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ABSTRACT In this paper, a new two-stage optimization framework is proposed to determine the
optimal-mix integration of dispatchable Distributed Generation (DG), in power distribution networks, in
order to maximize various techno-economic and social benefits simultaneously. The proposed framework
incorporates some of the newly introduced regulatory policies to facilitate low carbon networks. A modified
Taguchi Method (TM), in combination with a node priority list, is proposed to solve the problem in a
minimum number of experiments. Nevertheless, the standard TM is computationally fast but has some
inherent tendencies of local trapping and usually converges to suboptimal solutions. Therefore, two
modifications are suggested. A roulette wheel selection criterion is applied on priority list to select the most
promising DG nodes and then modified TM determines the optimal DG sizes at these nodes. The proposed
approach is implemented on two standard test distribution systems of 33 and 118 buses. To validate the
suggested improvements, various algorithm performance parameters such as convergence characteristic,
best and worst fitness values, and standard deviation are compared with existing variants of TM, and
improved genetic algorithm. The comparison shows that the suggested corrections significantly improve
the robustness and global searching ability of TM, even compared to meta-heuristic methods.

INDEX TERMS Carbon tax, emission, power distribution, power generation planning, optimization,
renewables, Taguchi method.

NOMENCLATURE
A. INDICES AND SETS
ai Integer.

i, j Buses.

l Load levels, e.g., light, nominal, and peak.

N Set of buses in the system (i, j ε N ).

Nb Set of feeders in the system (u ε Nb).

NL Set of load levels (l ε NL).

Ntp Set of DG types (tp ε Ntp ).

u Branch.

tp Type of DG, e.g. diesel, gas and biomass, etc.

Td DG life in years (t ε Td).

B. PARAMETERS
CFtp Capacity factor of tp type DG.

COMaxS
2 Maximum specified CO2 intensity limit by regu-

lator (kg/kWh)

EDGtp
CO2 emission intensity of tp type DG (kg/kWh).
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EGrid CO2 emission intensity in grid energy (kg/kWh).

Hl Number of hours in lth load level.

Ilu Current in uth feeder in lth load level (Amp.).

IMax
u Ampacity of uth feeder (Amp.).

Ke,l Grid energy price in lth load level ($/kWh).

Kem CO2 tax ($/kg).

KInst
tp Turnkey cost of tp type DG ($/kVA).

KOM
tp Operation & Maintenance (O&M) cost of tp type

DG ($/kWh).

Pa,l, Pb,l Total real power losses of the system before and
after DG integration, in lth load level (kW).

PDil
Real power demand of bus i in lth load level
(kW).

PDGil
Real power generation at bus i, in lth load level
(kW).

PMax
DGtp

Maximum power generation limit of tp type DG
(kW).

PDGitp
Real power generation from tp type DG at bus i.

pfl,itp Power Factor (PF) of tp type DG at bus i in lth
load level.

QDil
Reactive power demand at bus i in lth load level
(kVAr).

QDGil
Reactive power generation at bus i, in lth load
level (kVAr).

Rij Line resistance between bus i & bus j.

Rint Annual rate of interest (%).

SDGitp
Installation capacity of tp type DG, at bus i
(kVA)

SDGl,itp
Apparent power generation from tp type DG, at
bus i, in lth load level (kVA)

Vil Voltage at bus i in lth load level (p.u.).

VmaxS Maximum specified voltage limit at bus (p.u.).

VminS Minimum specified voltage limit at bus (p.u.).

Yij Element of Y-bus matrix

θij Impedance angle of line between nodes i and j.

σitp Binary decision variable for tp type DG installa-
tion at bus i.

ρl,itp Binary decision variable for tp type DG opera-
tion at bus i in lth load level.

δil Voltages angles of bus i in lth load level.

I. INTRODUCTION
IN recent years, the Distributed Generation (DG) integration
in Power Distribution Networks (PDNs) has received lot of
attention from industry and academia due to its distinctive
benefits. In addition to power generation support, the ex-
pected optimal DG integration benefits are power or energy
loss reduction, voltage profile improvement, reactive power
control, reliability improvement, hosting capacity enhance-
ment, transformers MVA capacity and operational life en-
hancement, and emission reduction [1]. In order to maximize
these benefits, the optimal number, site and size have to be
determined by considering various constraints. Moreover, the
impact of various DG technologies would be different in
terms of system performance and economics. For example,
solar and wind based DGs are non-dispatchable and cannot
guarantee fixed power output due to uncertainties in power
availability [2], and also involve high initial investment and
space. The non-dispatchable DGs would need support of
dispatchable DGs, e.g., Fuel Cell (FC), Micro-Turbine (MT),
Diesel Engine (DE), Gas Engine (GE), Biomass (BM), en-
ergy storage etc., to participate in the competitive electricity
market. Therefore, the selection of DG type should also
be considered in Optimal DG Allocation (ODGA) problem
formulations.

In literature, one part of ODGA research is focused on
performance improvement of PDNs. Kanwar et al. [3] solved
a simultaneous optimal allocation problem of distributed
energy resources to minimize annual energy loss in PDNs.
In [4]–[6], the ODGA problem is formulated to minimize
the power loss in PDNs. In [7], [8], multiobjective ODGA
problems are solved by considering power loss, node voltage
deviation and voltage stability of distribution systems. A risk-
based multiobjective ODGA model is also solved in [9]. The
coordinated and simultaneous ODGA problems have been
formulated and solved in [7], [10] by considering the effect of
existing voltage regulators, i.e., on-load tap changer, already
present in distribution systems. In [11], the optimal sites and
sizes of DGs are determined to improve the reliability indices
of large-scale PDNs. An optimal DG integration problem
is solved in [12] to increase the voltage stability margin
of distribution systems. Some of the distributed ancillary
services, supported by DGs, have been considered in [13]
while optimally integrating in PDNs. An ODGA problem is
formulated in [14], by considering the probabilistic nature
of load and generation, to reduce total harmonics distortion
and power loss. In [15], power loss and voltage sag reduction
based ODGA problem is formulated. The effect of voltage
sag is measured in terms of the total load affected due to
voltage sag.

The second part of the literature is focused on economic
and market aspects of DG integration. In deregulated and
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restructured power systems, several economic based DG
planning models are also investigated to maximize the profit
of DG owner (DGO) and Distribution Network Operators
(DNOs) along with performance improvement. In [16], the
economic benefits, generated from life extension of distri-
bution transformer, due to customer owned DGs has been
investigated. In [17], [18], a method has been devised to en-
courage the DG investors to maximize the profit of DGOs and
DNOs under power purchase agreements. A similar approach
is presented in [19] by modeling the uncertainty of electric
load, electricity price and wind by using the point estimation
method. In [20], the retail energy market model of urban
and remote community microgrids have been investigated to
increase the third-party investment in local energy systems.
An optimal reinforcement planning of PDNs is investigated
in [21] by considering the cost of power loss, transformers
and cables.

