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Abstract: Surface plasmon resonance-based fiber-optic sensors are of increasing interest in modern
sensory research, especially for chemical and biomedical applications. Special attention deserves to
be given to sensors based on tilted fiber Bragg gratings, due to their unique spectral properties and
potentially high sensitivity and resolution. However, the principal task is to determine the plasmon
resonance wavelength based on the spectral characteristics of the sensor and, most importantly,
to measure changes in environmental parameters with high resolution, while the existing indirect
methods are only useable in a narrow spectral range. In this paper, we present a new approach to
solving this problem, based on the original method of determining the plasmon resonance spectral
position in the automatic mode by precisely calculating the constriction location on the transmission
spectrum of the sensor. We also present an experimental comparison of various data processing
methods in both a narrow and a wide range of the refractive indexes. Application of our method
resulted in achieving a resolution of up to 3 × 10−6 in terms of the refractive index.

Keywords: tilted fiber Bragg gratings; optical fiber sensors; plasmon sensors; data processing

1. Introduction

Surface plasmon resonance (SPR) is a subject of modern scientific research [1–5]. Various sensors
and measuring complexes based on this phenomenon are used in physical, chemical, and biological
research and analysis, including immunoassay systems [1–3]. The general principle of such systems’
operation is based on the physical nature of the phenomenon itself. The key point here is the high
degree of dependence of the surface plasmons’ dispersion ratio on the refractive index of the external
medium. Any changes in this index near the metal surface, whether changes in the composition of the
environment or surface modification of the sensor itself due to its interaction with the environment,
will immediately be reflected in the resonance wavelength.

Surface plasmon excitation can be performed by means of optical radiation incident at an angle θ

to the metal surface. If the equality condition for the projection of the incident radiation’s wave vector
and the wave vector of the surface plasmon propagating over the metal surface is satisfied at a given
wavelength, the effect of the SPR is observed, and the energy of the exciting light transfers effectively
into the plasmon’s energy.

This principle underlies the operation of the classical Kretschmann [6] and Otto [7] schemes. These
schemes utilize the correlation between the reflected laser beam intensity and the angle of incidence to
determine plasmon resonance. Plasmon resonance is considered to occur at the minimum of reflection
intensity. This effect is observed under the condition of phase synchronism, i.e., the coincidence of
the plasmon wave vector and the projection of the optical radiation’s wave vector to the surface at a
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given frequency. By changing the incident angle, one can track changes in the nearest environment
of the plasmon sensor with high accuracy. Based on these schemes, immunoassay complexes for the
high-precision determination of low concentrations of protein molecules in organic solutions have
already been produced [1,4,5,8,9]. The sensor’s surface modified by antibodies is extremely sensitive
to the corresponding antigens. During the antigen–antibody interaction, the physical properties of the
nearest environment of the plasmon sensor change, resulting in a change in its indications.

Plasmon resonance in optical fibers is of particular interest. Using such advantages of fiber-optic
sensors as mobility, compactness, and convenience of application in microfluidic systems, it is possible
to create promising highly sensitive fiber-based plasmon sensors, including those for biomedical
applications [3,10–23]. To satisfy the plasmon resonance excitation conditions in optical fibers, it is
necessary to guide the optical radiation energy to the outer surface of the fiber, which is the working
surface of the sensor. For this, a number of methods can be used, such as thermal taping, polishing or
chemical etching of the fiber [10]. However, methods based on the use of tilted fiber Bragg gratings
(TFBG) are particularly interesting [24–45]. A schematic illustration of such a structure is shown in
Figure 1.
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Figure 1. Scheme of an SPR fiber-based TFBG-assisted sensor.

Such a grating effectively excites a discrete set of cladding modes [36]. The propagation velocities
of these modes have different projections onto the fiber surface. A typical transmission spectrum of
such a structure is shown in Figure 2.
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Figure 2. TFBG transmission spectrum.

