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SYNOPSIS

This thesis aims at producing general computer methods for the failure
load analysis of structures. It is divided into two parts. In the first
part, three methods are proposed for the failure load analysis of plane
frames using the theorems of structural variation, The first method

is for the piecewise linear elastic-plastic analysis of frames in

which the plastic hinges are represented by infinitely small members with
zero flexural rigidity., A single elastic analysis is utilised to trace
the full load-deflection behaviour of a frame and its derivatives,

The second method deals with frames with nonlinear moment-curvature
relationship. Again a single elastic analysis is utilised to trace the
load-deflection behaviour up to and including failure, This method is
also applicable to the strain hardening analysis of steel frames. The
third method, which is iterative, is developed for the non-linear analysis
of reinforced concrete frames under proportional or non-proportional
loads.

The second part deals with the failure load analysis of complete structures
with parallel frames and a grillage of shear walls and slabs. This

ignores translations normal to the wind direction and rotation about

an axis parallel to it. The lateral buckling of homogeneous rectangular
panels, the interaction of torsion and shear in deep reinforced concrete
panels, and the corresponding failure criteria are investigated. The
frames and the grillage are separated and the loads transmitted to are
calculated, To verify the theoretical work, 16 structural models were
tested, In these steel or reinforced concrete frames and reinforced
concrete shear walls were either included or excluded. The results of the
analysis of a series of four storey and six storey practical structures
are reported and conclusions are drawn.

Key words (Failure load, Complete Structures, frames, Nonlinear moment-
curvature, Concrete),
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y ultimate stage
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CHAPTER 1

INTRODUCTION AND A REVIEW OF PUBLISHED WORK

l.a. General Introduction:

In recent years, rapid development in digital computers made
it possible to study the actual behaviour of frames up to and
including failure in a rational manner. Up to date methods are
available to deal not only with the elastic behaviour of frames
but also with nonlinearities due to axial forces or material
properties.

The developments to cope with reinforced concrete structures
has been relatively §low because of the complex nature of the
material, This is in spite of the fact that reinforced concrete
is being widely used in construction., There is, therefore, a need
to develop a method for the analysis of reinforced concrete
structures which is equally advanced as those for steel structures.

It is possible in certain cases to analyse complete structures
by simplifying them into sub-components such as beams and columns
and use existing methods to analyse these components. Such a
simplification can lead to erroneous results particularly if these
are considered as isolated entities. Hence the need for dealing
with the entire complete structure as an integral unit. To do
this it may be possible to use the finite element method in
conjunction with the matrix displacement method. This however
leads to the solution of a large number of equations which is
uneconomical,. The computing cost becomes especially ‘- high when a
failure load analysis, dealing with nonlinearities is required.
Therefore some rational and fairly inexpensive methods are in demand.

This thesis deals with two distinct types of problem. The

first is the non-linear analysis of plane frames which may be



either reinforced concrete or steel. In the case of reinforced
concrete frames non-linearity due to moment-curvature is taken
into consideration. In steel frames, the elastic-plastic analysis
with strain hardening is considered. In both cases, the non-
linear effects of axial forces may or may not be included.

The second problem is the failure analysis of complete
structures consisting of frames, shear walls and slabs. Details
of experimental work on the latter problem are given and
comparison is made with analytical results.

1.b. Analysis of Frames:
1.b.1 Steel Frames:

(25,26) 25 one of the first to apply the computer

Livesley
to the problems of structural analysis using matrix displacement
method. This method gives the relationship between the externally .
applied loads and the resulting joint displacements in the form:

L=KX &
Here L, K and X are the applied .load matrix, the overall stiffness
matrix and the resulting joint displacements respectively. The
matrices L and K are known for a. given frame, while the joint
displacements X are to be determined. Livesley introduced the
effects of axial loads when using equations (1.1) by using the
stability 4 functions, to modify the member stiffnesses. These
functions depend upon the axial load and the Euler load of a
member and_have the value of unity when the axial load in a member
is zero. As the axial forces are initially unknown, "Livesley used
an iterative technique for the non-linear elastic analysis of

frames subject to a given set of external loads. - In this

technique, equations (1.1) were repeatedly solved until the axial



loads were reliable.
The failure load analysis of frames was a subject of

dtﬁg) who described the actual

considerable research by Woo
failure load of a steel frame as a function of its.deteriorated
critical load after various plastic hinges had developed in a
frame. By considering instability, Wood found that failure took
place when the stiffness of a frame is completely lost. This
could happen even before the development of a mechanism. The
plastic theory was thus proved to be marginally unsafe even for
the analysis of frames.

a1

Realising this fact, Horne took the advantage of strain
hardening to compensate for instability. In doing so, Horne
pointed out that the increase of bending moment at a plastic hinge,
above the full plastic moment, Mp, can be expressed as

EI -
dM:EeH 1.2

where, EI is the initial flexural rigidity of the member, 6y is

the hinge rotation, h is the equivalent cantilever of the hinge and
"k' is an experimental factor. This increment in the bending
moment causes plasticity to spread in the vicinity of a plastic
hinge. Horne included this increment and an approximate second
order effect of axial loads into the virtual work equations, in
order to find the value of "K' which is necessary to compensate
the losses in the load carrying capacity. However further

h(27,12)

researc showed that this idea could only be useful for

small structures where axial forces are insignificant.
Considering this fact, the focus of interest was concentrated
on the elastic-plastic theory. The elastic-plastic failure load

was studied by Majidcza), Jennings and others. Jennings and Majidtzg)



produced a general elastic.-.plastic analysis program. They
modified the stiffness equations given by Livesley, to include
the presence of real and plastic hinges. They also intfoduced
the effect of axial loads in reducing the plastic hinge moments
of members. As a result of this study, they obtained the load-
deflection curves of frames up to and including failure, under
proportional loads.

Using the Eomputer program developed by Jennings and Majid,

(15,30)

Davies studied the effect of plastic hinges becoming

inactive and then active again at different stages of loading.

Equations (1.1) was partitioned by Davies to become

- - - - = -

Lyl 1Y% Xp| [ X

Myl %y Xl | &

where L, is the vector of known external loads, Ky, Xoue Kupe

EDD are the sub matrices obtained from the overall stiffness
matrix K. _gD is the known rotations of the hinges that had
become inactive and gD is the vector of unknown bending moments

at the inactive hinges. The unknown joint displacements X, were

then obtained from

Xy = Ky [y - Kyp 8] e
Having obtained the unknown vector X, the unknown bending moments
ED were obtained as

My = Koyy Xy + Kop Ko 1.5
The evaluation of other member forces BH was carried out in the
usual way described by Jennings and Majid. Davies also used
equation (1.2) to deal with the strain hardening effect. The

incremental moment of equation (1.2) was added to the fully plastic

moment value appearing in the load matrix L and rearranged equations



appears both in the load and the displacement vectors) into the
displacement vector X. Therefore the diagonal element of each

row of matrix K, corresponding to a hinge H took the form

Kltﬂ'l = KHH - %)H 1.6
The modified stiffness matrix was expressed as K'. The
displacements were then expressed as:
X=[k]""L 1.7
The displacement and the load vectors then remained unchanged.
Davies employed a linear extrapolation or inter_polation process
to predict the load factor A, at which the next plastic hinge
would form. Since the effect of axial loads were taken into
account and the equivalent cantilevers for the plastic hinges
were changing, Davies repeated the solution' of equations (1.7)
until two successive predictions of A were within a specified
tolerance, |
The size of the program used by Jennings and Majid was
considerably large, because they employed full matrix operations
in order to solve the stiffness equations for the unknown
displacements. Therefore their program was limited to medium
size structures. To overcome this limitation, Majid and Anderson(

(29). The rows and

modified the elastic-plastic analysis program
the columns of matrix K corresponding to real or plastic hinges
were placed immediately after the rows and columns corresponding
to the related joints. The stiffness matrix was constructed as a
unidimensional array in a compact form and the solution of the
stiffness equations was carried out using the technique suggested

(72)

by Jennings The diagonal elements of K were addressed in an
""address sequence' array. Only the elements of each row between

the first non zero element and that on the leading diagonal.were

20)



stored. Therefore only the elements on or to one side of the
leading diagonal were stored.

AndersoncZI) later grouped the hinges in a member aréund
the lowest numbered joint to which the member is connected.
Hence the half band widths corresponding to the hinge contributions
to the stiffness matrix were kept as narrow as possible.

The variation of bending moment with increasing load factor

[28’29). In the iteration towards a

A was assumed to be linear
reduced plastic moment Mp was kept constant during one cycle of
iteration. The load factor at which the bending moment at a
section reached Mp was predicted by.extrapolation. It was pointed
out that when Mp = m, numerical inaccuracies would take place.

To rectify this, it was suggested that the load factor for the

next hinge should be predicted by the linear extrapolation:

§ w 220RL gy o Apiasdomy 1.8
ma-my My=my

where; A;, m; and Ay, m, are the load factors and bending moments
at previous and current iterations respectively. In this thesis,
this formula is also employed in the failure load analysis of
reinforced concrete frames. However the value of Mp is replaced
by the value of the "critical moments" M., on the moment-curvature
diagram of the section. These are points of discontinuity on the
diagram.

The program of Majid and Anderson was later modified by

Majid and Bnen(31’32)

to include the effect of composite action
between reinforced concrete floor slabs and steel beams. The
composite action moment in a section in which the concrete was in
compression was calculated in a manner suggested by Holmes and

MajechS].



l.c. The Theorems of Structural Variation:

In 1973, Majid and Elliottcl) gave the basic relationships
between the old and the new member forces and deflections of a
pinjointed structure, when the area of one or more of its members
were varied or removed. These relationships were proposed as
"The theorems of structural variation".

1 - The first theorem of structural variation predicted the new
member forces in the structure when the area of a member i was
altered from Aj by an amount of §Aj. This gave the force w; in
a changing member i as:

™= Pi (1+a}/(1+afii) 1.9

where u1=-6Ai/Ai and Pi is the force in i before altering it and
fii is the force in i due to unit external force acting on i.

The force in any other member j was given as:

T. =P, + 1

3 3 - fji 1.10

where fj i is the force in j due to the above unit force and raf?%,-
was defined as the variation factor of member.i. !
2 - The second theorem predicted the new deflection ¥ at a joint
k as:
Ve = Xt Tai X 1.1
where Xk is the old deflection and Xk is the deflection at k due
to the unit force in i.
3 - The third theorem dealt with structures in which member areas

all changed proportionally and predicted the new deflections X* as:

_ 1
X* = = X 1.12

These theorems were later extended by Sakacs), who proved that

they are also valid for rigidly jointed frames. Saka found it



necessary to apply the theorems to each end of a member which is
being changed or removed. More details of these theorems and the
wo;k of Saka will be given in chapter 2, since these are émployed
by the author here in this thesis to carry out.the elastic-plastic
and the nonlinear moment-curvature analyses of plane frames.

1.d Analysis of Reinforced Concrete Frames:

The need for a rational analysis to explore the behaviour
of reinforced coﬂcfete frames was realised by early investigators
such as Glanville and Thomas(34). Tests carried out by these
indicated that continuous beams and portal frames experienced a
redistribution of bending moment as failure was approached. It
was therefore suggested that these structures had some ductility.

This point was taken up by Baker (3°»36)

who investigated this
redistribution of bending moments and developed the ultimate load
theory for the design of reinforced concrete frames. Baker
assumed a simple elastic-plastic moment-curvature relationship
which was defined by the initiﬁl flexural rigidity (EI)i of the
section, its ultimate moment of resistance and its limited capacity
for plastic rotation. The ultimate load was defined as the load
at which a sufficient number of plastic hinges form to render the
frame "statically determinate''. The slope-deflection equations
were used to predict the hinge locations and the rotation of each
hinge was calculated from the virtual work equations by a trial
and error procedure. An appropriate relaxation technique was used
to check the deflections and crack widths, Although this method
defined the ultimate load of a given structure, it was laborious

and no provision was made for the frame instability.

Baker later dealt with the ultimate load design of concrete



37,

frames By considering each loading case in turn, a sufficient
number of hinges were inserted into the frame to make it ;tatically
determinate. These hinges were assumed to be subject to the moment
of resistance of the sections. The positions of the hinges and the
values of the hinge rotations were detected in the same manner as
in reference (36). These were then adjusted until, for a specified
load factor at failure, a satisfactory solution together with a
corresponding deéign was obtained. The final design was selected
in which each section was strong enough to withstand all the load
cases. This method was an advancement to the previous one but
again laborious. Further developments in it (38), prompted the
European Committee for reinforced concrete (CEB) to initiate an
extensive program of tests. This was to study the flexural
behaviour of reinforced concrete members to obtain safe limiting
values of hinge rotations, hinge moments and other parameters
involved. The results of this investigation were published as the
"limit design philosophy" (39).

The flexural behaviour of reinforced concrete members was
also investigated by Monnier(18]. He carried out a series of
tests and observed that the moment-curvature diagram of a reinforced
concrete section was linear up to a stage at which the cracking
started. The curve, then, gradually bent and became reasonably
linear again, until the tensile reinforcement yielded. After this
point a gradual flattening took place and the section failed at a
finite value of curvature. For an under reinforced beam, Monnier
empirically expressed the value of the flexural rigidity (EI)c at

the crack stage,in terms of the percentage of tensile reinforcement

r, the thickness of the section t and the effective depth of the



-10 -

section dl' as follows:
(ED)e = (-2.5 r2 + 13.9 ¢ -1.1) bdy x 10% kgf cm? 1.13
This equation is employed By the author, in constructing the
moment-curvature diagrams of the reinforced concrete sections.
Beside the hand methods described above, efforts have been
made to provide a computer method for the analysis of reinforced
concrete structures. Cranston(40) for instance, attempted to
develop ultimate design procedures upto and beyond the maximum
load. This was done using the suggestions of reference (38). It
was concluded that a reinforced concrete section showed a further
reserve of strength even -after the first crushing of concrete.
It was thus suggested that plastic hinge rotations were, in many
cases, greater than those previously considered reasonable.
Cranston described the behaviour of reinforced concrete sections
in terms of moment-curvature (M-C) relationships. The deflected
shape and the rotational discontinuities of a frame were calculated
after reducing it to a statically determinate one by insertion of
a sufficient number of hinges. By iteration and numerical
integration, the actual deflected shape was found as the one that
gave zero hinge discontinuities. Cranston, tested this method by
a series of experiments, performed on portal frames and concluded
that tﬁis method predicted the failure loads-with reasonable
accuracy. Cranston calculated the plastic hinge moment of a
section using the compressive stress distribution in concrete,
given empirically by Hognestad et a1(17). Hé developed an
eccentrically loaded specimen and a test method which permit the
flexural stress distribution to be measured. Complete information

regarding the flexural stress distribution, including stress-strain
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graphs with a descending curve beyond the maximum stress, was
reported for various water/cement ratios. Details of this
distribution will be given in chapter 3, since it is also.employed
in this thesis to calculate the ultimate moment of resistance and
the ultimate curvature of reinforced concrete sections.

Cranstons method was able to deal with any shape of (M-C)
diagrams. However the method was rather complex and applicable
only to frames of a limited size. No provision was made by
Cranston to obtain the full load-deflection history of the frame
and the instability effect of axial loads was again neglected.

Cranstontlg) later proposed a computer method for determining
the relation between the axial load, the moment and the curvature
of members. A numerical integration technique was used to
determine the moment-curvature relationship of a section for various
values of the axial load. The interaction curve between the
ultimate axial load and the ultimate moment was then obtained by
plotting the ultimate moment values of each M-C curve against the
corresponding axial load. This was also laborious and perhaps a
more refined empirical formulae would be more useful for practical
purposes.

The effec£ of instability in tall reinforced concrete sway
frames was studied by Baker£41), Naddus and Yu(42). The latter
two suggested that if a thorough analysis was to be obtained, this
effect must be allowed for. They pointed out that, even though
Baker's design methodtss) was extended to allow for instability,
no attention was paid to the sequence of plastic hing formation.

Chin (43) proposed a computer method for the non-linear
analysis of plane frames subject to proportional loading with

members having . arbitrary M-C relationships. These were -
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considered to be functions of the bending moments only. The
matrix displacement method was utilised throughout this analysis.
At the first step, a set of trial displacements were used to
calculate the forces required to maintain equilibrium. If this
was not achieved, the trial displacements were corrected using
the stiffness properties of the structure. The process was then
repeated for other loads. Chin, analysed the frames tested by

Cranstonc4o)

and achieved good agreements with those obtained by
Cranston. Chin's method was simpler than that of Cranston and
required less computer time. Again the instability effect of
axial loads was ignored throughout.

Deeblecls) described an incremental approach to trace the
full load-deflection history of reinforced concrete frames in
which the moment-curvature diagrams were approximated by a series
of successive straight lines. Deeble analysed a frame under
small increments of the load factor and added the resulting
member forces and deflections to those due to the previous
increments. Each time this was done, the flexural rigidity of a
member was adjusted to the slope of the M-C diagram corresponding
to the moments developed in that member. Deeble noticed a
divergence in his results and suggested that smaller increments
in the loading might reduce this to a tolerable level. Deeble
subdivided the members and assumed that the bending moment on
each submember was constant and equal to the larger of the two

end moments. This subdivision increased the computational effort

considerably.

Deeble also tried to adopt the analysis program of Majid and

Andersonczo) for the analysis of reinforced concrete frames.
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Piecewise linear M-C diagrams and subdivision of members were used
once again. The full effect of axial forces on the stability of
the frame was taken into account and the frame was analyse;d until
a stipulated tolerance was satisfied. Once this was done, the
process was repeated for the prediction of the next critical point
in the M-C diagram. As a critical point was reached in a member,
its flexural rigidity was adjusted to the slope of the next
transition region on its M-C graph. However no allowance was

made to preserve the forces and deflections present in the frame
just before a critical point was reached. Therefore equilibrium
was never satisfied.

(10)

Cakiroglu and Cetmeli applied a modified unit force

method to handle any type of nonlinearity. This included nonlinear
stress-strain and M-C diagrams as well as the effect of axial
loads. They derived the compatibility equations of a frame in
nonlinear forms and applied the Newton-Ralpson method for the
solution. The approach was general but not fully automatic. This
was due to the'necessity of deriving the compatibility equations,
manually, in a mathematically explicit form. Such an analysis

can only be carried out for a given set of loads.

Corradi et a1(22)

applied the "imposed rotations' method in
conjunction with the finite element approach and an over relaxation
technique to analyse reinforced concrete frames under a given load

factor. This approach was anologous to that of Baker(36).

The
full effect of axial loads on stability and the M-C diagrams were
taken into account. Corradi analysed a six storey, single bay
reinforced concrete frame for a given set of external loads, and

compared their results with those obtained linearly. No comparison

was made with any of the existing methods. It was implied that
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even if this method could be cxtended to trace the full load-
deflection history it would be restricted to proportional loads
only., The numerical techniques (Beale's quédratic programming
algorithm and linear complementary problem solution by sy;fematic
over relaxation), involved in the analysis, made the method complicated
and computationally expensive.
l.e. A Historical Review of three dimensional Analysis of Structures:-
Since the computer became widely applicable to tﬁe problems
of structural engineering, a considerable amount of research has
been diverted in to the overall behaviour of structures. Work in
this direction was encouraged by the well known fact that the lateral
stability of a structure can be most efficiently provided by means
of shear walls or cores. These can efficiently withstand the applied
lateral forces,
Theoretically, the finite element method (44,45) was considered
as a good tool to explore the overall behaviour of a complete
strﬁcture of any shape. However, this method is computationally
expensive. To reduce cost, some simplified methods have also been
proposed for various specific type of structures.
The pioneering work in this field was carried out by Whitneyc46)
on the design of blast resistant structures. Further research was then

(47,48,49,50,51) (52,53, 5

carried out on shear walls , on coupled shear walls

(s5,56,57,58,59,60)

and also on shear wall-frame interaction The

effect of cladding on the load-carrying capacity of steel structures

was also studied by Bryan and El-dakhani(Gl’Gz) d(23). A

, and Maji
brief review of the works related to the type of structures considered
in this thesis is given here,
(63) :
Clough et al used the wide column anology for structures

-

consisting of skeletal frames and wall-frame systems. This ignored



=15~

the in-plane bending of the slabs and the overall rotational stiffness
of a structure, The stiffness matrix of each frame was re&uced to a
condensed form to cater for lateral displacements only. These
condensed stiffness matrices were then superposed to form the overall
stiffness matrix of the structure. The load vector consisted of the
applied wind forces and the lateral equivalent of the vertical and
rotational forces. Having calculatéd the common lateral displacements,
the vertical and the rotational displacements of the frames weré
obtained by back substitution., This treatment was a simulation
of the three dimensional behaviour of a structure in two dimensions.
An analysis of a 20 storey structure showed that neglecting axial
deformations led to errors of about 20%in some of the columns.
B?cause the overall ?otations of a structure were ignored, this method
was only applicable to symmetrical structures under symmetrical loads.

A method was proposed by Winokurcwuiclucktss) for the analysis of
non-symmetrical structures., This used a matrix displacement approach
in which the relative lateral stiffness matrices of individual bracings
were obtained separately. Ignoring the in-plane bending of the slabs
the deflected shape of the structure was represented by the displacements
of an arbitrary point at each floor level. Horizontal displacements
parallel and normal to the wind direction and the rotation about a
vertical axis passing through the shear centre were considered, The
overall stiffneés matrix of the structure was then constructed from
the contributions of each individual bracing component corresponding to
the assumed displacements. Once the deflected shape was found, the
member forces were obtained by back substitution. This method
was attractive particularly becéuse it covered a large range of structures
while using a relatively small nuﬁber of equations. However, the

concept of a 'shear centre,' proposed by the method, which was based
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on the relative lateral stiffness of the bracings, at each floor
level, was invalid, except when the bracings deflected colinearly.
Goldberg(64) proposed a method for the ‘analysis of a type of
structure consisting of parallel shear walls and frames, This ignored the
axial deformations of the beams, the columns and the wide column effect.
It was assumed that the slabs in the structure were pinned to the shear walls
and the frames. Therefore, only the equilibrium of the lateral forces
at the frame-slab and slab-shear wall junctions were satisfied., A
maxtrix displacement approach was employed to solve for lateral
displacements of the junctions. Two symmetrical ten storey and twenty
storey structures, with side walls and seven intermediate frames were
analysed by Goldberg., These showed that the bending of the slabs had an
insignificant effect on the lateral deflectiong. It was found that the
distribution of shear forces differed considerably from frame to frame.
It was also shown that the effect of shear deformations in the walls and

the slabs was significant and had to be taken into account.

(44,45) (65) .,

Majid and Williamson used a sparse matrix method
develop a finite element analysis for structures consisting of prismatic
members and plate elements subject to in-plane and out of plane forces.
The effects of bending, torsion and cross coupling were taken into
consideration. A series of experiments were carried out on two and
three storey plane frames with shear wall cladding to study the effect of

. . (28,61,62)
shear walls on the stiffness of bare frames. A pitched roof shed

was also analysed and the effect of sheeting on the load-carrying

capacity of frames was demonstrated.
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(66,67)

Majid and Croxton later, developed a method for the linear

analysis of complete structures consisting of a grillage of'solid

walls and floor slabs, stiffened against the horizontal displacements,

by the action of parallel ffames. The grillage and the frames were
analysed separately under the action of a system of unit horizontal
forces and their influence coefficients were determined., These
components were then reassembled and horizontal equilibrium and
compatibility conditions were satisfied at the slab-frame junctionms.

The parts of horizontal forces transmitted to the slabs and to the

frames were thus calculated. Each of the frames aﬂﬁ the grillage were
then analysed under their own share of loads, The matrix displacement
method was used in determining the influence coefficients and the

forces and the deflections of each sub structure. In this approach

the shear walls and the slabs were assumed to be deep beams and the
effect of shear deformations were taken into account, Each grillage
joint was assumed to have threé degrees of freedom. These were the sway
in the wind direction and rotations about the vertical and horizontal
axes normal to the direction of the wind. A typical structure which was
dealt with is shown in figure 1.1 together with the sign convension and the
loads transmitted to the grillage and to the frames. The vector of wind load
P was divided into two vectors g and f transmitted to the grillage and

to the frames respectively. The horizontal equilibrium and compatibility

equations for the frame-slab junctions were then expressed as:

4

Pzgif 1.14

and

Sgra=-LE 1.15
where G and F are the influence coefficient matrices of the grillage

and the frames and a is the horizontal deflection vector of the -
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grillage due to the loads w acting on the shear walls. For the structure
given in figure 1.1 these matrices are of the following forms:

a- The matrix G:

Sj1001
. SYMMETRICAL|  Floor 1
Sy Saym
6 6
n %en 5 son 1516
Cp2,11 C22,21 22,12 ©22,22 Floor 2

Where, G12 21? for example is the horizontal deflection of junction 1,2
] 3

due to a unit horizontal force acting at junction 2,1,
b- The vector a:
L=flay; 8y 8y 3y sis: 13l

where a,, is the horizontal deflection of junction 2,1 due to the loads

acting on the shear walls.,

c- The matrix F:

Fli'na
Es= 0 F21,21 SYMMETRICAL Floor 1
Fl2,11 g F12,12 seee 1.18
|“0 F22’21 0 F22,22 Floor 2
Frame Frame Frame Frame

1 2 1 2
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Writing equations (1.14) and (1.15) together,Majid and Croxton

obtained the loads transmitted to the frames and to the grillage as

follows:

£= @D7E Pra) 1.19
and

g=P-£f 1.20

Majid and Croxton verified this method by tests carried out on a
two storey model structure, consisting of shear walls and slabs made
out of perspex and three intermediate frames made out of steel, The
method was further verified by the analysis of a 10 storey structure
reported by Goldberg(64). The limitations of the method were that the
structures that could be considered consisted of parallel shear walls
and frames., Each frame and grillage should at least show some
amount of stiffness against lateral loads,

Croxton(67) later modified this method and considered the complete -
structure as a grillage, laterally restrained by the frames. The
matrix displacement method was used to determine the lateral stiffness
of the individual frames by partitioning and condensation of their
overall stiffness matrices. The stiffness matrix of the complete
structure was then formed by superimposing the lateral frame stiffnesses
on to the stiffness matrix of the grillage. The joint displacements
and member forces of the grillage were obéained directly and the
analyses of the frames were completed by back substitution,

Majid and 6nen£31’32’68) developed the Iineal approach of Majid and
Croxton to analyse complete structures up to and including failure.

(20) was used

The elastic-plastic analysis method of Majid and Anderson
in the individual analysis of each steel frame, The grillage system was

assumed to be sufficiently strong to maintain its initial stiffness -
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througﬁout the loading procedure,

After the first separation of the lateral loads Majid and Onen
considered each individual frame in turn and analysed it under the
factored loads to predict the load factor at which the next plastic hinge
would possibly form in a frame. The lowest load factor was selected and a
plastic hinge was inserted into the corresponding frame. This
caused a reduction in the relative stiffness of the frame. Therefore
mofe loads were transmitted to the other frames and to the grillage.
Tﬁe frame influence coefficient matrix F was rbconstruéted while
the grillage influence coefficient matrix G remained unaltered. The
influence coefficient equations were solved again and the new parts of the
lateral loads transmitted to each individual component were calculated,
Again each frame was analysed under its own new share of loads and
further plastic hinges were detected until failure took place in one
of the frames. Full effect of axial loads were considered. The effect
of composite action between the floors and the beams was also considered.
The method was tested by experiments on one and two storey model
structures-with steel frames and perspex grillage. The results
were found to be satisfactory for one storey structures but not for
two storey strulctures. These latter ones were reported to have failed
due to buckling and cracking of the shear walls and the floor slabs.
Some practical structures were also analysed and it was concluded that
the presence of shear walls increased the Ioaa-carrying capacities of ~
these structures drastically. Part of the work in this thesis is
a continuation and development of this field.
l.e. Lateral Buckling of structural members

The phenomenon of lateral buckling has been studied by various

investigators. The basic differential equations for the lateral
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(89)

buckling were derived by Timoshenko P Michell(go) and a solution

was proposed for the problem of a simply supported beam subjected to

equal and opposite end moments., Beside various éuthors, Horne(73)
and Salvadori(74), studied the lateral buckling of eccentrically

loaded columns under unequal terminal moments. For an I section, Horne
used energy equations together with successive approximations in
conjunction with a Fourier analysis. This was concerned with the
elastic case and assumed that the members are initially free from
imperfections. The second moment of area about the major axis of the
section was assumed to be considerably greater than that about the

minor axis and the curvature in the weak plane was ignored. The

ends of the member were assumed to be simply supported, therefore the
effect of end restraints was ignored. The warping rigidity of the
section was considered as one of the parameters. The method was
applicablé to any cross section with double symmetry., For the case when
the axial force was zero, a simplified equation was given for the
critical value of the maximum end moment Myzcr which caused lateral
instability as:

) ;
Myzcr = (F+YF1)ME yz 1.21

where F and FI are the parameters tabulated by Horne for various ratios

of end moments, y is the warping rigidity factor and MEyz is the value

of the elastic critical moment derived by Timoshenko (89) for the

case when the end moments are equal and opposite. An approximate equation
was also given for the interaction of this moment and the axial force,

This made the method practically acceptable.
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(75)

Trahair studied the effects of symmetrical elastic end restraints

on the lateral buckling of symmetrically loaded I beams. He employed

the energy method given by Timoshenko(gg)

and carried out the '
analyses by a digital computer. A variety of symmetrical load
cases and end restraints were dealt with for various values of

warping rigidity. The results of the analyses were given in the

following form:
Myzer = GIEInyJ/’L 1,22

Here EIyy’ is the minor axis flexural rigidity; GJ is the torsional
rigidity; L is the length of the member; & is the parameter tabulated
by Trahair, which depends on the end restraints, warping rigidity and
load cases.,

Massey(76) dealt with simply supported reinforced concrete beams under
equal and opposite end moments. Here it was assumed that the major
axis flexural rigidity was very large and, therefore, the displacements
"in the weak plane were small, The minor axis flexural rigidity, the
torsional rigidity and the warping rigidity were expressed in terms of
dimensions of the cross section and the stress-strain diagrams of
steel and concrete respectively.. The theory was testified by a series of
experiments and the results were in reasonable agreement with the
theory.

(77

Netercot and Rockey tried to develop a unified approach to
consider separate pieces of work carried out on different aspects of

lateral buckling, These simplified the existing equations, so that
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they may be used for design purposes. A recent work in this field was
produced by Vacharajittipan and Trahair(?a) to deal with the lateral
buckling of frames. The differential equations for in plane bending
and flexural-torsional buckling were obtaine&, together with the
boundary, compatibility conditions and warping and joint equilibrium
equations. The finite integral method was utilised for'the solutions
of the above equations by a fully computerised approach.
1.f. Failure of Reinforced Concrete Sections under the combined
action of Bending, Shear and Torsion:- -

Work in this field was directed primarily.tbwards predictiug the strength
of members. Hoegnestad(gl) discussed the fundamental concepts in the
ultimate load design of reinforced concrete members and derived the
general equations for the possible failure modes. Kani(gz), on the
other hand, studied the failure of large (deep) reinforced concrete
beams under the combined action of bending and shear. From the
experiments carried out, it was observed that the relative beam
strength decreased considerably as the beam depth increased. It was
concluded that the safety factors derived from the tests of
small beams are not realistic and might be even dangerous. The main
cause of the deterioration of the beam strength was claimed to be the
prematurely developed diagonal cracks, which were merely due to the
shear force.

Neville et 31(93) developed an analytical method for the calculation
of the flexure-shear strength of reinforced concrete'deep beams., The

effect of shear force on failure was taken into account in deriving

the equations for the failure load.
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The investigators, studying the interaction of torsion with bending
and shear followed two different approaches known as the truss analogy,
and the skew bending theory. The method of truss analogy was presented

(83) and

by Reusch(94) and was later expanded by Lampert(gs), Elfren
others to include the combined effects of torsion and bending.
Early work on the interaction of bending torsion and shear by using the

skew bending theory was carried out by Gvosdev and Lessing(86)

and others(82’85’87). They studied the equilibrium conditions and tried
to derive expressions for external and internal energy for observed skew
failure mechanisms.,

(88)_applied the skew bending theory

Elfren, Karlson and Losberg
to study the general interaction of bending, torsion and shear .in a
simple and rational way, They first studied the equilibrium
equations for the special case of bending and torsion only. They
reported that their results were in agreement with what has been
developed previously with the skew bending theory and with the truss
analogy. The effect of the shear force was then taken into account in
deriving the equilibrium equations for a general skew failure surface.
This assumed that the compression centre of the section was at the level
of top horizontal stirrup legs for the mode in which the compression
zone is in the top of the cross section. The dowel action of the
longitudinal reinforcement which was placed at the bottom and at the top
of the cross section was ignored, It was also assumed that the stirrups
are'completely yielded at fhe stage of failure and the concrete in the
compression zone did not sustain any shear stress. The inclination of
the cracks were related to the torsion and shear acting on the member.
In this manner an interaction equation was expressed in terms of the ratios

of the applied bending, torsion and shear to the ultimate values of each

respectively. For the mode in which the compression zone is placed in the
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top of the beam the interaction equation was given in the following

form:

2
— tG— X— =1 : 1.23
ult tult yult '

where M,M; and Sy are the bending moment, the torque and the shear

force acting on the member. Mult, M

ult are, on the other hand,

t
the ultimate bending moment, -torque and shear force carrying

a.ndSyu:l

capacities respectively. These were given as:

= - !
Mare = =2 ATyt
_ Awowy  /*2Albolby s
Miu1e™ 20'RT =35 ¢/ b'+h! Awowy 1.24
Awowy /2A1bg lby S
= '
Syult °h s J/ h! Awowy

Hers, Awowy is the yield force carried by a stirrup leg; 2Albolby is the
force carried by the tensile reinforcement; s is the spacing of the stirrups
b! is the distance between the vertical legs of a stirrup and h' is the
distance between the tensile and compressive reinforcements. It was
reported that the available test results supported their method; however
more tests were needed for further justification. To develop this

method, the depth of the neutral axis had to be determined in a more
rational way. A similar approach is employed in this thesis to derive

the interaction equations of bending, shear and torsion for deep, .

multilayered reinforced concrete:-panels.
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l.g. The Scope of the presented Work:-

The work presented in this thesis can be divided into two parts.