The increasing pressure of environment protection agen-
cies aiming to reduce GHG emission has proliferated the
concept of low carbon networks. The energy regulators are
introducing new policies for system operators to reduce car-
bon emission caused by various energy related activities in
PDNs. Some of the carbon policies, based on feed-in-tariffs,
Carbon-dioxide (CO2) tax and carbon cap-and-trade under
multiple scenarios, are analyzed in [22] to encourage various
DG investments. In [23], ODGA problem is solved to reduce
the CO2 emission however fixed DG sizes are assumed. The
growing global concern on environmental issues has directed
system planners to incorporate future environment protection
policies in active distribution planning, along with various
techno-economic aspects of DG integration. However, the
inclusion of multiple goals and aspects of different interest
would increase the ODGA problem complexity due to their
conflicting nature.

To solve such complex optimization problems of active
distribution system planning, various analytical, numerical,
statistical, and meta-heuristic optimization methods have
been suggested in literature. It may be observed that analyti-
cal methods are based on some set of assumptions therefore
sometimes fails to solve real-life engineering optimization
problems. On the other hand, the numerical methods are com-
putationally fast and efficient but their optimal solutions are
also affected by accurate modeling and initialization of the
problem [13]. Many population-based Artificial Intelligence
(AI) techniques are also suggested to solve ODGA prob-
lems of distribution systems. Some of the well-known AI-
techniques used to solve ODGA problem can include Particle
Swarm Optimization (PSO) and Cat Swarm Optimization
(CSO) [11], Hybrid Grey Wolf Optimizer (HGWO) [24],
Teaching Learning-Based Optimization (TLBO) [3], Dif-
ferential Evolution (DE) [17], dynamic Ant Colony Search
(ACS) [21], Moth Search Optimization (MSO) [7], Harmony
Search Algorithm (HSA) [4], Modified TLBO (MTLBO) [5],
Multi-Objective PSO (MOPSO) [18], salp swarm optimiza-
tion (SSO) [25], Hybrid Immune-Genetic Algorithm (HIGA)
[19], Tribe-PSO (TPSO) [2], Hybrid Gradient PSO (HG-
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FIGURE 1. Different optimization methods used for ODGA

PSO), and Bacterial Foraging Algorithm (BFA) [9], Genetic
Algorithm (GA) [13], Dynamic Node Priority List based
GA (DNPL-GA) [10], Non-dominated Sorting GA (NSGA)
[23], etc. Most of the meta-heuristic techniques provide near-
optimal solution for complex real-life ODGA problems but
require significantly large computational time. Besides, the
optimal solution of many of these methods are depending on
algorithm parameters and initialization. A comparison of dif-
ferent optimization methods used to solve ODGA problems
is presented in Fig. 1.

Taguchi Method (TM) is a statistical method developed by
Dr. Genichi Taguchi. The method is less sensitive to initial
values of parameters and capable of providing near optimal
solution in a less number of experiments particularly, for
large-scale problems [26], [27]. TM has been successfully
applied to solve diversified power system optimization prob-
lems [26]–[28]. However, the effectiveness of this method de-
pends on proper selection of factors and their corresponding
levels, which requires brainstorming sessions. Moreover, the
TM as such may not be a proper choice for the problems
having factors varying in a continuous manner [29] thereby
converges to suboptimal solutions. This paper is an extension
of the work presented in [6], [8], in which a basic TM
is introduced to solve the single objective, i.e., power loss
minimization, and multiobjective ODGA (in combination
with TOPSIS approach) problems of distribution systems
respectively.

In this article, a modified Taguchi-based approach is
proposed for optimal mixed-DG allocation and operational
management to facilitate low carbon PDNs by considering
environment protection policies [30]–[33], recently imposed
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on DNOs. The modified Taguchi-based approach, in com-
bination to a node priority list (NPL) based heuristic, is
proposed to solve the problem. Modifications are mainly
done in response analysis step of the method, in order to im-
prove its local and global searching abilities. To demonstrate
the effectiveness of suggested improvements, the proposed
method is implemented on two standard test distribution
systems of 33 and 118 buses. The performance of proposed
approach is found to be promising when simulation results
are compared with the same obtained by existing variants
of TM [6], [8], [26] and an improved variant of genetic
algorithm [34]. The proposed approach is found to be very
effective and computationally fast to solve ODGA problems.
On the other hand, various techno-economical aspects of
proposed optimization framework are analyzed to proliferate
low carbon networks which follow new emission policies
imposed on DNOs.

II. PROBLEM FORMULATION
In this section, a new objective function is introduced for
ODGA in low carbon distribution networks. It is composed of
annual DG investment cost, operation and maintenance cost,
grid power transaction cost and CO2 taxes. A voltage penalty
factor is also considered to maintain the specified bus voltage
limits. In planning stage, it is difficult to consider all states of
generation and load demand throughout the year therefore,
the annual load is statistically divided into few load levels,
as suggested in literature [4]. Usually, divided into three load
levels, known as peak, nominal and light load demands. In
order to generate DG integration benefits, at all load levels
throughout the year, the most compromising solution of DG
allocation has to be determined. Once compromising optimal
DG allocation is obtained, the optimal dispatch of these
DGs are determined for each individual load level while
maximizing operational benefits of DNO.

Based on above discussed requirements, the proposed
ODGA problem is solved in two stages, i.e., optimal allo-
cation followed by their optimal dispatch to optimize several
techno-economic and social objectives.

A. OPTIMAL ALLOCATION OF DGS (STAGE–1)

It is a planning stage in which ODGA problem is solved
to determined DG integration parameters such as number,
size, site, and types. Different type and number of DGs
are modeled by considering their investment cost, O&M
cost, CO2 emission intensity, capacity factor (CF) and PF.
In the proposed DG integration model, following objective
functions have been considered.

1) Annual Benefit from Energy Loss Minimization

The minimization of annual energy loss is one of the major
concerns for DNOs as it affects the annual revenue. The cost
of annual energy loss before DG integration over NL load
levels is expressed in (1), by using power loss expression

presented in [35].

