tion process can be reduced to one cycle only, Thus, it is only necessary 

to write down the fixed end moments and then balance at the joints, no carry 

over of moment from one end of a member to the other is involved, The 

joints are balanced using "real distribution factors" which are calculated 

from the real stiffnesses, Hence the real stiffness of a member of a 

structure can be defined as the moment to produce unit rotation at one end 

of the member, whilst the far end of the member rotates through an angle 

equal to the actual angle of rotation which occurs in the structure under 

consideration for the given loading, Figure 8.4 shows a column (23) sub- 

jected to axial load and end moments (but no horizontal shear) giving rise 

to end rotations 62 and 63. It has been shown by Holmes and Gandhi(7®) 

that the stiffness of such a member related to the real end rotations, i.e. 

the "real stiffnesses" are given by:- 

At end (3) 

M r O% EL Seta ee cae eoeaeen yeaa 
PS Ss2 = (n Ry) h 8.17 

At end (2) 

M 54 EL a ni Sos 2 (n ot R30) ae 8.18 

Where Rg is the ratio of end rotations, i.e. oo and n and o are stability 

functions as tabulated by Livesley and Chandler (®), 

For the beams of a multi-storey frame, the axial load and lateral dis- 

placement of the beam ends are negligible, Hence, referring to Figure 8,5 

of a typical fully elastic beam bending in double curvature, the real stiff- 
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nesses for this beam can be written down (76) as:- 

2, EI 
52 = See = (i Ae 8.19 

M RI and a= Gao s he 2 Re) = 8,20 

The real stiffnesses of all the members of a multi-storey frame may be 

obtained by substituting suitable values of R in equations 8.17 to 8.20, 

It has already been assumed in 8.3 (5) that the columns bend in double 

curvature under the action of wind loading, with points of contraflexure 

existing at their mid-heights, This implies that the end rotations of any 

column must be equal, sothat R=1,. Therefore, from equations 8.17 and ~ 

8.18, approximate expressions for the no-shear stiffnesses of any column 

are given by:- 

For the purpose of developing the general theory for a typical internal 

bay, it was also stated in 8.3 (1) that the total number of internal bays r 

is considered to be large. Therefore, since the same sections are used 

for each internal column, each bay behaves in an identical manner, and every 

ne will bend in exact double curvature under the action of horizontal 

loading, The end rotations of the beam will be equal, so that R is again 

equal to unity, Therefore, substituting in equations 8.19 and 8.20, the 

approximate values for the real stiffness of the beams are:- 

r EI e 
Sse = Ses = 6 ae. OB22 

The use of these approximate values of real stiffness otitis ina 

considerable saving in design time, without introducing any large degree of 

error, The precise way in which they are applied to develop expressions 

for the magnification factors for composite and bare steel frames, using 

the direct moment distribution technique , is shown in the following section, 

8.7 DERIVATION OF THE MAGNIFICATION FACTORS 

The values of the magnification factors A and A, will vary depending 

maha =



upon whether the particular storey being considered falls into Zones aD, ed 

or III, These factors are derived for each zone in turn for the case where 

composite action of type (2) or (3) is introduced into the plastic design of 

steel frames, i.e. equations 8.11 to 8.14. The derived equations of these 

factors will be compared with those of the bare steel frame, i.e. equations 

8:3 to 6.8 4 ! 

8.7.1 ZONE I 

A(mH h)av ig. 

WL ~ 46 

IN
 

In this zone, the beam and column sizes are selected using equations 

8.5 and 8.8 respectively for the bare steel frame, or equations 8.11 and 

8.14 respectively for the composite frame, Although the condition of 

vertical load alone is critical in selecting the beam size, the combined 

loading condition dictates the column size, The beam is independent of the 

magnitude of wind loading and of the magnification factor, which must be 

obtained therefore by considering the combined loading case, This is iden- 

tical to the treatment for Zone II. 

8.7.2 ZONE II 

ov a A(mH h)av aia NM “ 2 

15%: WL —— ~*~ 8 

The loading sequence adopted in deriving the values of A and Ag is that 

the wind loading increases from zero to its maximum intensity, irrespective 

of the vertical loading, Tht is, initially the factored vertical load is 

applied to the sub assemblage, and this is followed by the horizontal loading, 

In this zone, under the vertical load alone, the beam may remain elastic 

or may develop plastic hinges, ae it is necessary to differentiate between 

these two types of behaviour, 

Consider the beam in Figure 8.6(a) under the action of vertical load 

at a load factor Ag, the bending moment diagram is as shown in Figure 8.6(b). 

The required fully plastic moment of a beam falling in this zone ds cine by 

equation 8.12, 
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i.e. MB= 2. re Cp + Beer] A 

Therefore, under this load, plastic hinges will have formed at the ends of 

the beam if, 

WL WL -1 A(mH h)av 
he TE > 2. nq TE pf» AmB bey) _y, 

which reduces to the condition:- 

Ai Der SMe 
WL a he WE 12 

In the case of bare steel frames (equation 8.6), the above condition becomes:- 

A(mHh)av . 1 
WL ae 

This zone may therefore be subdivided into two separate zones, which are 

considered in turn below, 

8.7.2(a) ZONE IT (i) 

< A(mH h)av < (a ee jas ee ue 
16 WL AgWL 12 

Plastic hinges form at the ends of each beam before the full vertical 

load has been applied, At load factor Ag, the frame is as shown in Figure 

8.7(a) and the corresponding bending moment diagram is given in Figure 8.7(b). 

On application of the wind loading, the plastic hinge at the leeward end 

of the beam continues to rotate as before. However, the hinge at the wind- 

ward end tends to rotate in the opposite direction and therefore immediately 

disappears, The presence of a plastic hinge at the end of each beam effec- 

tively isolates one bay from the next, Inthe typical bay in Figure 8.8, 

the real stiffnesses of the columns at joint 2 may be obtained from equation 

Becl... Thins 

a = (ny - 01) Kea 

and Soe = (ng - og) Keg 

Where Kc, and Keg are the flexural rigidities of the upper and lower columns 

Av aAjOint 2% 

Also, since the plastic hinge at 2° may be considered to behave in an 

a 4b 5s



identical manner to a real hinge, the real stiffness of the composite beam 

at joint 2 is given by:- 

Ts e 
Se? = 3 Kpe 

Where Kes is the flexural rigidity of an equivalent uniform composite beam, 

In the case of bare steel frames, Keo is equal to Kpg the flexural rigidity 

of the steel section, 

Therefore, the total stiffness at joint 2 is:- 

r e 
DS2 = (ms: - 4) Kea + (mg - Og) Keg + 3 Khe 

Let a represent the real distribution factors at 2 in the presence of a 

plastic hinge at 2%, then:- 

SAS 0 Sauie >; Goa cy) 
aso Pa r 

is ES3 

ah. - Saa — (me - 2) K 
23° yee r 

Ss fs 

A so b tee = ea ee 
385 = 

These may be written in the following form:- 

Ae oe (py Sony Ke 8.23 
at KeV + 5 

A (np - 02) Ke 
Ges = KeV aT, 3 8 ooh. 

Ee lle 8.25 

Where, Kz = As2,, K = = 
Kpe C2 

and V = K (i. - 04 ) + (ng va Ga) 

The total out of balance moment at joint 2 is:- 

rei =. Sa ae Tae a: hy (ath ay 

4b



Therefore, the total moment to be distributed at joint 2, in order to satisfy 

joint equilibrium, is + Ag (mHh)av. The final moments at the joint, owing 

to wind loading alone, are shown in Figure 8.8(a), whilst the moment owing to 

combined vertical and horizontal loading at load factor Ag are given in 

Figure 8.8(b). 

In this zone, failure occurs owing to the formation of a combined 

mechanism, and the span hinge is assumed to form exactly in the centre of 

the beam, The bending moment at this location must therefore be equal to 

the fully plastic composite moment of the beam Me. Thus, referring to 

Figure 8,8(b):- 

fr. wo - Mg ) + 5 - ane a Ne (mH h)av = oM 

This reduces to, 

0.5 (Me +B) = re F# [p+ agg . ‘BHber | 
However, in this zone, 

0.5 (Me + Mp) - rp pea, Gib | Cate 

' Aas bee 8.26 

The above equation is also true for the case of bare steel frames, where 

Me = Mp. In this case, equation 8,12 reduces to equation 8.6. Referring 

again to Figure 8.8(b), the moment in the lower column is:- 

Mes = Ag “eet + oo. - Ae (mH h)av 

A MoHeh 
rhe Ut 918 Gay . De). «eee 

Where Pe = (mH h)av 

MegHghe 

However Cy > | Magda RS o fetal 

x A 
sce Ac = 1 =2 Aes e Pg % 8.27
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In this zone, the beams remain completely elastic under the factored 

vertical load alone, and the bending moment diagram is as shown previously 

in Figure 8.6(b). On application of the horizontal loading, the moment at 

the windward end reduces, and that at the leeward end increases, The real 

stiffness of each beam connected to a joint is therefore given by equation 

O22 ae. 

San =: Gipe 

Since there are two beams connected to each joint, the total joint stiffness 

in this case is given by:- 

8, = (my - dy) Key tna’ ="6,)' Beg 12Kbe 

Let a denote the real distribution factors for the case when the beam is 

fully elastic, using the same notation as before, 

r - 
5 (n, - 0.) KK OO ee Pent, 8.28 Ao4q 

2 ssh Keg V + 12 

r 
eo. tae f. (ne = be) Re 8.0 

eS a elvis 029 BSe Ke V+i12 

r 
We a We PAR ert Ee Weede 8.50 

Se 

It may be seen that the real distribution factor for each beam is equal to 

Crre 
2 

As the wind load increases, eventually a plastic hinge forms at the lea- 

ward end of the beam, at some load factor «, where « is less than Ag. For 

this intensity of wind loading, the initial out of balance moment at joint 2 

is given by:- 

F.E.M.2 = - « (mHh)av 

The bending moments obtained after distribution of the balancing moment are 

given in Figure 8.9(a). 
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Figure 8.9(b) shows the bending moments due to the combination of 

vertical load at load factor Ag plus wind load at load factor «, For a 

plastic hinge to occur at 2° under these loads:- ~ 

Wh 2 Gos 
Ae Go t 7 -o« (mHh)av = Mp 8.31 

However, from equation 8.12, for Zone II, 

Al ] 
he “Et Ae ae MB 

From equations 8,31 and 8,12, the value of « is given by:- 

2A WL cw _ 2A +3 aha 832 Ae aXe 2)A(mH h)av 2 As Atma h)av Sie 
2s 

In the case of bare steel frames, the above equation reduces to:- 

cc i WL 
Lm -+|} ooh. eras | 8.55 

G22 

At load factor «, a plastic hinge forms at 2%, and the stiffness of the 

beam at 2 is reduced to Kbe. Therefore, in the subsequent wind loading, 

in the range « to Ag, the real distribution factors are identical to those 

used in Zone II(i), namely, ane. ane and one Owing to the additional hori- 

zontal loading, the intial sway moment at the joint is given by:- 

F.E.M.2 = - (Ag - x) (mHh)av 

The bending moments produced at the critical locations owing to this loading 

are given in Figure 8.10(a). Figure 8.10(b) is obtained by superimposing 

Figures 8.9(b) and 8.10(a), and shows the resulting moments under combined 

load at Ag. Again, in this zone, failure occurs when a plastic hinge forms 

at the centre of the span, Therefore:- 

WL. 4 A 
Ae Oy, * 3 + ted (Ag - «<) (mHh)av = Me 

Adding equation 8.31 to the above equation results in:- 

WL {1 a ey A, (eHn)ay | 
0.5 (Me + MB) = rg Abe [1 xo as das + (1 - A des | WL 
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But 0.5 (Me + MB) = Ag = [ i PhS (mit h)ev ] 8.12 

Therefore, composite beam magnification factor for this zone is given by:- 

A 

mS Xe . digg + (4 “a 2 A229 8.34 

The value of « can be determined using equation 8.32, 

For bare steel frames, the beam magnification factor for this zone can 

be obtained by using the same equation 8.34, but the value of « must be 

determined using equation 8.33. 

Similarly, the resulting moment in the lower column may be written as:- 

Heh A Mag = - “B22 [a (1 - 205. pe) + (Ag - =) (1 - Zaz. pe)] 

A Heh 
- de Ee ° (1 4 oes. Pe) as (1 = 5a - 2023. fei 

As before Cy > [Me | SAG e AC ls mabate 

es Ag = a (1 = 2095 Pz) + (1 = Xp) = Bie pe) a5 

8./.35. ZONE TI1 

Sone gnats 
eaWL ~ 8 

In Zone iII, the beam is fully elastic under vertical load alone, The 

expressions for A and Ag are identical ts those derived for Zone TI(ii), but 

the value of «, the load factor for horizontal loading at which the first 

plastic hinge forms, is different. 

The bending moments under full vertical load, plus wind load at load 

factor «, are identical to those shown in Figure 8.9(b), and the condition 

for the first hinge to form in the beams is again given by equation 8.31, 

o 

i.e. Xe a ap ae .« (mHh)av = MB 

In this case, however, 

MB = Ng A(mH h)av 

2 

ot BO



a oc A es WL 

to S bate 6A(mH h)av ] 8.36 
oe he ae 

This value of « in this zone is the same for composite and bare steel frames, 

8.7.4 SUMMARY OF THE MAGNIFICATION FACTORS 

A summary of the basic design equations of multi-storey frames with the 

effect of composite action of types (2) and (3) taken into consideration was 

given in Section 8,5. It can be seen that these are easily solved if values 

of the magnification factors A and Ag are known, These factors are summa- 

rised below:- 

Ot poe Sm H Bag > 
e WL AB 

A os Boe 
8.26 

A 
Ac =H — 2 Ges e Pe O27 

ZONE IX(i) 4 , A(mHhav .( 2Me _ 14 ) 
46; * WL Bea: NeW is Fe 

The expression for A and Ac are identical to those for Zone I, i.e, 

equations 8,26 and 8,27. 

ZONE IT(ii) ( eee Se A(mH h)av ie Me yt 
XaWL ~ 72 WL raWL < 8 

ox eos o KM 
A = +. «tae. t (1 - oe? e Gee 8.34 

2 2 

: A Ae = ~ ots <2 asi eed ar). - 2 dggePe) 8.35 2 2 

eet Oy BR WL 4 M 
eer ae [ 24ACmH h)av * 2 ~ XgA(mH h)av ] Fors 22 

ZONE TIT Me 
0g WL 

The expressions for A and A, are identical to those for Zone II(ii), 
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, 

i.e. equations 8,34 and 8.35, 

eo aa: WL 
Ag. oe flee 6A(mH h)av ] 8.36 
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Ae Ae oc (ng - O2)Ke , 
2 ORs = Qaa = Ky 4 12.? Knv+ 12 °? 

Also, Vo = (ny - 04) K + (ng - 09) 

C2 Kpe 

Under the simple plastic conditions (i.e. with zero axial forces in the 

columns), A and A, are both equal to unity in all zones, This is so since, 

when p* = 0, (n - 0) = 0 and therefore V = 0. Thus, wee = Gas = 41, and 

om = ies = 0, and all the magnification factors become unity. 

As p”° increases, A and Ac increases in all zones, since (n - 0), and 

therefore V, become negative. This leads to values of aoe and doe’ greater 

than unity, and to negative values of ae and Gan. 

In addition, it may be seen that the ratio of beam stiffness to column 

stiffness, Kg, controls the values of the magnification factors to a large 

extent, This important observation will be discussed in the following 

sections, where composite action effects the flexural rigidity of the beam 

and hence the Kg value considerably. 

8.8 THE EFFECT OF COMPOSITE ACTION 
ON THE STIFFNESS OF THE BEAMS 

When the effect of composite action of type (2) or (3) is introduced 

into the plastic design of multi-storey frames, its presence between the 

floor system and the supporting beam over the whole beam span is assumed as 

shown in Figure 8.11, That is the middle half of the ‘cam. where it is 

assumed to be in compression, will be composite with the floor system and 

the second moment of area of the composite section is I~. The end quarters 

of the beam are assumed to be in tension, hence no composite action present 

between the floor system and the beam and the second moment of area of these 

two quarter spans are of the steel section Ip. 

In Zone I, where failure occurs owing to beam mechanism, the bending 

moment at collapse is as shown in Figure 8.12. Since the plastic composite 

moment at mid-span Me is much bigger than the beam plastic moment at supports, 

~ 452 =
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the distance of the point of contraflexure is much less than quarter of the 

span from the support, as shown in Figure 8.12, Hence, in this zone, the 

length of the compression part of the beam is more than the half middle span, 

In Zone II, where the beam fails owing to combined mechanism, the wind- 

pale end beam moment is less than MB (i.e. - Me + ane . (mH h)av) and that of 

the mid-span and the leeward end are Me and Mp respectively. Figure 8.13 

shows the bending moment diagram for this zone and from this figure, it can 

be seen that the length of the composite section in compression is also more 

than the middle half span, 

In Zone III, failure occurs owing to the formation of two plastic hinges 

at the supports (sway mechanism) with the windward end hinge in compression 

and the leeward end hinge in tension, The mid-span moment is less than Me 

(2 i Ne on + 5 oer’ (Xe -«)(mHh)av). Figure 8.14 shows the bending 

moment diagram for this zone and from this figure, it can be seen that the 

length of the composite section in compression is more than the middle half 

span, Hence, it can be concluded that for the three zones, the assumption 

of Figure 8.11 is reasonable and on the safe side, 

For the composite beam of Figure 8.11, representing beams in multi-storey 

frames under the effect of type (2) or (3) of composite action, where the 

axial load and the lateral displacement of the beam ends are negligible, 

Referring to Figure 8.5, the real stiffnesses are:- 

M r Bo, BE 
—2 = os erak ) “tseaeeda 6. Sao © th, + Re) ob Gece, 

M 6 

= = Cae = (Fy a F2Rs) oe 8.28 
2 

(498 + Age © (58 +.41)- 
Where RS 78 + 4 Sg. = ary 

i , 2BIp 8 he eee a o a 4 oe B = J Iv = (7 + B) and Rg = 3. 

When composite action is not present (i.e. bare steel frame), then 

ete LR Therefore’, 
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Bats Bo aks Fo =: and “It + 

Substituting the above values in equation 8,37, 

By ore 2) EL ahs “ Sa 
cet ae ete 

which is again equation 8,19 for the real stiffness of typical fully elastic 

beam, 

When composite action of type (2) or (3) is present (Figure 8.11), the 

stiffness of the beam is greater nae that of a beam alone, as will be shown 

in the following section, 

8.8.1 EQUIVALENT UNIFORM BEAM 

When the floor system becomes composite with the supporting beams, the 

second moment of area of the composite section will be much greater than that 

of the steel section, For example, in section 7.5 for frame 1 at a slab 

thickness of 5 inches, the beam section selected for the internal bay was a 

16 x 53 x 31 U.B. The second morent of area of the composite section was 

1440.6 in.* compared with 374.9 in.* of the steel section, - This composite 

beam will be used as an example to auisea ate the equivalent stiffness of a 

uniform beam rather thau the partial composite section of Figure 8.11 for 

various end conditions, 

8.8.1(a) THE FAR END PINNED 

This corresponds to the case when a plastic hinge forms at the leeward 

end, From equations 8.37 and 8,38, the real stiffness of the partially com- 

posite section with the far end pinned, shown in Figure 8.15(a) is given by:- 

M p BI 
be oes wae s* = Ba”) 8.39   

Using the second moment of area values of the 16 x 53 x 31 U.B. to show 

the effect of this partially composite beam on the stiffness of the beam when 

a plastic hinge forms at the leeward end, 

Ic 

B 

1410.6 ins* and Ip = 374.9 in.*. Therefore, 

DelO 5 Bye 3509s Mee 4 .09- and I= $88 de 
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Substituting the above values in equation 8.39, the stiffness of the beam 

Séo = 4.28 44 

5-E < 
Ty e 

stiffness of the partially composite beam will be equivalent to that of a. 

If the composite beam is uniform, then the stiffness becomes The 

uniform section (Figure 8.15(b)) if:- 

ton say 225 Te 

ee Te = 1.43 Ib 

where Ie is the equivalent second moment of the area of uniform section, 

Hence, the flexural rigidity of the partially composite section, treated 

as an equivalent uniform section, Kp is 43% greater than that of the steel 

section Kp. 

The increase in the flexural rigidity of the steel section owing to the 

presence of type (2) or (3) of composite action will effect the values of 

the real plastic distribution factors oe aon and aga’ of equations 8,23, 

SO 2, and8525). As the values of K and V are independent of the beam flexu- 

ral rigidity, it is oniy the value of Kg that will be effected, Kg = ou 5 

and this in turn effects the values of the plastic distribution fete 

The value of gh will be replaced by 1.43 Kpg. This value will vary from 

one section to another, Also it is dependent upon the value of the slab 

thickness, 

8.8.1(b) THE BEAM IS FULLY ELASTIC UNDER 
THE FACTORED VERTICAL LOAD Ag 
  

Using the assumptions of section 8.6, that for a typical internal bay 

the beam will bend in exact double curvature under the action of horizontal 

loading. The end rotations of the beam will be equal, so R is equal to 

unity. Substituting this value of R into equation 8.37, thestiffness of 

the 16 x 53 x 31 U.B. plus 5" slab thickness, elastic composite section 

. = 6461 oan, If the composite section is uniform, this stiffness 

2 i. 
i e 
  becomes The stiffness of the partially composite beam will be 
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equivalent to that of a uniform section if:- 

6.61 ab - SS Te 

62 Se vodsaie ele oh 

Hence, the flexural rigidity of the partially composite section, which 

is completely elastic under the factored vertical load Ae and treated as an 

equivalent uniform section, Kp is 10% greater than that of the steel section 

Fe 2 ‘ 
£1 Kee which in Kp. Again, the value of Kg = 2 will be replaced by Kg = 

Kbe 

turn effects the values of the real distribution factors for the case when 

the beam is fully elastic Ber, deg and age’ of equations 8.26, 5629.end 8730. 