If the cylindrical surface of the fiber is covered with a layer of gold about 40 nm thick, the required
conditions for the SPR are created. As in the case of the classical Krechmann scheme, the resonance
condition is satisfied for certain cladding modes. In this case, energy is efficiently transferred from
the cladding modes to the surface plasmon. This process is reflected in the transmission spectrum of
the tilted grating in the form of a characteristic “constriction”, which is a narrowing of the pattern of
spectral peaks and dips (Figure 3). If the refractive index of the environment changes, the magnitude of
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the plasmon wave vector also changes; therefore, the spectral position of the “constriction” changes [10].
Obviously, parameters such as resolution and limit of detection of the sensor depend both on the
stability of the sensor itself and on the accuracy of determining the plasmon resonance wavelength
from the experimentally measured transmission spectrum. If the first task can be solved by mechanical
stabilization of the sensor, then to solve the second one, it is necessary to use the original mathematical
apparatus, which will be able to clearly identify and interpret small changes in the transmission
spectrum of the sensor.
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Despite the large number of publications devoted to this kind of sensor, a universal way of tracking
changes in the plasmon resonance wavelength with high accuracy has not yet been found. There are
methods for determining changes in the concentration of the measured substance by measuring the
intensity of individual spectral peaks near the resonance wavelength. Thus, in [22,28–33,46], analyzing
the intensity or spectral position of one or two peaks located near the spectral “constriction” was
proposed. Indeed, in the case of observing small changes in the refractive index of the environment,
such methods can give a relatively high resolution and detection limit. On the other hand, the use of
such methods for large changes in the refractive index can lead to significant errors because it becomes
necessary to switch to other spectral peaks as the plasmon resonance wavelength shifts. As a result, the
sensor’s readings become unstable. This method is not universal and requires individual calibration
for each sensor. Moreover, methods for determining the intensity of individual spectral peaks can be
sensitive to the spectral noise of both the signal source and the analyzer and, as a result, show limited
accuracy and reproducibility of readings. As it is known, the actual resolution of such methods in terms
of the refractive index does not exceed 10-5, including a small dynamic range of the sensor [31–33].

In this paper, we present the description of several new, universal methods for determining the
wavelength of the plasmon resonance, united by a common mathematical idea based on analyzing
the large array of spectral points. We also compare the accuracy of determining the refractive index
with our methods and the “traditional” method based on measuring the height of an individual
spectral peak.

2. Experiments

In our work, we used sensors based on tilted Bragg gratings with a slope of about 11◦. Bragg
gratings were inscribed in a standard Corning SMF-28e telecommunication optical fiber, 125 µm in
diameter. The length of the grating was about 10 mm. The fiber section with the inscribed Bragg grating
was covered with a gold layer, 40 nm thick, with preliminary deposition of a chromium underlayer
2–3 nm thick. The coating was carried out by the method of thermal evaporation of metal under
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vacuum conditions, followed by deposition on the fiber’s cylindrical surface. The uniformity of the
coating was achieved by the rotation of the fiber around its axis during the deposition process with a
period of full rotation many times lower than the evaporation time of the metal [24–26].

The experimental setup is shown in Figure 4.
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3—tank with the sensor immersed in liquid, 4—optical fiber isolator.

The sensors’ transmission spectra were obtained by means of a MicronOptics SM-125 Bragg
interrogator with a scan range of 1510–1590 nm. To obtain the transmission spectra, two channels of
the interrogator were used, one of which featured an isolator blocking the reflected signal. As only one
polarization of light effectively interacts with the gold surface [6,10,26], a polarization controller was
installed before the sensor element to maintain the polarization state. The sensor itself was immersed
in a tank with the test solution.

3. Method Description

3.1. The Idea of the Processing

The idea behind the new processing methods is to determine the superposition of the set of peaks
in the spectrum of the sensor near the plasmon resonance wavelength by approximating their intensities
with an analytical curve. From the parameters of this curve, the plasmon resonance wavelength is
calculated. The spectral position and amplitude of the peaks close to the resonance wavelength depend
strictly on the refractive index of the external medium. Because a number of spectral peaks are involved
in determining this wavelength, the measurement error is significantly reduced.