Jbefore
1 =

NL∑
l=1

Ke,lHl

N∑
i=1

N∑
j=1

[
αij,l

(
PilPjl+

QilQjl

)
+ βij,l

(
QilPjl − PilQjl

)] (1)

where, αij,l = Rijcos(δil−δjl)
/
VilVjl, βij,l = Rijsin(δil−

δjl)
/
VilVjl, Pil = PDGil

− PDil
, and Qil = QDGil

−QDil
.

For base system, PDGil
& QDGil

= 0 ∀ i, l therefore, (1) can
be modified as

Jbefore
1 =

NL∑
l=1

Ke,lHl

N∑
i=1

N∑
j=1

[
αij,l

(
PDil

PDjl
+

QDil
QDjl

)
+ βij,l

(
QDil

PDjl
− PDil

QDjl

)] (2)

The cost of annual energy loss after DG integration can be
expressed as

Jafter
1 =

NL∑
l=1

Ke,lHl

N∑
i=1

N∑
j=1

αij,l

[(
PDGil

− PDil

)(
PDGjl

−PDjl

)
+
(
QDGil

−QDil

)(
QDGjl

−QDjl

)]
+βij,l

[(
QDGil

−QDil

)(
PDGjl

− PDjl

)
−(

PDGil
− PDil

)(
QDGjl

−QDjl

)]
(3)

Further, to incorporate the effect of multi-type DGs in annual
energy loss, the power generation of a DG is expressed in
terms of its respective CF and PF as

PDGil
=

Ntp∑
tp=1

ρl,itpCFtpSDGl,itp
pfl,itp

QDGil
=

Ntp∑
tp=1

ρl,itpCFtpSDGl,itp

√
1− pf2l,itp

(4)

The annual profit from energy loss saving is expressed as

J1 = Jbefore
1 − Jafter

1 (5)

2) Annualized DG Investment Cost
The DG installation cost includes different initial costs
known as turnkey cost of DG integration. For simplicity and
without loss of generality, the annualized DG investment cost
for various DGs is defined as

J2 =
N∑
i=1

Ntp∑
tp=1

σitpK
Inst
tp SDGitp

T−1d

(
1 +Rint

)Td (6)

3) Annual Benefit by Optimizing the Energy Supplied to
Consumers
After DG integration, annual energy purchase from the grid
would reduce. Therefore, it would be beneficial to maximize
the use of installed DGs economically. The cost of annual
energy supplied to load before DG integration is expressed
as

Jbefore
3 =

NL∑
l=1

N∑
i=1

HlKe,lPDil
(7)
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After DG integration, the load demand is supplied by DGs
and grid both. The cost of annual energy supplied to load is
expressed as

Jafter
3 =

NL∑
l=1

N∑
i=1

Ke,lHl

(
PDil

−
Ntp∑
tp=1

ρl,itpCFtpSDGl,itp
×

pfl,itp

)
+

NL∑
l=1

N∑
i=1

Ntp∑
tp=1

ρl,itpK
OM
tp HlCFtpSDGl,itp

pfl,itp

(8)

It is assumed that the energy selling price to consumer before
and after DG integration would remain same. The annual
benefit obtained by optimizing the energy sell to consumers
from DGs and main grid is expressed as

J3 = Jbefore
3 − Jafter

3 (9)

4) Annual Benefit from Minimization of Carbon Tax
Governments across the globe are trying to reduce the
amount of emission by imposing penalties in terms of CO2

taxes1 or cap-and-trade mechanisms, etc. However, estimat-
ing the effect of CO2 taxes would have on energy price
would be difficult, and requires a model far beyond what
has been done here. Instead, a rough approximation of this
effect is used, as suggested in [22] and only CO2 emission
is considered in the proposed model due to its large sharing
among greenhouse gases produced from power plants [31],
[36]. The per ton tax is considered for carbon emission. The
annual CO2 tax, before DG integration, can be expressed as

Jbefore
4 =

NL∑
l=1

KemEGridHl

( N∑
i=1

PDil
+ Pb,l

)
(10)

After DG integration, the utility load will be supplied by DGs
and grid simultaneously. Therefore, the annual carbon taxes
on both grid and DGs are simultaneously expressed as

Jafter
4 =

NL∑
l=1

KemHl

{
EGrid

( N∑
i=1

PDil
+ Pa,l

)
−

N∑
i=1

Ntp∑
tp=1

ρl,itpCFtpSDGl,itp
pfl,itp

(
EGrid − EDGtp

)}
(11)

The annual benefit from carbon emission reduction is ex-
pressed by using (10)-(11) as

J4 = Jbefore
4 − Jafter

4 (12)

5) Voltage Profile Improvement
The proposed ODGA is a complex non-linear, mixed-integer
optimization problem which creates some issues in initial-
ization of the technique when hard voltage limits constraint.
Therefore, a penalty is imposed to manage the node voltage
profile in stage-1. A quadratic penalty factor is suggested in

1In reality, taxes on carbon emission would apply not to DNOs but to the
bulk generators supplying to DNOs.

[35] but for more impact (as ∆Vi ≤ 1, ∀i), linear voltage
penalty factor is proposed here, expressed as

J5 =

NL∑
l=1

N∑
i=1

∆Vil (13)

s. t. ∆Vil =


|VminS − Vil|, if Vil < VminS

0, if VminS ≤ Vil ≤ VmaxS

|Vil − VmaxS|, if Vil > VmaxS
In order to maximize the annual profit of DG integration,

a combined fitness function, JODGA is formulated in (14).
A multiplicative penalty method is used [37], to combine
all individual objectives such as profits, outflow, and voltage
penalty expressed in (5), (6), (9), (12) and (13) respectively.
The combined objective function is expressed as

max JODGA =
(
J1 + J3 + J4 − J2

)
.
(
1 + kJ5

)−1
(14)

The objective function, JODGA is subjected to constraints
expressed in (16)–(23), except node voltage constraint pre-
sented in (18). It has been analyzed that this hard voltage con-
straint in (18) can deteriorate the algorithm performance in
planning stage and sometimes, algorithms are not initialized
properly. In order to improve the node voltage profile of the
system, a multiplicative penalty method is used to transform
the voltage constrained problem into unconstrained one, as
suggested in [3], [7], [35], [38].

As discussed, the objectives J1 to J4 are representing
various annual monetary benefits and cost, associated to DG
integration therefore, the objective function J5 is introduced
as a penalty to annual profit, with its controlling coefficient
kε[0, 1]. The value of k depends on complexity of distribution
system and can also select according to DNO requirements.
For example, if optimization method is not converging then
the voltage penalty factor ‘kJ5’ would be relaxed by reducing
the value of k.

