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Abstract  
 

We show the equivalence between the zero-beta version of a multi-factor arbitrage 

pricing model and a linear pricing model utilizing undiversified inefficient benchmarks 

in a given factor structure. The resulting linear model is a two-beta model, with one 

beta related to the inefficient benchmark and another adjusting for its inefficiency. This 

linear model shows that there are only two distinctive and computable sources of risk, 

affecting security expected returns, despite the existence of several risk factors. In a 

short empirical example we demonstrate that the model can be employed to provide 

guidance and allow researchers to test for the validity of their selection of the 

underlying risk factors driving variations in security returns.  
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       The objective of this paper is to show the equivalence between the zero-beta 

version of a multi-factor Arbitrage Pricing Model (APM) and a linear pricing model 

utilizing inefficient benchmarks in a given factor structure. This is motivated by the 

empirical evidence indicating the rejection of the expected return-standard deviation 

efficiency for various benchmarks, used in asset pricing models, as well as by the 

existence of multi-factor arbitrage pricing models. The resulting linear model is a two-

beta model, with one beta related to the inefficient benchmark and another adjusting for 

its inefficiency. By exploring the relationship between the APM and a linear pricing 

model using inefficient benchmarks our results can be seen as closing a gap in the 

theoretical literature which has explored the relationship between the APM and a linear 

pricing model based on efficient benchmarks.   

 

       Various researchers attempted to empirically investigate the validity of the Capital 

Asset Pricing Model (CAPM) and the accumulated evidence revealed that differences 

in expected returns are not completely explained by differences in betas.1  In an 

important theoretical contribution Roll (1977) presented the equivalence between the 

CAPM and the market portfolio’s expected return-standard deviation efficiency and 

forcefully argued that the CAPM is not testable because the true market portfolio is 

empirically unobservable2. Roll’s equivalence argument also holds when utilizing a 

given expected return-standard deviation efficient benchmark3 other than the global 

minimum variance portfolio (GMVP). In this instance, a linear beta pricing relation 

based on this efficient benchmark is generated (the acronym LBPE: Linear Beta 

Pricing Efficient, was used) with observed data rather than the notional “market 

portfolio.” Thus, in view of Roll’s (1977) discussion, the inadequacy of the LBPE to 

                                                            
1 For example, the following studies do not support the expected return-beta exact relation with a riskless 
asset: Black, Jensen and Scholes (1972); Blume and Friend (1973); Fama and MacBeth (1973); Jobson 
and Korkie (1982); Gibbons (1982); Stambaugh (1982); Jobson and Korkie (1985); Kandel and 
Stambaugh (1987); Shanken (1985); Shanken (1987); Gibbons, Ross and Shanken (1989); Green (1990); 
Zhou (1991);  MacKinlay and Richardson (1991); Hawawini (1993)  and Fletcher (1994). The zero-beta 
version of the expected return-risk exact relation was supported by Stambaugh, (1982) and rejected by 
Gibbons (1982) and Shanken (1985). A review of the statistical methods that have been employed to test 
the mean-standard deviation efficiency of a portfolio is provided by Kandel and Stambaugh (1989) and 
Shanken (1996). 

2 Ross (1977) and Fama (1977)  have also demonstrated the equivalence between the CAPM and  the 
expected  return –standard deviation efficiency of the market portfolio. 
3 The term benchmark is used to indicate an ‘index’ or a ‘market proxy’.  
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account for security mean returns immediately implies the mean-standard deviation 

inefficiency of the chosen benchmark (see also Roll and Ross (1994))4.  

 

       Ross’ (1976a, 1976b) seminal contribution was the development of the APM, 

which constitutes one of the primary alternatives to the CAPM. In the absence of 

arbitrage opportunities in large economies and under the assumption that the stochastic 

return generating process is a multi-factor model, the APM asserts that the single-period 

expected return on a security could be approximately and linearly related to its betas 

relative to several risk factors5. Even though the APM offers a theoretical framework 

to determine the security expected returns, it does not provide any idea about the 

number of factors and their identity. The literature offers several empirical tests 

revealing the existence of various factors affecting security returns. However, there is 

no uniformity across various empirical arbitrage pricing models. Factors may vary 

across samples of securities, and consequently, a different model might have to be 

produced for each sample6. 

     

There is one important point arising from this discussion: there is strong empirical 

evidence contradicting the prediction of the LBPE either by using a direct test for its 

validity or by empirically demonstrating that the cross-section of security mean returns 

can be explained by a number of factors. Market betas do not provide the predictive 

power to adequately explain average security returns which in turn implies the mean-

standard deviation inefficiency of the selected benchmark. With these results in mind, 

the main objective of this paper is to provide a common ground between the APM and 

inefficient benchmarks in a given factor structure. More specifically we demonstrate 

the equivalence between the zero-beta version of a multi-factor APM and a linear 

pricing model employing inefficient benchmarks in a given factor structure. 

 

                                                            
4 The portfolio frontier in the expected return-standard deviation space is the locus of minimum 
standard deviation portfolios of risky securities for all expected returns. We use the term ‘inefficient’ 
benchmark to indicate a ‘non-frontier’ benchmark, noting that the LBPE is also valid for frontier 
portfolios that lie on the negatively sloped segment of the expected return-standard deviation frontier.  
5  The APM of Ross was extended further by numerous researchers including Huberman (1982); 
Chamberlain and Rothschild (1983); Chen and  Ingersoll  (1983); Dybvig (1983); Ingersoll (1984); 
Connor (1984); Connor and Korajczky (1988) and  Lehmann and Modest (1988).  An extension of the 
APM to an international setting was provided by Ross and Walsh (1983) and Solkin (1983).  

6 Sharpe (1977); Grinblatt and Titman (1983); Connor (1984); Kim and Wu(1987) and  Ehrhardt 
(1987) offered  linear multi-beta interpretations of equilibrium models in discrete time.  
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      Furthermore, several studies explored the relationship between the APM and the 

expected return-variance portfolio efficiency. Among the research in this direction are 

the studies by Dybvig and Ross (1985), Chamberlain (1983), Chamberlain and 

Rothschild (1983), Jobson and Korkie (1985), Grinblatt and Titman (1987), and 

Huberman, Kandel, and Stambaugh (1987). More specifically, Dybvig and Ross (1985) 

showed that if security returns are generated by a linear factor model, the CAPM 

implies the APM. Chamberlain (1983) concluded that if a linear combination of factor 

portfolios converges to a mean-variance efficient portfolio as the number of securities 

reaches infinity, then the APM holds. Grinblatt and Titman (1987) investigated K 

portfolios that can be used as proxies for the factors in the APM and showed the 

equivalence between the exact APM and the mean-variance efficiency of a portfolio 

that is a linear combination of these K portfolios. Hence, they showed that the results 

derived by Chamberlain (1983) for an infinite economy also hold for a finite set of 

assets. In a subsequent study, Jobson and Korkie (1985) considered the case in which 

factors can be represented as portfolio returns. They showed that exact arbitrage pricing 

implies that the portfolio on the efficient frontier at the point where the line from the 

risk-free rate is tangent to the efficient frontier is a portfolio of these factors. Further, 

Huberman, Kandel, and Stambaugh (1987) used mimicking portfolios as factor proxies, 

and they proved that the APM is equivalent to the statement that a combination of factor 

portfolios lies on the efficient frontier. Finally, Jobson and Korkie (1982), Gibbons, 

Ross, and Shanken. (1989), and Kandel and Stambaugh (1989), among others, 

developed tests for multi-index pricing models based on mean variance efficiency.   The 

idea that a combination of factor portfolios is minimum variance efficient is explored 

earlier by Grinblat and Titman (1987). Fama (1996) calculates the weights for securities 

in multifactor-minimum-variance portfolio and argues that for the ICAPM to hold the 

‘market portfolio’ must be multi-factor efficient. Ferson, Siegel, and Xu (2006) 

generalize the multi-factor-minimum-variance efficiency of Fama (1996) with 

conditional and unconditional mean-variance efficiency (Ferson and Siegel (2001)). 

 

       The APM framework and the analysis of expected return-standard deviation 

efficient or inefficient benchmarks seems to be inherently disjointed. However, 

common ground can be provided by considering multi-factor efficient or inefficient 

benchmarks in which the covariance matrix and the expected return vector of their 

securities have specific structures based on a multi-factor security return generating 
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linear model. In this case it can be demonstrated an integration between the APM and 

the risk-expected return exact linear relations which are based on efficient and   

inefficient benchmarks in a given factor structure. 