The first part is an investigation into the behaviour of plane
frames in order to present a simple and versatile method, to deél with
the nonlinearities due to various effects and to analyse such
frames up to a given load factor or upto and including failure. The
applicafion of the theorems of structural variation to the elastic-plastic
analysis of steel frames is studied inlchapter 2, The concept of
'the compensating loads' is derived from these theorems. These are
defined as the loads necessary to be applied on a frame in order
to maintain the initial state of forces and deflections, when the
flexural rigidity of a member is altered or when a member is removed,

A piecewise linear elastic-plastic analysis method which only makes use
of a unique linear elastic analysis, is proposed. Using the theorems
of structural variation, it is also shown that an elastic-plastic
analysis of a derivative frame, obtained by removing or altering some
members of a ground frame, can be carried out by using a single initial
elastic analysis of the ground frame,

In chapter 3 the nonlinear material properties are expressed in terms
of moment-curvature (M-C) diagrams and the theorems_of structural |
variation are again used in a nonlinear M-C analysis procedure. This
procedure is also applied to the analysis of steel frames with strain
hardening, In the second part of this chapter, the nonlinear M-C
properties of reinforced concrete members are presented by trilinear M-C
diagrams. The compensating loads are then used to develop a rigorous
failure load analysis for reinforced concrete-frames. This procedure
takes the nonlinear material propefties and the effect of non-
proportionally increasing loading into account as well as the second order

effect of axial loads. The reliability of the proposed methods are
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checked by a number of examples and the problems encountered, are
discussed.

In the second part of this thesis, the failure of complete structures
with shear walls, slabs and bare frames is studied. A method of
analysis is given in chapter 4 to obtain the load-deflection diagram
of a complete structure upto and including failure. The
structure may be made out of reinforced concrete or steel frames
together with shear walls and slabs made out of reinforced concrete
or any homogenous material. Lateral buckling prior to failure and
cracking of panels are taken into consideration., Plastic hinges in
steel frames and critical stiffness changes in reinforced concrete
frames are also included. The frames and the grillage of shear walls
and slabs are first treated separately with their own share of the
applied loads., These are calculated from the compatibility conditions
at the frame-slab junctions. Since the effects mentioned above
cause major stiffness changes, the loads transmitted to each
component of the structure vary  throughout the loading process.
Therefore special care is taken to calculate the actual values of
these transmitted loads as each critical change takes place in the
structure, Lateral buckling of panels is then studied and an
approximate method is proposed to calculate the critical bending moments
which cause lateral instability. Since.practical structures do not fail
due to buckling of slabs, the approximation proposed is rather crude

but sufficient to analyse Onen's frames that failed by the buckling
of perspex slabs, Cracking of brittle, homogenous panels under the
combined action of bending, torsion and shear is also considered in this
chapter and the proposed failure criteria are discussed., Chapter 5

is spared for the failure of deep reinforced concrete panels under_the
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combined action of bending, torsion and shear, The skew_bending-
theory is employed to derive the interaction equations at failure.
The location of the neutral axis along the faiiure surface is studied
and a method is proposed to calculate its depth. The validity

of this method is verified by the experimental data obtained from
_the tests. The effect of the depth of the neutral axis to the
ultimate failure load of a complete structure is then studied and its
significance is revealed, Under the light of these studies, some
modifications in the process described in chapter 4 are given.

The validity of the interaction equation are then

checked by experimental data.

The computer program developed for the nonlinear analysis of
plane frames by means of the structural variation theory and the
program developed for the failure load analysis of complete structures
are presented in chapter 6.

The first program is able to carry out the following typesof analysis
of frames:

1 - Linear elastic analysis

2 - Nonlinear elastic analysié

3 - Piecewise linear elastic-plastic analysis

4 - Piecewise linear elastic-plastic analysis of a derivative frame
by using the initial solution of the ground frame, from which
the derivative frame is obtained,

5 = Nonlinear moment-curvature analysis,
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The failure load analysis program can handle any kind of complete
structure consisting of parallel steel or reinforced conérete frames
and shear walls and slabs made out of reinforced concrete or out of
a homogenous material. The effect of inactive hinges and the
composite action of slabs and beams are also takenlinto account,

This program is also able to carry out the failure load analysis
of a plane frame or grillage repeatedly.

In chapter 7, the experiments carried out on the model structures
with reinforced concrete grillage, with or without refinroced concrete or
steel frames are described.

Comparison of the theoretical and the analytical results is then
given in chapter 8. This chapter also includes the results of the
analyses of four storey and six storey practical structures for.
which results obtained by Onen are available for comparison.

General conclusions concerning the validity of the proposed
methods are drawn in chapter 9 and suggestions are made for

future research.
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CHAPTER 2

APPLICATION OF THE THEOREMS OF STRUCTURAL

VARIATION IN THE ELASTIC-PLASTIC ANALYSIS

2.a. Introduction:- i

The basic principles of the theorems of structural variation
were first outlined by Majid and E1liott“'2'6'. They dealt with
the changes in the forces and deflections of pin jointed structures
due to changes in the areas of their members., and suggested that
these theorems can be extended to cover all kinds of structures.
Later, Sakats) extended them to cover rigidly jointed plane frames,
and studied the effect of changes in the second moment of areas on
the forces and deflections of these frames. -

In this chapter, the basic principle of these theorems is
first used to obtain the load vector to be applied to a structure
to preserve the member forces and deformations when the flexural
rigidity EI of a member.changes. The application of the theorems
is then simplified to cover the case of members in single curvature,
Once this is done, it becomes possible .to predict the forces and
deflections in a frame when it develops hinges or when hinges are
inserted. This enables the use of the theorems to carry oﬁt the
elastic-plastic analysis of plane frames.

2.b. The compensating loads:-
Consider a member of a frame, shown in figure (2.1), for

which the member forces are:
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a- Deflection of a member

b- Forces on a member

FIGURE 2.1: FORCES AND DEFLECTIONS ON A MEMBER
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where Sjj is the shear force and Mjj and Mjj are the bending
moments at the ends i and j respectively. The variables v, 63
and 6j are the sway and the rotations. The modulus of elasticity
is E, the second moment of area is I and L is the length of the
member.

If I is now reduced to a value I' by an amount &I, then

I' =1 - 61 2.2
Defining a = - 8I/T, 2.3
it follows that:

I' = (1+a) I 2.4

Keeping the deflections constant and substituting equation (2.4)

into equations (2.1) gives:

' 121 _ 6EI 6er| [ ]
51j 13 1.2 Y I
L
Mij = (l+a)| - SEI 4EL 2E1 8i 2.5
L2 L L
' 6EI 2EI AEI
M T o LY
7 i L L L | L.
p! K Z

Comparing equations (2.1) and (2.5) we note that:
P' = (1+a) P 2.6
where l+a is a scaler.

The second moment of area of this member can be reduced,
without affecting the forces and the deflections anywhere in the
frame, provided that equal and opposite compensating loads P - P!
are applied to the joints i and j at the ends of the member.

Now:
P-P'=P- (l+a) P = -aP = -a {Sjj Mjj Mjil 2:7
and the shear force is in fact given by

M s < s
Sij = - i > Mii ;M 2.8



o

Thus the compensation loads to be applied at i and j, in the

global coordinates are:

Six|=|- mp 0 0 o Sij

Siy 1p 0 0 @ Mjj

Mi 0 RERH 2.9
Sjx mp 0 0

M; o o0 1

where Six and Siy are the component of Sjj in the x and y

directions, while mp and 1lp are the direction cosines of the

member. By resolution, the compensating load matrix is obtained

as:

{Six Siy Mi Sjx Sjy Mj}={-ompSij alpSij oMjj ampSij -alpSij oMji}
2,10

These are shown in figure (2.2).

This load matrix will be used in chapter 3 to carry out the

rigorous nonlinear failure load analysis of reinforced concrete

frames.

2.¢ The unit load matrix:-

It was found ¢ 3 ) that an analysis of a rigidly jointed
plane frame under two unit loading cases applied at the joints i
and j is necessary to study the effect of the variation in the
second moment of agea of a member joining i and j on the forces
and deflections in the structure. These unit load vectors can be
written as
{Six Siy Mji Sjx Sjy Mj} = {-Tl‘-mp-I];-Ep l%mp-%-f.p 0} 2.11

and
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1 1 1 1
{Six Siy Mi Sjx Sjy Mj} = {- y mp - 2p Oy mp - 7 &p 1} 2.12

This is due to the fact that there are two variables directly
related to the .changing second moment of area. These are the
bending moments Mjij and Mji. "When the member ij is in single
curvature and its length is infinitally small, the end moments
Mjj and Mjj are equal and opposite. In this case there is only
one variable directly dependent upon I. The corresponding unit
load matrix can therefore be obtained by subtracting equation
(2.12) from equation (2.11) to give:

{Six Siy Mi Sjx Sjy M} ={0 0 1 0 0 -1} 2.13
These unit loads are shown in figure (2.3). A single analysis of
the frame under the unit load vector given by equation (2.13) is
sufficient to study the effect of changing the second moment of
area of ij on the rest of the structure.

To study the independent effects of varying several members
requires an independent unit load vector to be applied on the
frame., These vectors can be collected together and expressed in
a matrix C which is called the unit load matrix of the frame.

The contributions of two changing members ij and st to this matrix
are given by: - . .
Six

Siy At joint i
Mj

2 OO e
oo O -

i

Ssx
Ssy At joint s
Ms

O O

ij .
Sjy At joint j 2.14
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In equation (2.14) i is the first end of ij while s is the
first end of st. The first column of matrix C is constructed for
member ij and the second for member st. Every column of C
consists of zeroes except for a positive unit moment, at the
joint connected to the first end, and a negative one at the
second end of a changing member. When analysing a frame under
the external loads L it is now possible to evaluate simultaneously
the joint displacements and member forces due to C as well., This
is particularly useful as it saves a great deal of computing time.
For this reason the external load vector and the unit load matrix
are compound to form a single vector(L Clwhich is used to solve
[L Cl= K X once.

2.d Inserting a Hinge to a Frame:

A hinge in a frame can be represented by a member with zero
flexural rigidity and infinitely small length.

This member can be used to study the effect of hinges on the
member forces and deformations by means of the theorems of
structural variation. To begin with the possible hinge locations
are marked and infinitely small members are inserted into these
locations. Then the compound load matrix [L C] is constructed
and the structure is analysed once.

If a hinge is required to be inserted into location k, the
following steps are taken:

i - Set the second moment of area of the member in that location
to zero which makes:

a = -8I/1I = -1
ii - Calculate the variation factor from, see equation1ﬁD in

chapter 1,
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Tok = 9 2.15
l+apg

where M and pg are the bending moments on member k due to the
external loads and unit loading at its ends respectively.
iii - For n members, calculate the new member forces by means of

the first theorem of structural variation as:

ML,q = Mv,q * Tox Py v=12;q=1,nand q # k
Sa = Sq * Ty sq q=1,n
Pa " Pq * Tk pq q=1,n 2:16
for q =k and v=1
=0

Mik = (1+a) Mlk/[1+a ulk)

1] ]
Where Mqu and M2,q

and second ends of member q. Sa is the new shear force and P& is

the new axial force. M2 q’ Sq and Pq are those due to external

are the new bending moments at the first

loads whi}e ulq’ %q and Pq are those due to unit moments at the
ends of member k and n is the number of members.

iv - For m joints calculate the new deflections from the second
theorem of structural variation as follows:

VYoq = Xyg * Tak X v=1,23;q=1,n 217

vq vq
where the values of suffix v 1, 2 and 3 refer to the deflections
in x and y directions and rotation respectively, while q refers

to the joint. The deflections Vs and Xz q are the new

»q’ Xs'q
rotation, rotation under external loads and rotation due to unit
loading at the ends of member k, for joint q.

When some other hinges are required to be inserted,each of
the unit load cases corresponding to those hinges are considere&

to be external loads in turn and the steps ii, iii and iv are

carried out to modify the member forces and deflections. The
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hinges are inserted one at a time.

For instance two hinges are inserted in to the locations ccC!
and DD' of the frame shown in figure 2.4. The structure is first
analysed once under the external loads, unit loading at C-C' and
unit loading at D-D'. Then the results of the unit loading at
C-C' are used to calculate the member forces and deflections of
the frame with a hinge at C-C' due to exterﬁal loading and unit
loading at D-D'. Finally the modified forces and deflections due
to unit loading at D-D' are used to remodify the forces and

exfernal loads and
deflections due toda hingeisinserted at D-D'.

hetheorems of

The use ékisé;uctural variation in inserting a series of
hinges into a frame by only using its initial linear elastic
solution is useful for studying the elastic-plastic behaviour of
that frame under increasing external loads. This will be studied
in the next section.

2.e Elastic-Plastic Behaviour of Frames:

Consider a frame made out of a material which has an elastic-
plastic stress-strain diagram as shown in figure (2.5). As the
externally applied loads increase, the member forces and deflections
increase proportionally until the bending moment somewhere in the
frame first reaches the fully plastic hinge moment 'Mp' of the
section. From then onwards this point acts as a hinge and the
frames become more flexible. The deflections and the bending
moments elsewhere in the structure now increase at a faster rate.
The bending moment at the section, however, preserves its value
'"Mp'. This state of affairs continues until a sufficient number
of plastic hinges develop in the frame to form a mechanism and

the frame fails. It should be pointed out, however, that the
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presence of axial forces may decrease the value of Mp continuously.
The frame may also fail by instability before a mechanism develops.
A rigorous elastic-plastic analysis procedure dealing with these
effects is given elsewhere(4). However in the elastic-plastic
analysis procedure by means of the theorems of structural variation
given here, these effects of axial loads are ignored.
2.f. Piecewise Linear Elastic-Plastic Analysis:.
The following assumptions have been made in the development
of the analysis.
1 - The loads are proportionally applied up to collapse. However
the method given in chapter , may be used to deal with nonproportionally
increasing loads.
2 - The structural material possesses elastic-perfectly plastic
stress-strain and moment-curvature relationships. However this
assumption is not always necessary. An approach considering
nonlinear moment-curvature diagrams will be given in chapter 3.
3 - Plasticity occurs at discrete sections. In other words the
shape factor of the sections are equal to 1.
4 - An increment of the bending moment at a section always causes
an increment of curvature of the same sign.
5 - The effect of axial loads on the stability of frame is neglected.
The steps for the elastic-plastic analysis are as follows:
i - All the possible hinge locations are marked, the compound
load matrix [L C] is constructed.
ii - The frame is analysed linear elastically once under [L C] by
any conventional method, such as matrix displacement method. The
resulting member forces and joint deflections are found.

-

ii - For convenience the bending moments, axial forces and
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deflections are stored in the matrices M, P and X respectively as
follows:=

a - Bending moment matrix M:

M11 M21 M2 M22. . - Min Mz,

1 1 1 1 1 1
U1l 'M21 H12 M22.. . Hln M2p - 2.18

| =
1]

Lqu wi1 ul2 w2 . - uln ugn_
The matrix M has £ + 1 rowg and 2 n colums. Wwhere £ and n
are the number of possible hinge locations and number of members
respectively. The bending moments M;; and ufz are the first end
moments of member 2, due to the external loads and the unit
loading at the ends of the member representing the hinge location.

at f.

b - Axial force matrix P:

Py Ppevw Pn

P= |PpPy---p! 2.19
.f f
LRS- pﬁ

Where P, and Pi are the axial forces in member n due to
external loads and the £ unit loading.

¢ - Deflection matrix X:

X1 y1 6 Xn  Ym Onm
X11 X21 Xa31 Xim Xom Xsp

1 - 1
X = | X11 X21 X31 . . . 2.20

f f £ £ £
- LXI1 X21 X31  Xlp X2m Xgm_

where X3; and x31 are the rotations of joint 1 due to the external
loads and the first unit loading.
iv - The bending moments, axial forces and deflections due to

external loads are collected to form the actual bending moment,
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axial force and deflection matrices MA, PA and XA respectively.

These matrices are as follows:

MA = [M13 M21 .-+ Min Mgg] 2.21
PA= [Py Py ~-+- P 2.22
XA = [X;; X21 X31 +++ Xim X2p X3m] 2,23

v - Every possible hinge location is considered in turn and the
load factor A% at which a plastic hinge occurs at k is calculated

from
k

k _ Mp

Al

Where M% is the fully plastic moment of location k, MA(1l,k) =-MA(2,k)
is the bending moment at the location k due to external working
loads.

The smallest of these predicted load factors is selected.
This is then the load factor A} at which the first plastic hinge
develops in location .k*. The current member forces and deflections
are obtained by scaler multiplying the matrices MA, PA, and XA by
A1. To preceed further, the member forces and deflections of the
frame with a hinge at k* under the external loads is necessary.
Conventionally a fresh analysis of the frame, i.e. a fresh solution
of L = KX, is required. However the use of the theorems of
structural variation saves all such analyses which are at the rate
of at least one per hinge.
vi - The bending moments, axial forces and deflections due to
unit loading at location k* are used to modify the forces and
deflections due to external loading and other unit loadings. This
is done using équations (2.15), (2.16), (2.17 ). From equation
(2.15 ) the variation factor for each loading case (for each row

of matrix M) is calculated as !
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k
KoMkt M(k2u-1)
ak 1-uy 1-M(K+#1,2u-1)"

k=1, f+1 2:25

where f is the number of possible hinge locations, k*+1 is the row
which corresponds to the unit loading case for location k*, u is
the hinge number at k*. The K+1st row of each of the matrices M,
P and X are multiplied by rﬁk* and added to their k™ rows.

Having done the above operation, the matrices M, E and X now
represent the bending moments, axial forces and deflections of
the structure with a hinge at k*.
vii - For a further increase AA = X - X; in the load parameter the

current member forces and deflections are calculated as

MAM(R) = MAM(2) + AA < M (1,8) 2 =1,2n (a)
pAMe) = PAM (L) + A P (1,8) L=1,0 (b))  2.26
xa*(2) = xaM(ej + Ax x P (1,2) L=1,3m (<)

where MAh(l) represents the first end moment of member 1 under A
while MAM (3) is the first end moment of member 3 under the load
factor A;. Again each hinge location is considered in turn. The
load factor at which a plastic hinge develoﬁs in that location is
calculated by equating the current bending moment to the fully

plastic moment of the section.k Thus

- MA(R)
+ M (l,f‘) 2:27

A2 = A1
The lowest of these load factors is chosen as the load factor
which causes the next plastic hinge in the frame.
viii’- The current member forces and deflections are calculated
from equations 2.26 by substituting AX = A2-A; and A = A3. If a
sufficient number of hinges have been developéd to turn the
structure into a mechanism the process is stopped. Otherwise A,
is taken as A; and the steps (v), (vi), and (vii) are repeated

until failure takes place.
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2.g Effect of Changing Material Properties:

The changes in material properties can be expressed in terms
of cross-sectional properties. This makes it possible to apply
the theorems of structural variation to study the effect of
changing material properties on the overall behaviour of frames.
Ignoring the effect of shear stress on the deformations, the

slope-deflection equations for a plane frame member can be written

as follows

- o T
pij T 0 0 0 Uiy
si5] = [o 12EI 6EI  _ 6EL =
L3 L2 L2 .

L2 L L

6E1 2EI 4EI
Mji 0 - -—2 _— —_— ejj_
L o L L B L J L
P k z

If the modulus of elasticity E of the member is changed to (l+a)E
by an amount SE = -aE, the matrix k then becomes (l+a)k. This is
- in fact equivalent to simultaneous change; in the area and the
second moment of area of the member by 6A = -cA and 8I = -al,
Hence the problem is reduced to the member changing problem dealt
by Sakats).
2.h Examples:

A number of examples have been solved either manually or by
using the computer program-described in chapter 6. The results

were compared with those obtained conventionally. It was found

that they are exact.
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2.h.1 Example 1 :-

The portal frame shown.in figure (2.6.a) was first analysed
manually by means of the elastic-plastic analysis procedure given
in section (2.f). The results were compared with those obtained
by.Majid(4J.

To begin with the possible hinge locations were marked as
shown..in figure (2.6.b) and an elastic analysis of the frame was
carried out under the unit loading cases shown in figures (2.7.a,
b,c,d) together with the given external loads shown in figure
(2.6.2). The resulting bending moment matrix M was constructed

as follows:
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The current bending moment matrix for A = 1 is

MA! = [+++ -8.4573 8.4771 *+* 6.8729 -6.9037 +++ ]
The small members A-A', C-C', D-D' and E-E' were considered in
turn and a load factor at which a plastic hinge develops in each
member was calculated from equation (2.24). The lowest load
parameter is A._., = 9.27/8.4771 = 1.0935,Mp = 9.27. This causes

the first plastic hinge in C-C'. The current bending moments at

this load parameter were calculated as E&}C'C' o A o X MAl, Thus
1.094
M, = [+ 9.2483 9.2700 -+ 7.5157 -7.5494 ++* ]

A hinge is now inserted at CC' as follows:

i - The vector of variation factors T, is constructed
-12673.7882
: - 8.4771
fﬁ = ) e.g. raﬁl) = = 1-0-999331109 - - 12673.7882

0:99056
While calculating "ru" the value of My should always be positive,
if not the unit loading pattern is multiplied by (-1). This can
be done by multiplying the variation factor by -1 and taking the
value of M to be positive. '
ii - The new bending moments can be calculated from equation (2.16)
e.g. M(1,12) = MDD' = -6,9037-12673.7882x0.000662156 = -15.2957
and the new M matrix is constructed as

M

Yoo Mec “pop  Mppe

SE . D 0 =+ + - '15.2648  -15.2957 .| External
. . . loading

M= , Unit loading
- for C-C' is
cancelled

) 0 0 - « - 0.9995658; - 0.999565 ¢+« | Unit loading
for D-D'




PRESENT THEORY CONVENTIONAL
Hinge No
LOAD FACTOR LOCATION LOAD FACTOR LOCATION
1 1.09 c-C!' 1.09 c-C'
2 1:.21 D-D! 1.20 D-D!'
3 1.28 E-E! 1.28 E-E!'
4 1.46 A-A! 1.46 A-A!
TABLE 2.1: COMPARISON OF THE ELASTIC-PLASTIC ANALYSIS RESULTS

FOR A PORTAL FRAME SHOWN IN FIGURE (2.6)
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The process is repeated with A-A', D-D' and E-E' and a load factor
at which a plastic hinge develops in each location is cglgulated
from equation (2.27). The lowest of these load factors is chosen.
This was found to be for a hinge at D-D'.

This load factor is

- 1.0035 & 29:27 - (-7.5494)

Ap-pr ~15.2957 = 1.206

where the value of actual moment at A = 1,0935 is -7.5484.
The procedure was continued until a mechanism developed. The load
factors at each hinge formation are given in table (2,1) together
with those obtained using the conventional method.
2.h.2 Example 2 :

The irregular frame of figure (2.8) was origiﬁally designed

by Horne and Majid(s).

The cross-sectional properties and external
loading are shown in table (2.2) and in figure (2.8). The yield
stress was given as 16 tons/in? (0.247 kN/mm2) while the modulus
of elasticity was 207.0 kN/mm?. Altogether 21 hinges developed
when a mechanism condition was recorded. The load-deflection
diagram and the order of hinges obtained by present method are
shown in figure (2. 9). The order of hinges obtained by Horne and
Majidcs) are also shown in boxes. Although there are some
discrepancies observed in the order of hinges, both analyses
predicted the same failure mechanisms and the same load factor at
collapse. The elastic-plastic failure load factor obtained by
Horne and Majid by taking the axial forces into account was 1.58

which is 9.2% below the failure load factor obtained by neglecting

these forces.
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MEMBER NO: SECTIONS

2 10 x 5% x 21 UB
S 8 x5t x17
8,17 12 x 6% x 27 "
11 18 x 74 x 55 "
é 13 10 x 54 25 "
20 8 xSt x20 "
1,4,14 6 x6 x 20 UC

3,6,7,16,18 8 x8 x31 "

% 9,15 8x8 x40 "
§ 10 12 x 12 x 65 "
12 10 x 10 x 49 "
19,21 6x 6x28 0

TABLE 2.2 SECTIONS USED FOR THE IRREGULAR FRAME
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2.h.3 Example 3:

Ta shdw the versatility of the theorems of structural
variation, the braced portal no sway frame shown in figure 2.10 was
considered. The dimensions, loading and cross-sectional properties
are given in the figure. The topology of the frame was first
changed by removing the members 1,2,9. Then the modulus of
elasticity, the area, the second moment of area and the fu{ly plastic
moments of members AB and BC were doubled while those for member
CD were halved. The derivative structure shown in figure 2.10-b
was thus obtained. These operations were carried out by only
using the initial analysis of the parent structure under the
external loading and the unit load matrix., The forces and
deflections of the parent structure due to unit load matrix given
by equation (2.14) were also modified. Using these results the
elastic-plastic analysis of the derivative structure was carried
out. Altogether four hinges developed when a sway mechanism,
shown in figure (2.10.b), developed at. A = 1.571. The load-
deflection curve obtained from the analysis is given in figure
2.10.c. All these alterations as well as the elastic plastic
analysis were the outcome of a single linear elastic analysis of
the parent frame shown in figure 2.10.a. The rigid.plastic analysis
of the final frame also gave A = 1,571,

2.h.4 Example 4

The three storey, single bay braced no sway frame shown in
figure (2.11.a) is subject to horizontal loads of 25 kN at joints
H, F and 30 kN at joint D. The dimensions and cross-sectional
properties are shown in the figure. The structure was initially

analysed linearly. Members C-D, C-F, E-F, E-G, G-F, G-H were then
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FIGURE 2.11: A THREE STOREY AND SINGLE BAY STRUCTURE
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removed and the derivative structure shown in figure 2.11.b was
obtained. The solutions of this structure under external loads
and the unit load matrix given by equation (2.14) were uséd to
carry out the elastic-plastic analysis and the load deflection .
curve shown in figure (2.11.c) was obtained. . The failure load
factor was found to be equal to the rigid-plastic failure load
factor of 4.083. |

It is interesting to note that in this example six plastic
hinges formed instead of four which are sufficient for a sway
mechanism. Nonetheless, the load factor at failure had not
reduced below that given by the rigid-plastic analysis with four

hinges in columns AE and BD.
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CHAPTER 3
NONLINEAR MOMENT CURVATURE ANALYSIS
3.a Introduction:-

Many methods have been suggested in the past (7,8,9,10,11,12)
for the nonlinear analysis of frames by using some form of
simplifications of the general nonlinear stress-strain curve shown
in figure (3.1.a). Most of these methods are either cumbersome or
costly for most practical purposes. The principal aim of this
chapter is to present methods of analysis which are simple in
concept, easier to use and fairly accurate.

Firstly, by directing the focus of attention to the nonlinear
material properties only, ignoring the stability effects, a
nonlinear method based on the theory of structural variation is
described. The procedure is also applied to the strain hardening
analysis of steel frames and the encountered problems are discussed.
Secondly reinforced concrete frames which are highly nonlinear
even in the elastic range, are dealt with. The application of
compensating loads (defined in chapter 2) to the failure load
analysis of concrete frames is then studied. Under the light of
this study, an incremental load factor method is given. This
method can also be used for the analysis of frames up to a given
load factor. The effect of axial loads are taken into account as
well as non-proportionally increasing external loads. Finally
some experimental structures are analysed by the proposed methods
to demonstrate their reliability.

3.b Nonlinear moment-curvature diagrams:-

Consider that the cross-section of a member is that shown in

figure (3.2). From strength of materials, the force equilibrium

equation along Z axis and the moment equilibrium equation about
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where d is the depth of the sec;ion, M is the bending moment while
d; and d-d& are the distances of the compression and the tension
faces from the neutral axis, respectively. §¢ is the radius of
curvature and %-represents the strain at a distance y from the
neutral axis. f(%i is the stress-strain relationship of the
material.

Once the unknowns d; and @ are obtained from equations (3.1)
for various values of M, the values of curvature (%J can be plotted
against M to obtain the moment-curvature diagram of the section.
3.c Behaviour of Frames with Nonlinear Materials:-

In any frame, the bending moments vary along the members.

This causes variations in the curvatures and thus in the flexural
rigidity (EI) of the members. As the loads are increased, the
overall stiffness of the frame as well as the individual stiffnesses
of its members vary accordingly. Hence the conventional linear
elastic method is incapable of predicting the actual behaviour of
such a frame. In many cases, even the elastic-plastic methods are
not suitable. In general, the constitutive equations i.e. the
stress-strain and the moment-curvature relationship should be
written in nonlinear férm, then the equilibrium and the compatibility
equations should be written accordingly. This is laborious and
unsuitable for automatic programming.

Instead, tﬁe following technique is suggested here. The

stress-strain and the momemt-curvature diagrams are approximated by



> <

[EI )°=tg Bo

M
*
MU
tg B (E1), M,
M b Bm
M2
M1
tg B, = (E1],
Bo b
0 —

a- Nonlinear M-C Diagram

b-Piecewise Linear M-C Diagram

M
A
MU e e e e e e Mu
Mp __ Mp
h —P

c- Elastic-Strain Hardening
M-C Diagram ( bilinear)

0

Po

—> ¢

—> ¢

0

d- Elastic- Plastic Strain Har.

dening M-C Diagramltrilinear)

FIGURE 3.3:MOMENT-CURVATURE DIAGRAMS




_50-

straight lines. These are shown as OA, AB, etc. in figures (3.1.b)
and (3.3.b). The points A, B, C, D etc are hereinafter called
meritical points'. The frame is analysed linear elasticaliy once,
with the initial values of EI for each member. The lowest load
factor at which a critical point is reached on o-¢ and M-C diagrams
of any member is then found iteratively. The flexural rigidity
(EI) or the axial stiffness (EA) of that member is altered to the
next value on the M-C or o-¢ diagram. The frame is reanalysed
with new (EI) or (EA) value and further critical points are
detected until a given load factor is reached or until failure
occurs.,

Using the theorems of structural variation a single initial
linear-elastic analysis is sufficient to-trace the behaviour of
the frame up to failure. This is particularly true in the case
of steel frames analysed taking the effect of strain hardening.

In the:.case of reinforced concrete frames, however, it was found
that i1l conditioning develops once the EI values of several
members are reduced. In the case there comes a stage when several
members are about to reach their critical points. Once one of
these members is selected for stiffness alteration, the frame-
becomes too weak to carry the applied loads. This results in a
forecast of the next critical point somewhere in the frame but
under reduced loading. Hence drifting takes place in the load
deflection diagram. Further research is required to overcome this
difficulty.

