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The main purposc of the work dcécribed in this thesis is the development of
digital computer methods for the analysis of complex pipe networks systems.
For the solution to this problem the technique of diakoptics has becﬁ
proposcd. A new development of the theory has been shown which it is hoped
is more easily understandable to chemical enginecrs. A computer program has
been written and tested with example networks from the literaturc and a test
network derived by the author, The results show thét the program is easicr
to use than existing methods. . ihc method conﬁérges'to a solution more Y
rapidly and is vcfy insensitive to the initial guess. The initial guesses
do not have to conform to either of Kirchoffs Laws. Small changes in the
network can be solved autdmatically with a minimum of cxtra-input data. Very
large systems can be analysed with only moderqfc demands on the fast access
storage of the computer. It has been shown by using the theory underlying °
the method how the designer can quickly check to sce if networks arc under
or over~ specified and when changing,for éxample,some parameter what design
variables can remain at their present values and which must be relaxed.

Diakoptics can be applitd to other branches of chemical engincering and
it has been suggested how it can be used for the solution of finite |
diffbfcnce approximation of partial differential equations and the solution
to systems containing mixed lincar and non linear elements. Finally it has
been suggested how the rmethod can be used to form automatically the

describing equations of highly complex systems.
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Introduction
The design, optimisation, and analysis of fluid distribution systems

- is of considerable engineering and economic importance; the obvious
examples being the gas and watef distribution industries. In process
plant design however between 50% to 50% of the capital cost is taken up
by piping (1) and so cbnsiderable savings in capital and running costs
could be achieved by optimisation, The very large amount of calculation
required however has until recently been prohibitive. The widespread
availability today of computeré and the growth of computer orientated
techniques has drastically changed the situation and it is now

, ',ﬁ'ossible for such analysis to be undertaken.
7/

i

- The purpose of this thesis, is to describe the application of modem
. computational techniques to the problem of pipe network analysis. This
* problem is related in its essential details to the analysis of electrical
systems (2), stress-strain analysis in frames (3), and diffusion processes
4).

It is therefore not surprising that the first systematic approach
to the problem appears to have been by the civil enginecr Har&y Cross,
and that the method proposed below has been developed from the method
of the electrical engineer Gabriel Kron for solving large electrical power
distribution systems.

Now for any computational technique, it should not be a requircment
_that the persons using the prOgraJﬁ have a detailed knowledge of computers

or any specialized branch of mathematics.

/Therefore the data for the ﬁmgram should be easy to preparc with



2,
no precalculation required. The data format should also be completely un-
ambiguous and 1t Ishould not be possible tb affect adversely the r.a'te of
convcrge'nce,by any wlfortuitoﬁs-lsclection of -inp;ut parénéfefs. | In
operation the program should be cfficient in time and storage required.
Most important for the designer,small changes in the specification sﬁould
be capable _of rapid analysis so that a large number of possibilities can
be irif_:d for an optimum solution to be found. It is with these consid-

erations in mind that the present study has been carricd out.
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Literature Survey.




A. Introduction

The Hardy Cross method of analysis (5) will be considered in
detail first. This is because it appears that all the methods for pipe
analysis so far reported are based on this technique, with only minor
mrg:difications to include, for exarple, rore realistic friction factors.

Hardy Cross based his analysis on Kirchoffs Laws i.e. for any
slolution: :

l) The sum of the flows at any node (pipe junction) is zero.

2) The sum of the potential (pressure) drops around any closed mesh

. {loop) is zecro.

A pressure drop-flcﬁr relationship is also requiréd. _
The two laws lead to different iteration schemes. If the flows
are taken as the unknowns, one iterates until the requirement of the =
second law is satisfied, starting with an initial guess of the flow
distribution which satisfies the first law. Conversely if the pressures
are the unknowns one iterates until the requirements of the first law

are realised.

The Iteration Schemes

It is assumed that the head lost in any pipe can be expressed by:

¢

h=rQn

For a solution to the problem £h around any mesh must be zero

i.el z IQn = 0
Then for any pipe in the mesh with an initial guess Q, for the flow
Q=q,+ 4

-~
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Q7 = x(q, + A o
expanding o - -
Qe (@ oA A A2 )
Then if A is small and ern'= O we can write that for any given mesh

- Zran-lﬂ = erg’

and if the correction factor is assumed constant for any given mesh

n’ -1
A = -xQQ /ot )
i.e.
D=-m/m T
Yo ] ‘ ‘ -
where th is with due reference to the direction of flow
and ' IR is without due refercnce to flow direction.

For a given network Hardy Cross selectcd his meshes by eye based cn
experience (it will be shown later* that the number of basic meshes of
any network equalz the number of branches plus one minus the number of
nodes i.e. m=b - n + 1)

Then knowing the inputs to the system he assumed a flow distribution
which satisfied Kirchoffs first law.

For the first mesh he calculated the pressure drop h for each
branch in the mesh from his simplified flow relationship.

h = rQ?

Then having calculated A for the first mesh,the new branch flows

are found by the addition of this term to each branch flow. This

process is repeated for all basic meshes. 'i‘he whole cycle is rcpeated

* Section on Topology and Graph Theory.
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by returning to the first mesh, until the second law is satisfied on all
meshes. | ~

In the second scheme nodal pressures are assumed and the resultant
branch flows calculated. From this data the flows incident at the
first node are summed and the excess or deficiency found, This is then
distributed to the incident pipes in an inverse proportion to the resis-
tance (R = ﬁrqgﬁl). The process is then repeated until the first law is
satisfied. |

Hardy Cross draws attenti-on to the fact that the truncation of the
binomial expansion is justified only if A is small and that the exponent
. n’is less than one.

At the start of the process however, A can be very large and of course
n’is always greater than one. In general 1 lies between 1.0 and 2.0
depending on the Reynolds nt;nber. However since some branches are members
of more than one mesh or incident to more than one node they arc corrected
a number of times per complete iteration cycle. He therefore maintained
that the convergence was sufficiently rapid for practical purposes.

Hardy Cross developed his method for hand calculation which implies
small networks. It will be shown that the methods are critically
dependent on either the choice of basi¢ meshes or the ordcr'in which
the nodes are taken.

Both methods can be classified as relaxatioﬁ teclmiqﬁcs; the speed
of convergence bcin?, determined by the experience of the calculator who

develops a 'feel' for the problem. For large nctworks involving a

computer solution this experience or feel is exceptionally difficult or -
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even impossible to program and.$o a pre-determined solution pattem
must be followed which can lead to very long and inefficient convergenée :
| A more sophisticated felaxation technique based én the second law
has been reported by van der Berg (6). He developed a system of correction
factors that opérated on the nodal pressures in such a way that the flow

residues were eventually reduced to zero. The order of calculation being

determined by a numerical criterion,

- C. The Method of Van der Berg

It was stated above that the rate of convergence depended on the
‘order in which the nodes were taken. ~Van der Berg constructed an integral,
the value of which determined which node was to be corrected next to obtain
mﬁmm convergence.

He plotted a graph of the residue

5 R e g
against pressure (see fig. 1.)

The node to be corrected first has the maximum value for the

integral ' p(1)
- |
3 - I‘-d . i = 1;2’3, sscssenans
b Sp(o) i%Py ;
2

when each node is considered in isolation (i.e. all other nodal pressures

are héld constant) ,

Now j 3 can be secn to be approximately equal to the area of a triangl
~ (see fig.l.)
€/ j= 2 Ty pj_ = Pj )

Where 'ﬁiis the approximate value of the nodal pressure which
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FIG |

RESIDUE AS A FUNCTION
OF PRESSURE
from van der Berg
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I?%JCCS the resiﬁdue to zero. 'ﬁi can be determing)fairly quickly by putting
'Pj equal to the pressures of the adjacent nodes pj a:l1d determining any -
two pressures p and p”for which the valye of the residue changes sign.
Then Fim 17+ ) : .
Now as the i:alcula'tion proceeds the value of the residue drops and
the values of i;i(G) move into the interval p’to p”. Van der Berg derived
a more accurate- expression for the value of the new pressure’that

reduces the residue to zero.

N TR IR L)

i
and

/ Pj(_n.-'*&‘Pj(_o) . APi(o)

This method has the advantage that rccalculation after small changes

~

can be speeded up to some extent, because of the knowledge of where to
- start the corrections. However, for large systems one cannot follow

a true optimum strategy for node selection. Not only because of the
approximation inherent in the method, but also because having changed
one node the integral values in the area surrounding the first chosen
node have changed cc;nsiderably, thus necéssitating their recalculation.

Van der Berg maintained however that it is possible to overcome
this featurc by letting the new nodal pressure leave a residue that has
somc value greater or less than zero. This accelerating factor being
determined by the users experience.

The next section of the literature survey is concerned with the
mechanisation of the basic process due to Hardy Cross, into a suitabie

form for computer use. It would appear that no further work has been
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published on the method due to van der Berg.although it would seem at least

to limit the arbitrariness of the iteration pattern.

Survey of Computer Applications

Knie'pes and Wilson (7) were amongst the first to report a computer'
solution. They used a straightforward Hardy Cross mesh analysis using a -
value for n’of 1.8. The data were presented in the form of tables.of pipe
data and tables of loop‘members. They found that the solution was
efficient for large error criterion but ;he nurber of iterations increased
markedly if greater accuracy was required. They also found thgt the

program was most efficiént for systems of the order of 250-400 pipes.

i) The Program due to Hunn and Ralph.

The program due to Hunn and Ralph (8) is a more sophisticated vers:ion
éllowing for the inclusion of pumps or other non-pipe elements that have
a pressure drop or rise ys flow relationship that can be expressed as a
polynomial.

Their program was written and run in sectiorns because of machine éize
limitations; the computer used was an I.B.M. 650 with 2000 word memory and
five segments or drim loads. ' | |

One interesting feature of the program is a section which calculates
a feasible solution i.e. one that is in material balance at each node.
This is. accomplished by extra input data in the form of a trace. The trace
is a sequence of nodes starting at the datum node which runs through all

the nodes in the system at least onee. Then starting at the datum

node with a given imput flow, branch flows are assigned



-to each pipe in the trace.

C

This trace is also used at the end of the calculation to assignto

~ nodes their appropriate pressures from a knowledge of the individual

ii)

pipe pressure drops.

; Hunn and Ralph state that the constructlon of this trace is probably

the most critical operation of the entJ.re data preparation phase.

However it has been shown by Daniel (13) and the author that the 1n1tia1

guess will affect to a certaln extent the rate of convergence but that the

.xIOt)p formatmn 15 the onl)' mput data wluch is cr1t1cal for convergence.

The large amount of data to be prepared and punched onto a suitable
input medlun for the corputer, presents a considerable problem because
mistakes can easily occur, if these are not detected the program may not _ :
converge so wast_ing valuable time or more seriously it could converge to
the wrong solution.

Hunn and Ralph's program included data checks,to test for example
that all loops are closed paths and that no more than two branches are
incident at onc node in any loop.

The input data format was however very complicated and needed a
skilled coder. This is not so much a property of the program as of the

very limited input capability of the early machine which was used.

Ingels and Powers

It has been shown however by Ingels and Powers (9) that calculations

based on thc Hazen-Williams equation with a constait value for the
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exponent n’can be sériously in error. A typical error being about 20% )
for flows of approximtely‘ms 1b/h in 6" pipes. '
They used a more realistic‘ flow equation developed earlier by Inge_is
(11) which approximated the relationship of friction factor versus
Reynolds number of the Moody (10) diagram. | A o
For Re)2,100 a power series of the following form was used
¢ =atco+ de2 _
where 6= E—b + log Rc]'l o :
and a,b,c,d are polynoinial functions of the relative roughness.
The friction factor was then used in the Darcy-Wecisbach equation (12) -
/ h = 8¢L Q%/g_n’D° (3)
| They also show that .truncating a Taylor series expansion of the ex- l
pression h = £(Q |
the resistance term R in the Hardy Cross expression for the correction factc

is equivalent to 3h/3Q .

. « R can be written
R = 3h/3Q = (8L/g, 1°D°) [24Q + ¢ 24/)
Substituting for 3¢/9Q and simplifying
= 2b/Q - [(KQo%) (log ©) (c + Zde]

" where | = 8L/g D5

The empincal relationship works well for turbulent flow in rough pipes
but \.faries considerably from the Moody diagram for low values of roughness
at high Reynolds numbers,

It is felt however that these expressions are morc complex than is
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necessary and a better method for the calculation of realistic friction
factors will be proposed below. |
" The initial esti;ztatés of flow were produced by a separate program,
based on the assumption that the individual pipe segments:had been:sized on
economic considerations (14) i.e. | ‘ ’!_

0.14 0.45

D = 2701 ¢

L4

| .f. Q = 0.17 D2'22/90'31 | |
or | Qv 0.17, p?/e0+31 | ll | | | ‘
So ﬂlat.sta;‘ting. from the major source of inflow and with a knowledge
of pipe diameter and loads the program proportions the flow down each pipe
by a sinple second power relationship, These flows are then used as inputs
to the main program. '
. Using equafion (3) they analyse three networks previously reported.

The largest of these, duc to Dolan (155, will be discussedibelbw in the

results scction together with the results obtained by the author.

Knights and Allen

A corputer solution bascd on Hardy Cross's second method has been
reported by Knights and Allen (i’ﬂ This method was chosen by them because
in a preliminary analysis of the methods available they thought that its
advantages of simpler data preparation, and programming together with more
certainty of result seemed t-o_oumeigh the fact that convergence was slower

The main criticism o‘f". their method apart from the arbitary node
numbering is the calculation of the friction factor using the Drew and

Genereaux correlation (16).
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i.e. ¢ = 0.0351 ReD-152
Their equation suffers from the usual errors inhefent’ in the
straight line plots when cdmpared with a Moody diagram.. The results
given below however show that in the range of Reynolds numbers encountcred

in their test network agreement in the main is quite good.

The Corputer Solution of Daniel

The most comprehensive application of the Hardy Cross technique in
respect of accuracy and ability to handle compressible as well as
incompressible flow systems scems to be due to Daniel (13) . In his

,féreatment he adds another cycle to the basic Hardy Cross iteration schene.
; :

' This outer cycle is entered when convergence has been reached, and

recalculates the resistance factors by accurate determinétion of friction
factors from ¢ = 1/{0.86859 In[dS,JD + 2,51/Re/'¢‘,_']}zand in the-casz_e of
compressible flow, the values of density and viscosity are also
calculated from their respéctive polynomials, The inner cycle is then
re-entered.

This has the advantage that, although accurate friction factors are
used, the iterative procedurc needed to calculate ¢ for each branch is
only used outside the main basic cycle.

‘Paniel also systematises the calculation of the corrcction factor
and its sign by the use of a branch-mesh incidence matrix. A full
description of the properties of this matrix and other topological

relationships is included in a later section so that only the equations

will be given here.



where ka is an clement of the branch-mesh incidence matrix.

and

:

(r) (r)n
A @ . C. sign (Q ) R (Q J
Tl

b v
I w'|c, R (@ ®Hnl
k=1 ' i) '

The use of the branch-meshk inci dcnﬁc ratrix has the advantage that
the sign of the mesh correction factor is obtained zutomatically.
However there are two serious disadvantages which can be illustrated with
refercnce to fig. 4. |

The matrix has the dimensions of branch x mesh so that for any rcal
system very large amounts of storage are required, much of which is set
to zero. The size of the matrix also increascs the computation of the
correction factors as the summation terms have to cycle branch times for
cach mesh.  The other programs described above usc list processing 3.C.
the nfornablon on shape is input as a list or vector and not as a matr1\
and the autior having trlo Coth methods has found the latter not only

ruch more eccnomical on storage but also corputationally much morc cfficicnt.

E Discussion of Computer Solutions

13

i)Introducticn

- tefore discussing thlS work it will be useful to re-cxamine the net-
work problem in such a mamner that the relative case of executing cach

stcp by hand and by coxputer can be comparcd. Such analysis will show
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- better the shift in ferrphasis required when moving to a computer solution.
Assuming that the problem has been specified i.e. the network has been _
given together with the siie of each branch and the properties of the
fluid, the solution steps can then be broadly stated as:-

1) Presentation and assimilation of data.

2) Choice of the iteration pattern i.e. having numbered the branches
and the nodes, the fundamental loops and the order in which these will be
used are chosen; or the order in which the nﬁdes will be taken is chosen. |

3) The actual arithmetic of the iteration cycle is executed.

4) A decision on whether the system has converged is taken.

5) If it has not converged then the calculation returns to step (2)

For a hand calculation steps (1) and (2) may be to some extent time
consuming but the real problem is the calculation. This is because one
can look at the system as a whcﬁe and therefore decisions on loop
formation or numbering are fairly easy and in the light of experience
oné can easily change the order of the calculation or even the shape of
the loops.

A computer however is a sequentially operating machine 'looking'
at only one nurber at a time. One of the main problems therefore is the
format of the data which tell the machine the structure of the network
and its constituent loops. This sequential nature also precludes any
change due to 'feel' .which one obtains from considering the system as
a whole. Once a pattern is established then the machine must ¥igidly
adhere to it. In fact even the format of the meshes must be input as

data as thesc cannot be formed by the machine Without a crippling
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additional corputational load. Stcps (3) and (4) are however no
problem since arithmetic operations are casy to program and efficient in

operation.

Discussion of Daniels Solution

The importance of good data handling and casy presentation in computer
solutions of network problems can now be more easily wnderstood. In the
Hardy Cross mesh analysis however the data prcparatioh is complicated by
having to choosc the basic meshes.  Maximm convergence is achieved by
a choice of meshes which has the property of minimum overlap. That is
the number of branches per mesh is a minimm. The logical method of mesh
selection is through the use of trees and links. A trce is any path
through the network which contains all the nodes so that it is possible to
rove along the tree between any two nodes. A link is any non trec branch
which,wh::m added to the tree forms a mesh. Daniel uses this method for
defining meshes,but this just transfers the problenm from selecting the meshes
to finding a defining tree. The automation of this selection is a considerable |
computational problem and was not included in Daniels method. It is
relatively simple to find defining trees and therefore sets of basic meshes
but ,for example,the test network fig /6 has about 350 million trees each
dcfining a sct of meshes and to analyse them all for minimum overlap would
be prohibitive. Thc casicst tree to find automatically is the "trunk'.
This trcc passes in scquence through the nodes and therefore contains no

side branches. Unfortunately this treec has the property of makimm over-

lap.
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A program was written following Daniel and used for the test network
figl6. The two extreme cases i.e. minimum and maximum overlap were
run. The minimm overlap condition converged td a solution in thirty _.
minutes -The other case had not converged hut was oscillating around the
convergence criterior after two hours. when it was stopped. For more:detailec

Fl?s‘:,’:‘i?t.'.i_o.l-} of Daniel's program see Appendixg and results section.

The survey of the basic development is now complete. In the work
to follow a completely new approach to the problem ﬁll be proposed.

- For this reason the above survey is not a complete record of all the
published work, but includes only those papers which give a history of
the problem and how it has developed.

It was suggested at.the start of this particﬁlar rescarch project
tﬁat, as electrical engineers had most experience in solving network prob-
lems, some of their techniques could be adopted to the pipe flow problem.
This line of inquiry lead almost immediately to a study of linear graph
theory and the technique of Diakoptics.



’

/
© Network Analysis and Development of the Diakoptics Method.
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A. Introduction

The development of Diakoptics will start with an introduction to
the basic topologyl and linear graph theory of networks. From the
properties and relationships dirscussed in this section the classical
électrical network relationships will be developed; this section being
based on the work of Branin (18) and Roth (19). Ha\?ing.discussed these,
_Kron's original view of the same problem, which lead him to the develop-
ment of Diakoptics will be outlined. The defclopment itself is
different from previoim work, and it is hoped that in its pl"escnt form

will be more easily understood by most engineers.

It will be realised as the development progresses that Diakoptics
* is not only a powerful numerical technique but a completely new approach
to the way in which engineers can think about and express problems. It
is felt that the importance of this new approach to model building and
analysis could be even more valuable than the methods undoubfedZpower

as a corputational tool.

B, Topology and Graph Theory.

1) Definition of terms

A graph of a network is a diagrammtic re;iresentation of the. network.
It consists of branches, which correspond to the individual pipes, and
nodes between which the branches tun., A branch is said to be incident

at its terminal nodes. A graph is said to be directed if assumed
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directions of flo':«r (for instance) are indicated. The graph of a small
network is shown in- fig. 2. Note that a graph describes only the topology |
of a network. No information such as physical dimensions, hydrodynamic |
resistances, flq.«:s etc. is provided. The graph in fig. 2. issalso-said
to be connected i.e. it is possible to move along the branches between
any two nodes. Any connected graph contains at least one tree. A tree
of a connected graph is any set of branches which connect all the nodes
but does not form any meshes (closed loops): Hence if a connected graph
has n:nodes then any tree will contain n-1 branches. The term basic mesh
is used to describe any closed path formed b); a non-trec branch tor 1ink)
,B{’etween the terminal nodes of any part of the tree. For example in
/ Fig. 2. we may select the tree formed by branches 1,3,5,6 and 7
(shown as heavy lincs)  Consequently this tree forms three basic meshes
containing the branches 1-3-4, 2-3-5, 5-6-7-8, It follows that for any
graph the number of basic meshes is given bym=b -n+1 |
In a directed graﬁh the meshes arc also orientated and it is

convenient to define the mesh direction as that of its defining link,

ii)Matrix Representations

For computational purposes the graph is convenientiy described by
certain matrices. Fig., 3, shows the augmented incidence matrix _}_\_’for
the graph in Fig. 2.  The rows of gcorrespond to the branches and the
colurns to the nodes of fig. 2. An element 333 is +#1, -1, or O if the it

\



FIG 2

THE GRAPH OF A NETWORK
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Branch mesh matrix for Fig. 2.
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branch is positively negatively or not incident at node j. Clearly
the sum of the elements in any row is zero and the colums are therefore

not linearly independent. Hence we may delete any one colum. The

node corresponding to this colum is then called the datum node and
the matrix formed ;:onstitutes the incidence matrix A of the graph.

The basic meshes of a graph are conveniently described by 1ts branch- |
mesh matrix C whose colums correspond to the links and the rows to the
branches of the graph. Fig. 4. shows the branch-mesh matrlx for the tree
shown in heavy lines in Fig. 2. Any element Ci.j is +1, -1, or O if the A
i™ branch is positively , negatively or not included in the ,]th basic
mesh.

It is readily shmf'n.that Zi_'_g = 0 and that '_633 =0

i
.
i

iii)Relationships between Node, Branch and .Mesh Quantities

Now in general we can associate certain quantities or variables with
the nodes, branches and meshes of any graph. The function of the'matrices
A and C is then to inter-relate these quantities. These relations are
termed transformations and the matrix A will traﬁsfom nodal quantities
to branch quantities andz will transform branch quantities to nodal
quantities. Similarly C transforms mesh quantities to branch quantities
and :f:: branch to mesh quantities. Note that the variables in the
expressions below are only expressed as flows and pressures by way
of example and for the sake of clarity. |

If for example we assign arbitary quantities e’to the nodes and denotel

these by the vector g_’then prerultiplication by A assigns a vector ¢ to
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the branches.
e=Ad (4)
if g’is the vector of node-to-datum.pressures then it is easily seen the

e is the vector of pressurc rises across the branches. In the same

) - : - ) - ~
way branch quantities may be assigned to the meshes by the matrix C
However if this transformation is applied to the vector g we find

Ce=CA€=0 (5)

— — -

But, if additional arbitary branch quantities are represented

~
by the vector E, then C assigns non-zero quantities _E_,to the meshes.