In their original form, the experimental transmission spectra of the sensor are inapplicable for
the peaks’ characteristics determination, as each individual peak is highly subjected to noise and
specific spectral bifurcation due to the interaction features of cladding and core fiber modes [45]
(Figure 5). Such features may induce significant distortions during the determination of the peaks’
spectral position. To mitigate the effect of these perturbations, each of the peaks can be approximated
by an analytical curve with a characteristic spectral maximum (such as Gaussian or parabola), or the
signal can be filtered. Experiments with various methods showed the preferred usage of the filtering
method, which we applied in our work. The signal features were mitigated during the preprocessing
described in detail below.

3.2. Signal Preprocessing

At the first stage of spectrum processing, Fourier filtering of the spectra is done. During this
process, the perturbations of the peak shape are smoothed out, and the spectrum is aligned with the
horizontal line.
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Figure 5. Shape of the sensor’s spectral peaks and features preventing the accurate determination of
their characteristics.

Similar to the filtering of time signals, we will call Fourier space a generalized frequency space [47].
Note that these generalized frequencies are not related to the frequency of the optical radiation and
refer to the characteristic period of the intensity change in the spectrum.

S f =
1

2π

ξ∫
ζ


+∞∫
0
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 exp(iλ$)d$ (1)

Here, S is the spectrum of the sensor signal, λ is the wavelength in nanometers,$ is the generalized
frequency, ζ is the lower generalized filtering frequency, and ξ is the upper generalized frequency. The
Fourier transform of the spectrum is presented in Figure 6. While processing, we keep only the part
that lies between the vertical dashed lines.

Sensors 2019, 19, x FOR PEER REVIEW 5 of 18 

 

 
Figure 5. Shape of the sensor’s spectral peaks and features preventing the accurate determination of 
their characteristics. 

3.2. Signal Preprocessing 

At the first stage of spectrum processing, Fourier filtering of the spectra is done. During this 
process, the perturbations of the peak shape are smoothed out, and the spectrum is aligned with the 
horizontal line. 

Similar to the filtering of time signals, we will call Fourier space a generalized frequency space 
[47]. Note that these generalized frequencies are not related to the frequency of the optical radiation 
and refer to the characteristic period of the intensity change in the spectrum. 

 
+∞

−= 



ξ

ζ
ϖλϖλλϖ

π
didiSS

f
)exp(

0
)exp(

2

1
 (1) 

Here, S is the spectrum of the sensor signal, λ is the wavelength in nanometers, ϖ  is the 
generalized frequency, ζ is the lower generalized filtering frequency, and ξ is the upper generalized 
frequency. The Fourier transform of the spectrum is presented in Figure 6. While processing, we 
keep only the part that lies between the vertical dashed lines. 

 
Figure 6. The Fourier transform of the sensor’s spectrum, presented in the generalized frequency 
space. 

In the software implementation, the fast Fourier transform is used, and filtering is performed by 
restricting the series of samples in the generalized frequency space, which corresponds to the 
rectangular mask short-time Fourier transform, which means nullifying the components of the 
corresponding generalized frequencies. 

Figure 6. The Fourier transform of the sensor’s spectrum, presented in the generalized frequency space.

In the software implementation, the fast Fourier transform is used, and filtering is performed by
restricting the series of samples in the generalized frequency space, which corresponds to the rectangular
mask short-time Fourier transform, which means nullifying the components of the corresponding
generalized frequencies.
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Fourier filtering with low generalized frequencies suppression aligns the spectrum with the
horizontal line. The lower limit of the generalized frequency is determined from the linearity condition
of the filtered out signal in the region of the plasmon resonance wavelength.