The effect of nonlinearity in the axial deformations is not
as important as that of bending deformations. Hence this effect
is ignored in the nonlinear analysis technique described in the

following section.
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3.d The Nonlinear Moment - Curvature Analysis:-

The steps for the method of analysis proposed here are as
follows.,
i - Construct the moment-curvature diagrams of the members and
simplify them by a series of linear segments as shown in figure
(3.3.b) and tabulate the critical moments and the regional
flexural rigidity (EI) values.
ii - The compound load matrix[L CJ]is constructed in such a manner
that for each member, matrix C contains a couple of unit loads as
given by equations (2.11) and (2.12). On the other hand, L
contains the externally applied loads.
iii - The structure is then analysed under the compound load matrix
[L Cland the bending moments, the axial forces and the deflectionms
are calculated in matrix form as M, P and X in the manner described
in section (2.¢). The dimensions of these matrices are (2n+l) x 2n
for M, (2n+1) x n for P and (2n+1) x (3m+h) for X. Where n is the
number of members, m is the number of joints and h is the number of
real hinges that may be present in the frame.
iv - The equivalent moment for each member is calculated and the
matrix Mg is cqnstruéted. It was mentioned earlier that because
the bending moment along a member is not constant, its curvature
varies from 'point--to - point and hence EI varies along the member.
This is shown ip figure (3.4). However in the liﬁear elastic
analysis, it is assﬁmed that EI is constant along each prismatic
member. To overcome this difficulty, an equivalent EI is described
for each member. This corresponds to the constant bending moment
along the member, covefing an area, which is equivalent to the area
under the actual bending moment diagram of the member. Since the

external loads are applied to the joints only, the bending moment -
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varies linearly along a member. Hence the "equivalent bending
moment" Mg for each member is the average of the end moments, i.e.
Mg = (I Mij 1+ 1 Mji 1)/2 3.2
where Mij and Mjj are the bending moments at ends i and j of the.
member. It is necessary to mention that this is an approximation
and assumes that the bending moment at end i due to a unit rotation
at end j is equal to the bending moment at end j due to the unit
rotation at end i, This can only be true when the (EI) diagram is
symmetrical in the member.
(v) - The actual bending moment MA, axial force PA and deflection
XA matrices are constructed in the same manner as explained in (2.f.iv).
(vi) - As the loads increase, the initial stiffness of a frame
remains constant until the equivalent moment of one of the members
reaches the first critical point on its moment-curvature diagram.
The load factor A -which causes this is calculated for any member k

as:

- DM(1,Kk)
Ak Mg () 3.3

where DM (1,k) is the first critical moment. Considering all the
members, let A, be the lowest and let this correspond to member k*.
The actual forces, equivalent moments and deflections due to this
load factor are found by multiplying the matrices MA, PA, Mg and XA
by A,.

vii - The flexural rigidity of member k* is now altered to that
given by the next portion of its M-C graph. Equation (2.15) is
used to calculate the first end variation factor rz for each load
case in turn, Here My becomes M (1, 2k*-1) and ug becomes
M(2k*,2k*-1). Equations (2.16) are then used for the first step

modification of the member forces and deflections and the matrices
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M, P and X are altered to become M, T and X.
For the second step modification, the variation factor ri is
calculated for each load case by using equation (2.15) Qith Mg
becoming M(1,2k*) and px = M(2k*+1,2k*). Using equations (2.16)
again the new member forces and joint deflections ﬂ?,‘f? and 5?
are obtained. These are the axial forces, bending moments and
joint deflections of the frame, with member k* having a new
flexural rigidity. These will be used to iterate towards the
next load factor, corresponding to a new critical point on the
M-C diagram of one of the members.
viii - As the load factor is further increased, the actual forces
and deflections are obtained by superposition. The equivalent
moment for each member is obtained by combining equations (2.26.a)
and (3.2) to give

MEM ) = MEM(K) + (A-Ay)

(M (1,2k-1) 1+IM7(1,2K) | 3.4
- ;

The next critical load factor for each member is calculated
similarly. The load factor Ay is calculated from:

A
. 2[0M(A,K) - MEl (k)]

A = A
5 IM*(1,2k-1) |+ 1M (1, 2K) |

o5

where q refers to the order of the next critical point. This
process is continued until the load factor applied to the frame
reaches a specified value XG' ‘For each iteration, equation (2.26)
is used with AX as the difference of two successive critical load
factors. For a complete failure load analysis of a frame XG is set
to a very large figure,
3.e Strain hardening analysis :-

The rigid plastic and elastic-plastic approximations are

commonly used to represent the moment-curvature diagrams of steel
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sections. However they both ignore the strength provided by

strain hardening, and consequently the relevant theories
_underestimate the load-cafrying capacity of steel structu?es in

which the instability effects are small. The rigid plastic and
elastic-plastic theories also assume that the plastic hinges

ogeur at discrete sections while the rest of the structure

remaining elastic. This assumption is not realistic since-plasticity
spreads away from a hinge as the material strain hardens.

A considerable amount of research has been carried out
(7,8,11,12) in order to find a rational method of analysis which
includes the effect of strain hardening. As an extension to
Horne'stll) work, the method of analysis proposed by Daviestlz)

may be regarded as the most suitable. Davies considered strain
hardening as well as instability prior to failure. However, he
assumed the moment-curvature diagram to be bilinear as shown in
figure (3.3.d). He also depended on Horne's strain hardening
factor "k'", which has to be determined experimentally. There was
no limit imposed by Davies to restrict the plastic deformations
in a section and total failure was defined by the complete loss
of stiffness. In reality a section in a frame may itself fail
after a finite amount of plastic deformation, and this may happen
before a complete overall failure of the frame takes place.

The nonlinear moment-curvature analysis presented in section
(3.d) can be easily utilised to carry out elastic-plastic analyses
of frames with strain hardening effects. Although the moment-
curvature diagrams can generally be constructed in the manner
described in section (3.b), the tables and charts given by

Hrennikoff(7) for universal beam sections c¢an be used to reduce
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the amount of work involved in this step. The moment-curvature
diagrams are then represented by a series of straight lines. The
spread of plasticity is catered for by inéerting a series of small
members in the vicinity of each expected hinge location. During
the analysis, whenever plasticity is developed in one of these
members, its flexural rigidity is reduced, thus enlarging the
plastic region.

This treatment obviously increases the length of the analysis
and consequently the computer time. To avoid this, these small
members can be replaced b{ a single member whose length is a
specified percentage of the length of the actual structural member.
The validity of this assumption will be studied by reference to
some examples, and suggestions will be made to try to indicate
ways of reducing the loss of accuracy.

The plastic hinges develop and spread in discrete regions, the
load factors being predicted for these regions only. The rest of
the frame is disregarded in a manner similar to the elastic-plastic
analysis given in chapter 2. This treatment is adopted to save
computing time and also because a sufficient allowance is made for
the spreéd of plasticity.

3.f Examples:-

To examine the analyses proposed so far in this chapter a
number of examples were solved, the results of which are presented
here.

3.f.1 The portal frame:-

Consider the portal frame shown in figure (3.5.a). All the

members of the frame are of the same cross sectional properties

with the moment-curvature relationship given by:
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MBF (Ton.m) Mpg(Ton m) max % diff.
Caktroglu & Cetmeli 7.152 12,848 " Assumed to
be correct
Linear elastic analysis 6.00 14.00 16.1%
% | Bilinear M-C, no subdivision 7.110 12.890 0.6%
g
= | 5 piece linear, no subdivision 7.176 12.824 0.33%
2
¢ | 8 piece linear, members are
& | halved 7.165 12.835 0.18%

TABLE 3.1 Comparison of results for the portal frame
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This relationship was first approximated by two straight lines

as shown in figure (3.6.b) and the frame was analysed manually.

The members were treated without subdivision. The computer

program described in the first part of chapter (6) was then utilised
and the effects of finer piecewise linearisation of the M-C diagram
and the subdivision of members were studied. The results are
presented in table (3.1) and compared with those obtained by

(10) who used a modified unit force method. It

Cakiroglu § Cetmeli
can be seen in table (3.1), that better results are obtained with
finer subdivisions of the members and finer piecewise approximations
of the moment-curvature diagram, while the roughest approximation

is giving a maximum discrepancy of 0.6% in the bending moments.

3.f.2 Two Storey, Single Bay Portal frame:-

The frame ABCDEF shown in figure (3.6} ,was tested by Baker §&
Charlton(14) and was later analysed by Daviesclz). The beams and
colums are 5"x3"x1l 1b and 4"x3"x10 1b rolled steel joists
respectively. Youngs modulus of elasticity E was taken as 211 kN/mm?
(30000 kips/in2), the yield stress oy was extracted from the work
of Davies as 0.267 kN/mm? and the ultimate strain Eu was assumed
to be 0.065. The moment-curvature diagrams shown in figures (3.7)
and (3.8) were obtained by dsing the method proposed by Hrennikoff(7).

Hrennikoff defined a parameter m which is independent upon the
dimensions of the cross section but depends upon the stress-strain
relationship for the material and a pafameter'F given as tﬁe ratio
of the flange area A¢ to half of the web area Ay. These were
expressed in the form:

m =OI ogede + k 0} 3.6
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where €1 is the strain in the outermost fibres and o; is the

corresponding stress. €] is related to the curvature ¢ as

¢ = g1 d g 2

where d is the depth of the section. Further, m was related to
the applied bending moment M as

M=%_-EAwd 3.8

Once the integralofe oede has been calculated from the stress-
strain diagram of the material for various values of ej, the
corresponding values of m can be calculated from equation (3.6).
The moment-curvature diagram of each section is then constructed
point by point by using equations (3.7) and (3.8).

The structure was first analysed by the method proposed here
using a trilinear approximation of the moment-curvature diagrams.
Plasticity was allowed to spread through various small members
inserted in the vicinity of each expected hinge location. The
resulting load-deflection diagram is given in figure (3.9) together

(14)

with the experimental diagram and also that obtained by Davies..
It can be seen from this figure that in spite of a purely theoretical
approach, the load-deflection curve is in good agreement with the
experimental curve and that obtained by Davies.

An investigation was also carried out to study the influence
of varying the spread of plasticity on the load-deflection curve
of the frame for various moment-curvature diagrams. Here the rate

of spread of plasticity SPR is defined as:

SPR = length of plastic region
" length of member

x 100

The frame was analysed for rates within the range 0.5% - 7%.

The bilinear and the trilinear representations of the moment-
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curvature diagrams are shown in figures (3.7) and (3.8). In these
OAD is the bilinear moment-curvature and OABC is trilinear. The
analysis was stopped as soon as the fracture point C or D is

reached in any section of the frame. This point is determined

from the ultimate values of thebending moment and the curvature ’

on a moment-curvature diagram which restricts the plastic deformation
to a finite value, neglected in other analyses. This finite
deformation makes it possible to reach the end of the moment-
curvature diagram in one member before the formation of a mechanism
in a frame.

In the present approach a mechanism is defined by the formation
‘of fully yielded sections before fracture. In table (3.2) the loads
that cause the formation of a mechanism and the ultimate load
carrying capacity of the frame for non restricted and. for various
SPR values are compared with the experimental load of reference(MJ
and also with that obtained by Davies. Figure (3.10) compares the
values of failure loads, obtained with different SPR, with the
experimental ;esult. This figure shows that for SPR > 1.5% the
failure load is nearly constant. The figure also shows that changes
in SPR does not affect the failure load considerably. Up to a value
of 1.5% the ultimate failure load increases slightly and then becomes
stable.

The portion of the graph for SPR < 1.5% can be disregarded
because the value of the ultimate load.is less than the load which
is necessary to form a mechanism, and it is not expected since the
value of the curvature at rupture is very much larger than the

curvature when the section is fully yielded (see figure 3.7 for

comparison).
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A maximum difference of 11% was obtained between the
theoretical loads and the experimental failure load. This
indiéates that the present method yields acceptable resulﬁs. It
is obvious from table (3.2) and figure (3.10) that the mechanism
load decreases for increasing values of SPR values. However it
will be shown in the next example that this also becomes stable
for very high values of SPR which may not often be encountered in
practise. It may then be concluded that, when the strain
hardening is considered, the mechanism load does not give a
unique result for practically admissible values of SPR.

The load-deflection diagram obtained for SPR values of 2.5%
and 4% for bilinear, and 3% and 4% for trilinear M-C approximations
are plotted in figure (3.11) together with the experimental load-
deflection diagram.

All the curves are in close agreement with the experimental
load-deflection points. It is evident that as SPR is increased,
the theoretical load-deflection curve flattens. This is particularly
visible at the stages near failure. The curves obtained for the
trilinear approximation of M-C diagrams are flatter than those
obtained for the bilinear M-C diagrams. This is because the
bilinear approximation overestimates the flexural rigidity within
the range of the plastic flow. On the other hand the ultimate
loads predicted from trilinear M-C approximation are slightly
higher than those for the bilinear cases. This discrepancy may
be due. to the difference of the ultimate moment carrying capacities
of the two cases.

As previously mentioned, the load-deflection curve given by

Davies is also very close to the experimental results. However
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TYPE OF ANALYSIS

TOTAL VERTICAL LOAD (KN)

MECHANISM ULTIMATE
LOAD (KN) | % DIFF. LOAD (KN)| % DIFF.
EXPERIMENTAL - - 122.2 -
RIGID PLASTIC 100.8 -17.6 - -
STABILITY BALANCE 100.5 -17.8 - =
(HORNE)
ELASTIC-PLASTIC 98.0 -19.9 = =
ELASTIC-STRAIN HARDENING 144.6 - 6.3 Continuing
(DAVIES)
Bilinear, SPR* = 2.5% 120.8 - T2 126,8 + 3.7
M-C
Bilinear, SPR* = 3.0% 117.6 - 3.8 127.2 + 4.0
M-C
Bilinear, SPR* = 3.5% 115.2 -- 5.8 127.4 + 4.2
M-C
=
2 Bilinear, SPR* = 4% 113.6 - 7.11 127.5 + 4.3
= M-C
=
o Trilinear, SPR* 2.5% 120.8 - 1.2 130.4 + 6,62
S M-C
=
[~
Trilinear, SPR* 3.5% .114.0 - 6.8 130.2 + 6.45
M-C .
Trilinear, SPR = 4.0% 111.2 - 9.07 129.6 + 6.00
M-C :
TriliEear M-C, nonrestricted - 106.8 -12.67 137.6 +11.00
SPR

*SPR: Spread of Plasticity Rate

TABLE 3.2 The Failure Loads of the Two Storey Portal Frame
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this curve does not give sufficient information about the ultimate
failure load because it does not define fracture by terminating
the plastic deformation at some stage. ‘
3.f.3 The Pitched Roof Portal Frame:-

As a further example, the frame shown in figure (3.12) is

considered. This was originally described by Charlton(ls) and

(12). Two similar frames were connected

later analysed by Davies
together by suitable purlins and sheeting rails. The plastic
moment value of the 5"x3"xl1ll 1b R.S.J. stanchions was 28.12 kN.m.
The other physical properties are taken from the two storey portal
frame analysed,discussed earlier. Again various analyses were
carried out for bilinear and trilinear approximations of the M-C
diagram for values of SPR between 0.5% and 20%., The results are
compared with that obtained experimentally and are given in table
(3.3). In figure (3.13) the ultimate and mechanism loads are
plotted against the spread of plasticity rate (SPR). Again the
ultimate failure load is not sensitive to SPR and its graph
becomes stable after a value of SPR of about 2.5%. The mechanism
load decreases for increasing values of SPR, but this curve also
becomes stable, the mechanism load remaining nearly constant for
values of SPR greater than 7%. For the values of SPR less than
2.5% no mechanism condition was obtained. This suggests thaf very
small values of SPR yield erroneous results.

The maximum value of the ultimate failure load was obtained
as 131.5 kN which is 22% higher than the experimental failure load
of 107.5 kN. This difference may be due to the instability effects
which are ignored in the present approach. The load-deflection

diagrams obtained from various approximations, the experimental
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TOTAL VERTICAL LOAD (kN)
TYPE OF ANALYSIS
MECHANISM ULTIMATE
LOAD % DIFF. LOAD % DIFF.
EXPERIMENTAL 107.5 -
RIGID PLASTIC 95.0 -11.6% = -
STABILITY BALANCE 92.8 -13.7% - i
(k=17.2)
ELASTIC-STRAIN HARDENING 104.0 - 3.3% - -
(DAVIES) k=6.2
Bilinear, SPR = 3% v[ecfl\fgnism - 119.5 +11.2%
Bilinear, SPR = 3.5% 116.5 + 8.4% 121.4 | +12.9%
o. | Bilinear, SPR = 4% 114.0 + 6.0% 121.6 | +13.1%
=
% Trilinear, SPR = 3% 118.5 +10.1% 124.0 | +15.3%
% Trilinear, SPR = 5% 106.0 + 1.4% 126.8 | +17.9%
0]
& Trilinear, SPR = 7% 101.0 - 6.0% 130.4 | +21.5%
Trilinear, SPR = 10% 98.3 - 8.6% 130.5 +22.0%
Trilinear, SPR = 20% 96.0 -10.7% 128.6 | +19.6%

TABLE 3.3 Comparison of Various Results for the Pitched Roof Frame
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a4 and that obtained by Daviestlz) are

curve due to reference
shown in figure (3.14). Again good agreement was achieved between
the theoretical and the experimental curves., Those obtained from
‘the trilinear M-C approximation are flatter than the curves for.

the bilinear M-C diagram while in both cases higher values of SPR
result in making the load-deflection curves at stages near failure
flatter.

Considering the last two examples, it may be propﬁsed that
any rate of spread of plasticity which is more than 3% may give
fairly accurate estimation of the ultimate load carrying capacity.
If on the other hand, more accurate results are required, then
fine subdivisions around the expected hinge locations are necessary.
3.g. Conclusions:-

It is now cléar that only one elastic analysis of a frame is
necessary to predict its nonlinear behaviour caused by the
nonlinearity in the material properties. Frames can be analysed
in this manner under the given loading as well as up to and
including failure. This is provided that there is no u;loading
in the plastic region. The proposed method can be applied to both
elastic and plastic analyses,

In the strain hardening analysis, the rate of spread of
plasticity does not influence the failure load and a rate of 3% -
10% may be adopted for practical purposes. Because the instability
effect is ignored, the results obtained are slightly unconservative
and, as it was mentioned in chapter 2, this requires further

research on the structural variation theory to include this effect.

3.h.1 Moment-Curvature Diagrams of Reinforced Concrete Sections:-

A theoretical method for the construction of moment-curvature
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diagrams for homogenous sections was given in section (3.b). For
the case of reinforced concrete sections the problem is more
complicated because of their non-homogenous nature. This is
despite the fact that equations  (3.1) may be still valid. For
this reason, the semi-empiriéal method given in reference (16) is
improved here to include a better estimate of the ultimate moment
of resistance of the section. The ultimate moment of resistance
for ordinary reinforced concrete members is calculated by using

the theory proposed by Hognestad et a1(17)

. Further, the ultimate
stage of deep, multilayered reinforced concrete panels is estimated
by means of interaction equations (5.e.20) or (5.e.23). These
consider the ratios of bending moment, the torsional moment and the
- shear force acting on the panels and will be given in detail later
in chapter S.
3.h.2 Actual M-C Relationships for Reinforced Concrete Sections :-
A typical moment-curvature diagram of an under-reinforced
section is shown in figure (3.15). Between points O and A the
relationship is reasonably linear. At A the extreme tensile
fibres begin to crack decreasing the flexural rigidity of the
section. The slope of the curve reduces after A and the
relationship is more or less linear up to B. This point
represents the stage at which the outermost tensile reinforcements
start yielding. For further increasesin bending moment, the
flexural rigidity decreases drastically and the moment-curvature
diagram tends towards the horizontal. If the section is ordinary
reinforced concrete with two layers of reinforcement, the increase
in bending moment causes the neutral axis to rise and the tensile
reinforcements to strain harden. Ultimately the section may fail

due to crushing of the concrete in the compression zone.
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A multi-layered deep panel is different. When the outermost
tensile reinforcement yields the inner ones are still elastic.
Further increases in the bending moment increase the strain in
the outer bars and also causes some. inner bars to yield. The
neutral axis also rises. Ultimately the section may fail due to
excessive straining of the outermost tensile reinforcement.

The moment-curvature diagram shown in figure (3.15) may be
simplified and replaced by three straight lines joining OA, AB
and BC. Such a simplification is fairly reasonable for practical
purposes.

3.h.3 Construction of Moment-Curvature Diagrams
for Reinforced Concrete Sections:-

A tri-linear moment .curvature idealisation is shown in
figure (3.16). To construct this the following parameters are
required:

Mc, fc : These are the bending moment and the corresponding
curvature at which the concrete first cracks in
tension. Point A in figure (3.16).

(EI)i

The flexural rigidity of the section at the initial
stage. This is the slope of OA in figure (3.16).
My, §y : The bending moment and curvature values at which the

outermost tensile reinforcement yields "(Point B in

the figure).

(EI)¢ : The flexural rigidity of the cracked section, i.e., the
slope of A B D.

Mu, fu : The ultimate values of bending moment and curvature at
point c.

(EI)u : The flexural rigidity after yielding takes place in the

outermost tensile reinforcements. This is the slope of -
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FIGURE 3.16: TRILINEAR M-C IDEALISATION FOR A

REINFORCED CONCRETE SECTION
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the straight line BC in the figure.
To construct this moment curvature diagram, the following
assumptions are made:

1 - The concrete is elastic up to the yield point of the outermost
tensile reinforcements for ordinary beams and up to failure
for deep panels.

2 - Tensile cracks take place in the concrete when the tensile
strength f.¢ is reached.

3 - The initial flexural rigidity (EI)j remains unaltered until
the section cracks.

(18)

4 - An empirical formula given by Monnier can be used to
evaluate (EI)c.
3.h.3.1 The uncracked state:
The initial flexural rigidity (EI); is calculated by
multiplying the modulus of elasticity of concrete Ec by the gross

second moment of area of uncracked section Ij;, thus:

(EI)j = Ec x Ig 3.7

The moment Mc at first crack is obtained from the product of the
gross modulus of the uncracked section Ze and the tensile strength
of the concrete, fct.

Mc = for x Ze 3.8
The curvature @ at A in figure (3.16) is calculated fromf

Pc = Mc/(EI)i 3.9
3.h.3.2 The cracked state:

In this state the behaviour of the section is rather complex

due to the existence of uncracked zones between cracks in the
structural members. For this reason the empirical formula

suggested in reference (18) is used to determine the value of the
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flexural rigidity (EI).. The formula relates the flexural rigidity
of the cracked section to the values of the percentage tensile
reinforcement r, the thicknesstand the effective depth dl'of the
section. This formula is in the.form:

(EI)c = (-2.572% + 13.9r - 1.1) ¢ dix‘lﬂakg fem 3.10
The grade of the concrete, the diameter of the reinforcement bars
and the presence of compressive reinforcement are considered to
have little effect on the value of (EI)c. The effective depth for
an ordinary section is taken as the distance between the compression
face and the tensile bars. For multi-layered deep panels, this
depth may be taken as the distance between the compression face
and the resultant of the forces sustained by the tensile
reinforcements. For practical purposes an approximate value of
d; may be taken as 0.75d. In fact this value was used to construct
the M-C diagrams for the shear walls and slabs of the structures
analysed here and reasonable agreements were obtained between the
theoretical and the experimental load - deflection curves.

The bending moment My, causing yield in the outermost tensile
reinforcement can be calculated from equations (5.b.15) and (5.c.10)
of chapter 5, by substituting the yield strain of the steel for
the ultimate strain and setting the number of layers, in the
plastic zone, equal to one. The curvature at this stage can be
obtained from the triangles OAA' and ABA", figure (3.16), as follows

gy = fc + (My - Mc)/(EI)c 3.31
3.h.3.3 The ultimate state:-

For deep beams, the failure criteria given later in chapter 5
by equations (5.e.20) or (5.e,23) can be used to predict the value

of the bending moment Mu at failure. On the other hand ordinary
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sections generally fail due to excessive straining of the

outermost fibres of the concrete in the compression zone. Let us

consider the section shown in figure (3.17.a). The stresé-strain

diagram of the bars is a nonlinear curve such as that shown in
figure (5.16). To calculate the ultimate moment carrying capacity
of the section, equations of compatibility and longitudinal
equilibrium are used together with the moment equilibrium equation
about the X axis passing through the compression centre. The basic
assumptions involving this approach are as follows:

1 - Plane sections remain plane.

2 - The tensile strength of the concrete is negligible.

3 - The compressive stress distribution at failure is represented
by two parameters. These parameters are the average stress
c/tx and the distance of the compression centre from the
extreme compressive fibre. Hognestad(17) proposed the following

equations to define these parameters.

81 = 0.5 - £8 3.12
_ 27+0.27 fcu
B2 = 28.3 + fcu 3.13
_ fcu
€y = 0:004 - T9553 3.14

Where fcu is the cube strength of concrete (N/mm?), Ecu is
the ultimate strain of concrete. The factors B; and B85 define
the location of the compressive centre and the average stress
coefficient respectively.

The longitudinal equilibrium is established by equating the
compressive force carried by the concrete, to the tensile force
carried by the reinforcement. Thus:

C=T

or
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Bo fcu t X = As x fm 3.15
where As is the area and fm is the stress of the tensile
reinforcement. From equation (3.15) the depth of the neutral axis

is obtained as

_ As fm

= B2 fcu t

3.16

The similar triangles OAA' and OBB' of the strain diagram in

figure (3.17.b) give the strain compatibility equation as

Ecu = Es
x - dl - x 3.17
and it follows that
Es = Ecu il—):(-—)-(- 3.18

Using equations (3.16), (3.18) and the stress-strain diagram
of the reinforcement, the depth of the neutral axis is obtained
iteratively as follows:

i - Assume X = Xo

ii - Calculate eg from equation (3.18) and obtain fm from the
stress-strain diagram of the reinforcement by using es.

iii - Calculate the new value of X from equation (3.16).

iv - Compare the new and the old values of X. If the difference
is less than a specified tolerance, stop the iteration,
Otherwise repeat from step ii with Xo = Xn until the
tolerance test is satisfied.

Having calculated the depth of the neutral axis, the ultimate
moment is obtained from the moment equilibrium equation about
X - x axis, through the compression centre, as follows

Mu = Asfm (d; - 81 X) 3.19

The ultimate curvature Pu can be obtained from the strain diagram

shown in figure (3.17.b) as
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Pu = (ecu + e5)/dy 3.20
Finally, the flexural rigidity between B and C is obtained from
the trianglé. BB"C shown in figure (3.16) as follows.
(EI)y = (Mu - My)/(Pu - Py) 3:21
The value of (EI)y given by equation (3.21) is the slope of the
chord BC in figure (3.16). In reality, the actual curve between
these points is nonlinear and is shown as the chain line between
B and C. Alternatively the curve OABDC in figure (3.16) can be
used to represent the moment curvature diagram. This is particularly
convenient, because there is no need to calculate the yield moment
My. Having calculated Mu, the curvature Pu is obtained from
triangles OAA' and ADA''' as
Pu = fc + (Mu - Mc)/(EI). 3.22
The region between D and C is perfectly plastic and point C
is the fracture point which limits the rotation of the section.
The effect of axial loads on the moment-curvature diagrams

(19)

has been studied by Cranston and a numerical technique has
been proposed. This effect is however neglected in the analysis
proposed in this chapter.

3.i The Use of Compensating Loads in the

Failure Analysis of Reinforced Concrete Frames .-

The flexural rigidity of a reinforced concrete member is a
function of its forces. i.e, its bending moments, shear force
and axial force. The effect of the shear force may be ignored
when the depth to length ratio of the member is comparatively
small. ~ As the load acting on a frame is increased, the flexural

rigidities of its members decrease. In section 3.h , it was

suggested that the flexural rigidity of a section can be idealized
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to change at discrete values of the applied bending moment. As
soon as the first change occurs in a structure it becomes‘more
flexible, requiring a fresh analysis to predict its subsequent
behaviour. This analysis however, should give the same forces
and deflections in the frame after the change occurs but before
increasing the external loads. Suppose a change occurs in member
ij at a load factor Ag. Thg flexural rigidity EIij of the member
reduces to (1+a)EIij. A fresh analysis of the new structure,
without compensation, results in an erroneous set of joint
deflections and member forces. To rectify this, compensation
loads given by equation (2.10), are applied at joints i and j.
This is on top of the actual loads at the load factor Ak.

As the load factor is further increased, member ij acts with
the new flexural rigidity (1+a)EIjj.

To clarify the above treatment, consider the example of the
portal shown in figure (3.18) which has a constant EI throughout.
Ignoring the effect of axial deformations, the bending moment and
the shear force diagrams for A = 2 are shown in figures (3.19 a
and b). Let the flexural rigidity of member BC be reduced to
0.2EI, so that the change in EI is 8EI =-0.2EI + EI = +0.8EI and
hence a¢ = -0.8. To maintain the forces and deflections of the
structure, the forces acting on member BC are multiplied by the
variation ratio a = -0.8 and applied at joints B and C together
with the external loads. The original forces in member BC and
the compensating loads of the member are shown in figure (3.19.c¢)
and (3.19.d) respectively.

As the new structure is analysed under the combined action

of external and compensating loads, see figure (3.20), the bending
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ﬁoment and the shear force diagrams shown in figures (3.21.a) and
(3.22.a3) are obtained. These diagrams are similar to thos obtained
for the initial structure except for member BC itself. The bending
moment and the shear-force diagrams due to compensating loads
acting on BC alone and shown in figures (3.21.b) and (3.22.b) are
now added to those in figures (3.21.a) and (3.22.b) to give the
diagrams shown in figures (3.21.c) and (3.22.c). These are now
identical to the initial ones shown in figures (3.19.a and b)
3.j Assumptions involved in the failure load
analysis of reinforced concrete frames:
1 - The flexural rigidity of a section is a function of the bending
moments acting on it,
2 - The moment-curvature diagram is assumed to be ; series of
straight lines.
3 - Generally the bending moment in a member varies aleng its
length. Therefore its curvature and its flexural rigidity
also vary. It is here assumed that the flexural rigidity
along a short member is constant. In the case of a long
member, the error involved in this assumption is reduced by
diving it into smaller sub-members. Secondly, an effective
bending moment may be calculated to give a moment area equal
to that present on the member. The flexural rigidity
corresponding to this effective bending moment may be considered
as the coﬁstant flexural rigidity of the member. This
assumption is discussed in detail in section 3.d.
4 - The small deflection theory is valid.
Adopting these assumptions the nonlinear analysis of a reinforced
concrete frame up to and including failure can be carried out in

the manner described in the following section. -



209 &

3.k The Failure Load Analysis of Reinforced Concrete Frames:‘-
The basic principle of this method is to trace the 1qa&-
deflection history of a frame by moving from one critical point
on the moment-curvature diagram to another until the load factor
reaches a specific value or until failure takes place. This

principle was used by Majid and Anderson(??)

in carrying out the
rigorous elastic-plastic analysis for steel frames. However the
"plastic hinge concept" advocated for steel frames is replaced
here with the critical point concept for the case of reinforced
concrete frames. A critical point is defined as the intersection
of two successive linear portions on the moment-curvature diagram.
Once a critical point is reached in a member of the frame, its
flexural rigidity is set to that given by the next linear portion
of the M-C diagram. The lowest load factor at which the next
critical region is reached in any member is extraﬁolated and
applied to the frame and by an iterative process,the exact value
of this load factor is calculated.

The steps involved in such an analysis are:
1 - Initially the frame is assumed to be elastic; its overall
stiffness matrix is constructed by using the initial flexural
rigidities of its members. At this stage it is assumed that the
axial forces in the members are zero.

2 - The joint equilibrium equations L = KX are solved with a given

load factor Aj; to obtain the joint deflection vector X. The
member forces are then obtained from P = k A X. Using the bending
moments at the ends of each member, a corresponding effective
moment is calculated in the manner given in section 3.d.

3 - By a linear extrapolation the load factor at which the
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effective moment of each member, reaches its next critical point
is calculated. The lowest of these, A*, is the load factor at
which it is expected that the next critical point is reached in
any member of the frame. This is then applied to the frame as
the new load factor. In the case of a frame subject to non
proportional loading, the method given in chapter 4 is used to
calculate the external loads for A*,
4 - The axial loads in the members under A* are also extrapolated
using those already calculated in step 2. This new set of axial
loads are employed to calculate the stability functions which are
used in constructing a new stiffness matrix for the frame.
5 - The revised set of equations L = K X are now solved with the
current load factor A*. The resulting joint displacements are
then used to calculate the new axial forces and bending moments
which are used to calculate a fresh set of effective moments.
6 - The-process is now repeated from step 3. The stage will be
reached when after j iterations A;, calculated at the end of a
cycle, is within a specified tolerance of the value expected at
the start of that cycle. This indicates that a critical point is
definitely reached in one of the members, say k, of the frame.
7 - As soon as the effective moment in member k reaches a critical
value, its flexural rigidity EIx is set to the slope of the next
transition region on its M-C diagram.

Using the new and old values of EIyx, the variation ratio ag

is calculated from:

(EIx)new - (EIx)old
(ETp)old ' 3.23

The corresponding compensation loads are calculated from

ag = =

equation (2.10).
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8 - To initiate. thesarch for the next critical point, the load
factor is increased by a small amount and the corresponding
external loads are calculated. The new compensating loads are
added to the external loads while the old ones are subtracted.
For one cycle the axial loads are kept constant at tﬂeir values
and the search for the next critical point is initiated from
step 3. Every time a critical point is reached, the determinant
of the overall stiffness matrix with the new flexural rigidity
for member k is calculated. The analysis is terminated when this
determinant becomes negative, indicating that the frame has
collapsed.

3.t. Examples:-

3.1.1. Portal Frame: To verify the method given in section (3.k)

a portal frame tested by Deehleclé)

was analysed for various
approximations of the moment-curvature diagram. The results are
compared with the experimental load-deflection curve and also
with that obtained fromthe actual M-C diagram, using the method
given in section (3.d). The frame is shown in figure (3.23), and
has a height and a span of 1200mm. The columns are pinned at the
base. The beams and the columns are made out of 100mm X 125mm
rectangular section. The members of the frame are subdivided in
the manner shown in the figure. This is to reduce the error due
to assumption 3 given in section (3.j).

The experimental moment-curvature diagram, obtained by Deeble
for a beam of the same property as the frame is represented by
curve "a" in figure (3.24). Curve "b" in the figure represents a

trilinear approximation which covers the same area as curve a.

Curves c, d and e represent various bilinear approximations as
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indicated in the figure. The results of the analyses are
summarised in table (3.4) and the load-deflection diagrams are
represented in figure (3.25). The curves in figure (3.25) are
indexed with the same letter as for the M-C curves in figure (3.24)
to represent the particular M-C curve used for each analysis. The
analysis using the trilinear M-C curve "b'" gives a failure load of

W =:3.89 kN being 14% lower than the experimental failure load of

W = 4,52 kN. The nonlinear M-C analysis of section (3.d) using
the experimental M-C curve, predict a failure load of 3.98 kN.
This is indicated as curve "a'" in figure (3.25). The analyses
using other approximate M-C curves give almost similar values for
the failure load. All of the failure loads are lower than the
experimental value.