B. OPTIMAL OPERATION OF DGS (STAGE–2)
In Stage–1, the compromising optimal mixing, siting and
sizing of different DGs are determined by considering mul-
tiple load levels. In planning stage, the dispatch of these
DGs is assumed to be fixed for all load levels which will
not be optimal during system operations over variable load
demand/levels. Therefore, various operational benefits of
DNO are maximized in this stage, by determining the optimal
dispatch of installed DGs at each load level. The objective
function includes the running costs such as fuel cost, CO2

taxes and grid energy transaction cost. The fitness/objective
function of system operation JOPR is expressed as

max JOPR = J1 + J3 + J4 (15)

here, J2 is removed because investment is already done in
Stage–1. Similarly, voltage penalty function J5 is also re-
moved instead a node voltage limits constraint is considered,
expressed in (18). The objective function (15) is subjected to
various constraints expressed in (16)–(23), except (20) and
(21) as these are planning constraints.
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C. CONSTRAINTS
1) Power Balance Constraints

Pil = Vil

N∑
j=1

VjlYijcos(θij + δjl − δil) ∀ i, l (16)

Qil = −Vil
N∑
j=1

VjlYijsin(θij + δjl − δil) ∀ i, l (17)

2) Voltages Limit Constraints
VminS ≤ Vil ≤ VmaxS ∀ i, l (18)

3) DG Units Limit Constraints
PDGitp

≤ PMax
DGtp

∀ i, tp (19)

4) Discrete DG Sizes Constraints
PDGitp

= aiσitp∆PDG ∀ i, tp (20)

5) DG Penetration Limit Constraint
Maximum DG penetration in the system must be limited to
nameplate kVA rating (KV AT ) of the respective transformer
[39] or peak demand of the system.

N∑
i=1

Ntp∑
tp=0

σitpPDGitp
≤ min(KV AT , peak demand) (21)

6) Feeders Thermal Limit Constraints
Ilu ≤ IMax

u ∀ l, u (22)

7) CO2 Emission Constraints
From current trends, it may be observed that in future, the en-
vironmental policies would limit the CO2 emission intensity
(kg/kWh) in PDNs [30]–[33]. Therefore, the CO2 emission
constraint is also incorporated.

Avg. CO2 intensity ≤ COMaxS
2 (23)

III. STANDARD VARIANT OF TAGUCHI METHOD
The TM is developed by Dr. Genichi Taguchi to reduce the
variation in manufacturing process through robust design of
the experimentation. It is broadly divided into two essential
steps, i.e., Orthogonal Array (OA) construction and response
analysis. In this section, the basic TM is explained, followed
by some of the limitations observed in its available variants.

A. ORTHOGONAL ARRAY
OA statistically organizes the possible levels of fac-
tors/parameters at which they can be varied and used in De-
sign of Experiment (DOE) for determining the relationship
between process input and process output. A sample case OA
is given in Table 1, where each factor has two possible levels
[6], [26], [29]. However, the user may choose more number
of levels depending on the factors and design requirements.
Some set of rules need to be followed when constructing
Taguchi OAs.

TABLE 1. Orthogonal Array L8(2
5)

Test No.
Orthogonal array (A)

Fitness
F1 F2 F3 F4 F5

1 1 1 1 1 1 Y1

2 1 1 1 2 2 Y2

3 1 2 2 1 1 Y3

4 1 2 2 2 2 Y4

5 2 1 2 1 2 Y5

6 2 1 2 2 1 Y6

7 2 2 1 1 2 Y7

8 2 2 1 2 1 Y8

For example, m and q are representing total number of
factors & levels for each factor respectively then the maxi-
mum possible number of factorial DOE is expressed as qm.
However, maximum number of Taguchi experiments will be
M = m × f + 1; where, f = (q − 1) is the degree
of freedom for a factor. Here, M � qm; therefore, very
less number of experiments is required to obtain the near
optimal solution using TM. Initially, user randomly assign
the values of levels for each factor usually in ascending order,
i.e. Level1 < Level2 < Level3 < ... < Levelq .

B. RESPONSE ANALYSIS

In basic TM, the goal is to determine the optimal outcome
J = J(L1, L2, L3 . . . Lm) and respective optimal factor
levels. After experimentations, i.e., J1 to J8 using OA in
Table 1, fitness function recursively optimizes by using the
analysis of means or variance, as suggested in [6], [27], [29].
In [8], [26], an effective approach is presented to update the
factor levels. The levels of each factor are updated in such a
way that the best level of that factor will be followed by its
remaining levels. Additionally, gradient of fitness function
J with respect to factor is used in [26] to determine the
direction and amount to be adjusted.

C. LIMITATIONS OBSERVED IN AVAILABLE VARIANTS
OF TM

From existing variants of TM [6], [8], [26], it may be ob-
served that the levels of factors are updated, by following the
mean response of corresponding factor, in the same cycle.
However, the responses observed in previous cycles have
been ignored. In the proposed work, the levels of factors
are updated by tracing their behavior in the previous iter-
ations. The suggested correction will improve the diversity
and global searching ability of the method. In this paper,
two basic improvements are suggested in response analysis
of TM. These improvements along with systematic steps of
modified Taguchi method are discussed in following sections.
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FIGURE 2. Three different trends of two levels factors

IV. MODIFIED TAGUCHI-BASED APPROACHES

In this section, two modified Taguchi-based approaches are
proposed. As an improvement-I, the levels of each factor
will be updated by following the best mean response of their
respective levels, observed in previous iterations/cycles. The
correction will help the TM to keep track of best responses
experienced by factors in previous iterations, unlike local
response analysis in [6], [8], [26]. The suggested correction
is expected to improve the global searching ability of the
method.

It has been analyzed that the Taguchi-based optimiza-
tion techniques suggested in [8], [26] show promising local
searching ability. In these methods, the best level of a factor
is followed by its remaining levels, in same cycle. To un-
derstand it better, three possible trends of mean responses
over two levels are presented in Fig. 2. From this figure,
the average minimum and maximum response values for
factor-1 are observed at level-1 and 2 respectively. For fitness
maximization problems, the level-1 will be updated towards
or followed the level-2 [8], [26]. Similarly, the level-1 will
be followed by the level-2 in case of factor-3. The levels of
factor-2 are same in this case, therefore randomly updated.

In improvement-II, the suggested improvement-I is com-
bined with the Taguchi-based approaches suggested in [8],
[26] to also improve the local searching ability of the method.
The proposed modified variants of TM are discussed in
following sections.