S =
1

2π

ζ∫
0


+∞∫
0

S exp(−iλ$)dλ

 exp(iλ$)d$ (2)

Figure 7 shows the source signal and its filtered component S at ζ = 0.5, which, as was shown by
our experiments, is the optimal value for the spectra of the sensors we used. In addition, the figure
shows the components corresponding to the generalized frequencies $ = 0.5 and $ = 1 for a visual
representation of the parameter used.
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The choice of the optimal lower filtering frequency may depend on the properties of the sensor
used, in particular, on the tilt angle of the Bragg grating. When choosing a lower filtering frequency,
the smoothness of the filtered component in the region of the plasmon resonance wavelength should
be taken into account. Choosing an overestimated value for this parameter can result in a change in
the relative intensity of the peaks located near the plasmon resonance, which has a negative effect on
the accuracy and linearity of the plasmon resonance wavelength shift determination.

The result of the lower frequency filtering is shown in Figure 8.
Note that after aligning the signal using low-pass filtering, perturbations of spectral peaks are still

present. To smooth them, Fourier filtering is performed while cutting off high generalized frequencies.

S f =
1

2π

+∞∫
ξ


+∞∫
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S exp(−iλ$)dλ

 exp(iλ$)d$ (3)

For the sensors used, it was established experimentally that the optimal value of the upper
generalized filtering frequency lies in the range of ξ = 6–9, depending on the spectral characteristics
of the sensor and the interrogator. With such a value of ξ, all the noises and perturbations of the
multimode interaction are smoothed, but all the characteristic features of the spectrum inherent in the
effect of plasmon resonance remain, as shown in Figures 9 and 10.
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3.3. Plasmon Resonance Wavelength Calculation

After the initial filtering is completed, the plasmon resonance wavelength is calculated in
several stages.
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At the first stage, the positions of the spectral peaks are determined. After filtering, the spectrum
becomes a smooth curve, and it is convenient to calculate the peak positions as points where the
derivative changes sign. The calculation of the derivative is carried out numerically. The most
important part of the spectrum is near the plasmon resonance wavelength. We denote this part of the
spectrum Λ. In the experiment, the magnitude of the shift usually does not exceed 10 nm in each
direction and so, for the sensor whose spectrum is shown in Figure 3, it is more than enough to take
the region Λ from 1530 to 1570 nm. It should be noted that for the further algorithm of determining
the plasmon resonance wavelength, the search region Λ is set so that the spectral waist gets into it, and
in the whole Λ region, the amplitude of the spectral peaks has a minimum in the area of the plasmon
resonance wavelength.

Figure 10 shows the spectrum of the sensor with the calculated coordinates of the peaks in the
required region. We denote all peaks in the spectrum as Ext: the upper group of peaks will be Exttop,
and the lower group of peaks will be Extbot. Their coordinates, respectively, are Extx and Exty.

The next step is to preliminarily determine the region of the plasmon resonance wavelength by
determining the x coordinates of the peak closest to the spectral constriction. Thus, the preliminary
method is set as the abscissa of the peak from the upper group having the smallest value of the ordinate.

λSPR
0 = Exttop

x

(
Exttop

y = min(Exttop
y )

)
(4)

The accuracy of this method does not exceed the average distance between the peaks in the
spectrum and is approximately equal to 1 nm. It is only used as an initial fitting for other methods. More
precise methods are based on approximating the coordinates of the peaks located in the previously
chosen region of the spectrum Λ near the plasmon resonance wavelength λSPR

0 . We have considered
several methods for such an approximation.

For further processing, it is convenient to allocate subgroups
_
Exttop and

_
Extbot from groups Exttop

and Extbot, by which we denote the groups of peaks on the “inner slopes” of the spectrum near the

constriction. Subgroups
_
Exttop and

_
Extbot are shown in Figure 11.
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Figure 11. The filtered spectrum of the sensor’s signal and the subgroups
_
Exttop (circles) and

_
Extbot (squares).