The load-deflection curves 'a'" and '"b" of figure (3.25),
obtained from the method of section (3.d) for the experimental
M-C diagram and from the method given in section (3.k) for the
trilinear M-C curve, are almost matching to the experim?ntal one
up to a load of 3.6 kN. This in fact shows that both of the
methods may be sufficiently accurate to deal with the nonlinearity
due to material properties. It may also be concluded that the
trilinear representation of M-C diagrams of reinforced sections
given in section (3.h) is sufficiently accurate and simple for
practical use.

On the other hand, the bilinear M-C curve '"c" of figure (3.24)
which ignores the effect of initial flexural rigidity, over
estimates the deflections although the ultimate deflection obtained
by using this curve is nearly to those obtained for the M-C curves

"a'" and "b" of the figure. The elastic-plastic M-C curve "d'" for
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which the initial flexural rigidity is held up to the ultimate
point under estimates the deflections while the M-C curve '"e"
gives the highest deflections up to a load of 3.8 kN.

It was observed that the frame is very sensitive to slight
changes in the M-C diagram. As the failure stage is approached,
the flexural rigidity of the members reduce and the frame becomes
very sensitive to even smaller changes in the load factor. At a
load of 3.6 kN the load-deflection curve '"b" of figure (3.25)
moves backward and then forward again, this indicates how a small
alteration in the stiffness of one member at this stage can effect
the behaviour of the frame considerably. At this load, more than
one critical point is reached within the given tolerance. The
" critical point which gives the lowest load is thus selected while
the otheérs being left to be selected at a later stage which
follows immediately and at the same load factor. This kind of
"drift" is experienced even more in the analysis of the portal
described in the next section.

3.1.2 Two Storey, Single Bay Portal Frame:-

As a second example on reinforced concrete plane frames, the
two storey, single bay frame shown in figure (3.27.a) was analysed.
It is one of the two storey frames tested by Deeble (1), The
dimensions of this frame are shown in the figure. The ground
floor columns are simply supported at the base. All the members
have the same cross section with 175mm depth and 100mm width.

The corresponding moment-curvature diagram is given in
figure (3.26). This diagram was obtained experimentally be Deeble
in the same manner as in the case of the portal frame of the

foregoing section. To reduce the computing time involved in the
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analysis, this diagram is slightly modified and expressed by
three successive straight lines connecting the points O, A, B and
C in the figure. To improve the accuracy, the members were
subdivided as shown in figure (3.28.a). The theoretical load
deflection curves obtained by the incremental load factor method
given in section (3.k) and the nonlinear M-C analysis of section
(3.d) are given in figure (3.27) together with the experimental
curve,

The curve obtained by the incremental load factor method
gives a better estimate of the deflections than the nonlinear M-C
analysis. It is reasonably smooth up to a load of 5.5 kN. After
that some drifting is noticed. The analytical failure load was
noticed to be 6.566 kN, which is 12.1% lower than the experimental
failure load of 7.47 kN.

The curve obtained by nonlinear M-C analysis is steeper than
the other curves up to a load of 5.00 kN. A sudden driftwas then
experienced and the vertical deflections became excessive at
w = 5.16 kN. For further increases in the loads, the horizontal
deflections also increased drastically until an overflow was
registered by the computer at w = 7.204 kN. In spite of drifting
encountered in the load-deflection diagrams, both theories give
conservative results compared to the experimental, which makes
them safe to be used. The difference between the theoretical and
the experimental failure loads may also be due to experimental
errors e.g. supports not being perfect knife edges.

To investigate the cause of drifting in the load-deflection
curve, the frame was also analysed for bilinear M-C curves OBC
and ODC of figure (3.26). The analysis for curve ODC was repeated

for the subdivisions shown in figures (3.28.b) and (3.28.c).
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Drifting was also observed in the analyses employing the M-C
diagfams OBC and ODC of figure (3.26) for the subdivision given
in figure (3.28.a). However it was not as significant as‘that
occurred in the analysis-:employing the trilinear M-C diagram OABC
of figure (3.26). The load-deflection curves obtained from these
analyses are shown in figures (3.29) and (3.30).

The load-deflection curves obtained from the analyses
employing the M-C curve ODC of figure (3.26) and the subdivisions
given in figures (3.28.b) and (3.28.c) are presented in figures
(3.31) and (3.32) respectively. In figure (3.31) the load-
deflection curve is reasonably smooth throughout, but a slight
drifting can still be observed. However, no drops in the load
factor was experienced.

The load-deflection curve was further improved in the last
analysis. It can be seen in the corresponding figure (figure 3.32),
that the drifting has almost vanished, and the théoretical load
deflection curve almost matches that obtained experimentally after
a load of 4.60 kN. The deflections, however, were overestimated
at the earlier stages of loading. This is due to the fact that
the M-C diagram employed ignores the initial flexural rigidity.

These results may indicate that the drifting at a stage is
mainly caused by picking only one of the many critical points
which are about to be reached almost at the same time. As soon
as all of these points have been taken account of, the load
deflection curve becomes smooth again. Because the incremental
load factor approach involves a repeated solution of joint
equilibrium equations, the prediction of each critical point on

the load-deflection curve is not affected by any other point on it.
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Therefore a drifting may be.experienced in a region until the
program automatically corrects itself, and the fest of thg load-
deflection curve remains unaffected.

It is also shown that a suitable subdivision of the members
may eliminate the drifting.

Finally, it may also be concluded that simpler M-C diagrams,
covering the same area as the original one may estimate the
deflections reasonably well at stages close to failure.

3.1.3 Six Storey, Single Bay Reinforced Concrete Frame:-

For a further justification of the incremental load factor
method given in section (3.k.), the practical type frame shown in
figure (3.33) is considered. This was originally described by

,22)

Corradi et a and analysed under the working loads also given

in the figure. The finite element method was used in conjunction

(23). The effect of axial

with the method of imposed rotations
forces were taken into account both on the stability and on the
M-C relationships of the columns.

In the present analysis, the nx}ujcai loads were calculated
approximately from a basic isostatic frame obtained by releasing
the redundant forces. Moment-curvature relationships of columns
corresponding to these axial forces were obtained by interpolation
of the M-C diagrams in figure (3.34.a), given in reference (22).
Some difficulties were encountered in choosing the appropriate M-C
relationship for the inner parts of the beams, from those of
figure (3.34.b), given by Corradi. Two different M-C diagrams
were given for the inner and outer cross sections, vi;. the curves

A and B in the figure. They were both derived for the case when

the compression zone is at the bottom face of the beam. However
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it may be seen from figure (3.33) that sagging moments may act in
the spans of the beams, under the given loading. Thus the
compression zone takes place at the top of the inner cross
sections. This implies that the M-C diagram adopted for the
outer parts would also be used for the inner parts.

Two analyses were carried out by the author. The first
analysis uses the M-C diagrams as implied by Corradi. The
resulting bending moment and deflection diagrams are shown as
curves C in figures (3.35.a2) and (3.35.b) respectively. In the
same figures curves B represent the moments and deflections
obtained by Corradi. The deflection diagram obtained from the
linear elastic analyses is given by curve A in figure (3.35.b).
The deflection curves B and C of figure (3.35.b) are in a very
close agreement, although the corresponding bending moments were
found to be considerably different.

In the second analysis the M-C curve A, of figure (3.34.b),
was employed both for the inner and outer parts of the beams.

The resulting bending moment and deflection diagrams are given by
curves D in figures (3.35.a) and (3.35.b). The maximum deflection
obtained in this case was about 23% less than that obtained by
Corradi, while the bending moments obtained in both analyses are

in a reasonably good agreement.
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CHAPTER 4

FAILURE LOAD ANALYSIS OF COMPLETE BUILDING STRUCTURES
4.a. Introduction:

The aim of this chapter is to present a method for the
failure analysis of multistorey buildings consisting of a
grillage system of parallel floor slabs and shear walls, together
with an arbitrary arrangement of parallei skeletal sway frames as
shown in Figure (4.1). The material of the frame and grillage may
be the same or different. For instance, the entire structure may be
made out of reinforced concrete. On the other hand, the frames
may be manufactured out of steel while the slabs and the shear
walls may be made out of reinforced concrete. In the case of
structures prepared for laboratory tests, the shear walls and slabs
may also be manufactured out of perspex.

The method traces the behaviour of these structures up to and
including the stage of failure. As the external loads acting on a
structure are increased progressively a number of qualitative
"critical changes' take place in the structure. These are:

i - A plastic hinge may develop in one or more of the steel
frames. Contrary to the expectation of plane frame analysts,

these hinges do not develop all at once(70)

nor do they develop

in one, say the weakest, of the frames. In the case of reinforced
concrete frames such hinges do not take place. Instead the moment
curvature relationships of the cross sections change in some parts
of these frames. B ' i

ii - One or more of the shear walls or slabs may crack while the
overall structure remains capable of carrying further loads.

iii - In the case of laboratory structures, one or more of the

slabs or shear walls may buckle. -



FIGURE 4.1: A COMPLETE STRUCTURE. LOADING AND
SIGN CONVENSION
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The overall failure of the structure takes place not as a
result of one of the above mentioned "critical' changes but due
to the combination of these factors. |
4.b. Separation of Wind Loads:

Plastic theoreticians(70) have assumed that the loads acting
on a frame may be considered to increase proportionally. The
exact opposite of thi; assumption is true., In reality, even if
a complete structure is loaded proportionally, the part of that
load transmitted to any of its frames does not follow this pattern.
Thus the whole concept of plastic analysis of frames is invalid.
Furthermore, before any analysis can proceed it becomes necessary
to calculate, at each of loading, the portion of the external loads
transmitted to each part of the structure. To do this, the method
proposed in references (31) and (66) are also adopted here. This
considers the complete structure as if it consists of two distinct
components. These are the bare frames and the grillage system of
slabs and shear walls. The applied vertical loads V shown in
Figure (4.1) are those carried by the frames and may be increased
proportionally. The wind load vector P acting at the junctions of
the frames and the slabs is divided into a vector f transmitted
to the frames and another vector g transmitted to the grillage
system of slabs and shear walls. Thus

P=f+g 4.1

It will be shown later that while P may be increasing proportionally,
in the same manner as v vectors f and g do not follow P. ‘Indeed,
while P is in;reasing some elements of f or g may even reverse their
directions. Vectors f and g are calculated making use of the

compatibility conditions at the junctions of the frames and floors.
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Thus the horizontal deflection of the grillage and bare frames at

the junctions must be equa1(31’66)

, giving:

£=G+Dl @GR 4.2
where a is the vector of horizontal deflections of the junctions
when loads w, shown in figure (4.1), are applied to the shear
walls. The symmetrical matrix G is the influence coefficient
matrix of the grillage and defines the horizontal displacement at
each junction of the grillage due to unit loads at the various
junctions of the floors and frames. Similarly the symmetrical matrix F
is the influence coefficient matrix for the frames and has the
same order as G.
4,c., Assumptions:
i - While the frames may be different from one another, they are
assumed to remain parallel to each other and deflect in the zy plane.
Each joint of the frame has three degrees of freedom in z, y and
8x directions. The cooordinate axes are shown in figure (4.1).
ii - The grillage consists of shear walls and slabs that are either
rectangular or can be divided into rectangles by lines drawn
parallel to the coordinate axes. The stiffness of each panel is
obtained from the slope deflection equations for a deep beam in
which the shear stress distribution is parabolic(?l). Each joint
in the grillage is assumed to have freedom in z, 64 and By
directions.
4.d. Progress Towards Failure:

The major steps for the full analysis of a complete structure

up to collapse are as follows:
1 - To begin with the structure is elastic. Matrix displacement

method is used to calculate the influence coefficients of each
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frame and also of the grillage system in the same manner as in
references (31)and (66). Equations (4.2) are then used to
calculate the force vectors f acting on each frame. Equations
(4.1) then give the force vector g acting on the grillage. If
the external loads are now multiplied by a ioad‘factor-l, the
total vertical load at a joint in the frame will become AV where
V is the working vertical load at the joint.

On the other hand the external working wind load Pjj at
junction ij is divided between the frame i and the slab to which
it is connected at floor level j, thus:

Pij = £ij + 8ij 4.3
Thus when the load factor is A the junction ij of the frame is
subject to a horizontal load Afjj while the grillage is subjected
to a horizontal load Agjj at the same junction.
2 - Each frame is now analysed elasto-plastically to obtain the
load factor A at which a plastic hinge develops. The procedure
for this is similar to that given in references 20 or 31.

As the loads f acting on each frame are different from frame
to frame, the load factor for the formation of a hinge is also
different from one frame to another. The lowest load factor Ag
of these is selected as being the one that causes a plastic hinge
to form anywhere in the structure.

3 - On the other hand the grillage is analysed elastically under
factored loads AGg acting at the junctions and XG w acting on the
shear walls. This is to calculate the load factors XGC at which
one of the panels cracks and Agg at which one of them buckles.

4 - The next critical stage in the structure is obtained by

calculating the '"critical load factor' Acr. This is the lowest
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of A Or A~.~. Thus a critical load factor is defined as at

> Aes 9% ‘eo
which a change takes place either in one of the frames or in one

of the panels. At the kth

critical stage this load factor is Acrg.
5 - If Acr = AFL a hinge is inserted in the frame for which Ap;
was selected. This hinge alters the frame basically and makes it
more flexible and incapable of sustaining its share of the
transmitted loads. Part of these have therefore to be transferred
to the slabs and transmitted to the other frames and the shear walls.
If on the other hand, xcr = XGC or Acr = AGB’ the stiffness
of the panel that has cracked or buckled is reduced drastically
to the extent .that the panel may now be disregarded. In the
computer program written for this purpose, it is assumed that,
from now on, the modulus of elasticity E and the shear modulus G
of this panel are reduced to yE and yG, where ¢ is a small
preselected factor such as 0.01.
6 - Once A_. is decided for the whole structure, the member forces
and deflections in the grillage and each frame are calculated for
this load factor.
7 - The influence coefficient matrix of a frame is changing
continuously. This is not merely because the axial loads in its
members are changing but also because a frame with hinges is more
flexible than without or with fewer number of hinges. Similarly
the influence coefficient matrix of the grillage also changes when
one or more of its panels crack or buckle. At each critical load
factor therefore, once the property of a frame or a panel alters,
the new influence coefficient matrices F, or G, are recalculated.
Each time a new matrix Fp or a new matrix Gp is prepared, the
inverse matrix transformation (4.2) is carried out to calculate

the new forces f; transmitted to the frames. Equations(4.2) are -
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now in the form:

fn= Gn *+ Fp)™ Gn B+ ap) 4.4
The new influence coefficient matrix Gn is reconstructed 6n1y
when the stiffness of a panel is altered while F, is reconstructed
after evéry new plastic hinge. Notice that as soon as the
flexibility of the grillage changes, the deflections a due to
loads acting on the shear wall change to aj.
8 - Once a critical load factor Acr is calculated the search is
continued for the next one and the process is terminated when the
sway deflection of the structure increases considerably and
further analysis cannot be carried out due to an overall loss of
stiffness.
4.e. Non-Proportional Loading:

It was shown above that the separate flexibilities of the
frames and the grillage are changing continuously. These changes
cause the amount of external wind loads transmitted to any frame
to vary non-proportionally. This is in spite of the fact that
the external loads on the structure itself may be increasing
proportionally. Consider that k-1 critical stages have been
attained by a structure at load factors Ac A

> 5 i~ . kcr(k-l)
th, critical stage is to take place at

and that the next, i.e. k
the unknown load factor A, . If the working vertical load acting
at a joint m in a frame is V, then the element of the load vector
corresponding to this load is Acrk Vme Thus the vertical loads

acting on the structure and on each frame increase proportionally.
Similarly, the horizontal wind load acting on the shear walls also

increases proportionally and at stage k the load vector acting on

these walls is kcrk w.
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Every time equations (4.4) are solved the forces f,

transmitted to a frame are calculated. Consider that the‘horizontal
forces transmitted to junction ij of a frame are f;, fo,.. ., fk-l’
fx. The total load acting on the frame at this junction is

therefore given by

ik T Aern £ ¥ Qg = Aepf2 40w Qo = ey
i.e. zijk =-[f2-f1)lcr1 + (fz-f3)lcr2 + o

* () - Bdlerk-1) * fk Aerk 4.5

All the terms in equation (4.5) are known except the last in
which fk is known but Acrk has to be found iteratively. To do
this A 4 1s replaced by a specified value 81 and the load L*ijk
acting at ij on the frame is calculated from equation (4.5). The
usual iteration method is then used to calculate Acrk (see
reference 31). A similar procedure is used to calculate the
critical load at which one of the panels of the grillage cracks
or buckles.

Because the loading is non-proportional, the possibility of
plastic hinges becoming inactive increases. This is yet another
reason why a simple plastic approach becomes unacceptable(70).
In the present work the method used to deal with inactive hinges
is that given by Daviestso).

4.f. Lateral Buckling of Slabs:

Thick reinforced concrete slabs are often used for the
floors and shear walls of practical structures. These are unlikely
to buckle before they crack or before the frames collapse. However
to make the proposed method general some, approximate method should

be included to cover the case of slab buckling. This becomes

particularly useful in laboratory test cases in which the slabs
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are manufactured out of thin perspex sheets.

The method presented here is for the elastic lateral buckling
of a deep rectangular panel subject to unequal end moment§ about
its major axis. The panel is elastically restrained at its ends
about its minor axis. This method is developed by combining those
given by Horne(73) and by Trahair(Ts).

The slab shown in figure (4.2) has x-x as its major axis and
Y-Y as its minor axis. It has a span L, a depth d and thickness t.
At both ends the slab is simply supported about its minor Y-Y axis
and subjected to unequal end moments Myz and M'yz as shown in the
figure. Horne dealt with the case of an I beam which was simply
supported at both ends and subject to unequal end moments.

However by neglecting the flanges of such a beam, the slab shown
in figure (4.2) is obtained.

The slab shown in figure (4.3) has the same dimensions as
that shown in figure (4.2). This slab is elastically restrained
at its ends about its Y-Y axis and subjected to equal and opposite
end moments Myz and —Myz as shown. This is the case dealt with
by Trahair.

In dealing with the lateral buckling of s$labs, the following
assumptions are made.

1 - Because the cross-section of the slab is very narrow rectangle,
the warping rigidity of the slab is neglected.

2 - Warping is not prevented at the ends of the slab.

3 - The stiffness Eka'is very high compared to EI__ and GJ of

Y

the section. Here E is the modulus of elasticity, Ixx and Iyy are

the second moment of area about the major and minor axes respectively

and GJ is the torsional stiffness of the section.



Suppor{along z .
( Support nlons Zis similar to H\-m)

FIGURE 4.2: PANEL WITH NO LATERAL END RESTRAINTS
AND SUBJECT TO UNEQUAL END MOMENTS
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4 - The stiffness EIxx is not affected by the end moments until
the lateral instability takes place.
5 - The end supports provide sufficient restraints aéainst torsion
and any torsion developed has no effect on the lateral buckling.
A number of other simplifying assumptions are also made and are
given later in the text.

Horne expressed the elastic critical moment Myzcr in the form:

Mﬁzcr = (F + F'¥) M%yz 4.6

where‘f defines the warping rigidity factor of the section which
is assumed to be zero here as the section is a narrow rectangle.

Thus equation (4.6) becomes:

2 ~ 2
Myzcr F MEyz 4,7

The factor F is a parameter which depends on the ratio % = M)"z/Myz

and its values were tabulated by Horne and reproduced here graphically
in figure (4.4).The range of ¢ between +1 and -1 covers all the possible
cases. In equations (4.6) and (4.7) MEyz is the elastic critical

moment for the case when the end moments are equal and opposite.

This critical moment is given bytsg);
Mgy, = ™ YE1,,GI/L 4.8

Substituting for MEyz from equation (4.8) into equation (4.7) we
obtain:

Myzcr = 7 /F - VEI WGJ/L 4,9

On the other hand, for the case of equal and opposite moments,
figure (4.3), Trahair expressed the magnitude of the elastic
critical moment as:

| __— | =6 #EIyycdyL 4.10

where § is a function of the rotational restraining stiffness of



FIGURE 4.4: VARIATION OF /F VERSUS ¢
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the supports and was tabulated in terms of the restraint rate g
which itself is given as:

g’ = ke,/(k 8, + 2 EI/L) 4.11

z
where k eyi-is the rotational stiffness of the supports. The
manner in which this is calculated is given later.

For the general case of a beam restrained at the ends
elastically while subjected to unequal end moments, equations
(4.9) and (4.10) are combined to give

Mym, = 8§ /F /E'Tyy"cJ/L 4.12

In fact when the ends have no restraint the value of § is equal
to 7™ while when § = 6.34 the end restraint is infinite.

It is interesting to note that on the one hand when the slab
is subjected to equal and opposite moments, Horne's approach
reduces to that given by equation (4.12) with 6 = v. On the
other hand for the case when F = 1, i.e. when the slab is subject
to equal and opposite moments equation (4.12) reduces to equation.
(4.10), derived by Trahair.

The rotational stiffness of .the supports at one end of the
slab uv, figure (4.5), is calculated as the sum of 3 EI/L of the
other slabs meeting at that end. Thus at u the slab is connected
to three other slabs, these are numbered 1, 2 and 3, and the

rotational restraining stiffness of end u is:
- 3 Elyy _ 3 Ely, + 3 Elys

P

yu I, L, I, 4.13
while at v, the restraining stiffness is:
k Bu. = 3 Elyy , 3 Elys 4.14

yv Ly Lg”
Equations (4.13) and (4.14) make the safe assumption that

members 1 to 5 are themselves pinned at their far ends as shown
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in figure (4.5). In the computer program written for this purpose
it was further assumed that the lower of the two values of ke
given by equations (4.13) and (4.14) is the rotational stiffness
at both ends. The restraining effect of any frame supporting a
slab was neglected and it was assumed that a frame simply supports
the slab. These assumptions are all safe.
Again, when preparing the computer program, values of /F and
§ were represented by polinomials of the form:
VF = 1,765 - 1.015 ¢ + 0.2446 g2 - 0,08219 ¢3 - 0.01952 g*
+ 0.3182 5 - 0.2117 z5 4,18
§ = 3.14 + 1,542 ¢ - 3.127 % + 21.681 43 - 53,97 g*
+ 69.65 #5 - 41,912 ¢6 + 9.337 47 4.16
Finally GJ for a thin rectangular plate was taken as:
GJ = (1 - 0.6302 t/d) d t36/3 4.17
as given by Patel et a1[79).
During the process of predicting the load factor at which
one of the panels buckles, both Myz and M}z, and therefore g, are
unknown. Thus the exact value of £ can not be calculated. To
overcome this difficulty, it was assumed that between one critical
stage and the next the ratio ¢ = M;Z/Myz has not altered significantly
from its value calculated at the beginning of the current stage.
This assumption is reasonable fortwo reasons: Firstly, because
the interval between one critical stage and the next is small,
especially as failure is approached. This means that even if the
increments & Myz and § M;z are large, the updated total values of
Myz and M}z are much larger than their current increments and thus

the value of £ is not significantly in error. Secondly figure (4.4)

shows that the value of /F is not very sensitive to changes in ¢
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and thus a smalllerror in g does not alter the value of Myzcr of
equation (4.12).
4.g. Cracks of Homogeneous Brittle Slabs:

If the slabs of a structure are made out of homogeneous
brittle material, then they may crack due to the combined effect
of bending, torsion and shearing. The cross section of a typical
slab is shown in .figure (4.6.b) which has a depth d and thickness
t. This is subject to an in-plane bending moment Mb about the x
axis, a shearing force Sy parallel to the Y axis and a torque Mg
about the z axis of the slab. In figure (4.6.a) the points that
may crack first are marked as A and A' at the top and the bottom
of the section and also points B and B' on the x axis. Figures
(4.6.c) and (4.6.d) and (4.6.e) show the stress distribution due
to the bending, shear and torsion respectively.

At A and A' the maximum bending stresses + o, are :_Mblzb

b

where Z, = td%/6 is the section modulus. The shear stresses Tok

and T due to torsion are :.Mtfzt, where Z_ is the elastic

tA'
: : (80)
modulus in torsion and can be expressed as:
Z, = n dt? 4,18
The factor n is a function of d/t and can be calculated

using the theory of elasticity. For values d/t > 2, as is the
case here, this is expressed as:

n=1/(2.1952 + 2.703 t/d) 4.19
This gives a maximum error of about 4%,

The principal stresses at A and A' due to the combined

effect of bending and torsion are thus:

o]

. :%E; & /g2 . (%:)2 4.20

max’ ‘min’ 27y
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A crack develops at either A or A' when the maximum shear stress

_1 . . :
Thax = §-GY where Uy is the yield stress of the material.. Thus

using equation (4.20) a crack develops when

o =2t _=0._.-0. =2/Cby2, (%iaz 4.21

defining
¢ =2 Zp/Ze = d/3 t n

and 4.22

Mg = Z, (Opax = pin) = |ﬁ§ oM,
the section cracks at A or A' when
M, =0t d2/6 4,23
Yy
Alternatively, this section may crack at B or B' due to the
combined effect of direct shear and torsion. The maximum direct

shear stress at B and B' is 1.5 Sy/t d. The shear stresses T4

and T.p, due to torsion may be expressedtao) as:

Teps Tept = + Mg/n' d t? 4.24

where n' is also dependent on d/t and can be approximated as:
n' = 1/(3 + 1.8 t/d) 4.25
which is accurate to within 2%.

The resultant maximum shear stress tR at B or B' due to the

combined effects of shear and torsion is thus given by:

.3 2 M
T, = (SY + '3—tt‘ﬁ1-) 4.26

2dt

and when this is equal to %-cy a crack develops at B or B'.

R

Because the material of the section is brittle it is assumed
that once a crack develops, it .spreads right across the section,
It is also considered that only one crack can develop at either
end of the panel. This is either at A, A' or B, B'.

The load factor at which a crack develops at one end of the
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panel is calculated by linear extrapolation. This is selected as
the lowest of the load factors that causes a crack at one of the
above four points. However during the whole process of léading
the structure up to failure, more than one panel can suffer a
crack. The failure load analysis is therefore not terminated with
the first crack.

Often, as was the case in the experiments, carried by Hnenssz)
the shear walls may be bolted to the foundations. To cater for

these, it is simply assumed that stress concentration round the

holes reduces the yield stress cy to c} given by
= 7
°y Zb cy/Zb 4.27

where Zy is the net section modulus.
4.h. Analysis of Two Storey Structures:

As applications seven two storey structures were analysed by
the proposed method. These structures were actually tested by
anen earlier in 1973 and were found to fail at load factors
totally different from those suggested by Bnen. The differences
were mainly due to the fact that Snen, while separating the wind
loads into those transmitted to the frames and those to the
grillage, overlooked the behaviour of the latter and concentrated
on the frames.

A typical structure tested is shown in figure (4.7) while
the dimensions of the structures as well as the results obtained
are given in table (4.1). For experimental purposes, Bnen
manufactured the gfillages out of perspex with variable dimensions
and thicknesses. The frames were all made out of 12.7 mm square
black mild steel with the span of their beams being 20 mm more

than the width of the slabs. The fully plastic hinge moment Mp of
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the steel bars are given in table (4.1) and the value of the
modulus of elasticity was obtained by Bnen for the batch as
202.2 kN/mm2. The material properties of the perspex were
supplied by the manufacturers.

Figure (4.8) shows the load-deflection graphs obtained by
four different methods for structure 1. Curve 1 is that obtained
by the present method. Curve 2 was obtained experimentally while
curve 3 was obtained by Bnen. Finally curve 4 shows the results

(32) of one of the bare

obtained by the elasto-plastic analysis
frames.

The present method predicted that the first floor slabs
spanning frames Fl and F2 would buckle first at a load factor of
0.96. In fact Bnen reported that experimentally at a load factor
0.98 these slabs first buckled and then fractured. The point at
which this took place is marked as GBl on the theoretical curve 1
and GB, GC on the experimental curve 2,

As the analysis continued 13 plastic hinges were developed
in the frames. Throughout the procedure, the symmetry of the
structure was unaffected., None of the frames failed either due
to the formation of a mechanism nor as a result of instability.

In fact the structure finally collapsed with the buckling of the
slabs spanning frame 1 to 3 at the second floor. Notice in

figure (4.8) that contrary to the expectation of the plastic theory,
the hinges did not all develop in the middle frame. Once the first
two did develop in this frame, it became flexible, giving rise to

a redistribution of the wind loads away from this frame to the
outer ones. Thus the next four hinges took place in the outer frames.

Figure (4.9} shows the fraction of the wind load transmitted

to the separate frames during the loading process at the first
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floor level while figure (4.0) shows the loading of the framesat
the second floor level. Finally figure (4.11) shows the grillage
loads during the whole process. These figures clearly indicate
that while the external loads increased proportionally, neither
the frames nor the grillage were exposed to proportional loading.
In figure(l..slcurve_4 shows that an accurate elastic-plastic
analysis of one of the bare frames has no resemblance whatsoever
to the actual behaviour of the structure. Such an analysis, which
is in itself more accurate than that given by the plastic theory,
puts the collapse load of the structure at less than a third of
its actual value. This glaring discrepancy has been hitherto
disguised by comparing the theoretical results of plane frame
analyses, not with the actual behaviour of structures but with

experiments carried out on plane frames.
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CHAPTER 5

FAILURE OF REINFORCED CONCRETE PANELS

5.a. Introduction:

A reinforced concrete panel may be either a slab or a shear
wall forming a unit of a grillage system. A slab panel extends
from one frame to another or to a shear wall. Such a panel fails
under the combined action of shear and bending while the effect
of torsion is sufficiently small that it can be neglected. On
the other hand, a shear wall panel joining two floors may fail
under the combined effect of shear, bending and torsion.

Research on failure of reinforced concrete, due to the
interaction of bending shear and torsion, has been hitherto
limited to simple beams. A sound approach to this problem was
made by Elfren, Karlsson and Losbergtss) who assumed that the
height of the concrete compression zone is so small that the
centre of this zone is located at the level of the horizontal
stirrups at the top of the beam. It was further assumed that the
neutral axis is also located at this level. Thus it was assumed -
that the contribution of the compression force C, sustained by
the concrete, to the equilibrium equation can be virtually
neglected.

Unlike a beam, a reinforced concrete panel has a large number
of layers of reinforcement. At failure a deep section of the
panel, with several layers of bars can be in compression, with the
neutral axis extending to a level well within the panel. Further-
more, instead of stirrups, the reinforcement may be in the form of one
or two parallel meshes which may or may not be connected to each

other as shown in figure (5.1). For these reasons the methods



a-Single reinfor-
cemeni in the
middle

b-Double reinfor-

cement

FIGURE 5.1

¢ Double reinforcement
with closed stirrups
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proposed for the failure analysis of R.C. beams cannot be applied
to panels. In the latter case it is first necessary to dgtermine
the depth of the neutral axis, the centre of the concrete
compression zone and the magnitude of the compressive force in
concrete. These are some of the tasks to be solved in this
~chapter. The procedure proposed by Elfren et altss) is then
generalised to cover the case of failure of deep beams due to the
various interactive effects.
S.b. Location of Neutral Axis:

In calculating the depth of the neutral axis for a panel it
is assumed that:
1 - The reinforcement is spaced equally thrbughout the depth of
the panel.
2 - The position of the neutral axis is unaffected by the existence
of either torsion or shear. This is valid since both shear and
torsion do not give rise to direct tensile or compressive stresses
in the section. However, it will be shown that torsion and shear
alter the width of the compression zone and thus when they ‘are
present, this width must be calculated before proceeding with the
calculation of the neutral axis.
3 - At failure, excessive strains take place in the outermost
fibres but the strain distribution is linear across the depth of
the section.
4 - The section is under-reinforced and failure takes place in
the steel bars first. The concrete in the compression zone, on
the other hand, remains either elastic or partially plastic. In
practice, most slabs and shear walls are under-reinforced and

thus this assumption covers the practical cases,
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5 - The stress-strain relationship for the steel reinforcement is
elastic - perfectly plastic. This assumption can be rela;ed or
removed to cover any other stress-strain relationship obtained
experimentally.

In figure (5.2a) the cross section of a deep shear wall panel
is shown with depth d and thickness t. The spacing of the
horizontal layers of reinforcements is a and altogether there are
m such layers. It is evident that the distance between the
outermost bars is (m - 1)a. The section is divided into three
distinct zones. The top zone, with a depth x, is in compression
and the depth of the neutral axis is therefore equal to x. The
bars in the middle, cracked zone are elastic and those in the
bottom zone have developed plasticity of some degree or another.
Altogether there are i layers of bars in the plastic zone.

The difficulty of calculating the depth of the neutral axis,
for a beam with many layers of reinforcement, becomes evident
when it is realised that not only is this depth unknown but the
number i of the layers in the plastic zone is also unknown. ‘This
difficulty is resolved by expressing x in terms of i and then
finding the latter iteratively.