   

       Based on the above mentioned empirical studies, two basic findings can be 

observed. First, there is a rejection of the validity of the LBPE for different benchmarks 

implying the mean-standard deviation inefficiency of each benchmark, and secondly, 

multi-factor pricing models exist that describe mean returns in which the selection of 

factors does not rely on a theoretical framework. Instead, in the latter, the factors are 

chosen by simple financial reasoning, plain intuition, or by their popularity among 

researchers. Given the results of these empirical studies our main objective is to develop 

a pricing model that is based on an observable inefficient benchmark in a given factor 

structure. This can be expanded to a multi-factor pricing model7 in which the inefficient 

part of the particular benchmark constitutes a helpful norm for selecting common 

factors that affect security returns.    

 

      We demonstrate that for a multi-factor undiversified inefficient benchmark in a 

given factor structure, a multi-factor APM can be reduced  to a linear two-beta model 

with one beta induced by the benchmark and one associated with the benchmark’s 

inefficiency (LBPUI; Linear Beta Pricing Undiversified Inefficient). Thus we find 

that there are only two unique sources of risk, which driving variations in security 

expected returns, despite the existence of several risk factors. Perhaps most tellingly, 

the potential advantage of the LBPUI is that it can be employed with the addition of 

modifications to derive a multi-factor APM explaining security expected returns. Such 

a multi-factor APM is based on a theoretical framework because it employs a well-

specified model based on inefficient benchmarks. Additionally all factors are 

observable and they are proxies (apart from the benchmark) related to the inefficient 

part of the benchmark.  

 

In summary the objective of the present work is to explore the relationship   

                                                            
7 We use the name ‘multi-factor arbitrage pricing model’ to indicate that betas are measured against 
multiple specified factors. 
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between the zero-beta version of a multi-factor APM and the LBPUI. More 

specifically, the equivalence between a multi-factor APM and the LBPUI is derived 

and the analysis can be considered an addition to the existing literature, which has 

only focused on the relationship between a multi-factor APM and a linear beta pricing 

model for a multi-factor efficient benchmark (LBPDE; Linear Beta Pricing 

Diversified Efficient).A major implication is that the LBPUI can be employed as the 

formal foundation of multi-factor pricing models. This approach provides additional 

insights into the nature of the underlying risk factors that influence security expected 

returns. Finally, a multi-factor pricing model based on the LBPUI can be comprised 

of an observable premium related to a benchmark along with other observable factor 

premia related to the inefficiency of that benchmark. In this particular case, at least in 

theory, this multi-factor pricing model supports the survival of the benchmark’s beta 

despite its inefficiency.  

 

  The remainder of the paper is organized as follows. Section II introduces the 

notation used.  Section III provides an analysis for expected return-variance 

inefficient benchmarks in a given factor structure. In Section IV we describe the 

equivalence between a multi-factor APM and the LBPUI that holds for undiversified 

inefficient benchmarks in a given factor structure. In Section V we report and discuss 

the results from an empirical application of the methodology developed in this paper 

and compare them to those from a well-known three factor model. Finally Section VI 

presents our conclusions. All proofs are included in the appendices.    

 

II. Notation and assumptions 
 
Consider a perfectly competitive and frictionless market containing N risky 

securities, where 2N . Excluded from consideration are transaction costs and other 

market imperfections. It is assumed that investors have homogeneous beliefs that the 

single period random return of a simple asset (such as a single security) or composite 

(such as a given portfolio) i can be expressed mathematically by the following linear 

K-factor model8 (K<<N): 

  

                                                            
8 In the paper we employ ‘return’ to briefly mean ‘rate of return’ and ‘security’ implying asset either 
simple or composite. 
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                            ( ) ...
1 1 2 2

R E R b f b f b f
i i i i iK K i

                     (1) 

   

where Ni ,...,2,1 , ( )E R
i

 is the unconditional expected return on security i , kf is the 

value of the thk factor that impacts the return on security i , Kk ,...,2,1 , ikb denotes 

a measure of the sensitivity of the return on security i to the fluctuations of the thk

common factor, and i  is the security si, idiosyncratic disturbance summarizing the 

effects not covered by the factors.  

 

With no loss of generality, the number of securities N is assumed to be much 

larger than the number of common factors K . Equation (1) can be normalized to make 

0)( kfE  for each k , and 0)(E i   for each i . In this framework, it is assumed that 

the variances of the common factors are well defined,  2)(2
kkf  , Kk ,...,2,1 , 

the common factors are conditionally orthogonal, that is, ,0),( jk
j

fkfCov 

Kjk ,...,2,1,  , and finally, the idiosyncratic disturbances are conditionally 

orthogonal to kf , Kk ,...,2,1 . 

  

Beyond this, an additional assumption is that the idiosyncratic disturbance terms 

are uncorrelated across different securities, i.e. 0),()(  jiji CovE  , for all  

i , j  where ji  9. This means that the covariance between the returns of two 

different securities is solely determined by their common dependence on the common 

factors, and the N x N covariance matrix )( εε'D E is diagonal, where ε  is the N x 1 

random vector of the idiosyncratic disturbances. The variances of the idiosyncratic 

disturbance terms are assumed to be bounded, that is  2)(2  i , Ni ,...,2,1

and 2  is a fixed positive number.  

 

                                                            
9 Ross (1976a) assumes that the correlation between the idiosyncratic disturbance terms is zero (a strict 
factor model). Τhe assumption of uncorrelated residuals was relaxed by Chamberlain and Rothschild 
(1983), in this case there is an approximate factor structure.  
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In essence, Equation (1) shows that the return on a security i can be decomposed 

into a part that is associated with K common factors that capture all systematic risk and 

into another part due to the idiosyncratic disturbance term that is specific to security i

and reflecting risks specific to security i .  

 
To this end, e  was considered to be an N x 1 vector of security expected returns, 

where its elements are assumed to be real finite numbers. In addition, it is assumed that 

security variances are real finite numbers and the N x N variance-covariance matrix of 

all securities V is positive definite10. This assumption implies that there are no 

redundant securities11. With the aid of Equation (1) the variance-covariance matrix V

in the multi-factor framework can be decomposed as follows: 

 

                                                    f
 V V D

                                                    
(2) 

with D   the N x N diagonal matrix whose ith  bounded diagonal element is )( i
2  , 

where Ni ,...,2,1 , and  fV  is the N x N matrix whose (i,j)  element is given by:  

                    
2 2 2( ) ( ) ... ( )

1 1 1 2 2 2
b b f b b f b b f
i j i j iK jK K

    
    

               (3) 

where the variances of security returns in relation to the K factors appear along the 

diagonal ( ),...,2,1 Nji  and the covariances between security returns in relation to 

the K factors appear in the off-diagonal elements ( )ji  . It is assumed that the 

variances and covariances are well defined. In this formulation the variance of each 

security in addition to the idiosyncratic risk given by the elements of  D  includes the 

products of the systematic risks across securities b biK jK
times the volatility of the 

associated factor 2( )fK . This implies that the variance  of each security is constituted 

not only by its own measures of systematic risk but also by the same risk measures of 

the other securities under traded, thus moderating or increasing its own variability for 

any given factor volatility. In this case for a given security, even if its own systematic 

risk measure is small the impact on its variance will be amplified by the same 

measures of all other traded securities. 

                                                            
10 In this paper vectors and matrices are typed in boldface straight font, and constants and variables are 
typed in straight font. 
11 A redundant security is the one whose return of a security can be generated by combining other 
securities. 
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With this setting, consider a portfolio q comprised of N securities. Portfolio q is 

defined by an N x 1 vector of proportions 
q

X
 
invested in its securities with  

'
q

X u 1, where u  is an N x 1 vector of ones. Portfolio q is well-diversified in a given 

factor structure if has no idiosyncratic risk. That is (a similar definition for a well-

diversified portfolio is given by Wei (1988) and Huberman and Wang (2005)): 

 

2
( ) 0
'
q

 X ε  

      
          In this case portfolio q contains only the risk related to the common factors and 

the linear relation between portfolio q’s return and the associated K common factors 

which influence it can be expressed as follows: 

  
                                 ( ) ...

1 1 2 2
R E R b f b f b f
q q q q qK K
                             (4) 

 
where )( qRE  is the expected return on portfolio q, and  qkb  is the sensitivity of the 

portfolio q  ’s return to the fluctuations in thk factor, Kk ,...,2,1 . The APM of Ross 

(1976a, 1976b) assumes that the number of securities in the economy is sufficiently 

large so that the idiosyncratic risk can be eliminated in large portfolios.  