8.9 THE EFFECT OF THE BEAM STIFFNESS 
ON THE MAGNIFICATION FACTOR 
  

The magnification factors are basically functions of the same variables 

and themselves vary in a similar manner, Bor example, Figure 8.16 shows the 

variation of the magnification factor A with KV for two values of wind ratio 

where KeV is a function of relative beam and column stiffness and column 

axial load, The figure indicates that at zero axial load A is unity, i.e. 

that there is no magnification of simple plastic theory moments, as A is 

defined originally as the degree by which the bending moments are magnified 

owing to the instability effects, A increases as KgV reduces, i.e. becomes 

negative when p” > o, so that as the axial load increases, A increases, The 

bending moments are therefore greater than those assumed in the simple plas- 

tic design. Any frame which is designed assuming A = 1, whilst carrying 

these axial loads, is unlikely to attain the required load factor, Under 

very heavy axial loads, A -> » at some limiting value of KgV, as shown in 

Figure 8.16, This infinite value of A occurs when the total joint stiff- 

ness is zero, 

The design method contains many approximations, and although all of 

these are considered to be justifiable, it is clearly inadvisable to permit 

high values of the magnification factors. Any such value indicates that 
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the frame is very close to the point of instability. 

In order to control the instability effects, for design purposes, an 

arbitrarily fixed limit of - 1.80 has been imposed (37) on the value of KeV, 

If, during the design of a particular storey of a bare steel frame, KgV is 

found to be less than - 1,80, its value must be increased by suitable altera- 

tion to the selected sections, This is considered below:- 

For bare steel frames, Kp = Kp. Expanding KeV 

K 
KgV = Kn [(ny - 0,) K + (ng- og) ] ba | 

I L Icy by CM ht stat “ ia Oe ri 
Téa” he [(n, 01) hae hy bu (ng Og) ] 

Now, by inspection of the stability functions, (n - 0) is approximately 

proportional to p”, the Euler ratio, Also, p” is inversely proportional to 

the second moment of area of the column, Therefore, approximately, 

- 1) 
(ng - 04) « Pi 1 

3 1 
and, (ng - 0g) « pg « Tor 

Alternatively, (n,- 04) = ae and (ne 6 05) -= oe 
C41 c2 

where a, and ag are constants, Therefore KeV may be written as follows:- 

sees iy fea Rage be ee 
ea e ° ° 
. i6o fe Les toe He deg 

1 L h ole ee he 
Ibe * he [as . hy + Om 

All the terms, apart from Ips, are constants, so that:- 

«| 

KeV « 7 

Thus, any alteration in the column size has a negligible effect on the magni- 

tude of KeV, which is basically a function of Ipeg. Figure 8.17 shows that 

with high Kg (relatively weak beam), the magnification increases rapidly 

with pg giving instability, whereas for low values of Kg (relatively strong 

beam ), stability is greatly improved. Hence, it is the beam size, and not 

wees



the column size, that controls the instability effects, Therefore, for the 

case of bare steel frames, in order to increase KgV above the limiting value 

of - 1.80, it is simply necessary to select a new beam with a larger second 

moment of area, 

| When composite action of type (2) or (3) is introduced into the plastic 

=—, where Ieg is the equivalent design of bare steel frames, then KzV « I 
ez 

second. moment of area of a uniform composite section, It has been shown in 

the previous section that when the composite section 16 x 53 <9 .8., plus 

5" slab thickness is considered, its equivalent second moment of area Ieg is 

increased by 43% relative to that of the steel section when a plastic hinge 

is assumed to form at the leeward end, and by 10% when the beam is fully 

elastic, Hence, with the introduction of these greater values of the equiva- 

lent second moments of area, a larger section might not necessarily be 

required to reduce the KgV term to its limiting value of - 1.80. The KeV 

value effects the values of the distribution factors of the beams and the 

columns considerably. Hence, with the introduction of composite action, 

the stability of the frame as a whole will improve considerably. 

Tabulated values of the magnification factor were produced by Gandhi (*) 

for the design of multi-storey frames by hand computation, With the intro- 

duction of composite action into his design method, it is still possible to 

use hand computation by using tables similar to Table 5(i) to find steel 

sections with adequate (Me + Mp) plasticcomposite moment. For type (3) of 

composite action, the use of a computer becomes a necessity in the design of 

multi-storey frames for the reasons given in section 5.9. 

It had already been shown in the previous chapter that considerable 

saving in the weight of the beams occurs by using type (2) or (3) of compo- 

site action rather than type (1), which ignores composite action altogether. 

Now with the introduction of either of these two types of composite action 

into the design of bare steel frames, even more saving in the weight of the 
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frame will be made, Hence, it can be concluded that composite action of 

the simplest form of type (2) or (3), when introduced to the plastic design 

of multi-storey frames, even with the conservative assumption of its effec- 

tiveness on the beam span, improves the stability of the frame greatly, It 

also results in considerable saving in the weight of the frame as a whole, 

In the next chapter, a detailed account of the testing program for the 

experimental part of this work will be given, 
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Cen Ag. ToweR 9 

DESCRIPTION OF EXPERIMENTAL WORK 
  

9.1 INTRODUCTION 

It is essential to test the validity of design methods and assumptions 

as extensively as possible, Assumptions (3), (4) and (5) on degree of 

composite action compare favourably with type (2), as was shown in Chapter 

(3: Wench dneceeponas to the design method proposed by Steel‘), There S's 

however, the need to test the method by taking practical designs in order 

to check which of the assumptions on degree of composite action is more 

valid, The ideal situation would be to design several full size composite 

multi-storey frames and test them under experimental conditions until 

failure occurs, This, of course, was impossible because of the sheer size 

of the problem, It was therefore necessary to reduce the size and consider 

the design of model structures, Since it is considered that the behaviour 

of models can safely be used to predict the behaviour of full-scale tests, 

To investigate the experimental behaviour and to evaluate the validity 

of the assumptions made in developing the theory of composite beam and slab 

floor systems, described in Chapters 4, 5 and 6, three large scale models, 

together with two slab strips, were built and tested to destruction, 

The first test referred to as test M,, for collapse of the slab and the 

main "edge" beams, represents failure of a typical bay, owing to vertical 

loading, This corresponds to zone I failure in the design of multi-storey 

frames, The second test referred to as test Mg, also for collapse of the 

Slab and the main "edge" beams, represents failure, owing to combined 

mechanism, which corresponds to zone II in the design of multi-storey frames, 

Test Mg is a control test to find the experimental values of the plastic 

composite moments at mid-span and supports which would occur in tests My 

and Me. Tests of two slab strips, referred to as S, and Sg, was another | 

control test to find the value of the ultimate slab moment applicable to 

tests My, and Mg. To simulate uniform load, it proved possible to use a 
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system of interconnected hydraulic jacks for the tests on models M, and Mg. 

Details of the gauging of each test are given, including the type of 

gauge used and the positioning of the gauges. 

9.2 MATERIALS FOR MODELS 
  

All the various materials required for the models were ordered in one 

delivery, in order to minimise the fluctuations in properties of these 

materials. 

9.2.1 CEMENT 

Ordinary Portland cement produced by the Blue Circle Group was used in 

all test specimens, 

9.2.2 AGGREGATES 

Zone III sand and 3/8 in. crushed gravel supplied by the Midland Gravel 

Co, Ltd. from pits in the Bimingham Area was used in all the specimens, 

Sieve Analyses of both the sand and the crushed gravel are presented in 

Tables 9(i) and 9(ii) respectively. 

9.2.3 CONCRETE MIXES 

Trial mixes were used to produce a concrete mix with a 14 day cube 

strength of about 6,000 lbs./sq.in.. The aggregates were completely dried 

before weighing. The dry weight proportions of cement, sand and crushed 

gravel and the water/cement ratio used in all tests were 1: 2: 4 and 0.5 

respectively, 

9.2.4 CONCRETE CONTROL SPECIMENS 
  

With each mixing a set of concrete control specimens was cast, This 

set of control specimens consisted of:- 

(a) six 6 in. cubes 

(b) two 12 in. x 6 in. cylinders 

Compressive strengths were determined by testing the 6 in, cubes and 

averaging the six results, 

The elastic modulus of the concrete (E,) was determined by testing the 

- 164 -



Table 9(i). 

Table 9(ii). 

Table 9(iii). 

Table 9(iv). 

  

Sieve Size or No, % 
  

Passing   

Retained 3/16 in, 

Retained 7 

Retained 14 

Retained 25 

Retained 52 

Retained 100 

100   

7.57 

18.19 
11.615 

10.99 

53.72 

14.69 

3.85 
  

Sieve analysis of Zone III sand 

  

Sieve Size I 
  

Passing   

Retained 1/2 in. 

Retained 3/8 in. 

Retained 1/4 in, 

Retained 3/16 in, 

Retained 1/8 in, 

1/8 in, 

0) 

7259 

74.461 

12,17 

4.416 

1 dd.     

Sieve analysis of 3/8 in, crushed gravel 

  

  

      

yield 
Young's yield strain 
Modulus |stress ft | (Micro 
lbs/in® | 1bs/in? strains) 

31 ,6x70% 5274.0 1670 

  

Steel properties - 3/8 in, diameter mild steel 

  

  

      

yield 
Young's yield strain 
Modulus |stress fy (Micro 
lbs/in® | 1lbs/in? strains) 

354x108] 42470 4200 

  

Steel properties Sg She Fel ot: The Ae Ros a 

  

  

  

 



12 in, x 6 in, cylinders, The cylinders were capped witha cement paste 

after casting. Strains were measured by two diametrically opposed Tinsley 

electrical resistance wire gauges type 7A. Readings from these gauges were 

recorded on a Peekel B103U strain recorder, Eg, values were found to be 

almost constant in all tests at a value of 4,2 x 10° lbs./sq.in. A typical 

stress-strain curve for the concrete is shown in Figure 9.1, 

The control tests were carried out in compliance with the instructions 

set out in B.S, 1881(77) for the testing of concrete. Loading was applied 

by means of a 120 ton capacity Denison compression testing machine, 

9.2.5 SLAB REINFORCEMENT 
  

Slab reinforcement mesh was made up of 3/8 in. mild steel reinforcing 

bars supplied by G.K.N. Tensile test results on specimens supplied by the 

manufacturers indicated that elastic and plastic characteristics were 

favourable to the requirements of the investigation, A fairly sharp yield 

point and ‘little strain hardening during yield were the principle properties 

influencing its choice, All the 3/8 in. mild steel reinforcing bars were 

supplied in twenty foot lengths cut from the same reel, Twenty tensile 

tests were carried out on random samples of the steel in a Denison Universal 

Testing Machine, Stress-strain plots were obtained using a Baldwin auto- 

matic strain recorder, The relative mechanical properties such as Youngs 

Modulus, yield stress and yield strain were found to be consistent enough 

to enable an averaging of results to be carried out, These are summarised 

in Table 9(iii). A typical stress-strain curve for the 3/8 in, mild steel 

bars is shown in Figure 9.2, 

9.2.6 SUPPORTING BEAMS 

To keep the size and the collapse load of the model frames within 

acceptable limits, the main "edge" and secondary beams were chosen as the 

smallest rolled steel joist section available, namely, a 3 in. x 14 in. x 

4. Tbe ./ft,..2un RS. 
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Seven bending tests were carried out on random samples of the 3 in. x 

18 in. x 4 lbs./ft. R.S.J. These were loaded through two points 2) in, 

apart to provide a region of constant bending moment over which strains and 

deflections could be measured, On each sample two electrical strede eehabs 

were fixed to the upper and lower flanges of the R.S.J. at mid-span., The 

type of gauge and the strain measurement technique used are identical to 

those described in section 9.9.1(i). The central deflection of the samples 

was measured by means of a 2 in, travel Mercer dial gauge reading to an 

accuracy of 0,001 in. per division, The test set up is shown in detail in 

Plate 2, The various mechanical properties such as Youngs Modulus, yield 

stress and yield strain were found consistent enough to enable an averaging 

of the results to be carried out, These are summarised in Table 9(iv). A 

typical load-deflection and load-strain graph for the 3 in, x 14 in. x 4 lbs, 

/ft. R.S.J. tested in bending under two point loading is given in Figure 9.3. 

Tensile tests on random samples of the flange of the 3 in. x 14 in. x 

4} lbs./ft. R.S.J., machined in compliance with the instructions set out in 

B.S. 18(78) for tensile testing of metals, were carried out in the Denison 

Universal Testing Machine, From these tests it was found that this joist 

exhibited some strain hardening properties, 

9.3 TEST My 

This test of a model taken to destruction for collapse by mode B 

(Figure 4.8) represents failure of a typical bay, owing to vertical loading 

alone, which corresponds to zone I failure in the design of multi-storey 

frames, 

In order to keep the size of the model and failure load within accept- 

able limits, several slab sizes were investigated and finally a 9'-0" by 

5'-0" slab was decided upon with a slab thickness of 24 inches. The 

Supporting beams were set out to forma rectangle of 7'-0O" by 4'-0" (L x f. 

The model, thus comprised of two main "edge" beams 7' long and two secondary 

beams 4' long with a 9' x 5' and 24" thick slab cast over the top of the 
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beams which was continuous over the secondary beams as shown in Figures 

9 4 and. 9.5. Continuity of the slab over the secondary beams was produced 

by means of four lever arms connected to each of the secondary beams and 

fixed at their ends through proving rings to the test rig. This prevented 

the secondary beams from rotating by applying vertical loads to the lever 

arms, aS shown in Figures 9,4 and 9.5, A detailed description of these 

lever arms will be given in section 9.7. 

The load applied to the model simulated a uniformly distributed load 

and was produced by a system of interconnected hydraulic jacks, details of 

which are given in section 9.7. 

Composite action between the slab and the supporting beams was made by 

means of 2 in, long and 1/2 in, diameter stud shear connectors, The 

design of these connectors for the M, model are shown in section OF Oe 

The model was designed for type (5) assumption on degree of composite 

action, which assumes full composite at mid-spans and supports of the main 

"edge" beams, Although the model was designed for this assumption, theo- 

retical values of its collapse load for the other four assumptions on degree 

of composite action were carried out as well as that for type (5). These 

theoretical collapse loads were compared with the actual collapse load to 

see which of the five assumptions on degree of composite action most closely 

represents the observed experimental behaviour of the model, 

For collapse of the main "edge" beams and the slab (mode B, Figure 4.8) 

to occur, the other two possible modes of collapse of the secondary beams 

and the slab (mode A, Figure 4.8) and independent slab collapse (mode C, 

Figure 4..8) must be prevented for the various assumptions on degree of com- 

posite action, This was achieved by suitable selection of values for the 

sides ratio p (F) and the bending strength of the slab, 

Limits of the critical strength ratios of this system for collapse by 

mode B can be found by using charts similar to Figures 4.12, 5.6 and 6.3, 
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for an internal bay, for the various assumptions on degree of composite 

action, Several “ittinate slab moments and hence areas of slab reinforce- 

ment were tried and finally a mesh of 3/8 in. diameter mild steel bars was 

used at 4 in, centres for the bottom layer in the longitudinal direction, 

Using this area of slab reinforcement, the condition of equation 5.33 for 

an under reinforced section was still satisfied (i.e. 0.331 in.?/ft. run), 

The slab was considered isotropic, i.e. the hogging and sagging ultimate 

moments were the same, The hogging slab reinforcement at the supports of 

the main "edge" beams was provided by hooking up the bottom slab reinforce- 

ment at the end of the slab, as shown in Figure 9.10. The 12 in. overhang. 

of the slab from the main "edge" beams supports shown in Figures 9,4 and 

9.5 was provided to ensure adequate bond for the hogging slab reinforcement 

as well as to strengthen the model against collapse by mode A, The top 

layer of mesh also consisted of 3/8 in, mild steel bars in the transverse 

direction, Because of the lower effective depth of the tcp layer of steel, 

which lay directly on top of the bottom layer, and to keep the slab isotro- 

pic, it was necessary to reduce the spacing of the bars from in, to 3 in, 

centres (i.e. 0.442 in.*/ft. run). Under laboratory conditions, it was 

possible to use a 3/8 in, concrete cover for both the bottom layer and the 

hogging slab reinforcement, 

The ultimate moment/ft. run Ms can be determined from:- 

Atet Ms = Atety [dy - 5es ] 941 

The actual cube strength obtained by test (Uy) was equal to 6820 lbs./sq.in, 

To find the theoretical ultimate slab moment Ms, the following values 

4re substituted into equation 9.1, 

Ay = 0,331 sqim.3; ty: = 52740. lbs./aqsin.; dy. = 1.9% ink 

Uc = 2/3 x 6820 = 4540 lbs./sq.in. (for experimental work 

Ue = 2/3 Uy) 

Therefore, Mg = 31,000 1bs,in./ft.run or 2.586 kips - ft./ft. run 
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In the following sections, the theoretical collapse load of model M, 

by mode B under U.D.L. will be calculated for each of the five assumptions 

on degree of composite action, 

9.3.1 COLLAPSE LOAD FOR TYPE (1) ASSUMPTION 

From section 4.5.2, the collapse load of model M, by mode B can be 

obtained from equation 4.37, 

1.€¢ Dbl = ‘ols t + aes 9-2   

From the bending tests on the 3 in, x 13 in. x 4 lbs./ft. run R.S.J., 

the average plastic moment value of the joist equals 55,690 lbs,in, or 

4.64 kips - ft, 

Therefore, pli = 16_x 8 mae + i a kips 

or collapse load by mode B for type (1) assumption = 20,02 tons 

9.3.2 COLLAPSE LOAD FOR TYPE (2) ASSUMPTION 

From section 5.5, the collapse load of model M, by mode B for type (2) 

assumption on degree of composite action can be obtained from equation Datos 

ice. pe val? Me +Mp) , 8 a u 9.3 

The plastic composite moment at mid-span Me for type (2) assumption 

can be calculated from equations 5.2 and 5.3, assuming the plastic neutral 

axis lies within the slab, 

: Af = jee 
Lee dn * De ok 

and Me =. Aeaty [§ +t - te ] 9.5 

Substituting into equations 9.4 and 9.5 the following values, 

As = 1,18 sq.in.; fy = 42,470 lbs./sq.in.; b = 30 in, (half the slab 

width) 

Uc 1540 1lbs./sqein.s @ = 3 ing; “4 = 24.in, 

«e Me = 191,250 lbs,in, or 15,9) kips — Pt, 

Substituting the values 15.9) kips - ft., 4.6) kips - ft. and 2.586 kips - 
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t./ft, rin Por Mz, Mg and Ms respectively into equation 9.3, then:- 

the collapse by mode B for type (2) assumption = 26.27 tons 

9.3.3 COLLAPSE LOAD FOR TYPE (3) ASSUMPTION 
  

The equation for the collapse load of model M, by mode B for type (3) 

assumption on degree of composite action is the same as that for type (2) 

assumption, i.e. equation 9.3, It is only the value of Me which will be 

different from that of type (2) assumption, as in this case the effect of 

the sigs voditesednent will be included, 

To calculate the value cf Me, assuming the plastic neutral axis within 

the slab, equations 5.13 and 5.1) are used, 

L363 dn Fa e s oe ‘ 9.6 

evc 

d ay go and Me = Asefy [5 +t -B] + dAtety [t - 2 - 0) 367 

Substituting into equations 9,6 and 9.7 the following values, 

Reve 4 AG an ings fy =e 12 470. 1hs./aq.in.s, > = 30am, 

Ue = 540 lbs./sqeins; d= 3 ins; +t = 24 in, 

At = 0.331 in.*/ft.run; ty = 52,740 lbs./sq.in.; oc = 0.56 in, 

Therefore, Me = 252,560 lbs,in, or 21,06 kips ~- ft, 
  

On substitution into equation 9.3, 

16(21.,06 + 4.6) , 8x 2.586 x 4 
kips 

or collapse load by mode B for type (3) assumption = 31,50 tons 
  

9.3.4 COLLAPSE LOAD FOR TYPE (4) ASSUMPTION 
  

The collapse load of model My, by mode B for type (i) assumption on 

degree of composite action can be obtained from equation 6,28, 

4 e% plL = 16 (Me + My) 9.8 

The hogging plastic composite moment at the supports of the main 

"edge" beam My can be calculated from equations 6.7 and 6.8, assuming 

the plastic neutral axis lies within the flange of the joist, 
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dic. ah = t + An a Bett ety/ty 9.9 
- be 

2 bp 

and My = fy [As (5 +t - 0c) - dp (at - t)(d! + + - 2c)] 9.10 

Mn is obtained from equations 9,9 and 9.10, where:- 

t+ = 25 ing; As = 1.18 sq.in.; b = 2.5 ft.3; At = 0.331 in.*/Pt.run 

ty = 52,470 lbs./sq.in.; fy = 42,470 lbs./sq.in.; bp = 0.249 in.; 

Ghia Sein, 

+o (ae oO 2750 bs.in. or 13225 dps = ft: 

The value of Me for type () assumption on degree of composite action 

is the same as that for type (2) assumption obtained from equation 9.5, 

i.e. the value of Me for type (4) assumption equals 15.9) kips - ft. 