4

E=TE (6) .
/ ~ Similarly one may assign quantities to the meshes and relate these
" to the branches and nodes. If vector i/represents a set of mesh quantitie:
it is transformed by C ints> corresponding branch quantities.

i=cy ™ |
The trénsformation of i by E inté> nodal quantities again yields a null
vector. | |

P~

-A_j_-a:

1=

ci'=0 &)
However additional quantities I associated with the branches may be trans-
formediinto non-zero nodal quantities: |
: r-3i1 )
These topological transformations are summarised by the uppersand lover
halves of the algebraic diagram fig. 5. which is due to Roth (lé)
Note however that having transformed quantities in one direction it

i§ impossible due to the shape of the matrix i.e. because they are not
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square, to reverse the process. The development of squarc non-singular

matrices and their in&pbrtahce will be discussed below.

Network Relationships

In alpplying these transformations to networks the above quantities
can be identified with physical quantities. I.e. e and i carrespond to
the potential (pressure) rises and currents (flows) in branches. E and
I are the potential sources (pﬁrps) and current sources or demands on the
branch when treated in isolation.

Therefore each branch may contain three distinct elements: an
impedance or admittance element, a potential source and a current source
(sjee fig.6.) By convertion as can be seen from fig. 6. the potential

source is orientated such that

Vi=E_ +e_ or V=E+eg _ (10)
and 31.'==Ir+ir or J=1+i (11)

~ Now'V_. and J.. are the potential across and current in the impedance

element and hence are related by an Ohm's Law type of equation.

Vr = 4 J3;
amli J. = Y. V.
Consequcptly the vectors V and J are related by tﬁe equation:
v=2J (12)
amnd  J=YV (13)
where Y =271 | ‘
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We are now in a position to combine the two sets of relationships
i.e. the transformations and Ohm'leaw for a solution to :thé netiork
problem thus completing Rotlis algebraic diagram. In addition note
that equations (5) and (8) conétitute a statement of Kirchoffs first

-

and second laws.

D. Classical Netwdrk Analysis

i) The Comected Network.

It is very important to note at this stage that the network relation-
" ships equations (12) and (13) related to individual branches. The
“network is said to be in its primitive state and the matrices Z and Y
are the primitive irpedance and admittance matrices. They therefore
mﬁy contain elements on the main diagonal.
Starting from the prinﬁ;t:ive equation (13) for example
CL+i=Y@E+e
Re-a?’ranging and premultiplying byz
AL-yp +Ki=Kye
Hence by equation (4) and (8)
AQ-YE) =ZYA¢
o= Ay Nt R Y B (14)

Equation (14) represcnts tﬁe nodal method of solution. All
quantities on the right hand side of (14) are known from the specification
of the problem (note that.by equation (9) :A.’.I. = _I:the nodal vector of
external currents) and hence the vcctor‘ of nodal poEentials E‘: may be

found. The branch vectors ¢ and i may then be calcuiated.
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Altematfi‘.:vely, by a similar derivation from equation (12) the
following relationship i§ obtained:
| i=Czo™ TE-2D 15)

Equation (15) constitutes the mesh method of solution. The vectors 1l

i and e being calculated directly from the vector _i_f

A vorked exarple can be found in appendix A. for the network fig. 7.

iﬁ) Large Networl;s = ‘ _ i
For large networks equation (14) has two serious computational 1

disadvantages. Firstly the computer storage requircments incrcasc

p’arkedl)‘r, data storage required being approximately n® + 3n locations,
/\iere n is the nurber of nodes. The second and more irportant limitation
is the time required to i:nvcrt the matrix E YA,

In 1958 Kron '(Zb) proposed a method of analysis called Diakoptics,
which overcomes these difficultics. However the method was not widely
used wntil, following the work 6f Roth (19) Braﬁin (18) an@ Brameller
(21), one as;pect of this powerful analytical toolwhich could be said to be

a logical extension of the classical methods outlined above, was developed.

E. Further Network Transformations and Diakoptics .

i) Introduction |
Kron's contribution to network thcofy is his application of the concep
of invariance to networks subject to transformations. In this case the

invariant property in power i.e. SI: J or as Roth (14) has proved, that

A
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a network cxhibits 'chmicness' The transformations considered are
'tearing' and- *reconnecting' -

The basic idea of Diakeptics is very simple: one tears the network
into smaller pieces,solves cach picce scparately theh- rcconnects for a
solution. The storage requiremcnts are:then only fhose of the largest
tom piece and since the matrices arc smaller the time required for
inversion is significaﬁtly reauced.  Roth (19) has‘ strikingly denonstrated
the efficiency of the metiiod., (i 'tabuiatcs the m.ﬁnber' of multiplications
needed to solve a sixteen node linear network by Various standard methods
and by Diakoptics, table 1 . |

Diakoptics 3G
K. - Partitioning 618
Standard Partitioning 1647

Standard Inversion 4096

Table 1.,
The key to Diakoptics is Kroa's approach (22) to the original
network problem outlined above. Instead of leoking at the network from

cither a nodal or a mesh point of view which means the transformation
matrices A and C have the dimension b x n and.b x m, Kron's orthogonal net-

work concept leoks 2t the network from both points of view simultancously.

This mcans that his transformation matrices Ajand*C,arc square and non singulay
It is this property that allowed Kron to develop a whole series of additional
transformations, one of which will be explained in detail. A grasp of this

orthogonal network concept is therefore essential for a complete understanding

of Diakoptics and so an outline will now be given.

e e o L

e m g  meen e
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ii) The Orthogonal Network Concept.
" The transformation matriées C; and A; are formed by conversion of the -
given network to an all mesh or an all node-to-datum system.

Conversion to an all mesh network is accomplished B‘y the addition of as.{
many fictitious branches as there are non-datum nodes. Each Fictitious |
branch is orientated from its associated node towards the datum node.
Correspondingly an all node network is produced by opening the meshes,
thereby producing extra nodes.

The conversion of the network in Fig. 7 to its primitive and all mesh

forms is shown in Fig. 9. The nodal demands are now considered as mesh
flows. The choice of -pvaths thropgh E?;g“,network of these Squivalent nodal
flows can be taken in any arbitary maxmel;. However the simplest method is
to'_constrain them to flow- along the branches of any treé of the graph as
shown in Fig. 9. - It is important to note that the directions of mesh flows
are not defined by the links but, for the case of the nodal mesh flows, by
the orientation of the fictitious branches and for the actual mesh flows, injé
any arbitary direction. | [

To form C; one.equates the branch currents in the primitive system to !

Lty

the branch currents in the all mesh network. The justification for this

procedure is as follows.
Each coil or branch in the primitive system is short circuited. Now
by the addition of the fictitious branches from the nodes. to the datum .
(ground) point each coil in the connected network is in effect also short ;
i

circuited. 'Iherefore the branch flows in the prlmtlve system are the same]

as those in the connected network and we can write:-
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if,l = iq + I3 | , , _ 1

ips = i + Iz
. ./
1p3 = 1z .
L] L 3 - -— l
ipu = 1+ 154 T+ T 4T3
= e . '
| ipg™= -1)

or in matrix form

P d=¢ [_I_]
.’
1

where I, I I3 i i%
1o o 1|1 o
2lo 1 oo 1
G= 300 0 0f0 1} oo
alt 1 141 1
slo o of-1.0

Note that C;, can also be formed by inspection as before by defining the ;

meshes by their circulating currents taking no account of the fictitious

S ey bt

branches e.g. Ifa, flows ppsitively 1n branches 1 and 4 as indicated in the
_-t'hi.i'd colum of C;. Cjm can also be-seen to be idéntical wi;.ﬁ the C of the
classical methods. |

Kron also shows that A, = ﬁ;' is the transformation matrix for the

corresponding all node network such that

uff

—— %
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ey e; e Ey E;

oAM= 21 0 1{0 o
o -1 1 0[/0 O N
[ 0 -1 oo 1 " &y Sl

"1 0 oo o

0 0 1/:1 o

A can also be formed by inspection as a consequence of restricting

the nodal f]:ows to the branches of a tree. It can be seen that

A1j is identical with the A of the classical methods and the elements of
| Ay are entered in the link branches only and are positive or negative
aécdrding to the direction of the assumed mesh flows and assumed direction |

of the link branch flows. !

e .

) That A; = C; can also be proved diréctly from the proposition of .. |
power invariance as is shown in appendix D

The transformations developed previously are still valid but
because the above transformation matrices are-non-singular a different "|

: . of .
development of the equationsjsolution can be made.

For example assigning quantities I to the branches then

®1=-1 and1=c I

note therefore that _I_' has the dimensions branch x 1. Also as before
we can write | |
Cf=iand} i-=3’ g

|

and therefore i” has dimensions branch x 1.
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From équation (13) ' _ : |
C+D =Y E+e L
Then Ci(U+1 =YA E+ ) | o
I+i=KyanE+9
Now each of the above vectors has the dimensionS branch x 1, but
one can consider each as containing a nodal contribution and a mesh
gontribution since the number of non-datum nodes plus the number of

basic meshes is equal to the number of branches in the system.

’
For example the vector i has only values for the basic mesh currents

therefore the nodal contribution is zero.
/

e |2 -
// ie. i-= _;2] where o has dimensions n-1x1

i, has dimensions m x 1 “

Therefore partitioning along this node-mesh axis we obtain

!

Ly o X{ .!2’ E, e . SR
+ o . ) i
| , , !
Y; Y,[|lE; o

L.:u

.-']:-2 .

t

p
‘}.’.1(_1‘3{*21’]*1;_5_2 !

-,

1

‘e

o !

+ip =Y Bl ved) + N E

solving for node-to-datum potentials ' J
|

i+ E1= Yi( I5- Y7E2) (16)

. , ey’ -t :
c. I+l M-IV E Y Y, I %

¥

In terms of impedances by a similar development we get

»

L X -4
SHE -G -z LB ()
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el
and ih + 1b = 2 E, - 2 ID)

Note that in the special case of constraining the nodal flows to a
tree I = 0 This and other formulatmns of I’ will be discussed further
below. |

The - interesting feature of this development is that both sets of
equations yield an expression for the node-to-datum potentials and the |
mesh currents. This is because the tral_lsfcl:rmation matrices are-a non-
Singular and exemplifies what is meant by"lmkmg at the network from
a nodal -ar;d mesh point of view simultaneously."

Equations (16) and (17] are equivalent and it follows for example
'~ that YI-LI- z.,z3)

el =@f-2z; 22 U - Xy YE) (18)
We have therefore from a knowledge of ii, Y and E two routes for v

-é!Now _X_(; = X Y A so that from equation (14) we could write

calculating _q'l » which do not involve the same amount of computation.
For the exémple shown in Appendix Athe route involving equation (17)
requiring less calculation for it is necessary only to invert 2y which
is a 2 x 2 matrix. For large networks however this is still not a

~ great advance

jii) Extension of the Transformations

Another property of the non-singular transformation is that it is
possible not only to transform the primitive system to a given connected
system but by exactly the same procedure it is possible to construct a

transformation matrix between any two systems containing the same number

of branches. Mafhematically, given two networks A and B containing the

LI T,




o o
same number of branches we can write as above R
 p G I
il fp=Gnds | S
oo I = GG ds = Candt | | |
Cap will therefore transform any vector or matrix associated with network
A to that of B | |

In particular if network A contains the same nu:_nbér of nodes as network |

B the transformation matrix Cap will have the general form
U s’
Cap = 01U

These mlationships, which are discussed in more detail in appendix D, B

lead directly to the technique of Diakoptics.

.
%

'y
[
1

-F. Diakoptics , "
The object of Diakoptics can now be restated as transfonnmg the network

into an intermediate network, whose solution can be found, then transfomngﬂ
(reconnecting) this solution into the solution of the given network. 'This !
ﬁmcess having ﬂ;el computational advantages of speed and small storage
requirements. |

It will now be shown that if, by a process of tearing, the intermediate
network contains the same nunber of nodes, not only can the transformation
matrix Cap between the two networks be constructed by inspection,

but also the actual mathematics of transformation or reconnection are
. ] ) R .

inherently simpler.

' ' ' . v
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Fig. (10) shows the previous example with the proposed cuts. These

are shosen such that the subnettm?‘ks shown in Fig. (lj,) contain at Jeast
one ground point, with the exception of the cut branch subnetwork (4) .
which is in its primitive state. | R
Now as before, equating the branch currents in the two networkﬁ figs

IOandlllwe can write - - SR | |

ipy = Iap = Iy, = 5 - i,

ip, = TAg= Ty - if,

ips = TAs= Ty + i,

ipy = iag= i, a o
ips = ihg= 1, | ' (
or in matrix form
In, 10 0 |-1 -1 Ig,
I, 01 0|0 1 Iy,
Ins -0 01111 o I'p,s'
" id, 0 0 0|1 o i,
ina 0 0 0|0 1 i,
colIn| |u 8| |Le
|8 DX

ie. Jp = Cpdy . |
' From equation (14) a solution for the nqde-to-_-da‘twn.?iotentials .of

P
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segnents 1 to 3 of fig. 11 can be obtained. '
Let lf.\'. =1 -Agy GE; i=1...3 ceerenes(19)
and if the corresponding vector for fig. 11'-, -:-[-‘IB; contains only the 'same’ _
additional nodal demands due téd the pump terms as HAI' i.e. no contributions |

|
!

from pump terms in the cut bran&hes, then the above identities are still
true (e.g. g = Il,ill_ - i -igy )
e Ja =Cap Ja
" for a solution to fig. 11. we can write from equation (14) !
M (Y dipd Ly jup..s

and for the cut branch system

7 N
E A = 2y LTV
i.e e' ‘Z’ / C '
A -V B Y1 Liar T | o
h=|  Im Linaf "
I . 4 2, '
eA3 Zp DAY |
/ , . |
EA, Zag | | iand
or y > ‘ . . s . ]
€pl | 25| [Dia ‘
Lai Eﬁ i’a.

Transforming this solution i.c.

Jn = Cpp Jis

Therefore we can write ' ' |

!} ~ 'd 7
Vp = Cpap Zp S I3
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= ’
1.6. Zp = Cpp Zp Gpp
. o . . 2 J
oyt U U|ULS
SIx |5 s+2p
or omitting the multiplications by wnit matrices.
.E.’.’ Za Z".S.‘ ..I.!|B
B ! .:; ’ ]
P o = .
E M| SxT=s +1,||i%

Therefore the solution for the node-to-datum notentials g‘;; of the given

_ network is _ ' |
| s ot ’ wi-14 . : f

egr @ - 2SS 8™+ Z) 877 ) 1ip

o ~—~1 . - -

+ WS (Vs z) B (20) 9

Whert?, because .of the equation (19), _I_]‘; is the nﬁdal input-output vector o
minus the assumed nodal currents produced bj' the potential 'sources in the |
subpetworks. g_}; is the potential source ector of._ the cut brancheé as
these ‘.are in their primitive state. _

Note that the only part of C,; needed is s'vhich is easily formed as
it contains as many colms as there are:cut ﬁmchfzs_' and. shows between which

two nodes any two cut ﬂbranchcs‘_rm.' ‘Also as equation (20) is in its

factorised form only a simple séries of matrix-vector multiplication¢is needed

-"-HF

to arrive at thevector EB’ as shown below

Let Y, lr' CS:’Z_n_g 8™+ _;;)-]:'f
S

M-’,

E; = =S LT
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B =E+Ep

i = IBE.z

Il =Sip

e = Zu 11

) ol I'
then cp=ept

The example previously considered is solved using the above method in

Appendiﬁc B.

G. -Advantages of the Diakoptics Approach

'From the mathematical development it is perhaps difficult to see the
wider implications or the radically different approach to problems that
underlies the method. . These will be ‘discussed later in more general temms,
The specific advantages of the proposed ;‘oute to solution ‘for the complex
pipe network-problem must however now be outlined as they form an integral
| part of the computer 'programe developed. A description of these
programnes follows this section.: " '

. It was stated ih the introduction to this thesis that, for any designl
aid, small changes in the shape or input parameters of the system must
| be capable of rapid calculation. ' The parameters here will be classified
asi- .

1) The vector of nodal demands. .

2) The branch impressed pressure vector that is the value of the
. pressure:.yise of pumps or the calculated pressure drop through a piece of

plant in the line (eg. strainers, valves, heat exchangers etc.,)

The diameter, length and position of any pipe constitute the shape of
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‘the network. |

-Now after a solution is obtained for a given network, the inver:ted
admittance matrices of the subnetworks will be contained in the appropriate |
backing store of the computer. The solution for a change in the input °
parameters can then be arrived at by just the matrix-vector multiplication f
_outlined above. If a major change .:is contemplated then the process must.
be allowed to iterate to an accurate solution but of course the number
of itt_eration cycles is reduced.

The effect of the addition or removal of pipes can be handled with ,
similar ease and speed. Consider for example the addition o£ a new pipe
to Fig. (10) say running betwecen nodes 2 and 3. This pipe Ican be
considered to be cut and would appear as another isolated segment in part
(4) of Fig. (1I).  The new solution would then be just the reconnection
process with a new §’ matrix. See appéndix C for a worked example.

Branch removal can be considered in exactly fhe same way e.g. removal
of branch (1) is the same as the addition of a new branch mnning between
nodes 1 and 3 with an impedance of minus the value of the calcu_lated
i.mpe‘dance jof branch (1)

Note however if a branch to be removed forms part of the cut branch

set then its removal is accomplished merely by leaving it out.

" This illustrates the general point, that it is easier to change factors
in the cut branch set than those associated with the subnetworks. |
Therefore as a general point of policy it is more efficient to put those

pafts of the network whose design is wuncertain in the cut segment.
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' 1t can also be seen that the sub-systems can be interconnected in any
arbitary way by changing §_{ This means that the effect of connecting -
isolated distribution systems tbgethcr_dn;an optimum policy for
reconnecting an eiisting system can be found. This process can be

carried one stage further by the interconnection of existing systems into

super sysfem without any increasec in the direct access storage required.

H. Sumary of the Calculation Steps'

(i) The steps in a full calculatiqn of a new nétwork can be
sumnarised as follows.
1) FormZ\.i _\_fi'_ﬁ_ki and invert forming Z; for i =1,2 ceveee G
2) Form Xp; = (I3 = A; ¥: Eo) for i = 1,2 veviennnne
3) Formeg; = Z; -131 for i = 1,2 severvcoin w
H FomE =5 ¢ |

: w
N S1

’ / -1
6) FormEp» = E, + B .

7) Fomj.‘.l =Y

10). Form eg = _e_i + o>

The number of multiplications involved in the calculation df each
step will be shown. It is assumed tilat the aﬁproximate nunber of '
nultiplications needed to invert a symmetric matrix is n%/2 where n is the

dimensions of the matrix. Let there be w segments, each segment containing
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n nodes and let there be P cut branches. The approximate number of
multiplications for a solution to a 200 node network cut into 8 segments
of 25 nodes and with 20 cut branches is also shown. The time taken for
the addition and subtraction is not taken into account as this will be

negligible compared with the multiplication time.

1) wx n°/2 125,000

2) n 25

3) wx n’ ' | 4,200

4 0 | 0

5 Pz 4,000:

6) O o 0

7) p2 ' .400

8§) O . 0 ;
9) w x n’ 4,200

'10) © 0

Total number of, —_—
operations 141,825

i.e. Inversion 125,000

Connection
Process 16,825

Total number of operationsfor inversi;n of full matrix 4,000,000.
(ii) The steps for serious modifications of a network are as follows:-
Having obtained a solution to the full problem |
(1) To change the nodal demands or branch pressure rises. Start from step
(2) and execute 2,3,4,6 to 10. '

(2) To add or remove branches start from step (4) and execute 4 to 10

(?) To change cut branch pump temms start from step 6 execute 6 to 10.
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(4) To interconnect segments in different manner start from step 4 and -
execute 4::to 10, _
The development so far has assumed a linear relationship between
‘current ;md voltage i.¢y J =Y V. Now the pressure drop-flow relationsilips
for fluid networks afe non-linear and so an iteration séﬁeme based on

n|r

diakop.tics has to be used.

I The Iteration Scheme for Fluid Networks

For a single pipe the pressure drop{p can be found from

Ap =45 L/De u“.;gc

2+ 2
i.e. Ap.46L/DeQ/A g
2
or - Q'(_&.D'K x0p &
4 Lp Q
i.6. J=YYV

It also follows that - ‘ -
o Re =/ApDep o
) 4Ly . [

and, from the work of Colebrook and White it is known that the friction

_factor relationshop for turbulent flow in smeoth and rough-pipes is given |

by
ez sl ., 1 !
3.7 1.13 Re ¢

k]

At the start of the computation a guess is made of the individual
branch flows and friction factors. The branch admittance:zY and the

admittance matrix for each segment are found and the node to datum pressure
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vector e’calculated.
Then knowing the branch pressure drops the values of ¢ and Q are
recalculated. The whole process then being repeated to convergence.
- The convergence criterion being, '
j( " Ae})? S Linit
i=1 -

where A’e,i. = e(g)- et?

Note that no precalculation is necessary as the initial guesses do not have

to obef Kirchoffs Laws.




Chapter 4.

Description of the Computer Program

s




40.

A.Description of the National Elliott 803 Computer

The machine used in this study (a National Elliott Series 03) is a
second generation émnpﬁter with an 8K core store. Each word is capable of
hoiding two machine code | instructions or one integer or one floating point
number. The instruction code has hardware floating point. There are
two tape readers, two punches, one on-line teleprintef (output only)'
and a lineorinter. The backing store consists of three film handlers
each film holding 4K blocks of 64 words per block. The rate of data
transfer between these films and the core stbre is very slow, being a
maximm of 5 blocks per second and the efficiency of the program may be

impaired if the transfers are not well organised..

B. General Description of the Computer Program

i) Introduction

The Algol language in-which the program is written does not specify
any input/output format so that all blocks containiﬁg such staten;enfs.
particular;y Procedure Resultsprint must be regarded as specific to the 803
machine. Three other procedures not mentione;l below also come into this
catagory. These deal with the film trangfers i.e. Procedures Filmwrite.
Filmread and Locate. Although their function is self explanatory they are
also specific to the 803. In fact although data transfers form an integral
Partl of the method the configuration of the backing storel- varies so much
from machine to machine that no discussion in éeneral.tems can be

attempted.

e ot T
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The program has been written as a series of self contained Procedures.
This method has the advantage that the Idifferent parts can be written and
tested separately, the logical paths for the different options open to the
user are easier to organise and special procedures for the calculation o'f_
specific items can be included-without changing the basic configuration. .
 There is also a set of basic matrix procedures to execute the relevant

matrix manipulations.

ii) Matrix Procedure List and Functions
ZERO (A)
-Sets elements of Array A to zero
*MXSUM (A,B,C)
Sets A equal to the sum of matrices B and c
*MXPROD (A,B,C)
Sets A to the matrix product of B times C. |
CHOLESKI (A)

Inverts matrix A by Eholeski method putting result in A.
*REAIMX_(A)

Reads a set of data and writes this in stores assigned .to A.