The strain diagram for the section is shown in figure (5.2.b)
in which g, is the strain at the compression face, €y is the strain
in the bars at first yield and g, is the ultimate strain for steel.
The corresponding stress diagram of the section is shown in
figure (5.2.c) where it is evident that the bars in the bottom
zone are subject to a constant yield stress fy. Again in this
diagram, the horizontal force carried by the concrete is marked C

while the algebraic sum of the forces in all the reinforcement
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add up to T. For horizontal equilibrium therefore:
C=T - 5.b.1
The elastic compressive force C in the concrete is the
product of the area of the compression zone‘and the average stress
acting on it, thus:

C=0.5f tx 5.b.2
where f. is the maximum compressive stress developed at the top
face.

The total force T in the steel bars is the algebraic sum of

the forces in all the layers, i.e.

F.

5.b,3
1 J

T=FI+F2+...+FE=
j

U =

Some of the steel layers are in fact in the compression zone
and T must be calculated with the correct sign of each force as
will be shown later,

With the plastic zone covering i layers, there are altogether
i-1 whole spaces in the yielded region. The force in each layer
here is the ultimate force Fy that can be carried by a steel layer.
Needless to say that, because the material is considered to be
elastic-perfectly plastic, Fy = Fy where Fy is the yield force.
The total force carried by the yielded layers is Ty given by:

i i
Tu =3I Fuj = 5& fuj As 5.b.4
where Ag is the area of the steel in a layer and f; is the
ultimate stress.
In the elastic zone, layer no- k + 1, which is k spaces above

the bottom bars, has strain €. This is calculated from the similar

triangles OCC' and ODD', shown in figure (5.2.b), as:
€k = € = [(d - x) - ka]/(d - x) 5.b.5
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The force in this layer is Fx = Ag Eg €k where Eg is the modulus
of elasticity of steel. Using equation (5.b.5) and remembering

that Fy = As E5 €, the total force in the elastic layers is T,

E
given by: _
m-1
d-x) - ka

Notice that in compression layers ka > d - x and DD', in
figure (5.2.b), will be above the neutral axis. However the
correct negative sign of a compressive force in a layer is
automatically catered for by equation (5.b.6) because (d - k) - ka

becomes negative. In this manner TE gives the net force in the

elastic layers. The total tensile force in the bars is T = Ty + Tg
which is calculated from equations (5.b.4) and (5.b.6), i.e.
i m-1
- . (d-x) - ka
T j§1 Fu].+ kéi Fuk - 5.b.7

Notice that j is a counter of layers while k is counting the spaces
above the bottom layer.

The limits of the second summation in equation (S.b.?) can
be altered so that counting starts from the first space above the

bottom bars, equation (5.b.7) then becomes:

i m-1 i-1
- . (d-x) - ka (d-x) - ka
T= sk Fuj vady Pk g o ady Pk g o S0be8
which can be simplified to read:
- F ) m-1 i-1

T=1F,+ H%E [(m-1) (d-x) - a (kél k - kgl k)] 5.b.9
where Fy = Fyj = Fykx is the ultimate force in any layer.
Since -1

-0 (m-1)
ki k=73

and i-1 5.b.10



107

equation (5.b.8) can be simplified to:
T = {n (d-x) - 5[0 (@-1) - i (i-1]} 5.b.11

The distance y between the neutral axis and the bottom of
the elastic zone is calculated from the similar triangles OBB' and
OAA' in the strain diagram of figure(5.2.b). Thus the compatibility
equation is:

e E
Eﬂc yl 5.b.12

Furthermore, the similar triangles OBB' and OCC' give

gu_.s_fx_
-x y
That ds:

yoodd=X) sy 5.b.13

€u
Now g, = fc/Ec, with E; being the modulus of elasticity of concrete
and ey = fy/Es = f,/Es, equations (5.b.12) and (5.b.13) give

fc - X
f‘l.l Qe i) (d-x}

5.b.14

where ag = Eg/E. is the modular ratio and o = €y/ey is the ratio
of strains in the steel at first yield and at failure.

Equating the total force C in the concrete to the total steel
force T, making use of equations (5.b.2), (5.b.7) and (5.b.14), we
obtain the positive value of the depth x of the compression zone

as:

T (,{ L2 -8 [@D - i G-1/n]} _ 4 —_——
; .b.

where
T = Ag 0g p m/t 5.b.16
5.b.1 Iteration for the Depth of the Neutral Axis:
Equation (5.b.1S) calculates the depth of the compression

zone. This is provided that the unknown number of layers i in
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the plastic zone is first calculated. This can be performed

iteratively as follows:

(1) Assume io = i to start with

(2) Calculate x from equation (5.b.15)

(3) Using equation (5.b.13) calculate y, figure 5.2.b.

(4) Count the number of layers i within the depth d-(x+y) of
the plastic zone.

(5) Check if ig = iy. If it is, the iteration is stopped and
the value of x calculated in step (2) is correct.

(6) If ig # in, set io to the current value of i and repeat

from step.(2) until two consecutive values of i are equal,

In equations (5.b.15) and (5.b.16) it is noticed that the
position of the neutral axis depends on the thickness t of the
panel. This is true only for the case of pure bending where t is
equal to the thickness of the compressive zone. When the section
is subject to bending shear and torsion it is necessary to
calculate the thickness of the compressive zone before calculating
the compression area. This thickness will be shown to be different
from the thickness of the panel. For this reason determination of
the position of neutral axis for such cases will be given after
we have presented the failure analysis of such sections.

S.c. Interaction between Bending and Torsion in Deep Panels:
S.c.1l Introduction:

The difference between a beam and a deep beam is that the
latter is subject to a high shear force which cannot be neglected.
Failure analysis of panels subject to bending and torsion, without
shear, is therefore hypothetical. Nevertheless, this case is

presented first because it is easier and expressions obtained here
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are later modified or used directly to deal with the actual case
of failure due to shear bending and torsicm.

The reinforced concrete panel shown in figure 5.3 haé a
depth d and thickness t. The area of the longitudinal
reinforcements at each layer is Ag. The stirrups, shown looped
in the figure, have height d' and width t'. Each stirrup has an
area A, and they are spaced s apart. The compression zone is
shown shaded in the figure and the distance between the neutral
axis and the outermost layer of tension bars is d'!'.

This panel is subject to a torque My about z axis and an
inplane bending moment My about x axis. As these moments are
increased, inclined cracks begin to develop at angles which can
be assumed to be 45°, Eventually failure takes place with a skew
failure surface ACBDE as shown in figure(5.4.a).

At failure it is assumed that:

(1) - The vertical stirrups have all yielded and are behaving
plastically.

(2) - The strain varies linearly along the depth of the sectionm.
(3) - The strain in the outermost tensile reinforcements has
reached its ultimate value. Nevertheless, it is considered that
some of the inner reinforcements are still elastic.

5.c.2. Moments of Resistance of the Longitudinal Bars:

At failure, the moment of resistance of the reinforcements
about x axis is the net result of that sustained by the longitudinal
bars and that of the vertical stirrups. Considering the longitudinal
bars first, the stress and the strain diagrams are shown in figure
(5.5). Considering the tensile zone; the coniribution of the
longitudinal bars in layer j, to the ultimate moment sustained, is

the product of the force Fj in these bars and the distance of the

-
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layer from the compression centre. For a total of m layers in
this zone, the ultimate moment sustained by the longitudinal bars
alone, is therefore given by:

m
Mye = 55 F5 [@ -2 G-D] 5.c.1

1]

where d is the distance between the compression centre and the
outermost layer in tension.

The force Fj carried by the bars in layer j can be calculated
from the strain diagram of the section and the stress-strain
diagram of the reinforcement. Triangles OAA' and OBB' in figure
(5.5.a) are similar and the strain ey at layer j can be obtained

from:

€3 _ Eu
d” - é. (j-l) = d," 5lc.2

where gy is the ultimate strain of the reinforcement. The cover,
which is here considered to be the distance between the top
surface of the panel and the centre of the top stirrups, is 4"’
and d' is defined as:
d' =4 - 4" 583
The depth of the tensile zone d" can be expressed as a factor y
of d', i.e.
y = d"/d' = (d-x)/d! 5.c.4
Equation (5.c.2) then gives €j as:
€j = €u [yd' - a (§-1)]/vyd" 5.¢.5
In the special case when the stress-strain relationship of the
reinforcements is considered to be elastic-perfectly plastic, the

force Fj is calculated either from:
i- Fj = Eg gj As 5.c.6a

because layer j is elastic and ej < ¢y, or from:

ii=- -Fj = Ag £, S5.c.6b
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because the bars in layer j have yielded and €j > ey. Here
fy = f, is the yield (or ultimate) stress in steel. .

In the general case, when the stress-strain rélationship of
the bars is totally nonlinear, the stress fj corresponding to a
particular strain ej must be taken from the stress-strain diagram.
In this case, the force Fj is taken as:

Fj = Ag f; S.C.6¢

The distance d between layer 1 and the compression centre
can also be calculated from the strain diagram of figure 5.4.a.
The depth of the compression zone is noticed to be d' + d'"!' - 4"
and since the concrete in this zone is considered to be elastic,

the depth of the compression centre X' is obtained from:

X' = 3 (d' +d" - dm) 5.c.7
Defining B as:
g = 2 dnt/dl, 5.;.3
d becomes:
d=4d'" (2+8 +17Y)/3 5.c.9

Notice that y = d'"/d', see equation S.c.4, is the ratio of the
depth of the tensile region to the distance between the outermost
reinforcements. Substituting for d in equation (5.c.l), we

obtain the ultimate moment sustained by the longitudinal bars as:

m

Mult = jél

Fj (8% - 2 (5-1)] 5.c.10
5.8, fhe Interaction Equations:

The interaction equation between bending and torsion can now
be deduced by taking moments about two horizontal axes through
the compression centre C, of the skew failure surface sho&n in

figure 5.4a. These are axes x and z. With cracks inclined at 45°,

the crack depth is d'" and the projection of the cracks on to the
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x-z plane is also d'". This is shown in figure 5.4.b for each side
of the panel. This figure also shows the actual cfack on the
bottom surface as gh. At failure the bottom stirrup legs within
gh will be exposed and visible. These are marked in figure 5.4.b.
Now because gh is at 45° to the X axis of the panel and t' is the
distance between the longitudinal reinforcements, see figure 5.4.b,
it is obvious that the stirrups will be exposed between g'h'
measured along z axis of the panel. This distance g'h' is also
equal to t'.

At failure the number of exposed. vertical stirrup legs are
thus d'"/s on either side of the panel with a total of 2d"/s of
such bars. The number of horizontal stirrup legs, on the other
hand, is t'/s. With yield stress in the stirrup taken as Uwy’
the force in each leg is Aw Gwy'

Two moment equations can now be written. These are:

i - Moments about Z axis: This axis passes through the compression
centre C. The lever arm of each vertical stirrup leg is t'/2

while a horizontal stirrup leg has a level arm of d, see figure
5.5.a. The resultant (total) vertical force carried by all the
exposed legs on each side is thus Aw cwy d"/s. The moment of

this force about z axis is (t'/2) x A, Oy d"/s. The total
resultant force carried by all the exposed horizontal stirrup
legs is A -0 t'/s and the moment of this force about z axis is

wy
q 1 ; : .
d A, Oy t'/s. Thus the torque M, is given by:

t' — d" " ’

Mt = ET'A cwy d + 2 &3—-AN owy t'/2) 5.c¢.11

Using equations (5.c.4) and (5.c.9) equation (5.c.11) becomes:

Mt = Aw awy t'd' (2 + 8+ 4v)/3s S5.c.12
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If the stirrups are merely unlooped vertical bars of a mesh,
the contributionsof the horizontal legs vanish and equation (5.c¢.12)
reduces to:

Mt = AN cwy tr d' y/s i 5.¢.13

ii - Moments about X axis: The horizontal stirrups have no

moment about this axis. The resultant force of all the vertical
stirrup legs exposed on each side of the panel is Aw Uwy d"/s.
These are at distance (t' + d")/2 from x axis, this distance being

measured along the compression surface AB, see figure 5.4.a.

The moment produced by the exposed vertical stirrup legs is

thus
_ dn t! + 4
MJ_C_ 2 LAW O’W—s- —2'—) 5.c.14

This moment acts in a direction opposite to M, calculated in

1t
equation (5.c¢.10). Thus the resultant bending moment My about X
axis is, from equations (5.c.10) and (5.c.14), making use of

equation (5.c.4) to eliminate d'", is given by:

y d' (' +yd")/s

5.c.15

m
= 2+B+Y 4 L2 (i-1)] -
The interaction equation between Mt'and Mb can now be
obtained by substituting Aw Uwy d'/s = 3 Mt 2+8 + 4yt frOm'

equation (5.¢.12) into (5.c¢.15). We thus obtain:

m
> 2+B4Y £ . a (i 3(t'+yd")
Mb = ng Fj [ 3 d-a (J 1)] - 2"’8""‘()?-' Mt 5.c.16

which show that the bending moment of resistance of the section
reduces with the presence of a torque.
5.d. The Neutral Axis under Combined Bending and Torsion:

The failure surface for this case is shown in figure (5.4.a).

The breadth of the compression zone AB is shown in figure 5.4.b
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as t. Since the cracks are at 45°, the value of t can be

calculated from this figure as:

T = V(2d"+t" )%+t ' %

and with d" = yd'

t = /(2yd'+t')4+t' < S5.d.1
where t' is the horizontal distance betweeﬁ the reinforcements at
either side of the panel.

Proceeding as in section 5.b leads to the value of x given
by equation (5.b.15), provided that, in equation (5.b.16), t
replaces t. However t is dependent on y and a further iteration
process becomes necessary. This is carried out as follows:

1 - Assume some value of y, such as Y5

2 - Caleulate T from equation (5.d.1)

3 - With t = t calculate x from equation (5.b.15)

4 - Calculate a new value of y = from equation (5.c.4)

5- If y, and vy, are within a specified tolerance, the iteration
process is complete.

6 - If not, replace'y0 with the current value of T and repeat
the iteration from step 2. The value of y thus obtained
will be exact and it will be an upper bound to that obtained
for pure bending.

S.e. Interaction of Bending, Shear and Torsion:

5.e.1 General:

Three expressions are required to be developed for developing
the interaction equation. These are the moments of resistance due
to bending and torsion and the shearing résistance of the
reinforcements. The shear stress due to a torque M, spirals

around the deep beam while the vertical shear force Sy causes
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shear stress in the Y direction. The separate shear stresses,
developed by M, and Sy’ on one of the sides of the panel have
the same sign and help- each other. Those on the opposite side
have different signs and oppose each other. The shear stress-
distribution due to Sy is parabolic and vanish at the top and the
bottom surfaces of the beam. For this reason the only shear
stresses acting at these surfaces are those due to torsion. The
shear stress distribution at various points in a section are
shown in figure 5.6.

When the panel is subject to a bending moment M, a torque
M, and a shear force Sy the skew failure surface ACBDE, shown in
figure 5.7 may develop. Because the sides AE and DB are subject
to different shear stresses, their inclination to the horizontal
will also be different. The inclination of these sidegﬂgL and a.
respectively. The angle between the bottom crack DE and the z
axis is - These angles are also shown in the figure.
S5.e.2 Resisting Moments of the Section at Failure:

The procedure for calculating the resisting moments of the
reinforcements, about two axes through the compression centre, is
similar to that presented in section S5.c and can be summarised as

follows:
1 - The length of the cracks AE, ED and DB are calculated
2 - The number of bars exposed along each of these lines are

counted or calculated.

3 - The force in each bar is calculated from the product of the
area of each bar and the stress in it.

4 - The resultant of the forces in the bars along AE, ED and DB

are found.
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5 - The lever arms of these forces from the centre of compression
are calculated.

6 - Finally the moments of the resdltants are obtained frsm the
product of each resultant and its lever arm. The two moments of
resistance are now obtained.

1 - Moment of resistance about z axis:-

This axis is parallel to the z axis of the panel but passes
through the compression centre C. The length AE is d"Cot s DB’
is d"Cot a while ED = t' Cot o where t' is the distance between
the reinforcements on either side of the panel as shown in figure
B.8a, Thus the number of exposed stirrup legs along AE, ED and
DB are d" Cot a;/s, t'Cot o /s and d"Cot ¢./s respectively.
The force in each leg is Aw Uwy and ;hus the three resultant

forces are Aﬁ cwy d" Cot aL/s, Aw Uwy t! Cgt ab/s and Aw d"

c
wy
Cot ur/s .

The lever arm of the vertical resultant forces about z axis
is t'/2 while that of the bottom stirrup legs is d. The moment

of resistance Mt about z thus becomes:

T 1 ' T
d" Cot uL.t . Aw awy t' Cot ab.d
2s ' s
1
. Aw Gwy d'" Cot ur.t

2s

Mt=Aw°s.gy

S.e.l

Using equations (5.c.4) and (S.c.9) for y and d; M, becomes:

2+B+y Cot ab vy t' 4!

M T - < Lthdros —3g——(Cot a; + Cot ap)]

t=chwy[
5.e,2
2 - Moment of resistance about X axis:
The bottom horizontal stirrup legs are parallel to x axis
and have no moment about this axis. The resultant of the forces

in the legs along AE and DB respectively are:
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d'"Cot a
= A g g 5.e.3

"
and d'"Cot ap 5 6.4

VR = Aw Twy =

These resultants are shown in figure 5.8.b. This figure also shows
the projection of the compression zone AB along the z axis. Here
the distance AB is given by:

AB = d'" Cot a; *+ d" Cot a, + t! Cot @ and BC = AC = 0.5AB.

Point B' in this figure is vertically below B and the distance FB!
is d'" Cot ap. The resultant force Vp acts midway between F and B'.
Thus its lever arm Ly from the axis X, passing through c is

BC - 0.5 FB!

Lr

(d" Cot a, + t' Cot ap)/2 5.4.5

L
Similarly the lever arm LL for the force VL is:
LL =(d'" Cot ap + t' Cot ap)/2 5.e.6
In figures 5.7 and 8, point R is located midway between D
and E at the bottom of the panel. Due to the external loads, the
bending moment at this point is MbR = Mb and the shear
force at R is Sy; The shear force at R and C are equal because
there is no external force acting on the beam between these
points. However, Sy atR has a moment Sy a,, about X , where a,
is the distance along z axis between R and C as shown in figure
5.8.b. Thus the external moment applied at C is
M=Mp+ S, a 5.6.7
This moment is balanced by three resisting moments these are:
(a) The moment M;;+, given by equation 5.c.10, and sustained
by the longitudinal bars,
(b) The moment M, sustained by the verticai stirrup legs

along AE and given by:
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- Can d" Cot o
M o=V Ly =-AL %y —--?;-L (d" Cot ap + t' Cot ap)/2 5.e.8

(c) The moment M, sustained by the stirrup legs along BD

R
and given by:

My = Vg Ly = <A, 0 diCotar (dncotapst!Cotap)/2 5.6.9
The directions of both ML and MR are opposite to that of
Mult and therefore they are given negative signs. The moments in

(a), (b) and (c) add up to M, thus

m
(2+B+y)d" - .
M g +_Sy a, = jgl Fj ==——-ac( 1)]

"
- A, 0, TEEEL (tiCotapediCotar)/2

- A, 9, SRR (t!Cotaped Cotar)/2 5.e.10
5.e.3 The Shear Resistance of the Failure Surface:

Assuming that the concrete in the compression zone and the
longitudinal bars do not carry any shear force - An assumption
which is on the safe side. The shearing force acting vertically
is the algebraic sum of the forces carried by the vertical stirrup
legs, thus

Sy = Vi - Vg

d"Cota d'"Cota
= -._.S_-L. AW ag - _IS % g,
which gives:

Sy = Aw Uwy d"(CotaL-Cctar)/s S.e.ll

5.e.4 Inclinations of the Compressive Struts:

The values of the angles of inclination ap, a. and ap and
the lever arm a,, used in the above equations, are calculated in
the manner proposed in reference (88). This was done by
considering the equilibrium along a horizontal cut fg shown in

figure 5.9. It was assumed that near failure the torque and the
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vertical shear are mostly resisted by the outer portions of the
cross section which has a thickness t'. Vertical and horizontal
equilibrium of forces acting on fg, while assuming that at
failure the force F,, in a stirrup is the same in all the sides,
made Cot a in figure 5.9 proportional to the shear stress T.
With Gye 8S the inclination of the concrete compressive struts

when the torque M, is acting alone and a__ be the same angle for

4
pure shear, it was found that:

Cot a = Cot Cyp * Cot asy
Cot ay = Cot o, = Cot usy S.e.12
Cot ab = Cot th

The distance a; can be calculated from figure 5.8a and
equations (5.e.12) as:
a, = d" cot agy 5.e.13
5.e.5 The General Interaction Equation:
Now that expressions for the resisting force and moments
have been derived, it is easy to formulate the general interaction

equation. First of all equations (5.e.2), (S5.e.1ll) and (5.e.1l2)

give
Cot oy, = 3 Mys 5.e.14
t'd'Away(2+B*4Y)
Cot dgy = S Sy/(ZYd'chwy) 5.e.15

These expressions are then substituted in equation (S.e.10),

while eliminating a,, Cot @, etc. to obtain:

m ' 2
L IFy (B3 aragen] - Ay B (erean —E
% = =1 A2 (£1d1)2(2+8+47)2
s? Sﬁ s Sy?
- yd! [Z'Yd'J[(Awawy)‘ - yd! m] 5.e.16
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The first term in this expression is the ultimate moment Mult

given by equation (5.c.10) and sustained by the longitudinal

bars. Thus using M in equation (5.e.16) gives:

ult
2
Mp . 9 M¢ C(t'+yd")yd' s
Muie  [(2+B+4y)t'd']< ©  Mype " Ay
Sz (Yd')z S

. . =1 S.e.l7
+ Tﬁ;ﬁ?jz Mult AySyy

This is the general interaction equation between bending torsion

and shear. From this the ultimate carrying capacities Myj¢, for

pure bending, Mtult’ for pure torque and S for pure shear

yult?
are extracted as:
(a) With Mb = SY = 0:

' _ 24844y zwijMm s
Mtult -3 tid! S (t'+yd" )yd' ° Ay 5.e.18

(b) With My = My = O:

S . = vd'iﬁujbéudlzi e 5.e.19

yult Y AyOyy

(c) With Sy = Mg = 0, Myj¢+ is given by equation (5.c.10).

The interaction equation (5.¢.17) can then be simplifiéed to become:

My , M 2, Sy y2., 5.e.20
More (Mtult) (Syult) .e.

5.e.6 Special Cases:
As a special case, when the stirrups are not. looped, the
term contributed by the horizontal stirrup legs to equation (5.e.2)

vanishes, giving:

Mg = 0.5 Ay oyy Yt'd' (Cot a, + Cot ap)/s 5.e.21
This reduces the ultimate torque of equation (5.e.18) to:
- 141 é}:{ owy /Mult . S

Furthermore, if the reinforcement is put in the middle of the

section, figure 5.1.a, then t' reduces to zera. With it the
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ultimate torsional capacity of the section vanishes. Any small
torque sustained by the longitudinal bars or by the concrete is
neglected anyway.

Another special case is when the torsion in the panel is

small and can be neglected. Equation (5.e.20) then reduces to:

Mp Sy 2
=1 5.e.20
Malt (Syult) (5.e.20a)

The failure surface in this case is an inclined plane shown

in figure (5.10).

Finally, when the torque and the shear force dominate and
the bending moment is neglected, the failure surface changes to
that shown in figure 5.11. Here the compression zone on one side
of the panel. A procedure similar to that of reference(84), for

this case, gives the interaction equation as:

B2« &2 - Tl 2 =1  5..23
Miult Syult Meule Syupe Y4 (E'+d")
where . //ﬁi
Ly Aj Ops

s - §=1 ) CY)
Ml 2t'd' A :M @eth Awdwy S.e.24
and —

s Ay O g//m Aj Oyj s

= 24! WY/ g, L 5.e.25

Syult s =1 d! Awqu ©

Here M3 and §°

tult yulr 2Te the ultimate torque and ultimate shear

carrying capacities when the compression zone is located in a

side of the panel.
S.e.7. The Neutral Axis for Combined Bending and Shear:
The failure surface for this case is shown in figure 5.10.
The shear force has no contribution to the horizontal equilibrium.
Because there is no torsion t = t which is the thickness of the

panel and equations (5.b.15) and (5.b.16) remain valid as they are.
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5.e.8. The Neutral Axis for Combined Bending Torsion and Shear:
The length t = AB of the compression zone is that shown in

figure 5.7 which is:

t= /Yd'(CotaL+Cotar]+t'Cotab]‘+té 5.e.26

Using equations (5.e.12), t becomes:

t = /[2yd ™+t ]%Cot?a, +t% 5..27

As M decreases Cot o, tends to zero and t reduces to t.
On the other hand when the shear force is zero, Cot Cye = i.

These values of t should be used to calculate the depth of
the neutral axis from equation (5.b.15) and (5.b.16).

5.f. Experimental Investigation of the Depth of the Neutral Axis:-

The variation of the location of the neutral axis was
investigated experimentally on test structures 1l and 12, Some
critical sections of the slabs and the shear walls were equipped
with longitudinal strain gauges, five on each side as shown in
figure (5.12). Every time the loads were increased, the gauge
readings were taken by an online computer. The measured strains
were then plotted and the zero strain points, at each side of the
critical section, connected to obtain the neutral axis at each
loading level. The section along which the eventual failure
occurred, gave the full information about the neutral axis.

As an example, the variation of the neutral axis at the
critical section in structure 11, during the loading process, is
shown in figure (5.13). It can be seen from this figure that as
the loads are increased, the neutral axis tends to rise and to be
parallel to the top and bottom faces of the beam. At the stage
just before the failure (figure 5.13,g) the neutral axis reached

its top level and became parallel to the top face of the panel.
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This in fact proves that the assumption of the compression zone
with uniform thickness in the assumed failure mode is true. 1In
figure (5.14) the value of y is plotted against the load parameter,
A, of structure 11. For the values of A ﬁpfto 5.8 (point a) the
neutral axis, and thus y, rised almost linearly. Between the
points a and b, y increased abruptly. The reason for this may be
due to major cracks elsewhere in the structure which caused more
loads to be transferred to the section. Further increases in the
load factor caused slight rises of y aﬁd finally the section
failed when y = 0.874. The theoretical value of y at the ultimate
stage was also calculated, from equations (5.b.15) and (5.c.4), to
be 0.876 which is 0.23% higher than that obtained experimentally.
In structure 12 the theoretical value of y was calculated to be
0.865, being 4.05% above the experimental value of 0.829. These
figures show that the proposed method of calculating the depth of
the neutral axis, and therefore the value of y, may be based on
realistic considerations.

Furthermore, the effect of the value of y on the failure
loads of complete structures was studied. The test structure 7
of table (7.2) in chapter 7 was analysed for different values of
Y and the failure loads were plotted in figure (5.15). This
graph shows that the failure load is very much dependent on the
value of y. It is noticed that as y increases from 0.5 to 0.95
the load factor at failure increases from 2.2 to 3.13. This
means that neglecting the depth of the compression zone, as was
done in reference (88), introduces a large error in failure load

calculation.
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S.g. A Failure Analysis of the Grillage System:

An iterative method is used to single out the panel of a
grillage that fails first and the load factor at which it fails.
Consider that the load factor of the applied loads acting on a
structure is increased by an increment A)Aj. The resulting bending
moment, torque and shear force in a panel after this increment are

given by:

Mpi = Mpi-1 * 8M My

+ AX, M. 5.g.1

Meg = Megq i Yei

—_—

S_.

S . =38 + &ki yi

yi yi-1

The existing element forces are M. ,, M and Sy , and Hﬁi’

ti-1 i-
M s and Syi are those caused when Ali =1.
Equation 5.e.20 is then written as:

:Mhiﬁ;;iliMhi ” [Mfiﬁl*iiiMri)z+(5yi§;;itisyi)z i 5.g.2
u

This equation can be written in a quadratic form in AA; as:

AAAZ + BAAj + C = o 5.g.3
and its positive root:
aki = -uﬁﬂ S.g.4
panel

gives the value of A\j at which the{fails. During the analysis
of the complete structure and after each critical stage, each
panel of the grillage is tested and its A)j; value is calculated.
The lowest of these, nx;, decides which panel is going to fail
next. The load factor A, , + AAY = A} causes this failure. If
this load factor is also the one that brings about the next
critical stage of the structure then it is concluded that the
panel in question has failed and its stiffness is reduced to some

nominal value.
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It should be pointed out that, if the bending moment is
small and dominated by the torque and the shear force, then
equation 5.e.20 is replaced by equation 5.e.23. |
S.h Application to the Failure Load Analysis of Complete Structures:

The method given in chapter 4 for the failure load analysis
of complete.structures. is alsa .valid.for the case when the structure
consists merely of reinforced concrete slabs or frames. Under the
light of the studies given in the second part of chapter 3 and in
this chapter, the following modifications are necessary to take
the full non-linear moment-curvature properties and the interaction
of bending, torsion and shear within the grillage panels into
account.

The proposed modifications in the analysis with respect to
the steps given in chapter 4, section (4.d) are stated below:
i - In step 2: Each reinforced concrete frame is analysed by means
of the method given in chapter 3, section k, to obtain the load
factor A at which a critical point is first reached on the M-C
diagram of any member-of the frame.
ii - In step 3: The grillage is analysed under factored loads AGg
acting at the junctions and AG W acting on the shear walls. This
is to calculate-ithe load factor A; at which a critical point is
reached on the M-C diagram of one of the panels.
iii - In step 5: If A_. = A a new flexural rigidity is adopted
for the member of a frame for which Ap was selected. This flexural
rigidity is the slope of the next transition region of the M-C
diagram of that member.

If on the other hand A . = A, the stiffness of the panel for

which AG is calculated, is altered in the following cases:
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a - If the cracking point A, fig. 3.16 is reached on the M-C

diagram, the flexural rigidity of the cracked section(Elk is

selected as its flexural rigidity EInew' The torsional rigidity'

GJ is also altered by the same variation ratio, thus'GJnew = (1+a) GJ

In reality the change in the value of GJ may be different
from that of EI but it is assumed that o is the same and thus the
construction of a "Torque rotation' diagram is avoided.

In the case when a relatively high torsional ﬁoment is acting
on the panel, the cracking moment M., figure 3.16, depends on the
interaction of bending and torsion. Equation (3.8) over estimates
this moment. The effect of torque can be taken into account by
means of equation (4.2 1). The elastic section modulus Zj in
bending is calculated from the gross uncracked section, while the
elastic section modulus Z; in torsion is calculated from equation(4.18).

Although the initial flexural rigidity (EI)i and the cracked
flexural rigidity (EI). are predetermined, the critical moments
Mc and M, are decided by means of equations (4.21) and (5.e.20) or
(5.e.23) respectively.

b - If the ultimate moment defined by equations (5.e.20) or (5.e.23)
is reached, then the stiffness of the whole panel is reduced
drastically as in the case of homogeneous panel.
5.1 Examples:
5.i.1 Failure Load Analysis of Single Storey

Structures with no Intermediate Frames:

To demonstrate the method of analysis and to verify the
validity of the interaction equation (5.e.20) the first series of
reinforced concrete structures tested by the author were analysed
manually. Details of these are given in table (7.1). 1In table

(5.1) the theoretical and the experimental results are compared. -



STRUCT.

EXPERIMENTAL

THEORETICAL

NO. FAILURE LOAD|FAILURE LOAD| % DIFFERENCH THEOR\gTICAL
[ kN) (kN)

1 1.8727 1.889 +16.51 % 0,912 .

2 - 1.727 1.894 +8.81 % 0,810

3 5.963 5.850 - -1.88 % 0,861

L 6.362 5.8689 -7.00 % 0.874

TABLE 5.1: COMPARISON OF THEORETICAL
AND EXPERIMENTAL FAILURE
LOADS FOR SINGLE STOREY

STRUCTURES WITHOUT FRAMES
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A maximum relative discrepancy of 16.51% is recorded. As an
example the analysis of structure (3) will be given here. The
overall dimensions of this are shown in figure (5.16.a). The
reinforcements were placed in the middle of the cross section as
shown in figure (5.17.2). The modulus of elasticity and ultimate
strength of the concrete are 19.60 kN/mm? and 0.02 kN/mm?2
respectively. The modulus of elasticity, the yield strain and
0.00365 and
the ultimate strain of the reinforcement are 209.0 kN/mm?,}0.00660.
The stress-strain diagram of the reinforcement steel, obtained
experimentally, is shown in figure (5.16.b). The cross sectional
properties of the shear walls and floor slab are similar. From
figure (5.17.a) the number of layers m = 12, the depth of the
section d = 289.7 mm and the cover'"' = 10.3 mm.Using modular ratio
gy = ESIEc = 10.66 and the ratio of strains in the steel at first

yield and at failure n = e__/e_ = 0.553, equation (5.b.16) gives

sy’ “su

g = 9.76. To begin with assuming that there are 5 layers in the
plastic zone thus i = 5; equation (5.b.15) gives the depth of the
neutral axis as x = 48.76mm, equation (5.c.4) now gives the value
of vy as 0.861. Knowing x and €su the strain diagram shown in
figure (5.17.b) is constructed. It can be seen that the number

of layers in the plastic zone arein fact 5 thus the values of x

and vy are correct. Using this strain diagram and the stress-strain
diagram shown in figure (5.16.b) the force diagram in figure (5.17.c¢)
was constructed. The lever arm of the force in each layer is also
marked in the figure. Hence, using equation (5.c.10) the ultimate

moment of the section is obtained at Mu = 5900.09 kNmm, with

1t
y = 0.861, d = 289.7, s = 25.4, Awdwy= 4.4 kN, equation (5.e.19)

gives the ultimate shear force Syu ¢ = 31.97 KkN.