Substituting the values 15.9: kips - ft. and 13.23 kips - ft. of Me and 

My into equation 9.8, gives:- 

collapse load by mode B for tyre ()) assumption = 29,76 tons 

9.3.5 COLLAPSE FOR TYPE (5) ASSUMPTION 

The equation for collapse load of model M, by mode B for type (5) 

assumption on degree of composite action is the same as that for type (J) 

assumption, i.e. equation 9.8, 

The value of My for this assumption is the same as that for type (4) 

assumption = 13.23 kips - ft. The value of Me will be the same as that 

for type (3) assumption, i.e. 21.06 kips -ft. Substituting these values 

of My and Me into equation 9.8, gives:- 

collapse load by mode B for type (5) assumption = 35.01. tons 

To ensure that the least load required to produce failure of the system 

will be by mode B for each of the five assumptions on degree of composite 

action, the theoretical collapse load by the other two possible modes of 

collapse A and C were calculated, 

Independent collapse of the slab will occur by mode C if the sides 

ratio p of the model (0.57) < a (see section 4.5.3). For collapse of 
2 

= 468



the system by mode C, equation 4.38 must be used for any of the five 

assumptions on degree of composite action, 

‘ y 2h. 2p ie, ptL = a(S pene eas + 1].M,; 9.11 

Where tang = J 4p? +6-2p for minimum p 

where p = 0,57, tand = 1,56 

Substituting the above values of p and tanf together with the value of 

Ms = 2,586 kips - ft,/ft. run into equation 9.11, gives:- 

collapse load by mode C for any of the five assumptions = 38,8. tons 

This value of collapse load by mode C is higher than that by mode B 

for any of the five assumptions on degree of composite action, which proves 

that mode B always occurs before mode C for this system, 

The collapse load of the secondary beams and the slab by mode A was 

calculated for the five assumptions using equations 4.36, 5.44 and 6.27. 

In all cases, it was found that a lower load was required for collapse by 

mode B than by mode A, A summary of the collapse load of model M, by modes 

A, B and C is shown in Table 9(v) for each of the five assumptions, From 

this table, it can be seen that the least load required to produce collapse 

of the model will be that given by mode B, 

9.3.6 TOTAL MOMENT AT THE SUPPORTS OF MODEL M, 
  

By ignoring the effect of composite action at the supports of model M,, 

the theoretical total moment there when plastic hinges form in the beams 

and a hogging yield line forms in the slab (Figure 4.8, mode B) 

=2Mpt+Msgf = 2x 4,64 + 2.586 x 5 kips-ft, = 22.21 kips-ft. 

Taking the effect of composite moment at the supports into considera- 

tion, the total theoretical plastic composite moment there 

=2hy =. 2% 13.25 kips-ft. 

26.46 kips-ft, 

The above two theoretical values will be compared in Chapters 10 and 11 
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Type of assumption Collapse load Collapse load Collapse load 

  

  

          

tae on degree of by mode B by mode A by mode C 
aiate composite action (tons) (tons) (tons) 

(1) 20.02 2h 645 39 8h. 

(2) 26 .27 30.05 39 8h 

My (3) 34 51 39.27 39 Bh. 

(4) 29.76 30.05 39 8h. 

(5) 35.01 39.27 39 8h. 

(1) 15 40d, 2 6.5 35.61 

(2) 21.30 30.12 35.61 

Mg (3) 26 .58 39 42 35.61 

(44) 23 0) 30,12 35.61 

(5) 28 ,32 3942 35.61 

  

Table 9(v). 

C for Tests My, and Mg. 

Summary of the theoretical collapse loads by modes A, B and 

 



with the maximum experimental moments measured at the supports by means of 

the lever arms attached to the secondary beams, to investigate whether 

composite action at the supports of the model was present or not, 

9.4 TEST Mg 

‘The size of model Mg was exactly the same as that of model M,, i.e. 

SM Joie tay! and 2i" thick slab composite and on top of a 7' by 4' steel frame 

of Syn. x ce ay, ka TOM ERG els The slab was considered isotropic, 

using the same area of Helis riaieus as for model M,, i.e. 3/8 in, mild 

steel bars at i in, and 3 in. centres for the longitudinal and transverse 

slab reinforcement respectively. Uniformly distributed loading was applied 

to model Mg by the same interconnected hydraulic jacks system used in test 

M,. The only difference in this test, compared to test M,, was that the 

lever arms were omitted from one end. Thus, the main "edge" beams of this 

end were simply supported and hence no plastic hinge could develop. The 

model thus represented a hinge cencellation at the windward end of a typical 

bay of a multi-storey frame, owing to horizontal loading, Failure of the 

model was thus due to the formation of plastic hinges and yield lines at 

mid-span and one support for collapse by mode B (Figure 4.9). This repre- 

sents failure of a typical bay of multi-storey frames, owing to combined 

mechanism, which corresponds to Zone II failure in the design of mlti- 

storey frames, 

Model Mz was also designed for type (5) assumption on degree of compo- 

site action which assumes full composite action at mid-span and one support. 

In the following sections, the theoretical collapse load of model Mg by mode 

B under U.D.L. is calculated for each of the five assumptions on degree of 

composite action to see which of these assumptions most closely corresponds 

to the observed experimental behaviour, 

9.4.1 COLLAPSE LOAD FOR TYPE (1) ASSUMPTION 

From section 4..6,2, the collapse load of model Mg by mode B can be 

obtained from equation )..).0, 

ATO ins



ms igey plL = Fat, te 9.12 

The actual cube strength (Uy) for this test was 7010 lbs./sq.in., which 

was slightly higher than that for test M, (6820 lbs ./sq.in.). Therefore 

the theoretical value of Ms will increase slightly. 

Uc = 2/3 x 7010 = 4670 lbs./sq.in, 

Substituting this value of U, into equation 9.1, gives the theoretical value 

of Ms for test Mg = 31,100 lbs./ft.run or 2,592 kips-ft./ft.run 

Substituting this value of Ms = 2.592 kips-ft./ft.run and the value of 

  

Mz = 4.64 kips-ft. into equation 9.12, gives:- 

12 x 2,592 xb | 2h x bebe 
ee 7 7 kips 

or collapse load by mode B for type (1) assumption = 15.0) tons 

9.4.2 COLLAPSE LOAD FOR TYPE (2) ASSUMPTION 

From section 5.6, the collpase load of model M, by mode B for type (2) 

assumption on degree of composite action can be obtained from equation 5.46, 

Dee. 8 (2 Me + Mp) | 4 Ms t 
pil = L r 9.13 

The theoretical value of Me for this test will increase slightly com- 

pared to that for test M,, owing to the slight increase in the cube strength, 

Substituting the new value of Ug = 4670 lbs./sq.in,. into equation 94, gives 

from equation 9.5, the theoretical value of Me of this test for type (2) 

assumption = 191,520 lbs.fin. or 15,96 kips-ft. 

Substituting the values 15,96 kips-ft., 4.64 kips-ft. and 2.592 kips-ft./ 

ft.run of Me, Mp , and Ms respectively into equation 9.13, gives:- 

the collapse load by mode B for type (2) assumption = 21.30 tons 

9.4.3 COLLAPSE LOAD FOR TYPE (3) ASSUMPTION 

The equation for collapse load of model Mg by mode B for type (3) 

assumption is the same as that for type (2), i.e. equation 9.13. Substi- 

tuting the value of Uc = 4670 lbs./sq.in. into equation 9.6, and using 

equation 9,7, the theoretical value of Me, for this test, for type (3) 

el



assumption = 253,680 lbs.in. or 21,14 kips-ft, 

On substitution into equation 9,13, 

8(2 x 24,14 + 4.64) ee 20592 xy stad 
va 7 7 

or collapse load by mode B for type (3) assumption = 26.58 tons 

9.4.4 COLLAPSE LOAD FOR TYPE (4) ASSUMPTION 
  

From section 6.6, the collapse load of this system by mode B for type 

(4) assumption on degree of composite action can be obtained by using 

equation 6,29, - 

ig. plL = See Ey) 9 Ad 

The hogging plastic composite moment at the fixed support (My) will 

have the same value as that for test M,, irrespective of the difference in 

cube strength between the two tests, i.e. 13.23 kips-ft. This is due to 

the fact that the plastic neutral axis lies within the flange of the joist 

(equations 9.9 and 9,10), ‘The value of Me will be that of type (2) assump- 

tion, i.e. 15.96 kips-ft. On substituting the values 15.96 kips-ft. and 

15.23 kips-ft. for Me and My respectively into equation 9.1), 

The collapse load by mode B for type (4) assumption = 23,04 tons 
  

9.4.5 COLLAPSE LOAD FOR TYPE (5) ASSUMPTION 
  

The collapse load equation for this assumption by mode B is the same as 

that for type (4.) assumption, i.e. equation 9.14. The value of Me will be 

that for type (3) assumption, i.e. 21.14 kips-ft. Substituting the values 

21.14 kips-ft. and 13.23 kips-ft. for Me and My into equation 9.14, 

The collapse load by mode B for type (5) assumption = 28,32 tons 
  

To ensure that the least load required to produce failure of model Mg 

will be by mode B for each of the five assumptions on degree of composite 

action, the theoretical collapse load by the other two possible modes of 

collapse, namely A and C, were calculated, 

Independent collapse of the slab will occur by mode C, as the sides 

A I



ratio of the model p (0.57) < 0.82 (see section 4.6.3). For collapse of 

model Mg by mode C, equation 4.4; can be used, 

‘ 5 2h. 5p i.e. plL = PCS = ptang) sae + 1] Ms 9215 

Where tand = 3 (| p* + 2 =p) for minimum p 

where O — O57, tand — 14507 

Substituting the above values of p and tand together with the value of Ms of 

2.592 kips-ft./ft.run into equation 9.15, 

The collapse load by mode C for any of the five assumptions = 35.61 tons 

The collapse load of the secondary beams and slab by mode A was calcu- 

lated for the five assumptions using the same equations (4.36, 5.4 and 

6.27) as for test M,. In all cases, it was found that collapse occurs by 

mode B rather than by mode A, A summary of the collapse load of model Mg 

by modes A, B and C is shown in Table 9(v) for each of the five assumptions 

on degree of composite action, From this table, it can be seen that the 

least load required to produce collapse of the system will always be by mode 

Ba 

The total theoretical moment at the fixed supports of model Mg when 

plastic hinges and yield line forms is 22.2) kips-ft. or 26,46 icipa-ft. 

depending sail whether composite action at the supports is present or not, 

These two values are compared in Chapters 10 and 11 with the corresponding 

experimental values, to determine whether or not composite action was 

present at the fixed end, 

9.5 DESIGN OF THE SHEAR CONNECTORS 

Composite action between the slab and the supporting beams of the models 

was achieved by means of 2 in, long and 1/2 in, diameter stud shear connec- 

tors, Three push-out specimens were made to determine the ultimate capacity 

and the load/slip characteristics of these studs, The lowest collapse load 

of these tests, viz. 3.55 tons, was taken as the ultimate capacity of the 

studs(*°), Figure 9.6 shows the load/slip characteristics of these studs, 
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The total slip of the stud at ultimate load was measured as 80 x 10°° inch, 

To provide composite action at the supports and mid-span of the main 

"edge" beams of models M, and Mg for type (5) assumption, the following 

procedure was adopted to find the number of shear connectors required, 

(i) Mid-span composite action 

The plastic neutral axis at mid-span of the main "edge" beams was 

within the slab, The effect of slab reinforcement was included for type 

(5) assumption, Therefore, from section 5.2.4, the number of shear con- 

nectors to provide mid-span composite action was given by equation Delp 

ies Number required = als 9.16 
c 

Substituting into equation 9,16 the following values, 

As = 1.18 sq.in.; fy = 18.96 tons/sq.in, 

Pe = 080m 5555 (Py = 80% of ultimate capacity of 

=2,.O1e. LOnS one stud shear connector) 

Number required = 7.87 or 8 studs per half span 

(45) Composite action at supports 

The plastic neutral axis at the supports of the main "edge" beams was 

within the joist flange, Therefore, from section 6.2.2, the number of 

shear connectors to provide composite action at the supports was given by 

equation 6,13, 

Ee C's Number required = Petty OL 

Substituting into equation 9.17 the following values, 

b= 2,5 ft.3; At = 0.331 in.*/ft.run; ty = 23.54 tons/sq.in, 

Pé 0.64. x 3.55 (Pg = 64% of ultimate capacity 

ase tons of one stud shear connector) 

« « Number required = 8,57 or 9 studs per half span 

Therefore, from (i) and (ii) above, the total number of shear connectors 

required to provide mid-span and support composite action of the main "edge" 

beams is 17 studs per half span or 34 studs for the whole length of the beam, 

er



For the secondary beams, composite action was assumed at mid-span only, 

The plastic neutral axis at mid-span lies within the slab and since the same 

joist was used for secondary and main beams, then from (i) the number of 

studs required was 8 studs per half the span or 16 studs for the whole span, 

30-stndn were in fact used on the secondary beams, instead of the required 

16 studs, The extra 1) studs were placed to assist the development of 

continuity of the slab along the secondary beam, since the rotation of these 

beams, owing to vertical loading, was prevented by the lever arms attached 

to them, 

The studs were automatically welded to the upper flange of the joist 

and uniformly spaced along the spans of the secondary and main "edge" beams 

in a single line, as shown in Plate 3, The same number of studs on the 

secondary and main beams respectively were used in all model tests, 

9.6 CONSTRUCTION OF THE MODELS 
  

The secondary and main beams were welded together to form the ae 

frame shown in Plates 3 and 4. For ease of constructing the formwork, the 

models were cast in an inverted position, as shown in Plate 4, 

Casting was carried out on two variable speed vibrating tables, shown 

in Plate 4, after the concrete had been mixed in a mixer of the non-tilting 

drum type. The longitudinal reinforcement was bent up at the ends in such 

a way as to give cover of 3/8 in, to the sagging and hogging reinforcement 

within the 23 in. thick slab, as shown in Figure 9.10. This cover was main- 

tained by placing mortar blocks between the reinforcement and the formwork, 

Curing of the models, however, could not be carried out in the constant 

humidity room, owing to size restrictions, Consequently, the models were 

covered with a polythene covered wooden framework immediately after casting, 

Wet hessian was laid over the slab surface after the initial set of the 

concrete was complete, The sides were stripped after two days, the sacking 

being soaked twice a day and the polythene covers being kept in position 

over the models to prevent excess evaporation, The upper surface shown in 
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Plate 4, which was in fact the lower slab surface, was carefully trowelled 

after casting, so that a smooth finish ensued, 

As the models were tested after 1) days, the s lab elements were allowed 

to dry four days before testing, The last three days before testing were 

devoted to fixing and connecting gauges, and setting up the model for testing. 

9.-/ SETTING UP OF THE APPARATUS FOR TESTS M, AND Mg 

Tests were carried out within a large permanent portable testing rig. 

This rig was constructed a asad cae in such a way that a 6 in. space 

existed between the two I-sections making up the base, ‘The total width of 

the base was 18 in, and it was therefore necessary to support the corners of 

the models, which were 4 ft. apart, on two suitably stiffened 12 in. x 5 in, 

I- sections 5'-6" long placed transversely to the length of the main ele 

Mechanical jacks were placed at the ends of the transverse beams in order to 

prevent deflection of the supports of the model during testing, as shown in 

Plate 5, The lateral restraints, owing to bending, were eliminated by using 

bearing pads placed at all four corners of the model, as shown in Figure 

9.5. The upper pads were 2 in, x 13 in, x $ in, solid metal blocks welded 

to the frame before casting with a ball recess placed on its surface centrally 

to each corner, This is shown in Plate 4, The lower bearing pads were 

2. Seed. in, x 3 in, solid metal blocks with a similar ball recess. .A 

1 in, hardened steel ball was placed between the two recessed blocks, The 

ball joint arrangement ensured that the reactive forces acted vertically 

throughout the test, while eliminating any torsional restraints, Half-inch 

diameter rollers were placed underneath the bearing pads to prevent membrane 

forces building up in the models during testing, The rollers in turn rested 

directly on the upper face of the transverse I-sections, Plate 6 shows a 

close view of the ball joint arrangement with the 1/2 in. diameter rollers 

underneath one of the corners of the model, 

Point loads were applied to the model to simulate uniformly distributed 

loading, This was achieved using interconnected hydraulic jacks positioned 
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in four rows, Within the boundaries of the supporting beams, each longi- 

tudinal row of jacks covered one foot width of the slab, itogether there 

were 16 jacks arranged in four jacks per row, with the area covered by each 

jack being equal. Thus, when the load applied to the model was W, each 

jack received W/16 of that load, The position of the jacks is shown in 

Figure 9.4. It can be seen from Figure 9.7 (a) and (b) that in the case 

of simply supported beams, this loading system does simulate unif ormly 

distributed loading very accurately, as the central moment for both cases 

is the same, On the other hand, for an encastré beam (Figure 9.7 (c) and 

(d)), the adopted loading system results in an error of - 6% and + 3% in the 

central and ends moments respectively, compared to a U.D.L, 

Each jack had a capacity of 6 tons with a ram diameter of 12 ie oe 

travel of 23 in, The jacks pressure was maintained at a constant level 

manually, To safeguard against punching shear failure of the slab, a 

3 in. x 3-in. x 1/4 in, plate was placed under each jack, To ensure 

vertical loading, care was taken that each jack maintained an upright posi- 

tion during the setting up of the system, A plate 3 in, diameter and 3/, 

in, thick was placed on top of each jack, with a ball recess at the centre 

of the upper surface of each plate, into which a 3/) in. diameter hardened 

steel ball was placed, This was to ensure that the load acting on each 

jack was axial, 

The applied loads imposed by each transverse row of jacks was distri- 

buted by means of a beam of } in, x 4 in. x 1/4 in. hollow section, To 

the lower surface of this beam four plates 4 in, x 4 in, x 3/h in. were 

welded with a recess to accommodate the steel balls, Care was taken that 

when the hollow beam rested on the jacks, the distance between the centres 

of the steel balls was 12 inches, Details of the ball joint arrangement 

between the hollow section and the jacks are shown in Plate 5 and also in 

Figure 9.5, In Plate 5, the interconnected jacks are shown in position, 

where it is noticed that each row of jacks were backed by one hollow beam, 
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The four hollow beams were in turn backed by means of a 12 in, x 5 in, 

cross beam placed centrally on top of the hollow section beams, 

The cross beam was loaded centrally through a load cell with a 200 ton 

capacity. The lower part of this cell consisted of two cylindrical solid 

blocks with a central recess for a 3 in, diameter hardened steel ball, thus 

ensuring the application of the load vertically. On top of the cell a 50 

ton capacity, long travel, jack was placed to react against the loading rig, 

operated by a hand pump system, 

Continuity at the supports of the main "edge" beams and of the slab 

along the secondary beams was achieved by means of four stiffened lever 

arms, These were connected to the secondary beam at 12 in. centres and 

prevented the rotation of the latter during the loading procedure, Each 

lever arm was a ) in, x E in, joist connected to the secondary beam by 

means of two solid blocks at either side of the secondary beam. Both blocks 

were machined to fit the inside of the secondary beams with the machined 

surfaces coming in contact with the web and the flanges of the secondary 

beam, One of the blocks was welded to the lever arm, while the secondary 

beam was secured in position between the blocks by means of four 3/8 in, 

high tensile bolts through drilled holes in the web of the secondary beam, 

as shown in Plate 3, Details of the connection of the two machined blocks 

to the secondary beam are shown in Figure 9.5, and also in Plate 7, 

To ensure continuity at the supports along the secondary beam, each 

lever arm was bolted to the slab by means of 1 in, diameter bolt welded to 

the top flange, These bolts were positioned 6 in, away from the web of the 

Secondary beam and passed through pre-set holes in the slab, A transverse 

plate 13 ing. x 4/7) in, and 54, long was placed on the top slab surface 

before fastening the nuts, thus ensuring that the four lever arms acted as 

an integral system, Details of the connection of the slab to the lever 

arm are shown in Plate 7 and in Figure 9.5, where it is also noticed that 

the slab was separated from the lever arms by a 1/2 in, gap. In this 
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manner, contact was not allowed between the lever arms and the slab except 

through the bolts, 

At their far ends, each pair of lever arms was connected by means of 

a beam of T-section, To the centre of this beam, between the lever arms, 

a 5 ton capacity proving ring was connected, In this manner, any load 

exerted on the proving ring was equally shared by a pair of the lever arms, 

Altogether, two proving rings were used to be shared by four lever arms, 

These proving rings were connected by bolts to a channel section fixed to 

the testing rig. Details of the connection of the proving ring to the T- 

section and to the channel are shown in Plate 8, 

Any load applied to the model tended to rotate the secondary beams, 

In turn, this led to a tendency to rotate the lever arms and cause their 

far ends to rise, This uplift wes prevented by the proving rings which 

recorded the force required to prevent this uplift. This gave rise toa 

moment equal to the prceduct of the recorded force and the 64 in, distance 

between the proving ring and the centre line of the secondary beam, The 

total moment produced by the lever arm system gave the fixing hogging moment 

acting at the support. The uplift force at the end of the “lever arms also 

produced a force in the bolts on top of the lever arms, which were connected 

to the slab, thus producing continuity of the slab along the secondary beam, 

Two types of boundary conditions were imposed, In test M,, all the 

lever arms were connected to their proving rings, thus producing fixing 

moments at both ends of the model to simulate collapse, owing to vertical 

loading, In test Mg, only one end of the model was restrained, thus simu- 

lating the case of failure by combined mechanism, 

During test My, it was noticed that the rectangular hollow beams 

backing the hydraulic jacks developed excessive deflections, In test Me > 

this defect was rectified by filling these sections with concrete, It was 

also noticed that loading of the model gave rise to slight lateral movement 
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of the cross beam, thus tending to give a sideways movement to the whole 

model, This was also rectified by inserting rollers between the cross 

beam and the hollow sections, An improved ball joint arrangement, com- 

plete with 1/4 in. rollers underneath, was used at the supports of the 

model Mg. Details of these improvements, together with the complete set 

up of test Mg, are shown in Plate 9, A fourth improvement was achieved 

by moving the two pairs of lever arms as far apart as possible, so that the 

outer lever arms came as near as possible to the main beams of the model, 

This reduced twisting of the main beams, 

9.8 EXPERIMENTAL VALUES OF BEAM AND SLAB STRENGTHS 

To find the theoretical collapse load for the frames in tests M, and 

Mz, values of the composite slab and beam ultimate moment at mid-span and 

supports (Me and My) and the slab ultimate moment (Ms) need to be known, 

These have been evaluated theoretically, using the actual cube strength of 

the concrete, for the various assumptions on degree of composite action, 

A more accurate estimate of the collapse load could be obtained if the 

experimental values of Me, My and Ms were substituted, these values being 

obtained from control tests on single elements, According to this, units 

identical to those in models My, and Mg were constructed and tested to des-— 

truction, These control tests are described below, 

3.041 hor Ms 

The composite beams and slab model for this test was an exact replica 

of models My and Mg. Test Mg was divided into three control tests. The 

first test was to find the experimental value of Me at mid-span and the 

other two were to find the experimental value of My at both supports, These 

three control tests are denoted Cy, Cg and Cg respectively and are described 

below. 