We will fit these subgroups by smooth curves.
It should be noted that, as a rule, in the experiment, it was important to measure the magnitude of

the plasmon resonance wavelength shift, rather than its absolute value. In our experiments, we used a
set of spectra that were processed using three similar methods.
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The first method was to fit the subgroup of peaks
_
Exttop by a function of the form

f(1) = h− β1 exp
(
−β2(x− β3)

2
)

(5)

Here, h is the height of the horizontal asymptote—a parameter defined for all spectra in the
series—and βi are the parameters determined by the least squares method for each spectrum. The
parameter h is also determined by the least squares method while fitting the first spectrum of the series
by Function (5). Thus, the curves of (5) are inverted Gaussians and are stated by three independent
parameters. The minimum of the analytic Function (5) will be called the plasmon resonance wavelength,
determined by the method f(1):

λSPR
1 = arg

(
f(1) = min( f(1))

)
= β3 (6)

This method is insensitive to the change in the steepness of the right and left slopes of the spectrum
envelope; however, it allows us to track the shift of the spectral constriction as a whole. This method
can work well with small changes in the refractive index of the external environment, when the shape of
the constriction does not change while the wavelength of the plasmon resonance shifts. The advantage
of this method is its relative simplicity due to the small number of variable parameters.

The second alternative method that can be used for calculations is to fit the upper part of the
extremes with the analytical curve:

f(2) =
β1

1 + exp(β2(x− β3))
+

β4

1 + exp(−β5(x− β6))
(7)

This is a six-parameter curve; here, βi are the parameters determined by the method of least
squares for each spectrum while approximated by Function (7). Curves of the form (7) take into account
the steepness of the graph’s envelope both to the right and to the left of the constriction and fit the

group
_
Exttop, which consists of about 20 points (Figure 12).

Sensors 2019, 19, x FOR PEER REVIEW 9 of 18 

 

It should be noted that, as a rule, in the experiment, it was important to measure the magnitude 
of the plasmon resonance wavelength shift, rather than its absolute value. In our experiments, we 
used a set of spectra that were processed using three similar methods. 

The first method was to fit the subgroup of peaks topxtE
  by a function of the form 

( ) ( )2)3(2exp11 βββ −−−= xhf  (5) 

Here, h  is the height of the horizontal asymptote—a parameter defined for all spectra in the 
series—and iβ  are the parameters determined by the least squares method for each spectrum. The 
parameter h  is also determined by the least squares method while fitting the first spectrum of the 
series by Function (5). Thus, the curves of (5) are inverted Gaussians and are stated by three 
independent parameters. The minimum of the analytic Function (5) will be called the plasmon 
resonance wavelength, determined by the method ( )1f : 

( ) ( )( ) 31 )min(arg 11 βλ === ffSPR  (6) 

This method is insensitive to the change in the steepness of the right and left slopes of the 
spectrum envelope; however, it allows us to track the shift of the spectral constriction as a whole. 
This method can work well with small changes in the refractive index of the external environment, 
when the shape of the constriction does not change while the wavelength of the plasmon resonance 
shifts. The advantage of this method is its relative simplicity due to the small number of variable 
parameters. 

The second alternative method that can be used for calculations is to fit the upper part of the 
extremes with the analytical curve: 

( ) ( ) ( ))(exp1)(exp1 65

4

32

1
2 ββ

β

ββ

β

−−+
+

−+
=

xx
f  (7) 

This is a six-parameter curve; here, iβ  are the parameters determined by the method of least 
squares for each spectrum while approximated by Function (7). Curves of the form (7) take into 
account the steepness of the graph’s envelope both to the right and to the left of the constriction and 
fit the group topxtE

 , which consists of about 20 points (Figure 12). 

 
Figure 12. A subgroup top

xtE
  (circles), smooth function ( )2f  fitting this subgroup, and its minimum 

(cross). 