1
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Ignoring the torsional stiffnesses of the panels at the
ultimate stage, the bending moment and shear force diagrams of
the structure were constructed as shown in figure (5.18), where
it is noticed that A is the most critical section. Here the
bending moment Mb = 1000 P kN mm and shear force Sy = 0.5 P kN are
acting together. In fact the experimental failure also took place
at A. Again, ignoring the effect of torsion,equation (5.e.20)
gives the failure criterion as:

10000 P 0.5 P

2 _
5500.09 T Gron =1

and the value of failure load P is obtained as 5850 kN which is
only 1.88% lower than the experimental failure load 5.963 kN.
The experimental load-deflection curve and the theoretical failure

load are shown in figure (5.19).
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CHAPTER 6
6.a. A COMPUTER PROGRAM FOR THE ELASTIC-PLASTIC AND
NONLINEAR M-C ANALYSIS OF FRAMES
6.a.1 Introduction:
The program makes us;-of the procedures given in chapter 2
and the first part of chapter 3. It is written in extended
fortran to run on the ICL 1904 computer of the University. It is
developed to be capable of doing the following types of analysis.
i - iinear elastic analysis
ii - gonlinear elastic analysis
iii - Elastic-plastic analysis using the theorems of structural
variation.

iv - Elastic-plastic analysis of a derivative frame using the
initial solution of the parent frame.

v - Nonlinear moment-curvature analysis, using the theorems of
structural variation.

vi - The program also has the facility to carry out an iterative
design of frames using the theorems of structural variation.
This is given in the subroutine design, but since it is
incomplete and also since it is out of the scope of this
thesis, no further details of this will be given here.

The program consists of a master segment and a number of
subroutines. Their functions are illustrated in the flow diagrams
shown in figures (6.1), (6.2), (6.3), (6.4) and will be explained
in detail in the following sections. The data presentation for
this program will be given in appendix 1.

6.a.2 Description of the Program:
After data presentétion the program starts constructing the

compound load matrix [L C]. For the cases of linear and nonlinear

*The program was originally dewvelcoped in atlas autocode by Majid(28) to carxy
ocut this type of analysis.
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FIGURE 6.1 FLOW DIAGRAM OF THE MASTER SEGMENT
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elastic analyses, this operation is not carried out, the following
paths can then be followed.
i - For the elastic-plastic analysis, the total number of load
cases are fed in as NCR=1. Where NCR is the number of expected
hinge locations. The first column of matrix [L C] contains the
external loads L which are already read in. Each of the other
columns contains a unit load case corresponding to each hinge
location as given by equation (2.13).
ii - In the case of the elastic-plastic analysis of a derivative
frame, which is obtained by removing some of the members of a
parent frame or altering their cross-sectional or material
properties, the compound load matrix takes the form [E.E_EFR].
Here the submatrix E?R is the unit load matrix described by Sakacs)
and used when such alterations are carried out. The sabmatri.xg_MR
contains three columns for each member to be removed or altered.
The firsf deals with altering the member area. The other two are
the first and the second end unit load cases to alter the second
moment of area. If NMR is the number of members to be altered or
removed, the submatrix Q?R contains 3 NMR columns. The submatrix
C is similar to that described in case "i",
iii - In the nonlinear moment-curvature analysis, the unit load
matrix contains two columns for each member of the frame. The first
is given by equation (2.11) and the second by equation (2.12).
Having constructed the compound load matrix, the subroutine
stiffmat is entered. This constructs the overall stiffness matrix
K and solves the joint equilibrium equations [LC] = K X. The
control is then transferred to the main segment again and the

member forces are calculated from P = k A X. Where P is the
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vector of member forces; k is the member stiffness matrix of the
frame and A is the displacement transformation matrix of the whole
frame.

Once the initial values of the member forces and deflections
due to the working and the unit loads are calculated, the following
operations are carried out, as required by the user:

1 - For the case of linear elastic analysis (the path éounter

I2 = 0), the process is already completed. The member forces and
deflections are printed out and the analysis is terminated.

2 - In the nonlinear elastic analysis (I2 = -1), the resulting
axial loads are used to reconstruct the overall stiffness matrix
and solve for X again. This operation may be repeated until tﬁé
values of the axial forces, for each member, in two successive
cycles are within a specified tolerance.

3 - When an elastic-plastic analysis of the frame is required

(I2 = -2), 'the bending moment matrix M and the axial force matrix
P are constructed and used together with the deflection matrix X'
to carry out the elastic-plastic analysis within the corresponding
block.

4 - 12 = -3 indicates that some members of the frame are to be
removed%&hanged and an elastic-plastic analysis of the resulting
frame is to be carried out. Each of the changing members is
considered in turn and the variation ratios in its area and second
moment of area are calculated. The subroutine 'change' is then
called to obtain the member forces and deflections of the resulting
frame. Once the alteration in the topology of the frame is
completed, the elastic-plastic analysis of the new frame is carried

out in the manner given for case 3.
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5 - For I2 = -4, the nonlinear moment-curvature analysis of the
frame is required. The matrices M and P are constructed from the
bending moments and the axial forces due to the working loads and
~unit load cases of each member. The first rows of these matrices
correspond to the actual loading while each two of the other rows
contain the bending moments and axial forces for the first and
second end unit load cases of a member respectively. These
matrices and the joint deflection matrix X are then used in
"subroutine nonlinme'" to carry out the non-linear M-C - analysis.
The program is terminated after the control returns to the master
segment.

6 - For I2 = -5 the program has the facility of carrying out an
iterative design. This is done by entering the subroutine design.
6.a.3 The Elastic-Plastic Analysis Block:

The flow diagram of this block is shown in figure (6.2).
After entering the block, the elastic-plastic analysis procedure
is initiated by cycling the possible hinge locations. The lowest
"load factor at which the next plastic hinge develops in the frame
is calculated from equation (2.24). The member to which this
hinge belongs is singled out. The actual member forces and
deflections are calculated by multiplying those due to working
loads by the predicted load factor (block 2 of the flow diagram).
The variation factor for each row of the matrix M is calculated
from equation (2.15) in block 3. These factors are then used to
modify the matrices M, P and X to obtain the bending moments,
axial forces and deflections of the frame with the new hinge due
to the working loads and unit load cases by means of equations

(2.16) and (2.17).
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FIGURE 6.2 FLOW DIAGRAM OF THE ELASTIC-PLASTIC ANALYSIS BLOCK
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Having inserted the new plastic hinge into the frame, the
search is continued for the next plastic hinge. Each of the
remaining locations at which a hinge has not yet developed, is
considered in turn. - The load factor for which a plastic hinge
may develop in a location is calculated from equation (2.27).

The critical location which gives the lowest load factor is
singled out.

The actual member forces and deflections at this predicted
load factor are calculated from equations (2.26). The control is
then transferred back to block 3 to insert the new hinge into the
frame and proceed further,

The whole process is continued until a sufficient number of
plastic hinges develop in the frame to form a mechanism. Once
this is reached, the displacements become extremely large and an
overflow is recorded. If this is not reached, the program stops
when the number of hinges becomes equal to the maximum permissible
given in the data.

6.a.4 The Subroutine Nonlinmc:

The main function of this subroutine is to carry out a
nonlinear moment-curvature analysis of the given frame. The
moment-curvature diagrams of the members are presented as a series
of successive linear portions. It makes use of the procedure
given in the first part of chapter 3. As a special case, the
program is also capable of carrying out strain hardening analysis,
which is an extension of the elastic-plastic analysis procedure
given in chapter 2. It takes into account the effect of strain
hardening of the fully yielded sections including the spread of

plasticity away from the initial hinge location,
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FIGURE 6.3 FLOW DIAGRAM OF SUBROUTINE NONLINMC
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The flow diagram of this subroutine is given in figure (6.3).
Its execution starts by reading the maximum load factor at which
the analysis is to be terminated. If a failure load anal}sis is
required, this load factor is set to a large number, (Block 1 of
the flow diagram).

The initial effective moments are calculated from the bending
moments at the initial load factor which is generally taken as
unity (Block 2).

In block 3 each member is considered in turn. The load
factor at which the next critical point is reached on the M-C
diagram is calculated from equation (3.3). The lowest of these,
A* is chosen. The member forces, the deflections and the effective
moments due to the working loads are multiplied by the predicted
load factor A* to obtain their up to date values.

The flexural rigidity of the critical member, k*, is then
altered to the slope of the next transition region on its M-C
diagram and the corresponding variation ratio is calculated from
equation (2.3), (Block 5 of the flow diagram). This is to initiate
the procedure of structural variation within the subroutine change
and to obtain the member forces and deflections of the frame with
the new flexural rigidity of the critical member, k*, due to the
working loads and the unit load cases.

Once the new solution of the frame is obtained, the search
is continued for the next critical point and the corresponding
critical. load factor. Again, each member is considered in turn
and its critical load factor is calculated from equation (3.5).
The member, which gives the lowest critical load factor , Ay, is

singled out.
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This new bredicted load factor Ak is compared with the given
load factor XG' If kk < AG’ the actual member forces and_
deflections at Ak are calculated from equation (2.26) and the
effective moments from equation (3.4). The control is then
transferred back to block 5 to alter the flexural rigidity of the
present critical member and to continue searching for further
critical points.

If on the other hand Ak > AG the actual member forces and
deflections at A, are calculated, printed out and the program is

terminated. For the failure load analysis, since A, is set to a

G
large number, this condition can never be reached and the program
is terminated when the deflections become extremely large and an
overflow is recorded, indicating failure.

6.a.5 The Subroutine Change:

The member forces and the deflections of a parent frame are
modified in this subroutine and the solution of one of its
derivatives which is subject to the same loading is obtained. The
derivative frame is obtained by changing or removing a member of
the original frame. This is done by means of the theorems of

(1,2 in the manner described by Saka(s).

structural variation
All the operations are carried out within the matrices M, P and X
in a compact scheme and a considerable amount of computer storage
is saved. The subroutine can be used for two different purposes
given below.

1 - The second moment of area of a member, k, is altere& while its
area remains unchanged.

2 - Both the second moment of area and the area are changed by

specified amounts or completely removed.
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The corresponding unit load matrices were previously discussed in
the master segment of the program.

The flow diagram of this subroutine is given in figure (6.4).
Its execution is commenced by calculating the first end variation -
factor .of the second moment of area for each load case in turn
(including the unit load cases), by means of equation (2.15).
These factors are then used to modify the corresponding rows of
the matrices M, P and X, by using equation (2.16). The bending
moments, axial forces and the deflections due to the unit load

th

case used in this modification lie on the 2k~ Tow of the matrices

M and P and on the 2k™ column of matrix X for the first end unit
load case., For the second end unit load case, the row or the
column number is 2k-1,

Once the modification of the member forces and deflections
for the first end unit loading case is completed, the modified
second end moments of the changing member due to each load case

to calculate
and due to its second end unit load case are usedithe second end
variation factors. The matrices M, P and X are remodified and the
modification for the second moment of area is completed.

If the area of member k is also to be changed, the variation
factor of area is calculated by using the axial forces in the
member due to each load case and due to unit axial loads acting
axially to the member, by means of equation (1.10). Again,
equation (2.16) is used to complete the modification of the
matrices M, P and X. These matrices now contain the member forces

and deflections of the frame due to the working loads and all the

unit load cases. This is either with member k removed or altered.
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6.b. A COMPUTER PROGRAM FOR THE FAILURE
LOAD ANALYSIS OF COMPLETE STRUCTURES
6.b.1 Introduction:

As an application of the methods proposed in the second part
_ of chapter 3, chapter 4 and chapter 5, a computer program for the
nonlinear analysis of complete building structures up to and
including failure was written in Fortran and run on the Aston
I.C.L. 1904, The structures consist of slabs, shear walls and
intermediate frames of any configuration, provided that they are
arranged parallel to each other. The slabs may be made out of
any homogeneous material or‘out of reinforced concrete. The
frames can be made out of steel, reinforced concrete or any other
material with a nonlinear stress-strain diagram (or a moment-
curvature diagram). The program is arranged in such a way that
the preparation of data is simple and its amount is as little as
possible.

Considering the limitations of the gyailable core store,the
backing store facilities are used so that considerably large
structures can be analysed. The magnetic tape facilities are
preferred to the direct access files. This is to provide the
facility of running the program on any other computer which has a
fortran compiler.

The program consists of a main segment and five subroutines.
Their functions will be described in the foilowing sections and
illustrated in the f}ow diagrams. Data preparation is also given

" in appendix 2.
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6.b.2 Description of the Program:

‘After feeding the general and the grillage data, the execution
of the program is commenced. The flexural rigidity array of the
grillage members-is filled with the initial EI values given by
their M-C diagrams. Other auxiliary arrays are also constructed.

The "subroutine grill" is called to construct the initial
stiffness matrix KG of the grillage. The initial influence
coefficient matrix G of the grillage and the column vector (G P + a)
of equation (4.2) are constructed. Matrix G is of order (mxn)z
and the vector (G P + a) contains (mxn) elements. Here m is the
total number of frames and n is the total number of floors. These
matrices are placed in the backing store for subsequent use .
(block 4 of figure (5.5)). |

Having constructed the above matrices the necessary arrays
for the analysis of each frame are constructed. These include
the lowest nonzero joints connected to each joint; the address
sequence array which contains the number of elements on the
leading diagonal of the stiffness matrix for each frame; the total
number of plastic hinges which can possibly form in the vicinity
of each joint in a steel frame.

The frame influence coefficient matrix F and therefore the
matrix (G + F) of equation (4.2) is constructed in the following
manner.

Each frame is considered in turn and a corresponding unit
load matrix is constructed. Each:column of this matrix contains
entirely zero elements except a unit horizontal load at the lowest

joint number at each floor level. The total number of columns is

thus equal to the number of floors. The subroutine stiffmat is
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called to construct and solve the equations F = ETI‘E. The
resulting horizontal deflection of the joint with the lowest
number at each floor level is the contribution of that floor to
matrix F. This matrix has the same dimensions as matrix G. Its
non zero elements are those contributed by the frames. These
elements are added to the elements in the corresponding locations
of matrix G and the construction of (G + F) is csmpleted, (block
10 of figure(6.5)).
It is well known from the reciprocal theorem that matrices G

and F are both symmetrical. Because of this,matrix [G + F] is
also symmetrical. This nature makes it possible to employ the

(72)

technique given by Jennings to solve the influence coefficient
equation (4.2). To do this half of matrix [G + F] is stored in a
one dimensional array and the address sequence- array for the
diagonal elements is constructed. The subroutine compacdivtzo)
which uses the technique of Jennings is called. As a result of
these operations the horizontal loads f transmitted to the framés
are calculated. The loads transmitted to the grillage are then
calculated from equation (4.1) (block 11 of figure (6.5)). The
total loads xting on each frame are then calculated from equation
(4.5).

Once the horizontal loads transmitted to the grillage and to
the frames are calculated, each of these are treated separately
under their own share of loads.

For the analysis of the grillage, the loads w, acting on the
shear walls, are picked from the backing store and added to

matrix g and the load matrix of the grillage under the working

loads is constructed. The stiffnes matrix K; of the grillage has
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already been constructed and stored in a form suitable for the
subroutine compacdiv to solve the equations LG = EG EG fo? the

unknown deflections X These deflections are then used to

X5
calculate the member forces of the grillage within the subroutine
"memfor” (blocks 13 and 14 of figure (6.5)).

Each frame is taken in turn. The member forces are set to
zero. The iteration process is then started either towards the
first critical point or towards the first plastic hinge. With
zero axial forces, the stiffness matrix of a frame is constructed
and the joint equilibrium equationslare solved for the joint
displacements X, within the subroutine stiffmat. Before leaving
this stage the determinant of the stiffness matrix is checked.

If it is zero the program is terminated, indicating the failure
of the frame and thus the local failure of the complete structure.
Otherwise, the resulting displacements are used to calculate the
new member forces. For steel frames, the member forces are
calculated in the usual manner. For reinforced concrete frames,
the member forces due to the compensating loads for each member
which became critical previously are added to the appropriate
member forces calculated in the usual manner.

The iteration process towardsthe next critical load factor
is basically similar for the cases of reinforced concrete and
steel frames. However the following operations appear to be
different.

i - Reinforced concrete frames: An equivalent moment is calculated
from equation (3.2) and the next critical point is chosen on the
M-C diagram of the member to iterate towards.

ii - Steel frames: It is first tested whether composite action
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is to be considered between each member and slabs. If so, the

composite moment is calculatedtss).

Otherwise the value of the reduced plastic hing moment of
the section is calculated by using the updated axial load in the

member.

The procedure described by Majid- and Andersontzo)

is then
i
F
will form in a steel frame, or a critical point will be reached

utilised to predict the load factor A_ at which a plastic hinge

in a reinforced concrete frame.

The value of the predicted load factor %Js

1
{ Ao=41) -m
RN - _IM,CMglmzlz = 6.1
pt ~ "p2

Where Mél and Mﬁz are the reduced plastic moments of the section
of a member at previous and current iterations. A, my and Az,

m, are the load parameters and the bending moments at the previous
and current iterations respectively. For the case of reinforced
concrete frames, the plastic hinge moments M£1 and Mﬁz are
replaced by the critical moment Mﬁr of the meﬁbef. m) and my are
also replaced by the effective moments ME and ME of the member

for previous and current iterations. Equation (6.1) thus becomes:

i
A= AL+ OmAp) (M) / 0-MD) 6.2

The predicted load factor ki is compared with the current load
factor A3. If they are within a specified tolerance the iteration
is terminated. This indicates that a plastic hinge can be
inserted into the steel frame or a critical point is reached in
the reinforced concrete frame. Otherwise, the old load factor is
replaced by the current one, while the current load factor is

replaced by the predicted one. The current axial loads are also



-137 -

replaced by the predicted ones and a further iteration is started.
The actual loads acting on the frame at Ai are calculated from
equation (4.5). The stability functions gs-gs are calculéted
using the new axial loads. The overall stiffness matrix is
constructed once again and the stiffness equations are solved for
the new joint displacements. The iteration process is continued
until the tolerance test is satisifed. Having predicted the
critical load factor of the frame, the member forces, the joint
deflections and the stiffness matrix are stored for further use
and printedif required.

The above procedure is carried out for each frame in tumn.
The location of the expected plastic hinge or the critical member
is printed out together with the predicted load factor. After
each frame is analysed, the critical load factors are compared to
each other and the smallest among them is chosen. This is the

critical load factor A_ for all the frames (block 22 of figure (6.5)).

FL

Subroutine check is then called to predict the critical load
factor AG of the grillage. At this load factor, a critical point
is reached on the M-C diagram of one of the panels.

The lower-of AFLand XG is the next critical load factor Aes
for the whole structure (block 24 of figure (6.1)). At kcr' the
member forces and the deflections of the grillage are calculated
from equation (5.g.1).

For As = A, the EI and GJ values of the critical panel in
the grillage, are replaced by those given by the next port%on of
the M-C diagram. If the panel fails completely, its EI and GJ

values are set to a very small value and the panel is practically

disregarded (block 27 of figure (6.5)). Subroutine grill is then
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called and the new matrices EG'En’ En and (G.P + a,) are
constructed and stored for further use.

The loads acting on each frame at lcr are calculated'and
stored for further use. »+Each frame is considered in turn. kcr
is compared with the load factor of the frame. If they are within
the stipulated tolerance , the following operations are carried
out depending on the material of the frames:

i - For a reinforced concrete frame, the flexural rigidity of its
critical member is set to the slope of the next transition region
of its M-C diagram. The corresponding variation ratio is calculated
from equation (3.23). The new compensating loads are calculated
from equation (2.10) and added to the load matrix of the frame
while the old énes are subtracted,

ii - For a steel frame, the hinge rotations are checked and the
contribution - [kip eh], (where kjh is the column of the stiffness
matrix which corresponds to the inactive hinge h and 6y is the’
rotation of that hinge), ié calculated for every hinge which has
just become inactive, and added to the load matrix of the frame.

The new plastic hinge is then inserted into the frame and
the plastic hinge moment is included in the load matrix of the
frame,

A new hinge in a steel frame or the reduction of the flexural
rigidity of a member in a reinforced concrete frame alters the
relative stiffness of the frames and therefore the influence
coefficient matrix F is altered, This matrix also changes when
the axial forces in the members are increased. The member forces

at A.pr are calculated by multiplying their values at k; by the

: i k : 23
ratio of lcr/AF' Here l; is the predicted critical load factor
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of the frame. The stiffness matrix of the frame is constructed
taking the axial loads into consideration. The inverse transformation

F=kK1! L_is carried out to calculate the contributions of the

frame to the new influence coefficient matrix Eﬂ. W

If A = AG.the matrix [En+En]' otherwise [gffn], is
constructed. Matrix G is the previously constructed grillage
influence coefficient matrix while gn is new, constructed at
lcr = lG (block 37 of figure‘(6.5)).

The influence coefficient equations are now solved to
preserve the compatibility.at the frame - slab junctions. The
new parts of the external loads éﬁ and j:53 transmitted to the
frames and grillage for a unit increment in the overall load
factor, are calculated.

The overall load factor is increased by a small amount such
as 0.1 to prepare for the next cycle of analysis, the loads
acting on the frames at the new load factor are calculated and the
next cycle of iteration is initiated by transferring the control
back to block 13. ’

6.b.3 The Subroutine Stiffmat:
This subroutine was originally developed in atlas autocode

by Majid and Andersontzg)

to construct the stiffness matrix of a
plane frame. It was later modified by onen 32 to allow for the
analysis of complete building structures. For the present

program i£ was translated into "FORTRAN" and modified to be used
in the construction of the stiffness matrix of a grillage and to
allow for the analysis of reinforced concrete frames. The flow

diagram for this subroutine is shown in figure 6.6.

Each joint of the grillage is assumed to have three degrees
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of freedom in Z, 6 and ey directions while the linear deformations
along x,y and the rotation about z axis are neglected (see figure
(4.1)). Thus the problem becomes analogous to that of a ﬁlane
frame. The storage requirements are calculated in the same way

as for plane frames. The contributions of a panel to the overall
stiffness matrix are calculated directly by considering, whether
it is a wall element or a slab element, as given by Croxton('ﬁ7 ).
The triple multiplication A' k A is avoided thus reducing the
computer time. Because each joint of the grillage has three
degrees of freedom the usual procedureizo) of constructing the
stiffness matrix remains unaltered. The process for reinforced
concrete frames is similar to that for steel frames, except for
the fact that hinges do not occur.

6.b.4 The Subroutine Compacdiv:

This subroutine is in the form as it was originally developed
by Majid( 28) in atlas autocode. However it -is:translated into
FORTRAN and slightly modified to cope with more than one load case.
6.b.5 Subroutine Grill:

Ly and the stiffness

=3
matrix EG of grillage are constructed, the inverse transformation

In this subroutine, the load matrix

[a G] = 5&1 [H.EE] is carried out. This transformation yields
the vector a and grillage influence coefficient matrix G of
equation (4.2). a contains the horizontal deflections of the
grillage at the framejéigctions due to the action of all the wind

forces W on the shear walls. The column vector a and matrix G

are then used to construct the vector [G P + a] of equation (4.2-).

Here P is the horizontal load vector acting on frame-slab junctions.

The limited storage capacity of the computer in use is taken into
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account and the process is arranged in such a way that the inverse
transformation is carried out step by step to confine itself‘
within the allowed storage.

To begin with, the step counter kk is set to zero. The
first column of the combined load matrix [w LE] is filled with the
wall loads,-picked from the backing store. Then every frame-slab
joint is considered in turn and a column vector is constructed for
this joint. This vector consists of zero elements except for a
unit horizontal load acting on that joint. Before considering the
next joint, the number of column vectors constructed so far, are
compared with the maximum number of columns which can be stored.
If the available store is exhausted and the step counter kk is
zero, the subroutine stiffmat is.called to construct EG' The
joint equilibrium equations are solved for the first part of the
load matrix. This yields the joint displacements of the grillage.
The horizontal displacements of frame-slab junctions are collected
and vector a is constructed. These displacements for each unit
load matrix are also collected and the corresponding column of
matrix G is constructed. The matrix K. and the vector a are put
into the backing store for future use.

If all the frame-slab junctions are not yet considered, the

step counter is increased by one and the storage is cleared to

h th

construct the next part (kkt After the kk

part) of matrix Lé.
part of LB has been constructed, the stiffness matrix EG'formed
and stored in the backing store earlier, iS brought into core and~
the joint equilibrium equations are solved for the current part

of Lg and the corresponding horizontal displacements are placed

in matrix G. The step counter, kk, is again increased by one and
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the process is repeated until all the frame-slab junctions have
been considered.

Having constructed vector a and matrix G, the column vector
[GP + a] is formed and control is transferred to the main
segment. The flow diagram of this subroutine is presented in
figure (6.7).

6.b.6 Subroutine Memfor:

This subroutine calculates the member forces of the grillage
by using the incremental joint displacements Xé obtained from the
joint equilibrium equations [ETEJ=K5§é' Its flow diagram is
given in figure (6.8).

Each member of the grillage is considered in turn, and the
matrix [k A] is constructed directly according to whether the
member is a wall element or a slab element. Then the member forces
are obtained by multiplying this matrix by the vector of the
displacementsof the joints at which the member is connected. The
resulting member forces are then placed in the incremental member
force array of the grillage.

6.b.7 The Subroutine Check:

In this subroutine, the load factor, at which a critical
point is reached in any member of the grillage is predicted together
with the critical member itself. 1Its flow diagram is presented
in figure (6.9). Two different paths are followed depending upon
the material used,which may be reinforced concrete or a homogeneous
brittle material.

After entering the subroutine, the incremental load factor
AKG is set to a large figure such as 100. Each member is then
considered in turn. The first check is to find out whether the

member is made out of a homogeneous material or reinforced concrete.”
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For the first case the following operations are carried out

i - The incremental load factors ﬂAF

and Aks, at which crgcking
starts at the first or the second end of the panél, are
calculated.. The method proposed in chapter 4, section g is used
for this purpose.

ii - The critical value of the maximum end moment, which causes
lateral instability in the panel, is calculated using the method
given in chapter 4, section f. The incremental load factor AAB
for which the maximum end moment reaches its critical value is
then calculated by extrapolation.

If the panel is made out of reinforced concrete, the
incremental load factors axi and Ahz are calculated. These are
the increments in the load factor needed to reach the next
critical point on the M-C diagram of a panel. When the panel not

yet cracked and bending dominates torsion and shear, the last two

aré neglected. Each incremental load factor is calculated from

_Mier
KX oo Moz 20 6.3

M
In this formulae, Mcr is the bending moment at the next critical
point on the M-C diagram of the panel, MMCT is the bending moment
at either end of the panel at the former critical stage of the
whole structure under A.. and M is the value of the bending moment
at either end of the panel due to the loads (w+g) due to a unit
increment in the load factor. If torsion and shear dominate
bending, the method given in chapter 4, section g, is used to
determine AA. In this case the rupture strength of the concrete
is used to be the uniaxial cracking strength,

When the panel is already cracked and the effect of bending
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dominates torsion, the interaction equation (5.e.20) is used to

predict the ultimate stage, thus the incremental load factors

F
c

AX" and Ali. On the other hand, if torsion dominates, equation

(5.e.23) replaces equation (5.e.20).

P
&

S

Once alF, A%, &AB or AA" and ﬁlz are calculated, the lowest

of these is chosen to be the critical incremental load factor,
M M
gr IE AAT<arg, AX

replaces AAg, i.e. MM is chosen to be the critical incremental

AAM of the member. &AM is compared with A)

load factor of the grillage. Therefore the member is the critical
member "NMC'" unless any other members critical incremental load
factor is lower than AXG. Once all the members are cycled and aAG
is predicted, the next critical load factor of the g}illage is

calculated by adding ARG to the former critical load factor, lcr’

of the whole structure. Hence AG = Acr - AAG.
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CHAPTER 7

EXPERIMENTAL WORK

7.a. Introduction:

To verify the theoretical work given in Chapters 4 and 5, a
series of tests, carried out on complete structures, are
described in this chapter. The size of the test structures were
chosen to suit the facilities provided in the laboratories of the
Department of Civil Engineering at the University. These sizes
together with other particulars of structures tested are given in
tables (7.1), (7.2), (7.3), (7.4) and figures (7.1), (7.2), (7.3),
(7.4),(7.5)and ( 7.6 ).

The structures tested, can be classified into three groups as
follows:
1 - Structures made of reinforced concrete panels with no inter-
mediate frames. These are structures 1, 2, 3, 4 listed in table
7.1 and each one consists of a slab and two shear walls as shown
in the table. Structures 1 and 2 were loaded at the slab-shear
wall junctions A and B and at each third point of the slab, C and
D. Structures 3 and 4 were loaded at every quarter point E, F
and G of the slab only.
2 - Structures with reinforced concrete shear walls and slabs and
with intermediate frames made out of steel. These are labelled
5, 6, 7, 8, 9 and 10. Details of these are given in table 7.2.
Structures 5-9 were loaded at frame-slab and slab-wall junctions
H, I, J, K. Structure 10, on the other hand, was loaded at frame-
slah junctions M, N, P only.
3 - Structures with reinforced concrete panels and intermediate
frames. These are labelled 11 to 16 and given in tables 7.3 and

7.4, . All of these structures were loaded at frame-slab junctions

only., Structures ll and 12 were single storey. The rest were two
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STRUCTURE NO. 11 12
Height (mm) (H) 580 580
Length (mm) (L) 200 200
WIDTH (mm) (D) 300 300
No. of Frames 3 3
Frame width mm 280 280
Cross section mm2 S0mmx50mm 50mmx50mm
Ec kN/mm* 21.67 20.50
fou kN/mm? 0.0036 0.0272

Reinforcement steel

4.76mm $ black mild steel

199

2

:

48}

w

(=4

Q

=

Q

&)

aQ

S 2

2| Es kN/mm 216.0 216.0
2

= 2

2| fsy kN/mm 0.212 0.212
Q| Slab thickness mm 40.0 40.0
<<

—

“ | wall thickness mm 40.0 40.0
wr

0 Depth of slabs and s. 300.0 300.0
= | walls mm

<€

=

e | fo kN/mm? 0.031 0.0292
<<

23] 2

2| E. kN/mm 24.50 24.0
= :

21 Detail 25.4mmx25.4mm square mesh with 2.65mmp bars
w

U .

S| fsu kN/m? 0.591 0.656
=

@ | Es kN/mm* 200.27 200.3
wl

2| ey 0.00295 0.003
5

2|l eule 0.006 0.0055

TABLE 7.3 : ONE STOREY STRUCTURES WITH REINFORCED CONCRETE FRAMES
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1
1 L/3 L/3 D
T << < N W, was singly
TR SN reinforced in
H ~ i
2l = = structure 15
S N and substituted
H, P, N | ~ ! by a frame for
Wall Slab -+ .,,L | ‘\,,,L ~ structure 16,
Cross  Cross 5 T W,
Section Section o~ HL o
Wy Fi Fo Wo
STRUCTURE NO. l 13 14 15 16
Height of first storey} 300 300 300 300
H, {mm)
Height of second store}I 300 300 300 300
Ho (mm)
LengthL (mm) 2000 2000 2000 2000
Width (mm) 350 350 350 350
No. of walls 2 2 12 1
No. of Frames 2 2 2 3
i
-
. Width oli;lthe frames 330 330 330 330
(48]
g Cross section mmxmm 50x50 50x50 50x50 50x50 Inner frames
= 60x60 Quter frame
Eé.‘ E. kN/mm?2 21.0 23.3 23.08 19.14
-4
2 | fou kN/mn? 0.03191 | 0.03305 |0.03305 0.02546
=}
a Reinforcement steel 4,75 mm $ black mild steel
4]
S |Es ky/mm? 216.0 216.0 200.0 196.0
=
= | £5y KN/mm? 0.212 0.212 0.208 0.190
< |Slab thickness (mm) | 40 40 40 40
wn T,
S |Wall thickness (mm) Tz f 60 60 60 60
v« |Depth of Slabs and .
..é Walls D (mm) 350 350 350 350
=
& |fcy KN/mn2 Il 0.02575 0.03203  |0.03045 0.02823
454
& |Ec kN/mm? 21.0 25.45 24.80 27.50
z . 2.55 mm ¢, 25.4x25.4 mm square mesh;shear walls aré
% Detail doubly, slabs ae singly reinforced.
Q 2
é fsu kN/mm 0.509 0.509 0.556 0.625
= .
&5 |Es kN/mm? 203.3 203.3 200.0 196.0
- -
E €y “0.0025 0.0025 0.00235 0.00228
- .
= |cule ﬂ 0.006 0.006 0.007 0.007

TABLE 7.4 : TWO STOREY STRUCTURES WITH REINFORCED CONCRETE FRAMES
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FIGURE 7.1: ANCHORAGE OF A TEST STRUCTURE TO THE
TEST RIG -



FIGURE 7.2: A STRUCTURE AND LOADING ARRANGEMENT
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Loading strap

Frames
12.7mmx12.7mm
square section
for structures
5$,6,7. 19.05mmx
19.05mm for
structures 8,9.
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FIGURE 7.4

- b-Plan

: DESIGN OF TEST STRUCTURES 1,2,5,6,7,8,9
(STRUCTURES 1,2 HAVE NO INTERMEDIATE FRAMES)
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weldings

.

steel
strap
20 20 /Double V welding
T T N 19.05 (12.7)
4 \ '
A S y connection) 1
pot welding Frame Y
z 2 . 161.9 Plates Base
(o]
& .4 Reinforcement mesh (1746}
A1 Vv
%
/j 19.05 (12.7)
o
(¥ ]
ot lab
308 - Mortar
A I filling
! 40111@ 600mm IS‘Sf}mm
FIGURE 7.4.C : SECTION A-A FOR STRUCTURES 5-9
Base
o
=
Cast in
-4 hollow section
ol
Weldings
£ = NOTE: Overall design of
. g" E structure 10 is given in
o o figure 7.5. The connection
2 |cotunis of the frames to the slab
~ is similar to that shown in
figure 7.4.C.
- .
c"'_
ol
— " -
= . Supporting plates

FIGURE-7.4.4d ANCHORAGE OF A FRAME TO THE BASE PANEL
(STRUCTURE 10 ONLY)
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storey. Structure 16 had only one wall. The ovefall dimensions
of the structures, the number of intermediate frames and the
loading arrangements were varied to cover as many modes of
failure as possible. Because of the difficulties involved in
manufacturing and loading reinforced concrete structures, it was
decided to make most of these single storey. This is with the
exception of the last four.