(i). Test Cy 

This was a simple bending test to find the experimental value of Me. 

The cube strength for this test was 6780 lbs ./sq.in, Because of the time 
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taken to complete a main test, it was not feasible to carry out the related 

control tests on the same day. This explains why the main tests and the 

control tests have concrete of slightly differing cube strengths, Conse- 

quently, the theoretical values of Me for the various assumptions on degree 

of composite action were recalculated using the actual cube strength of 

this test, The theoretical value of Me for type (2) or (4) assumption 

equals 15,93 kips-ft. and that for type (3) or (5) assumption equals 21.06 

kips-ft. These two values will be compared with the experimental value 

of Me, obtained from this test, in Chapter 11. 

The bending test was carried out using a central line load 5 ft. long 

applied through three 3 in, x 14 in. x 4 Ibs./ft. run R.S.J. welded together. 

At the lower face of this line load, blocks were welded to give clearance 

for electrical strain gauges placed on the concrete along and perpendicular 

to the transverse central line of the model, Loading for the test was by 

the same 50 ton capacity, long travel, jack and 200 ton load cell used in 

tests M4, and Me. 

The model was supported on bearing pads similar to those of models My 

and Mg. Only this time, the upper bearing pads were welded to the lower 

flange surface of the joist 12 in. away from the corners of thes teel frame 

making the span of the main beams 5 ft., compared with 7 ft. in tests M, and 

Me. This alteration was made to investigate the possibility of compressive 

membrane action between the concrete slab and supporting beam. Details of 

the experimental arrangements are shown in Plate 10, 

(ii) Tests Cy and 6, 

Control tests Cg and Cg were carried out to find the experimental total 

moment at both ends of model Mg. 

After the collapse of model Mg at mid-span, owing to the bending test 

Cy, the model was reseated on the corner supports of the steel frame, as 

Shown in Figure 9.8. A bearing pads system similar to that of tests M, and 
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Mg was used at the supports, with the upper bearing pads, seen in Plate 10, 

welded to the corners of the steel frame before casting. The secondary 

and main beams of the model at the corner supports were not affected by the 

bending test C4. 3 

The lever arms used in tests My and Mg were connected to the secondary 

beams of the model on both ends, The slab was connected to the lever arms 

using the welded bolts on top of the lever arms, ina manner similar to that 

used for tests M, and Me. 

Load was first applied to the lever arms at one end of the model (test 

C2) until the ultimate moment condition was reached at the support to which 

the lever arms were connected, Subsequently, the lever arms at the other 

end were loaded (test C3) and the ultimate supp ort nieais rit again recorded, 

The experimental values of the total moment at both ends of the model, 

owing to tests Cg and Cg, are compared in Chapter 11 with the total theore- 

tical moments at the supports, 

9.8.2 SLAB STRIPS S, AND So 

To find the value of the ultimate slab moment Ms experimentally, two 

slab strips 2'-0" by 4.'-10" and 23" thick were constructed and reinforced 

with the same area of reinforcement/ft. run as that in tests M, and Mg using 

the same 3/8 in, mild steel bars, These strips were loaded through two 

line loads 16 in, apart to provide a region of constant bending moment, over 

which strains could be measured, Details of the experimental arrangements 

of this test can be seen in Plate 11. 

The actual cube strength of the two slab strips was 6920 lbs./sq.in., 

therefore Uc = 4610 lbs./sq.in. Substituting this value of U, into equa- 

tion 9.1, the theoretical value of Ms, for the two slab strips = 31,068 lbs. 

in./ft. run or 2,589 kips-ft./ft. run, which is very nearly the same as that 
  

of tests My and Mg. This theoretical value of Ms is compared in Chapter 14 

with the experimental values of Ms obtained from testing slab strips S, and 

See 
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9.9 INSTRUMENTATION 

9.9.1 STRAIN MEASUREMENT 
  

Strain gauges were attached to the models to determine the variation 

of strain both along and perpendicular to the centre lines, including the 

upper and lower surface of the slab. Strains were also measured parallel 

to the main "edge" beam and parallel and perpendicular to the secondary 

beam on the upper and lower surface of the slab. At some possible "hinge" 

positions, strain gauges were ®ixed to the steel beams, reinforcement and 

concrete slab, to observe the onset of yield and to provide a picture of 

the distribution of strain through the composite section, The gauges used 

to measure the strain on the steel beams, reinforcement and concrete slab 

are described in the following sections, 

(4) Supporting beams strain 

Steel strains of the supporting beams of the models were measured by 

placing electrical strain gauges at possible hinge positions, as shown in 

Plate 4, The gauges used were Tinsley foil strain gauges type LSG9A/2/CN/E 

which had a nominal gauge length of 1/4 in, Budd GA-2 two component epoxy 

adhesive was used for bonding the gauge tothe joist. The manufacturer's 

specifications were followed closely, special care being taken to sand the 

metal bright with wet and dry paper and to degrease and neutralise the 

surface with Trichlorethylene and 10% dilute Ammonia solution, The gauges 

had been fixed to the joist with the aid of Sellotape strips, the cement 

was cured under infra-red radiation for about eight hours, after which time 

the Sellotape strips were peeled off, leaving the gauges exposed, Elec- 

trical wires from a wire core, manufactured by Radiospares Limited, was 

soldered to the exposed tabs of the gauges.’ It was found easier to fix 

the strain gauges in position on the supporting beams before casting the 

model, and because of curing of the slab, the gauges were waterproofed bef ore 

casting, using a synthetic rubber coating compound "Gagekote # 2" made of 

two parts, 
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(ii) Reinforcement Strains 

These were measured by placing electrical resistance strain gauges on 

the reinforcing bars at possible hinge positions of the model, The gauges 

used were also Tinsley foil gauges type SGD1C/2/CN/E of a nominal gauge 

length of 1/8 in. The cement used for fixing the gauges to the bars, sur- 

face preparations and curing were similar to those used on the supporting 

beams. The gauge was set up in the direction of the reinforcement and to 

follow the high transverse curvature of the bar, after fixing the gauge with 

the aid of a Sellotape strip to the cement at the position required, a second 

Sellotape strip was applied around the bar and the gauge in such a way that 

adequate pressure was exerted on the gauge, After curing the cement, the 

Sellotape strips were peeled off, leaving the gauges exposed. Electrical 

wires similar to those used on the beams were soldered to the exposed taps 

of the gauges, The gauges were then waterproofed using the"Gagekote A2 

compound, Plate 12 shows a close-up view of a gauge fixed to the rein- 

forcement in one of the models, 

(iii) Concrete Strains 
  

Two types of gauge were used to measure the strain on the concrete 

Slab. These are:- 

(a) Electrical strain gauges 
  

These were Tinsley electrical resistance wire gauges type 7A with a 

nominal gauge length of 24 in, and a width of 0.4 in. The positions of 

these gauges were sanded to remove any bad slab surface characteristics and 

thoroughly cleansed with acetone and carefully marked. F,88 dental cement 

manufactured by Tridox Products, Philadelphia, U.S.A., was used to fix the 

gauges to the concrete surface, This quick drying cement had been found 

to be particularly successful when used in conjunction with the Tinsley 

felt-backed wire gauges which were used throughout this investigation, The 

Same type of wire used with the strain gauges on the steel beam and rein- 

forcement was soldered to the tabs of these strain gauges. 
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b Demec gauges : 

These were used on model Mg and slab strips S, and Sg. At mid-span, 

at a possible hinge position, strains through the depth of the slab were 

measured with a Demec gauge over an eight inch length to prevent the recor- 

ding of too high local strains, owing to cracks, In tests Cg ami C3 on 

model Mg, the hogging strains on the top slab surface perpendicular to the 

secondary beams were measured with a Demec gauge over a four inch length, 

Electrical guage positions and respective colour wires were numbered 

and then connected to a similar number on the extension box for ease of 

strain recording, The extension boxes used were of the type 4.8U in con- 

junction with a Peekel 103U strain recorder which automatically converts 

resistance changes into micro strains, A dummy block was constructed with 

the electrical strain gauges fixed to it of the same type and batch as those 

used for live gauges. This block acted as a central dummy for the three 

different sets of readings with a dummy gauge for every 2) active gauges 

employed, The dummy block was placed close to the model during testing 

so that temperature compensation was adequate. The leads joining the dummy 

gauges to the extension boxes were of the same length as those connecting 

the active gauges, so that no inaccuracies developed through electrical 

imbalance, 

9.9.2 DEFLECTION MEASUREMENT 

Mercer 2 in, travel dial gauges reading to an accuracy of 0.001 in. per 

one division were used to measure the deflections of selected points on the 

bottom surface of the models, These points were normally the centre of the 

Slab and the mid-spans of the secondary and main beams, The gauges were 

supported on adjustable stands so that they could be re-set when the deflec- 

tions exceeded 2 in, 

9.9.3 SLIP MEASUREMENT 
  

Slip between the concrete slab and the supporting beams, through the 

stud shear connectors, during the loading procedure, was measured using 
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Mercer 1/2 in, travel dial gauges. In tests M, and Mz, these gauges were 

placed at mid-spans and supports of the secondary and main beams, as shown 

in Plates 6 and 9, In model Mj, these gauges were placed along the whole 

length of the main beam as shown in Plate 10, These gauges were magneti- 

cally fixed to the web of the joist with their plunger bearing against a 

piece of perspex material, as shown in Plate 10, 

949.4 LOAD MEASUREMENT 
  

Loads on models M,, Mz and Mg were measured by means of the 200 ton 

capacity load W513, dat up as described in section 9.7. The cell was cali- 

brated by the Industrial Research Laboratories of the Public Works Depart- 

ment in Birmingham and re-calibrated twice in the Denison machine during the 

testing period, At collapse of the models, it was not feasible to read the 

failure load from the load cell dial gauge. The collapse load was there- 

fore taken from the pressure reading of the 50 ton jack used for load 

application, This pressure reading was converted to load by calibration 

against the Denison machine, 

9.9.5 MOMENT MEASUREMENT 

The total moment at the supports of the model along the secondary beam 

was the product of the tensile forces in the proving rings and the distance 

between the proving rings and the supports as described in section 9.7. The 

proving rings used were of 5 ton capacity in tension, manufactured by 

Clockhouse Engineering and Instrument Company. Certificates of calibration 

of these proving rings were provided by the memifacturers, However, these 

calibration charts were checked for each proving ring against the Denison 

Universal testing machine, 

9.9.6 GAUGE POSITIONS 
  

Details of the gauge positioning for each test are shown in Figures 

9.9 to 9.21. It can be seen from these Figures that the electrical strain 

gauges on the beams, reinforcement and concrete slab were denoted by the 
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‘letters B, R and c respectively, followed by the number of each gauge. 

Similarly, for the deflection, slip, Demec and proving ring gauges, these 

were denoted by the letters D, S.G., D.C. and P.R. respectively, followed 

by the number of each gauge. 

The experimental behaviour of the composite beam and slab floor models 

will be discussed in the next chapter. 
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THE EXPERIMENTAL BEHAVIOUR OF 

COMPOSITE BEAM AND SLAB FLOOR SYSTEMS 
  

10.1 INTRODUCTION 

After completion of the tests described in the previous chapter, 

graphs of deflection and strain were plotted to illustrate the experimental 

behaviour of the composite beam and slab floor models, This chapter 

contains a discussion of this behaviour for each individual test, and 

where relevant, comparisons are made between the tests. 

10.2 TEST M, 

An overall picture of the behaviour of this model is provided by 

Figure 10.1, which shows the load deflection graphs for the centre of the 

slab and the mid-spans of the supporting beams, The central deflection of 

the slab increased linearly until a load of 14.0 tons, after which there 

were cracks in the lower slab surface parallel to the transverse central 

line, The mid-span deflection of the two main beams followed that of the 

slab centre closely up to collapse, This was due to the effect of compo- 

site action between the supporting beams and the slab, as the slab and the 

two main beams behaved as T-beams, As expected, the longer main beams 

deflected more than the secondary beams, Failure of the model occurred 

at a deflection of the slab centre equal to 1.1 in. and of the mid-spans 

of the main beams equal to 1,0 in, and 0,8 in, 

Tension cracks at the supports on the top surface of the slab along 

the secondary beams started at a load of 18,0 tons, By the end of the 

test, these cracks were running along the full width of the slab and were 

1/16 in, to 1/8 in, wide and 2 in, deep into the slab, Plates 13 and 14 

show these cracks at both ends of the model, 

The last recorded readings were taken at a load of 35,64 tons, An 

attempt to increase the applied load above this value resulted in continuous 

deflection of the slab centre and mid-spans of the main "edge" beams, after 
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which collapse of the model occurred. Thus the collapse gad of model M, 

was considered to be 35 46ls tons, 

The picture may be enlarged upon by referring to Figures 10.2 to 10.8, 

showing the distribution of strain along the main beam and along and per- 

pendicular to the slab centre line and the secondary beam on both slab 

surfaces, The first of these figures (Figure 10.2) shows that along the 

top of the main beam the concrete was predominantly in compression along 

most of the span, with tension at the supports, This is to be expected, 

the pattern following that of an encastré beam, At a load of 18 tons, no 

more readings were obtained from gauge cy, (Figures 9.9 and 10.2), owing to 

a tension crack developed under the gauge at the support, seen in Plate 13, 

All tensile strains have been plotted as positive and compressive strains 

as negative, 

Figure 10.3 shows the distribution of strain perpendicular to the trans- 

verse centre line of the top slab surface, where the whole width of the slab 

was in compression, The compression strain across the whole width of the 

slab was almost constant up to a load of 29 tons, after which a maximum 

strain of 1250 x 107° was recorded on the upper surface of the main beams 

at collapse, Figure 10.4 shows the strain distribution along the trans- 

verse centre line of the slab upper surface, As a two-way slab, a maximum 

compressive strain of 1000 x 107 was recorded at the centre, where maximum 

curvature in this direction occurred, and very little strain was recorded 

near the main beam where the slab was supported, Figure 10.5 shows the 

strain distribution along the secondary beam at the level of the upper slab 

surface, Again, as the slab was two-way, a maximum strain of 1600 x 1076 

occurred at mid-span, The strain distribution is similar to that of Figure 

10.4, except that the strains recorded along the composite section upper 

surface were higher than those recorded along the transverse centre line 

of the slab, 

At the lower slab surface, Figure 10.6 shows the distribution of the 
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‘strain perpendicular to the transverse centre line of the slab, Consider- 

able tensile strains were recorded across the whole width of the slab with 

a maximum of 1750 x 107© recorded at mid-span before collapse, This 

indicates that along the whole width of the composite main beams and slab, 

the neutral axis was within the concrete composite slab, as expected, This 

also indicates that considerable tensile forces were present in the slab 

reinforcement, which contributed considerably to the ultimate strength of 

the composite sections, The strains recorded by Gauges ceg9, Cag, Cg, and 

Cse (Figure 9.9) along the transverse centre line of the lower slab surface 

were very small, in the region of 100 x 107°, compared with those of 3 

Figure 10.4 for the upper slab surface, 

At the supports, considerable tensile strains, in the region of 

700 x 107°, were recorded on the upper slab surface at a load of 16 tons 

by gauges cy5 to c,, (Figure 9.9), which were perpendicular to the secondary 

beam, At a load of 18 tons, no more strain readings were cbtained from 

these gauges, owing to cracks forming underneath them, which ran along the 

secondary beam across the full width of the slab, as can be seen from Plate 

13. At the lower slab surface perpendicular to the secondary beam, the 

strain distribution across the whole width is shown in Figure 10.7, where 

considerable compressive strains were recorded with a maximum of 2250 x 1076§, 

This figure indicates that the continuity produced by the lever arms during 

the loading procedure was not uniform across the full width of the slab, 

The distribution of strain along the secondary beam at the lower slab sur- 

face is shown in Figure 10.8, where the whole width was in tension with a 

maximum tensile strain of 2000 x 10°® recorded at mid-span, This was due 

to the sagging of the composite secondary beam, and indicates that the 

neutral axis in this direction was also within the composite concrete slab 

and that the tensile forces in the transverse reinforcement contributed a 

considerable amount to the strength of the composite section in preventing 

collapse by mode A, 
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The load against strain graph of Figure 10.9 for mid-span of the main 

composite beam gives ae idea of the load at which a plastic hinge formed 

there, The shape of the load-strain relationship was similar to that of 

the load-deflection graph of Figure 10.1. The recorded tensile strain in 

the lower flange of the composite beam (Gauge B,) was 1200 x 107& at a load 

of 28 tons, This may be compared with the strain in the lower flange at 

onset of yield of the 3 in, x 13 in. x 4 lbs./ft. R.S.J. of 1200 x 1076 

(Figure 9.3). At a load of 32 tons, the middle of the web of the compo- 

site beam (Gauge Be) yielded, at a recorded tensile strain of 1250-470" *. 

At the collapse load of 35.64 tons, the recorded tensile strain in the upper 

flange of the beam (Gauge Bg) was 1000 x 107°, Attempts to increase the 

applied load above 35.6) tons resulted in a continuous deflection of the 

composite beam at mid-span, which indicates that the whole composite section 

at mid-span went plastic forming a plastic hinge there, after which collapse 

occurred, 

A set of two strain gauges were fixed to the upper and lower surfaces 

of the longitudinal reinforcement at mid-spans of the main beams and the 

centre of the slab (Figure 9.10). Unfortunately, the gauges fixed to the 

lower surfaces of the reinforcing bars were broken, However, Gauge Ry, 

which was under a combination of bending compressive strain and direct 

tensile strain, at the upper surface of the reinforcing bar, recorded a 

tensile strain of 500 x 107° before collapse. Similar readings were 

recorded from Gauges Rg and R; (Figure 9.10), These indicate that the 

lower surfaces of these bars, which were both under a combination of tensile 

bending strain and direct tensile strain, had much higher tensile strains 

which contributed considerably to the ultimate strength of the composite 

sections, Gauges Rg, Rg and Rg of Figure 9.10 recorded tensile ainabliie 

of 100 x 10°&, 540 x 10°® and 250 x 107 respectively before collapse for 

the transverse reinforcing bars at the same level and position as those of 

the longitudinal reinforcement, These strains were less than the strains 
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recorded on the longitudinal bars at the same level, The load-strain 

behaviour at mid-span of the other composite main beam (Section 7-/, 

Figure 9.12) was similar to that of Figure 10.9 (Section 1-1, Figure 59) 3 

The strains recorded at the supports of the main beams were not as. 

expected. Although the rotation of the secondary beams during the loading 

procedure was prevented by the lever arms attached to them, there was a 

small space between the flanges of the outer lever arms and the centre lines 

of the main beams in which the secondary beams were able to rotate. Since 

the secondary and main beams were welded together, the secondary beam rota- 

tion resulted in a tensile force being exerted on the lower flange of the 

main beam at the supports and causing it to be in tension rather than 

compression, Figure 10.10 shows load against strain at the support of the 

main beam (Section 2-2, Figure 9.12). The lower flange of the beam (Gauge 

B4) yielded in tension instead of compression at a load of 30 tons. The 

middle of the web of the beam (Gauge B;) yielded in canpression at the 

collapse load of 35,64 tons and the upper flange (Gauge Be) recorded ab out 

500 micro strains in compression at collapse, Gauge R, on the anon sur- 

face of the hogging reinforcing bar (Figure 9.10) recorded a tensile strain 

of 600 x 10°§ at a load of 23,5 tons, after which no more readings were 

obtained, Gauge Rg (Figure 9.10) at the opposite support recorded a 

tensile strain of 14.00 x 10°© at collapse, whilst Gauge Rg at the lower 

surface of hogging reinforcing bar at mid-span recorded a tensile strain of 

3350 x 107 at collapse, This indicates that all the hogging reinforcement 

yielded when collapse occurred, The local deformation of the main beam at 

the support, as shown in Plate 7, affected the whole set of strain readings 

there and probably a plastic hinge would have formed there at a lower load, 

Similarly, local deformation occurred at the support of the other main beam 

(Section 6-6, Figure 9.12), and similar local deformation occurred in the 

lower flange of the secondary beam at both supports (Sections 3-3 and 5-5, 

Figure 9.12), owing to the rotation of the main beams during the loading 
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procedure, 

Figure 10,11 shows the distribution of strain through the composite 

main beam at mid-span (Section 1-1, Figure 10.9). The strain distribution 

through the section shows a high degree of composite action between the 

slab and the supporting beam, although Figure 10.11 shows evidence of a 

certain amount of slip, especially at higher loads, The maximum recorded 

slip between the slab and the main beam at this section (Gauge 8.G.5, Figure 

9.11) was 20 x 107° inch, ies tiny be compared with the 80 x 107% inch 

slip for the ultimate capacity of the stud shear connectors obtained fran 

the push out tests (Figure 9.6). ome acsia also shows the tendency of 

the neutral axis to rise at higher loads, and indicates that the slab 

reinforcement had high tensile strains before collapse, This would con- 

tribute considerably to the ultimate strength of the composite section, 

The strain distribution through the mid-span of thie other composite main 

beam (i.e. Section 7-7, Figure 9,12) is similar to that of Figure 10.11, 

owing to symmetry, 

Figure 10,12 shows the strain distribution thruugh the composite main 

beam at the support (fection 2-2, Figure 10.10). <A reversal in stress to 

tension occurred at the lower flange of the beam, owing to local effects 

caused by the rotation of the secondary beam at the support. The lower 

half of the beam had a cross-sectional distortion about the X-axis, thus a 

different degree of composite action resulted at the support when compared 

with that at mid-span (Figure 10.11). Similarly, strain distribution 

through the other composite main beam at the support (Section 6-6, Figure 

9.12) was found to have similar local deformation, The maximum recorded 

slip between the slab and the main beam at the support (Gauge S.G.6) before 

collapse was 26 x 10°° inch, The Slip Gauges on the secondary beam recor- 

ded a maximum slip of 7 x 107% inch at the support (Gauge S.G.1). This 

demonstrates very lucidly that the stud shear connectors on the secondary 

and main beams were functioning adequately up to collapse of the model, 
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Figure 10.13 shows the applied load against both end moments recorded 

by each of the two proving rings which were attached to the "moment" lever 

arms; the total for the two proving rings is also shown, The total 

moment recorded at each support were 13,1 kips-ft. and 12.8 kips-ft, These 

values were much lower than the theoretical values of 26,46 kips-ft, or 

22,21 kips-ft., depending on whether or not composite action is assumed at 

the supports (Section 9.3.6). Obviously the tensile force readings 

obtained from these proving rings were affected by the local deformation at 

the supports and probably an external moment formed at the end of the lever 

arms affected these readings, 

The collapse of the model occurred by mode B involving the two main 

"edge" beams and the slab as predicted, The final shape of the system 

after collapse is shown in Plate 15, where a maximum deflection occurred at 

the centre of the main beams and the slab at the supports was horizontal, 

owing to the restraint effects of the lever arms, After collapse, the 

Shape of the cracks in the lower slab surface indicated a tendency for the 

yield lines associated with collapse by mode C to form, as show in Plate 

16, From this plate, it can be seen that several hogging yield lines 

formed across the whole width of the slab for about 12 inches on each side 

of the centre line, with the cracks running through more than half the slab 

depth from the underside, as shown in Plate 15, This is due to the bending 

moment in this region being constant as the loading was a four point loading 

system (Figure 9.7(d)),. 