 

Finally, a portfolio is said to be a multi-factor efficient or efficient in a given factor 

structure if no other portfolio with the same expected return can have a lower variance 

and no other portfolio with the same variance of return can have a higher expected 

return. Here, the covariance matrix V  and the expected return vector e  are produced 

using the K-factor security return generating model. All portfolios denoted on the 

expected return standard deviation space lying to the right of the minimum-variance 

portfolio set are defined as inefficient portfolios in a given factor structure. 

 
III. Expected return-variance inefficient benchmarks in a given factor structure  
 

The analysis begins by introducing the properties of the multi-factor, undiversified 

inefficient benchmarks. Consider a multi-factor, well-diversified efficient benchmark q 
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other than the GMVP. Let p be a multi-factor, undiversified inefficient benchmark with

)()( qREpRE  . In the expected return standard deviation space portfolio p lies inside 

the frontier to the right of portfolio q 12. Then the return of portfolio p can be 

decomposed into qR and a residual return pU : 

                                                    R R U
p q p
                                                    (5) 

where 0)( pUE  holds. Later in this section we show that pU
 
is the return of an 

arbitrage free portfolio and define its weights.   

 

       This decomposition is similar to those of Green (1986) (see Sec I, p. 297), 

Hansen and Richard (1987) (see Eq. [3.7], p. 596), Jagannathan (1996) (see Equation 

[1], p. 3) and Diacogiannis and Feldman (see Eq. [2], p. 9). Equation (5) implies 

qRpRpU  which shows pU
 
exists and is unique for every pair of returns pR and

qR . 

                The linear relation between the N x 1 vector of security expected returns 

and the N x 1 vector of security betas in relation to the efficient benchmark q  is given 

by the Equation (6) below (proof in Appendix A, Equation (A9)):  

 

                            )(2
)()()(

qRzq
RE

q
REzqRE



qVX
ue 



 

                            
(6) 

Pre-multiplying both sides of Equation (6) by '
pX  and noting that )()( qREpRE 

we obtain: 

                                          2( ) ( , )R Cov R R
q p q

                                              (7) 

 

     Equation (7) shows that all the multi-factor inefficient benchmarks that have the 

same expected return with the efficient benchmark q have betas with respect to q 

equal to 1. Thus all the inefficient benchmarks that have the same expected return 

                                                            
12 A detailed description of the properties and composition of an efficient benchmark in a given factor 
structure see Appendix A. For an examination of inefficient portfolios in an expected return–standard 
deviation framework see Diacogiannis (1999). 
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with the efficient benchmark q have the same beta with respect to that efficient 

benchmark.   

 

Next we will derive the linear relation between the residual return pU  and the 

K common factors. Indeed we start by deriving, from Equation (5), the covariance 

between the return of the multi-factor inefficient benchmark p and the factor kf ,

Kk ,...,2,1 , as follows: 

 

                        ( , ) ( , ) ( , )Cov R f Cov R f Cov U f
p k q k p k

                                      (8) 

Dividing both sides of Equation (8) by 2( )kf results in:     

                                              b b b
pk qk Upk

                                                  (9) 

 

Combining Equation (5) with Equation (4) establishes that: 

 

                 ( ) ...
1 1 2 2

R E R b f b f b f U
p q q q qK K p
                                      (10) 

 

       Substituting Equation (9) into (10) becomes: 

 

( ) ... ...
1 1 2 2 1 1 2 2

R E R b f b f b f b f b f b f U
p p p p pK K Up Up UpK K p
                                          

                                                                                                                          (11) 

 

where ( , ... ) 0
1 1 2 2

Cov f b f b f b f U
k Up Up UpK K p
       ,

 
Kk ,...,2,1 . 

 

          Note that ( , ... ) 0
1 1 2 2

Cov f b f b f b f U
k Up Up UpK K p
       implies

( , )
2( )p

k

k

Cov U fp
b U k f

  for each k . 

 

Equation (11) can be re-written as: 
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                    ( ) ...
1 1 2 2

R E R b f b f b f
p p p p pK K p

                                      (12) 

where 

                       ...
1 1 2 2

b f b f b f U
p Up Up UpK K p
                                     (13) 

 

As can be observed, Equation (12) constitutes the K factor return generating 

model for the return pR  of the multi-factor, undiversified inefficient benchmark p and 

it is consistent with the decomposition shown in Equation (5). 

 

 To gain further insight into the relation between pU  and its betas, Equation (13) 

can be expressed as follows: 

                                

                          ...
1 1 2 2

U b f b f b f
p Up Up UpK K p

                                 (14) 

 

At first glance, Equation (14) shows that pU  is generated by K factors and the 

portfolio p’s idiosyncratic disturbance.  

 

Equations (4), (7), (9), (12), and (14) can be used to show that the residual term is 

uncorrelated with the rate of return of the multi-factor efficient benchmark q , (proof in 

Appendix B):  

                                            ( , ) 0Cov R U
q p

                                                  (15) 

 

By taking Equation (15) into account, Equation (5) expresses an orthogonal 

decomposition of the return of the multi-factor inefficient benchmark p. As  Equation 

(5) can be also written as, ( ) ( ( ))R E R R E R U
p p q q p
    , where )()( qREpRE  , this 

implies that the beta of the inefficient benchmark p  with respect to the efficient 

benchmark q is one, ( ( ), ) 0Cov R E R U
q q p
  , and 0)( pUE This is a linear return 

generating process for multi-factor, undiversified inefficient benchmarks that have 

expected returns equal to that of the multi-factor, well-diversified efficient benchmark 

q.  
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The apparatus needed to define the variance of multi-factor inefficient benchmark 

p has now been obtained. Indeed, using Equations (5) and (15), this variance can be 

expressed as follows:  

                                   2 2 2( ) ( ) ( )R R U
p q p

                                                (16) 

where )(2
pU the variance of pU . 

 

Equation (16) decomposes the variance of the inefficient benchmark p into two 

parts; the variance of the multi-factor, well-diversified efficient benchmark q and the 

variance of  Up . The lower the variance of Up , the closer the position of the inefficient 

benchmark p to the efficient benchmark q. 

 

To develop intuition for the covariance between the return of any security, say i, 

and the return of the multi-factor inefficient benchmark p, Equation (5) is used to 

produce:  

                           ( , ) ( , ) ( , )Cov R R Cov R R Cov R U
i p i q i p

                                    (17) 

 

From Equation (17) it can be seen that the covariance between the returns of a 

security i and the return of the inefficient benchmark p is divided in two parts. The first 

part is the covariance between the returns of the security i  and the return of the well-

diversified efficient benchmark q and the second part is covariance between the return 

of the security i and pU . Equation (17) can be used together with Equation (6) to 

generate the asset allocation of the multi-factor inefficient benchmark p. Thus we have 

the following corollary. 

 

Corollary III.1 The N x 1 vector of proportions that define a multi-factor inefficient 

benchmark p can be written as follows: 

 

                     
( ) ( )

2 2

a bE R b cE R
p p

ac b ac b

 
    

 

1 1 1X V u V e V hp p                 (18) 
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where ph  is the N x 1 vector of covariances between the security returns and the 

residual term pU . 

(proof in Appendix B) 

 

From Equation (18) we derive 0
ph

1Vu'  and 0
ph

1Ve' . Thus, the 

portfolio that is defined by the investment proportions vector ph
1V is an arbitrage 

free portfolio. Now Equation (18) formally states that the investment proportion 

vector that defines a multi-factor inefficient benchmark can be decomposed into the 

investment proportions vector that defines a well-diversified frontier benchmark 

having the same expected return as the inefficient benchmark and an investment 

proportion vector that defines an arbitrage free portfolio.  

 
IV. A Multi-factor APM using an undiversified inefficient benchmark in a given 
factor structure (LBPUI)  

 

In this section we describe the equivalence between a multi-factor APM and the 

LBPUI that holds for undiversified inefficient benchmarks in a given factor structure. 

The following corollary makes use of the preceding analysis and provides the main 

result of this section. 

 

Corollary IV.1 Consider a perfectly competitive and frictionless market containing 

N securities, where short sales of securities are permitted and there are no 

arbitrage opportunities. It is assumed that investors believe that the single-period 

random return of any of the N securities can be generated by a linear K factor 

model. Let V  be a non-singular positive definite covariance matrix, and assume 

that there are at least two securities with different expected returns. Then, the 

following two propositions are equivalent13:  

 

                                                            
13 Chamberlain (1983) considered a riskless security and offered some bounds on the approximation 
error in the arbitrage pricing equation. Then he showed that these bounds imply the equivalence 
between exact arbitrage pricing and a well-diversified mean-variance efficient portfolio.   
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(i) There is an exact relation between the vector of expected security returns and 

the K vectors of factor betas: 

 

                                   KB2B1Bue
K

  ...
21                       

(19) 

 

Where KB2B1B ,...,, are the N x 1 vectors of factor beta coefficients of the 

securities on the K factors. 