PRINTMX (A)

Prints values of Matrix A (used as a check routine.)

*Programs from the 803 computer library.

%
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iii) Basic Operation of Blocks in Overall Flow Sheet

In the general flow sheet Fig. (12) a;nd from the description which

follows, it will be seen that only blocks 8-20 are concerned with

Diakoptics steps smmnz.;ris'gd on page (6. The rest are basic housekeeping

operations which organise the calculation procedures into the required order

so as to solve, for example, a new problem or one with a change in any

of the netmrk;:paramcters,. or in the shape of an existing problem for

which the sblutioﬁ'has.-already been obtained. Certain others are considered -

to be self-cxplanatory and no further description will be given.

BLOCK (1) INPUT

(2) INPUT

Number of individual segments _
The three starting biock addresses for film har_xdlers '
Total number of nodes in Syétem (excluding reference
node) ‘ a "‘

Numnber of Ic:ut branches |

L]

Fluid density

Viscosity

Convergence Criterion

Number of branches minus one ‘and number of nodes (ex-

cludiné reference node) for each cut segment in order.

(3) INPUT

This block sets the Flags which are boolean identifiers

to control the calling sequence of the procedurees. ' In the setting

procedure a number is input and compared with a data value and the flags

are set to true if a comparison is obtained i.e. in Algol,
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Integer Input

B |

READ N/
FLAG: = N = 0’

v

N # 0 FLAG not set: pmgram will accept completely new data. QQ: =1
for procedure CALCULATE to read data for cach segment:

0 FLAG set: Program will bchave as if converged. Will now go on to

| set the four flags for changes. in -_shape or parameters of the network -
Q: =2 | : | ' ; !

1 FLAGIset: Pump terms for ind:'widual pipes in seémcnts will be changed

21 FLAG 21 set: cnables branches to be a;dded to system, branches to be
removed from cut branch segment, pump terms to be changed in cut
branches, length or diameter of pipes in cut segmcnt t6 be changed.

22 FLAG 22 set: cnables branches to be removed from segments.

3 FLAG 3 set: Nodal demand vector to be changed “ '!13.
If FLAG 21 or FLAG 22 sct: reads new dimension for thc.a cut branch set |

8) CUTPIPEDATA | |

If FLAG 22 set this procedure reads branch and segment numbers for
~ pipes to be removed.

Reads assumed values of resistance, diameter, lengths, roughness and
purp terms for the cut branches.

Reads connection list 1 = S’ . | | ‘ o

10) If FLAG 21 or FLAG 22 set then vector ¢/

& called V1 in program is read

off film so that the calculation can begin at step 4. (See chapter 3

Section H.)
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11) Calculate

This procedure is a set of procedures,for a new problem when the
program is entered for the first time. It reads:

The diameters, lengths, assumed branch flows and roughnesses of
the pipes.

The connectjon list two i.c. GRAP = A;;  :for the first scgment,
calculategthe branch admittances, forms the admittance Imatrix, inverts
it and repeats this procedure for all 'tﬁe segments.

After the first time round it c_alculat-f.;s the friction factors, flow
and branch admittances from the individual calcﬁlated branch presst;:rc drops,:
before forming and inverting the admittance matrix. )

12) If ELAG is set and QQ°= 2 then there is a modification to the network
a_nd the new nodal pressure vector and branch flows must be calculated.
IfQ# 2 and FLAG set then system has éonvergeMd control passes to the
procedure . RESULTSPRINT . - '

13) If QQ = 1 then it is a new problem on its first iteration cycle, there-

fore the segment pump terms must be input to complete the data. - i
15) FORM V1 o | i

This procedure executes steps 2 and 3 outlined above. S |
16) YB DASH | -

‘This procedure executes steps 4 and 5 outlined above.
17) FORM VA | ” |

This procedure exccutes steps 6,7,8,9 and 10 outlined above.
19) TEST

If the square root of the sum of the squares of the pressure '
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differences is less than the value specified FLAG is set.
20) FORMCUTCON
From a knowledge of the final pressure vector, calculates the pressure
drop across the cut branches and hence in a similarlmanner to .

PIPECONSTANTS calcuilates the floic and friction factors for the cut branches

24) After a change has been made to the original network and the results of
the first iteration have been printed, FLAG is set in a’'similar manner

to block 3,._3f it is set true then confml passes back to block 3 for a new
change to be input. If not set then all flags are turned off and program |

jterates till the accurate solution to the new problem is found.

C. Discussion of Procedures in Detail

Thé Matrix Procedure Choleski

This inversion routine was chosen for its speed. It is applicable {
only to symmetric matrices but is at least twice as fast as the standard
Gaussion elimination methods. The calculation proceeds in two passes. i
The first pass operates on the elements of the upper triangle, including o
the main diagonal, cne row at a time. ; ' 51

t
The diagonal term is evaluated first followed by the elements in its

TOW.
Diagonal evaluation

Ib-i-a-- i=1

i-1 '
b..: ‘-/(;°' ol bz ') i o d 2,3 sease Nl
ii il . K ' |
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Off diagonal element evaluation

-1
‘E' 1 -
bij - ( aij - k-l kl kJ) b 1= 2,3, .:oo. n

Note that each‘diagonal element evaluation must be checked to see that
the quantity under the square root is always positive i.e; the matrix is non
singular. _ .- | |
‘ The second pass forms the final élemcﬁts of the lower triangle
(1nc1ud1ng the main diagenal) and solbecause the matrix is symmetric these
elements can be reflected. The order of the elements calcuiated is the
mi?ror image of the first pass, that is starting from the last element

nn
Diagonal evaluation

-1 P S -1

b_ . and working back along the row.

Off diagonal element evaluation

45 261 = (- a5 Cixbsp) b Jj

c

CUTPIPEDATA ' - i

]
i

Format of connection List s’

Each branch has two nodes and an assumed direction associated

with it. In the original matrix these were represented.by plus or

minus one.

In the program however the matrix is not input as such.
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A list is input containing thfe relevant information as node numbers, each
branch having a pair of node numbers and the direction of assumed flow
being from the first node kto the last node mentioned. This choice
is arbitary but if a pipe has a pump in it the direction of flow must
be considered in assigning. the sign of the pressure rise in the pump
i.e. if the pressure rise in the pump has the same du-ectxon as the
assumed flow the 51gn of this pressure rise is negat:we in the pump.

rise pressure vector)othemse it is positive.

CALCULATE

The flow sheet for this procedure' is shown in Fig. Q2b)

List of Procedures in CALCULATE
FORMDELTP

This procedure is used in procedure PIPECONSTANTS to calculate Yhe
individual branch pressure drops across the impedance element. o
FORMADMIT |

This procedure which is used by INVADMIT forms the admittance
matrix from the calculated branch admittance i.e. Diagonal terms a,.
equal to the sum of the adnittances of branches incident at node i and
the off diagonal elements 33 equal to mnus the admittance of the branch
nmmng between nodes i and jo
PIPEDATA i

This is essentially the same as ClrI'PIPEDATA except in the format

-

ity

v M

Ll
U1l
vy
“
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of the correction list grap. As the purp terms for the segments are
_ all taken as pressure ;:tncreases the branches must be orientated in the.
opposite direction to the pressure rise. |

A check procedure is incorporated after the inputhof Grap. This
is a list of the number of branches incident at the nodes. The;connection
list is then checked. For example if node i has thfee branches incident
at it then i must appear three times in‘the&connection list, ‘
FORMIMP

This is self explanatory but one further section is included so that
if Flag 22 is set the resistance of thé branch or branches to be removed
is copied into the appropriate pqstitiéﬁ of the _Zﬁ matrix. |

PIPECONSTANTS

This procedure from a knowledge of the individual pressure drops
calculates a value of Re ¢i and checks ‘to see whether the flow is la:;ﬂnar.
If this is the case it calculates the friction factor and flow from the
appropriate equation and prints the branch and segment number of -this pipe.
If not it then calculates the Reynolds number and checks to see if the
flow is transitional again printing out the branch and segment number.

It then calculates the friction factor and flow as outlined above.
INVAIMIT o
This procedure calls FORMAIMIT, inverts this matrix by CHOLESKI and

writes ‘the resulting matrix on a film handler.

—— o hea -
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D. Example of Data Preparation and Results

As a further aid in the understanding of the program a full.description
of the method of data preparation will now be given. It will domonstra‘te
the approach favoure;l by the author for the' compilation'of such data for the
test network with the proposed cuts. As'the_‘:tcst network has no real datum
nodes such as reeewoirs, river or cooling tower.poolsl a node is first
selected as a datum, The cut branches are then:sclected so that the cut
segments are completely isolated from each o;her but; .?I(Ji 3():ut segments are !
connected by at least one branch to the chosen datum{ More cut branches can
be chosen than are needed for isolation as shown in fig (24) ‘ The network
is redrawn with the cut branches shou-m in dotted lines in Fig(27)
The segments are then renumbered and the ﬁodes and branches of cach
cut eegxtcnt are allocated sequential reference numbers,fig (27).
-In addition starting at segment 1 each node is gwen an absolute reference
number. Each node in the system now has two reference numbers, an absolute |
number and a segment number. The absolute number is used for the final |
pressure vector ey and also to form the cut branch connection list. |
The scgment node numbers arc used to fom the. scgment connection lists. ,'
The cut branches can now be drawn and mzmbered showing the two absolute '
node numbers to which they are incident.
From Fig (27) the data is drawn up as shown in Fig. (13) ,
The final printout of results for this problem ie presented in fig (15)
The branches of the test network wll have the same dimensions i.e.
length 100ft. diameter 0.5 ft. roughness 0 There-are o pumps in the

system.
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1 3.1 2 e 3 b 4 2 2 6 Connechion List
2556277858510 jor segmant 2 ,
5 9 9 10 8 11 10 11 9 11 11 12 _
25 3 25 3 2- 3 3 3 Y 1 ' C.o_.mlcc_h'on lisr check
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Two examples of the data format for chénging the system after it has

converged to a solution can be seen in Figs ( 14 ).

The first row can be seen to set the flags in order i.e. Flag, Flag 1, '

cesssss lC, The other information being new data for the problem.

The last digit input allows the program to iterate to a ccmplete solution

-

after-printing out the results for the first cyclg.




0 021 0O Flag aad Flog 21 sef

T WNomber of brdnches Cn neis cul breack s ofF

1.58 1.7048 1.0389 0.90107 1.93 1.43% 0.8 . AReushaace

05 l5 !5 05 05 -5 .5 D"AM\!!"ZF
100 100 100 100 100 100 100 Lﬂnfﬂ'\
0000000 Rougheress

0O 0 0 0 0 0 O : Pump Terms
3 4 115 90 14 13 10 14 12 15 21 19  Connection Lisk

1 Yf"trah*, Fo So(kf'ton

Input data for exampie @) section D chapter 5

0 0 003 " Fiag and Flagd sef
0O 0 00 0 0 210 0 0O © New cdemand 'VQ-C"'OF chfneal" I
-120 0 0 0 0 O =240 0 0 50 O© Y Segmonl 2

'1 _ Yrerabe Fo sSclubion

Input data for example q) section E chapter 5

FIG 14
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SYSTEM CONVEPGED

CUT SEGMENT NO ' 1
PIPE NO FLOW FROM - MODE TO NODE IMPEDANCE
| 1 88.3L1274 1 2 459539765
2 50,880716 2 3 .93009425
3 31.471074 S 3 1.3656721
b 37.556811 2 - 4 1.1862349 .
5 83.928039 5 4 62071512
6 45,557090 1 5 1.0163948
7 13.982532 6 1 2.5862665
8  48.528338 6 5 .96614773
9 62.464712 7 6 L78243061
10 69.481835 7 8 72342606
11 38.696676 8 5 1,1582428
12 L8.761505 5 10 96243597
13 30.858944 8 9 1.3871642
14 77.957367 7 9 65902714
15 54.452180 9 10 .88069816
16 1.7393838 11 10 12,415593
17 54.,383788 9 11 .88158961
CUT SEGMENT NO: 2 ‘
PIPE NO - FLOW FROM MODE TO NODE IMPEDANCE
1 5.5235464 1 3 5,2778389
2 L6,905377 1 2 .99289155
3 4L6,.325954 3 2 1.0028428
b 40,825392 4 3 1,1097033
5 6L,086691 b 2 77227674
b &4,495379 2 6 61732783
7 72.719968 2 5 .69723750
8 38,156469 5 6 1,1713237
9 122,52645 6 7 45598174
10 117.15084 8 7 L7302042
11 50.318345 5 8 .93843994
12 1.7960240 5 10 12,131174
13 17.512838 9 5 2.1692074
14 17.692175 g 10 2,1519579
15 66.958890 11 8 74539401
16 40,.,559362 11 10 - 1,1155215
17 35.171692 11 9 1.,2499858
18 7 1h2.4L4Ly 12 11 L40305242

FIG 15 | ' PTO.




CUT PIPE RESULTS:

PIPE NO FLOW

1
2

3

NODE NO

- ‘
oW OOV SN

RO RN b 1t bt b ped pd s et et
HOWNOWV W RN

FROM

82.250681

89.979339
104,77526

PRES

95.346816

'=53,026751

-107.73165
-84.,687269
50.,524578
100,75327
17997992
83.934391
61.688326
-.14009672
-238.08670
-259,133285
~202,34379
-389,62516
-422.20067
-690,90979
-381.55178 "
-389,77321
~353.41411

END OF FILE BLOCKNUMBERS
8 04HANDLER 2

HANDLER 1

6

FIG I5

NODE TO NODE

3
L

10

11
11
14

PESISTANCE

1.5848506
1,7048295
1.9298801

AHANDLER . 3

 COMPUTER PRINTOUT OF SOLUTION

TO CASE |

-
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A. Hardy Cross Method.

Following Daniel (13)- a program was writfgn the listing of which is
shown in Appcndix'G. A test network was devised, shown in Fig. (16)

It contains 22 nodes and 38 branches, therefore onc neceds to form 17 basic
loops.

Three different loop formations shown in.Fig. (17,18,19) werec tried, |
Fig..(17) shows a casc of minimum overlap,.Fig. (18) is an arbitqyy case
and Fig. (19) shows a trunk (maximum éverlap). It is to be remembered
that the loops are defined by the non-tree branches and the appropriate
defining trces are shown in double lines. The first seventeen branches
are therefore the links and the rest are numbered in any arbitary manhcr.

It can be seen that the trunk is thc easiest to form. |

‘Table 2* shows thc time taken to converge to a solution for the

i
]

- above cases, and the number of iterations for convergence in the inner cycle.

The time dependence of the convergence on the choice of basic meshes
is well demonstrated. These are of course extreme cases but the choice
of basic meshes has to be made by the user and it does require a certain

amount of trial and error to pick a defining tree. The data preparation

is also tedious and time consuming as it has to contain the assumed direction

of flow in cach branch.

The actual results are presented for comparison with each other and the

results from the diakoptics program in table 3.

* This and all subsequently rcferred to tables will be found in Appendix E.
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B. Comparison of Diakoptics Results for Networks reported in the Literature
A comparison of thrce networks reported in the literature was attempted

It has been found however that the value of these networks as valid

comparisons is somewhat limited.

i) Results of the Network duc to Knights and Allen

Tables 4'énd 5 show the'&imensions of the individual branches and
the demands at the nodes of the nectwork shown in Fig (20 ) Unfortunately |
the properties of the Towns gas used in the analysis had to be taken from
Perry (14) : as the viscosity and density used by Knights and Allen
were not reported.

Two analyses of the network were undertaken one of the whole network
and one with cut branch numbers 4,5,6, and 7 removed.

Tables 6 and 7 show the rcsults obtained for the complete network
compared with those reportedjwith.percentage differences of flow and
nodal pressure bascd on the results of the diakoptics method. Tables
_'B'and 9’ are a similar analysis of the network with the given branches
removed.- | | - |

The results for the individual branch flows can be seen to be in good |

agreement, large percentage errors occuring only in branches which have

small flows. The agreement is much better than that reported by Ingels
and Powers. They compared the percentage difference from their results
-and those from Dolan who used a straight line approximation for the

friction factor and found that the difference was an average about 20%

to 30%.
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In the region of most flows in the above network the straight line plof

has obviously been c}iosen such that agreement is good i.e. NRe’-‘-" 5% 104 |

to 5 x 107

The error in the nodal pressures can be seen in most cases to be

a constant and of the order of 6 to 7%,this is attributed o the difference

in the viscosity and density data.

ii) Comparison with the Results of Ingels and Powers

Tables 10 and11 show the dimensions and nodal demands of the network
shown in Fig(21) This network is due to Dolan. (15) and was used by
Ingels and Powers as a comparison with their calculation. ~ Dolan
calculated his flows as a percentage of the total input since he used |
a s'iir:ple power law‘ flow relation. Ingels and Powers set as an input
an arbitary quantity of flﬁid at 780,000 1b/hr.

Table 12 shows the results obtained by Dolan , Ingels and Powers
and shows the percentage difference based on Diakoptics and the Reynolds
numbers for the branchcs.‘ o

It can be seen that élthough some of the differences arc very large
these are associated with branches carrying very small flows. The large
number of such branches suggests that the input to the system has been
chosén about an order of magnitude too small. This is somewhat surprising
since Dolan's original analysis was for the performance under a
firefighting flow from node (2)

No comparison of nodal pressures can be given because these were not

reported.

[

|
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iii) The Network of Hunn and Ralph

Tables 13,14give the dimensions of this network showvn in:Fig (%2)
Unfortunately no dircct comparison of their results can be attempted as
their'pipe resistance factors bear no relation to actual valucs. Their
inputs to the systcxﬁ are also approximately an order of magnitude too high. I
This results in for example, a velocity of 180 ft/sec with a pressure drop
of 7ft water in pipe (9) scgment 1 thg dimensions ,df__ifhi;:h?‘-are‘ diameter
12" length 2000ft . The network was analysed however because it illustrates |
two further points in the programs use.

Firstly the network contains pumps which ,feedl water from a river into
the network. Secondly, the river can be considered as a datum node.
Therefore no artificial datum is required and the network can be cut in
any arbitary manner as long as each cut scgment contains a pipe connected
to the river. '

The results are presented in Appendix F.

C. Ceneral Performance of the Diakoptics Program

i) Effect of different cutting patterns . |

Figs (23 to. 30) show the test network fig (16) with four different |

cutting patterns, for which the relcvant data are summarised in table 15
All four cases converged in eight iterations but the time per iteration
varied and is shown in table 16

The results confimm what would be expected from the nature of the
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55. |

method (see summary Chapter 3 section H) That is-since the calculation
| involves the im;ersi’on of the admittance matrix for each segncit ;and the
inversion of the cut pipe resistance matrix the minimum number of
operations is required when the number of nodes per segment is the same
and the mumber of segments is as large as possible with the restriction
that the number of cut branches be not greater than the nurber of nodes
per segment. S | . ' . |

ii) Convergence

To show the rate of convergence, the pressure vector _g}’} vas printed
out after each iteration cycle.  The absolute error for selected nodal
pressures from thelr £inal valus vas plotted against iteration muber
Fig (31) on a linear scale and in Fig (32 as log (error) against iterat-
ion number. The percentage error was also calculated and plotted as shown
in fig (33

Case 1 was also xun with initial guesses 1ft7fin and 2500 £t>/min for
the flow in the individual pipes. The number of iterations required for
convergence of the three cases are presented in Table 17.

In an attempt to_ exﬁlain the rapid convergence and its stability
with widely differing inputs the pressure drops across certain of the )
branches of case 1 with an initial quess of SOftB/min for the branches are E
presented in Table 1B ‘!

Now whatever the calculated pipe e:dn_d.ttances for the first iteration
the inputs and demands at the nodes dictate that these calculated branch
flows will be of the correct order. For thernext iteration therefore

the pipe resistances will be a fair approxination as the change in friction
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-factor with flow is relativelyssmall. One would then expect that the
\. pressure drops would rapidly converge to their true values although the
absolute nodal pressures could still change. | |

D. Perforrmance of the Progrem when the Shape of the network is changed

For this analysis case 2 of thetest network was taken. Six differ-
ent changes in shape were attempted. A seventh case taken fram the
analysis of the network duc to Knights and Allen Fig 20is also given,

These are sunmnarised below:--

a) From the full network cut branch 8 was removed

b) From the full network cut branch 2 was removed

c) Fram case b cut branch 3 s7as removed

d) Fram. case ¢ cut branch 6 was removed

e) From case d cut branches 2,3, and 6 were replaced thus reforming the
full network | :

£) From the full network cut branches 2,3,6, and 8 were removed

5

g) From the second case of the network due to Knights and Allen cut
rbranches 4,5,0,and 7 were added thus reforming full nctwork. i
The results are summarised in table_19 showing the nurber of iterations
to reach a solution to the new preblem and the percentage difference in the |
change of nodal pressures. | '
It can be seen that if small changes are made then the solution is
rapid. . However certain pipes in the system are critical and their
reroval drastically changes the flow pattern and the nodal pressures,

these therefore nced the larger nunber of iterations shown. It can be

seen that changes ¢) and £) in fact change the nodal pressures by a greater
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percentage than the change from the inital guess of S.Oft3/m.1.n to the final
solution of case 1 as shown in fig (2) however the nurber of iteratiens
needed remains the saxe. |

E.Performance when Changing the - Nodal Demands

Case 2 was again taken, the changes in the nodal demands being
a). Inéut at nocde 1 changed to Oft3/min
b) Input at node 1 restored to GOftB/min
c) dﬁtput to node 20 increasecd to 90f_t3/min |
d) Output to node 20 restored to 60ft3/nﬁ.n
Fire fighting £low of 240ft>/min taken from node 12
e) From original network Input at node 1 increased to 126ft3/mi.n
£) Frem e) new dexand of 6£t>/min taken from node 16,
g) Original network cdemands restored.

Table 2eshows the nurber of iterations to reach a solution of the ncw
problems outlined above. It can be seen that they have the same pattern as
the results of changing the shapei.e. small changes are executed rapidly,
large changes take up to a raximum of eicht 4fcrations.

., Discussion of Rasults

The results clearly show that the advéntages claimed for the melthed
are borne our in the actual covputation of problems.

The method is at least as efficient in time as the Haxdy Cross-app-
roach and much more efficient in its storage requirements. The efficient
«use of fast access storage is becoming of increasing importance with the
wice-spread use of multiprogramming facilities, as the smaller the storage
requirercnts of each program the greater the nmbe;: of programs that can
be run simultaneocusly. From the engineer's standpoint the data are much

easier £o carpile and changes in the System are quick and simple to exccute

-
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a:x@ whole series ofrchanges can be aﬁtmpted in:ione run aut&ratically.