10.3 TEST Mg 

As explained in the previous chapter, the model was an exact replica 

of model M,, except that the lever arms at one support were not fixed to 

the test rig, so that collapse by combined mechanism could be simulated, 

Improvements in the setting up of model Mg were made to increase the stabi- 

lity of the jacks and to minimise local deformations at the supports by 

moving the lever arms as far apart as possible, so that the outer lever arms 
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came aS near as possible to the main beams, 

The loader ination graph in Figure 10,14 shows very clearly the 

behaviour of the composite system in this test, The central deflection 

of the slab increased linearly until a load of 9 tons, after which cracks 

in the lower slab surface appeared, As in test M,, the central deflection 

of the slab was greater than that at mid-span of the composite main beams , 

which followed each ous very closely up to collapse, The last recorded 

deflections at the centre of the slab and mid-span of the main beams (Figure 

10.14) were 2.40 in,, 2.05 in, and 1.95 in, respectively, These deflec- 

tions were twice as much as those obtained from test M, at the same locations 

(Figure 10.1). As expected, the longer main beams deflected more than the 

secondary beams, The last recorded readings were obtained at a load of 

37.92 tons, An attempt to increase the load above this value resulted in 

continuous deflection of Gauges D4, Dg and Dg at the centre of the slab and 

mid-span of the main beams (Figure 10.14), after which collapse of the model 

‘oceurred, 

The system tested was unsymmetrical, owing to the fact that one support 

of the model was fixed, whereas the other was simply supported, The 

strains, therefore, were measured along the whole length of the longitudinal 

slab centre line and the main beam at both slab surfaces, These strain 

distributions are representative of the bending moments in the slab and the 

composite beam respectively, Figure 10.15 shows the distribution of strain 

along the longitudinal centre line of the slab upper surface, Most of the 

slab span in this direction was iu comotesst ong reaching a maximum of 

2200 x 107© (Gauge cg). High tensile strains were recorded by Gauge c, at 

the simply supported end, owing to the redra int effects of composite action 

between the slab and the secondary beam, At the restrained end of the 

model, a strain of 1500 x 107° was recorded by Gauge Cc, at a load of 12 

tons, after which the gauge was damaged, owing to cracks formed underneath 

it along the secondary beam, Figure 10.16 shows the distribution of the 
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strain along the composite main beam upper surface, This strain distribu- 

tion represents the bending moment of the main composite beam, Over 90% 

of the span of the composite beam upper surface was in compression with a 

maximum of 3500 x 10°© recorded by Gauge C41. before collapse, This figure 

indicates very clearly that the maximum bending moment did not occur at mid- 

span of the composite beam, as assumed, but about 10 in, off the centre 

towards the simply supported end, This is also confirmed by Plate Ts 

which shows the hogging yield Lax at the lower slab surface across’ the 

full width formed off the centre line, Plate 18 shows the same hogging 

yield lines as those seen in Plate 17, Theoretically, yield lines forming 

off the centre line would be predicted for the combined mechanism case in 

multi-storey frames, when a plastic hinge assumed to form exactly at mid- 

span of the beam is only an approximation (see Section 8.3.2).  Consider- 

able strains were recorded along the main composite beam lower slab surface 

where a maximum tensile strain of 1800 x 107® developed between Gauges Cge 

and Css (Figure 9,13) at a load of 22 tons, this became 3000 x 1076 at 

collapse, Large tensile strains were also recorded along the longitudinal 

centre line of the lower surface of the slab (Figure 9.13), where most of 

the slab span was in tension, 

Figure 10.17 shows the strain distribution perpendicular to the trans- 

verse centre line of the slab upper surface. The compressive strain dis- 

tribution across the full width of the slab was almost constant at lower 

loads, Subsequently, it became a maximum (2800 x 10°°) at the upper 

surface of the composite beam before collapse, At the centre of the slab, 

the maximum recorded compressive strain was 1700 x 1076 at a load of 26 

tons, after which slightly lower strains were recorded for increasing loads, 

These strain readings were twice as large as those recorded at similar 

locations during test M, (Figure 10.3), As the slab was two-way spanning, 

the strain distribution along the transverse centre line of the upper slab 

surface is shown in Figure 10.18, This strain distribution was similar to 
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that of test M, (Figure 10.4) with approximately the same strain values, 

except that little tensile strain was recorded at the support by Gauge cy. 

Gauges Css, Cag and C5, perpendicular to the transverse centre line of 

the lower slab surface (Figure 9.13) recorded very high tensile strains 

across the full width of the slab with a maximum of 2000 x 107® (Gauge cas) 

at a load of 20 tons, Higher applied loads resulted in damage to these 

gauges, owing to cracks formed underneath them, As in test M,, this indi- 

cates that along the full width of the "two main beams and slab composite" 

the neutral axis was within the concrete slab as expected, It also indi- 

cates that considerable tensile forces were present in the slab reinforce- 

ment, especially 10 in, off the centre towards the free end where the bending 

moment was maximum (Figure 10.16), which contributed significantly to the 

ultimate strength of the composite sections, 

At the fixed end, strain distribution perpendicular to the secondary 

beem on the upper slab surface was observed up to a load of 12 tons where 

a maximum tensile strain of 1500 x 10°® occurred at the centre, as shown in 

Figure 10.19, Loads nigher than 12 tons produced a hogging yield line 

along the secondary beam, which ran underneath the concrete gauges and 

damaged them, as can be seen fron Plate 18, Figure 10.20 shows the distri- 

bution of strain along the secondary composite beam upper surface, As a 

two-way slab, the strain distribution was similar to that at mid-span of 

Figure 10.18, except that higher strains were recorded along the secondary 

beam, The strain values were similar to those recorded during test M, 

(Figure 10.5) at similar positions, except that of Gauge c,,, where tensile 

instead of compression strains were recorded, Figure 10,21 shows the 

strain distribution perpendicular to the secondary beam lower slab surface, 

The strain distribution in this direction was almost uniform across the full 

slab width up to a load of 12 tons, after which it became non-uniform, At 

collapse, the compression strains across the slab width varied between 

2500 x 107© and 4000 x 107%, These compressive strains were twice as large 
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as those recorded during test M, at similar positions (Figure 10.7) 

Figure 10.22 shows oe distribution of strain along the secondary beam 

lower slab surface where almost the whole slab span was in tension, owing 

to two-way spanning, : 

The load-strain graph in Figure 10,23 of the composite main beam at 

mid-span (Section 6-6, Figure 9.15) gives some idea of the load at which 

a plastic hinge formed near the centre, where the bending moment was maximum 

as seen from Figure 10.16. The shape of the load-strain relationship of 

the composite section was similar to that for load-deflection (Figure 10.14). 

From this graph, it can be seen that the lower flange of the beam yielded at 

a load of 16 tons (Gauge Bis). At a load of 20 tons, the middle of the web 

yielded (Gauge Big) and almost the whole section yielded at a load of 24 

Cons. As the bending moment 10 in, off the centre towards the free end was 

higher than that at the centre of the main beam, hence it can be deduced 

that a pnakias hihge formed there at this load, This is confirmed from the 

direct tensile strain reading obtained from Gauges R4 and Rs; (Figure 9.14): 

at the centre of the longitudinal reinforcement recording a maximum of 

550 x 107© at a load of 2h tons, as higher loads did not affect this reading, 

Similarly, a maximum tensile strain reading was recorded from Gauge Rg at 

the same load, In addition, a plastic hinge occurred near the middle span 

of the other main beam (Section 2-2, Figure 9.15) at the same load of 2) 

tons, as can be seen from Figure 10.24, The formation of plastic hinges 

near the mid-span of the main beams at a load of 2) tons accounts for the 

strain hardening effects which occurred after this load in the system and 

observed in Figures 10.14, 10.23 and 10.2), 

The strain gauges attached to the main beam at the fixed end were 

unfortunately demaged during the setting up of the test. However, naiees 

Rz and Rg (Figure 9.1.) on the hogging reinforcement recorded high tensile 

strains of 3000 x 107® and 2000 x 107° respectively at a load of 29.7} tons 

and the hogging yield line which formed along the secondary beam devel oped 
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a crack about 1/8 in, wide, The total moment produced at the fixed end 

by the lever arms reached a maximum value of 18.0 kips-ft. at a load of 

29.74 tons and higher applied loads hardly affected this value, as shown 

in Figure 10.25, This indicates very clearly that at a load of eo fa. vons 

plastic hinges formed at the supports of the fixed end, after which strain 

hardening effects commenced again, as shown in Figures 10514-51025 and. 

10.24, until collapse of the system occurred at a load of 37.92 tons, 

Hence, the collapse load of the model may be taken as 29.7) tons and it is 

this value which will be compared with the theoretical collapse load in the 

next chapter, for the various assumptions on degree of composite action, 

The total moment produced at the support of 18,0 kips-ft. at a load of 

29.74 tons is still lower than the theoretical values of 26.46 kips-ft. or 

22,24 kips-ft., depending on whether or not composite action of the support 

is assumed to be present, However, this value is higher en that obtained 

in test M, of 13.1 kips-ft. at even a higher load of 35.64 tons, This 

relatively higher moment, at a lower load, occurred owing to the improvement 

made in reducing the local deformation at the support by moving the outer 

lever arms towards the centre line of the main beams, This indicates that 

the local deformation at the support did effect the proving ring readings, 

Figure 10.26 shows the strain distribution through the composite main 

beam at mid-span (Section Bae Figure 10.23). This distribution indicates 

a high degree of composite action between the slab and the supporting beam, 

although more slip was in evidence between the slab and the beam than in 

test M, (Figure 10.11), The maximum recorded slip at mid-span before 

collapse was 42 x 10°° (Gauge S.G.4, Figure 9.16). A similar amount of 

slip before collapse was recorded at the fixed end (Gauge S.G.5). Little 

slip (13 x 107% inch) was recorded at the free end (Gauge S.G.3). These 

Slip measurements indicate that the shear connectors on the main beam were 

functioning adequately up to collapse. Figure 10.26 also shows that the 

neutral axis tends to rise in the slab at higher loads and that high tensile 
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forces were present in the reinforcement, which contributed considerably 

to the ultimate strength of the composite section, Similar strain distri- 

bution to that of Figure 10.26 were obtained for the other composite main 

beam, Figure 10.27 shows the strain distribution through the mid-span of 

the secondary composite beam at the fixed end (Section 5-5, Figure 9.1599 

where a high degree of composite action between the slab and the beam was 

in evidence, as very little slip was recorded, The neutral axis was almost 

constant at the same position during the loading sequence, | 

The collapse of the model occurred by mode B as predicted, involving 

the two main "edge" beams and the slab. The final shape of the system 

after collapse is shown in Plate 18 with the maximum deflection of the main 

beams off the centre towards the free end, After collapse, the shape of 

the cracks in the lower slab surface indicated a tendency to form the yield 

lines associated with collapse by mode C, as shown in Plate 17. 

10.4 CONTROL TESTS 

10 a1 eee os 

An overall picture of the behaviour of model Mg during the simple 

bending control test C, is shown in Figure 10.28, The central deflection 

of the slab was greater than that of the mid-span of the main composite 

beams which followed each other very closely up to collapse. The central 

deflection of the slab and the main beams at collapse were 1.3 in., 0.8 in, 

and 0.75 in. respectively, Collapse of the model at mid-span occurred at 

a load of 16 tons, Hence, the experimental plastic composite moment of 

one main beam and half the slab width was 22.) kips-ft. The shear connec- 

tors on the main beams were functioning adequately up to collapse, The 

maximum slip between the slab and the main beam along its whole length was 

found to occur at mid-span, reaching a value of 68 x 107% inch at collapse 

(S.G.4, Figure 9.19). Load against slip graph for slip between the slab 

and the main beam at mid-span is also shown in Figure 10.28, Little slip 

was recorded at the support or at other locations by Slip Gauges S.G.1, 
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S.G.2 and 8.G.3, a maximum of 4 x 107% inch at the support (Gauge S.G.3) 

was recorded before collapse, Similarly, little slip was recorded by 

Slip Gauges at the other end of the main beam, 

Figure 10.29 shows the distribution of strain perpendicular to the: 

FrAneeiee centre line of the upper slab surface. Very high compressive 

strains were recorded across the full slab width with a maximum of 600 x 

107° at the centre, where deflection was maximum, before collapse, At 

collapse, a crushing yield line formed along the full width of the slab 

upper surface at mid-span, as shown in Plate 19. Very high tensile strains 

were recorded by Demec gauges at the lower slab surface perpendicular to 

the transverse centre line, reaching a maximum of 13000 x 107® and 9000 x 

10-© at the centre and the main beams respectively before collapse. This 

indicates very clearly that all the longitudinal slab reinforcement at mid- 

span yielded at collapse. However, low strain readings, if any, were 

obtained from the gauges on the reinforcing bars at this position, except 

that of Gauge Ree (Figure 9.18), which recorded a tensile strain of 4.030 x 

10°& before collapse (i.e. well above yield), The reason for the other 

electrical strain gauges not functioning properly could be due to a leakage 

in the waterproofing material or the material itself was not satisfactory. 

At collapse, the tension crack which formed along the transverse centre 

line at the lower slab surface was between 5/16 in. to 3/8 in. wide, shown 

in Plate 20, This plate, together with Plate 19, shows the collapse of 

model Mg at mid-span, owing to the formation of plastic composite hinges 

there, which involves the composite formed by two main beams and the whole 

width of the slab, This indicates that the slab acted compositely with 

the main beams across its full width up to collapse, 

The possibility of the presence of compressive membrane action in the 

system during the testing procedure was investigated thoroughly. The 

model was supported on bearing pads, as explained in Chapter 9, thus elimi- 

nating membrane forces, owing to friction, building up in the model. 
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However, the Seine beams with the stud shear connectors welded to 

their upper flanges (Plate 3) might have behaved as a compression member 

holding the composite slab agiinet horizontal movement. This would pro- 

duce compressive membrane forces in the slab, which in turn would have 

resulted in higher collapse loads, This possibility was investigated by 

placing electrical strain gauges on the composite main beam through its 

entire depth and outside the span by up to 12 in. from both supports, 

Figure 10,30 shows the Si euetbatiae of strain along the main composite beam 

upper surface, where compression was maximum at the centre and reduced to’ 

very small strains at the supports and outside of the span, The strain 

distribution along the longitudinal centre line of the slab upper surface * 

was Similar to that of Figure 10.30. Figures 10,31 and 10.32 show the 

strain distribution along the slab and the composite steel beam respectively 

at their interface,. These strain distributions are similar to that of 

Figure 10.30, where, as expected, very high strains warts sedis at the 

centre, which reduce to very small strains at the supports and outside the 

span, The maximum tensile strains recorded in the slab and the beam at 

their interface outside the span before bol Ledee (Figures 10.31 and 10,32) 

were 800 x 10°© at gauge position cs, (Figure 9.17) and 250 x 107 at the 

same location (Gauge Bes, Figure 9.20). This indicates that compressive 

membrane forces in the slab caused by the supporting beams through the stud 

shear connectors were not present during the loading procedure, The small 

strains recorded outside the span were probably due to the shear force 

effect between the slav and the composite beam, or to the effect of high 

local stresses at the supports, or both, | 

Figures 10.33 and 10.34 show the load against strain graphs at mid-span 

for both composite main beams, From these graphs, it can be seen that the 

steel beams became wholly plastic at a load of 15 tons. Further loading 

up to collapse at a load of 16 tons was obviously taken by the slab rein- 

forcement. The shape of the load-strain relationship was similar to that 
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of the load-deflection shown in Figure 10.28, Figure 10.35 shows the 

distribution of strain through the composite main beam at mid-span (Section 

1-1, Figure 10.33). The strain distribution indicated a high degree of 

composite action between the slab and the supporting beam, The direct 

tensile strain readings on the reinforcing bar (Gauges Rs and Rg, Figure 

9.18) were very low (even at high loads), compared with the apparent strains 

measured on the cracked concrete at steel reinforcement level shown in 

Figure 10.35. This indicates that the strain readings obtained from gauges 

on the slab reinforcement were not reliable, This is probably true for all 

the strain readings on reinforcement obtained during this test series, 

This could be due to a leakage in the waterproofing material or the material 

itself was not adequate, as mentioned earlier. Loss of bond between the 

reinforcing bar and the concrete at the position of the gauges, owing to 

the waterproofing material (see Plate 12) is another factor which tends to 

make such gauges unreliable, 

A comparison can be made between Figures 10.11, 10.26 and 10.35 which 

show the strain distributions through the composite main beams at mid-span 

in tests M, and Mg and control test C, respectively. Such a comparison 

shows that the neutral axis tends to rise in the slab at higher loads and 

that its position was almost the same at collapse in all three tests. 

10.4.2 TESTS Co AND Cy 
  

After the collapse of model Mg at mid-span in the bending test C,, the 

model was reseated at the outer supports, as explained in the previous 

chapter. An external moment was applied at the supports by a 20 ton 

capacity jack through a proving ring at the end of the lever arms in such 

a way that the load was distributed equally between the lever ames as 

shown in Figure 9.8, 

For test Cg, Figure 10.36 shows the strain distribution along the obal , 

flange level of the composite main beam for different external moments up to 

collapse, At a moment of 27.1 kips-ft., Gauges Baa, Bes and Beg (Figure 

1205) =
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9.20) became plastic and the supports could not take any extra moment, 

which indicates that tiie whole section became plastic, Thus, the experi- 

mental, plastic, hogging, composite moment of the two main beams and the 

composite slab at the support was 27.1 kips-ft,. The maximum slip between 

the slab and the beam was 36 x 107% inch recorded by Slip Gauge S$.G.7 

(Figure 9.19) 4 in. away from the support, Unfortunately, no readings 

were obtained from the gauges on the hogging reinforcement, but obviously 

they did yield at collapse, as the tension crack which formed at the sup- 

ports along the secondary beam was 1/8 in, to 3/8 in, wide and about 2 in, 

deep into the slab, A compression crushing failure also developed along 

the secondary beam at the lower slab surface, 

Test Cg was a repeat of test Ce carried out at the other end of the 

specimen, Here the maximum external moment applied before collapse at 

the supports was 26.75 kips-ft. Thus the plastic hogging composite moment 

of the two min beams and the slab at the supports of the other end of 

model Ms was 26.75 kips-ft. The maximum slip between the slab ami the 

beam was 4.0 x 107% inch recorded by Slip Gauge $.G.1 at the Support «A 

tension crack, similar to that in test Cg, develope<: along the secondary 

beam upper slab surface, A compression crushing failure at the lower slab 

surface along the secondary beam also developed at collapse, 

The general shape of model Mg after the three "control" bending tests 

C4, Cg and Cg is shown in Plate 21, 

10.4.5 SLAB STRIPS S, AND So 

The load against deflection and load against strain graphs of slab 

strips S, and Sg are shown in Figures 10.37 and 10.38 respectively. The 

load-strain curves followed that of the load-deflection closely until 

cracks started to appear at the lower slab surfaces at a load of 0.5 ton, 

Collapse of slab strips S, and Sg occurred at loads of 3.1 tons and 3,05 

tons, producing experimental values of the ultimate slab moment of 2.676 

kips-ft./ft.run and 2.633 kips-ft./ft .run respectively. Figures 10.37 
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and 10.38 also show the difference between the SvaWtec of the compressive 

strain readings perpendicular to the transverse centre lines of slab strips 

5S, and Sz, upper surfaces, which were obtained using Demec gauges and 

electrical strain gauges, 

The distribution of strain through slab strips S, and Sg, shown in 

Figure 10.39, indicate that the neutral axis, in both tests, remained 

almost constant at a depth of 3/4 in., which is one quarter of the slab 

depth, whereas in composite sections, it tends to rise at higher loads, 

Plate 22 shows slab strip S, at collapse, Plates 25 and 24 show the yield 

lines which formed at the lower surfaces of slab strips S, and Se in the 

constant region of maximum bending moment, where they were similar in both 

bending tests, 

Sheer failure between the slab and the supporting beams did not occur 

in any of tests M,, Mg or Mg, as the shear stresses between the slab and 

the beams during the loading procedure were passing through the stud shear 

connectors, which were adequate, up to collapse, This can be seen from 

the strain distributions through the composite sections of these models, 

In the next chapter, comparisons between the exverimental and theore- 

tical results of these tests will be made to see which of the five assump- 

tions on degree of composite action most closely represents the observed 

experimental behaviour of the models, 

= 2054



So.& 

Lo.csS 

pO.C.4, 

L.£m.c3 

LO.¢.2- 

R (ov) 

EO. ca 

O:c22%   

heise: Compressive stram x 1072 

  

  
  

Oc & 

2500 2000 1SOO 1000 Soo ° slob strip §1 

Fensile strain x 1972 = —<———_— 

—__ compressive skrain x 107° 

° 500 1909020 18a0 

  

0.c.5, 

.C. + 

o.c.3. 