 

(ii) The vector of security expected returns can be expressed as follows14 

 

)(2
)()(

)(2
)()((

qRzp
RE

p
RE

qRzp
RE

p
RERE



phpVX
ue 



 



  ︶zp  

                                                                                                              

(20) 

where 1uX'
p , )( zpRE the expected return of a well-diversified frontier 

portfolio whose return is uncorrelated15 with the return of the multi-factor  

inefficient portfolio p, )()( qREpRE  , the efficient benchmark q is other than the 

GMVP,
 

)(2
qR the variance of returns on the multi-factor well-diversified 

minimum variance portfolio q, and ph  the N x 1 vector of covariances between 

the security returns and the residual term16. 
 
(Proof in Appendix B)  
 

                                                            
14 Diacogiannis and Feldman (2013) derived a similar result as that of Equation (19) using an expected 
return-standard deviation framework, where the covariance matrix is not required to have any 
particular structure.   
15 We know that all portfolios that have expected returns equal to that of zq are uncorrelated with q. 
This implies that the minimum variance portfolio zq is uncorrelated with all portfolios that have the 

same expected return with q.  Since )()( qREpRE  , benchmark p is uncorrelated with zq. Hence

)()( zpREzqRE  . Any inefficient benchmark has infinitely many zero beta portfolios at all levels of 

expected  returns. So if the inefficient benchmark p has the same expected return with the frontier 
portfolio zp, Equation (20) becomes a zero relation (see for a detailed analysis in an expected return-

variance framework Diacogiannis and Feldman (2013)). Here we assume that )( zpRE is given by 

Equation (A11) in Appendix A with )()( qREpRE   and zp is a well-diversified minimum variance 

portfolio. 
16 Green (1986) examined the consequences of inefficient portfolios on deviations from the security 
market line. Ferguson and Shockley (2003) showed that the exclusion of ‘debt’ from the market 
portfolio produces understated betas.   
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To obtain  further understanding of the expected return-risk relation, Equation (20) 

can be used to express security expected returns in terms of betas with respect to the 

multi-factor, undiversified inefficient benchmark p as follows (LBPUI): 

 

UpBpBue
)(2

)(2
)()(

)(2

)(2
)()((

qR

pU

zp
RE

p
RE

qR

pR

zp
RE

p
RERE












 



  ︶zp

                                  

                                                                                                                                  

(21) 

                                                                                                                                 

 

where pB  is the N x 1 vector of security betas in relation to the multi-factor inefficient 

benchmark p, and UpB  is the N x 1 vector of security betas in relation to pU .  

 

Undoubtedly, the linear model summarized in Equation (21) shows that the betas 

of the benchmark alone do not sufficiently explain security expected returns. More 

prominently, the multi-factor APM can be represented by a two-beta model that 

accounts for security expected returns. One induced by the inefficient benchmark and 

the other adjusting for its inefficiency. This is an intuitively appealing result. Even in 

the presence of several sources of factor risks, surprisingly, there are only two unique 

sources of risk that influence expected returns.  

 

In addition, from Corollary IV.1, it can be seen that the validity of Equation (20) 

and the assumption that security returns obey a linear K-factor model imply the 

existence of a multi-factor APM. Apparently, this provides another approach to derive 

a multi-factor APM. Such a model is produced by applying a linear K-factor return 

generating model to Equation (20), which in turn relies on the multi-factor inefficiency 

of a non-diversified benchmark.  

 

It is interesting to note here that Equation (20) can also be derived using 

conditions that preclude arbitrage opportunities. The basic logic of this approach is as 

follows. Using Corollary III.1 to write UpXqXpX  , with qX denoting the N x 1 

vector of proportions that define the multi-factor efficient benchmark q, where

)()( pREqRE  , and UpX  is the N x 1 proportions vector defining an arbitrage free 
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portfolio, that is  0u'
UpX . After a pre-multiplication of  UpXqXpX   by 'e  

and noting that  ( ) ( )E R E R
q p
  implies 0e'

UpX . Finally, the condition 

0 qVX'
UpX︶php︵VX

'
UpX  holds, since the arbitrage free portfolio defined 

by the N x 1 UpX is orthogonal to the multi-factor efficient benchmark q. Thus, we 

see that '
UpX  is orthogonal to the unit vector u  the vector of expected returns e  and 

the vector phpVX  . As a consequence, the expected return vector can be 

represented as a linear combination of u   and phpVX   which in turn implies 

Equation (20).   

 

It is worth mentioning that taking the results of Corollary A.3 (see Appendix A) 

and Corollary IV.1 together, the multi-index APM is implied by assuming a linear K-

factor generating model plus the validity of either the LBPDE or of the LBPUI. This 

clearly shows the flexibility of the multi-factor APM to hold under different sets of 

assumptions. It also means that either a multi-factor, well-diversified efficient 

benchmark or a multi-factor, undiversified inefficient benchmark whose return obeys a 

linear K-factor return generating model can be used to derive a multi-factor APM. In 

the latter case, however, an additional factor that is related to the inefficiency of the 

benchmark should be taken into account.  

 

It is also worth noting that empirical investigations that employ inefficient 

benchmarks in a given factor structure should adopt Equation (21) (or Equation (20)) 

rather than the mis-specified equation (Equation A19) in Appendix A), which in this 

context is the LBPDE. In this case, it is the combination of Equation (21) with a multi-

factor return generating model that can provide the statistical structure for the testing 

of hypotheses regarding security returns. When a benchmark is multi-factor inefficient, 

employing LBPDE results in a misspecification of the equation used for estimation and 

testing. Basically, there are two sources of misspecification. The first potential source 

of misspecification results from omitting the additional beta related to the inefficiency 

of the benchmark. The second misspecification occurs because the LBPUI employs a 
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weighted beta induced by the multi-factor inefficient benchmark, which differs from 

the unadjusted beta of the LBPDE17.   

 

Although a multi-factor APM can also be derived without utilizing the LBPDE or 

the LBPUI (e.g., Ross (1976a, 1976b)), the previous analysis in this work has two 

notable uses. First, Corollary IV.1 (Corollary A.3 in Appendix A) explains the 

relationship between the LBPUI (LBPDE) and the multi-factor APM. Second, the key 

point is that the LBPUI (or LBPDE) can be utilized as the formal foundation of multi-

factor pricing models. It provides some guidance and permits researchers to select 

underlying risk factors that drive variations in security returns by examining the 

possible linear relationships between the second risk factor and observed variables.  

 

Unfortunately, the arbitrage pricing theory does not provide any formal theoretical 

or empirical guidance for the identification or the selection of the underlying risk factors 

that drive variations in security returns. Accordingly, the exploration of the cross-

sectional predictability of security returns uses various predictor variables. For 

example, Chan, Hamao and Lakonishok (1991) used variables such as earnings yield, 

cash flow yield, size, and book to market ratio. Naranjo, Nimalendran and Ryngaert 

(1998) employed the dividend yield, etc. These variables appear to have been selected 

based on simple financial reasoning, by plain intuition, or by their popularity among 

researchers. Equation (21) constitutes a basis for selecting several factors that affect the 

risk related to the benchmark, the risk related to its inefficiency, or both. To illustrate, 

the second case is discussed. Using the security return generating model and Equation 

(14), the following can be obtained: 

             

2 2( ) ( ) 11 ...
1 2 2 2( ) ( ) ( )

f f
kb b

Up UpK
U U U
p p p

 

  
   B B B gUp 1 K                  (22) 

 

where g  is the N x 1 column vector with elements ),( iiRCov  , i=1,2,3,…,N. 

                                                            
17 Kim and Wu (1987) tested a multi-factor equilibrium risk-return model that is derived by combining 

the CAPM and a multi-factor return generating model.  They implicitly assumed in their tests that the 
proxy chosen for the market portfolio is ex-post efficient and no attempt was made to verify their 
assumption. As the present work shows, the inefficiency of a market index leads to misspecification of 
their model. 
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The analysis presented also holds for both well-diversified and inefficient 

benchmarks. In the case of a well-diversified benchmark, in Equation (22) 0g  , 

where 0  is the N x 1 zero vector.  