The plasmon resonance wavelength for this method is calculated as 

( ) ( )( ))min(arg 222 ffSPR ==λ  (8) 

This method takes into account the shape (steepness) of the right and left slopes in the spectral 
dip, which, as expected, will make it possible to carry out measurements more correctly in a wide 

Figure 12. A subgroup
_
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The plasmon resonance wavelength for this method is calculated as

λSPR
2 = arg

(
f(2) = min( f(2))

)
(8)

This method takes into account the shape (steepness) of the right and left slopes in the spectral dip,
which, as expected, will make it possible to carry out measurements more correctly in a wide range of
refractive indexes, because it takes into account the change in the shape of the spectrum envelope.
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We have introduced one more method that uses both
_
Exttop and

_
Extbot groups as input data and,

at the same time, has 12 independent parameters:

f top
(3)

=
β11

1+exp(β21(x−β31))
+

β41
1+exp(−β51(x−β61))

f bot
(3)

=
−β21

1+exp(β22(x−β32))
+

−β42
1+exp(−β52(x−β62))

(9)

Here, f top
(3)

is the curve fitting the subgroup
_
Exttop, and f bot

(3)
is the curve fitting the subgroup

_
Extbot.

Parameters βi j are determined by the Nelder–Mead method [48], with minimization of the standard
deviation of both curves from the corresponding groups. The method uses 12 independent parameters
to fit about 40 points with two curves.

The point of intersection of the zero horizontal line and the segment connecting the extremes of
the functions f top

(3)
and f bot

(3)
will be called the plasmon resonance wavelength λSPR

3 , determined by the
method f(3):

λ
top
3 = arg

(
f top
(3)

= min( f top
(3)

)
)

λbot
3 = arg

(
f bot
(3)

= max( f bot
(3)

)
)

λSPR
3 = f top

(3)

(
λ

top
3

) λ
top
3 −λ

bot
3

f bot
(3)(λ

bot
3 )− f top

(3)

(
λ

top
3

) + λ
top
3

(10)

Figure 13 shows the filtered spectrum of the sensor, the groups of peaks, the functions fitting
them, and the plasmon resonance wavelengths determined by the methods described above. It can be
seen from the figure that the minima of the fitting curves differ significantly from each other; however,
this does not mean that it is impossible to use any of those functions for calculations and does not
demonstrate their inefficiency. As noted above, it is not the absolute value of the plasmon resonance
wavelength that is important but the precise measurement of its shift with a change in the refractive
index of the environment.
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Figure 13. The filtered spectrum of the sensor’s signal, subgroups Exttop (circles) and Extbot (squares)
and their fitting curves, corresponding to different methods.

The described methods have similar principles for determining the plasmon resonance wavelength.
The first method has the minimum number of fitting parameters and rather poorly fits the upper
extremum group. It does not allow for the changes to be tracked in the shape of the transmission
spectrum of the sensor near the plasmon resonance while making measurements in a large range of
refractive indexes. It describes the displacement of the constriction as a whole. However, this method
has relative simplicity and, as noted above, can be used to track small changes in the refractive index
of the surrounding environment.
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The second method has six fitting parameters for approximation of about 20 points. It describes
the shape of the constriction’s upper part rather well and takes into account the different steepness of
the spectrum envelope’s right and left slopes and the dependence of the envelope form on the plasmon
resonance spectral position. This allows the application of the second method with large changes in
the refractive index while not losing the resolution of the sensor.

Finally, the third method allows us to track changes in the shape and height of the horizontal
asymptotes of both the upper and lower groups of extremes, which also allows this method to work
with large changes in the plasmon resonance wavelength. The latter method uses 12 independent
fitting parameters to approximate about 40 points in each spectrum. The additional usage of the lower
envelope makes the calculations more complicated; on the other hand, it can provide an increase in the
accuracy of measurements over a small range due to the processing of the bigger number of significant
spectral reference points.

4. Results and Discussion

In the experiments, the response of the sensor to changes in the concentration of an aqueous
solution of isopropyl alcohol was measured. In the first case, the measurements were carried out in
a small concentration range with a small step between the experimental points. Mass concentration
varied from 0 to 0.078, which corresponds to a change in the refractive index of the solution in the
range of 6.8 × 10−3. The initial spectrum of the sensor immersed in water is presented in Figure 3. The
refractive indexes of the solutions used in our experiments were calculated from the data presented
in paper [49] corresponding to the solution concentration. We assumed that the solution’s refractive
index change at the 1.5 µm range for small concentrations is similar to the visible range data presented
in [49].