7.b. Anchorage of Model and Loading Arrangement:

The testing rig consists of a system of horizontal and
vertical steel stanchions connected by bolts and welded as shown
in figures (7.1) and (7.2). The models were attached by their
base (IJKL in figure 7.2) to the vertical stanchions of the rig.
Thus the floor slabs were in factAvertical loads in their plane.
A sufficient number of 11.1 mm diameter bolts were used to connect
the .base to the rig by means of supporting channels fixed to the
flange of the stanchions as shown in figure 7.1. This fixed the
base firmly to the rig and toppling due to subsequent loading was
prevented. A supporting continuous angle (R) was also fixed to
the rig at the base of the model as shown in figures 7.1 and 7.2
by letter R. This type of anchorage was preferred to anchoring
the model, with its base horizontal, because it made it possible
to apply the loads by means of a simple system of horizontal lever
arms NOP.

The loads were.applied to each load point by means of straps
lettered as EF, EjF; etc. in figure (7.2). These were suspended
from each junction. Each strap was connected to a lever arm by a
system of hanging rods, cables and connection plates shown as

CDEF, in figure (7.3). The end, N, of the lever arm was anchored
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to the test .rig beneath by a system of rope and hinging device.
This anchorage system, NM, is shown in figure (7.3). Dead
weights were applied to the free end, P, of the levers bylhangers
W. In this manner constant loading was provided as creep took
place. The lever arms NOP were made out of 50.8mm x 127mm hollow
rectangular sections and had a magnification ratio of 1:7. Each
lever arm contained three 20mm diameter knife edged holes at N,0
and P. The outer holes N and P were situated just above the

centre line of the lever while the middle hole, 0, was just below
this line. These holes are shown in figure 7.3 where it is

noticed that the points of application of the loads at N,0 and P
all lie on a straight line. The lever ratio was thus kept constant
irrespective of the inclination of the lever.

7.c. Construction of Structural Models:

7.c.1. The Base:

The shear walls and the slabs for each complete structure
were cast together with a strong base panel to provide a strong
fixity of the shear walls at the supports. The base panel IJKL
was designed to simulate the properties of a rigid support and to
transmit the forces due to the loads acting on the structure to
the test rig. It was doubly reinforced with the longitudinal
bars connected by stirrups which also sustained the bending moments
in the transverse direction. A series of 12.7 mm diameter holes
in the base enabled a -structure to be fixed to the ‘test rig by
bolts. The thickness of a base varied between 80 mm and 100 mm
and depended upon the size of the structure being tested.

7.c.2 The Shear Walls:
In the single storey structures the thickness of the shear

walls were kept constant at 40 mm while their depth was varied
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between 200 mm and 300 mm. The walls were reinf&rced by 25.4™" x
25.4™0 square mesh which was made out of 2.65™ diameter steel
bars and placed in the middle of the cross section as shown in
figures (7.4) and(7.5].

The shear walls of the two storey structures were 60 mm
thick, 350 mm deep and doubly reinforced by two parallel layers
of 25.4™ x 25.4™ square mesh. This provided sufficient
resistance against torsion as well as in-plane bending and shear.
For structure 15, one of the shear walls was singly reinforced as
in the case of single storey structures. One of the shear walls
was altogether removed from structure 16 and replaced by a
reinforced concrete frame. Tests on structures 15 and 16 were
carried out to examine the computer program given in chapterﬁsécﬂonb for
the asymmetric modes of failure, in which the torsional moment
plays an important part.
7.c.3 The Slabs:

The depth of slabs was the same as the shear walls which
also varied between 200 mm and 300mm for the single storey structures
and kept at 350 mm for two storey ones. Their thickness was 40 mm.
A single mesh of reinforcement was placed in the centre plane of
the slabs. For structures (1-4) and (5-10) the loading straps
were cast in at the specified loading points. For structures
5-10, these straps were also used to connect the steel frames to
the slabs.

For structures 11-16, polystrene blocks were placed at the
junctions of the slabs and the frames and cast in as the reinforced
concrete frames were to be cast at a later stage. These blocks

were then removed once the concrete grillage was hardened. The
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spaces left behind were cleaned thoroughly and then roughened to
provide sufficient bond between the concrete of the grillage and
that of the frames. At about a week later the frames were cast.
7.c.4 The Steel  Frames:

For the test structures 5, 6 and 7, these were manufactured
out of 12.7 mm x 12,7 mm squaré black mild steel bars while those
for structures 8, 9 and 10 were made out of 19,05 mm x 19.05 mm
square section. The beams and columns were welded together with
double V velding and the beams were spot welded to the loading
straps at the joints as shown in figure (7.4.c).

For structures 5-9, wooden blocks were placed in the
positions at the junctions of the columns at the base panel-
After the concrete had hardened, these blocks were removed and
replaced by the columns. L shaped connection plates were used to
hold the ends of the columns in position (see figure 7.4.c). The
remaining spaces in the holes were then filled by mortar and the
connection plates were welded to each other and to the columns.
This arrangement insured that the columns were perfectly fixed to
the base and virtually no rotation of the support was possible.
This arrangement, however, was not suitable for the large base
panel of structure 10, It was not possible to slidé a ready made
frame through the deep holes in the base. It was also considered
that such holes weaken the base itself. For this structure it
was decided to use 20™® x 20™ hollow sections cast in at the
column positions together with supporting plates at either side
of the base. The columns of the frames were pushed into these
sections and then welded to the beams to form the frames. These

were then adjusted in their positions and welded to the hangers.
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Finally the columns were welded to the hollow sections and the
supporting plates at the back and front faces of the base panel.
Details of this arrangement is shown in figure (7.4.d).

7.c.5 Reinforced Concrete Columns:

Reinforced concrete colums were used in structures 11 to 16.
They were made out of 50 mm x 50 mm square sections with the same
reinforcing arrangements. In structure 16, the cross section of
the outer columns, replacing one of the shear walls was 60 mm x
60 mm. The reason for this, was to avoid the constructional
difficulties. Four 4.75 mm diameter bars were placed in the
corners of each column., The stirrups were made out of 2.65 mm
diameter bars placed at 50 mm spacing as shown in figure (7.5.b).
The columns were connected to the floors, which were assumed to
be acting as large beams against out of plane bending.

7.d. Manufacturing Process:

The cement used throughout the test series was ordinary
portland. The aggregate used was 3/8" crushed gravel and zone III
sand. The concrete mix was 1:2:3 with a water-cement ratio of 0.6.
However, the secondary casting mixture, which was used to cast
the columns was a 1:2 mortar with 0.6 water-cement ratio. The
reason for using this was to obtain a fairly compact, easy filling
and a relatively strong mixture compared to the concrete used in
the grillage. This was particularly necessary to prevent
premature failure at the frame-slab junctionms.

The overall mould was assembled and screwed onto a thick
panel which prevented excessive deformation during the casting
process. The reinforcement mesh was cut to size and placed in the

mould. The joining on the reinforcement was avoided at the junctions.
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Wheﬁ necessary, the junctidns were strengthened by extra
reinforcement to prevent premature failure,

Having assembled the grillagelreinforcement, the basé
reinforcement was placed in and the free arms of the mesh were
bent over the base reinforcement, thus sufficient bond was
provided between the base concrete and the mesh. The outer
panels of the overall mould were then fixed to cover the
reinforcement. Three strips were cut out of the original mesh
and tested to determine their physical properties.

Once the overall mould and the reinforcement was set, the
whole structure was put on two table vibrators and made ready for
casting. This was carried out in one operation except for the
columns which were cast separately at a later stage. Shrinkage
cracks were checked by the use of fillets at the junctions of the
shear walls with the base and with the slabs.

Two capped and two uncapped 150 mm x 300 mm cylinders and
two 100 mm x 100 mm x 500 mm standard rupture test specimens were
taken from each mixture. These specimens were tested to find the
ultimate crushing strength, the modulus of elasticity and the
rupture strength of the grillage concrete. After a few days the
mould was stripped off and the concrete left to cure in a humid
place for at least 21 days.

In the case of structures with steel frames, the frames were
fixed a week before testing. The surface of the frames were
cleaned by emery cloth and covered by hot resin in order to detect
the formation of plastic hinges during the testing process. Three
tensile specimens were prepared from the steel bars and used to

determine the stress-strain diagram, the modulus of elasticity
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and the yield stress.

For structures with reinforced concrete frames, the polystrene
blocks were cleared after stripping the mould, the frame ﬁoulds
were then fixed and secondary casting was carried out. Provision
was made in this phase to prevent local failure at the frame-slab
junctions as explained in section (7.c.3). Again capped and
uncapped 150 mm x 300 mm cylinders and rupture test specimens were
taken from secondary mixture to determine its crushing strength,
young's modulus and the rupture strength. The physical properties
of the frame reinforcement was determined from three specimens cut
out of the original material.

Altogether three different moulds were used to manufacture
the test structures. The first was used to cast structures 1,2
without frames; structures 5, 6, 7, with two steel frames of
12.7 mm x 12.7 mm square steel bars, and structures 8 and 9 with
two 19.05 mm x 19.05 mm steel frames.

The second mould was also used to generate another series of
single storey structures 3, 4, 10, 11 apd 12.

Finally the third mould was used to generate structures, 13,
14, 15 and 16.

7.e. Instrumentation:

Measurement of deflection and strain was carried out using
mechanical dial gauges and electrical strain gauges.

The sway deflections of the joints were measured by Baty dial
. gauges of 0.001" (0.0254 mm) per division and 2" (50.8 mm) range.
These were situated at each joint and carried by a dexian frame
(see figure 7.1). This frame was supported on the base of the

structure. Therefore errors in deflections due to bending of
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supporting channels and the extension of the bolts were excluded.

The strains in the models were measured by using Tokyo Sakki
Kenyujo PL-60 strain gauges. The purpose of using these gauges
and their arrangement were discussed in chapﬁer 5. The marked
gauge positions were sanded and cleaned. A thin film of bonding
cement was applied and the strain gauges were lightly pressed
into position. When the cement had dried, electric wires were
soldered to the gauge leads. These wires were then connected to
the junction box of the compulog Alpha 16 data logger. A typical
arrangement of the strain gauges at a critical section G is shown
in plate 7.2 while a structure under test is shown in plate 7.1,
7.f. Test Procedure:

Once a model was manufactured, it was set up and clamped onto
the test rig. The gadge frame was adjusted into position and the
strain gauges were connected to the data logger's junction box.

The test commenced by recording the initial readings of the
dial and strain gauges. The model was then loaded by the lever
arms. The dial gauge readings were recorded while the strain
gauge readings were automatically taken by the data logger. The
loads applied due to the self weight of the lever arms and other
loading instruments were predetermined and considered as the
initial loading. These loads were about 0.6 kN for structures 1,
2, 5, 6, 7, 8;.0.7 kN for structures 3, 4‘and 1.0 kN for structures
10, 16.

‘ The first increﬁent éf weights were determined from a rough
calculation of the_load carrying capacity of the structure and

| apﬁlied onto the hangers W at the free ends of the lever arms.

Dial and strain gauge readings were recorded after allowing



PLATE 7-1: A STRUCTURE ON TEST




PLATE 7.2:POSITION OF STRAIN GAUGES
AT THE BASE OF A SHEAR WALL

PLATE 7.3:FAILURE OF TEST STRUCTURE 2
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sufficient time for the gauges to settle. This waiting time was
gradually increased as failure was approached. During the test,
the deflection of a critical joint in the structure was plotted
against the applied load. The graph obtained gave an indication
of the behaviour of the structure and was used to decide the
magnitude of each subsequent loading increment. Every time the
readings were recorded, the structure was carefully examined for
crack formation and propogation and also to detect the formation
of any plastic hinges in the steel frames. The whole process was
continued until failure took place.

The concrete control specimens were tested on the same day
using the Dennison compression and three point bending machine,
in accordance to British Standard 1881. The control specimens of
the reinforcement and the steel frames were tested using the
Dennison universal tensile testing machine in a standard manner.
The results of the control specimens are given in tables 7.1, 7.2,
7.3 and 7.4 together with the specifications of the test structures.
7.g. Failure Patterns
7.g.1. Failure of Structures without Intermediate Frames:

This serieé contained single storey structures 1, 2, 3, 4.
They were primarily designed for a direct justification of the
interaction equation (5.e.20). The first two structures were
constructed to be identical. However, the mechanical properties
of the concrete as obtained by the control specimens, were found
to be slightly different. Both structures failed by propogation
of cracks at the base of the shear walls. The failure loads were
1.577 kN for structure 1 and 1.727 kN for structure 2. It was

noticed in structure 1 that the reinforcing bars slipped from the



~155-

base panel and the whole structure collapsed by a complete

breaking off. Structure 2, however, failed by cracks developing

in one of the shear wallswhere yielding and plastic flow of the
reinforcement§:were visible. The failure pattern was that due to
combined bending and shear. In this pattern, it was observed

that failure was due to excessive straining of the outermost
tensile reinforcements and no crushing was observed in the concrete
at the compression zone. The crack developed is shown by letters
A B in plate 7.3.

Structures 3 and 4 were similar and consisted of a single
storey with a slab and two parallel shear walls. Structure 3
failed due tobending, At about half way through the loading
process ;racks developed in the middle portion of the slab and
also at the supports. These cracks then propogated and failure
was due to extensive straining of the outermost tensile
reinforcements within the major crack in the middle of the slab.
This was a vertical crack. The behaviour of structure 4 was
similar to that of structure 3. However, at the final stage of
loading a sudden failure at the support of one of the shear walls
was observed. This was followed by the catastrophic failure of
the slab at its midspan. The failure load of structure 4 was
6.362 kN which is 6.27% higher than that of structure 3.

7.g.2 Failure of the Structures with Steel Frames:

This series contained structures 5-10. The overall dimensions,
loading arrangements and the cross-sections of the frames of
structures 5, 6 and 7 were similar. However, the frames of
structures 6 and 7 were manufactured from harder steel while the
reinforcement mesh of the grillage of structure 7 was relatively

stronger than those of structures 5 and 6. The concrete for +



PLATE 7.5:FAILURE OF STRUCTURE 10
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structure 5 was weaker than those of structures 6 and 7. The
failure loads were 2.4 kN, 2.61 kN and 3.023 kN for structure S,
6 and 7 respectively. These variations in material pr0pefties
caused a maximum discrepancyrof 20.6% in the load-carrying
capacity.

All the structures failed by propogation of cracks at the
base of the shear walls. Only in structure 3, the development of
plastic hinges were observed at. the column bases just before
failure. In structures 8 and 9 the cross section of the frames
was increased from 12.7 mm x 12.7 mm to 19.05 mm x 19.05 mm. The
rest of the properties were keﬁt the same as 5, 6 and 7. The cracks
developed in a shear wall of structure 9 are shown as lines AB,
CB, DE and FG in plate (7.4). The failure load of structure 8
was 4,052 kN and structure 9 failed at a load of 3.919 kN. Some
diagonal cracks also developed in the shear walls but not prior
to failure. The properties of structure 10 were different from
those of structures 5-9. The former was larger in size and had
three intermediate frames. It was designed to make the slab
fail before the walls and as expected, failure did take place in
the middle of the slab. This was due to bending, at a load of
9.794 kN. This failure pattern is shown as AB in plate (7.5).
7.g.3 Failure of Reinforced Concrete Structures:

In this series, structures 1l and 12 were identical single
storey structures consisting of a slab and two shear walls with
three intermediaée reinforced concrete frames. Both structures
showed bending cracks in the slabs and frames, and diagonal cracks
were observed in the shear walls. The actual failure took place

in the middle of the panels. This is shown as AB in plate (7.6).



PLATE 7.6: FAILURE OF STRUCTURE11IN THE
SLAB

PLATE 7.7: STRUCTURE 13 AFTER FAILURE
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This was at loads 13.292 kN and 14.590 kN for structures 11 and
12 respectively. Structures 13 and 14 were similar and failed in
the same manner at loads of 13.292 kN and 14.580 kN respectively.
As the failure of each structure was approached, bending cracks
in the frames and the slabs became visible. Diagonal cracks of
shear walls also propogated rapidly. The top floor panel failed
first and was followed by the failure of the first floor slab. A
sway mechanism developed in the frames as failure took place along
the diagonal cracks in the shear walls. The complete failure
patterns can clearly be seen in plates (7.7), (7.8) and (7.9).

In plate (7.7), the diagonal failure pattern of a shear wall of
structure 13 can be seen at point A. The inside view of this
pattern is also shown in plate (7.8) as AEF. The cracks in a
first storey column are shown as B and C in plate (7.7)., 'D"
refers to the failure pattern of the top floor slab in the same
plate. This pattern, however is not clearly seen. A similar
failure pattern also took place in structure 14 as shown by AB in
plate (7.9), whilg CDEF refers to the bottom storey sway
mechanism of one of the frames.

A typical bending/shear failure was observed in the singly
reinforced shear wall of structure 15, with the floor slabs and
doubly reinforced shear wall having diagonal cracks. The
intermediate frames failed in the usual sway mechanism. The
failure load of this structure was 10.14 kN. In structure 16,
the outermost frame substituting one of the shear walls failed
first by a sway mechanism. The other components of this structure
showed a failure pattern similar to structure 15 and the ultimate

failure took place at a load of 6.16 kN.



PLATE 7.8: DIAGONAL FAILURE PATTERN
IN A SHEAR WALL OF STRUCTURE 13
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PLATE 7.9: STRUCTURE 14 AFTER FAILURE
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CHAPTER 8
COMPARISON OF EXPERIMENTAL AND ANALYTICAL
RESULTS AND ANALYSIS OF PRACTICAL STRUCTURES
8.a Introduction e R

A number of experiments carried out to test the computer
program for the analysis of complete structures, described in
chapter 6 were discussed in chapter 7. The results of the test
structures with no intermediate frames are given in chapter 5 and
compared with the analytical results there. The rest of the
results are discussed here in this chapter. Once the validity of
the analytical approach is established this chapter is concludéd
by the analysis of a number of complete practical type structures.
These are either four storey or six storey structures. The effect
of composite action on the load carrying capacity and on the order
of formation of plastic hinges and cracks is also studied and
conclusions are drawn.

8.b Analysis of Single Storey Structures with Intermediate

Steel Frames:

Details of these structures are given in table (7.2). The
theoretical and experimental failure loads are compared in table
(8.1). The structures were analysed by the computer program
given in chapter 6 section b. Two different types of analysis
were‘carried out for most of the structures. The first assumed
bilinear moment-curvature relationship for the grillage while
" the second assumed a trilinear relationship. In the bilinear
approximation, it was assumed that a panel of the grillage keeps
its initial stiffness constant: until the ultimate stage is

detected by the use of the interaction equations (5.e.20) or (5.e.23).



Experi-
ental

Theoretical Failure Loads

St Tors Bilinear Moment- Trilinear Moment- Reﬁarks
No. load Curvature Approx. [urvature Approx.  |.°
(kN) Result % Result %
(kN) difference (kN) ifferencg
two steel
5 2.400 2.475 |+3.03% 2,622 +8,46% frame
6 2.610 2.732 {+4.46% — - "
7 3.023 2.992 |-1.05% 3.205 +5,68% "
8 4.052 3.927 |-3.10% 4.025 -0.72% LA
9 3.919 3.937 |+0.35% |4.041 [+3.00% "
10 lo9.794 9.641 |-1.56% [9.641 [-1.56% | three
steel
frames
TABLE 8,1 : EXPERIMENTAL AND THEORETICAL FAILURE LOADS FOR ONE

STOREY STRUCTURES WITH STEEL INTERMEDIATE FRAMES



-159-

In the trilinear approximation; the initial flexural rigidity
remains constant until the stress at the outermost fibres of a .
section reaches the rupture strength of the concrete an& cracks
begin to develop. After that the stiffness of the section
reduces considerably and the new flexural rigidity (EI). of the
cracked section does not change until ultimate failure is detected
by one of the above interaction equations. The method for
calculating (EI). is given in chapter 3. As the ultimate stage
is reached, the value of EI is again reduced drastically.

A maximum discrepancy of 8.46% was obtained between the
theoretical and the experimental failure loads. This was for
structure 5 with a trilinear M-C curve. The rest of the
analytical results are even closer to the experimental values.
These results show that the method for the failure load analysis
of complete structures presented in chapter 4 and the interaction
equations of bending, torsion and shear, given in chapter S
predict tﬁe actual behaviour of complete structures in a realistic
manner. .

As an example, the analysis of structure 9 will be discussed
here in detail. The structure and loading are both symmetrical
as shown in figure (8.1). The experimental and the theoretical
load-deflection curves for this structure are also shown in this
figure. The floor and the shear walls are 40mm thick. They are
605mm high and 200mm deep, the reinforcement is a 25.4mm square
steel mesh placed in the middle of the cross section. The yield
stress, the yield strain and the ultimate strain of this mesh
were found experimentally to be 0.761 kN/mm2, 0.00365 and 0.0066

respectively. The two intermediate frames are made from 19.0Smm
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x 19,05mm square black mild steel bars, The modulus of elasticity
and the yield stress for these bars are 213 kN/mm? and 0,28kN/mm?2

respectively. The concrete used in the construction of the

grillage had a modulus of elasticity Ec = 26.32 kN/mm? and 150mm

0.0261 kN/mm4.

I

diameter cylinder crushing strength fcu

There are three load-deflection curves in figure (8.1).

Curve 1 was obtained theoretically by assuming that the moment-
curvature diagram of the panels is bilinear. Curve 2 was also
obtained theoretically by employing a trilinear representation of
the M-C diagram of the panels while curve 3 was obtained
experimentally.

In the analysis assuming the bilinear M-C relationship, the
shear walls failed first at their base at-'a load Py = 2.28 kN.

The points were P are applied are shown in the figure. The
stiffness of these walls were then reduced to 1% of their initial
value but the overall failure of the structure did not take place.
For the applied load P > 2.28 kN, large loads were transmitted to
the frames and plastic hinges 2, 3, 4 and S developed in both
frames at loads P, = 3.84 kN, Pz = 3.86 kN, P4 = 3.93 kN and

Pg = 3.937 kN respectively. Every time a hinge developed, the
loads transmitted to the frames and the grillage were recalculated.
As soon as the last hinge developed in the frames, the structure
failed by sway mechanism in the frames.

The analysis assuming trilinear M-C relationship need not be
discussed in great detail. However it can be seen from figure
(8.1) that this slightly improves the theoretical load-deflection
diagram but not the predicted value of the failure load. The
experimental failure load was 3.92 kN; the bilinear approach gave

Pbilinear = 3.937 kN with a relative difference of only 0.35% over
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the experimental. On the other hand thé trilinear failure load
was 4,04 kN and a difference of 3% with the experimental.

Notice, in the diagram shown in figure (8.1) and on the
theoretical chrves, the numbers (1), (2), (3) etc., refer to
various critical stages obtained analytically during the loading
process. Thus the number (1) indicates that the grillages failed
by crack development. The numbers (2), (3), (4) and (5) indicate
the order of the plastic hinges in the steel frames.

8.c Single Storey Structures with Reinforced Concrete Frames:

As a second group of examples, the single storey test
structures 11 and-12, which contained three reinforced é&oncrete
intermediate frames, are discussed. The general dimensions of
these structures are shown in figure (8.2). The shear walls and
the floor slabs are 40mm thick. The reinforcement is 25.4mm x
25.4mm square mesh which is made out of 2.55mm diameter steel
bars and placed in the middle of the cross section. A typical
cross-section of the columns is shown in figure (8.3). The
columns are directly connected to the floor slabs, which are
acting as large beams against out of plane bending. The maximﬁm
breadth of such a beam was considered to be the distance between
two neighbouring frames. The effect of this assumption will be
discussed later and some conclusions will be drawn. The moment-
curvature diagrams of the shear walls, slabs and frame sections
were calculated by means of the method given in chapter 3,
section h, in conjunction with the method described in chapter S.

As an example, the analysis of structure 12 will be given
here in detail. The data obtained froh the control tests is as

follows:
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FIGURE 8.3- A TYPICAL REINFORCED CONCRETE
FRAME CROSS”SECTION A-A
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A - Frame data:-
Ec = 20.5 kN/mn?
foy (cylinder) = 0.0272 kN/mm?
£y (cube) = 1.25 foy (cylinder) = 0.0340 kN/mm*
Lt 0.00272 kN/mm?
Eg = 216 kN/mm?
Reinforcement: 4.75mm diameter bars at each corner.
The stress-strain diagram of the reinforcement is given in
figure (8.4).
B - Grillage data:-
Ec = 24.0 kN/mm*
foy (cylinder) = 0.0292 kN/mm?
foy (cube) = 0.0365 kN/mm*4
Although the rupture strength of the concrete was obtained

to be 0.003809 kN/mm? from the standard rupture tests, the

empirical formulae given below(g7) may be used more efficiently,
£ = 0.87 (1 + 22593 /e teubey 8.1
ov/mn?) = = ot :

This formulae for fy relates empirically the rupture strength to
the ultimate crushing strength with respect to beam depth. For
the grillage panels used in this structure d = 300 mm.
Thus. £fp = 3.09 N/mm? = 0.00309 kN/mm%
The moment-curvature diagram of the column cross-section in
figure (8.3), is shown in figure (8.5) and constructed as follows.
_The initial flexural rigidity (EI)j:

. 50x5073 216 _3.75"%* x =x 2 _
Ij = =3 +4 x 505 X 7 X Ez-i = 762814,7 mm“

and therefore (EI)j = 15627702,12 kNxmm?

The percentage tensile reinforcement = r = 1.4176%.
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TEST STRUCTURE 12
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The flexural rigidity (EI). was obtained from equation (3.0)
as (EI). = 4776051.0 kNxmm?2,
The cracking moment was obtained from equation (3.8)
as M. = 83 kNmm,
Calculation of ultimate moment:
From equations (3 .12), (3.13) and (3 .14) the properties of
concrete compressive stress distribution at the ultimate state
were obtained as
B1 = 0.451, B2 = 0.581 and e¢, = 0.0034

Using equations (3 . 16) and (3 .18 ) the depth of the

neutral axis and the strain at the outermost compression fibre

were obtained iteratively as follows:

x = 2X17.72xAs fp
0.581x34x50

and

eg = 0.0034 43-X
X

Assume x(l) = 20mm ., es = 0.00391
The corresponding force in steel was obtained from the stress-

strain graph of figure (8.4) as Agep = 7320 N. Hence X = 7,411mm,

(2)
This value was then used to calculate the strain in the tensile
reinforcement as eg = 0.016327, thus Ag f = 7700 N. Using
equation (3 . 16)

x(3) = 7.796mm .. eg = 0.01535 and Ag fs = 7700 N which
gives X(4) = 7796mm. Because X(4) = x(S) = 7.796mm the iteration
was stopﬁed and the ultimate moment was obtained from equation
(3 .19) as:

My = 7.700 (43-7.8x0.451) = 304.0 kNmm.

The curvatures gc, § and g, were obtained from equations

(3.9), (3-22) and (3.20) as:
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$e = 5.31x107°(1/mm); @, = 5.16x10 >(1/mm) and 4, = 4.36x10"%(1/mm).
The moment-curvature diagram of the effective parts of the slab
acting as beams was also constructed similarly. |

The moment-curvature diagram for the shear walls and the
slab was automatically constructed within the computer program.
However the value of "y was caléﬁlated by the use of equations
(5.b.15), (5.b.16) and (5.c.4) to be 0.865 and fed into the
computer. The cracking moment and the flexural rigidity were
also precalculated from equations (3 . 8 ) and (3. 10) as
1722.6 kNxmm and 243618524.0 kNmm and fed in. Using this
information, the M-C diagram of each panel was constructed by the
computer according to the state of loads acting on the panel.

Each time the forces acting on the members were calculated, the
corresponding M-C diagrams were constructed and used in the
current iteration.

Having prepared the necessary data, the structure was
analysed by the computer program of chapter 6, section b. The
analytical and the experimental load-deflection curves are shown
in figuré (8.6) together with a sketch of the structure indicating
the locations and the order of the critical points.

The structure has failed theoretically at a load of 7.693 kN
which is 1.7% higher than the observed failure load of 7.562 kN,
obtained experimentally,

To investigate the influence of the effective width of the
beams on the value of the theoretical failure load, structure 11
was analysed for various assumed beam widths. These varied
between 80mm and 400mm. The value of 80mm was calculated accor&ing
to the draft unified code of practice CP110 1972, The results of

this investigation are presented in figure (8.7) where it can be
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seen that the failure load is not very sensitive to the variations
in the beam width. A maximum discrepahcy of 4.2% was obtained
between the two extreme cases. The_load-deflection diagrams did
not show:.. any significant*change and were almost matching on each
other.. The load-deflection diagram obtained fqr the beam width

of 80mm and that obtained expe;imentally, are shown in figure (8.8).
The theoretical failure load was predicted to be 7.270 kN, being
0.65% higher than the experimental failure load of 7.223 kN.

8.d Two Storey Structures:

The computer program of .chapter 6, section b was further
tested by two storey experimental structures 13, 14, 15 and 16.
These consisted of 40mm thick slabs, 60mm thick shear walls and
reinforced concrete frames with the same cross-section as in
structures 11 and 12. The general dimensions and specifications
for these structures are given in figure (8.9) and table (7.4)
respectively. During the computer analysis, each member of a
frame was divided into three submembers in order to improve the
accuraéy of the analysis. The M-C diagrams for these structures
were obtained in the same manner as that for structures 11 and 12.
The theoretical and experimental load-deflection curves of structures
13 and 14 are shown in figures (8.10) and (8.11). The order of
development of various critical points in the structures are shown
by numbers at the locations where they develop and on the graphs.

It can be seen in figure (8.10) that the theoretical load-
deflection curve of structure 13 is steeper than the experimental
curve, up to a load of 11.95 kN. The curve then bends, flattens
considerably and is fairly linear until the structure fails

theoretically at a load P = 14,462 kN per junction. This is 8.1%
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higher than the experimental failure load of 13.292 kN.

In figure 8.11, the theoretical and the experimental load
deflection diagrams for structure 14 are shown together‘with the
order in which critical points developed in this structure.
Theoretically, the first development was the formation of cracks
at the top and bottom of all the columns of the ground floor.
These are numbered 1 to 4 in figure 8.11. The middle slab panels
cracked next. That in the top floor cracked at either end at a
load P = 4.59 kN. The position of the cracks are marked in
figure 8.11. That in the first floor (No.6) cracked at P = 5.16 kN.
Soon after at P = 5.229 kN the shear walls cracked at their
supports (critical point No.8) and later at P = 7.36 kN the top
and bottom ends of the columns of the ground floor reached their
ultimate moments. Nevertheless, theoretically the structure was
nowhere near failure. The analytical results indicated that the
top storey columns continued to transmit the loads, not to the
base, but from one floor slab to another. Eventually at stage 16
the side panels of the first floor slabs cracked and this was
followed by cracks in the second floor at P = 11.75 kN and stage 17.

Up to this stage the theoretical and the experimental load
deflection curves almost matched each other. Beyond this stage
the theoretical curve lost its steepness, recording excessive
deflections as shown in figure 8.11. The dramatic deterioration
of the carrying capacity of the structure was exhibited by the
.development of longitudinal cracks at first floor panels, thus
cracks developed due to out of plane bending in these panels
which were considered to be acting as the beams of the frames

(see stages 18 and 19 in figure 8.11). At stages 20 and 21 the
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failure of the top and first floor slabs. took place at P = 14,28 kN
;nd 14;53 kN respectively. Soon after, at a load of P = 14.96 kN
the ultimate failure of the whole structure took place ét stage 22,
the "last straw' causing the fracture of the ground floor columns
at their fixed ends. The theoretical failure load was 2.5% higher
than the experimental value of 14.589 kN.