\ If the same changes as shown in section D for exanple were 1un with
a Hardy Cross solution a ncw sct of basic meshes would have to be found
together with a new set of initial guesses as to the individual branch
flows which satisfied Kirchoffs first law for each example. Changes
similar to those in section E would alse entail recalculation of the ‘
individual branch flows so that the r}odes where new demands were. applied
would obey Kirchoffs first law.

The method can be scen to be very insensitive go guesses as to the
individual branch flows and it ishggéﬁ?g:g not worth the effort of the
engineer to even attenpt any estimﬁfions, but to have the program sct -some
value for them, so that they are never input as data. '

An optimun polic}y for cutting the network has also been‘ proposed in
that onc should endeavorp cut the network up into the largest mumber
of equi—nodal pieces while keeping the“mxnber of cut branches at a



Chapter 6.

Further Discussion on the Network Concepts
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A, The Solution of Design Problems
!

The above development has assumed that the préblem has been completely

specified and that the only unknowns in the system have been the node

to datum potentials and the mesh currents. In Design problems in

general however not only do the problems tend to be underspecified or,

more rarely, overspecified but the unknown quantities are not confined

to the above two vectors.

In such systems therc is then the cxtra problem

of applying constraints in such a mamner that a nurerical solution can be

attempted. It is the purpose of this section to show socme of the

systematic ways in which such constraints can.be’ chosen.

Consider the basic orthogomal equation. .

Now as the dimensions of cach vector is branch x1 the total number

of variables not counting the admittance matrix Y is

n-1

3 -




0.

\ Since there are only b equations then for any solution 2b variables must
be specified as datz.
It will be necessary to discuss the composition of the vector
L - In the origizal problen it was cxplained that a demand vector I
can be associated with the branches and the transformation A I assigned

a corresponding vector to the nodes. This transformation is still valid

: / -
forr L) o e
=A L

I

F .

In the formation of the branch demand vector I the individual branch
terms can be assigned in any arbitary manner as long as they sum to
the individual nodal demands. If we assigned individual branch demands
to énly the branches of the tree, then for the original problcm:'noting
that a positive branch flow is opposite to the assumed direction.

1{4

C & 0O ™

e
2

[o ¥l
Lo} $ (%] N v = W (]
I
N

©C O | wN

* See fig..7.
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~ Therefore _I_"2 =0

\Note however that for the same example

1[0
I= 2| 2

3,0

4 10

5 | 4 .

is just as valid, then

1 |-2
Wlz= 2|2

3| 4

4 |-4 \

s o]

Such an arrangement can be useful in certain problems as will be
shown belovw. |

We can now summarise with the aid of suitable examples how any network
problem can be quickly checked to see what additional information is
needclad, or which design variable must be released so a solution can be
obtained.

For example the original network has to be changed so that the demand
from node 2 be increased to 4. The problem is to determine what can be
left constant in the old system. - For instance can all the nodal pressures
7

rerain at their present value if additional pupps are added to the system.

7/
NowI{ =Y (B +¢/)+Y, E; and
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the solution to this problem requires only these three cquations.
\ Total number of variables in problem

=n-1 +n-1+n-1+m

=11

Known quantities l: = 3

-

Jen

=6

Number of unknowns in‘problem =3 only 2 pump‘terms can remain-
mchanged, ior cxample , '

In a more general case suppose that for the above network we know
1 branch flow, 2 nodal demands and two nodal pressures,what additional
infofmation is required for a solution.?

In such totally mixed ~ problems it is a great advantage to start
from the individual branch equaticns derived via the transformation matrices.

For the example we can write

s/ /oo
B & &~6
. 4 /
3 + i’ = Y E G’
> 2 =7y 3 2
4 |1, + i+ i E e’
4 1 2 4 3
- A
5 I5 i7 ES e”3
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Consider two cases for which

~7
Cl &

e
o
"

2 =
1 =

Cise 1

3.82

8.
2.
1=

49
83
-2
2
0

= 3.82

e = 8.49

nd 1y = 1.56
,Ii i W

15_5 2

B o= o

Assigning individual branch demands to the trec then Ic=0as above

..is

—

(7, TR = 7 S
o

= -i; so that i] = 2.83and Iy = I, = Iy .
- 2.83 O + 8.49 - 3.82
+ i E, + ¢} - 3.82
+ i =Y, | Es5 * E
- 2.83+ i, E, + 3.82
+ 2.83 E. + 8.49

[

/

It can be scen that as Ec and I, are completely determined by the

data the number of simultancous cquations is reduced to 3. In these we

have 5 unknown quantities.”.

‘a solution.

two extra pump temms must be specified for

For the second case if ismore helpful to usc the second I

vector outlined above, ‘page 61, constraihing the nodal demands to flow in

branches 2 and S.

This gives zcro entries in branch 1 for example so

that i, can be determined uniquely.
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1[0 + 1 ‘ Co  + 8.9 - 3.82
~ L
=/ | = 1
310 + 1, | _‘1_’p ‘ES + e’z
410 + ij +i§l \54 +  3.82
« 3¢ l
5 Lfs i | i Eg + 8.49
From %Jii can be wigquely dctermlncd. With the knowledge of
14 = 1,56
o & .
Then 1.56 1 +1,

[ ] '/ g
R 0.3
We have remaining then 6 wmknowns and 4 equations. .two pump terms
rust be specified.
To sumarise the approach to mixed problems
1) Check number of known quantities
2) Check to sce if any vector is completely'known and if only part of
the orthogonal equaztions are needed for a solution e.g. case 1 above

’
3) If equations of solution cannot be partitioned, reduce to the primitive

systém. &
4) Remove equations,if any,that are completely specdified and form new sct

of simultancous equations for solution.

B. Partial Differential Equations

The finite difference technigue for the numerical solutions of the
heat and mass transfer equation§ is easily amenable to the diakoptics

approach. Fig { 34) shows an operational calculus diagram similar to




curl div
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curl 2 curl (curt 2 curl) Z{ (Y (dvYgrad) || divYgrad
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FIG 34
OPERATOR DIAGRAM FOR VECTOR CALCULUS
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the algebraic diagrem of Roth. It can be scen therefore in converting
\

a problenm such as the three dinensional heat conduction equation i.c.

¢ I
p 3t = div K Grad T

to a finite difference solution the operator grada i3 cquivalent to A,
and the vperator div equivalent to X where X is the primitive matrix of
conductivity. In the simplified case of K being invariant with tcmperature
if the cut segments are chosen such that they are of equal dimcnsi.ons ’
then with the exception of the segments containing the boundary conditions
‘t.'ney will be mumerically similar. In which case having inverted one such
segment the resulting matrix cen be used for all others. Thus not .

only is the computation required reduced but only one.such matrix nced

be sfored. It is realised that as the set points are in gencral regular
in space then the number of cut branches can become very large.

However the whole system need not be connected together in one operation,

but each cut segment can be comnected together sequentially thus kecping

the cut branch matrices small.

C. Systems with pixed linear and non-linecar ?admittances

The solution of systems in which the admittance elements are a
mixture of linear and non-linear quantities can cause serious computational
problems as the standard non-linear numerical methods sometimes fail to
conve.rge. However for a solution of network problems if the non-linear
elements are all confined to the cut branch set then they are isolated

from the linear system. This results in a much faster iteration cycle
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as the inverted linear systems are invariant and only the cut segmént
\ terms change so that the process has only to cycle through part of the

connection process.



Chapter 7

Conclusionsand Further Work
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The computer program described in this work can be scen to conform clpsely to
the criteria “sct oﬁt.in the Iiitroduction. The method not only converges

to a solution more quickly than the Hardy Cross approach but is very
insensitive to the error of the initial guesses. The data arc simple to
compile and'thcrcforé take less=time with less opportunitics for error.
Simple rules have been formulated to cnable a network to be cut so as to en-
sure an efficient solution. ‘ ' .

It is not necessary to input a feasible solution to start the itcration |
cycle. This means that if the network is to be analyscd under a sct of small
changes a good approximation cxists in the machine which docs not necd to be
modified by theimser to conform ta Kirchoffs Laws. Also when changing the
shape of the nctwork branches can be added to or removed from the network by
just changing the composition of the cut branch set. No new data on loop
formation have to be input. It has been shown that for the above rcasons
both man and machine time are greatly reduced. For example, the two cascs
rcported by Knights and Allen took 40 to 35 iterations to converge whercas
the diékoptics program exccuted the change automatically and converged ‘in.

half the timc of thc-original solution

The information on shape and the solution of each segment is treated
and stored as a scparate entity. This cnables not only the solution of very |
large éys§ems to be attempted but the larger the system the more efficient
the method becomes compared with the Hardy Cross approach. Each segment can
be connected to any other segment in any arbitary manner and so it is poss-
ible to build up a library of segment shapes and solutions which can be re-

formed with any system by only the addition of cut pipc data.

It has also becen demonstrated hoy by using the theoretical basis of the




68

program any system containing mixed known and unknown quantities can be
quickly checked for under of over specification and how such systems can tiicn
be ‘solved.No analysis of this type can be attempted by the Hardy Cross tech-
nique. Diakoptics therefore is not only 2 method of solution but provides

a logical framework through which the designer can casily find what
constraints rmust operate in any system given its design specification.

Now it was rcalised at an early stage in the work when the thcory of
diakoptics was being investigated and as the above development was
formulated that it had a much wider application to chcmical cngineering
than just the complex pipe network proﬁlcm. The technique can be applied
to finite differences approximations of partial diff;rential cquations, and
because the matrices formed in certain cases are equivalent, large amounts
of computation time and storage can be saved as only onc of these matficcs
need be inverted and stored.

It has also been suggested how in systems with mixed lincar and non-
linear elaments the two classes can be separated so that the iterations
required for solution need only cycle through the non-lincar elcments.

Onc other aspect of diakoptics has been found by the electrical
engincers to be so useful that is has become at least as important as the '
computational advantages. The above development showed how from a knowlcdgé{
of the individual branch admittances through the use of the comnection
matrices the segment admittance matrix was formed.' These matrices
or tensor admittanceswere then?éonnected to form the complete systcm.

Put in another waybfrom the basic elements of the system either described by
scalars or tensors, the equationsdescribing the{total system were formed
automatically. This automatic generation of the describing cquations

of highly complex systems has been demonstrated by Kron (22), Now it is a
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featurce of modern chemical engincering to consider chemical plant from a

systems point of view. The concept of breaking the system down into

‘ultimate building blocks' whose equation.or equations arc known and

through the use of connection matrices:to form automatically thc total

describing equations has an immediate-i application thcreforc}to this way of

thinking about chemical plant. . |
Further sets of transformations have been developed by Kron (2@)

for the solution of large systems containing only one ground point so

that all the cut segrients except one have a singular admittance matrix.

The potential applications of these further extensions of diakopti;é to

chemical enginecring are not clear, at the present time. One example

‘may be the solution of the heat conduction equations where the boundary

conditions vary in such a way that the nodes representing the boundary

conditions all have a different temperature.
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Worked example nodal analysis
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Consider the network and its graph shown in Fig 7. The admittance$
\of the impedér;ce’clemcnts, i:hc magnitude of the potential sources, their
directions and the external current sources are shown.

The graph shows the node mumbers, the branch nmumbers and the
orientation of the branches. Note thzt the orientation of a branch
containing a potential source is chosen to be opposite to the direction
of the source, the other dircctions being assigned arbitarily.

The problem is to solve for the nodal potentials and the branch

flows. Node 4 is taken as the datum node.

‘ 1 2 3

1 |"-1. 0 1
*A=2 -1 1 0
3| 0 -1 o0

4| 1 0 0

5| 0 0 1

In constructing the admittance matrix Z p'e _& it is not neccssary fog
simple irpedances to perform the indicated matrix multiplications, since
it can be formed fram two simple rules:

a) The diagonal elements are the sum of the admittances of the
branches incident at the node. o

b) Each off-diagonal clement is the negative of the admittance of

the ‘orahch running between the nodes concerned.

i




e

12

=<

>
n

. . by inversion

1 2 3

1| 1.497 0,986 - 0.634 )
Ayat= 2098  1.323 0.423
31063  0.423 1.986

Next, the vector A(L - Y E) is formed

AL-= 1’ the nodal input and demand current vector

1] -2

N

AI=2| 2
314

Note that currents leaving a node are negative and currcnts cntering
a nede are positive.

X Y E is the sum at each node of the connected potential source times
the branch admittance i.e. the external current produced by this potential

The sign of this current depending on the orientation of the source. At
nodc 1, for exanple the potential source in branch 2 will produce a current

leaving nod. 1 .and entering at node 2.

1{=5%x1 + 4x% = - 4.2
"AYE=_ 2| 5xl -2z} '4-0
3§ o io 1




A3.
2.2 ;

1]

. i |
. P - 2‘:-2-0 L
. c_&‘(_l_-zg) - f !

3-} 4.0

[ -
Premultiplying by (A Y 5)1 we obtain the node to datum potential

vector with respect to node 4.

1] 382 |-
i
¢ = 2 | 1.21 | .
3| 8.49 -

This vector constitutes the solution to the first part of the

problem ,

Hence from equation(4) the branch potential rise vector is

e = 1| 4.67
2 {-2.61
3 |-1.21
4\ 3,82 !
5 | 8,49 E
Now by equation (10) [
1{0 4,67 4,67
2 |5 ~2.61 2.39
vV o= 312 + i-1.21 “ 1 0.79
4 | 4 3.82 | 7.82
5 |0 8.49 | . 8.49

By equation(l."b)' J =Y Vwhere Y is the primitive admittance matrix




A4, 5

11}

2 1
Y =3 1 i

4 X

5 s ~
J o1 1.17

2| 2.39

. J=3 0.395
4 1.56
5 2.83

which is the vector of branch flows.

Note that since V is the potential rise vector in the direction of the
orientated graph, positive flows in _.1[ implieé a flow opposite to assumed
direction, negative flows in J implics a flow in the assumed dircction.
Fig. (8) shows the nodal potentials and the branch flows obtained above

which may be scen to satisfy Ohm's and Kirchoffs Laws.
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Appendix B

Worked example diakoptics
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For the given network it has been shown that for fig. 7.

From equation (19) we have clected to convert the scgment pump terms

into their equivalent nodal impressed loads. Note that just as -Z-A

/
nced not be formed as a full matrix, I i$ never used in practice in its
corplete form. It is necessary only to premultiply just the nodal
demands of each cut scgment by the admittance matrix for that segment.

However the full vector will be formed here for sake of clarity.

-2 -4 x8% -2.8

Ip = 2 -(-2x13) {= | 3
e -0 | 14

L——-—-——-—-

The admittance znd impedance matrices of cach cut segment are given
below. Note that since segment 4 is in its primitive state its matrix
has-only diagonal elements. *

— _
= ’-\LS Ly =
=|2 EAZ - @

A i .
=15] 2x -[3]
i of 4 0
"lo 1] %40 1

GEE

%:4

Thus there is a considerable saving in computer storage and computat-
ion time since each subnetwork's admittance matrix is formed and inverted

separately. The full matrix Z, is never in fact formed. However

in this example for completeness _Z_A will be used.

Tt AT
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\ 17.800
i
&) = Iy i -4.80 |
| -3.507 |
: ;
e mei e
- 3.800
1.20
b 8,493

To calculate the branch flows we have for each cut segment

'
- “ - -
9-1 é1 SBI

i=1,2,3

where gi is the incidence matrix for the cut segrents.

J.ed 3.8
"102

8.493!

adding the vector of cut segment branch pressure rises

ve= [3.8+4]
]
-1.2 + 2 |

b

. branch flows =

J=YV=]|1.56
0.4
2.83

For the cut branches

0.8

'.EC

[7.38]

8.49

= 4.69

-2.61

CEe T e— A



4.
adding the cut branch pressurc rises

Vo=| 4.69 + ol ,,' P.ﬁ@.“
-2.61 + SJ

LZ.SEH

..-..--.--E-’
™~ o
.
W =
w ~1

These results can be scen to be in agreement with the previous calculation

(appendix A.)

v e B S e il R




Appendix C.

Worked example branch addition to network
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In this cxample it is proposed to add to the system a new branch
running between nodes 2 and 3 with an admittance of i.see fig. 7. -
For this calculation it is only neceésary to start at step (4)| in the
procedure outlined in Chapter 3 section H with a new §_’matrix which now
includes nodes of the new branch,  Therefore I and ¢/, remain the same

as in the previous calculation {Appendix B.) |

As in the cxample of Appendix B

, o -
1 =|-2.8
3
4
= ) 1

e S

2

‘Note that Zy is wnchanged but Z, includes the new resistance term for the

/

additional branch.

ey o= |-
| 6
12

Now however _S_:' = -1 -1 O




it

C2.

which includes the new branch running between nodes 2 and 3

7 B
.E_1='§. Ca ={ =26 ;

0.164 - 0.129 - 0.107 |

-0.129 0.2365 0.123

-0.107 0.123 0.224

L]

L =L 5
-0.388
= -30290
.65
/ /.
.:.[.1 =S i
3.628
-1.659
-2.019
/
!/ =
ey =4
=["18.390
-3.318
-60057

- s m— ! il



= I 4.390

| .
| 2.682
i

i 5,943

RO

which compares with classiczl analysis for the vector

/
&3 = 4.392

=

{ 2.682;

- e,

;

;. 5.946

C3

/
Sy

Note that for any real system most of the computing time is taken up by

the calculation of 9_}'\ which rcmains the same when a new branch is added

or onc removed by the zbove method.

o it s - ——

——



!-

Appendix D,

Development of transformations between networks




D1
Part 1
To establish the comnecticn matrix between any two networks)for

example networks A and B Fig (35) jone starts by‘constructmg the primiti.ve

- ~
trz_ansformation matrices C 1

= A and C
=pA ( —pﬂ) =pB
/ 7 / - { /

3
1{-1 1. 0 1 0 O
Ap& - 2/-1 00 0 1 O
30 01 0 0 O
4/-1 0 1 0 0 O
5! 0 -1 1 0 0 O
6 -1 0 6 0 1
/ P4 Vé VA | M
AR EELEEY
10 0 0 0 1 O
2l 0.1 0 0 -1 0
Cg = 31 00 0 1 1
4 0 0 0o 0 o0,-1
51 1 1 1 1 0 -1
6 -1 -1 -1 0 0O 1
i ~J
Gz = An S
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1 2 3 4 5 6
QAB._.]. 01 0 0 0 1
2/ 0 0 0 -1 1 0Of »
30 1 1 1 1 -1
470 0 0 0 1 O
5,0 -1 0 0 -1 0O
6{-1 -1 -1 0 0 1
1 2 3 4 5 6
110 01 0 0 1 :
and Apg = 2|l 0 1 -1 0 0
3/]-1 0 1 0 0 0
4/-2 1 0 -1 -1 -1
5/0 -1 2 0 0 1
6/-L 0 0 0 O O

Now it can be
seen by comparing these matrices with the diakoptics transformation matrices
that the restriction of the same numbef of nodes in the two networks grecatly
simplifies the transformation of the matrices Zp.

For example partitioning the matrices as in the text.

[ 4 ’ —

¢, T Z1a zz:( c, ¢
~ .

% % - al s B L R

Then the transformed Z,,

+

C, z..C C, 2,.C e T, 2.,C
=8 1aly v G Byl v G I3l * L3 ity




D3.
For the diakoptics transformations which have the same number of nodes
in each network § =Uand C; = 0

ST 1

This however is not the case for a generalised transformation.

Part 2

Proof of _C_:_Il = El frcm the proposition of Power Iﬁvari?lnco

Now from the proposition of power invariance for any two nctworks

containing the same nurber of branches then

o~ ~
Vo & = B gy
Now as shown above one can write that —'IA = -(—:AB g_B
and Yy = Ay Uy
~ o)
VelpSagdpy = Y3 JIp
o Ap Gy = Y

1>
E
B




Aprendix b

Table of Results




Number of iterations

in inmner cycle

Time

El.

Case 1- Case 2 Case 3
11 31 50
3 3 "never converged
1 1
30min l1hr 16min 2hrs (Stopped)

Table 2




Comparison of Results for Hardy Cross Solution

L2.
Table 3

Segment 1
Hardy ETR:;J;I(S‘:H = Diakoptics Flow ft;’_( min.
Case 1 - Case 2| Case 1 HC 1 HC 2 Diakoptics
| (Case 1)
2 19 1 - g6 83.98  88.34
E 3 20 2 150.94 ° 51.18 50.88
é 2l 3 5 131.56 . 31.74 31.47
é 20 2 4 lsez w8 37.56
L 19 2 5 83.88  84.78°  83.93
_i 18 18 . 6 | 45.78 46.20 45.56

o 1 7 |14 15.24  14.98
; 38 16 8  148.3 46.38 48.53
o 38 9 w7 6LS6 62,46
E 37 17 10 1ev.48  70.56  69.48
é 35 15 11 f 38.58  41.58 38.70
36 13 12 lege 49.38  48.76
I 36 13 % 30.9 28.98 30.86

13 37 14 E 77.82  77.88 77.96
| 12 14 15 §3.88  53.52 54.45

16 34 16 | o2.874 1356 1.739

33 35 17 |sase 53.34 54.38

— e ——




Table 3 Part 2

Segment 2 Cut Branch Set

E3.

5 5 1 5,429 6.354  5.525
23 23 2 47.04  47.39  46.91
24 24. 3 46,52 46.75  46.33
25 6 4 4109 40.40  40.83
é 25 5 64.44 .  63.84  64.09
7 26 % 6 84.84  84.54  84.50
26 7 : -7 73.20 73.50 72.72
27 27 8 39.93  38.23 - 38.16
8 28 o 122.8 1228 . 122.5
29 20 {10 117.2 172 117.2
28 8 11 50.60  50.06  50.32
31 9 12 2.063  1.942  1.796
30 10 13 17.40  16.76  1%.51
9 11 1 17.56 17,92 17.69
14 0 | 15 66.60 | 67.2 66,96
32 31 16 40.38  40.14  40.56
10 32 17 34.96  34.69  35.17
17 33 18 142.0  142.0  142.4
4 22 1 82.5 82.92  82.25
22 4 2 00.00  90.84  89.98
15 12 3 .105.5 104.2  104.8 1




E4.

'
T, i O S5 b § L

Table 4 Part 1

Branch Number Length in Feet !Diamctcr in Feet!
1 16,840 E 0.67103 %
P2 5,280 -i 0.67108 E
; 3 | 10,560 ; 0.67108 !
i 4 g 5,280 | 0.51042 -
; 5 E 10, 560 E 0.67708 %
6 . 21,120 i 1.02083 |
f 7 3 31,680 | 0.854167 %
g ? 42,240 E 0.854167 |
9 % 10,560 f  o.szs |
10 5,280 . 1.02083
L 1 10,560 . 0.67708
2 5,280 | 0.51042
3 | 21,120 | o.67708
o % 31,680 g 1.28125
5 % 10,560 § 1.02083
6 | 26,400 | 0.34375
7 5,280 E 0.51042
s b 10,560 | 1.02083
9 2,120 i 0.854167
10 % 26,400 ' 1.02083
11 47,520 - "~ 0.51042
12 36,960 0.67708
13 21,120 1.02083
14 7,920 0.34375
15 10,560 : 1.02083
| |




ES.