-D.C.2 

O.C.1. 

Loc.23   

  

| LE : 

  
  

Fig. 10.39. 

2300 2000 1so0a 1000 Sao ° slab strip $2. 

Fensile strain x 107° 

Distribution of strain through slab strips Siand S2 at mid- span. 

  

 



GHA P Tee Rr. 44 

COMPARISON OF EXPERIMENTAL 

AND THEORETICAL RESULTS 
  

11.1 INTRODUCTION 

The values of the fully plastic moments of the slab strips (Ms) and 

the composite beam and slab model Mg at mid-span (Me) and supports (Mn) 

obtained from the control tests are compared with the theoretical values, 

and any discrepancy commented upon, These comparisons will determine the 

degree of composite action between the slab and the supporting beams at 

mid-span and supports of composite beam and slab floor systems, The 

experimental collapse loads of models My and Mg, obtained in Chapter 10, 

are compared with the theoretical collapse loads, determined in Chapter 9, 

to see which of the assumptions on degree of composite action most closely 

represents the experimental behaviour of the models, Finally, the experi- 

mental moments Me and My are used to provide the values of the calculated 

collapse loads of models M, and Mg, which are compared with the experi- 

mental and the theoretical collapse loads, Finally, all the results are 

summarised in Table 11(i). 

11.2 CONTROL TESTS 

From the load-deflection graphs in Figures 10.37 and 10.38, the average 

experimental value of the ultimate slab moment M, from tests S, and Sg is 

2.655 kips-ft./ft.run, This represents an increase of 2.5% on the theore- 

tical value of Ms which equals 2,589 kips-ft./ft.run, as shown in Chapter 9, 

The agreement, therefore, is very good, Experimentally, it is not poss- 

ible to know within a quarter of an inch the exact position of the rein- 

forcement after the concrete has Bene, placed, Thus, this small discrepancy 

between the theoretical and experimental values of Ms is partly due to 

small displacements of the reinforcement and partly due to strain hardening 

in the reinforcement, 

From the load-deflection graph in Figure 10.28, the value of Me from 
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raged < Bype ok eae Experimental | % increase in 

Ho. | assumption | road (noes) | °Plyepse, load | “expt over, theo, 

(1) 20.02 4.38 

(2) 26 .27 26 3 

My (3) 34.51 35 6h, 11.6 

(4) 29.76 16.5 

(5) 35.01 1.8 

(1) 15.0. 49,2 

(2) 21.30 28 hy 

Ma (3) 26 58 297k. 10.6 

(4) 23.0, 22.5 

(5) 28 32 ae 

  

a) Comparison between experimental and theoretical collapse loads for ‘Pp Pp 
each of the five assumptions on degree of composite action 

  

  

              

Theoretical Calculated | Experimental 
ce collapse load] collapse load| collapse load “ = %} ~ wk 

. (tons) (tons ) (tons) Pp ay Peer 

My 35.01 36.459 35.64 1.018 097k. 

Mg 28 .32 20 att 29. 7h. 1,050 0.999 

(b) Comparisons of theoretical, calculated and experimental collapse 
loads, 

Table 11(i) 

Type (5) assumption, 

Summary of Test Results 

  
 



  

Theoretical Theoretical Me Experimental % increase in expt, % increase in expt 

  

  

Me (ignoring |(including slab Me over theo.Me (ig- | over theo. Me (in- 
slab reinf.) reinf,)kips-ft.| kips-ft. noring slab reinf,)| cluding slab reinf 
kips-ft. 

£355 24.06 22.4 4.0.6 6.3           

(c). Comparison between experimental and theoretical values of the plastic 
composite moment at mid-span of model Mg (test C4) with and without 
the effect of slab reinforcement, 

  

  

  

Theoretical|The oretical|Average experimental]% increase in expt.|% increase in 
(2M, + Mgt) 2 total moment at moment over expt, moment 
kips-ft, kips-ft. supports kips-ft. (2M, + Ms£) moment |over 2M, moment 

22.21 26 1.6 26 693 eV 5c 1.8           

(a). Comparison between experimental and theoretical values of the fully 
plastic moment at supports of model Mg (tests Cz and Cs) with and 
without the effect of composite action, 

  

Theoretical Ms 
kips-ft. 

Experimental Ms 
kips-ft. 

% increase in expt, over theo, 

Ms 
  

  2.589   2.655   eed     

(e). 
(tests S, and Se) 

Table 11(i) continued, Summary of test results 

Comparison between theoretical and experimental values of Ms



test Cy is 22,4 kips-ft. This experimental value of Me represents an 

increase of 40.6% on the theoretical value of 15.93 kips-ft., calculated 

in Chapter 9 for type (2) or (4) assumption on degree of composite action 

which ignores the effect of slab reinforcement, However, the experimental 

value of Me only represents an increase of 6.36 on the theoretical value of 

21,06 kips-ft., calculated in Chapter 9 for type (3) or (5) assumption, 

which takes the effect of slab reinforcement into consideration, From the 

experimental behaviour observed in this test and in tests M, and Mg, it is 

apparent that the slab reinforcement plays a significant part in contribu- 

ting towards the ultimate strength of the composite section, Also, com- 

parisons of the above experimental and thearencas results indicate very 

clearly that, when the effect of slab reinforcement is taken into considera- 

tion, i.e. type (3) or (5) assumption, the results are very much closer 

than when this effect is excluded, i.e. type (2) or (4) assumption, The 

6.4% increase in the experimental value of Me over the theoretical value 

for type (3) or (5) assumption is probably due to strain hardening in the 

steel beam or the slab reinforcement or both. 

It is interesting to compare the experimental fully plastic moment 

values at mid-span for model Mg with and without the effect of composite 

action, to show the great advantage of introducing such an effect, The 

total fully plastic moment at mid-span of model Mg if composite action 

were not present, i.e, type (1) assumption, equals (2MBp+Ms.£). Substi- 

tuting the experimental values of 4.64 kips-ft. and 2.655 kips-ft./ft.run 

for Mg and Ms and of 5 ft. for 2, results in a total calculated moment of 

22.56 kips-ft. This value compares favourably with the theoretical non- 

composite value of (2Mp+ Msf) of 22.23 kips-ft. When the experimental 

value of (2Mp + Msg) is compared with the total experimental composite 

moment (2Me) of 44.8 kips-ft. obtained from test Cz, it is seen that com- 

posite action results in an increase of approximately 100% in the total 

moment, This confirms the theoretical comparisons made in Chapter 7 
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between composite and non-composite action at mid-span of the supporting 

beams, which resulted in considerable savings in weight of the supporting 

beams when composite action was introduced, 

The average experimental fully plastic moment at the supports from 

tests Cg and Cg was 26.93 kips-ft. This represents an increase of 21.2% 

on the total theoretical moment value (2Mp + Met) of 22,21 kips-ft. which 

assumes non-composite action at the supports, However, the experimental 

moment of 26,93 kips-ft. represents an increase of only 1.8% over the total 

theoretical fully plastic composite moment at the supports (2 My) of 26.46 

kips-ft. Therefore, the experimental total moment at the support compares 

favourably with the theoretical plastic moment, including the effect of 

composite action, 

Test C, proved that when the fully plastic composite moment at mid- 

span is calculated, the effect of slab reinforcement should be taken into 

consideration, Tests Cg and Cg proved that the effect of composite action 

at the supports can safely be taken into consideration, Therefore, these 

tests support the adoption of type (5) assumption on degree of composite 

action, which assumes full composite action at both mid-span and support 

and the inclusion of the effect of slab reinforcement at mid-span, How- 

ever, the theoretical collapse loads of models M, and Mg for the five 

assumptions on degree of composite action are compared with the experimental 

collapse loads in the next two sections, to see whether or not type (5) 

assumption does indeed represent most closely the experimental behaviour 

of the models, 

11.5. TEST. M, 

From Table 11(i), it can be seen very clearly that the theoretical 

collapse load of model My, calculated for type (5) assumption (35.01 tons) 

most closely represents the actual collapse load of 35.64 tons, and that 

the other four assumptions do not give such good agreement, This repre- 

sents an increase of only 1.7% of the experimental collapse load on the 
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theoretical collapse load calculated for type (5) assumption, 

A further comparison can be made by recalculating the theoretical 

value, using the experimental values of Me and Mn obtained from the control 

tests in equation 9.8, 

16, 22 ht 1565) 
5 kips were Bee (calc.) 

36.59 tons 

This also compares favourebly with the experimental collapse load (35.64 

tons), giving an experimental value only 2.6% less than the calculated 

value based on type (5) assumption. The slight difference between the 

actual collapse load of model M, and the theoretical or calculated collapse 

load for type (5) assumption is probably due to the fact that uniformly 

distributed load was simulated by four point load jacks which results in 

an error of -6% and +3% in the central and end moments respectively, com- 

pared with a U.D.L., as shown in Figure 9.7 ((c) and (d)),. 

11.4 TEST Mg 

It was mentioned in the previous chapter that model Mg underwent two 

stages of strain hardening during the loading procedure, This was con- 

cluded from a study of Figure 10.14, showing load against deflection which 

gave an overall picture of the behaviour of model Mg. ‘The first stage of 

strain hardening began at a load of 2) tons, Figures 10.23 and 10.2) for 

load against strain at mid-span of the composite main beams indicated that 

these sections went almost wholly plastic at a load of 2) tons, However, 

it was shown in Figure 10.16 that the maximum bending moment of the compo- 

site beam occurred some 10 in, off the centre line towards the free end, 

Therefore, it was concluded that plastic composite hinges formed at this 

load about 10 in, off the mid-span, For a unit displacement 10 in. off 

the centre line towards the free end, the total load required for plastic 

composite hinges to form is given by:- 

tL ones OM. (0, + Oa) 
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or pe = 4Me e es 7 3) 
111 

On substituting the experimental moment value of Me of 22.4 kips-ft, into 

the above equation, the calculated collapse load is 24.2 tons, This value 

compares favourably with the load of 24 tons shown in Figure 10.14, at which 

the first stage of strain hardening in the system began after the formation 

of plastic hinges near the centre line, 

The second stage of strain hardening began at a load of 29.7 tons after 

the formation of plastic hinges at the fixed end, This was confirmed from 

Figure 10.25, which showed that the maximum recorded moment produced by the 

lever arms occurred at a load of 29,74 tons, as higher loads hardly effected 

its value, The collapse load of model Mg was, therefore, assumed to be 

29.74 tons, at which load the second stage of strain hardening commenced, 

as shown in Figures 10,14, 10.23, 10.24 and 10,25, For a unit displace- 

ment 10 in. off the centre line towards the free end, the total calculated 

load required for pisstic hinges to form at this position and at the fixed 

end supports is given by:- 

a = 2M, (60, + 6,) + 2 MN. 04 

or Seb = & Ms (ogy + pgp) ten. hs 44,2 

On substituting the experimental values of Me of 22.) kips-ft, and My of 

13.47 kips-ft., which were obtained from the control tests, into the above 

equation, the calculated collapse load is found to be 29.78 tons, This 

value compares very favourably with the assumed experimental value of 29.7% 

tons, This calculated collapse load of 29,78 tons represents type (5) 

assumption on degree of composite action, as the experimental values of Me 

and My which were substituted into equation 11.2 were for full composite 

action at mid-span and support and included the effect of slab reinforcement, 

These conditions are the basis of type (5) assumption, as shown in Section 

11.2, Table 11(i) also indicates that the theoretical collapse load of 
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28.32 tons for type (5) assumption most closely represents the actual 

collapse load of 29,74 tons, The other four assumptions do not give 

such good agreement. This represents an increase of 4.7% in the actual 

collapse load over the theoretical collapse load, If the theoretical 

values of Me and My of 21,14 kips-ft. and 13.23 kips-ft. are substituted 

into equation 11.2 for plastic hinges 10 in, off the mid-span towards the 

free end, the resulting theoretical collapse load for type (5) assumption 

will be the same as that obtained if the plastic hinges are assumed to form 

exactly at mid-span, i.e. 28.32 tons, 

The total maximum recorded end moment of 18,0 kips-ft, at an applied 

load of 29,74 tons was lower than the theoretical fully plastic moments of 

either 26.46 kips-ft. or 22,2) kips-ft., depending on assuming composite 

or non-composite action, This recorded moment is also less than the 

experimental average total plastic moment of 26.93 kips-ft, obtained from 

control tests Cy, and Cg. Since the theoretical and calculated collapse 

loads are very close to the experimental collapse load, the recorded total 

moment readings must have been affected by local deformation at the support 

or by formation of a moment at the end of the lever arms. However, this 

recorded total moment is higher than that obtained during test M,. This 

is due to the improvements made by increasing the spacing of the lever 

arms, so that the outer lever arms came in line with the main beams, thus 

reducing the local deformation at the supports, 

Figures 10.14, 10.23 and 10,2) all indicate very clearly that at a 

load of 29,7). the model underwent the second stage of strain hardening, 

after the formation of the plastic hinges at the fixed end, An additional 

load of 8,18 tons was applied, until collapse occurred at a load of 37.92 

tons, This extra load before collapse could be due to strain hardening 

effects in the supporting beams, or in the slab reinforcement, or both, 

Pieces of the flange of the 3 in, x 14 in. x 4 Lbs,/ft. B.8.d. of whe 

supporting beams exhibited some strain hardening properties during the 
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tensile tests described in Chapter 9, It was also mentioned in Chapter 

9 that stiffeners were welded at the corners of the supporting beams, 

These were introduced to strengthen the main beams against local deforma- 

tion, As plastic hinges form at the Supports of the fixed end, these’ 

sidbeanere might increase the fully plastic moment of the beams there, and 

hence an extra load would be required to cause collapse, A further point 

to be taken into consideration is the possibility of a local deformation 

in the upper flange of the main beam at the Support, owing to rotation of 

the secondary beam producing a tensile force in this flange, This was 

indicated by the low readings in the proving rings at the end of the lever 

arms, The tensile force in the upper flange could have the effect of 

reducing the compression in the lower flange, thus delaying the formation 

of the plastic hinge at the support, This too car eeie an increase in 

the collapse load, Also, there could be some compression membrane action 

in the system, owing to some accidental friction during the loading proce- 

dure which would result in a higher collapse load, Finally, as mentioned 

earlier, there is some error in simulating the uniformly distributed 

loading by four equi-distant, equal point loads, Therefore, the high 

ultimate failure load of model Mg of 37.92 tons must be due to one or more 

of the above effects and the experimental fully plastic collapse load of 

29.74 tons obtained from Figures 10.14, 10.23 and 10,24) is quite justified, 

It is interesting to note from Table 11(i) that for both tests M, and 

Mz, type (5) assumption produces the highest theoretical collapse load and 

the closest agreement with the actual collapse load, After type (5), type 

(3) gives the highest collapse load, This compares favourably with the 

conclusion obtained in Chapter 7 from comparisons between the various 

assumptions on degree of composite action that type (5) assumption produces 

the highest collapse load, Therefore, the highest saving in weight, con- 

pared with type (1) or (2) @) assumption and next to it is type (3) assump- 

tion, This is also true from the point of view of structural efficiency, 
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Finally, from the comparisons and studies of the experimental 

behaviour of the composite beam and slab floor systems, the following 

may be concluded:- 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

Control test C, and tests M, and Mg indicated that the slab 

reinforcement contributed considerably to the ultimate capacity 

of the composite section at mid-span, The experimental value 

of Me was 40.6% higher than the theoretical value when the effect 

of Slab reinforcement eee ignored, This difference became only 

6.36 when this effect was included, 

Control tests Cg and Cs showed that the experimental fully 

plastic moments at the ends of model Mg were very close to the 

theoretical moment assuming full composite action with a 

difference of only 1.8%, This difference was 21.2% when the 

experimental moment was compared with the theoretical mome nt 

assuming no composite at the supports, 

(1) and (2) above lead to the adoption of type (5) assumption 

which considers full composite action at the mid-span and the 

Supports an’ includes the effect of slab reinforcement at the 

mid-span, 

Comparisons between the theoretical and actual collapse loads of 

models My, and Mg in Table 11(i) showed that type (5) assumption 

gives theoretical loads which most closely represent the actual 

collapse loads with a difference of 1.7% ond 4.8% between the 

two values for models M, and Mg respectively, 0n substituting 

the experimental values of Me and My obtained from (1) and (2) 

above into the theoretical equations for collapse Se eel My 

and Mg for type (5) assumption, these differences became 2.6% 

and 0.1% respectively, 

Collapse of models M, and Mg occurred by mode B, as predicted, 

During the testing of models M,, Mg and Mg, the stud shear 

- 213 -



connectors welded on the top of the supporting beams, which were 

designed for type (5) assumption, behaved adequately up to 

collapse, 

(7) From the above, it can be concluded that type (5) assumption, 

which gives the highest savings in weight, etc. compared with 

the other four assumptions, can safely be used in the design of 

composite beam and slab floor systems, 

(8) However, if type (3) assumption is - be used, considerable 

savings in weight, etc, will be made compared with types (1), 

(2) ) or (4), as the difference in weight saving and structural 

efficiency between types (3) and (5) is small, 

All the results from this chapter are summarised in Table 11(i). 

In the following chapter, specific conclusions on individual items in 

this thesis, together with a general conclusion on this research work, will 

be made, Finally, the thesis is concluded by one or two suggestions as to 

fields of related research work, which might be investigated in the future. 
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Oat ASP AT He Rae 62 

CONCLUSIONS 

12.1 INTRODUCTION 

This chapter contains specific conclusions on individual items in this 

thesis, together with a general conclusion on the use of the most suitable 

assumption on degree of composite action in the design of beam and slab 

floor systems, using upper-bound solutions, 

Five assumptions on degree of composite action have been developed in 

Chapters 4, 5 and 6. Throughout this research work, considerable atten- 

tion has been paid to the validity and economy of each of the five assump- 

tions of the proposed design method, which has been found to possess 

distinct advantages over many other methods. Comparisons are made between 

these assumptions, from the point of view of weight-saving, deflection and 

structural efficiency, using twelve design examples, These comparisons 

were carried out with the aid of a aecrat computer program developed in 

the course of the present work, 

The effect of composite action was introduced into the plastic design 

method proposed by Gandhi (*) for the design of multi-storey frames, taking 

the effect of instability into consideration, The effect of composite 

action on the stiffness of the supporting beams, and hence on the magnifi- 

cation factors and the instability of the frame as a whole, was also 

considered, 

The agreement between experiment and theory for each of the five 

assumptions on degree of composite action is discussed, 

Finally, one or two suggestions are made for additional research work 

which would help to develop the full potentials of this design approach, 

12.2 CONCLUSIONS 

In the design of both non-composite and composite beam and slab floor 

Systems, only the upper-bound solutions were considered, This is because 

this type of solution can be easily modified to include composite action. 
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It is a fact that a lower-bound solution gives a "safe value" for the 

collapse load of a structure and thus should be preferred to an upper- 

bound solution, However, the use of a lower-bound solution in the case 

of composite structures invariably complicates the problem. Nevertheless, 

in using an upper-bound solution, it should be remembered that there are 

many factors that can play a part to improve the safety of the solution, 

These are tensile or compressive membrane action which counteracts the 

reduction in collapse\load from the true mode of collapse, strain hardening 

in the steel and other factors which result in the fracture line theory, 

even applied correctly, being generally conservative, 

Three basic modes of collapse of beam and slab floor systems were con- 

sidered in this thesis, These are:- 

(4) . ‘Phe collapse of the slab and the secondary beams which was termed 

; mode A in this thesis, 

(44) © The collapse of the slab and main beam by mode B, 

(iii) The independent collapse of the slab by mode C or D, depending on 

the value of the sides ratio (ors. "Fan modes" were not con- 

‘Sidered since, for uniformly loaded slabs, the reduction in the 

collapse load is not large. 

Expressions were derived for the collapse load of five non-composite 

floor systems with different boundary conditions, that is type (1) assump- 

tion, for the three basic modes of collapse, From these, the required 

My, My and Ms were obtained, A design chart was produced in Chapter 4 

for a typical internal bay, From this chart, knowing the loading and the 

dimensions of the frame, it was possible to determine the beam sizes, as 

well as the slab moment, A typical example, using the design chart of 

Chapter 4, was given, Chapter 5 contained the modified design equations 

of Chapter 4 for the case when the slab is composite with the supporting 

beams for types (2) and (3) assumptions, The slab was assumed composite 

at mid-span of the supporting beams only, Type (2) ignores the effect of 
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slab reinforcement When Mc and Me are calculated, type (3) considers 

such an effect. - A modified design chart of the typical internal bay was 

prepared for types (2) and (3) assumptions, Using a frame of the same 

size and loading as that given in the example in Chapter 4, new beam sizes 

were obtained for type (2) assumption, This was done by using Table 5(i) 

to select the appropriate composite sections. It was not convenient to 

prepare similar tables for type (3) assumption because of the greater 

number of parameters involved, For this reason, type (3) assumption could 

only be employed with the direct use of a computer. The same example, 

solved for types (1) and (2) assumptions by the use of charts, was solved 

using the computer directly and the beam sizes and slab moment were obtained, 

In Chapter 6, the design equations of Chapter 5 for types (2) and (3) 

assumptions were modified to include composite action for types (4) and (5) 

assumptions, Both these assume full composite action at mid-span and the 

supports of the beam, However, type (4), like type (2), ignores the effect 

of slab reinforcement when Mc and Me are calculated, On the other hand, 

type (5), like type (3), considers such aneffect, Once again, it was 

found difficult to use tables or charts and the use of computers, in the 

design of types (4) and (5), was shown to be unavoidable. This is illus- 

trated by referring to the example used in Chapters and 5 when new beam ae 

Sizes are selected for both assumptions with the aid of the computer, 

From comparisons Sei the same design example shown in Chapters 4, 5 and 

6 between the various assumptions on degree of composite action, it was 

found that type (5) assumption gives the most economical beam sections, 

Although type (3) Saar Cita Se not as economical, it seems to give reason- 

ably good results, With a 6 in, slab, the saving in weight of the steel 

main beam per foot run for type (5) assumption was 38% over type (1) which 

ignores composite action altogether and 1)% over type (2), the simplest 

form of composite action which was proposed by Steel(t), This apparent 

saving in cost, together with the associated saving in depth of composite 
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beam giving reduced height of a building, less cladding, feating. etc., 

must be balanced maannat the cost of welding the shear connectors to the 

beams, However, composite structures are being built in this country and 

abroad (cf. example in Chapter 2) with considerable saving of overall cost, 

A general computer program was developed in the course of the present 

work in Atlas Autocode, This program embodied the design of beam and slab 

floor systems with various boundary conditions for each of the five assump- 

tions on degree of composite action, The three basic modes of failure A, 

B and C or D were considered in this program in such a way that collapse 

would occur by any of these basic mechanisms at the same applied load, thus 

producing an economic design, The program was written in such a manner as 

to require a minimum of input information and therefore the data prepara- 

tion is easy, A change from one assumption to another for the same problem 

requires a variation of only one or two values in the input data, The 

machine output consists of the ultimate slab moment Ms, area of slab rein- 

forcement in both directions and the size of the supporting beams with their 

plastic composite and non-composite moments at mid-span and supports. 