In the series of measurements, each spectrum was processed in accordance with methods 1–3
described above. For comparison, the results of the “classical” method are presented, in which the
change in the refractive index of the medium is measured by the change in the height of the selected
peak. For the sensor used in the first series of experiments, the peak of the original signal near 1541 nm
was chosen because it is located on the slope of the envelope of the graph not far from the constriction,
and its height changes quite strongly with the changes of the SPR-wavelength in the actual solution
concentration range.

Figure 14 shows the changes in the plasmon resonance wavelength found by three different
methods from the ∆RIU values. The experimental data was fitted by a linear function g(∆RIU) passing
through the zero point (0, 0), corresponding to pure water. It should be noted that the deviation of the
experimental points from the direct approximation is due to the sequential dilution inaccuracy of the
alcohol solution in water, which makes a significant contribution to the value of the standard deviation.
However, we can use the total standard deviation to conduct a relative comparison of various data
processing methods. The slope of the direct approximation determined the sensor sensitivity value
obtained for each data processing method.

Standard deviation was calculated as the standard deviation of experimental points from the
curve approximating them:

σλ =

√√√√
1
N

N∑
i=1

(
λ
(i)
SPR − g

(
∆RIU(i)

))2

(11)

For the first method, the standard deviation of points from a straight line was σ(1)
λ

= 0.065 nm at
the sensor sensitivity of 623 nm/RIU. Therefore, in terms of the refractive index units, the standard
deviation was 10−4 RIU. However, as noted previously, this method operates well only in a narrow
range of refractive indexes because it does not take into account changes in the shape of the envelope.
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Figure 14. Dependence of the SPR wavelength shift calculated from the data of the first experiment
according to methods f(1) (a), f(2) (b), f(3) (c) on the change in the refractive index.

The second method demonstrated the better value of the standard deviation of points from a
straight line, which was σ(2)

λ
= 0.042 nm at the calculated slope of the curve at 566 nm/RIU, which

means a deviation of about 7.4 × 10−5 RIU in terms of the refractive index.
The third processing method showed a comparatively worse result for the standard deviation,

which amounted to a value of σ(3)
λ

= 0.058 nm, and with a calculated sensitivity of 576 nm/RIU, it
showed a deviation value of 10-4 RIU in units of the refractive index. Comparatively worse results for
the standard deviation appear due to the fact that the lower extrema are less stable, thus introducing a
large error in the calculation of the lower six-parameter function when operating in a wide range of
refractive indexes.

The sensor sensitivity values calculated by the second and third methods are close to each other
and correspond to known literature data [5,10,32,34]. The increased sensitivity in the first method, as
noted in Section 3, is explained by the peculiarities of its mathematical apparatus, which does not take
into account the shape of the transmission spectrum envelope of TFBG and, accordingly, may give an
error when calculating the change in the plasmon resonance wavelength.

Figure 15 presents the results of the experimental data processing using the amplitude of the
spectral peak near 1541 nm.
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Figure 15. Dependence of the peak height in the region of 1541 nm on the change in the refractive index
and the straight approximating line for the “classical” method applied to the original signal.

The graph shows that there are significant deviations from the linear behavior of the experimental
dependence. In this case, the standard deviation of the points from the straight line was σdB =

0.54 or 2.7 × 10−4 in terms of the refractive index, which is noticeably worse than any of the other
presented methods.

Obviously, the method of monitoring the changes in the plasmon resonance wavelength using the
amplitude of the nearby peak and its variations can be applicable only in a small measurement range,
as with the first method proposed in this paper.

Table 1 shows the standard deviation of the refractive index for the same experimental data for
the results processed by different methods. Once again, it should be noted that these values of the
standard deviation are not characteristic of the sensory system and do not demonstrate its resolution
or detection limit but are the total error of the experiment and the computational method. The given
data are only applicable for comparing calculation methods with each other.

Table 1. Comparison of the relative accuracy of different methods for determining changes in the
refractive index.