In the experimental process, the cracks of the floor panels
became visible at a load of 9.16 kN. This was followed by the
cracking of the shear walls at the bases at P = 10.59 kN. As the
loads were further increased to a value of 11.71 kN the cracks at
the bases of the columns became visible. Further increments in
the loads caused secondary cracks developing in the middle panels
of the floors and diagonal cracks in the shear walls. When the
last incremeqt of loads was applied (P = 14.589 kN), the rate of
creep increased rapidly and some sudden, noisy settlements took
place. These were followed by the failure of the top floor panel
in the middle. Then, the first floor panel failed. These resulted
in an immediate sway failure of the intermediate frames and the
failure of the shear walls along inclined cracks indicating that
these walls failed by the comb;ned effect of bending, torsion and
shear.

In the analysis of structure 15, the top floor slab was the
first to crack, at a load of 5.92 kN., The bottom portion of the
weaker shear wall was next to crack at a load of 7.55 kN. Then
the first storey slab.cracked at P = 9.09 this was followed by
cracks in the frames and the structure failed when the weaker
shear wall reached its ultimate stage at a load of 11.32 kN. The
experimental failure load of this structure was recorded as 10.14,

being 10.42% lower than the theoretical.
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In thelcase of structure 16, the experimental failure was
observed at P = 6.16 kN, due to the failure of the outer frame
which replaced one of the shear walls. The single remaining
shear wall failing along an inclined crack due to excessive
torsion. . The theoretical analysis also showed the same failure
pattern, indicating the failure load to be 5.36 kN which is 13.1%
lower than the experimental value.

8.e Analysis of Practical Structures:

A comparison of the theoretical and the experimental results
indicate that the computer program can trace, with sufficient
accuracy, the load deflection behaviour of structures up to and
including the stage of failure, This is in spite of the fact
that reinforced concrete is a material difficult to control. The
results were sufficiently encouraging to give the author the
confidence to move into the analysis of complete practical
structures.

Two groups of such structures were selected. The first were
four storey single bay and the second were six storey with two
unequal bays. Details of these are now given.

8.e.1 Analysis of Four Storey Structures:

The first group of structures analysed, had 3, 5 and 7 four
storey, single bay steel frames. Their grillage consisted of
152.4mm thick reinforced concrete slabs and two 304.8mm thick
reinforced concrete shear walls placed at either end. The
dimensions, cross sectional properties and the external loads
applied to the frames were the same for all the structures. The
frames were spaced equally at 9.144mm C-C. As a typical example,

the structure with 7 intermediate frames will be discussed here.
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MEMBERS SECTIONS

BEAMS 406x178x60 UB
GROUND FLOOR COLUMNS 305x305x118 UC
OTHER COLUMNS 254x254x89 UC

TABLE 8.2 . SECTIONS USED FOR THE FRAMES OF THE
FOUR STOREY STRUCTURES



2.5

2.0

1D

1!0

ag.,5

A=2.83 35

/

]
Ic
[' Sway at B (composite action is considered )

composite action is

considered

A
Sway at B

composite action

is not considered /

Vertical deflection at A

(composite action is ignored)

NOTE : Nubers on the diagrams Aand B
refer to the critical points on
figure 8.12.a while those of
diagrams C and D referring to
theoretical points of figure 8.12.b

1 1 1 ] | | ’
10 20 30 40 50 60 70

FIGURE 8.13: COMPARISON OF THE LOAD DEFLECTION DIAGRAMS

OBTAINED BY CONSIDERING AND IGNORING THE

COMPOSITE ACTION FOR THE FOUR STOREY
STRUCTURE _WITH 7 FRAMES




12mm¢

130

aI"r'll‘T\¢

g™ 8g
ggnm | o™
150 1som"'! 16 MM 150mm! 153‘"1%
b hsad ? ¢ 1130 f524
[ 1 2 2. 2 2 ]
TOP FLOOR INTERMEDIATE FLOORS

a-Floor Slabs Reinforcement Design

16 MMgg |
VERTICAL
8f‘l‘ln"i T
Ve »

150

. T
: 150

P . § ——
B
L1 ?
JR,
. -0 mm mm mm
v 237,88 ° 150 150 150
1l ”
304,;8MM

b-Shear Wall Reinforcement Design

FIGURE 8.14:REINFORCEMENT DESIGN OF FLOORS
AND SHEAR WALLS FOR.LARGE
STRUCTURES



-169 -

This structure is shown in figure (8.12). The slabs and
shear walls were designed according to the-requirements_of CP114.
Details of these are shown in figure (8.14).

The ultimate strength fcy and theé modulus of elasticity E¢
for concrete were taken as 0.0214 kn/mm? and 26.3 kN/mm2. The
values of fy, E; Ey and ey for the reinforcement were 0.25 kN/mmz,
207.0 kN/mm?, 0.002 and 0.045 respectively. The frames were made
out of universal beams and columns with E = 207.0 kN/mm? and
fy = 0.234 kN/mm?. The cross sectional properties of the sections
used to construct the frames are given in table (8.2).

The shear walls and the slabs are deep and lateral loads
applied to the structure are comparatively small. To begin with,
neglecting the composite action of the slabs, the theoretical
analysis showed that failure takes place due to vertical loads
causing beam type mechanisms of the frames. This is in spite of
the fact that the structure was subjected to wind loads as shown
in figure 8.12. Altogether 50 plastic hinges developed in the
frames. All of them in the beams. The shear walls:and slabs of
the grillage all remained elastic. The horizontal and vertical
load deflection curves for the top storey of the middle frame
(Points B and A in figure 8.12.a) are shown in figure 8.13 as the
curves A and B respectively. The order and locations of the
plastic hinges are given in figure (8.12.a). The load deflection
curves show that the effect of vertical loads dominated the effect
of horizontal loads. In fact the horizontal loads were mostly
transmitted to the grillage while the frames carried the vertical
loads. The loading pattern is shown in figures (8.,12.c) and

(8.12.d). The structure failed due to simultaneous beam mechanisms
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developing at the top storeys of frames 3, 4 and 5 at a combined
load factor of 1.80. This combined load factor is, in fact,
slightly below the failure load factor of a bare frame subject
only to vertical loads. It appears that, if cbmposite action of
the slabs are neglected, it may be fair to design the frames to
carry the vertical loads while the grillage sustains the
horizontal loads only.

The results obtained by the present method are similar to

: . "o (31)
those obtained by Majid and Onen .

This reveals that the
assumption, made by Majid and Bnen, that the grillage remained
elastic throughout was correct for these structures. However,
it will be shown later that when the composite action is taken
into account, this state of affairs changes dramatically and
cracking of the grillage plays an important part in the overall
behaviour of complete structures. The results obtained from the
analyses of the four storey structures are summarised in table
(8.3) together with those obtained by Majid and Snen. It appears
that the number of intermediate frames in a struc;ure does not
alter the carrying capacity of the structure considerably.
However, intuition suggests that as the number of frames increase,
the shear walls become less effective and thus failure at lower
loads due to sway may take place.
8.e.2 Analysis with Slab Composite Action:

To study the effect of composite action on the overall
behaviour of these structures, the one with seven intermediate
frames was analysed by considering this effect. The order of

hinges and cracks in the shear walls and slabs are given in

figure (8.12.b). The horizontal and vertical load-deflection



composite action

Type of Type of Failure
Analysis Loading Load Factor | Type of Failure
Bare frame Combined 1.420 sway
Bare frame Vertical 1.802 beam mechanism
with 3 frames Combined 1.80265 beam
ho composite action |
2 , :
= with S frames Combined 1.80235 beam
S o composite action
o
b=
9p]
& with 7 frames Combined 1.80096 beam
«  po composite action
S
5]
with 7 frames Combined 2.935 Cracks in slabs

and shear walls

TABLE 8.3 : Analysis of Four Storey Structures
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curves for the top storey of the middle frame are shown by the
curves.-C and D in figure (8.13) and the ultimate failure load
obtained from this analysis is also given in table (S.Sj. Because
the composite plastic moment is very high, no hinge developed in
the sagging portions of the beams where the slab and the beam have
composite action. In the hogging parts where concrete is in
torsion the composite action is neglected and hinges did develop
at these parts in the beam. These were followed by the development
of cracks in the slabs and walls. The resulting flexible grillage,
rejecting the loads,caused more lateral loads to be transmitted to
the frames. Nonetheless, this did not inerease the lateral sway
of the structure in any significant manner. At a load factor of
2.68 hinges started developing in the columns and at a load factor
of 2.83 frame 4 failed due to instability. |

A comparison of figures (8.12.a) and (8.12.b); graphs A, C
and B, D of figure 8.13 indicates that the effect of composite
action changes the whole pattern of progressive failure of the
complete structure and alters the failure load considerably.
Taking composite action into consideration prevented the formation
of beam mechanisms in the frames and aggraQated instability and
plasticity in the columns. The middle frame collapses without
the development of a mechanism. It is evident that failure takes
place in a manner totally unpredictable by plane frame
idealisation. It is clear that methods suggested by the plastic
theory or the elasto-plastic theory of frames under estimates the

carrying capacity of complete structures by an unacceptable margin.



MEMBERS SECTIONS
2,7,12,17,22 305x165x40
BEAMS 4 254x146x31
UB 9 254x146x37
14,27 203x133x30
19,24,29 203x133x25
1,8,13 254x254x73
COLUMNS | 3 305x305x97
uc 5,6 203%203x60
10,11,18 203x203x52
15,20,21,23,25,26,28,30| 152x152x37
16 203x203x146

TABLE 8.4 : SECTIONS USED FOR THE FRAMES

OF SIX STOREY STRUCTURES
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8.f Analysis of Six Storey Structures
8.£.1 A Six Storey Symmetrical Structure:

As the first example of this series, the six storef structure
shown in figure (8.15) was analysed. This had two 304.8mm thick
shear walls, six 152.4mm thick slabs and three similar frames
with two unequal bays. Bay one is 6.098m while bay 2 is 3.049m.
The dimensions and the applied loads are shown in the figure.

( The reinforcement for the shear walls and the floor slabs were
the same as for the four.storey structures and shown in figure
(8.14). The crpss-sectional properties of the frames are given
in table (8.4). The material properties of the materials used in
the structure are also the same as in four storey structures,
except that the yield stress fy of the steel used in the frames
is 0.252 kN/mm? in this case.

The analysis was carried out neglecting the effect of
composite action. As the load factor was increased, six
successive plastic hinges developed in the beams as shown in
figure (8.15). As soon as the sixth hinge developed at a load
factor A = 1.699, the first plastic hinge reversed the direction
of its rotation and became inactive. This hinge was situated at
the midspan of member 22 on the fifth floor and originally took
place at A; = 1.492, Altogether 12 plastic hinges occurred in
each frame until failure took place at A = 1,801. This was due
to a beam mechanism on the longer span of the top floor of frame 1.
It should be stressed that the structure was subject to verticalloads
as well as wind loads as shown in figure (8.15), With these loads
a bare frame analysis suggests collapse due to sway instability.

Under vertical loading only the bare frame failed at A = 1,802,
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This structure was also analysed by Majid and EnenCSI). The

failure load factor obtained by them was 1.767 slightly lower
than that obtained here. The vertical and the horizontal load-
deflection curves are presented in figure (8.15). In this
structure too, the effect of vertical loading dominates that of
horizontal loads. All the plastic hinges form in the beams and
the grillage remained elastic. The vertical load-deflection
curve of the bare frame is presented in figure (8.16). A
comparison of this figure and figure (8.15) shows that the load
deflection curves are matching almost exactly while the hinge
patterns are slightly different. The ultimate failure was due to
beam mechanisms in both cases.

8.f.2 Six Storey Structure with One Shear Wall:

The other six storey structure analysed, was unsymmetrical
and is shown in figure (8.17). The loads and the other
specifications for its frames, shear wall and slabs are similar
to those of the symmetrical six storey structure of the last
section. The structure had two similar frames but a single shear
wall. The spacing was 9-144m as shown in the figure. The
structure was analysed twice. In the first analysis the effect
of composite action was ignored. In the seéond this effect was
included. The resulting patterns of hinges and cracks and the
load-deflection diagrams are shown in figures (8.17) and (8.18).

In the first analysis altogether 34 hinges developed in the
structure, until failure took place at a load factor of 1.778.
Most of these hinges developed in the beams and only a few in the
columns. No cracks developed in the grillage. Hinge number 9
developed in member 23, which is the longer beam at the fourth

floor of the outer frame. Once this hinge occurred,hinges 1,2,3 -
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all became inactive. These had formed earlier at the second end
of members 3, 10 and 17 near to the interior columns. Notice in
figure (8.17.a) these positions are marked '"9i" to indiéate the
stage at which the hinges became inactive. None of these hinges
were ;eactivated during the loading process. Hinge 8 in the
middle of the first floor beam in the large span of frame 2 also
became inactive when hinge 11 developed. After this stage,
several hinges s;arted developing within very small increments in
the load factor. This was especially the case nearer failure when
5 hinges developed in the structure almost at the same load factor.
Notice that initially hinges formed in the outer frame but nearer
failure many of the hinges also occurred in the inner frame.

In the analysis considering the composite action, the first
four hinges developed in the structure at the same locations and
the same load factors as in the analysis ignoring -this effect.
<Later, however, the similarity disappeared, Hinges in the present
analysis,developed at the ends of the floor beams. At load factor
Acg = 1.784 a diagonal crack was recorded in the second storey
shear wall panel as shown in figure (8.17.b). This was followed
by the development of hinges 10-16 in the frames. As the 16th
hinge developed at the first end of interior column 32 of the
outer frame, the previously developed hingés 1,2,3,8,11 and 13
became inactive. This was followed by the development of the
17th hinge in member 11, which is also an interior column, but at
a lower load factor of A = 1.894. With the formation of hinge 17,
hinges 7 and 12 became inactive. Hinge 12 however, was soon
reactivated at stage 18 at A = 1.897. The final hinge 19 then

developed at the second end of column 11 of this outer frame, at
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Ap = 1.974. Failure was recorded to be due to loss of stiffness
of the outer frame. The failure load factor is 9.92% higher than
the failure load factor of 1.778 predicted by ignoring éhe effect
of composite action; Again it can be seen in figure 8.18 that
the lateral displacements of both structures are virtually the
same. This is due to the fact that even in this case, when the
grillage is much weaker, most of the lateral loads are indeed
transmitted to it.

The results obtained for this structure also support the
conclusion that the failure of a complete structure is due to a
combined effect of crack development, hinge formation and frame
instability. Therefore, an analysis considering the frames or
the grillage separately to represent the overall behaviour of a
complete structure may yield erroneous results, while a complete
analysis ignoring some of the above effects can perhaps be more
useful. It is again clear that the plane frame analysis under-

estimate the failure load considerably,.
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CHAPTER 9

General ‘Conclusions and Suggestions for Future Work

As a result of the investigations in chapters 2 and 3, the theorems of
structural variation were found to be useful (i) - in carrying out

a piecewise linear elastic-plastic analysis, (ii) A strain hardening
analysis for a steel frame and (iii) - A nonlinear M-C analysis of a
frame, made out of a nonlinear material,

A ;ingle initial analysis of the frame under the working loads
and the unit load cases, is sufficient to trace the whole load-deflection
curve of a frame upto and including failure, ;t was also found that,
by the use of these theorems, a linear elastic analysis of a ground frame
can be used to predict the nonlinear behaviour of a variety of derivative
frames obtained by removing or altering some of its members. However,
so far, only the stiffness parameters (A,I,E), that are linearly related
to the stiffness matrix of a étruqtural member can be changed. The
second order effect of axial loads, on the stability functions, are not
considered iﬁ these theorems. It appears that, if this problem is also
solved, then the rigorous nonlinear analysis of frames will.be simplified.
The time consuming operation of constructing the stiffness equations
repeatedly will be avoided altogether.

The theorems may also be extended to be applied to space frames,
plates and shells in conjunction with the finite element method. The
concept of compensation loads driven out of these theorems, was used
in developing a rigorous nonlinear analysis for reinforced concrete frames
which can also be extended to analyse reinforced concrete space frames.
This analysis considers the effeqt of axial loads and the nonlinear
property of moment-curvature relationships. The concept of plastic hiqges,

in the elastic-plastic analysis of steelframes is substituted here by the
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concept of critical points at which the stiffness of an element changes from
one linear form to another,The Ioads-applied to a frame during such an
analysis may increase either proportionally or otherwise, The load deflection
curve can thus be traced up to a given load factor or upto and including

the stage of failure. However some local drifting was encountered during

the analyses of plane frames. It was found that drifting happens when

a number of critical points are about to be reached at the same load
factor and only one of these can be considered at a time, Drifting in

the analysis lasts until all of these points are dealt with, It was

also found that this drifting may be and in fact ‘can be overcome selecting
a suitable subdivision of the members. However, further research is needed to
improve this procedure, The moment-curvature diagrams are assumed to be
the functions oflthe bending moment only. This may only be reasonable

for small frames. In tall frames, heavy_axial loads, present in the
columns can change the moment-curvature properties considerably. Although
this effect can approximately be taken into account, the present method of
analysis should also be extended to conéider this effect in a rational
manner.,

A method for the failure load analysis of complete structures was
proﬁosed in chapter. 4. These structures consisted of a number of parallel
frames and shear walls connected by floor slabs. The frames may be made
out of steel or reinforced concrete while the grillage of slabs and shear
walls, may be manufactured from reinforced concrete or any homogenous
material., The latter being manufactured for laboratory purposes only.

The method traces the load-deflection behaviour of these complete
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structures up to and including the stage of failure. Again the loading
procedure may or may not be proportional. As the loads are increased,

a number of qualitativé 'critical changes' such as plastic hinges develop
ins steel frames, criticai M-C changes alsa take ﬁiace in reinforced
concrete frames., Furthermore, lateral instability or cracks can develop

in the shear walls or the slabs. Any one of these changes alters the
relative stiffness of the various components. of the complete

structure, With it, the loads transmitted to the grillage or to any

one of the frames alter drastically. Therefore, contrary to assﬁmptions
made by the advocates of the plastic theory, a failure load analysis of a frame
carried out under proportional loads cannot be altogether realistic.

'I'his is the case even if the complete structure itself is

loaded proportionally., In the same chapter, an approximate method was
given to estimate the critical value of the bending moment which causes
lateral instability. -Failure criterions of panels made out of
brittle,homogenous material under the combined action of bending torsion
and shear, were also discussed, Together with these, the proposed method was
applied to the two storey structures tested by anen(sz). The analytical
results were found to be reasonably close to those obtained by Onen's
experiements. This is in spite of the fact that the method used to detect
lateral instability was approximate, Onen's analytical results did

not however agree with his experimental results. This ﬁas because

the grillage was assumed by Onen to be elastic throughout, This assumption
was removed in the work presented in this thesis and improved the analysis

considerably.
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In chapter 5, failure of deep reinforced concrete panels
under the combined action of bending, torsion and shear,.was studied. -
The interaction equations were derived to predict the stage of
failure. It was found that a realistic pfediction of the depth
of the neutfal axis is necessary for an accurate estimation of
the stage of failure for these deep panels. The significance of
this was illustrated theoretically, on a single storey structure
tested by the author. As a result of the investigation carried
out in this respect, an iterative approach was proposed to calculate
the depth of the neutral axis for such deep panels; This approach
was then verified by the data obtained from the tests described
in chapter 7.

The proposed interaction equations were then tested by the
experimental results obtained from single storey reinforced concrete
structures, without frames. Reasonably close agreement was obtained
between theoretical and experimental failure loads, It was then
found that, although these interaction equations can be successfull?
used in the analysis described in chapter 4, the nonlinear M-C
property of the panels should also be taken into account for a better
estimation of the deflections. The failure load analysis procedure
of chapter 4 was then altered to allow for this effect.

The single storey symmetrical test structures consisting of
reinforced concrete grillage and steel frames were analysed by the
help of the computer program given in chapter 6 section b. Two types

of analysis were carried out for most of these structures.
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In the first analysis, it was assumed that a panel of
the grillage holds its initial flexural and torsional riéidities
until its failure is detected by the interaction equations given in
chapter 5. These were then reduced drastically, so that the panel was
practically disregarded in the subsequent séeps of the analysis.

This resulted in the load deflection curve Being steeper than the
experimental curve, at the earlier stages of loading. At stages
closer to failure, the deflections were over estimated., The
theoretical failure loads, on the other hand were found to be very
close to the experimental failure loads.

In the second type of analysis, a trilinear moment-curvature
relationship was assumed for each panel. This relationship was
pheoretically constructed by means of the method described in chapter 3,
while its failure was, again, to be detected by the interaction
equations of chapter 5. 'The initial flexural and torsional
rigidities were kept until cracks started developing in the panel.

The flexural rigidity at the cracked stage was calculated by empirical
formulae given by Mannier(ls). To avoid further complications, the
torsional rigidity of a panel was reduced by the ratio of the

cracked flexural rigidity to the initial., This treatment improved
the load-deflection curves slightly,

The single storey structures with reinforced concrete frames were
then analysed. Trilinear M-C diagrams were assumed for the frames
as well as for the grillage. Close agreements were obtained between
the theoretical and the experimental load-deflection curves and failure
loads respectively. The slabs were assumed to be acting as large beams
against the out of plane bending in the transverse direction. The
effective beam width was however unpredictable. It was first assumed

that this is equal to the distance between two neighbouring frames.
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To study the validity of this assumption, the analysis of one of the
structures was repeated for various assumed beam widths.‘ It was
then found that the failure load is not very sensitive to the
variations.in the beam width. ‘The load deflection diagrams on the
other hand did not show any significant change. However, the
results obtained for the effective width, calculated according to
CP110 1972, was found to agree most with the experiment.

Further analyses were carried out for two.storey experimental
structures. with reinforced concrete frames. Both the predicted
failure loads and the load-deflection diagrams were found to be
in good agreement with the experiments for the symmetrical structures.
The discrepancies were however larger in the case of assymmetrical
structures, but still within acceptable limits. A maximum relative
difference of 13.1% was obtained between the theoretical and the
experimental failure loads in this case,

These results obtained from the analyses of the experimental structures
indié;te that the computer program can trace, with sufficient accuracy,
the load-deflection behzviour of structures upto and including
failure,

Having demonstrated this, a number of practical type of structures
were analysed. The following conclusions were then drawn concerning
the behaviour of actual structures.- '

1. -Because the loads transmitted to the individual frames are not
proportional, some of the plastic hinges develop during the loading
process may stop rotating and become inacfive. These may be reactivated

at later stages of loading.
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2., -Most of the lateral loads are carried by the grillage
not the frames.,
3, -The effect of composite action changes the whole pattern-of
progressive failure and alters the failure load considerably.
4, -Failure of a complete structure takes place in a manner totally
unpredictable by plane frame idealisation.
5. -Methods suggested by the plastic theory or elastic-plastic theory
of frames underestimate the carrying capaﬁity of a complete structure by
an unacceptable margin. In the work presented in this the;is the
difference was as high as 16.5%,
6. -Failure of a complete structure is not due to individual effects of
crack development, hinge formation and frame instability but.a
combination of these effects.

It was already mentioned that the method of analysis given in
chapter 4, is restricted to a class of structures consisting only
of parallel shear walls and frames, The shear walls and the slabs were
assumed to be monolithic and only the sway in the direction of the
wind was taken into account. It is desirable to extend the present
method to deal with the longitudinal beam-slab systems and
_coupled shear walls by considering the grillage as a space frame.

It was also assumed that the basés of the frames and the shear
walls are rigid, even at the stage of failure. It was shown (67)
however, that even a small elastic rotation at the base of a wall may
alter the lateral forces transmitted to the frames and to the
grillage considerably, It is also possible that the soil underneath
a column or a shear wall may fail before the ultimate failure of the
structure takes place. Although these effects can be idealised by

including a fictitious member, which simulates the behaviour of the
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soil, its validity should extensively be studied by a general
finite element program dealing with the interaction of the soil and
the structure.

Failure of slabs was considered due to the combined action
of in-plane bending, torsion and shear only. The effect of out of
plane bending due to vertical loads was ignored. In reality, since
the vertical loads are applied through the slabs, this effect should
also be taken into account and the interaction equations given in
chapter 5 have to be extended to deal with the interaction of torsion,
biaxial bending and shear. These out of plane forces may be obtained
from the analysis of an idealised frame in the plane perpendicular.to
the wind direaction, under vertical loads, each joint will then have
three degrees of freedom in the directions of x, y and Bz. ;fhis
can be see; in Frame ABCDEFGHIJ in the x,y plane shown in figure 8.9,
In the present approach, the bending moment-curvature diagram of a
panel was only described for the in-plane bending., Its torque-rotation
diagram was assumed to have the same properties as the in-plane
M-C diagram. This may be reasonable for the case considered in this
thesis. When, on the Ether hand, the effect of out of plane bending
is taken into account, the corresponding M-C diagram should be
described. The interaction-of this and the in plane M-C diagram and
the torque rotation diagram should also be considered in the suggested

analysis.



APPENDIX 1
PRESENTATION OF DATA FOR THE COMPUTER PROGRAM
GIVEN IN CHAPTER 6, SECTION A

The information concerning the geometry of the frame, type of analysis,

material properties and loading are read in as follows:

i = The first input card contains three integers referring to the
number of different cross-sections in the frame, output requirement
and requirement for strain hardening analysis respectively. The
values '0O' and '1' specify the printing of the most necessary
results and all of the useful information respectively. On the
other hand the third figure is only meaningful when the nonlinear
M-C analysis is carried out, 'Zero' specifies ordinary nonlinear
M-C analysis while 'One' describes the slightly modified procedure
of M-C analysis to carry out an elastic-plastic analysis including

the effect of strain hardening.

ii -The second deck of cards contains the information about the cross-
sectional properties. Each of these cards has the following
information for each cross section, There are four real numbers
on the card the first two are the area and the second moment of
area in all the cases. The last two are dummy figures for the
cases of linear,nonlinear elastic analysis and nonlinear M-C analysis,
The third one is the plastic moment 'Mp' of the section while
the last one is still dummy., In the case of design the third
figure is the permissible stress far bending and the last one is

the permissible stress for axial loads.

iii -The third card contains eight figures which are:
number of cases, number of members, number of joints, number of

real hinges, if any, modulus of elasticity, type of analysis, number



of load cases and a épecified tolerance which has meaning for the

case

of nonlinear elastic analysis only.

The following values are given for the sixth figure to indicate the

type
0

-1
-2
-3

-4

iv -

vii -

of analysis:

referg to the elastic analysis

refers to the nonlinear elastic analysis

refers to the elastic-plastic analysis

refers to the elastic-plastic analysis of a derivative frame
refers to the nonlinear M-C analysis

refers to the iterative design

The member data is given by the fourth group of cards. Each
card contains the length, the first joint number, the second joint

number, the inclination and the cross-section number of each member.

If there are any real hinges in the frame, these hinges are read in.
Each member is considered in turn and the number of hinges at each
end of the member are read from the card. If there is no hinge at
an end, zero value is given as the hinge number. TlHe numbering of
the hinges starts from 3M[1 in increasing manner, where m is the

total number of joints.

If the type of analysis is -3 the total number of members to be
altered or removed is read from a card. Then, the number of members
to be altered are read in. A maximum of 12 figures are read from

each card,

Having finished the general and member data, the externally applied
loads are read in the following manner:

The external loads applied on each joint in turn are given on a

card. These are the loads in X and Y directions and the bending
moment, For the cases of linear elastic analysis and design, there
maybe more than one load case externally applied to the frame. These

loads are also read in the same manner as the first load case.

& U



viii - When the type of analysis is '-3!, the new area and the second
moment of area of the changing members are read in, Each card

contains these values of each changing member,

ix - Finally, when the nonlinear M-C analysis is required (case
no., -4) the maximum load factor at which the analysis is to
be terminated is read in.
If the elastic-plastic analysis is required, the maximum number of

hinges to form a mechanism in the frame is read in.



APPENDIX 2
PRESENTATION OF DATA FOR THE COMPUTER PROGRAM

GIVEN IN CHAPTER 6, SECTION B

The data to be read into the computer concerns the geometry of the

complete structure, type of analysis required, the material properties

and the applied loads. The information regarding the grillage is read in

first, followed by frame data,

1, = In the first card the general information about the grillage is fed

2.

in, These are:

The number of members

The number of joints

The number of floors

The number of frames

The number of walls

The number of different type of sections

The symmetry identifier (zero indicates that the structure is
symmetrical, otherwise the opposite is true).

The modulus of elasticity

The shear modulus of elasticity

The material identifier (zero indicates that the panels are made out

of a homogenous material, otherwise they are reinforced concrete).

The second deck of cards specify the properties of each type of cross
section, If the cross section is homogenous, only its thickness and
depth are read in on a card, If on the other hand it is reinforced
concrete, two cards are spared for its properties, The first of these
cards contains the following:- h

The thickness

The depth

The location of neutral axis at failure



The

AS

area of each longitudinal reinforcement layer

modulus of elasticity of the longitudinal reinforcement
yield strain of the longitudinal reinforcement

ultimate strain of the longitudinal reinforcement

area of stirrups o

spacing of longitudinal reinforcement

spacing of stirrups

An integer specifying the type of stirrups (1 indicates the reinforcement

placed

in the middle of the cross section:; 2 indicates stirrups without

horizontal stirrup legs; 3 indicates closed stirrup loops).

The second card contains the value of the rupture moment and the ratio

of the

cracked flexural rigidity to the initial,

3. - The next set of cards contains the following for each member:

The length of member

The first joint number . .
The second joint number

The inclination

The section reference number

4, - The following information is then given to specify the type of

junction at each joint, the integer 1 indicating a shear wall-slab

junction and integer O indicating a slab-frame junction,

5- - The horizontal loads applied at the frame-slab junctions are then

read in.

6. - The next set of cards require the loads applied to the grillage

joints. Each card contains the loads on each joint, in z, Bx, and

%

directions (The horizontal loads acting on the frame-slab

- joints are set to zero).



7. - Having completed the grillage déta, the general information about
the frames is read in by 4 cards.,
The first card contains the following:=-
The symmetry of the structure (as for grillage)
The output channel (this will be O or 1 according to the amount
of information required).
The next integer concerns about the composite action of the slabs
and beams. Zero value ignores this effect and 1 takes it into account,
The second card contains the type of section used and the number of different
sections used in all the frames. Where type 1 indicates universal sections
and type 2 indicates rectangular sections.,
The third card is read in when the composite action is required.
This contains:-
The thickness of slab
The effective width of slab
The yield stress of the slab reinforcement -
The yield stress of the steel beam
The amount of reinforcement per unit run
The cube strength of concrete
The concrete cover of the slab reinforcement,
In the fourth card the following information about the frames are given:
The maximum number of members in any of the frames
The maximum number of joints in any of the frames
The number of frames
The number of floors
The modulus of elasticity for the frames
The stipulated tolerance (0.001)
The load factor, after which more than one plastic hinge can be

inserted in a frame at a time.
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The‘specified increment to initiate thé next cycle of iteration

when a ¢ritical point is detected in the structure (0.1). The type of
frames, zero, indicates steel frames and 1 indicates reinforced concrete
frames.

The number of critical points on the M-C diagrams for the frame members.

8. - Each of the next deck of cards contains the information about
each type of section. These are:
a - For a rectangular section :-
The area
The second moment of area
The plastic section modulus
The breadth of the section

The depth of the section

b - For a universal section, a total of 7 properties are
needed. Apart from the first three mentioned above the
rest of the properties are taken from the safe load

tables (96) to calculate the reduced plastic section modulus.,

¢ - Further four properties about the geometry of the section
is needed for the case when the composite action is considered.
These are:
The height of the section
The width of the flanges
The thickness of the flanges
The thickness of the web
9. - If the frames are made out of reinforced concrete, the values of the
discontinuity moments and the ratios of the slopes of the transition
regions to the slope of the initial transition region of the M-C diagram for

each type of section are given by two different cards.
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Each frame is then considered in turn and the following data is

read in:-

10. - The number of joints, the number of members and the

number of real hinges are given on a card.

11, - If there are any real hinges in the frame, the hinge numbers at the
first end and at the second end of each member are given on a

card, The absence of hinge at any end is specified by the integer O.

12, - The member data is then read in. The following specifications
of each member are given on a card:-

The length of the member

The first end joint number

The second end joint number

The inclination of the member in degrees

13. - The section reference numbers of the members are read in as

twelve values on a card.

14, - The loads in z, y and Sx,directions, acting on each joint of the
frame are given on a card. Because the horizontal load acting on the

z direction is already given, this is specified by a dummy figure 0,0.

15, - For the case when the composite action is considered, The members

which are attached to the slabs are read in as twelve values on a card.
16. - The next set of cards give the yield stresses of the members,

17, - The final deck of cards give the joint numbers of the frame, which
are attached to the grillage,

This concludes the data requirements for the program,



APPENDIX 3

THECRETICAL LOAD-DEFLECTION
DIAGRAMS FOR ONEN'S TWO STOREY

STRUCTURES
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APPENDIX 4

EXPERIMENTAL AND THEORETICAL
LOAD-DEFLECTION DIAGRAMS FOR
SINGLE STOREY TEST STRUCTURES WITH

STEEL FRAMES
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