Branch Number Length in fect Diameter in feet
1 31,680 0.51042
2 29,040 1.02083
3 21,120 1.02083
4 42,240 1.28125
5 26,400 0.51042
| 6 15,840 0.66708
t ’ a 10,560 0.34375 |
) { ! d
Table 4
Branch dj_.mer_;%on for network due to Knights .and Allen.
| Node Demand |
‘ Number | ft3/m1n
1 | 2166467
2 j 2250
3 8 Table 5
4 -_250 Nodal demands of the Network
5 G due to Knights and Allen
6 ! -500
7 -333.3
8 o’/
9 0
1 -500
' "9 -500
3 -1666.7
4 0




E6.

R A

Node ; Demand - ‘

Number ! £t3/min

s  -835.4 ‘
6 3333 | - N
7 B | 0 | : Table 5 continued .
8 -500
9 ~556.7
10 1333.3 |
/
&2



E7.

| Diakoptics_ Knights Allen = Absolute

1
t

Branch Percentage”
Nwber | Flow ftom™t Flow £t3/m~! Difference Difference
1 | 266.10000 267.30600  1.2000000 | .45095828
2 | 121.54000 ' 121.23333  “.30667000 - | 25232022
3| 259.18000 258,416 | 76334000 | 29452118
4 150.58000 | 1151.35000 ;}:;77000000.' - 51135608
5 | 103.36000 | 105.53333 & 2.6266700 | 2.6085917
6 | 374.45000 | 388.25000 | 13.800000 | 3.6854052
7 | 357.75000 % 375.40000 | 35000000 | .97833682+ 1- |
8 | 279.0000 | 278.76666"3 23334000 | 83634408+ 1-
9 | 87.880000 | 93.716656 vé 5.8366660 | 6.6416317
10| 12890000 | 17476666 | 45.866660 | 35.583134
1 224.92000 | 237.56666 E 12.646660 | 5.6227369
2 | 11197000 | 113.56666 | 1.5966600 | 1.4259712
5 | 122.42000 | 122.56666 | 76660000+ 1 .62584700 . |
4 | 1455.0000 % 1456.4355 | 1.4333000 | 98508591+ 1- 1
5| 502043000 | 450.00000 | 45.430000 | 8.6439902
:

{
]
]
1

-

Table 6 Part 1T~ =

P .

’
A




ES.

!

Branch [

Diakoptjcs ' Knights Allen

Absolute Percentage
~ Number |  Flow £t5m-l. Flow £t3/m™l| Difference | Difference
6 | 43.510000 ' 3£.100000 | 5.4100000 | 12.433923
7 22255000 | 227.75000 | 5.4000000 | 2.4286035
8 | 99.80000 | 993.70000 | 1.9000000 | .19060995
; 9 % 110. 58000 é 107.21666 E 3.3633400 | 3.0415445
% 10 E 856.06000 é 851.21666 ; 4.8433400 | 56577109 |
1| 78720000 | 77.416666 . 1.29 1.643
f 12 ;  315.54000 | 313.45000 i ' 2.0500000 | 66235659 |
13 | 496.87000 f 500.30000 | 3.4300000 | 69032141
14 | 105.74000 | 109.06666 i 3.3266600 | 3.1460752
15 | 1079.8600 | 1094.1666 | 14.306600 |* 1.3248569
1 41.140000 | 79.900000 i 38.760000 | 94.214876
2 352.86000 | 355.98333 | 3.1233300 | .88514708
3 391.60000 | 38978333 1.8166700 | 46390960
4 690.00000 % 66921666 20.783340 | 3.0120782 |
5 | 35140000 | 37,583333 2.4433330 | 6.9531388 f
6 | 47.610000 | 50.500000 2.8900000 | 6.070133 |
7 16.680000 | 16.083333 59666700 | 3.5771402 |
i
Table 6

Comparison of results for the branch flows of network due to Knights

and -Allen.

VLTI, S




‘ Node

Comparison of nodal Pressures of

: Diakoptics Knights Allen ' Absolute : Percentage l
% Number Pressure 1b/ft2 Pressure 1b/£t2' Difference Diffcrenc:ehf
.1 | -165.70000  °  -153.53520 ; 12.16480 . 7.341604 |
2 156.90000 | -148.34820 | 10.551800 - 6.6405286!
3 10050000 . -04.922100 5.5779000 55501492 4
% 4 -105.00000 | -98.553000 6.4470000 | 6.1400000! |
} 5 ~139.80000 ; ~130.19370 9.6062000 E 6.8714592%
% 6 ~146 96000 | -135.89940. 11.000600 i 7.4884955%
L7 | assomo -127.60000 9.8998000 | 7.1908545
8 | -.66000000 % ~1.0374000 37740000 | 57.181818
9 ~§7.000000 E -80.917200 *. |  6.0828000 6.9917241 |
10 ~64.800000 i ~59.650500 5.1495000 |  7.9467592
11 -15. 500000 | -42.014700 26.514700 |  171.06258 |
12 ~109., 20000 . -102.185% 9.0161000 |  6.4250000
13 ~91. 500000 -86.104200 5.3958000 |  5.8970491
14 ~106.. 50000 -99.590400 6.9096000 |  6.4878873
Lo1s -50.830000 ~48.239100 2.5909000 | ° 5.0971867
16 ~81.100000 " -§7.141600 6.0416000 |  7.4495684
17 ~226.30000 -205.92390 20.376100 9.0040212
18 ~155. 30000 -144.71730 10.582700 |  6.8143593
19 -160.10000 ~148.86690 7.0163023 | 7.0163023]
Table 7.

network duettoiKnights and Allen.

1

3
i




asalJ

Knights Allen '

Percentage

1109.0833

% ﬁiﬁﬁgg | gi§§°§§§§§kl ~ Flow £ft5/m~1 g???é?éﬁcc‘! Difference |
1 250,31000 250.60000 .29000000  .11585633
2 512.75000 508558333 4.1666700 181261258
3 308.40000 312.28333 3.8833300  1.2591861
4 167.20000 168 .00000 80000000 | 47846889
S 1 142.10000 113,95000 28.150000 19.809992
6 ' 44,640000 54.150000 9.5100000 | 21.303763
7 358.20000 357.65000 » 55000000 .15354550
8 | 234.50000 229.55000 . 4.9500000 2.1108742
9 | 98,630000 104.80000 | 6.1700000 6.2557031
10 139.27000 185.66666 46.396660 33.314181
1 43.120000 34450000 8.6700000 20.106679

E 236.,00000 233.95000 2.0500000 86864406

3 192, 60000 198.73333 6.1333300 3.1844911

4 1421.5000 1431.8166 - 9.9166000 .69741894

5 500. 73000 458.03333 42.696670 | 8.5268847

6 42.340000 37.050000 5.2000000 | 12.494095

7 182.96000 18691666 3.9566600 | 2.1625819

8 1243.,0000 1222.5000 20.500000 | 1.6492357

9 151.14000 146.48333 4.6566700 | 3.0810308
10 894, 58000 899.91666 5.3366600 .59655480
11 81.860000 80333333 1.5266670 | 1.8649731
12 | 329.00000 @ 327.03333 140666700 | .32421560
13 |- 849.52000 E 853.18333 3.6633300 .43122351
14 90.000000 ! 91.616666 1,6166660 1.7962955
15 | 1087.8000 j 21.283300 | 1.9565453:

"Table § DPart 1




Ell.

W e e e s

; BTranch ‘ Diakopt%cs_ Knights 3Al§cfn Absolute qucent-;gg

_ Number Flow f£t3/m~1 Flow £t°/m Difference | Difference

1 40.830000 |  79.616666 38.786666 | 94.995508

2 645.97000 64285000 3.1200000 i .48299456

30 774.60000 760.20000 14.400000 1.8590240
Table 8

Comparison of branch flows of network due to Knights

cut branches 4,5,6 and 7 removed.

-

"I Node

and Allen with.

Diakoptics -~ Knights Allen ,:! Absolute Percentage

Nurber Pressure 1b/ft2 Pressure 1b/ft2§ Difference Difference
1 ~213.40000 -198.143¢0 |  15.256600 : 7.1492970
2 ~123. 40000 -117.22620 6.1738000 | 5.0030794 -
3 ~71. 440000 | ~70.543200 89680000 12553101

4 -134.00000 . =125.00670; 8.9933000 | 6.7114179

5 -182.00000 = ""169.614%0 12.385100 | 6.8050000
B -195.50000 | "180.50760 12.992400 | 6.7144186
7 -170.60000 | 157.16610 13.433000 . 7.8745017

8 -.75700000 .  ~1.0374000 28040000 |  37.040951

9 ~133., 50000 i ~124.45000 9,05200007 %

10 -65.700000 |  ~61.206600 4.4934000 | 6.8392694 |

11 -15,370000 ;  ~41.496000 26.126000 169.98048 |

12 ~104., 50000 i ~98.553000 5.9470000 5.6909090 |

13 ~64.330000 ! ~60.687900 3.6421000 | 5.6615886




E1Z2.

S — -

i R
: /"'”"-‘~ R
Node Diakoptics 2 : Lnights Allen A@:s:olute"’ . ’Pgrccnta{gd
Nuzber Pressure 1b/ft Pressure 1b/ft?| Difference. lefcrenceé
Y ~ 4.4200000 ~10.892700 6.4727000 146.4411?{
15 - §0.230000 | -64.8575C0 | ‘15:392500 |  19.185466.
16 - 2.1600000 | =9.3366000 7.1766000 |  332.25000!
E 17 - 109.50C00 99550400 9,9096000 9.0498630
| 18 - 33,280C00 ~36.827700 3.5477000. | 10.660156
19 - 41.590000 , -43.570800 - | 119808000 |  4.7626833
Table 9 "

Comparison of Nodal pressures of Networks duc to Knights and Allen with cut

branches 4.5.6 and 7 removed.
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o Scgment 1
i Branch
| *Number Length ft Diameter ft |
1 3900 1
2 8800 E 1 i
3 2100 : e
4 | 3300 1 !
| 5 | 4000 1 }
6 3000 1 ;
% 7 4500 | 1 i
} 8 2000 0.5
9 2000 1
10 1200 1
. 11 2600 1,333
12 2500 0.667
C 13 14100 | 1.333
14 t 1200 0.667
| 15 | 5300 I 0.833
16 | €000 - 1.333
17 L2200 1

Table 10 Part 1.
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Scgment 2
Branch
Number Length £t Diameter ft
1 1000 | 1.333
2 3000 | 1.667
; 500 00 |1
' 5000 : 1
s | 1500 i 1
6 1000 : 0.667
L7 5000 0.833
8 2500 0.833
9 200 | 0.5
10 100 | 0.5
11 1600 | 0.667
12 1500 0.667
13 2200 0.833
14 2000 .1
Cut Branches
1 3300 1.167
2 9300 1
3 4500 0.667
4 3400 s
Table "10

Dimensions of Network Due to Ingels and Powers




E1S.

Node
Nurber

L N - 7 T S SR R =

[ R = S SR
(&) (] [ o

|
Demand ft‘?’mf1 i
-2.083

. =2.083
206.25

-8.333

P

-6.25

r 0
-12.5

-4.167 '
-2.083
-4.167

Table ‘11 Part 1




E16.

!

Node 3 -1
Number Demand ft™m 7
1 | -2.0833 |
2 !- -93.75 %
3 % -20.3
|4 E -6.25
I LI
i i
E 7 ; -14.58 | wte
: | -2.0833 %
! 10 625 |
: 11 0 E
I 12 -12.5 !
|13 L0 %
| 14 ; 0 | E
| 15 % -4.167 ]
. ; J
Table 11

Nodal Demands for Network Due to Ingels and Powers.




El?.

Flow ftslmin

Percentage Differcnce;

on Diakoptics

1
r

i

Reynoldsj

____ Uolan Poers | Dolan e i e
1 S4.487L78 | 5B.974357 7.2968052 | 3374958 %115.764 i
2 S6.570511 61.057690 < 7.0252099 . .34956035 |119,839
3 39.262819 34.775640 - 13.230912 % .20023792 | 68,297
| 4 €0.006152  55.608972 . 9.565634 E 1.3670901 E108,049
5 8.1730767 ' 4.3260229 | 60.665046 | 12.041558 | 23,548
6 18.696580 = 8.3333331 ? 171.87116 % 21.176866 | 13,544
7 4.0598289 . 1.9230768 : 54.424834: | 26.851395 |13,544
4.0598289 | 1.9230768 | 54183505 | 26.823561 | 10,365
9 10,509828 | 8.1730767 % 16.127821 | 7.9401137 | 5,176
10 10.256400 | 1.2553418 ? 404.24823 | 38.282114 17,485
11 10.256409 | 1.2553418 ' 404.24823 | 38.282114 |3,004
12 20.833332 | 17.334401 i 31.948394 | 9.7878333 |6,008
13 14.529914 | 9.9091877 ; 65.923421 | 13.157333 | 23,325
14 8.2264955 | 3.8461537 | 42.154752 | 33.538038 | 25,870
15 35.363246 | 27.243580 | 44,227920 | 11.112153 |13,787
16 47.756408 | 35.256400 | 38.720979 | 2.4181065 |36,220 |
|
1 116.82691 | 129.32601 | 9.2853127 | .42078658 | 190,224
2 118.91025 | 151.41025 | 9.1698812 | ,37829889 | 154,704
3 87.339741 | 74.839741 | 17.577024 | .74948642 | 146,306
4  97,006408 | 66.506408 | 19.686730 | 75049309 |130,020
5 72.756408 | 60.256408 | 21.647925 | 74806132 |117,800 |
6 15.504871 | 13.221153 | 14.009170 | 2.9568922 |40,248 |
7 15.544871 | 13.221153 | 14.099170 | 2.9568922 |32,201 ;

S ——
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- ———

w oo

LS T V2 B S T

11
12
13
14

3.0448717 | .24038460 '

5.2350425
9.4017091
8.2799143

6.1965810 °

2.0299144

49.839742

114,74358
51.923075

8.2264955 |
47.809827 |

3.0982905

7.26495%0 |

T AT
2.,05795088 -

77457262 -

3.3920939

37.339742

127.24358
59.9091¢6

169.69634
23.906331
12.031805
147.01414
89.729975
125.05342
34.585607

. 9.8565637

©13.262044

i

3.8461537 |

H
|

42.548873

40.731836 | 25.815334

78.708184
26.667680
13.429969
14.740277
76.283753

*226.07613

83101641

.36467907+ 1-
. 78824625+ 1~

33.353774
7.1890421

| 2,666
i

© i o e

' 16,648
' 33,057

ey

| 15,811
19,048
2,131
{72,937

214,893
117,903
117,048

78,844

el S o s T I S

Table 12

Comp;'-.trison of Results of Diakoptics Program with Ingels and Powers

g ——— el -
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" Branch i 2 ! )

Number : Length £t | Diameter ft
L1 |1 1
2 1 | 1

3 o 1

4 1000 1

5 5200 1

6 i 10000 1

7 | 8850 0.833

8 | 7600 0.833

9 2000 | 1

10 | 1000 i 0.833
Cn F 1000 g 0.5

12 : 1000 f 0.5

13 f 7700 g 0.833

14 o | 0.5

15 3 300 | 0.5

16 [ 5000 0.833

17 1000 0.833

18 1000 0.833

1 1000 0.5

2 1000 0.5

3 1000 0.5

4 1000 | 0.5

5 1000 ! 0.5

Z

Table 13

Dimensions of Network

Due to Hunn and Ralph

e ———— - - .

e d
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|
; Branch 2
‘ Number Lenght ft + Diameter ft
| :
; 6 30C0o 1.667
i i
; 7 33200 ! 1
8 1 1
Node 1
MNamber | Derand ftim~1
|
1 f -1.6026
2 ! -1.6026
3 0 *1.6026
4 g 0
5 , 0 |
6 [ -168.3
LT * -80.13
8 -224.4 |
| f :
L9 1 -84.1 |
| ’ . Table 14
10 «8.d1
| Nodal Demands /10
s B -51,28 !
due to Hunn and Ralph.
12 -97.76
13 0

- e -
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-
|'/ . :
Nuzber Dimensions Number
Case of i_of Scgments | of cut
Number | Segments ‘Node | Branch | Branches
g - 110 117
1 2 S8t 3

i
H

§am—— o ——

L1001 1%

2 2 % 11 f 15 8
| 710 |
i 3 s 7 i 10 7
é 7 o
; .8 7
i 5 el o
IR T 6 7 10
| A R B
! | i _ !

Tabie 15 .

Basic dimensions of the four cutting pattems of test network fig (6
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!

I Case ! Time per iteration E Number of Iterations |Total Time

| 1 1 2m  Sésec i 8 2Zmin  12sec
2 |  3m 3lsec 8 28min  8sec

| 3 g 2n  10secc: E 8 "17min  20sec

; 4 ; 3n 40sec % 8 29min  20sec

Table 16

Computation time required for the four cases of different cutting patterns

Initial Branch Nurber of
FLOWS ft°/min Iterations
1 9
50 8
2500 10

Table 17

Number of iterations for case 1 with different initial guess of branch

Flows;

s i
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‘ Iter- ' Pressurc Drop ll:a/ft3 1

lation [ Pipe No,1& 'y 17 11177 13 1

, Number ; Segment 2 | o 2 71 2

1 é 176 9% 40 30 | 4.85

2 261 Co1zr 47 b2 |2

3 0 309 . 135 52 |24 | L.37

; 4 i 333 142 | s3 23| 1

5 . 344 . 15 53| 22,5 1.1

6 | 350 147 s ; 25 | 1.05

g % 52 0 148 s4 22 | 1.04

8 | 353 s s g 2 | 1.0 |
Table 18

L3

Pressure drop on iteration  for selected pipes of case 1
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Number % Percentage changes from 1

| Case |of Iterations = Initial to Final Pressure !

a 3 ; 6.3

b 3 é 6.3

c | 6 : 42

d ]: 8 106

c | s 62

£ 8 | 179

g ; 2 ; 25

.w Table 19

Number of iterations and percentage change in final pressurc vector for

cases in Chapter 4 Section D

Case | Number of ;
Iteraticnsz

a 6 5
'lb; 6 |
c l 5 i

d 8 |
!

e 2 !

! !
£ 2
J. i
ez
: $
Table 20

Number of iterations needed for convergence for the cases Chapter 4

Section E.

e - —



Appendix F

_Detailed Results of Networks analysed summmarised in

Results Section




" RESULTS FROM NETWORK DUE TO KNIGHTS AND ALLEN

SYSTEM CONVERGED

CUT SEGMENT NO

PIPE NO FLCW
2660956
121.5363
259.17974
1 05 021

Ei 18
357-

79.00187
87 83463
128.902

O\ 0o~ O ) N =

—

CUT SEGMENT NO
PIPE NO FLOW

- 224,925 2
111.9721
122, 910

11151;985

512
2%25.351.67

tio.sghs
Dot
12 3 h79
:5 | 9-.{3602

NCDE TO NODE

2
3 ;
s 3
5 6
9 )
9 6
g 71
10 g
ﬁooﬁ TO NODE
}1} )
Y3
11 3
1 2
s
2
10
¢ g
'§ 8
>
1 1

IMPEDANCE

1r-57-?3515
27.976159
7-4576 97

?5 533922
20, 78871

D 9792 99
6322

- 195.3540%

IMPEDANCE
8.%412992%4

‘ Z.h731638

I3

is 1?79 22

i, 15823 %
1
2372867506
8 1926
091»159
. %19
937;;(
RIS




CUT PIPE RESULTS

o~

NCDE N

O O~ O O D) =

I 21O N e .

31,135
352, 090

| ggg 60129

541 0910
ZE—'}S??Z

S

-100 6 Og
o
e
-12;( %4071
Z 022293

=15. “?9 33

-109. 165

el
O ﬁ%
-226 2

-12% gg3

10
16

15

W

«35999791
. 00206 157

2aa

': 548
o4 %0591?%

112



RESULTS OF NETWORK DUE TO KNIGHTS AND ALLEN WITH BRANCH REMOVED

SYSTEM CONVERGED

CUT SEGMENT NO 1 - -
PIPE NO FLOW FROM  NODE TO NODE  IMPEDANCE
1 250.3148% 3 2 %,8175610
2 512,7%9% 3 Y 8.2019038
g 308.39 22 5 6.42148
16T7.2014% 5 1 o 32122
2 1#2 ?7% 3 i 1?.321
07.72590
g 35? 202 9 §{ 5 ;7;%3%1
9 g 63001;1 g g ggogezw
10 139 26%3 0 183.99927
CUT SEGMENT NO 2 S S
/PIPE NO FLOW NODE TO NCDE  IMPEDANCE
1 43.118476 ) 1 31.273398
2  236.03918 3 4 3.9397243
2 192.6079% 3 ), 7922548
: 1 21%2739 ” 3 lg 603203
«72792 .2
6 §2.338250? 2 3 )? Ogs
g 182 963 5 10 iag 73
1242, 6 5
9 151 1 192 9 10 18 20 223
10 1715 6 g
1 9 EEIBO
12 329 02871 6 8
1 4952421 6 g 10. 1022
1 90, 004540 7 2 74881
15  1087.8017 11 1 554033




F4,

CUT PIPE RESULTS

1 ho.832161 8 1 .35791&20
2 9711 10 9 « 10500663
3 .77 613 16 3 08943822
NDE NO  PRES
1 =213.40506
; 2 -123. hoo
E -7t 141;1
-] 3 .
5 1
6 -193.51 12 '
g -170 656798 - e
90261 - : |
: -133-51*3% ,|
10 <65.7 12183 .
11 -15 37 ‘ '
5 '521;9 5
.33342
N T
p) 0.23
16 "2.16]8
1 "1@0
: _23.28!4021;
19 1.58251

S e ———— e .,
. : - . - . .r-'_-:
. gt - PR S, W U ——— S




FS

RESULTS OF NETWORK DUE TO INGELS AND POWERS

SYSTEM CONVERGED

éUT SEGMENT NO

PIPE No1 Fléw :
L Zodhak
‘ 2 34,6584
54.89282
.5 5.0869257
6 11'.%61
oS3
9 2:6232582
10 8.8782226
11 2.0344819
12 2.03%55380
1 154 22
i 85.7%72388
15 5.7077712
16 211.21 83
17 34124550
CUT SEQUENT NO
PIPE NO FLOW
1 128 18519
3 ZG %%579
L
1 2
§ 1312 oz.l
9 .225236h
10 8,3924300
1" 3523550
12 3 2667276
1 90197271

37.032115

FROM  NODE TO NCDE

2

FROM

1 2
) 1
3 2
% §
10 78
9 10
1 9
12 11
3 2
15 1%
1 13
12 15
NCDE TO NODE
2 1
2
% 5
; 2
L
6 10
.9 11
1 lg
1 1
1% 1%

IMPEDANCE
48449708
.2081 0115

P

'3. 16 019

.537812

118

1266 8;58

1

1 632?420

1.0902713

.025!; 3

2.09337
15991

IMPEDAnbf:
2.9591900
0111152
+37235371
;325’;;’59%?
%6608
553;25§%g
:289 Bg
2325255
1.2230316

1 [ 2 1@
9?71?(111;68

1.4257303--.

e



CUT PIPE RESULTS

1
2

3

NODE NO

127.29116
59. 862878
5. T71243%
38. 00474}
PRES

- =40, 5997

-161,36%52
=137.259 5
252.32 7

4563146

33 4905)‘2

.93 3110
-47.074 0?7
J}i' 8159

-30.56%3;{
~24,916453

h!;8 99 20

52
51 .16227
314.66648

120,56683

72.332912
57.1875%2
321 3% |

95’*519

53 000366

2
I %1397
3. 73]

Fé6.