A. PROPOSED TAGUCHI-BASED APPROACH–I

The essential steps of TM and suggested improvement-I,
in response analysis, are systematically presented in this
section. For easy understanding, some examples are also
adopted.
Step–1 (Parameter Initialization): All the considered m
factors are initialized to their respective q (x1, x2, x3, ..., xq)
levels, defined by the user, generally in ascending order and

can be presented as matrix Qc(q ×m) in (24).

Qc =

Fa
ct

or
1

Fa
ct

or
2

F a
ct

or
3

. . . F a
ct

or
m





x11 x21 x31 . . . xm1 Level1

x12 x22 x32 . . . xm2 Level2

...
...

...
. . .

...
...

x1q−1 x2q−1 x3q−1 . . . xmq−1 Levelq−1

x1q x2q x3q . . . xmq Levelq

(24)
For example, five factors shown in Table 1 can be initialized
on two levels. Initially, the levels of all factors are equally
assumed when these are of same nature, as shown in (25).

Qc =

F1 F2 F3 F4 F5 0.5 0.5 0.5 0.5 0.5 Level1

1.0 1.0 1.0 1.0 1.0 Level2

(25)

Similarly, the mean responses of factors on each level can
be initialized as matrix Lc. For maximization problems, all
elements of Lc are initially set to zero or vice-versa.

Lc =
(
Zeros

)
q×m

(26)

Step–2 (Updating the OA Elements): The OA[LM (qm)] is
updated by replacing the respective levels of each factor by
their defined levels in (24). The initialized OA will look like
a matrix Ac (M ×m) as

Ac =



x11 x21 x31 . . . xm1

x11 x22 x32 . . . xm2
...

...
...

. . .
...

x1q x2q−1 x31 . . . xmq−2

x1q x2q x3q−1 . . . xm1


M×m

(27)

For example, the OA shown in Table 1, can be updated by
using the two levels of factors shown in (25) and can be
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presented as

Ac =



0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 1.0 1.0

0.5 1.0 1.0 0.5 0.5

0.5 1.0 1.0 1.0 1.0

1.0 0.5 1.0 0.5 1.0

1.0 0.5 1.0 1.0 0.5

1.0 1.0 0.5 0.5 1.0

1.0 1.0 0.5 1.0 0.5



(28)

Step–3 (Fitness Calculations): In this step, fitness evaluation
for each experiment is calculated by using Ac in (27). Each
row of this matrix is representing one Taguchi experiment
therefore, each row contains the values of factors at which the
fitness would be evaluated. The fitness values of M Taguchi
experiments can be summarized as

Fitc =
(
Y1, Y2, Y3, . . . , YM−1, YM

)
1×M

(29)

Step–4 (Mean Response Analysis): Then the mean re-
sponses of all factors at their respective levels are analysed.
The mean response of factor z at level r can be expressed as

Lz
r(avg) =

∑<
g=1 ηYg

<
(30)

η =

{
1, if A(g, z) = r

0, else
(31)

where, < = M/q; further, <, η, Yg and A are represent-
ing the number of times a level appears in a factor out
of M Taguchi experiments, binary decision variable, out-
put/response value in gth Taguchi experiment and OA matrix
as shown in Table 1 respectively.
For example, the mean responses for factor F5 (see Table 1)
on each level is expressed as

L4
1(avg) =

Y1 + Y3 + Y6 + Y8
4

;

L4
2(avg) =

Y2 + Y4 + Y5 + Y7
4

(32)

Similarly, mean responses for other factors are also calcu-
lated and generalized for ‘m’ factors at their ‘q’ levels in
matrix Lc as shown below

Lc =


L1
1(avg) L2

1(avg) . . . Lm
1(avg)

...
...

. . .
...

L1
q−1(avg) L2

q−1(avg) . . . Lm
q−1(avg)

L1
q(avg) L2

q(avg) . . . Lm
q(avg)


q×m

(33)
Step–5 (Calculate the Direction of Movement): To obtain
the direction of next optimal level in upcoming cycle, mean

response of each factor on its all levels are compared with
their respective best responses in previous cycles, unlike in
[8], [26] where, the mean response of each level is compared
with the best mean response of that factor in the same cycle.
For maximization problem, the directional scaling matrix
Gc,∀ rεq and zεm is defined as

Gc(r, z) =


+1, if Lc

avg(r, z)− Lbest
avg (r, z) > 0

0, if Lc
avg(r, z)− Lbest

avg (r, z) = 0

−1, if Lc
avg(r, z)− Lbest

avg (r, z) < 0

(34)

where, r and z are representing the indices of levels and
factors of Taguchi design. Besides,Lc

avg(r, z) andLbest
avg (r, z)

are representing the mean response of factor z at level r
in current cycle and the best response observed in previous
cycles respectively
Step–6 (Update the Levels): Using the direction matrix Gc

of (34), levels of each factor or elements of matrix Qc in (24)
are updated as follows

xzr(c+ 1) = xzr(c) +Gc∆x, ∀ r ε q & z ε m (35)

where, ∆x is a small amount of deviation in the levels.
Step–7 (Termination Criteria): Steps 2 to 6 are repeated
until convergence is reached. The algorithm is terminated, if
DP =max(∆Dc

z) ≤ 10−2. The vector ∆Dc
z is defined as

∆Dc
z = max

[
Lc
avg(r, z)− Lc−1

avg (r, z)
]
; ∀ r ε q (36)

Steps 5 to 7 can be considered as the suggested corrections in
existing variants of TM [6], [26].

B. PROPOSED TAGUCHI-BASED APPROACH–II
It may be observed that the proposed improved Taguchi based
approach–I updates the factor levels by tracing their respec-
tive best mean performance in previous iterations. Whereas
in [8], [26], the levels are updated by following the best
level achieved in the same cycle. Therefore, the proposed
approach–I is combined with the method of [8], [26] to
further improve the local searching performance of TM. The
contribution of [26] is inserted between steps 4 and 5 of
section IV. Further, the levels are again updated according
to steps 5 and 6. In this paper, the proposed approach–II is
adopted to solve ODGA problems of distribution systems.