Method f(1) f(2) f(3) “Classical”

Relative accuracy 1× 10−4 7.4× 10−5 1× 10−4 2.7× 10−4

The second experiment was carried out with a similar sensor in order to demonstrate the
independence of the processing methods from the parameters of the sensor itself. A wide range of
solution concentrations from pure water to a 75% isopropyl alcohol solution was used in the experiment.
The complexity of processing in this experiment is due to the fundamentally different shape of the
spectral curve around the plasmon resonance wavelength for two very different solution refractive
indexes (Figure 16).
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Figure 16. Transmission spectrum of the sensor for two different concentrations of isopropyl alcohol
solutions: 0% (a), 75% (b).

Unfortunately, there are no data concerning the changes in the refractive index of isopropyl alcohol
solutions depending on the concentration for the near infrared range. On the other hand, the known
data for the visible range are quite different [49,50].

We extrapolated the data presented in [49] so it ccould cause the additional errors in the refractive
index calculation. Four experimental points with different concentrations were measured in the
experiment. The results of experimental data processing using the second method are shown in
Figure 17.
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Nevertheless, despite the difficulty in processing the fundamentally different spectra (Figure 16),
the method demonstrated good results as expected.
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The “classical” method using the peak height, as expected, cannot be applied to the analysis
of large changes in the refractive index of the environment. More or less predictable changes in its
amplitude were observed, while the refractive index changed in the range of not more than 0.007–0.008.

To reduce the effect of errors associated with the refractive index calculation, preparation and
performance of the experiment, we used the data from [26], which were acquired by observing
the temperature drift of distilled water. In that experiment, distilled water was heated and then
subsequently cooled under natural conditions. The temperature was measured with an independent
fiber Bragg grating sensor. In this paper we used data from the second stage of the experiment, where
the temperature of the investigated liquid decreased by approximately 1.5 ◦C, which accordingly led
to growth in the liquid’s refractive index. This was observed by the plasmon sensor. Such a cooling
process can be approximated with mono-exponential dependence, and the standard deviation of
experimental points from the fitting curve can be used to define the sensor resolution. It is known
that for distilled water at room temperature, the dispersion of the refractive index is about (−1) ×
10−4 RIU/◦C [51]. As in other experiments mentioned in this paper, a MicronOptics SM-125 Bragg
interrogator was used as a spectral interrogation instrument. The experimental data is represented in
Figure 18, as well as the corresponding temperature data. The temperature data noise is associated with
the intrinsic resolution of the temperature sensor. It is particularly interesting that the best processing
results were demonstrated by method 3. This can be explained by the fact that method 3 uses two
independent curves, and the calculation results of which are averaged, thus minimizing the error in a
small range of changes. The standard deviation of the experimental points from the fitting exponential
curve was 5.9 × 10−4 nm, which, considering the sensor sensitivity of 576 nm/RIU, establishes the
standard deviation in terms of the refractive index equal to 1 × 10−6. The triple standard deviation,
in fact, corresponds to the detection limit of the sensor [52,53], so the resolution of the sensor can be
estimated as 3 × 10−6 RIU.
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temperature drift of distilled water.

Thus, it can be concluded that to interpret the indications of a plasmon sensor based on a TFBG, it
is necessary to use a comprehensive approach to analyzing the spectrum based on taking into account
several spectral peaks and the envelope of the total transmission spectrum of the sensor.

5. Conclusions

The algorithms for automatic, accurate interpretation of the TFBG-assisted SPR sensor data were
developed for the first time. The algorithm based on the comprehensive approach of the sensor’s
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transmission spectrum analysis permits the determination of the SPR wavelength directly from the
spectral constriction position.

The developed methods allow automatic signal processing in a wide dynamic range, taking
into account specific transformation in the form of the spectral picture. The efficiency of the
developed methods for carrying out measurements in both a narrow and wide dynamic range
has been experimentally shown. The method allowed measurements of the refractive index to be
conducted with a resolution of 3 × 10−6 RIU.
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