1y

16
)

21

12
28

2.11432 10
1.2198155




riI

'RESULTS FOR NETWORK DUE TO HUNN AND RALPH

"~ SYSTEM CONVERGED

© CUT SEGMENT NO 1

PIPE NO FLO.J FROM  NODE TO NODE . IMPEDANCE
1 g 1 14 545.6321%
2 17 28531 2 1% 550018973
. 2 374. 3 14 541.65372
! s g 7§0h 990 3 1;4 .50111266
92 1 01
_ 6 82 3%61;5 ?3 5 .?'ﬂgzhgz
g 1.179% 5 6
26 280017 Z 6 .0815 900
9 5154 g .2081691
10 3614 3752!.1 é 2110%
11 8.573944 12 08860 82
12 49.2222)% 9 12 g597n
} 177 20323 2 9 & 214
11 .
5 4o o 1o %‘232229
16 72662;9714; 10 11 .152&
1 00341 1 5 2?}
1 176. 68321L 2 13 .38818k47
CUT SEGMENT NO 2 .
PIPE NO 1 FLow 5 FROM  NODE TO NODE lMPiDéNCE
0 2, 1 9101
2 6%3% ! 5 1 06(7)7302117
3 3 2 . 08052558
4 1 357 52 y 3 1. 47h1856
% o hig ° SR
° 15 .7 ¢ 65 69
99 031535
156 . 40201 T8 ssopo




F8

CUT PIPE RESULTS

Rl -
s

1 17.760859 18 10 !+ 131 9,
2 99.522432 11 1% 3
3 91.,422190 8 1% 15 5 6006
NCDE NO  PRES _ ;
1 90
2 '903%565%39
3 9035 §261
; 8?17; % 91
/ 6 !48;9
g og 8911
9 4322 5924
10 lr 7 3 17

12 0661
1 %&0267
1 28387.6412

15 2900.552)

16 3574310 .
1 .231
i 2’?2‘% B '

19 4139.97
20  9035. 71@2




F9

RESULTS OF TEST NETWORK

CASE 2
SYSTEM CONVERGED

CUT SEGMENT NO
PIPE NO FLOW
1 88.81;(5;1
2 50, 2
3 3§ 327385
2 .5 7914
2 216
g 62369935
9  69.4 g
10 38 69923
I
i ;Z %5%202%5
1
15 7393755
CUT SEGMENT NO
PIPE NO FLOW
1 5208409
2 906810
2 h6.327g;a
Sl
1
7 12852400
117. 1512h
9 504320256
b el
}2 1?{.69 620
055
1 1@
15 lhz

1
FROM

2.
FROM

NODE TO NODE

1 2
2
5 3
5 )
1
: 1
5
¢
.
8 3
7 9
9 10
9 11
1 10
NODE TO NODE
1 3
1 2
3 2 .
2
:
2 7
e
5
5 10
9 5
9 10
1 10
1 8
12 11

IMPEDANCE
Lo
i 18629
+620 18#3
1.0163801

oy
72%18“12815

6 903 21
072022

.881 nga
12.415630

IMPEDANCE
5ot

8089
77228779
61735541
1, 1712144
45598299
47301909
.93 41130

12:12874
2.1690743
2.1518202
11155919
h539979
40305625

e et Y



CUT PIPE RESULTS

CO-J N 10N =

NODE N

o

o4 O\ B0 P =

i

ho @?732

72 oz
3.167209
5337531

93.03 97

-10
-81;76 05

0.51 8

?005731.32
8}9951226
61.6 857

8 09190
%35%
-239« 1375

1Y 2121;
-13;22 19 83

J‘zo 90232
3.235 28
-381: 53706

- 6
£

5 |

F10

1

1
10
1
1
15
19

1.5848550

< 73217344
1, 7048099
1.0389320

R

79992




~ SYSTEM CONVERGED

- CUT SEGMENT NO

- . PIPE NO

|

CUT SEGMENT

PIPE NO

[y

CUT SEGMENT

- PIPE NO

POWOVONOWUMLHEWKGNE

| adLil

CVOVEDNO-UVP2UHNP

COONOWV B G

l o

TEST NETWORK CASE 3

F11.

FLOW -

88.3383383
13.981369
45.559125
48.529843
62.465444

1

69.482087

38.699159
30.856654
77.956518
54.376400

NO

FLOW
82.272474
31.472853
90.000338
5.5267636
46.906282

104.79274
1.7415827

NO '
FLOW
122.52662
38.155166
50.317945
117.15069

1.7937611

17.513312
17.692257
35.172224
40.559877
66.959048
142.44566

2

T v46.326270 ¢
64.084469 .
40.821836

3

FROM  NO
FROM  NO
FROM 'NO

OH NN N W W

DE TO NODE

1 2
4 1.
1 3
4 3
5 . 4
5 6
6 3
6 7
5 7
7 8
DE TO NODE
1
2
5
6 .
6
6
5
7 .
; 4
DE TO NODE
1 3
2 1
2 4
4 3
2 6
5 "2
5 6
7 5
7 6
7 4
8 7

U SO

IMPEDANCE
.59541551
2.5864340

1.0163584

. 96612369
78842314
« 72342393 .

1.1581834

- 1.3872460

65903295
88168604

IMPEDANCE
.63083859

1.3656107
58645761
2.2754998
.99287618

1.0028373

« 77229839

1.1097806

" .51809638

12.404262

IMPEDANCE.
45598124
1.1713557
. 93844595
47302090
12.142248

' .2.1691615

2.1519501

© 1.2499708

1.1155101

T .74539258

.40304952

L ———



‘ .
!

. NODE N

VMOEONOULHEWUNPONOOU BAWNE

- CUT PIPE RESULTS

50.6871750
$7.543797
83.917029
46.749953
54.444947
84.477804

72.700862.

PRES
95.328478

 -53.036282
 50.502632

100.73413
179.96246

. F12, _
K
3

2 .8 . 1.0750076
2. 10" 84277012
'3 .10 . 1.6108734
3. 11 .. 1.0388325
7. 11 . 1.1353414
13 15 1.6196111
13 - 16  1.4339263

83.916301

61.673200
-107.72380

'=-238.14142

-84.677072

. =+14040196

-239.18906
=285.38426
=-202.40536

-389.63194
-690.91524
-443.25031
-381.55817
-389.77967

s

=422.20545 0 7

. =353.41973




1.7362557

A ——————— . — -—___..

- S 3 L ﬂ"
" TEST NETWORK CASE 4
"SYSTEM CONVERGED N
- CUT SEGMENT NO ° 1 SR A
PIPE NO FLOW. FROM  NODE TO NODE IMPEDANCE
' 1 88.315062 | 2 59554133
. 2 45,566156 1 4 1.0162327
3 37.650685 2 5 '1.18%8728
-4 51.017152 -2 .3 .92809424
5 31.564102 5 3 1.3624705
6 835.943992 4, 5 .62061931
7 148.766266 . 4 "6 .96236050
CUT SEGMENT NO 2 o oot T
PIPE NO CFLOW ~FROM  NODE TO NODE IMPEDANCE
1 .. 5.5180027 o1 2 5.2818%03
2 46.901105 1 4 . .99296413
: 46.322665 2 .4 1.0028999
/4 40.826740 3 2 1.1096740
;5 64.085100 3 4 77229224
6 84.493230 4 6 .61734058
7 72.711291 ¢ 4. 5 .69730488
- 8 38.167029 - 5 6 1.1710649 ‘
- “9- - 104379860 T~ o mye s 3 o 51807276 0
CUT SEGMENT NO 3 : ,
PIPE NO FLOW FROM NODE TO NODE  IMPEDANCE
. Y 117.14217 2 .1 .47304901
2 66.953397 3 2 .74544344’
3 40.566899 3. 4 1.1153557
4 17.693620 5 4 2,1518202
5 35.179317 3 5 1.2497699
6 142.45380 6 3 .40303062
7 6 7

12.431753



. CUT SEGMENT NO

_PIPE

NO

Vb e

" FLOW
62.460217
69.4837/79
77.960207
30.861219

.4 _

- 54.448529

CUT PIPE RESULTS

[y
o

CONOU HGWNE

1 13.961631

48.529252
38.688010
89.994916

82.224814

©4.380347

©117.514949

1.7922357
.50.304803
122.50751
PRES
1 95.511905

-52.781851:

-107.75165
. 50.673595
-84.584833

-238.03242

-239.07713
-202.28548
-285.26586
-389.54061
-422.13233
-650.76594
-443.,13372
-353.31685
-389.68812
-381.46549
.13966293
100.90399
180.12034
84.069950
61.820943

F14

FROM  NODE
-2

2
2
3
4

18"
© 18
" 20

21
16
10
10
11

1.
3
4
4
5
1
4 .
4
6
6
17 -
10
15
13
12

.
.

TO NODE

. .‘\

IMPEDANCE

«78847639
« 72340968
65900766

1.3870829

.88074569

-« 38620762

1.0350540
.86322234
1.7050695
1.5844460
1.1342568

- «+46104142

.08230638
1.0653678
2.1927929

—~



EXAMPLE a)
SYSTEM CONVERGED

CUT SEGMENT NO
PIPE NO FLOW
90, 031449

1
2 68.9
13l 20, 6?56&
: E 122556
5 513228
6 14554719
1 47 755191
9

1 1. 7281
12 3{8.%90883
1 55026412

1 5 -99429}
15 1252565
C;UT SEGMENT NO
PIPE NO FLOW
; .2%26071
)
B
64 .6 686
5 3
6 38.500 73
g 122.572
117.397
9 50.196127
:? 1. 109%897
12 14 EI‘TE‘Q’
1 1.0
1 61 2';’32
15 143, 83798

. rlo
~ RESULTS FOR CHAPTER 5 SECTION D

1
FROM

2
FRCM

1 2
2
U
5 )
1
i3
5
6
I %
g8 3
7 9
9 10
9 11
11 10
NODE TO NCDE
1 3
1 2
]3‘ 2
2
¢
2 7
s
5
5 10
9 5
9 10
1 10
1 8
12 11

"NCDE TO NODE

IMPEDANCE
58629280

7279 9J+o

P

Zodts 1&
b ?8;,6 go
1. 35 %’l

_ 65671*933

1329132
23701 94
53043

IMPEDANCE

. 7.8313086

1.0107908
1.011L9 81

76706933

61978131

1129

D 3 811092

220664
k572
3 .121;171;

2-.137166?
1.1051812
7%3110814
.3998&618

L
- S

w2z “ak

— el

-

3



CUT PIPE RESULTS

NCODE N

o

— b
N =t OW 00— O\ O -

— h ek d el
oW

ol
NG

= ON\Jl =N =

2 0.8062

340 17
022312
35 61}
P§E15483
-—1
-II 1491;
103 28%0

182.15368
86 3233

943 98
:z:?%%ﬁ ]

gh 23793
-209 9 91

-229 9037?5‘5l

- 698,
_1}97

-3%. %232
-359.73329

F16

3

10

12

21

1

- n

10
1
1
15
19

2099

001 %

; 92 1128
222629%
23!;

c2921&

—h 1

- AT A KT AT TR

-



F17
EXAMPLE b)

SYSTEM CONVERGED

CUT SEGMENT NO 1

PIPE NO FLOA FROM  NODE TO NODE  IMPEDANCE
1 89 222 3 1 2 59051017
2 7 g 13. i92283222

1

13; 35.182 5 Y 61533322
5 l.? 1 5 1, 0220063
6 g 6 1 5181629
g 48,41 6 5 .9 5261;52

62.% 7 6 » 73416793
9 6946136 g 8 '72269855
10 39.21351 5
1 30 2 8 9 1, 409118 19
12 7 9 66113116
1 9 9 10 12692
1 9 11 89 1
15 .2 01385 11 10 5 07649

CUT SEGMENT NO- 2

PIPE NO FLow FROM  NODE TO NODE  |MPEDANCE
16,0694 1;2 1 3 4. 9140468
2 lﬁa 32167 1 2 -9%92901;14

. 2 98017731

2 7 Ghohgl-( 2 2 ; 7370
5 85 804606 2 6 ogZ
6 35.519 5 6 "1.2402 8
g 121.3 6 7 -hzgszg

118.66046 8 g 0?
9 J+z 252381 5 } 079
10 10
1 60028 73 9 E Z: 74141|68
12 60058515 10 9 26 23553%
1 z 1 10 80935
1 7 44036 11 8 675679
15 138 Y2124 12 11 l+1263!+33




CUT PIPE RESULTS

-t O\ =0 ) =

NCDE N

o

O 0o~ O\JT =10 ) =

83 286667 -

31.875000

b7-61208

h1.583635
107.11901

T5.677027
PRES

91.837570
9. 231331
-11%4.9069}%

31 328861
7.566468
97 583728

8176018

60 2251 1

-218, 25219

2103

<2114
-1110.2?67

438 B3962

$35326
-lng ‘3236

-410,17075
=335.45739

F18

1

10
12

1

1 -

10
1
1

)

.6
97003

1.7222860 ™

Te 0193 32
9 1450831
502
1. 81302




F19

EXAMPLE c) |
SYSTEM CONVERGED

CUT SEGMENT NO 1
PIFE NO FLow FROM NODE TO NODE  IMPEDANCE
1 1390?» 1 2 -662776110
2 116 2016 2 3 47617601
)3* 38.981292 3 2 1. 1511}806
- 39.15612 5 % 1.1%
5 2699 1 5 .97 329
6 6 1 .55
g 8 273128 6 5 9
53 45?242 I 6 593866 4
0 5 S
10 5 1 2 021
1 . 8 9 +99344168
12 86 82781;0 7 9 60381370
1 66+ 469446 9 10 .7 1982808
,_ 1 67.234254 9 11 429245 .
/ 15  7.6410593 10 11 %4,1232560
CUT SEGMENT NO 2
PIPE NO FLOW FROM NODE TO NODE  IMPEDANCE
1 26.5oh 80 3 1 1-.%650 2
2 +161 1 2 1. 7411
a 60861;6 3 2 1.2106 118
. 75 296126 g GQ
«29 2
6 E ZEP 5 .6 82002
g 120 66613 6 7 h6172366
119, 3 352 8 g . L5 22 67
9 A7, 5
10 .61135568 10 5 3 lll.t 0
11 23.183921 9 5 '&{6
12 20,31917 2 9 10 1. 9303 9
1 )9, 3111 1 10 .95324219
1 33’=l 11 8 -« J026 0665
15 12 11 <35 T434T9




F20

"~ CUT PIPE RESULTS

2 "6 2 3 1o ? s
a Z3 166&91 Ii 1 2 3%1}03
- 10 1 2 142 8!&75
5 2 803821; 12 15 1.2080201
6 3 h99719 21 19 .9148095147
NODE N(IJ 1 §isa |
2 ? 2 5%
;{ -187 271 78
90.612272
5  124.73912
6 174 9256
g 137 6%186
9 90 1}991111
10 8531640
11
12 -11211 3028?5
13 =41} 56
1 -333 g?!n
15
16 -%5 5 691;
.
19 -502 %?591
20 13.04335

21 1255




EXAMPLE d)
SYSTEM CONVERGED

CUT SEGMENT NO .

PIPE NO

CUT SEGMENT

PIPE NO

FLOW

107.22736
675 gia 8
67-98k36)
33 797088
21.02373
41518 1 o
62 2197

68.165209
316} 30
36.518552
19613396

3.975125
72454131

NO .

FLOW
25.570e3
Theszo0s
10.1226%
57 01113
5750771916
114509290
125 90679

J.to 3882?(
18, 259593

e

21.04 65367

1

F21

FROM

2

FROM

NODE TO NODE
1 2
2 3
)it 2
5 Y
2
-

5

6
I
8 3
7 9
9 10
9 11
10 1

Nooé TO NODE
1 3
1 2
i 2

2
: ¢
2 7
>
5
10 5
9 5
9 10
11 10
1 8
12 11

IMPEDANCE
5 081;791 0
-33999

_ -722‘?3 5

] o
1 333lm
Ts 1 01

i

1.359 27
1 21

1 2&9#1;3

6316
6 393?35@

IMPEDANCE
1.63620
T+ lmooz

2. 115 4856

221388

718

-118 35 20

000
1 hgghs
1.11 29

.971 :%1}7
.5563 976



CUT PIPE RESULTS

L&) BN IV L

f'
NODE N

o

WO o= OV A0 N =

3%561123

10118992

714 71;2921
PRES
163 oy 801

-2)%3 14 91
171L ng

252.93163
130.00319
103.6 0826
-1078:1927
"1099~598
-109 05%
-ness' I
-1%402, I

"1 1 20 .
0149.73%3

-1063. 3732

~947.%338

F22

1
10
4
12

19

.91104908

86185341
.300925&

+081
1, 14182%7




EXAMPLE €)
CUT SEGMENT NO
PIPE NO  FLOW
1 109.99%7
2 180.2272
?l 70.359039
70.3 002
3243
8 e aZ
3 ! i
; 3.95?923
:2 78 12 735
1
15 Z9 755%9
/
/ CUT SEGMENT No
" PIPE NO FLOW
1 27.378655
2 3 00056
i 2220
11 07 894
2 2reed
g 111-@
128 1272g
9  }.93073
10 335 Bzoo
1 22,703158
12 22,78335%
1 116.31161
1 123.13521
15  239.%9%582

1

2
FROM

F23

FROM

NODE TO NODE
1 2
2 3
Y 2
5 Y
1. 5
g 1

5

7 6
g 8
-5

8 9
1 9
9 10
9 1
10 1

NODE TO NCDE
1 3
1 2
13; 2

2
-
5
6 T
5
9
10 5
9 5
10 9
11 10
11 8
12 1

IMPEDANCE
-49801312
+33218119
.71611883
- 389
1 338&2

| 1098

o 355 g&@”
1s 3]2;{ :

g
picies
72154399

IMPEDANCE
1.52536 04

1'.‘3%%711

-14 11800#

3960379
5 -HO6T70
; 29g2593

e



CUT PIPE RESULTS

1
2

3

ey e T g T AT T

180,28479
35- 883677
115071920
1;.31 13%
PRES

150.01;1141

-g13 ;3 28
27.42}% S

13.55822

243.50091
150,96901
123 09211

—11 56 23%%

e
:”g 1765

i u‘f‘a"%

-1182,
-1169 1121

-] ‘l .
-91? 713%2

F24.

13
12

B il i ik T i S s

11
10
1%

5

P

3.0111966
81289653

32259299

«157299

e et e e B e SR

A M



bt nd ®

RESULTS FOR CHAPTER S SECTION E

SYSTEM CONVERGED EXAMPLE a}
. CUT SEGMENT NO 1 ‘ a :
PIPE NO FLOW FROM _NODE TO NODE lMPEDANCE
1 11“ 238421 1 2 - 7085523
2 a 022921; 2 3 1. 062;{139
, i 1222 2 1. 1492 935-
_ 83 71%503 5 ) 6218
5 8 5 1 1 6352191
6. 7521no 6 I B 0129137
' g a g6063 6 %‘ 1. 21
9
Ig 63.862&08 g 8 .77%-’426337
0622
HMCIE 8 9 11.35 2
12 63 936520 I 9 371115
13, 60.114797 9 10 81321
+ 1 5 5981173 9 T 2215 70
15  59.630912 11 10 81852905
CUT SEGMENT NO 2 SR R
PIPE NO FLOW " FROM  NODE TO NODE  IMPEDANCE
1 z 2168933 3 1 545106914
2 o 169957 1 2 1.1241613
z 6 330 3 2 1% 11117
270 2 :
5 %.:{(6421—{4 2 6 ; 6&%9128
6 5 6 1% 0890198
g 121 Z : 6 7 1589
118 11163 8 g <46 0221;
9 87133179 5 952885
10 5 00497 10 5 545564613
11 20,468201 9 5 1.9192402
12 19.450416 9 10 .9977658
1 )5.69559% 1 10 150139236
1 69,7066 11 8 .72123802
15 155.316 12 11 <3p42
T TN T T T T T T T T

L =



CUT PIPE RESULTS

Oo~3 O\ =0 M) =

o

NOOE N

O \O GOy NI 10 1V =

- omd md gk ek emd od b
o n =

PN =
- O\O0

et i e

) Tt —
L—‘—"—M'I-—._‘_',:_.. . - P e il

T3e ;23’#67
h ‘V{HSS

'108@5

)5.,9%431
1% cEchs
}.911007
39.918667
PRES
91,6267 lg
-192,110
232, 66026
~210,96548

<291
Te
8 '.'Z 1
245726
15029
1308
§§ 361;
<3147
-338-10596
=498,
T 8298%
jw 632134
g 04498

T e e

F26

10
1%
10
12
21

11
3

1
5

1

1

15

19

-re w———-—-ﬂﬂ_ﬂmu‘.m, e T e —— ..,_.g"
- DR

3533
.712929 0

9

3902
3113
09973

W T ww ww e s

TR } Bbande']



EXMIPLE c
SYSTEM CONVE RGED

CUT SEGMENT NO

F27

1

PIPE NO FL(M FROM
1 91,
i 2 2,8072
.' ﬁ %g 6l;£ Zg
: 05033
6 % §39522
g 139986
: 63.979 1%
10 E%ﬁ
1 28 51& 9
12 76. 72
1 9399 6%
1 51.27021
15 14, 030132
CUT SEGMENT NO 2.
PIPE No1 FLOA FROM
2 2 n 8
g 21 w% E
694 5%0851
0.
2 22.5&{%83
g «25992
« 4005
9 8 %35999
10 9720
11 i 970331
12 219792
1 48.507388
1 68 2032 3
15 156.90280

i g e e vy YW W S s e e = g S

WEFRTT L e T R

NODE TO NODE
1 2 .
2
s 13
5 Y
1
¢ 3

5
6
I &
5
8 9
7 9
9 10
9 11
11 10

NODE TO NODE
1 3
1 2
; 2

2
.
5
6 7
>
5 .
5 10
9 5
9 10
1 10
1 8
12 11

IMPEDANCE
.57886 288
+902708 3
1.159%
.5950#851;
10379629
243465392
s
i

0 64840

'.'92)}1} 67
2.5794399

IMPEDANCE
4.0797498
.91235698
.552 %
Ik 2l52
3z6%803
Z380h2
.9

2.2326693

160?3?48

96648280
-731437721
+37229934



F28

" CUT PIPE RESULTS

1 a 1 161;10760
2 .3 051 3 76135540
: E g .00231 } n 1. 7665921
855923 z 10 <97171020
5 - 43.400320 L «946359%3
6 112.97348 10 1 2. 3695
g 82.29001% 12 15 1% 59
%0.19881% 21 19 +89006303
NODE NO  PRES
; 80 90387h
-135
i -no 03
2
; 5%3%
g 03866
806838
3 Dy
11 -2 283%
12 03
} B
-2
. 4211’
2 g
17 =76 ol;
1 311; 3111%5
19 22207
20 -1# 1 6 219
21 -1121 Yh259

.2’ Radinditaibatemies i AR U Sl T NE T SILL S L Nt T e i i o bt e et = T S
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 EXAMPLE d)
SYSTEM CONVERGED

CUT SEGMENT NO 1

FLOW NODE TO NODE  IMPEDANCE
123.30379 1 2 45362872
Toins : 3 '6232?,"3
1 0.8%3 5 )] g E 7
31 492131 1 5 Og
?‘ 799153 6 1

g976 6 5 -9623 ln :
83.56 T 6 009
3 : g 8 . 11211

°82 5 & ?.#%053,,

62 7323119 1 9 Z? T2 5%
T1-35415 9 10 - 319136
23. 1514237 11 9 1. 7415364
104152 11 10 631 32

CUT SEGMENT NO

FLOW NODE TO NCDE IMPEDANCE
1 31.961409 1 3 1.34898 22
2 10242173 1 2 .522; 16
2 B 11233 2 2 027
17 I 2 oZZ
5  59.264802" 2 6 36
6 6 oesh6o 5 6
g ooBo 6 7 -hzzalhm
38976' 8 g 247233
1% 33 %hago 1% 5 3 0773
0 Moo 5 3 OELZ H
12 22.985621 9 10 1. 7516102
1 33.26651 11 10 71688186
1 1;35282 11 8 -589452 8§
15  224.5938% 12 11 27701

A A — o A ST S ST SSEee 34 R A R T R F T afmi, v g v e R s Pl S o TR "
et e et e » N Bl - - .