 

Next, substituting Equation (22) into Equation (21) gives18 : 
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where 
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(24) 

 

Upon reflection, Equation (23) provides a helpful norm for the factor selection 

that has remained unclear to date. It shows that the factors, other than the chosen 

benchmark, that influence security expected returns are proxies for the residual term 

derived from the multi-factor inefficiency of the chosen benchmark. Therefore, on the 

one hand, it focuses the researcher’s attention not only on the security betas calculated 

against the benchmark but also on the betas of securities that are related to the 

inefficiency of the chosen benchmark. On the other hand, it provides flexibility because 

it permits researchers to select the factors that provide the best explanation for the 

inefficient part of the specific benchmark at hand.  

 

It is reasonable to further this argument and state that the direct use of macro-

economic variables in the security return generating model is not appropriate due to the 

                                                            
18 Wei (1988) developed a model that combined features of the CAPM and APM. His analysis is valid 
in a competitive equilibrium and his version of the APM included the market portfolio where it is 
assumed to have idiosyncratic risk in a given factor structure. His model included k+1 factors priced 
with the last factor being a beta due to the existence of the market portfolio’s idiosyncratic risk.    
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multicollinearity problems as well as to the lack of identification of the macro-

economic variables that influence security returns in advance. One way to proceed is to 

utilize the technique of principal components to construct independent factors from a 

set of macroeconomic variables. It is useful to point out that this procedure eliminates 

multicollinearity among the variables that explain security returns and also reduces the 

dimensions of this set of independent variables.  Among the extracted variables, the 

variables that affect the risk due to the inefficiency of the chosen benchmark (market 

proxy) can be examined. Lastly, the conditions under which the risk prices take non-

zero values can be investigated. A close inspection of Equations (23) and (24) reveals 

that the risk price associated with a factor other than the betas of the chosen benchmark 

is affected by the excess return on the benchmark over and above the return on a zero-

beta portfolio, the betas of the securities on the K factors, the betas of the securities in 

relation to pU , and the two variances. Thus, a risk price is different from zero if the 

betas take values that are significantly different from zero.      

 

It is interesting that Equation (23) is consistent with two basic empirical findings 

reported earlier: the acceptance of the expected return–standard deviation inefficiency 

for various benchmarks and the existence of multi-factor pricing models that 

characterize expected security returns. More significantly, Equation (23) provides a 

combination of the LBPUI and the return generating model and produces a testable 

pricing model. This model provides guidance regarding the risk premia and suggests 

searching for factors that explain a substantial fraction of the covariation between 

security returns and the residual term due to the multi-factor inefficiency of the 

benchmark. Furthermore, as only the available traded securities in the market can be 

used, Roll’s (1977) critique is not applicable.  

 

Although Equation (23) is supported by a well-specified theoretical foundation, it 

is not an equilibrium model. However, it is operational because it admits several risk 

sources that are related to the inefficiency of the given benchmark. In addition, it does 

not require the market portfolio, and it can be used in any market segment.  

 

The theoretical APM, as developed by Ross (1976a, 1976b), does not make use 

of the market portfolio or a benchmark in the pricing equation. However Equation (23) 
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unifies the basic ingredients of the multi-factor APM and the LBPUI and provides a 

model that takes the benchmark portfolio’s beta into account as a factor that influences 

security expected returns. Therefore, at least in theory, the survival of the survival of 

the security betas in relation to the benchmark is supported.  

 

       Finally, additional differences between the APM developed by Ross (1976a, 

1976b) and Equation (23) are described below. Equation (23) is an exact multi-factor 

APM, unlike the original APM that only approximately relates the security expected 

returns with factor betas. This latter model does not require a benchmark’s beta to be 

used as a variable to explain security expected returns, while Equation (23) requires 

that the beta of a benchmark is included as an explanatory variable of security 

expected returns. In Equation (23), the benchmark portfolio’s idiosyncratic risk is 

priced, whereas in the conventional APM, only factor betas are priced.   

 

     The original APM  Ross (1976a) assumes the existence of several common factors 

but does not identify them, while Equation (23) asserts that the security betas with 

respect to a benchmark and the security betas with respect to factors that proxy the 

inefficiency of the benchmark influence security expected returns. Equation (23) 

constitutes a simple link among the single-period expected return-variance analysis 

and the single-period multi-factor pricing models. In Equation (23), each beta is 

multiplied by a ratio of two variances, while the APM uses unadjusted betas. Lastly, 

we can use Equation (21) and identify the factors that influence the risk related to the 

benchmark and have as an individual observable factor, the risk related to its 

inefficiency.  

 

V. An empirical application 

 

     We evaluate the reliability of our approach by comparing the expected returns of a 

number of portfolios calculated using our methodology to the same predictions 

derived from a well-established linear multi-factor model. Our proposed methodology 

suggests that on the average the two ‘equilibrium pricing’ generating approaches 

should yield equivalent results. 
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    More specifically we apply our approach considering the monthly returns of the six 

value weighted portfolios formed on size and book-to-market, listed on the Kenneth 

French website19  along with the time series of the factor values covering the period 

1926m7 to 2018m8, a time period of 1106 months. The six portfolios were created as 

follows. First, in June of each year t the stocks are ranked on the basis of size. Then 

all the stocks are parted by the median into two groups, small (S) and big (B). The 

stocks are also divided into three book-to-market (B/M) equity groups. Low B/M 

group (L) contains stocks with 30% lowest B/M ratio, medium B/M group (M) 

consists of stocks with 40% medium B/M ratio and high B/M group (H) contains 

stocks with 30% highest B/M ratio. Next, from the intersections of the two size 

groups with the three B/M ratio groups six portfolios are constructed for each year, 

BH, BM, BL, SH, SM, SL (we call them p1,p2,p3,p4,p5.p6, respectively). The size 

factor SMB is calculated as the average return on the three small portfolios minus the 

average return on the three big portfolios. The value factor HML is calculated as the 

average return on the two value portfolios (high B/M ratios) minus the average return 

on the two growth portfolios (low B/M ratios).  The monthly value-weighted returns 

on the six portfolios are calculated from July of year t to June of year t + 1 and the 

portfolios are reformed in June of year t + 1.  

 

     The following linear three-factor model is utilized:                    

  

                           
tstHMLshtSMB

s
g

tm
Rsbsatsp

,,,                            (25) 

                                   

 where ,ps t  is the realized return on portfolio s (s = 1,2,3,4,5,6) for month t (t = 

1,2,3,…,1106) and sa  denotes the intercept.  The risk factors are the following: 
,

R
m t

is value-weighted return of all CRSP firms incorporated in the US and listed on the 

NYSE along with SMBt the difference of the returns on small firms and large firms 

for month t, and HMLt the difference in returns of firms with high B/M ratios and the 

returns of firms with low B/M ratios for month t. Parameters  , ,b g hs ss
 are measures 

                                                            
19 We are grateful to Professor French for making these data available 
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of the sensitivities of the returns on portfolio s to changes on these three common risk 

factors and 
,s t

  a white noise error term of portfolio s for month t. 

 

     Table 1 presents for each portfolio estimates of the three-factor time-series 

regression represented by Equation (25).  All the estimated coefficients, except 
s

ĝ for 

portfolio p6, are statistically significant at 1% level. 

 

Table 1: The estimates of the three-factor time-series regressions for monthly returns  

on six portfolios formed on size and book-to-market ratio (1926m7-2018m9, p-values 

are in parentheses) 

 
p1 p2 p3 p4 p5 p6 

sâ  

-0.17923 

(0.00000)

0.05419 

(0.08578) 

0.01495 

(0.49883) 

0.06899 

(0.00194) 

-0.05402 

(0.15983) 

-0.12533 

(0.00120) 

sb̂  

1.08859 

(0.00000)

0.98393 

(0.00000) 

1.02320 

(0.00000) 

1.02226 

(0.00000) 

0.98591 

(0.00000) 

1.08763 

(0.00000) 

s
ĝ

 

1.03414 

(0.00000)

0.82088 

(0.00000) 

0.92921 

(0.00000) 

-0.09068 

(0.00000) 

-0.13945 

(0.00000) 

0.01431 

(0.25439) 

sĥ  

-0.19068 

(0.00000)

0.29443 

(0.00000) 

0.78597 

(0.00000) 

-0.23018 

(0.00000) 

0.32673 

(0.00000) 

0.79326 

(0.00000) 

    
R2 0,97454 0.97807 0.99209 0.98110 0.95061 0.96860 

 

      After setting , ,R Rp t m t , we use Equation (5) to calculate 
,

U
p t

, where   

, , ,
U R R
p t p t q t

  , t = 1, 2, 3… 1106. We initially calculate the (6 x 1) mean-return 

vector (6 portfolios) using Equation (25). Subsequently we compute the (6 x 6) 

variance-covariance matrix V, following Equations (2) and (25). 