V. MODIFIED TAGUCHI-BASED APPROACHES FOR
OPTIMAL DG-MIX INTEGRATION
In this section, the modified Taguchi-based approach pro-
posed in previous section is introduced for ODGA in distribu-
tion systems. The aim is to determine optimal sites, sizes and
types of DGs for a given distribution system. DG locations
and their variable sizes are considered analogous to factors
and levels in proposed Taguchi DOE respectively. In order to
provide the promising DG nodes to TM as Taguchi factors, a
NPL is adopted from [8].
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A. TAGUCHI FACTOR SELECTION
The selection of factors have not been explored in available
variants of TM. In existing literature [6], [26], [27], [29],
the TM is adopted for the problems in which factors are
already given or fixed. Therefore, a Roulette Wheel Selection
(RWS) criteria based on a NPL is adopted from [8] to
select the nodes as factors for Taguchi DOE. The adopted
heuristic-based NPL is providing the engineering input to
optimization technique to enhance its performance. Gener-
ally, node sensitivity list is prepared by penetrating small
test size DG at all nodes one-by-one and top few nodes are
selected as candidate nodes to reduce the search space [4]–
[6]. The major drawback of such approaches is that they
completely ignore other nodes which might be optimal. How
many top nodes to be selected for the given system are also
not specified. Moreover, by changing the test size of DG,
the sensitivity order of nodes changes. To overcome these
drawbacks, a modified heuristic-based approach is proposed
in [8] to prepare the NPL. In this approach, at each node the
test size of DG is varied from zero MW to peak demand of
the system in small step size and based on best fitness values,
expressed in (14), a NPL is prepared off-line, irrespective of
DG test size.

In each iteration of modified TM, a RWS technique is
applied on this NPL to select required number of DG nodes
as Taguchi factors.

B. ODGA USING PROPOSED APPROACH
In this section, the proposed optimization problem for opti-
mal DG integration in distribution systems is solved by using
the modified TM combining to RWS-based heuristic NPL
discussed in Section V-A. The objective is to determine the
optimal sites and sizes of mixed DGs which maximizes the
cost function (14) while satisfying various constraints defined
in (16) to (23). Here, the number of Taguchi factors will be
the number of DGs to be installed in a given system, i.e., m
or NDG. The basic steps of the proposed method for ODGA
in distribution systems are summarized below. A flowchart is
also presented in Fig. 3.

Step–I (Initialization): Set initial values of parameters such
as number of factors, m; their levels, q; maximum iterations,
Maxiter; maximum allowed capacity of single DG, PMax

DGtp
,

NPL list; system data, etc.
Step–II (OA selection and construction): Choose and con-
struct an adequate OA design for m = NDG factors and
q levels as per the requirements of the user and predefined
rules in Section III-A. This is one time and offline exercise
for system and objective.
Step–III: Spun the Roulette wheel for NDG times to select
NDG nodes from NPL adopted in Section V-A. These
selected nodes will be used as Taguchi factors in proposed
DOE.
Step–IV: Apply the modified TM suggested in Section IV to
determine optimal sizes at selected nodes in step–III. Retain
the information of these DG sites and sizes of each iteration.

Step–V: Repeat steps III and IV till the end of prespecified
number of iterations, Maxiter.
Step–VI: Print the best solution out of Maxiter solutions
which contains the information of optimal nodes and their
respective DG sizes.

End

Print optimal nodes and their corresponding
sizes among iter_Max solutions

Is itr=iter_Max?

Print optimal sizes of c cycles for nodes of iteration, itr

Is D
P
<10

-2

?

Set cycle, c=1 & D
P
=1

Analyze the mean fitness response, calculated the update direction of
y

Select row c of OA and install DG sizes = P
DG

(max)* OA(c,:) at

respective nodes and calculate the fitness function given in (14)
e.g., 2MW*[A(c,1), A(c,2), ..., A(c,m)]

Update the OA, L
M
(3

m

) with current values of levels

Select and construct an OA, L
M
(3

m

) as suggested in Section III

Initialize the N
DG

factors at 3 levels i.e. 0.0, 0.5, 1.0; as

suggested in (24) and mean response to zeros as in (26)

Spun the roulette wheel for m = N
DG times to select N

DG 
sites from node priority list proposed in Section V-A

Set, itr=1

Load system data, node priority list, objective function and set the
initial values of parameter such as Max_iter, m=N

DG
, x=0.01 etc.

Start

c = c+1

itr=itr+1

Yes

Yes

No

No

levels then update the levels suggested in (33) to (35) respectively

FIGURE 3. Flow chart of proposed improved Taguchi-based approach

VI. CASE STUDY
To demonstrate the effectiveness of the proposed modified
Taguchi based approaches, and proposed optimization frame-
work for mixed-DG integration in low carbon distribution
systems, these are implemented on two benchmarked test
distribution systems, i.e., 33-bus [40] and 118-bus [41] ra-
dial distribution systems (RDS), referred as system-1 and
system-2 respectively. For better understanding, the case
study is divided and presented in three sections namely, case
study data and system information, proposed DG integration
framework, and validation of suggested modifications in TM.
In validation, the proposed DG integration problem is also
solved by some of the existing variants of TM [6], [26]
and an improve variant of GA [34]. The simulation results
are compared to prove the promising searching ability and
convergence performance of proposed method over existing
variants of TM and meta-heuristic techniques.
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A. TEST SYSTEMS AND DATA
In this section, the data and system information used in
this study are presented. In order to reduce the computation
burden in planning stage, the annual load is divided into three
load levels (NL = 3) namely light, nominal and peak load
levels, as suggested in literature [4], [38]. The information of
these load levels and energy pricing are presented in Table 2.
The other simulation parameter considered in this study can
include, life of DGs, Td = 20 years; annual rate of interest,
Rint = 12.5%; CO2 emission from grid energy, EGrid = 910
kg/MWh, and CO2 tax, Kem = 10$/t [19].

TABLE 2. Load levels and energy pricing information for test systems

Load level Annual hours
of load level, l

Load multiplying
factor (%)

Energy Price
(USD/MWh)

Light 2000 0.5 55

Nominal 5260 1.0 72

Peak 1500 1.6/1.2∗ 90

∗– the load multiplying factors, in peak load level, used for system-1 and 2 are 1.6 and 1.2 respectively [38].

The minimum (VminS) and maximum (VmaxS) permissible
voltages limits are considered as 0.95 p.u. and 1.05 p.u. re-
spectively. The maximum allowed average CO2 emission in-
tensity considered in this study is, COMaxS

2 = 459g CO2/kWh
[31]. In base case condition (i.e., before DG integration),
the minimum bus voltages and power loss of system-1 for
light, nominal & peak loading are [0.96, 0.91, 0.85] p.u.
and [47.07, 202.67, 575.31] kW respectively. For system-
2, it is [0.94, 0.87, 0.77] p.u. and [297.14, 1298.0, 3797.8]
kW respectively. The commercial information of various DG
technologies is collected from [2], [17], [19], [22], [36] and
summarized in Table 3.