Other useful information, also given, was the total horizontal shear force 

between the slab and the supporting beams, This helps in finding the 

number of the shear connectors required on each beam, The computer output 

also gave the limits of the mid-span deflections, together with the weight 

of the beams, reinforcement, concrete and of the whole system, 

In order to test the capability of the program to design single-bay 

and multi-bay floor systems, twelve frames with various boundary conditions, 

number of bays, equal and unequal bays and sides ratios (p) were delibe- 

rately devised in Chapter 7, From these design examples, it is concluded 

that:- 

(1) Increasing the slab thickness results in selecting a heavier or 

the same section for the supporting beams. This also gives 

heavier columns and more substantial foundations, Against this, 
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(2) 

(3) 

(4) 

(5) 

(6) 

there is only some saving in the weight of slab reinforcement 

to produce the same ultimate moment Ms. This indicates very 

clearly the disadvantage of increasing the slab thickness on 

the whole economy of non-composite and composite structures, 

A minimum slab thickness to provide the required Ms value with 

the under-reinforced condition is recommended in the design of 

beam and slab floor systems, 

There is no advantage in increasing the oube strength in terms 

of saving in weight of the supporting beams of the non-composite 

and composite structures, Only a slight reduction in the weight 

of the slab reinforcement occurs when the cube strength increases 

to provide the same ultimate slab moment Ms. A minimum cube 

strength is recommended for the design of beam and slab floor 

systems, 

A considerable reduction in the deflection of the selected 

supporting beams, as well as saving in weight, results by using 

composite rather than non-composite construction, 

For the same floor area, a slight reduction in the weight of the 

supporting beams and slab reinforcement can be obtained by using 

the system with the smaller sides ratio (p). 

The relationship between live load and the weight of the selected 

supporting beams and slab reinforcement is approximately linear, 

In the case of a 5 in, thick slab, it was noticed that an increase 

in the live load from 50 -> 100 lbs./ft.*. There was 25-30% 

increase in the weight of the selected beams and 48.6% increase 

in the slab reinforcement, 

Type (5) assumption gives the most economical sections for the 

supporting beams compared with the other four assumptions. This 

is followed by type (3). This is also true for overall struc- 

tural efficiency, 

a



In Chapter 8, the effect of composite action of types (2) and (3) was 

introduced into the plastic design method originally proposed by Gandhi (*) 

for the design of multi-storey frames with the effect of instability taken 

into consideration, It was found possible to modify the design equations 

for the three zones of failure of multi-storey frames to include the effect 

of composite action at mid-span of the supporting beams for types (2) and 

(3) assumptions, In beam and slab floor systems, considerable saving in 

the weight of the beams occurs by using type (2) or (3) of composite design 

rather than type (1), which ignores composite action altogether. Now with 

the introduction of either of these two types of composite action into the 

design of bare steel frames, even more saving in the weight of the frame 

will be made, In this chapter, it was shown that the beam size was more 

effective than the column size in controlling the instability effects. 

Therefore, the introduction of composite action of types (2) or (3), even 

with the conservative assumption of its effectiveness as to act within thé 

middie half span of the supporting beams, improves the stability of the 

frame greatly, An example was given of a 16 x 54 x 31 U.B. plus:.5. im tha cls 

Slab. This showed that the stiffness of the section increases by 4% 

relative to that of a bare steel section when a plastic hinge is assumed 

to form at the leeward end, and 10% when the beam is fully elastic. 

Therefore, with the introduction of the greater values of the second 

moment of area in the elastic and plastic stages, a larger section might 

not be required to reduce the KgV to its limiting value of -1.8. The KV 

value affects the distribution factors of the beams and the columns con- 

Siderably. Hence, with the introduction of composite action, the stability 

of the frame as a whole improves considerably. 

With the introduction of composite action of type (2), it is still 

possible to use the proposed design method manually, by making use of tabu- 

lated values of the magnification factors (*), together with tables similar 

to Table 5(i) to find the composite sections with adequate (Me + Mp). 
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However, at this stage, the use of a computer becomes more advantageous 

and at any rate, Ueiae the more economical method of composite design 

type (3) would make the use of a computer a necessity. 

The series of control tests carried out on one-storey composite beams 

and slab floor model Mg show good agreement between experimental and theo- 

retical results for type (5). This is for full composite action at mid- 

span and supports of the beam and the inclusion of the slab reinforcement 

effect at mid-span, Comparisons of experimental and theoretical results 

of models My and Mg show that type (5) assumption represents the actual 

collapse load most closely, compared with the other four assumptions, with 

good agreement between experimental and theoretical results, This is in 

spite of the fact that model Mg failed at a higher load, owing to strain 

hardening and other effects which were ignored in the analysis. 

It was found possible to use a system of interconnected hydraulic 

jacks to simulate uniformly distributed loading, Collapse of models My 

and Mg occurred by mode B, as expected, Slab strips S, and Sg control 

specimens gave results very close to the theoretical values, 

The shear connectors were designed to simulate type (5) composite 

design, Careful observations, with the aid of slip gauges, were made on 

models M,, Mg and Mg. These observations showed that the behaviour of 

these shear connectors were adequate throughout the testing process, 

It could be generally concluded that the test series confirmed that 

type (5) assumption, which gives the greatest saving in weight and struc- 

tural efficiency, can be safely applied in the design of composite beam 

and slab floor systems, However, type (3) assumption also gave results 

which were in good agreement with experimental values, and would make the 

best alternative to the use of type (5) assumption, 

12.5 SUGGESTIONS FOR FUTURE RESEARCH:- 

(1) This thesis shows that there are many design advantages in using 

composite action between slabs and beams, The interaction 

- 221 -



(2) 

(3) 

between these two elements is by no means the only: one in a 

structure, Whenever any continuity exists between two compo- 

nents, there is’ bound to be a certain degree of structural inter- 

action, and the basic philosophy of composite design is that this 

interaction should be both recognised and allowed for during the 

design process, It is usual for specifications to allow no pro- 

vision to be made for the effect of cladding and to stipulate that 

all wind forces ahonia abe carried on the bare steelwork. While 

it may be true that certain types of cladding add very little 

strength to a framework, almost all cladding will increase the 

stiffness of the structure, The effect of the walls on the bare 

steel frame of the Empire State Building has been found to increase 

the stiffness by a factor of about 4.5. The effect of stiffness 

owing to cladding should, therefore, be made use of in design, 

It would be extremely 1seful to utilise the effects of cladding 

in the design of tall structures, This is one suggestion for 

future investigators. 

The developr.ent is also suggested of an automatic computer program 

for the plastic design of multi-storey frames, taking into con- 

sideration the effects of instability and that of composite action 

(cf. Chapter 8), Once this is achieved, comparisons can be made 

between these designs, which include the effect of composite 

action, and the traditional design of bare steel frames, Only 

such a comparison can reveal the relative importance of such 

effects as stability and economy achieved by using composite 

action, 

Should it be required to use reinforced concrete casing for the 

columns of a steel frame in order to satisfy the fire proofing 

requirements (+), then it would be possible to modify the computer 

program suggested above, in order to take full advantage of the 
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extra strength available, In the proposed design method shown 

in Chapter 8, it has been shown that the column ends are not 

required to undergo any rotation owing to the formation of a 

fully plastic hinge, Therefore, the concrete casing would be 

assumed to carry a proportion of the total axial load in the 

member, thus relieving the steel section of a certain amount 

of direct stress, In the licower regions of the frame, where 

the selection of suitable columns is largely controlled by the 

axial load in the member, considerably lighter Universal Columns 

would be found to be adequate, 
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APPENDIX 1 

A_PROGRAM TO CALCULATE THE SUM OF COMPOSITE AND BEAM MOMENT (Mc+Mb) 

begin 

integer 5.7)n, Uw.b. £..1 

reel z,dn,M-,Mb,My,Uc, fy,n,dc,x,h,h',h’' ,0,e',g,g' 
read(fy,n) 
begin 

arrey ACisn, 1:10) 

read array(A) a 

newline 

j=0 

cycle Uw=3000, 1000, 6000 

Uc=4*«Uw/9 

cycle i=1,1i,n 4 
newlines(3) 
print(A(i,8),2,1) 

space 

caption & X 

space 

print(A(i,9),2,2) 

space 

caption & X 

space 

print(AG , 10), 3,1) 

spaces(2) 
caption LBS. § U. g B. 

spaces(19) 
caption PLASTIC § COMPOSITE & MOMENT ¢ Mc & (KIPS-FT.) § FOR g U g = & 
print(Uw, 4,0) 
newline 
Mb=( fy*A(i,3))/12000 

caption Mb $ = 

print(Mb, 4,1) 

spe.ces(2) 
caption KIPS=FT. 

newline 

caption SLAB 

spa ces(4) 
ception SLAB 

spsce 

ception THICKNESS 

spa ces(6) 
caption SLAB 

spe e 

ception THICKNESS 

spaces( 6) 
caption SLAB 

space 

caption THICKNESS 

spaces( 6) 

ception SLAB 

space 

caption THICKNESS 

spaces( 6) 

ception SLAB 

4°20). <



space : 
caption THICKNESS 

newline 

caption WIDTH 

spaces(6) 
caption 4 & INCHES 

spa es(12) 
ception 5 § INCHES 

spa~es(12) 
raption 6 § INCHES 

spa es(12) 
ception 7 §& INCHES 

spaces(12) 
ception 8 § INCHES 

newline 

caption GEDs) 

spaces(3) 
caption (Mc) 

spaces(4) 
caption (Mc+Mb) 

spaces(6) 
caption (Mc) 
spaces(4) 
caption (Mc+Mb) 
spaces(6) 
caption (Mc) 

spaces(4) 

caption (Mc+Mb) 

spaces(6) 
caption (Mc) 

spaces(4) 
ception (Mc-+Mb) 

spaces(6) 
caption (Mc) 

spaces(4) 
caption (Mc+Mb) 

newline 

eycle b=10,5, 40 

[=b*12 

newline 

print(b,2,0) 

spaces(4) 
cycle t=4,1,8 

a=A(i ’ 1)* fy 

-> 1 if a > (Uctt#1) 
dn=s/(Uc+1) 
h'=(ACi, 2)+2*t-dn) 
Mc= (0.5*e*h' )/12000 
My=Mc+Mb 

print(Mc, 4,1) 
spaces(2) 
print(My, 4,1) 

spaces(4) 
=> 2 

1: h'=A(i, 4)*A(i, 5) *fy 

“> 3 af. (teUcalteeh") <8 
h''=A(i, 4) «fy 
g=0, 5* (q~-Uc%t*1)/h' ‘ 

dn=t+z 

dc=0.5*(ACi, 2)+t) 

e=dn-t 
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Mc=(a*denh' '*dn*e) /12000 é 
My=Mc+Mb 

print(Mc, 4,1) 
speces(2) 
print (My, 4,1) 
spaces(4) 
-> 2 

3: e=AC(i,4)*A(i, 5)* fy 
e'=AC(i, 6)*fy 
z=0. 5* (a-2*e-1*Uc#t)/e' 
dn=t+A(i, 5)+z 
dc=9. 5*(ACi, 2)+t) 

g=ttA(i,5) 
g’=dn+A(i, 5) : 
Mc=(a*dc-e*g-e'*g' *z)/12000 
My=Mc-HMb 
print(Mc,4,1) 
spaces(2) 

print(My, 4,1) 
spaces(4) 
2: repeat 

repent 

jajti 
x= j/3 
a fracpt(x) > 0.00001 then -> 5 

newlines(2) 
spaces(55) 
print(x, 3,9) 
newpage 
5: repeat 
repent 
end 

end of program 

DATA 

1. Yield stress of beams in 1bs./sq.in. 
2. Number of beams used. 

3. Properties of each beam, 

(i) area 
(ii) depth 
(iii) plastic modulus 
(iv) width of flange 
(v) thickness of flange 
(vi) thickness of web 
(vii) ~ (ix) beam size- 

%  & Z, 
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APPENDIX 2 

A GENERAL PROGRAM FOR THE DESIGN OF BEAM AND SLAB FLOOR SYSTEMS 
  

begin 

integer n 

sele~t input (1) 

rerd(n) 
begin 

array A(i:n,1;10) , 
rend arrrey (A) 

begin 

integer N,N* , B, D, tds Sows t, Ys s,H1,H2,T, case 

real fi,rw,rw',rw’',1,p,c,c’, fy, ft, z,dn,dc,Uc,d,At1,At2,y",E,d1,d2, 
MB, Mb,MB",Mb' ,Me, Mc, Mx,My,Ms,a,a',a’',h',h'',h,dn’,e,o',e'',g,e',2'%, 
k",r,r',q,k,x', fc,x,k'*, WX, WBY, WB, WC, WRX, WRY, WR, WF,R,x'',m,p',m',W, 

ds, df, dm, 1G, IC, AC 
rerd(Nt) 
cycle cese=1,1,N* 

read(p',E,R,s, fy, ft,c,c',H1,N,H2,T,D,1) 
comment N IS THE TOTAL NO. OF BAYS 

arrey L(O:;N+1) 

read array (L) 
B=N+1 

if D= O then B= 3 

newline 

  

  

  

cycle Uw=3000, 1000, 6000 
Uc=4*Uw/9 

cycle t=40,10, 70 
d=0.1*t 

p=p'+0,001*(12. 5kq*1. 75) 
d1i=d-c 

d2=d-c* 
k* t_o 

WBX=O 

WBY=0 

WRX=O 

WRY=O 

wCc=0 

g=0 

-> 500 if Nol 

comment INTERNAL BAYS 
cycle i= 2,1, Be1 

newline 

ception FRAME § NO, ¢ ( 
print(i1, 2,0) 

gepuen: 2 
spaces(3) 
caption TYPE § ( 
print i2,1,0) 
caption ) 

newline 

- 22/7 - 

1a
 

fo
 
fo



caption CUBE § STRENGTH g = 

print (Uw, 4,9) 

spaces( 2) 
caption LBS. & / & SQ. & INCH 
newline 

caption SLAB § THICKNESS g¢ = 

print(d,2,1) 

spaces(2) 
caption INCHES 

newline 

“> 83°if i=Be-1 and D=1 

caption BAY § NOV§ ( 
print(i,2,0) 
ception ) 

spaces(10) 
rw = 1/L(i)} 
=> at pws 1 

fel cee sqrt (rw* rwt3)-rw 

Ms=(p*1*L(i )*rw* (3-rw* fi) )/(48* (rw/fitt)) 
-> 83 

1; fi=sqrt(1/(rw*rw)+3)-1/rw 
Ms=(p*1*L(i)*(3*rw-fi))/(48*rw* (1/fi+rw)) 
83: -> Sif E>0,5 
if R > 0 .5 then Mx=1#(0,0625«p%*L(i)A-Ms) 
if F >°0.5 then My=0. S*(L(i)+L(i-1) )*(0,0625%p*1/A-Mg) 
=> 82 it R> 0.5 

ees ee ial kn 

My=0. S*(L(i~1)4L(i))*(0,125%p*1%*1-Mg) | 
82; if i=N and k''=1 then -> 109 
-> T8o if “[=B-1 and D=i 

-> 999 ie F (4500«Ms) > > (d2A*Uw) 
109; ryt, =(4*q2«Uy-sqrt (16% d2/\*cUwA~6% Uys Mg* 12000) )/(9* £t*d2) 
2e rw'* > ((2*Uw)/(9*ft)) then caption At2 & IS % OVER £ REINFORCED 

spaces(10) 
rw* =(4* d1*Uw-sqrt(16*d1iA*xUwA-6*Uw*Mg*12000))/(9*ft*d1) 
xe. rw* > ((2*Uw)/(9*ft)) then caption Ati § IS § OVER § REINFORCED 
Atlarw' *12*d1 
At2=rw' **12%g2 

newlines(2) 
caption Ms § ( 
print(i,2,°) 
ception Ys = 

print(Ms, 2,4) 

spaces(2) 
ception KIPS & FT. & / $ FT. & RUN 
spa es(5) 
ception At &61¢= 

print(Ati, 2,4) 

spaces( 2) 
caption IN. § SQ. & / $ FT. & RUN 

spares(5) 
ception At & 2 & i 

print(At2, 2,4) 

spaces(2) 
ception IN. & SQ. & / & FT. & RUN 
newline 

caption REQUIRED & Mx & ( 

print(i,2,0) 
caption ) & = 

print (ifx, 5, 5) 
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spaces(2) 
caption KIPS 6.2.6: ET; 

180: newline 

caption REQUIRED § My & ¢ 

print(i,2,0) 
caption ) § = 

print(My,5,5) 
spaces(2) 
caption KIPS § - g§ FT. 

=> 182 if i=N and k''=1 
-> 181 if i=B-T and D=1 
182: newline —~ 
a'=Ati*ft*s 

at '=12*Uc ° 
y=0 
cycle j=1,i,n 
MBY=(ACj,3)*fy)/12000 
MB=MB* 

o> Jif R > 0,5 
a=A(j,1)*fy 
aS aD f a> (at*ite!'*d*1) 

dn=(s+0.°*1)/(a''*1) 
h'=(A( j, 2)+2*«d-dn) 
h' *=(d~-0, 5«dn=c) 

Me=(9. S*p*h’+a’*Leh'")712000 
~> 3 

2: h'=A(j,4)*A(j,5)* fy 
“> 4 if (d¥o"'*1+2*h'+a'*1) < a 
h'"=A(j,4)* fy 

z=90.5« (p-g* '*dtl-a'*1)/h'* 
dn=d+z 

de=0. 5* (AC j, 2)+d) 
e=A(j,4)* fy 
g'=0. 5S«kd-c 

Me=(a*dc~e*dn* z-a'*1*g' )/12000 
~-> 3 

4: e=A(j,6)*fy 
g'=A( 5, 4)*A( 5,5) *fy 
z=0.,5*(_-2kg'=_' #1 *d-—9"%1)/e 
dn=d+A( j,5)+z 
dc=0. 5*(A(j, 2) +d) 

r'=d+A(j, 5) 
e'=dn-+A(j, 5) 
h'=0,5*d=c 

Me=(a*dce~g' *r'-e*e' *z-9'*1*h')/12000 

92; if g>0.5 and i= 1 then y'=Mo+0.5*MB1O.5«MB! 

  

  

if g > 9.5 and N=i and i=1 then y'=Me+MB' 
i g > 0.5 and N=1 and i=1 then MB=MBt 

“> 9 tte oO, dvand i= 

if g¢ > 0.5 and i= Nand k*'=1 thon y'= Me +0. 5*MB+O,5+*MB' 
-> 95 if g > 0.5 and i= N and kt '=i eer oe p 

MB 

Sy at! yee Me they= 1 
—> Og y > OO 

repeat 

6: newline 

ception CHOSEN § BEAM & SIZE & IN & Lx( 
print(i,2,0) 
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ception ) & DIRECTION $ = & 

print(A(j,8),2,1) 
spoces(2) 
ception 6X6 

print(A(j,9),2,2) 

spaces(2) 
caption X 

print(A(j,10),3,1) 
spaces(2) 
caption LBS. § U. $ B. 

newlines(2) 
caption COMPOSITE § MN & ( 
print(i,2,0) 

caption ) $ AT & SUPPORT g = 
print (MB, 4, 4) 
spaces(2) 

caption KIPS § 

newline 

caption MB ¢g ( 

print(i,2,9) 
ception Y$= 

print(B", 4,4) 
spaces(2) 
ception KIPS 
newline 

caption Me & ( 
print (i, 2,9) 
caption ) & = 

print(Me, 4, 4) 

speces(2) 
caption KIPS & 
newline 

caption CHOSEN & Mx & ( 
print (i,2,0) 

caption ) &5 

print(y',4,4) 
spaces(2) 
caption KIPS ¢ 

- newlines(2) 
caption DEPTH § OF § PLASTIC § NEUTRAL & AXIS $ dn & AT & CENTRE & IN § Lx & ( 
print(i, 2,9) 

caption ) & DIRECTION § = 

print(dn,2,2) 

spaces(2) 
caption INCHES 

newline 

caption DEPTH § OF § PLASTIC § NEUTRAL & AXIS § dn" & AT § SUPPORT § IN § Lx & 
print (i,2,0) 

caption ) $ DIRECTION § = 

print(dn', 2,2) 
spaces(2) 
caption INCHES 

newline 

See DISTANCES § OF § POINT § OF § CONTRAFLEXURE § FROM & SUPPORT ¢ = 

= 0. 5#1.(i )#(1-sqrt(Mo/(ife+MB))) 
it R> 0.5 then x'=0 -14645*L(i) 

print(x', 2,2) 

spr ces(2) 

ception EES 

newline 

& FT. 