. - " e . T - . - L)

Srrma c e e



CUT PIPE RESULTS

NCDE

0o~ ONJ1 =0 PO =

N

[&]

O 0o~ N\ =00 N =

21

" 12150228Y%
" 18, 359808

133 16930

631133 31

0164
16, 10421

61#-898532

03089

11
-glaohg

-118 29632
19521
Gg 514%26
~15.5231
-13s 295293
~129.93%59

=133.93962
e
-ZS Z ,83208
-93”: 22313

=999, 31599
-1 239

Bnce

_g 1L1
10 6155

F30

7 -

10
12

1 2 171032}

3 21511
i 1"383
| 133%2353
:g | 0515 2



| EXAMPLE e)

" SYSTEM CONVERGED. |

CUT SEGMENT NO

- PIPE NO

(W WU QTN

|
n

O~V D N

W=

-

FLOW
89.436503

0 51.33538931
38.081072 -
- 84.050021

47.658444
11.562066
49.719711
61.3299/4
69.867453
37.850315%
31.993262

78.846900
55.353860 .
C.55.483632

'2.5411846

b

" CUT SEGMENT NO

“"PIPE NO

[y
(=

P A
FN

ey

Wt~V bsWN -

N -

L4

FLOW

6.1699238"

47.280999
46.58097/6
63.990414

" 84.728595

38.024944
122.78555
117.31968
50.413561
2.0396010
17.360085
17.584758
£0.334909
66.870424

1 142.21962°

FROM  NODE TO NODE

P

. F

© OO N®@ NN OOy YN N

O CVIUIO O VN A G H O

m

. v,

(=

QCUOOUHUADWN

. NODE

O@NNOONNN KN

Y

o
oowu

=
- o

IMPEDANCE
.58946252

. «92348/714

1.1731757 .
.61998338

- .98028055

2.99767u6
« 94750840 ..
.800184063
« 72019360
1.1788847
1.3479148

L .65299035

86912907

. .86749165

9.4184614

IMPEDANCE
4.8531476
.98655659
. 99843577
. 77321516
.61594721
1.1745585
.45519448 .
47246390
«93701525
11.061514

2.1841466

2.1622520

1.1204854
74619116
1.40357490

el LU ] o u i



F32
i
CUT PIPE RESULTS
1 87.820195 3011 1.5937
2 31.934852 4 3 .7334ng:§
3 . 90.535243 4 T 011 1.7133911
4 51.195718 5.7 10  1.080%076
5 . 40.401570 14 13 . .89365138
6.  104.29943 100 14 7 T 1.9227287
: 7 - 73.001070 12 - 15 © 1.4396776
= 8 " 34.981747 2170 19 T ,79656300
.. NODE NO ° PRES Lo e L
L 1 104.20432 ’
2 [ -47.521194 '
3 =103.10825
4 7 =79.98101>
5 55.587167
6 108.06133 L
7 184.70611
8  87.694066
9 63.958691 g
10 - .26930889
11 -235.10330°
12 -283.028658
13 -236.37463
14  =200.26971
15 -366.21297
16  =420.58679
17  -690.32984
18 =442.01525
.19 =380.26474.
20 -388.3973>
21 -352.3995/
ARSI S A S A SO, Sttt > M i e e bt



EXAMPLE f)

SYSTEM CONVERGED

77 CUT SEGMENT NO °

PIPE NO

LWEND OGN

et S

CUT SEGMENT
PIPE NO

CmNO VD GNH

et el el
Vb N O

Rt et R b L

FLOW:
90.054020
51.727098

- 38.324150

84.862091
47.601559
11.750700
©49.723822
61.485148
69.840097

. 38.126623

31.708553
78.685752

“%%5198500° v -

55.195593
. 26566484

.
NO
FLOW

- 6.6524072-

48.261412
47.499364
65.015676

. B5.850455

36.964317
122.82650
117.19477
49.911794
.47699915
17.975032
17.993553
'41.428236
67.274703
144.67367

- -

1 Lot R
FROM  NODE TO NODE

e

2. 4 -
" FROM N

HOMd~N®®NNOOH VNN -

CE33

. W

ODE

VWVUTUIE NN SR

-

T0

¥
»

QO @OV VLD &N

T
oo C

NODE

- o .
S ONNOONNN G

N
=

IMPEDANCE

58617328
«91783908

'1.1672284

.61516000

. -98122072

2.9603234

54744540 -

79857548

" .72042180
©1.1720961
1.3575322

65407491

roaw ;'8’71“‘963‘;‘" . b-- ar as =a -
 .87113532

44.09%085

LY

IMPEDANCE
4.5936129
«97011333

98291484

76334964
60939990

1.2013890‘

45507030
«4728/548
«944577>1

30.670214

2.1236515
1.096/649
» 74256355

39795021

T -']-'--1



F34
(’ )‘
CUT PIPE RESULTS:

1] 83.5602135 3 11 1.6053085

2 31.834270 4 3 - 13895262

3 91.350268 - 4 11 - 1.7259275

T4 50.616909 .05 5, 10 1.0766769

© 5 40.86057$ 14 13 .90176293 : K
6 -105.85923 10 0 14 . - 1.9461516 -
7. 74.931436 12 15 . 1.4694638 -
: '8 3%5.972878 21 19 © 81450791
" NODE NO PRES R L

S 1 102.70092
"2 =50,929455%
3  =107.28694
4 =83.762919
5 . 54.188328
6 ° 106.67032
7 . 183.66136
8 "86.718021
9 63.360520%

10 -=.00602509
11 -241.42686
12 -291.19569
13 =242.87069
14 -206.02414
15  -401.30473$
16 - =-432.07272
17 -701.97937 ) -
18  -454.14507 o . . )
19 =392.84735 - L

20 -401.32028

21 =363.54716

v,

- — — —— = - -
. '

b -”

. N

' .7
]
’ -
- -
i 3 W N e A S o & e T L R —
[ L T B o T 1
- e N S o iy e — T ——— L ———— e —
LS 1 = T e me T e B 0 T LR .
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Appendix G

i) Program listing for Daniels Solution

ii) Program listing for Diakoptics Program

e e R M L T I L IR IR T T, M

et e ey T




Gl

HARDY CROSS METHOD! S
BEGIN INTEGER MESH,BRANCH,N,QQ,M,MAX! -
READ MESH,BRANCH ,MAX' I
BEGIN:REAL SUMI,SUM2,ERROR,PI ,RHO,MU,ESPI ,X!

ARRAY L,D,REL(1:BRANCH,1:1),R,PH1,Q1,Q2,Q3(1:BRANCH) !
INTEGER ARRAY C(1:MESH,1:RRANCH) ,CON( 1:MESH, 1 :MAX) ,HUM( 1 :MESH) *
SWITCH S:=L1,L2! : )

PROCEDURE FIMDPHI? - S
BEGIN REAL ARRAY RE(1:BRANCH) ,0UM,LAM(1:2)!
SWITCH S:=NOW,NEW,AGAIN,L1,L2,L3!
FOR N:=1 STEP 1 UNTIL BRANCH DO
BEGIN M:=1! | o
IF Q1(N)=0 THEN GOTO L2! - o
RE(N) :=CHECKR(4*D(N,1) *RHO*3600*ABS(Q1{ N} ) /(MU*PI1*D{ N, 1) #*#2) ) !
IF RE(N) LESS 2100 THEN GOTO NOW ELSE IF RE(N) LESS 4000
THEN BEGIN PRINT PUNCH(3),££L2CRITICAL FLOW IN PIPE?,SAMELINE,
N' IF REL{(N,1)=0 THEN GOTO AGAIN ELSE GOTO MEW EMD ELSE IF
/ REL{N,1)=0 THEN GOTO AGAIN ELSE GOTO NEW!
NOW :PHI(N) :=8/RE(N) ! GoTO L2!
AGA IN:LAM( M) :=0.316*RE( N) **( -0,25) ? ' |
" IF RE(N) LESS 1.0@ THEN BEGIN PHI(N) :=LAM(M) /8! GOTO L2 EID!
L1 sLAM(M+1) s=( 1/( 0.87*LN(RE(N) *SQRT( LAM(M) ) ) =0.8) ) #*2?
IF ABS( (LAM(M+1) =LAM(M) ) /LAM(M)) GR 0.005 THEN BEGIN LAM(M)
s=LAM(M+1) ' GOTO L1 END? '
PHI(N) s=LAM(M+1) /8t GOTO L2¢ e
NEW :DUM( M) :=CHECKR( 0, 8T*LN( 3. T*D(N,1) /REL{N,1))) !
IF RE(N) GR DUM(M)*200*D(N,1) /REL(N,1) THEN BEGIN PHI(N) :=1/(8*
DUM(M) *¥*2) * GOTO L2 END! o :
L3 :DWM(M+1) :=CHECIR( -0.87*LN(REL(N,1) /(3. 7*D(N,1) )+2.51/RE( N) *DUM(M) ) |
IF ABS( 1/DWM(M+1) -1 /DUMZM)) LESS 0,0001 THEN BEGIN
PHI(N) :=CHECKR(1/(8*DUM(M+1) **2) ) ' GOTO L2 END!
DUM( M) :=DU(M+1) ' GOTO L3!
L2:END? : : _
PRINTELL?RE=2,SAMELINE ,RE( 1) ,££5622 ,RE(2) !
END!

- e - iy T LT e -
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G2

Pl:=3.142"

READ ESPI ,X,RHO,MU?

FOR N:=1 STEP 1 UNTIL MESH Do

FOR M:=1 STEP 1 UNTIL BRANCH DO

FOR N:=1 STEP 1 UNTIL MESH DO

BEGIN READ MNUM(N)!
FOR M:=1 STEP 1 UNTIL NUM(N) DO
BEGIN READ CON(N,M)! '
IF CON(N,M) LESS O THEN BEGIN CON(N M) -=CON{N,M) (-1)¢
C(N,CON(N,M) ) :==1"

END ELSE C(N,CON(N,M)):=

END

END!

FOR N:=] STEP 1 UNTIL BRANCH DO

READ Q1(N)?

FOR N:=1 STEP 1 UNTIL BRANCH DO

/READ L(N,1)" ,
/FOR N:=1 STEP 1 UNTIL BRANCH DO -

/ READ D(N,1) !

FOR N:=1 STEP 1 UNTIL BRANCH DO

READ REL(M,1)*

QQ.-‘]' - -
L2:IF QQ=1 THEN FOR N:=1 STEP 1 UNTIL BRANCH DO
PHI(N) :=0,05 ELSE FINDPHI!

QQ :=Q+1!

FOR N:=1 STEP 1 UNTIL BRANCH DO

BEGIN

R(N) —-2*PHI(N)*L(N 1) *RHO/(32.2*D(N,1)*¥5) !
Q3(N) :=Q1(N)

END! '

L1:FOR N:=1 STEP 1 UNTIL BRANCH DO

Q2(N) :=Q1(N)?

FOR N:=1 STEP 1 UNTIL MZSH DO

BEGIN SUMIT :=SUM2 :=0"

FOR M:=1 STEP 1 UNTIL NUM(N) DO

SUMT :=C(N,CON(N,M) )*S1GN{Q1({ CON( N,M) ) ) *R(CON{ N,M) )*(ABS(QI(CON( N,M)) )
**x)+SUM1'

FOR M:=1 STEP 1 UNTIL NUM(N) DO ‘

surug ;—X*ABS(C( N,CON( N, M) ) *R( CON(N,M) )*(ABS(Q1(CON(N,M) ))**(X-1)) )+
Su

T, TUT SIS TSI TMLLT T G T SRR



G3

IF SUM2 NOTEQ O THEN BEGIN

ERROR :=-SUM1/suM2!

" FOR M:=1 STEP 1 UNTIL NUM(N) DO
Q1(CON(N,M) ) :=Q1( CON( N,M) )+C(N,CON(N,M) ) *ERRCR?
END
END?

M:=0"!

FOR N:=1 STEP 1 UNTIL BRANCH DO

IF ABS(Q2(N) Q1(N)) LESS ESP! THEN M.=H+1’
PRINT DIGITS(3) ,M! .
IF M NOTEQ BRANCH THEN GOTO L1!
/PRINTEEL2PIPE  NO FLOW?!

/ FOR N:=1 STEP 1 UNTIL BRANCH DO
H%IN'{££L55?‘?,DIGITS(3) ,N,SAMELINE ££3522,Q2(N)?
M:=0
FOR N:=1 STEP 1 UNTIL BRANCH DO
IF ABS(Q3(N)-Q1(N)) LESS ESP| THEN Ma:=Ms1!

IF M NOTEQ BRANCH THEN GOTO L2
END
END!

e e L T T T T T T A T T I S TS T AT T ot o T e Sl

ey m e -
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DIAKOPT ICS PROGRAM!
BEGIN REAL MU,RHO,SUMI ,PI,CON,NEG,LIMIT'
INTEGER NN,MM,N,M,Q,T,CUT ,NUMBER ,GR11,GR22,GR33,GR5 ,GRT ,CC,CCC,
QQ;TOTNODE ¢
BOOLEAN FLAG,FLAGI,FLAGZI,FLAGEZ,FLAG3' '
READ NUMBER,GR11,GR22,GR33 ,TOTNCDE ,CUT PI,RHO,MU LIMIT?
BEGIN INTEGER ARRAY BRAN NGJ,GR2,GR3,GR1’I,GR6(1 .NLMBER) JREM(1:3,1:2)!
SWITCH
SSS :=START?
FOR N:=1 STEP 1 UNTIL NUVBER DO
READ BRAN(N)-,NOD(N) *
START:READ N' QQ:=1!
FLAG :=N=0"!
IF FLAG THEN BEGIN QQ'—E' READ N* -
FLAG]:=N=1' READ N' FLAG21 —-N=2'l‘ READ N? FLAG22'-M=22'
READ N' FLAG3:=N=3! ,
IF FLAG21 OR FLAG22 THEN READ CUT! -
END ELSE FLAGT :=FLAG21 .=FLAG22.=F'LAG3 .=F'ALSE'
SUM1 :=20000* - T
BEGIN INTEGER ARRAY C(1 .Z*CUT)'
/ INTEGER NODE ,BRANCH?
/ REAL ARRAY V1,VA(1:TOTNODE ,121) ,YB( 1:CUT,1 .cur),
" DC,PUMPC,LC,RELC( 1:CUT,1:1)?
SWITCH SS:=L1 L2,L3,L1+ L5,L6,L7,L8,L9,L10t&

PROCEDURE &D(AUX(A,B,C,D,E)' -

VALUE D,E' BOOLEAN D,E! ARRAY A,B,C' '
COMVENT THIS PROCEDURE 1S USED [N W(SUM, MXD IFF ,MXCOPY,
MXNEG AND MXQUOT AS AN AUXILIARY PROCEDURE®

BEGIN INTEGER AA,AB,AC,SA'

AA :=ADDRESS(A) ' AB:=ADDRESS(B) !

AC:=ADDRESS(C) ! SA:=SIZE(A)?

IF SA NOTEQ SI1ZE(B) R SA NOTEQ SizE(C) THEN

BEGIN PRINT PUNCH(3) ,££L?MXAUX ERROR?!

STOP

END?

SA :=SA+AA-11

FOR AA:=AA STEP 1 UNTIL SA DO |

BEGIN LOCATION(AA) := :

IF-D THEN (IF E THEN LOCATION(AB) ELSE —LOCATION(AB)]
ELSE IF E THEN LOCATION(AB)-!—LOCATION(AC)

ELSE LOCATION(AB) ~LOCAT1ON(AC)
ELLIOTT(2,2,A8,0,2,2,AC)

END

END MXAUX!

e T I L TR
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PROCEDURE MXSUM(A)BECOMES :(B)PLUS :{C)?
ARRAY A,B,C!
MXAUX(A ,B,C,FALSE ,TRUE) *

PROCEDURE MXFRCD(A) BECOMES :(B) TIMES :(C)!.
ARRAY A,B,C! .

COMMENT A MUST NOT EQUAL B OR C? : S
BEGIN INTEGER AA,AB,AC,RA2,RB2,J,JSTOP,L,LSTOP,M,MSTART ,SA?
REAL SuM! ' . .

AA =ADDRESS(A) ' SA:=SI1ZE(A)+AA-1"

AB :=ADDRESS(B) 'AC :=ADDRESS(C) *

RA2 :=RANGE(A,2) ! RB2:=RAMGE(B,2)! - -

IF AA=AB OR AA=AC CR RANGE(C,2) NOTEQ RA2 - -

-

OR RANGE(C,1) NOTEQ RB2 OR RANGE(A,1) NOTEQ RANGE(B,1) THEN

BEGIN PRINT PUNCH(3) ,££L2MXPROD ERROR?!
sToP |
FOR AA:=AA STEP RA2 UNTIL SA DO

BEGIN JSTOP:=AA+RA2-1! MSTART:=AC~-1!
FOR J:=AA STEP 1 UNTIL JSTOP DO

BEGIN Ms=MSTART :=MSTART+1!
LSTOP:=AB+RB2-1! SUM:=0! .

FOR L:=AB STEP 1 UNTIL LSTOP DO

BEGIN SUM:=SUM+LOCATION(L)*LOCATION(M)?!
ELLIOTT(3,0,RA2,0,2,}% ,M)

END!? a

LOCATION(J) :=SUM

END!'

AB :=AB+RB2

END

END MXFROO'&

PROCEDURE. PRINTMX(A) ¥ ARRAY A!
BEGIN INTEGER 1,J,RA2,5A ,AA?
AA s==ADDRESS(A) !

SA :=S1ZE(A)+AA=11?

RA2 :=RANGE(A,2) '

SAMELINE?! T
FOR AA:=AA STEP RA2 UNTIL SA DO
BEGIN PRINT ££L2?221

| s=AAHRA2-11 :

FOR J:=AA STEP 1 UNTIL | DO
PRINT LOCATION(J)!

END

END®
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PROCEDURE READMX(A) 'ARRAY A!

BEGIN INTEGER AA,SA'REAL X!
AA=ADDPESS(A) ¢ SA::SIZE(A)-!-AA-‘I !

END ¢
END?

PROCEDURE CHOLESK! (B)*

ARRAY B!

BEGIN REAL X,D! s

INTEGER A,AA,BB,CC,P SA,Q,RA N,M,'r, ,QQ'
SWITCH S.-LI,LZ L L )19,6

A :=AA:=ADDRESS (B) ! RA:=RANGE (B,1)!

FOR Ps=1 STEP 1 UNTIL RA DO '
BEGIN A:=AA+(P-1)*RA+P-11

FOR Q:=P STEP 1 UNTIL RA DO

BEGIN X:=LOCATION A)'

IF Q=1 THEN GOTO L4

IF P=1 THEN GOTO L2! ‘
IF P NOTEQ Q THEN BEGIN BB :=AA+P-1" ‘GOTO L3 EI\D'
BB :=AA4Q -1 o

FOR J:=2 STEP 1 UNTIL PDO = - .
BEGIN Xs=X-LOCATION (BB}*LOCATION (BB)‘
B8 :=BB+RA! .
END!

GOTO L1 END?

D :=1/SQRT(X)* BB :=BB-RA"

GOTO L2!

L3sFCR J3=2 STEP 1 UNTIL P DO
BEGIN CC:=BB4Q-P? -

IF LOCATION(CC)=0 THEN GOTO L6!?
X s=X~LOCAT |ON(BB) *LOCAT ION(CC) ¢
LG :B8 :=BB+RA

END?

L2:LOCATION(A) :==X*D*

As=A+1

END

END? '

A=AA+SIZE(B) -1t

Q:=0% SA:=RA!

L5:P:=At QQ:=A-Q!

D =X s=1/LOCAT ION{QQ) *

FOR AA.—.AA STEP 1 UNTIL SA DO BEGIN READ x' LOCATION(AA)

ST AP e T nrnWOTICTe v WS MM S s s aemsessmrm g daa e s

Ly:IF X LESSEQ o THEN BEGIN FRINT££L?MATRIX SINGJLAR AT ROW? ,P!

e . b v on]
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cc ‘=QQ-!Q*SA ! BB:=QQ+Q"

FOR N:=1 STEP 1 UNTIL Q DO
BEGIN X:=X~LOCAT ION(BB)*LOCATION(CC)?
LOCAT ION(BB) s=LOCATION(CC) ¢

BB:=BB~1' CC:=CC-SA!

ENDY

LOCATION(QQ) :=X*D?

Q:=Q+1! T:=A-SA!

FOR M:=Q STEP 1 UNTIL SA=1 DO

BEGIN X:=0t

FOR N:=1 STEP 1 UNTIL M DO

BEGIN X:=X-LOCATION(P)*LCCATION(T)?*
Pi=P=1? Te=T-1'

END!

LOCATION( P) ‘*"X/LOCAT%ON(T) J

Pe=PiM! T:=T+M-SA

END!

A:=A-SA! '

IF Q LESS SA THEN GOTO L5!

/u END'&

PROCEDURE ZERO(A)'
ARRAY At -
BEGIN INTEGER AA,SA,N'

. AAs=ADDRESS(A)?

SA:=S|ZE(A)+AA-1?

FOR N:=AA STEP 1 UNTIL SA DO
LOCAT ION( N) s=0!

END?