TABLE 3. Commercial information of DGs used in the proposed study

Parameter DE GE MT BM FC

Turnkey cost ($/kVA) 550 690 915 2293 1900

O&M cost ($/kWh) 0.09 0.009 0.011 0.012 0.005

CO2 emission (kg/MWh) 650 560 360 003 430

Capacity factor (CF) 0.92 0.92 0.92 0.92 0.92

Power factor (PF) 0.85 0.85 0.85 0.85 1.00

In this work, five different types of dispatchable DG
technologies have been considered with their CFs [22] as
shown in Table 3. To examine the response of each DG type,
at least one DG of each type is compulsorily installed in
the system. The objective of optimization technique is to
find the optimal site and size of different type of DGs. For
system-1, optimization is done for five locations, one for
each type of DG. For system-2, approximately 10% buses,
i.e., 12 locations (2-DEs, 2-GEs,2-MTs, 3-BMs and 3-FCs)
are considered for DG integration. It may be noted that the
number of biomass based DGs is assumed more in order to
restrict carbon emission within the specified limit.

B. SIMULATION RESULTS
In this section, the proposed optimization problem of optimal
DG-mix in low-carbon energy networks is solved by using
proposed Taguchi based approach. The simulation results
of optimal DG-mix allocation are presented in Table 4.
As discussed earlier, the optimal sites, sizes of mixed DG
technologies are determined in Stage-1. The DG sizes during
peak load hours are representing the original installation
sizes of respective DG technologies. The maximum hosting
capacity of dispatchable DGs (98.67% of peak demand) is
achieved without violating the system constraints. In future,
high DG penetration will allow DNOs to operate PDNs in
islanding mode in case of emergency events. For system-
1, the optimal mixing of various installed DGs such as
DEs, GEs, MTs, BMs and FCs are about 12%, 24%, 48%,
12%, and 4% respectively. For system-2, it is about 10.90%,
32.73%, 15.45%, 11.82% and 29.09% respectively.

At present, the traditionally designed PDNs do not have
technical abilities (e.g., protection system) to export power
back to main grid however it could be possible in near future
with enabling technologies. Therefore, the optimal dispatch
of each installed DG, at each load level, is determined in
Stage-2 to increase the operational benefit JOPR. The sim-
ulation results of Stage-2 are shown in Table 4. It can be
observed that significant amount of power loss reduction is
achieved, at all load levels, for both the systems although the
proposed problem deals with multiple objectives. In both test
systems, all node voltages are found to be within specified
limits which can be verified from Table 4. The node voltage
profiles of system-1 & 2 are also shown in Figs. 4 & 5, over
three load levels, respectively. Furthermore, the results show
that no system is violating the annual average CO2 emission
intensity limit defined in (23). Table 5 shows various annual
monetary benefits achieved from optimal DG mix approach.
It shows that the maximum benefit is achieved by optimizing
the annual energy purchase from DGs and main grid.
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FIGURE 4. Node voltage profile of system–1, after DG allocation

Figs. 6 and 7 show the annual percentage share of en-
ergy generation, carbon emission, monetary benefit and DG
investment of various DG technologies for systems 1 & 2
respectively. For 33-bus system, it may be observed that the
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TABLE 4. Optimal siting and sizing of mixed DG technologies along with technical and social benefits obtained after DG integration in distribution systems

Systems Parameters After DG integration

33-bus
RDS

DG type (sites) DE(1), GE(30), MT(19), BM(12), FC(17)

DG outputs (MVA)∗
(0.252, 0.594, 1.116, 0.279, 0.114)a

(0.576, 1.296, 1.944, 0.666, 0.228)b

(0.900, 1.800, 3.600, 0.900, 0.300)c

Power loss (kW) (10.06a, 34.76b, 116.68c)

Min. bus voltages (0.9867a, 0.9790b, 0.9508c)

Max. bus voltages (1.0010a, 1.0015b, 1.0030c)

Total CO2 intensity (kg/kWh) 0.410

118-bus
RDS

DG type (sites) DE(5, 36), GE(7, 107), MT(85, 70), BM(53, 34, 75), FC(9, 33, 3)

DG outputs (MVA)∗

(
0.126, 0.132, 2.520, 3.840, 0.096, 1.080, 1.512, 0.048, 0.378, 2.400, 0.108, 1.560

)
a(

0.300, 0.264, 6.000, 4.800, 2.400, 2.700, 0.504, 1.200, 0.900, 2.260, 2.700, 3.900
)

b(
0.300, 3.300, 6.000, 4.800, 2.400, 2.700, 1.800, 1.200, 0.900, 3.000, 2.700, 3.900

)
c

Power loss (kW) (126.36a, 368.58b, 504.27c)

Min. bus voltages (0.9789a, 0.9614b, 0.9529c)

Max. bus voltages (1.0210a, 1.0099b, 1.0092c)

Total CO2 intensity (kg/kWh) 0.435

a = light loading, b = nominal loading, c = peak loading, ∗ = the DG outputs shown are in the same order in which DG sites are presented

TABLE 5. The optimal values of individual objectives and annual profits, before and after DG integration in distribution systems

Systems Parameters/functions
Before DG

integration, Jbefore

(in M$)

After DG
integration, Jafter

(in M$)

Individual profits,
J = Jbefore − Jafter

(in M$)

33-bus
RDS

Objective function, JOPR 26.044 0.486 25.558

Costs of annual energy loss, J1 1.596 00.300 01.296

Annualized DG investment costs, J2 0.000 04.041 -04.041

Annual costs of grid energy purchase (excluding loss), J3 24.137 0.052 24.085

Annual CO2 taxes, J4 0.311 00.134 00.177

Net annual profit, J1 + J2 + J3 + J4 (in M$) 21.517

118-bus
RDS

Objective function, JOPR 144.916 3.244 141.672

Costs of annual energy loss, J1 7.870 2.202 5.668

Annualized DG investment costs, J2 0.0 21.766 -21.766

Annual costs of grid energy purchase (excluding loss), J3 135.286 0.223 135.063

Annual CO2 taxes, J4 1.760 0.819 0.941

Net annual profit, J1 + J2 + J3 + J4 (in M$) 119.906

shares of MTs and GEs in all above mentioned factors are
high due to their comparatively low installation and running
costs. The investment cost of DE is also less but still its share
is low due to high running and emission costs. Similarly, BM
and FC also have less sharing due to high initial investment
cost in-spite of less running cost and emission. For system-2,
the number of renewable DGs (i.e., BMs and FCs) is more
as compared to systems-1. The share of FCs is increased
in system-2 due to less installation and running costs as
compared to BM based DGs. The annual share of MTs is
also reduced due to mutual advantages from BM and GE

based DGs. The share of GEs is increased due to their less
investment and running cost in-spite of high carbon emission,
which have been compensated by BM based DGs. Therefore,
the proposed DG-mix model and strategies, considering pros
and cons of various DG technologies, maximize the total
annual benefits of both DNO and DGO.