 

     We proceed by projecting the mean return of portfolio p on the minimum variance 

portfolio set of the 6 portfolios and calculating the weights that define the minimum 

variance portfolio q, in effect creating the corresponding efficient benchmark q, where  

R R
p q
 . Then we use the weights of the minimum variance portfolio q and the 
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monthly returns of the six portfolios to calculate the monthly returns 
,

R
q t

 of portfolio 

q. We observe that portfolio q has a mean return greater than the mean return of the 

GMVP, confirming that q is a mean-variance efficient portfolio. Finally, we calculate 

the monthly returns tpU ,  by subtracting for each month the return of the efficient 

portfolio q from the corresponding return of the market index (Equation (5))20.    

 

     Next we test for the statistical validity of the restrictions regarding the 

relationships between the risk metrics of the portfolios p, q and the return pU  (see 

Equations (15) and (16)). We find that the sample value of the correlation coefficient 

between 
,

R
p t

and 
,

U
p t

, 
^

( , ) 0.0496,,
R Up tp t

   is not statistically significant from 

zero, as the associated value or the t-test under the null hypothesis of ( , ) 0,,
R Up tp t

 

is -1.65, establishing the statistical validity of the restriction imposed by Equation 

(15)21.   The F-stat for the equality of variances given by Equation (16), results in a 

test statistic value of 0.97 supporting the non-rejection of the null hypothesis of the 

equality of variances.  

 

     To test for the claim that the monthly returns 
,

U
p t

of the arbitrage free portfolio 

are compensating for the existence of additional risk factors due to the inefficiency of 

the chosen benchmark we test for the relationship between the additional factors  

( SMB
t

and HML
t

) and the returns 
,

U
p t

  by running a linear time-series regression of 

the form: 
, 1 2 ,

U c c SMB c HML v
p t o t t p t

      where 
,

v
p t

captures the random 

component of 
,

U
p t

. The results are presented in Table 2. These results suggest that 

                                                            
20 We also verify that the sum of the proportions that define the risk free portfolio is approximately 
equal to zero. It is not exactly zero because portfolio p is not composed exclusively from the six 
portfolios. 
 
21 The value of the correlation between 

,
R
p t

 and 
,

U
p t

 is not exactly zero. Due to the condition 

, ,
R R
m t p t

 , portfolio p is not constituted exclusively from the six portfolios included in this 

example. 
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there is a strong linear relationship between the chosen two risk factors and the returns 

,
U
p t

that compensate for the inefficiency of the chosen benchmark. 

 

Table 2: Relationship between 
,

U
p t

 and the risk factors SMB
t

 

and HML
t

 (1106 monthly observations, p-values are in parentheses) 

 Coefficient 

o
c

 
-0.18592 

(0.00189)***

1
c

 
0.44530 

(0.00000)***

2
c

 
0.24625 

(0.00000)***

F-stat 435.21 

R2 0.4411 

*** Indicates significance at 1%  

 
     

  To test for the equivalence of the predicted returns from our model, we start by 

conducting two statistical exercises. First, using predictions for Equation (21) and the 

linear three-factor model, Equation (25), we generate equilibrium/expected returns for 

each portfolio. Subsequently we test for the equality of mean returns against the 

alternative of significant differences, using the t-test. 

 

     In this exercise, we generate predicted returns using the coefficients from the 

three-factor model estimated above as follows, first, we set the values of the factors 

SMB
t

 and HML
t

 to their averages whilst allowing the values of 
,

R
m t

to vary through 

time, secondly, we calculate mean returns, over time, for each of the six portfolios and 

collect them in the series ( , 1,2,3,4,5,6)mp s
s

 , where the super script m indicates that 

the factors SMB and HML have been kept at their sample average values.  We  then  

compare each portfolio mean return to its mean return obtained  using Equation (21),  

these are denoted as up
s

 , s = 1,2,3,4,5,6.  Our theory suggests that these mean returns 
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should be statistically identical, that is we test the null hypothesis  
0
: 0

u m
H p p

s s
  

against the alternative 
1
: 0.

u m
H p p

s s
  The results from the test are presented in Table 

3. We find that the mean differences of the two mean predictions for all six portfolios 

are zero, in support of the null hypothesis, with standard deviations not exceeding 

0.4424 basis points.   
 

Table 3: Mean prediction differences { }
m

p p
s s
u  , standard deviations and t-statistics,  

: 0
u m

H p po s s
    (SMB and HML set to mean values) 

 
1 1
u m

p p  
2 2
u m

p p  
3 3
u m

p p  
4 4
u m

p p  
5 5
u m

p p  
6 6
u m

p p  

Mean 

difference 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Standard 

deviation 0.4424 0.2529 0.1486 0.1257 0.0868 0.3354 

t-statistic 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

 

In the second testing exercise, we generate predicted portfolio mean returns by letting 

all three factors to vary through time, we calculate the mean returns  3( )fp
s

,   and we 

compare them to up
s

. This is a more stringent test as we allow all the factors in the 

three-factor model to vary through time. 

 

Our results from this exercise, with the same null and alternative hypotheses, are 

presented in Table 4. We find that the average differences of the two means predicted 

returns for each of all six portfolios are not significantly different from zero.  
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Table 4: Mean prediction differences 3
{ }

fu
p p
s s
 , standard deviations and t-statistics, 

3
: 0

fu
H p po s s

    (SMB and HML vary through time) 

 3

1 1
fu

p p  3

2 2
fu

p p  3

3 3
fu

p p  3

4 4
fu

p p  3

5 5
fu

p p  3

6 6
fu

p p  

Mean 

difference 

0.0000 -0.2676 

 

-0.2017 

 

0.5390 -0.0372 

 

-0.2290 

 

Standard 

deviation 3.4289 2.8481 4.2291 0.8546 1.1630 2.8711 

t-statistic 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

 

 

Finally to test for the ability of our model to account for the data (observed portfolio 

returns) we calculate the two correlation coefficients between the actual returns and 

the predicted returns from each model, depicted by Equations (25) and (21), 

respectively, and test for their equality22. Let ( , )
, ,

u u
p ps s t s t

 be the correlation 

coefficient between the actual returns of portfolio s and the returns of portfolio s 

derived using our proposed methodology and ( , )
, ,

m m
p ps s t s t

  be the correlation 

coefficient between the actual returns of portfolio s  and the returns of portfolio s 

derived using the three-factor model where we set the values of the factors SMB
t

 and 

HML
t

 to their averages (s=1,2,3,4,5,6). Tables 5 present the results for testing the 

equality of the correlation coefficients. The predicted/equilibrium portfolio returns 

from the two approaches are statistically indistinguishable as predicted by Corollary 

IV.1.  

 

 

 

                                                            
22 To test for the equality of the correlation coefficients we use the statistic under the null hypothesis  

H0 1 2   , 0.5ˆ ˆ( 1 2) / 2 *[1 / ( 3)] (0,1)z p p T N     
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Table 5: Correlation coefficients ( , )
, ,

u u
p ps s t s t

 , ( , )
, ,

m m
p ps s t s t

  and z-statistics 

 mu
1

,
1


 

mu
2

,
2


 

mu
3

,
3


 

mu
4

,
4


 

mu
5

,
5


 

mu
6

,
6


 

coefficient 0.89, 

0.89 

0.90, 

0.90 

0.86, 

0.86 

0.97, 

0.97 

0.95, 

0.95 

0.90, 

0.90 

z-statistic 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

 

Finally, let 3 3( , )
, ,

f fp p
s s t s t

  be the correlation coefficient between the actual returns of 

portfolio s  and the returns of portfolio s derived using the three-factor model where 

we allow all the factors to vary through time (s=1,2,3,4,5,6). Table 6 presents the 

results for testing the correlation coefficients ( , )
, ,

u u
p ps s t s t

 and 3 3( , )
, ,

f fp p
s s t s t

  for 

equality. 