5 

& FT. 

$ FT. 

ae OR



caption TOTAL & HORIZONTAL § SHEAR $ FORCE & Fec & AT ¢ CENTRE $ IN § Lx & (¢ 
print (i,2,9) 
caption ) & DIRECTION § = 
if R > 9.5 then fc=0 
=> 99 if R> Ov5 
St ah < d then fo= A(j,1)*fy/2240 
if dn>d then fe = (Uctd*1*12+Atix1*ft*s)/2240 
99; print(f-, 3,3) 

spa.ces( 2) 
caption TONS 

newline 
fo = 0 

caption TOTAL & HORIZONTAL § SHEAR & FORCE &§ Fec g AT g SUPPORT g IN § Lx & ( 
print(i,2,0) 

copies ) & DIRECTION g = 

if dn’ < d end E> 0,5 then fc= A(j,1)*fy/2240 
if dn' > d pnd Eye 0. 3 then fe = Ati*1*f£t/2240 
if N=T then fe: fc=0 

print(fc, 3, 3) 

spe ces(2) 
caption TONS 
IC=(1*d*3)/15 

AC=d*1*0,. 8 

=> Ot ieR > 075 

h=0. 5*A(j, 2)+d 
dn=(1.25+A(5,1)/1)*(sqrt(14(1. 6eh#1)/A(5,1))-1) 
-> 600 if dno>d 

IG=A( 5, 7)+A( 5, 1)* (h~dn)A+(1412%an$3)/45 
-> 602 

600; dn=(AC#0, 5*d+A( 5, 1)*h)/(ACHAC 5, 1)) 
IG=IC+AC# (dn-9. S*d)AtA( j, 7)+AC 5, 1)*(h-dn)A 

601; if R > 0.5 then IG=IC+A(j, 7) 
602; W=(p' *1000*«] #L(i))/1. 75 

ds=(S#*W+L (i )#3%*1728) /(384%*13000%2240« 1G) 
df=0. 20*dg 

dm=L (i )/30 
newline 

caption MOMENT ¢ OF § INERTIA & OF § Lx & ( 
print (i,2,9) 

ception ) $ SECTION g = 

print (iG,5,2) 

spaces(2) 
ception IN.4 

newline 

caption MAX. § ALLOWABLE g DEFLECTION § AT % CENTRE % OF & Lx & ( 
prints, 2,0) 

caption ) $ = 

print( dn, 2, 3) 

spa es(2) 
ception IN. 

newline 

-pption DE LECTION § AT § CENTRE & OF & Lx & ( 
print(i,2,9) 

caption ) & IF § CONSIDERED § SIMPLY & SUPPORTED § = 

print(ds, 2,3) 

spaces(2) 

caption IN. 

newline 

caption DEFLECTION § AT § CENTRE § OF § Lx & ( 

print(i,2,0) 

ception ) & IF & CONSIDERED § FIXED & ENDED & = 
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print (df, 2,3) 

spe.ces(2) 
ception IN, 

-> 275 if N=1 

m=1 oe 
if T=1 and N=3 and i=2 then m=0 
=> 25t at if D=O 

WBX=WBX+(A( j, 10)*L(i)#m)/2240 

WC=WC+(12*1*L(i )*d*m)/2240 

251; if D=0 end i=2 then WBX=((N-2)#*A(j,10)*L(i)*m)/2240 
and i=2 then WC=( (N=2)*12%1#L(i)*d*m)/2240 

and i= 1 then WSX=WDX+(2*A( j,10)*L(i))/2240 

= and T=1 then WC=WC+(2%12*1#L(i )¥*d)/2240 

if N=1 then WOX=(A(j,10)*L(i))/2240 
‘then WC=(12*1*L(i)*d)/2240 

IS
IS
IE
 

e
e
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aa
 

= 
w
e
e
 

il 

fhe 

i=N and k''=1 then i=N+1 
y 3s 

=At2* ft*s 

cycle j=1,1,n 
Mbt=(A(j, 3)* fy) /12000 
Mb=Mb* 

-> 9 if Ra O75 

a=A(j,1)*fy 
-> 7 so a > (9'*0.5*(L(i~-1)4L(i) )+a"'«a*0. 5*(L(i~1)+L(i))) 

dn=(p+a'*0. 5*(L(im1)4L(i)))/(a"'#0.5%(L(i-1)4L(i))) 
h'=(A( j, 2)+2*d-dn) 
ht *=(d=-0. S«dn-c') 

Mc=(0. S¥q*h'+a'*0, 5«(L(i-1)+L(i))*h*" ')/12000 
-> 9 

7 h'=A(j,4)*AC j ’ S)* fy 
=> 10 if (d%¥p''*O, S*(L(i-1)4L(i) )+2%h" +9° 0, 5*(L(i-1)4L(i))) < 9 

h''=A(5, 4)*fy 
z=0.5*(an~a’'*d%*0. S#(L(i-1)+L(1))-a'*0.5«(L(i-1)+L(i)))/h'* 
dn=d+z 
dc=0. 5% (A(j, 2)+d) 
e=A( 5, 4)* fy 
g'=0, S*d=c' 
k'=0, 5*(L(i-1)+L(i)) 
Mc=(a*dc-e*dn* z-a'*k'*g" )/12000 

-> 9 

10; e=A(j,6)*fy 

g'=AC 5, 4)*AC j »°)*fy 
k'=0, 5*(L(i-1)4+L(i)) 

z=0, 5#(g-2ke'—atlek'*d-a'*k")/e 

dn=d+A(j, 5)+z 
dce=0.5*(A(j, 2)+d) 
r'=d+A(j, 5) 
e'=dn+A(j, 5) 
h'=0. Sxd-c’ 

Mc=(a*de~g'*r'-exe'*g-a'*k'*h" )/12000 
Qs aaot it og >mO.5 
73; y'=Mbtilc 
if y* > My then y=1 
“> 11 a7 y > 0). 5: 

repent 

li; newline 
ception CHOSEN & BEAM § SIZE g IN & Ly & ( 
print(i,2,9) 

ception ) & DIRECTION § = $ 

  

e
t
s
 

dN 
hf
e:
 

Hh
 
O
r
 

: 
as

 
=
 06 »
 © 

9 at
 

oe
 

- 232 -



  

print(A(j, 8), 2,1) 
sprces(2) 
ception xX $ . 

printcA( j, 9), 2,2) 
spaces(2) 
cpption X § 

print¢A( j, 10), 3,1) 
spe ces(2) 
ception LBS. § U. § B. 

newlines(2) : 

ception COMPOSITE § Mn’ § (¢ 

print (i,2,0) 
caption ) & AT § SUPPORT § = 

print (Mb, 4, 4) 

spaces(2) 

caption KIPS § - § IT, 

newline 

caption Mb’ ¢§ ( : 

prantG 52,9) 
caption ) $ = 

print(Mb", 4,4) 
spaces(2) 

caption KIPS ¢ 

newline 

caption Mc & ( 
Printz, 250) 

caption ) $= 

print(Mc, 4, 4) 
spaces(2) 
ception KIPS § 

newline 

caption CHOSEN § My & ( 

printG, 2,0) 

caption )} $= 

print(y', 4,4) 
spaces(2) 
caption KIPS § 

newlines(2) 
ception DEPTH § OF & PLASTIC § NEUTRAL $ AXIS & dn & AT & CENTRE § IN % Ly & ( 
printGs 2,0) 

ception ) § DIRECTION § = 
print(dn, 2, 2) 

spaces(2) 
caption INCHES 

newline 

caption DEPTH & OF § PLASTIC § NEUTRAL § AXIS & dn’ § AT & SUPPORT & IN § Ly & 
print(i,2,9) 

ception ) $ DIRECTION § = 

print(dn',2,2) 

spaces(2) 
ception INCHES 

newline 

ception DISTANCE & OF $ POINT & OF & CONTRAFLEXURE § FROM % SUPPORT § = 
ao *1%*(1—sqrt (Mc/(Mc+Mb))) 

if R>0.5 then x''=0,14645«] 
print(x'',2,2)_ 
spaces(2) 

caption FT. 

newline 

ception TOTAL § HORIZONTAL § SHEAR % FORCE & Fee & AT § CENTRE § IN & Ly & ( 

s 
5 

$ FT. 
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print(i,2,90) 
caption ) $ DIRECTION § = 

if R > 0.5 then fc=0 
=> 121 if R >. 0,5 
if dn < d then fc=A(j,1)*£y/2240 
m'=0. 5*(L(i)+L(i~1)) 
if dn > d then fe=(Uctdtm'*12+At2+m'*ft*s)/2240 
{21;  print(?fc, 3,3) 
speces(2) 
ception TONS 

newline 

fe=O0 

ception TOTAL § HORIZONTAL ¢ SHEAR § FORCE & Fee & AT & SUPPORT & IN § Ly & ( 
print(i, 2,0) ; 
caption ) & DIRECTION § = 

if dn* < d end E > 0.5 then fc=A(j,1)*fy/2240 
if dn' > and E > 0.5 then fo=At2 *m'*ft/2240 
printGic,3,3) 

speces(2) 

caption TONS 

m'=0,5*(L(i)+L(i-1)) 
IC=(m**d#3)/15 
AC=d¥*m'*0.8 

~> 701 Ti Re>- 0.5 

h=0. 5#A(j, 2)+d 
dn=(1.25*A( j,1)/m'" )* (sqrt (1+ (1. 6eh¥m* )/A(j,1))-1) 
=> 700 4 ‘dn’ > id 

IG=A( j, 7)+A( j, 1)* (h~dn Atm? #12*dn$3)/45 
=> 702 

700; dn=(AC#O, 5#d+A(5,1)#h)/(ACHAC§,1)) 
IG=IC+AC#(dn-O. S#d)Ai AC 5, 7)+ACj,1)*Ch-dnjyA 
701. if R >O.5 then IG=IC+A( j, 7) 

702; W=(p'*1000«]#m")/1. 75 
ds=(5*W* 1 $3*1728) /(384*13000«2240% IG) 
df=90, 20«dg 

dm=1/3° 
newline 

ception MOMENT % OF § INERTIA § OF & Ly & ( 
print(i, 2,0) 
caption ) § SECTION § = 

print(IG,5,2) 
sps.ces(2) 
ception IN.4 
newline 

caption MAX. § ALLOWAULE § DEFLECTION § AT & CENTRE g OF & Ly & ( 
print(i,2,9) 

caption ) & = 
print(dm, 2,3) 
spaces(2) 
ception IN, 

newline 

caption DESLECTION § AT & CENTRE § OF & Ly & ( 
print(i,2,0) 
caption ) & IF & CONSIDERED § SIMPLY § SUPPORTED $= 

print(ds, 2, 3) 
spaces(2) 
caption IN. 

newline 

caption DEFLECTION § AT § CENTRE § OF % Ly & ¢ 

print (i,2,0) 

  

i OFM



caption ) & IF & CONSIDERED % FIXED % ENDED ¢ = 
print(df,2,3) 
spaces(2) 

caption IN, 

if i=N+1 and k''=1 then i=N 
N=1 then eon WRX=(At1*1*L(i }*490)/(144%2240) 

N=1 then WRY=((At2#L(i )*1+At2*L (i )*2%x" *)*490)/(144*2240) 

280 2% N=1 

  

  

a
 

V
i
c
i
n
 

if T=1 and N=3 and i=2 then m=0 
=> 260 if i=B-1 and D=1 and k''=0 
-> 254 if DO ~ ar 
-> 265 if i=1 and D=1 
~> 266 if i=N pnd k'’'=1 and D=1 
WRK=WRX+((AtL*1 LCi )#m+At1¥1# 2x! #m) #490) /(144#2240) 
265: if i=1 then WRX=WRX+( (At1*1*L(i)#m+At1*1*x' *m)*490)/(144*2240) 

266; zt i=N pnd k''=1 then WRX=WRX+( (At1*1*L(i )*m+At1#*1*x' *m)*490)/(144*2240) 
WRY=WRY+( (ACZ#L(4 )#14mFACO4L (i) #243" " 4m)#490) /(1.44#2240) 
-> 260 if D=1 

254; if D=0 end i=2 then WRX=(((N-2)*Ati*1*L(i)#m+(N=2)*Ati*1*2*x"' #m)*490) c 
/(144*2240) B 

if D=O and i=1 then WRX=WRX+((2#At1#14*L(i)*m+2*At1* 14x" #m)*490) /(144%2240) 
if D=O end i=2 then WRY=(((N=2)*At2#L(i )#14m+(N~2)*At2#L(i)#24x'"#m)#490) 
/(144*2240) 
if D=O and i=1 then WRY=WRY+( (2*At2#L(i)*1#m+2"At2*1(i)#24*x" "4m)*490) 
7(144*2240) 
260; => 250 if D=0 

WBY=WBY+(A( 5,10) *1*m)/2240 
250; if D=0 and i=2 then WBY=((N~1)#*A( j,10)*1)/2240 

if D=0-pna i=2"and T=i and N=3 then WBY=(A(j,10)#*1)/2240 
if D=0 and i=1 ‘then WBY=WBY-+(2¥*A(j, 10) *1)/2240 
250, if D=0 end N=i then WBY=(2#A(j,10)*1)/2240 
newline 

k=k+1 
x=k 

-> 55 if i=N and k''=1 
“> 340°. if is =1 an and D=0 
newlines(2) 
spaces(55) 
print(x,3,9) 

newpage 

340; -> 55 if i=1 
12; repert 

© 

fo
 

500, isl 

if N=1 and E>0.5 then g=1 
=> 44 

8: Mx=p*L(i )A*1*0.125 

My=0.125*p*0, 5*(L(i)4L(i-1) )#1A 
g=1 
-> 82 

85; q=Atixft 

-> 14 if (1*q) < 
dn'=(n-tal *1ed-q*l)/(a''#*1) 
e=0.5*A(j,2)+d-c 
e'=d-dn' 
e' '=0, 5*(d+dn'-2«-) 
MB=(p*et+L*e'*9''*e'")/12000 

=> 92 

i4: h'=A(j,4)*A(j,5)*fy 
“> 16 if (q*l1+2*h') <a 
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h''=A(j,4)*fy 

g=0.5*(a-q*1)/h** 
dn*=d+z 
e=90.5*A(j,2)+d-c 
e'=dn*+d~2%c 
MB=(a*e-h* **z*e')/12000 

-> 92 

16; o=A( j,4)*ACj,5)*fy 

e'=A(j,6)*fy 
e''=0.5*A(j,2)+d-c 
g'=2*d+A(j, 5)-2*c 
g=0. 5*(a~2*e-1%q)/e' 

dn'=d+A( j, 5)+z 
k'=dn'+A(j,5)+d-2*c 
MB=(a*e'! ~e*g’ -e'*e%k* )/12000 

=> 92 

573 q=Ata*«ft 

=> 20 if ((L(i-1)+L(i))#0. 54g) < 9 
k'=0, 5*(L(i-1)4L(4)) 
dn'=(ata''#k'*d-q*tk' )/(at'*k') 
e=9.5*A( j,2)+d-c' 
e'=d~dn' 

e' '=0, 5* (d+dn'-2#c") 
Mb=(a*etk'*e'#att*et*) 712000 
=> 73 
20; h'=A(j,4)*A(3, 5)* fy 
k'=0. S« (L(i-1)4L(i)) 
“> 21 if (q*k'+2th') <a 

h''=ACj, 4)* fy 
g=O. S* (a-q*k’ )/h* ' 

dn'=d+z 

e=0.54#A( j,2)+d-c' 
e*=dn*+d-2*c! 
Mb=(a*en~h* ‘x ote! )/12000 

=> 13 

21; e=A(j,4)*A(j,5)*fy 
e'=A( 5, 6)*fy 
e' 30, 5%A(5,2)+d-c! 
r'=0, 5*(L(i-1)4L(i)) 
g=0, 5* (9-2*e-r'*q)/e' 

dn'=d+A(j,5)+z 
gt =2*d+A(j,5)-2%e! 
k*=dn' +A( j,5)+d~2*c! 
Mb=(9%*e' '-e*g'’~-e'*z*k" )/12000 

aS2 18 

comment OUTSIDE BAYS 

353 caption FRAME $ NO. & ( 

print (ill, 2,0) 
caption ) 

spe -es(3) 
caption TYPE § ( 

print(H2,1,0) 

caption ) 
newline 

caption CUBE § STRENGTH g§ = 

print(Uw, 4,9) 

speces(2) 

ception LBS. § / § SQ. § INCH 

- 236 ~



  

newline 

ception SLAB § THICKNESS & = 

print(d, 2,1) 
speces(2) 
ception INCHES 

newline 

ception BAY & NO. & ( 
print(i,2,0) 
caption ) 

spaces(10) 
rw=1/L(i) 
“=> 28 if rw> il 

fi.= O07 75% sqrt (rw* rwt+4)-0, 75% rw 

Mg=(p*L(i )*1*rw* (3~rw* fi) )/(24*(1. S*rw/fi+2)) 
if N=1 then fi=0.5*(sqrt(rwAt+6)-rw) 
if N=1 then Ms=(p*L(i)*1*rw* (3-rw* fi))/(24*(rw/fi42)) 
~> 29 

28; £1=(4*(sqrt(1+9*rwtrw/4)-1))/(3*rw) 
Ms=(p*L(i)¥*1*(3*rw-fi))/ (24% rw*(2/fitd. Seyw)) 
if N=1 then fi=sqrt(4/(rwA)+6)-1/rw 
if N=1 then Ms=(p*1*L(i)*(3*rw-fi))/(24*rw*(2/fi+rw)) 

39; => a if B.>0. 9 
Pfs 1Og5 thon Mx=1*(p*L(i)A*0, 0625-0, 75*Mg) 

R > 0.5 and and N=1 then Mx=1*(p*L(i )A*0.0625-0, 5*Mg) 
if R > 0,5 then My=L(i)*(0,. 03125*p*1/A-0, 5#Mg) 
>. 8a 47) Ro> O05 
Mx=0, 1254%1%(p*L(i )*L(i)-4*Mg) 
if N=1 then Mx=0.125*p*14*L(i)A 
My=L(i )* (p*1*1/16-0, 5«Mg) 
-> 82 

31, Mx=0.125*p*1#*L(i dA 

My=psL(i )*1A /16 

55; if F=0 then <-> 100 

i=N ae 

=O 

kt Sel 

“> 35 

100; newline 

ception TOTAL § WEIGHT % OF & BEAMS % IN & Lx & DIRECTION g = 
print(WBx, 4,3) 
speces(2) 
caption TONS 

newline 

ception TOTAL § WEIGHT § OF g BEAMS § IN ¢ Ly § DIRECTION § = 
print(W3y, 4,3) 
spaces(2) 
caption TONS 

newline 

ception TOTAL § WEIGHT § OF $ ALL & THE § BEAMS % IN § THE § FRAME & 
FOR § U & = 
print(Uw, 4,0) 
caption $% AND ¢ SLAB § THICKNESS § = 

print(d,2,1) 

caption § = 
WB=WBX+WBY 

print (WB, 4,3) 

spe.ces(2) 

caption TONS 

newline 

caption TOTAL § WEIGHT ¢ OF % REINFORCEMENT g Ati § = 

  

  

O37



  

print (WRX, 2,2) 
space 
caption TONS 

spaces(2) 
caption TOTAL § WEIGHT § OF § REINFORCEMENT & At2 $ = 

print(WRY,2,2) 

space 
ception TONS 

newline 

cnr tion TOTAL § WEIGHT ¢ OF $ ALL § THE § REINFORCEMENT & IN $ THE § FRAME § = 

WR=WRX+WRY 

print (WR, 4,3) 
spaces(2) 
cep tion TONS 

newline 

caption TOTAL § WEIGHT % OF § ALL § THE § CONCRETE § IN § THE § FRAME $= 

print (WC, 4,3) 

spaces(2) 
ception TONS 

newline 
WE=WC+WR+W3 

ception TOTAL § WEIGHT § OF § THE ¢ WHOLE & FRAME § = 

print W’, 4,3) 
speces(2) 
caption TONS 

newline 

spaces(55) 
print(x, 3,9) 
newpage 

999, repeat 

repeat 

reperst 

end 

end 

end of program 
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Plate 1. Formation of a plastic hinge at the 

centre of a beam due to pure bending. 

  

Plate 2. Simple bending test - Six dont xX Dialibse/fb.« ReSed.¢ 
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Plate 3. Stud shear connectors welded on top 

of the steel frame of the models, 
 



  

  

Plate 4. Model before casting. 

  

Plate 5. Experimental arrangement of test M,. 

  
Lever arm connection 

at the support to the 

secondary beam. 

Plate 6. Ball joint arrangement Plate 7. 

at one of the corners 

of model My.



  

  

Plate 6. Details of lever arm system, 

  

Plate 9. Experimental arrangement of test Mg. 

  
late 10. Experimental arrangement of test C4.



  
Plate 12, Waterproofing arrangement of electrical strain 

gauges attached to concrete reinforcement, 

  

  
Plate 13 Plate 14 

Tension cracks parallel to secondary beams, Test My.



  
  

Plate 15. 

  

  

Plate 16. 

  
of model Mg after test. 

Pattern of cracks at lower slab surface Plate 1/.



  

  

Plate 18. Model Mg after collapse. 

  

Plate 19, <A crushing yield line across the full width of the 

slab after collapse of model Mg in control test C4. 

  
Plate 20. Formation of plastic composite hinges at 

mid-span of model Mg after control test C4.
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Plate 21, Model Mg after collapse owing to the 

three control tests C4, Cg and Cg. 

  

Plate 22, Slab strip S, after collapse, 

  
Plate 23 Plate 24 

Formation of tension cracks in the constant bending 
moment zone after collapse of slab strips S, and Sg.