For system-1, Fig. 6 shows that the annualized DG invest-
ment line is below the maximum monetary benefit for all
DGs (benefit-to-cost ratio is more than unity), except BMs
and FCs. The same is also true for system-2 that can be
observed from Fig. 7. The BM and FC based DGs are proved
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FIGURE 5. Node voltage profile of system–2, after DG allocation

to be less economical due to their high investment costs.
However, in future, the advancement in technologies may re-
duce various investment costs and increase the share of such
DGs. As observed from Fig. 7, the benefit-to-cost ratio of DE
investment in system-2 is also less than unity. The maximum
power generation from DEs is found to be in peak load hours,
as observed from Table 4. High running and emission costs
are limiting the penetration of DEs thereby less preferred for
large systems. The proposed optimization framework, aiming
to integrate mixed-DGs in low carbon energy networks, is
effectively optimized the mixing of energy fuels.

FIGURE 6. Share of different DG technologies in various objectives
(system-1)

C. VALIDATION OF SUGGESTED IMPROVEMENTS IN TM
In order to validate the suggested improvements in standard
TM, the performance of proposed approach is compared with
basic TM and other available variants in existing literature.
Fig. 8 shows the effect of suggested modifications on the
convergence characteristic of TM. It may be observed that
the standard TM [6] shows poor convergence and searching
ability. Though, the method of [26] shows fast convergence
in comparison to TM but unable to search the global op-
tima. In proposed method, the suggested modifications have
made significant improvement in the performance of TM as
compared to its existing variants [6], [26]. Among these,

FIGURE 7. Share of different DG technologies in various objectives
(system-2)

the proposed approach-II shows promising global solution
searching ability. To demonstrate the searching ability of
proposed method over AI-techniques, the ODGA optimiza-
tion problem of stage-I, i.e. planning, is also solved by an
improved variant of GA [34].

It has been found that the GA requires high population size
of 500 and 1000 for system-1 & 2 respectively to achieve
the fitness close to that of proposed approach-II. Some of the
performance parameters of these methods are summarized in
Table 6 such as values of best fitness, worst fitness, mean
fitness, standard deviation (STD) and average number of
fitness evaluated (ANFE) to obtain the optimal solution. The
ANFE may found to be a better measure than CPU time
since it is not depending on system configuration or platform.
The table shows that the proposed approach is capable to
solve constrained ODGA problem in less ANFE as compared
to GA. The approach takes only 9357 and 44066 ANFE
whereas; the GA takes 26489 and 72043 ANFE for systems
1&2 respectively. Moreover, the proposed approach performs
better as compared to improved GA in terms of best fitness,
mean fitness, worst fitness and standard deviation. The op-
timal type-sites(sizes in MVA) obtained by GA for system-
1 are as follows DE-9(0.34), GE-15(0.67), MT-28(2.54),
BM-2(1.52), FC-19(2.13). Similarly for system-2, these
are DE-90(2.97), DE-54(1.01), GE-108(4.27), GE-28(2.84),
MT-31(3.96), MT-7(4.37), BM-56(0.67), BM-66(3.03), BM-
52(1.37), FC-42(1.53), FC-75(2.46), FC-78(4.82).

TABLE 6. The comparison of optimal values of objective function, JODGA,
obtained by proposed approach and GA in 100 runs

Parameters
33-bus RDS 118-bus RDS

GA TM-II GA TM-II

Best fitness 0.3233 0.3327 1.5014 1.5050

Mean fitness 0.2125 0.3145 1.4479 1.4692

Worst fitness 0.1549 0.2890 1.2655 1.4324

STD 0.0544 0.0081 0.0411 0.0122

ANFE 26489 9357 72043 44066

12 VOLUME 00, 0000



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2942202, IEEE Access

Meena et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 8. Convergence characteristics of different variants of TM

VII. CONCLUSION
In this research work, a simple but powerful optimization
method is proposed to solve the real-life engineering op-
timization problems. The method employs statistically de-
signed Taguchi OA that recursively optimize the linear or
nonlinear objective function in just a few number of exper-
iments, as compared to meta-heuristic methods. The case
study demonstrated that, the standard TM has some inher-
ent limitations such as slow convergence and tendency to
converge at suboptimal solutions. In order to overcome such
limitations, some improvements are suggested in standard
TM, without changing its internal mechanism, as summa-
rized here.

1) Two response-analysis techniques have been suggested
to update the levels of factors after each cycle of the
method. The technique carefully modeled the behav-
ioral dependencies of each level of factors on objec-
tive function and then suggested the new updates to
enhance the global search ability of TM.

2) In proposed improvement–I, global reference is pro-
vided to each factor by considering their responses
in previous iterations, unlike existing approaches. The
global searching ability of the method has been im-
proved.

3) In proposed improvement-II, the suggested improvement-
I is effectively combined with one of the existing
variant of TM in which factors are updated by follow-
ing their own behavior in same cycle followed by an
estimated gradient. The performance of TM is further
improved.

4) To retain the fast computational ability of TM, the
adopted heuristic node priority list based on RWS
criterion has effectively selected the most likely DG
nodes, as Taguchi factors, in minimum time.

The performance of the proposed approach is also compared
with one of the improved variants of GA. The comparison
shows that the proposed approach determines near-global
solution in less number of experiments as compared to meta-
heuristic technique. The proposed method is parameter free
and less dependent on initial values of variables. It can solve
the complex optimization problems faster than population
based AI-techniques e.g., GA.

On the other hand, a new optimization framework is de-
veloped for optimal planning of future low carbon distri-
bution networks comprised of diversified dispatchable DG
technologies. The proposed model considers some of the
ongoing regulatory frameworks, aiming to minimize the car-
bon emission caused by DNO activities, especially, in United
Kingdom (i.e. EU emission performance standard [31], [32]
and Ofgem [30], [33]). The simulation results show that the
proposed model is able to meet the EU emission reduction
goals which limits the annual average carbon emission below
450g/kWh until 2044. It has been found that optimal DG-
mix approach is better suited to solve technical, economic
and environmental issues of deregulated power system.

In future, the proposed objective function may be extended
to solve the ODGA problems considering uncertainties of
solar, wind, load, fuel prices, etc. Furthermore, the improved
Taguchi approach may be used for active network manage-
ment of PDNs, as it requires less number of experiments to
search the global optima.
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