 

Table 6: Correlation coefficients ( , )
, ,

u up p
s s t s t

 , 3 3( , )
, ,

f fp p
s s t s t

 , z-statistics (all 

factors are time varying)  
 fu 3

1
,

1


 
fu 3

2
,

2


 
fu 3

3
,

3


 
fu 3

4
,

4


 
fu 3

5
,

5


 
fu 3

6
,

6


 

coefficient 0.89, 

0.99 

0.91, 

0.99 

0.87, 1.00 0.98, 

0.99 

0.95,0.97 0.91, 

0.98 

z-statistic 2.235** 1.911* 3.032*** 0.303 0.517 1.774 

*,**,*** Indicate significance at 10% , 5% and 1% respectively 

 

The averages of the correlation coefficients over all six portfolios are 

918.0)
,

,
,

( u
ts

p
ts

pu
s

 and 937.0)
3
,

,
,

(
3 f

ts
p

ts
p

f
s

 , respectively and we find no 

statistically significant difference between them 

 

From both of these exercises we find that on average across a number of assets (6 

portfolios) and time periods our proposed approach produces predicted returns almost 

indistinguishable from those generated by a well-established linear three-factor 

model. In this particular case the two approaches result in almost identical predictions 

regarding expected returns.  
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   The statistical evidence reported here supports the basic idea that the arbitrage free 

portfolio that compensates for the inefficiency of the benchmark in a given factor 

structure is a useful device to examine whether the relationship between the chosen 

factors and the returns 
,

U
p t

 of the arbitrage free portfolio are strongly associated. If 

such a relationship cannot be found, the validity of chosen factors could be 

questionable resulting in serious mispricing by underestimating the risk.  

 

 

 

VI. Conclusions  

  

       This study provides a common ground between the APM framework and the 

analysis of expected return-variance efficient or inefficient benchmarks in a given 

factor structure. The main emphasis of this study has been the analytic formulation of 

the relationship between a multi-factor APM and a linear pricing model based on a 

possibly undiversified inefficient benchmarks in a given factor structure.  It has been 

demonstrated that a multi-factor APM reduces to a two-beta model for an undiversified 

multi-factor inefficient benchmark; one induced by the benchmark and one associated 

with its inefficiency (LBPUI). The potential advantage of this result is  

that we can use a multi-factor generating model to expand the LBPUI to a linear multi-

factor pricing model in which the inefficient part of the particular benchmark 

constitutes a helpful norm for selecting common factors that affect security returns.    

 

This linear specification is based on the theoretical framework developed in this 

study as it results to a well-specified securities pricing model based on inefficient 

benchmarks. In addition, this model does not require the utilization of the market 

portfolio because it can be applied to subset of securities available in the market. 

Moreover, it provides additional insights into the nature of factors that affect expected 

returns on securities. It allows researchers after selecting risk factors to have a helpful 

norm justifying their selection.  
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It is worth emphasizing that a multi-factor pricing model based on the LBPUI 

includes an observable premium related to a benchmark along with another computable 

factor premium related to the inefficiency of that benchmark. In this particular case, at 

least in theory, this multi-factor pricing model provides support for the continued 

existence of the security beta in relation to the benchmark despite its inefficiency. 

 

In addition, we have shown that a multi-factor APM is equivalent to a single linear 

beta pricing model based on a multi-factor efficient benchmark (LBPDE) other than 

the GMVP. Formally, in the presence of a given multi-factor structure, this result 

produces a simple link among a multi-factor APM and the LBPDE. 

 

The results from the empirical application are very encouraging. The return 

predictions from our model matched very closely (statistically identical) the estimates 

from the Fama-French three-factor model. More particularly, we have established that 

the returns from the arbitrage-free portfolio correspond closely the two additional to 

the inefficient benchmark risk factors. This result establishes the relevance of the 

factors accounting for the benchmark inefficiency. It is this statistical association that 

aids in selecting factors because the returns of the arbitrage free portfolio are acting as 

a substitute of the linear combination of only these factors that account for asset 

returns.  
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Appendix A:  

Proof of the Relation between the Arbitrage Pricing Model and the LBPDE 

We begin with the following proposition:  

Proposition A1:  Let q be a well-diversified portfolio whose return can be expressed 

by a linear K factor model, and 1u'qX , qX  is the N x 1 vector defining portfolio 

q. Then, the N x 1 vector of security expected returns is approximately linear to the  

N x 1 unit vector and the N x 1 vector of security betas: 

                                                         Bue 1hh                                                    

 where  ,
1

h h   are constants, and B  is the N x 1 vector of security betas in relation 

to portfolio q.  

Proof 

Let q be a well-diversified portfolio with 1u'qX . Next consider the N x 1 vector of 

weights, call it vectory ,defining an arbitrage free portfolio. It is assumed that the 

arbitrage free portfolio includes one or more long and short positions.  If this portfolio 
has no systematic risks due to the factors that affect its return, then it can be 
immediately written:                                                     

                                                      0uy'                                                            (A1) 

                            0...,,0,0  KBy'2By'1By'                                           (A2) 

We can make use of Equations (1) and (4) (in the main text) to express the covariance 
between the returns on security i and portfolio q as follows:  

              2 2 2( , ) ( ) ( ) ... ( )
1 1 1 2 2 2

Cov R R b b f b b f b b f
i q i q i q iK qK K

                   (A3) 

Dividing both sides of Equation (A3) by 2( )R
q

 gives: 

 

      

2 2 2( , ) ( ) ( ) ( )
1 2 ...

1 1 2 22 2 2 2( ) ( ) ( ) ( )

Cov R R f f fi q Kb b b b b b
i q i q iK qK

R R R R
q q q q

  

   
                  (A4) 

 

Equation (A4) provides an expression of the security i's beta relative to portfolio q in 

terms of , ,...,
1 2

b b b
i i iK

.  
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Equation (A4) can be written in matrix notation as follows: 

 

               
2 2 2( ) ( ) ( )

1 2 ...
1 22 2 2( ) ( ) ( )

f f f
Kb b b

q q qK
R R R
q q q

  

  
   B B B B1 2 K                        (A5) 

where B  is the N x 1 vector of security betas in relation to portfolio q, and  

KB,...,2B,1B  are the N x 1 vectors of factor beta coefficients of the securities on 

each of the factors23.  In essence Equation (A5) provides a linear decomposition of the 
beta of any security with respect to portfolio q in terms of its betas with respect to the 
K  factors. 

Pre-multiplying both sizes of (A5) by y'  and recognising the fact that the arbitrage 

free portfolio has zero systematic risks due to the factors that affect its return, yields 
(see Equation (A2)):     

                                                             

0By'
                                                      

(A6) 

Also since ...
1 2

        e u B B B1 2 K  this arbitrage free portfolio has zero 

expected return. We know that y'  is orthogonal to the unit vector u , the vector of 

security betas B  and the vector of expected returnse . Thus, the expected return 
vector can be represented approximately as a linear combination of u  andB : 

                                                         
1

h h e u B                                                  (A7)                

where  1,hh   are constants.  

In view of Proposition A1, it is established that the expected security returns can be 
expressed as approximate linear functions of their betas estimated with respect to a 
well-diversified benchmark, even though each security’s return is generated by a K
factor model. In this case, the multi-factor pricing model is approximately reduced to 
a single-beta linear pricing relation.  

Exploring further Equation (A7) let V  be the positive definite N x N covariance 
matrix of returns, based on a structure of a multi-factor framework. Next, using 
Equation (A7) as an exact relationship, it would be desirable to express the vector of 
security returns as follows:    

                                             
1 2( )

h h
R
q

 
 

VXqe u                                                 (A8) 

                                                            
23 If we assume that V   is a non-singular, then Equation (A5) gives: 









 KB2B1B )(2

2
...)

2
(2

2
)

1
(2

1
1

k
f

q
bf

q
bf

q
bVqX  . 
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where 2( )R
q

  'X VXq q  is the variance of the multi-factor, well-diversified portfolio 

q. 

Let ( )E R
zq

 be the expected return of a multi-factor, well-diversified portfolio whose 

return is uncorrelated with the return of portfolio q24. Then, pre-multiplying Equation 
(A8) by the N x 1 vector of proportions that defines the zero-beta portfolio yields

( )E R h
zq  . A pre-multiplication of the equation ( )

1
E R h

zq
 

VXqe u 2σ ︵R ︶q
 by '

qX  

results in ( ) ( )
1

E R E R h
q zq
  . Therefore, Equation (A8) can be written as:   

                      
)(2

)()()(
qRzq

RE
q

REzqRE


qVX
ue 



                                   (A9) 

It should be emphasized that in Equation (A9), the covariance matrix V  has a specific 
structure because it is produced using a security return generating model.  

Equation (A9) can be used to express qX as follows:  

                                        
( )

2( )
( ) ( )

E R
zq

R
qE R E R

q zq


 




1 1V e V u
Xq                             (A10)  

Following these preliminary considerations, a corollary that expresses the returns of 
the zero-beta portfolio is presented. 

Corollary A1 If q is a well-diversified benchmark in a given factor structure, then the 
expected return of ( )E R

zq
 is given by:  

                                                 
cqREb

bqRE
zqRE

)(

)(a
)(

 




                                       (A11) 

 where e1V'e  a , u1V'e b , and u1V'u c .  