PROCEDURE CUTPIPEDATA!
BEGIN

ZERO(YB) ¢

ZERO(REM) ¢

IF FLAG22 THEN

FOR N:=1 STEP 1 UNTIL 3 DO
FOR M:=1 STEP 1 UNTIL 2 DO
READ REM(N,M)! -

FOR N:=1 STEP 1 UNTIL CUT DO
READ YB(N,N)?®

READMX ch'

READMX (LC)?!

READMX (RELC)!

READMX (PUMPC) ¢



M:=2%CUT!

FOR N:=1 STEP 1 urrru. M DO
READ C(N)*

END'&

PROCEDURE CALCULATE! J
BEGIN
CC.==CCC o=1' ;
&FOR NN:=1 STEP 1 UNTIL NUVMBER DO
BEGIN BRANCH :=BRAN{ NN)+1°
NODE ¢=NOD{ NN) +1?
BEGIN ARRAY DELTP REL,FLCM,D L, IMP(I.BRANCH 1: 'I),PRES(I NEDE,I 1)
,PHI ;,REQ( 1:BRANCH) ,
ADMITT( 1 .NCDE-] 1:NODE-1) ,B,E(1:2) !
INTEGER ARRAY GRAP(I $2*BRANCH) !
SWITCH SSS:=MNEW,S51,52,53"

PROCEDURE FORMDELTP!

BEGIN ARRAY PUMP(1:BRANCH) !

N=S1ZE(D) DIV 64!

M:=IF SIZE(D)=N*6}4 THEN N ELSE m—ﬂ -
LOCATE (GRS+( NN=1)*M,2) !

FILMREAD (PuMP,2)?

LOCATE (GR22+3*M*NN,2)'

M ~-:=BRANCH*2! -

FOR N:=2 STEP 2 UNTIL M DO -

DELT;P(N DIV 2,1) :=PRES(GRAP(N) , 1)-PRES(GRAP(N 1),1)+PLMP(N DIV 2)'
END

PROCEDURE FORMADMIT!

BEGIN SWITCH S :=AGAIN,NCW!

M s=2*BRANCH? :

FOR N:=2 STEP 2 UNTIL M DO

BEGIN Q:=N DIV 2°

T:=GRAP(N) ! ‘

IF T GR NOD(NN) THEN GOTO AGAIN'
ADMITT(T,T) s=ADMITT(T,T)+IMP(Q,1)?
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AGAIN.T.:G.RAP(N 0!

IF T GR NOD(NN) THEN GOTO NO.!
ADMITT(T,T) s=ADMITT(T,T)+IMP.Q, 1) !
NOJ:EID! : : '
FOR M:=1 STEP.1 UNTIL BRANCH DO
BEGIN N:=GRAP{2*M)!

Q:=GRAP(2*}4~1) !

IF N LESS"'(. HOO(NN) AMD Q LESSEQ NOD{ NM) THEN
ADMITT(N,Q) :=ADHITT(Q,N) 2==111P(14,1)} !
ErD
END'&

PROCEDURE PIPEDATA
BEGIN ‘
ARRAY IHLET(1: rm(nn) 1:1)¢

REAM‘( (p)® me:rz Ea,a U
READMX (L)' FILMWRITE (L,2)?
READMX (FLOW) 'READMX (REL)' FILMWRITE (REL,Z)'
GRS :=BLOCKN.VIER+1?
FOR N:=1 STEP 1 UNTIL 2*(3RAN{NN}+1) DO
READ GRAP(N) ! |
:=2%(BRAN{ NN) +1) ! ‘
ron Ne=l STEP 1 UdTIL NoD{ rw]-=-1 DO
BEGIN READ T*® MM:=Q'
FOR Q:=1 STEP 1 UNTIL M DO
IF GRAP(Q)=N THEN MM:=MM#1?
IF MM NOTEQ T THEN FRINT PUNCH(3),2cL2
ERR('JR IN DATA GRAP AT NODE? ,N?
END

READMX (II\LET)'

FILMWRITE ( INLET,‘I) ' GR?( NN) '=BLOCKNWBER+I '
FILMRITE (GRAP,1 4{nN) '--:BLCCKNW.BER-J-‘I'
ZERO (ADMITT)!

FOR Ne=1 STEP 1 UNTIL BRANCH DO

PHI(N) :=0.002¢

END'&
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PROCEDURE FORMIMP!?

BEGIN '
FOR N:=1 STEP 1 LNTIL BRANCH DO

IMP(N,1) :=1811-, 2?*D(N,1)**5*Pl**2/(PHI(N)*RHO*L(N 5 1) *FLOW( N,1))'
FILMWRITE (IMP,3)?

GR2(NN) :=BLOCKNUMBER+1?

IF FLAG THEN BEGIN LOCATE (4096-GR2(NN),3) ! FILMWRITE (FLOW,3)!
LOCATE (GRS(NJ) 3N

EID'

Mi=

FOR N =1 STEP 1 um!. 3 DO

IF REM(N,2)=NN THEN BEGIN T :=CUT-M!

YB(T,T) : -1/IMP(REM(N,1) ,1)!

Me:=M+1!

END!

END!

PROCEDLRE INVADMIT'
BEGIN

FORMADMIT'&

CHOLESK! (ADMITT)?!
FILMWRITE (ADMITT,3)'&
GR6£NN) :=BLOCKNUM3ER+1?
END

mocaouaa szcoxxsmrs'

BEGIN '

F ILMREAD (0,2)' FILMREAD (L,2)t FILMREAD (REL 2)!
ZERO (ADMITT)?

T:=0?
LOCATE (ea3(nn) 1)' FILNREAD (amp,nl

FOR M:=CCC STEP 1 UNTIL NOD(NN)+ccc-1 DO
BEGIN T:=T+1!
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FRES(T,‘I) =VA(M,1)!
END!

CCC =CHECKI( NCD( NN)+CCC) ¢
PRES( NODE ,1) :=0¢ .
FORM)ELTP' -

BEGIN ARRAY RE(1 ‘BRANCH)'

FOR N:=1 STEP 1 UNTIL BRANCH DO
BEGIN
Eﬁﬁwzﬁsqmmes(DELTP(Nﬂ))*D(N,1)**3*RH0*1 «296@7*32,2/(¥*L(N,1) .
IF REQ(N) LESS 126.49 THEN BEGIN
FRINT PUNCH(3) ,E£L2LAMINAR FLOW IN PIPE NO",SAMELINE,
. NyESEGMENT?, o
RE(N) =REQ( N)**Z/B END ELSE BEGIN
"RE(N) =-2.5*REQ(N) *LN(REL(N,1) /(D(N,1)*3. 7)+1/(1 13*?5@(»:)))
IF RE(N) LESS 3000 THEM PRINT
PUNCH(3) ,SSL2TRANSITIONAL FLOJ IN PIPE NOZ N, .,szewm NN END!
PE(N) :={REQ(N) /RE(N) J##2
FLOW{ N, 1) :=RE(N) *P1*D{N, 1) *MJ/( 4*E C*RHO) !
END?
END!
END!?
%1
CC:=CCCi=1?
IF QQ=1 THEN BEGIN
PIPEDATAY FCRMIMP! [NVADMIT!
GOTO S1
END® |
PIPECCNSTANTS'
FORMIMP? -
IF FLAG THEN GOTO S1!
INVADMIT!
ST:END
END
END CALCULATE &

PROCEDURE FCRMV1(V1)® ARRAY V1!
BEGIN
cc:=1'

FOR NN:&= 1 STEP 1 UNTIL NWMBER DO .
BEGIN 4

ARRAY ADMITT(!.NOD(NN) 1'NCD(NN)) !NLET,SUM,FRES[‘I N(D(NN),‘I :1),
IMP( 1:BRAN(NN)+1,1:1) *
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INTEGER ARRAY GRAP(1:2*(BRAN(NN)+1) ,1:1)1!
ARRAY PUMP(1:BRAN(NN)+1,1:1)?
SWITCH S:=NOW,AGAIN!
ZERO(SUM) ' - -
FILMREAD ( INLET,1) ! FILMREAD (GRAP, v
FIWREAD (IMP,3) Y FILMREAD (ADMITT,3)"
FILMREAD (PUMP,2)!

.—2*(BRAN(NN)+1 !
FOR N:=2 STEP 2 UNTIL M DO
BEGIN Q:=N DIV 2!
T:=GRAP(N,1)*
IF T GR NOD(NN) THEN GOTO AGAIN!
SW(T,1) .;SUM(T,1)+PWP(Q,1)*|MP(Q 1)
AGAIN:T:=GRAP(N-1,1)!
IF T GR NOD( NN) THEN GOTO NOW!
SUM(T,1) :=SW(T, 1)-PLMP(Q:1)*IMP(Q,1)'
NOW:END! :
FOR N:=1 STEP 1 UNTIL NQ'J(NN} DO
SUM(N,1) :=INLET(N,1) -SUIM(N,1
MXPROD( PRES ,ADMITT,SIM) '

M:=0t

FOR N:=CC STEP 1 UNTIL NOD(NN)+CC 1 D0
BEGIN Ms=M+1t _

V1(N,1) —-FRES(M 1)1 ) R
El‘D' T T
CC:=CC+NOD{NN) !

END

END'&

moczouaz YBDASH' : _
BEGIN'ARRAY Torsum(1-cur, .cur)' ZERO(TOTSLM)'
€C:=0

FCR NN:=1 STEP 1 UNTIL NUMBER DO -

stm ARRAY ADMITT( 1:NOD(NN) ,1 N(D(NN)],SUMU cur 1.CUI') LA(1:
NOD(NN) ,13CUT) ¥ SWITCH S:=AGAIN,NOY,LT,L2?

LOCATE (GR2(NN) ,3) !

FILMREAD (ADMITT,3)!

ZERO (A)*

T=0' M:=2%CUT!

FOR N:=2 STEP 2 UNTIL M DO
BEGIN |
T=T+1! : '

IF C(N-1) GR CC AND C(N-l) LESSEQ NGD(NN)-!-CC THEN
FOR Q:=1 STEP 1 UNTIL NoD(NN) DO
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A(Q,T) s=-ADMITT(Q,C(N-1) -CC) !

IF ¢C{N) GR CcC AND C(N) LESSEQ NCD{NN)+CC THEN
FOR Q:=1 STEP 1 UNTIL NOD(NN) DO

A(Q,T) s=ADMITT(Q,C(N) -CC)+A(Q,T) *

END? '

T=0! . '

FOR N:=2 STEP 2 UNTIL M DO

BEGIN T:=T+1' - S

iF C{N-1) GR CC AND C(N-1) LESSEQ NOD({NN)+CC THEN
FOR Q:==1 STEP 1 UNTIL CUT DO

TOTSW( T ,Q) 2=TOTSUM(T ,Q) -A(C(N-1) —CC,Q) ¢

IF ¢(N) GR CC A c(Nf LESSEQ NOD(NN)+CC THEN
. FOR Q:=1 STEP 1 UNTIL CUT DO

TOT.‘::LM(T 5Q) s=TOTSUM(T,Q)+A( C(N) -CC,Q) ¢

END

CC :=CC+NOD( NN)

ENnD!

LOCATE (GRY{ NUMBER) ,1)!

FOR M:=1 STEP 1 UNTIL CUT DO
TOTSWM(M,M) :=TOTSUM(M,M)+YB(M,M) '&
CHOLESKI (TOTSWM) ¢

FILMARITE (TOTSUM,1) 1&

PRINMX (TOTSUM) ¢ -

LOCATE (GRY( NUMBER) ,1)!

END'& -

PROCEDURE FORMVA(V1) ! ARRAY V1!
BEGIN ARRAY 12,V22(1:TOTNODE,1:1) &
BEGIN ARRAY VD, ID(1:CUT,1:1)?
REAL SuM2!

LOCATE (GR2(1),3)"*

FOR N:=1 STEP 1 UNTIL CUT DO

. BEGIN M:=2*N!

VD(!;I,I) =V1(C(M-1) ,1) =v1(c(m) ,1)
END

FOR N:=1 STEP 1 UNTIL CUT DO
VD(N,1) :=VD(N,1)+PUMPC(N,1) '&

BEGIN ARRAY TOTSUM(1:CUT,1:CUT)?
FILMREAD (TOTSUM,1) ! MXPRCO ( ID,TOTSUM,VD)!
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END?

Mﬂcu‘rl . ST
ZERO (12) ' cC:=0t

FOR N:=2 STEP 2 UNTIL M DO

BEGIN CC:=CC+1? |
12{c(n=-1) ,1) *.--IZEC(N-I),‘I)-ID(CC,])'
12(c{N) ,1f :=12(c(n) ,1)+iD{cc, 1) ¢

END? .

CC:=1? .

FOR N:=1 STEP 1 UNTIL NUMBER DO

BEGIN REAL ARRAY ADMITT(1:NOD(N) ,1:NCD(N)) ,v2(1:NCD(N) ,1:1),
cutTi2(1:NoD(N) ,1:1) ¢ o

LOCATE (GR2(N) ,3)!

FILMREAD (ADMITT,3)!

Te=1t ' :

FOR M:=CC STEP 1 UNTIL NOD{N)+CC~1 DO

BEGIN CUTI2(T,1) :=12(M,1)?

T:=T+1!

END! : :

Te=1! >
/MXPROD (V2,ADMITT,CUT12)?

/. FOR Q:=CC STEP 1 UNTIL NOD(N)+4CC~1 DO
/ BEGIN v22(Q,1) :=v2(T,1)!

Te=T+1! .

END!

CC:=CCHNOD(N) ¢

END!

MXSUM (VA ,v22,v1) &

PRINTMX (VA)?

END

END'&

PROCEDURE" TEST?

BEGIN ‘
IF QQ GR 1 THEN BEGIN ARRAY VA2(1:TOTNCDE ,131) !
FILMREAD (VA2,3)!

SuMi =0} -

LOCATE (GR6(NUBER) ,3) ¢

FOR N:=1 STEP 1 UNTIL TOTNCOE DO

SUM1 s=SUMI4SQRT( (VA2( N, 1) <VA( N, 1) )**2) 1
FILMWRITE (VA,3)¢

END ELSE FILMWRITE (VA,3)!

mc;::sum LESS LIMIT!

END
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PROCEDURE FORMCUTCON'

BEGIN ARRAY PHIC,FLOWC,REQC,REC( 1:CUT) ,DPC(13CUT,13 1)'
SWITCH S:=L4?

FOR N:=1 STEP 1 UNTIL CUT DO

BEGIN

Mi=N¥2!
DPC( N,1) :=VA(C(M=1) ,1) ~vA(C(M) 2 1)+PUMPC( N, 1) ¢

END?

FOR N=1 STEP 1 UNTIL CUT DO

BEGIN

R;LgsiN )=SQRT(ABS(DPC(N,1))*DC(N,l)**3*RHO*1 296@7*32.2/(&*!.(:(»:,1)
Lt

REC(N) : -2.5*REQC(N)*LN(RELC(N 1) /(pc(N,1)*3, 7)+1/(1 13*REQC(N)))'
PHIC( N) s=(REQC(N) /REC(N) )*¥2?

FLOWC( N) :=REC(N) *PI*DC(N, 1) *Mu/( 1#*60*RH0£3

YB(:;:,N) =PHIC{ N) *RHO*LC{ N, 1) *FLOWC(N) /{ 1811.25%DC( N, 1) ¥¥5%p|##2) $
END .

IF FLAG THEN BEGIN LOCATE (GRY{NUMBER)-+(TOTNCDE DIV 6242) ,1)!
E;Du:mm (FLOWC,1) ¢

’/Lh :ENDYE

PROCEDURE RESULTSPRINT®
BEGIN REAL DP!
cCi=11t

IF FLAGT THEN PRINTEEL?NEW PUMP CONFIGURATION TO FIRST DEGREE APROXI

£

-
. — =

MATION? ELSE IF FLAG21 CR FLAG22 THEN PRINTEEL?NEW PIPE CONFIGURATION TO Fl

DEGREE APROXIMATION? ELSE |F FLAG3 THEN PRINTZELZNEW DEW&DD VECTOR

TO FIRST DEGREE APROXIMAT|ON?!
IF FLAG THEN PRINTEEL?SYSTEM CONVERGED?!
FOR NN:=1 STEP 1 UNTiL NUMBER DO

“BEGIN INTEGER -ARRAY GRAP(1:2%(BRAN(NN)+1))?

ARRA‘{ FLOW, IMP( 1 :BRAN(NN)+1,121) ,PRES( 1 :NCD(NN) +1,121)?
LOCATE (GR3(NN) ,1) ¥ FILMREAD (GRAP,1)!

FILREAD (IMP,3)¢

LOCATE (4096-GR2(NN) ,3)?

FILMREAD (FLOW,3) ' LOCATE (GRE(NN),3)?

FOR N:=CC STEP 1 UNTIL NOD{NN)+CC-1 DO

BEGIN

Ma=i4+1?

PRES(M,I) :=VA(N,1)*

FRES(NCO( NN)+1,1) :=0?
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PRINTEELY2CUT SEGMENT NO? ,SAMELINE ,NN*

PRINTEEL?PIPE NO FLOW FROM NCDE TO NODE  IMPEDANCE?!
Ms=2%(BRAN(NN)+1) ' o - K

Qo-_o'

FOR N:=2 STEP 2 UNTIL M DO
' BEGIN Q:=Q+1!

:=PRES({GRAP{ N-1) ,1) -PRES(GRAP(N) ,1)?

lF DP LESS O THEN PRINT££L53??,D|G|TS(4) ,Q,SAMELHE,££S3??,FLOW(Q,1)
,££5722 ,GRAP(N) ,££5222 ,GRAP(N-1) ££s 22,IMP(Q,1) ELSE PRINTLELS3??,
DlGlTs(ﬁ),Q,sm»ﬂmE £85322,,FLON(Q ,1) ,£65722 ,CRAP(

N-1) ,££5222 ,GRAP(N) , ££Sll?? IMP(Q,1) : '

END?

CC:=CCH+NOD(NN) !

END!? '
BEGIN ARRAY FLOWC(1:CUT,121)!
LOCATE (cah(mza)+(10mooz DIV 6242) ,1)
FILMREAD (FLOWC,1) %

PRINTEELY2CUT PIPE RESULTS? ££1222¢
. FOR N:=1 STEP 1 UNTIL CUT Do

BEGIN M:=N*2! : T
DP'—VA(C(M-I),I)-VA(C(M) 1)t '

{F DP LESS O THEN PRINT££LS3??,DlGITS( 3) ,N,SAMELIPE,&‘.-".‘S3?? ,FL(MC(N 1),885

. -

722 ,C(M) ,££5222 ,C(M-1) ,£85422 ,YB(N,N) ELSE PRINTE£LS322,D1GITS(3) ,N,SAMELIP

€££53??,FL(MC(N,1) ,£85722 ,C(M~1) ,££5222 ,¢(M) ,££542% ,YB{ N,N)
PRINTEELZNODE NO  PRES?! ‘ o
FOR N:=1 STEP 1 UNTIL TOTNODE DO

PRINTE£LS3?22,D1GITS(3) yN,SAMELINE ,££5322 ,VA(N,1) !

PRINTEELYZEND OF FILE BLOCKNUMBERS?! .

PRINTEEL?HAPDLER 17 ,SAMELIMNE ,PREF IX( ££5322) ,GRll( NUI‘-EER) ,mAmLER 2?2 ,GR5 ,EH2

2 ,GR6( NUMBER) !
END?
END RESULTSPRINT*&
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IF FLAGI THEN BEGIN LOCATE (GR5,2)!

FOR NNs=1 STEP 1 UNTIL NUMBER DO
BEGIN ARRAY PUMP(1:BRAN(NN)+1,1 :1; t
REA?MX (PUMP)*  FILMWRITE (PuMP,2)?
END

GR7 :=BLOCKNUBER+1!

GOTO L3

END! _ '
IF FLAG3 THEN BEGIN LOCATE (GR11,1)!?
FOR NNs=1 STEP 1 UNTIL NUMBER DO
BEGIN ARRAY INLET(1:NCO(NN) ,1:1)?
READMX { INLET) ¥ FILMWRITE ( INLET,1)!?
LOCATE (GRY(NN) ,1)?

END?

GOTO L3

END!? ’ .

L1:LOCATE (GR11,1)? LOCATE (GR22,2) ' LOCATE (GR33,3)!
CUTPIPEDATA?

IF FLAG21 OR FLAG22 THEN BEGIN LOCATE (GR7,2)* FILMREAD (V1,2)!
GOTO L4 END!

L5 sCALCULATE ! :

L3:LOCATE (GR11,1) ! LOCATE (GR33,3)'&

IF FLAG AND QQ NOTEQ 2 THEN GOTO L6?

IF QQ=1 THEN BEGIN

FOR NNs=1 STEP 1 UNTIL NUMBER DO
BEGIN ARRAY PUMP( 1 :BRAN(NN)}+1,1:1)!
READMX (PUMP) ' FILMWRITE (PUMP,2)!
e

GR7 :=BLOCKNUMBER+1!

E

LOCATE (GR5,2)!
FORMVI{V1)®

LOCATE (GR2(1),3)?
L4 :YBDASH!
L2:FORMVA(V1) !

IF NOT FLAG THEN TEST!

FORMCUTCON!
L10:LOCATE (GR11,1)! LOCATE (GR22,2)' LOCATE (GR33,3)"

- QQ=QQ+1"

GOTO L5!
L6 :RESULTSPRINT !



G18

IF FLAGI OR FLAG21 (R FLAG22 OR FLAG3 THEN GOTO L8!
LOCATE (GR7,2) ! FILMARITE (V1,2)!?

WAIT? |

GOTO START!

LEwAIT!

READ N!

FLAG :=N=0"

IF FLAG THEN BEGIN WAIT!

GOTO START E!D!'

L9 :sFLAG ==FLAGT :=F LAG21 =FLAG22:=F LAG3 :=FALSE !
GOTO L10!

END

END

END

END

END

END

END OF PROGRAM!
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LIST OF SYVMBOLS
Number of branches in systen
Node to Datum potential

Branch potential rise in direction of assumed flow

Gravitational acceleration
head lost in pipe

Mesh flow

Component of branch flow due to assumed mesh flow

Total branch flow in promitive system
Nurber of basic meshes in system
nunber of nodes in systenm

Hardy Cross Exponent

Fluid pressure

Hardy Cross resistance factoe

Van der Bc;g-flow residue at node i
Fluid velocity

Incidence matrix

Square non singular incidence matrix
Dranch - mesh incidence matrix
Squarc non singular incidence matrix
diamcter of pipe

Nodal demand or input

Assumed branch inpressed flow

Total flow in branch

length of pipe

Fluid flow in pipe



R resistance

\V Potential rise in branch duc to impedemce element in direction of

assurned flow

V Identity Matrix.
Y DBranch admittance
X’ Uerived or transformed admittance.matrix

Branch impedence

verived or transformed admittance matrix

u  Fluid viscosity
¢ Pipe roughness

# Fluid Density

Underlincd Qunatitics vectors

i

~ .
A TNesignates A transpose
Note on Subscrirts

Double subscriptions c.g. Iil & flow at node 1 of network A

n

Triple subscripts e.g. _l_\j AL Junction part of incidence matrix

for the ith segment of network A

—I-;A ) = vector of nodal demands for segment
2 network A