Proof  

Pre-multiplying Equation (A10) by the transposed unit vector u'  gives: 

 

                                                            
24 Roll (1980) provided  properties of orthogonal portfolios in an expected return-standard deviation 
framework. Lehmann (1987, 1992) offered discussions of the role of orthogonal portfolios in asset 
pricing. 
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( )

21 ( )
( ) ( )

E R
zq

R
qE R E R

q zq


 




1 1u'V e u'V u
                                  (A12) 

A pre-multiplication of Equation (A10) by the transposed vector of expected returns 
e'  provides: 

                           
( )

2( ) ( )
( ) ( )

E R
zq

E R R
q qE R E R

q zq


 




1 1e'V e e'V u
                               (A13) 

Making use of Equations (A12) and (A13), yields the following: 

                                                  
czqREb

bzqRE
qRE

)(

)(a
)(

 




                                          (A14)                             

Finally, Equation (A14) produces Equation (A11).                                              

At this point, it is necessary to note that Equation (A11) holds for any multi-factor, 
well-diversified minimum variance portfolio except for the GMVP because it has an 

expected return equal to 
b

c
 (Roll 1977).  

Next, the following corollary derives the weights of a multi-factor, well-diversified 
benchmark.  

Corollary A2 In a market without arbitrage opportunities, the N x 1 vector of  

proportions defining a well-diversified benchmark q in a given factor structure  

can be written as follows: 

                               e1Vu1VqX












2a

)(

2a

)(a

bc

qRcEb

bc

qRbE
                         (A15) 

Proof  

Solving Equation (A13) for 2( )R
q

  we find: 

                                      
( )( ( ) ( ))

2( )
( )

E R E R E R
q q zq

R
q a E R b

zq







                                     (A16) 

A combination of Equations (A10) and (A16) gives: 

                                       )(
)(a

)(
qRE

bzqRE

zqRE






u1Ve1V
qX                              (A17) 
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After using Equations (A17) and (A11) and simplifying the resulting equation, the 
portfolio weights of the multi-factor efficient benchmark q are given by Equation 
(A15).                                     

Basically Corollary A2 shows that the well-diversified benchmark q in a given factor 
structure is also a minimum variance benchmark in the given factor structure. 
Equation (A15) is designed to capture the linear relationship between the vector of the 
investment proportions that define the multi-factor minimum variance portfolio q and 
its expected return.  

The following Corollary shows the equivalence of a linear K -factor model and the 
linear relation between security’s expected returns and betas calculated against a well-
diversified benchmark in a given factor structure (LBPDE).  

Corollary A.3 Consider a perfectly competitive and frictionless market containing N 
securities, where short sales of securities are permitted and there are no arbitrage 
opportunities. It is assumed that investors homogeneously believe that the single-
period random return of any of the N securities can be generated by a linear K-factor 
model. Let V  be a non-singular positive definite covariance matrix, and assume that 
there are at least two securities with different expected returns. Then, the following 
three propositions are equivalent25: 

(i) There is an exact relation between the vector of expected security returns and the 
K vectors of factor betas: 

                                     KB2B1Bue   ...21                                 (A18) 

where KB,...,2B,1B  are the N x 1 vectors of factor beta coefficients of the securities 

on the K factors. Also, there is a well-diversified benchmark q (has no idiosyncratic 
risk) in the given factor structure. 

(ii) The vector of expected security returns can also be expressed as follows:  

                                     Bue 



  )()()(

zq
RE

q
REzqRE                                 (A19) 

where q is a well-diversified benchmark with expected return greater than that of the 

GMVP 26,  1u'Xq , B  is the N x 1 vector of security betas in relation to q, and 

)( zqRE is the expected return of a well-diversified minimum variance portfolio whose 

return is uncorrelated with the return of q27,.  

                                                            
25 Chamberlain (1983) considered a riskless security and offered some bounds on the approximation 
error in the arbitrage pricing equation. Then he showed that these bounds imply the equivalence 
between an exact arbitrage pricing and a well-diversified mean-variance efficient portfolio.   
26 Here GMVP is excluded since it produces beta equal to one on all securities, Roll (1977)..  
27 Chen (1983) ascertained that an exact multi-beta pricing model can always be reduced to a relation 
between expected return and beta through performing an appropriate transformation of the factors.   
Dybvig and Ross (1985) showed mathematically that the CAPM and the existence of a multi-factor 
security return generated model produces the APM.  Grinblatt and Titman (1987) considered a risk-free 
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(iii) The well-diversified benchmark q is a minimum variance benchmark in the given 
factor structure 

Proof  

(i)  (ii) Assume the validity of Equation (A18). Let q be a well-diversified 

portfolio in a given factor structure defined by the N x 1 vector qX of proportions 

invested in its risky securities, where 1' uqX .  Following a proof similar to 

Proposition A1 we derive Equation (A19).  

 

(ii)  (iii) Consider a well-diversified portfolio q in a given factor structure with 

1uX'
q . We assume the validity of Equation (A19). Then the portfolio q is a multi-

factor efficient portfolio in the expected return-standard deviation space (there is a 

similar proof as that from Roll (1977), Corollary 6, p.165).    

 

(iii)  (i)  Consider a multi-factor well-diversified efficient portfolio q in a given 

factor structure. Then the N x 1 vector of expected returns can be expressed with the 

aid of Equation (A9).   

Equation (A5) holds since q is a well-diversified portfolio. Substituting Equation 

(A5) into Equation (A9) allows us to compute the vector of security expected return as 

follows: 

        



















  KB1Bue

)(2

)(2

...
)(2

)
1

(2

1
)()()(

q
R

k
f

qk
b

q
R

f

q
b

zq
RE

q
REzqRE








 

                                                                                                                        (A.20) 

                                                            
asset, N securities having a nonsingular covariance matrix and defined a set of K reference portfolios, 
where NK , to be a collection of  K portfolios such that any combination of these portfolios is different 
than the GMVP. Then they proved that an exact linear pricing holds with respect to the K reference 
portfolios if and only if a linear combination of these K portfolios lies on the mean-variance frontier 
(Proposition 1, p. 100).  The portfolio q presented in our work needs only to be a well-diversified portfolio 
in a given factor structure.  Huberman, Kandel and Stambaugh (1987) considered a set of mimicking 
portfolios and they proved that there exists only one portfolio of mimicking portfolios on the minimum-
variance frontier, where this portfolio is other than the GMVP, if and only if an exact arbitrage pricing 
equation is valid.    
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Equation (A20) can be also written as:  

                                       ...
1 2 K

       e u B B B1 2 K  

where  ( )E R
zq o

  and  
)(2

)(2
)()(

qR

kf

qkb
zq

RE
q

REk 


 



  , Kk ,...,2,1 . 

The LBPDE shown in Equation (A19) highlights that the security expected return 
vector is a linear and exact function of the vector of security betas. Here, it is 
important to note that even though a security’s return is generated by a K factor 
model, its expected return can always be expressed as a linear function of its beta 
estimated with respect to a multi-factor, well-diversified benchmark. Thus, the multi-
factor APM can be contracted into a single beta-expected return relationship28.   

It is apparent that the LBPDE does not hold for all types of expected return-standard 
deviation efficient portfolios, which the LBPE model does. It holds only for specific 
efficient benchmarks with returns satisfying a K factor return generating model, 
being well-diversified and being comprised of securities, each of which satisfies a 
multi-factor APM29.   

Essentially, Corollary A.3 establishes a simple link between the multi-factor APM 
and the LBPDE. In other words, it shows that in a market without arbitrage 
opportunities where an exact multi-factor APM holds, a well-diversified portfolio, 
other than the GMVP, is also a minimum variance portfolio in the given multi-factor 
structure. Conversely, if there are no arbitrage opportunities, then a well-diversified 
minimum variance portfolio whose return is generated by a K factor linear model 
implies an exact APM.  

As a final thought, consider a universe of investment opportunities containing all 
possible securities. On the one hand, if there are no arbitrage opportunities and 
Equation (A18) holds for each possible security, then an exact relation between 
expected returns and security betas can be produced by following the procedure 
presented. This relationship is identical to the classical CAPM, which is derived from 
the market portfolio efficiency in the space of expected return and standard deviation. 
On the other hand, if the market portfolio is a well-diversified efficient portfolio in a 
given factor structure, a multi-factor APM can be derived using an equilibrium 
argument. Nevertheless, it is impossible to identify all securities and their 
compositions in the market portfolio, and thus the corresponding multi-factor APM or 
the CAPM cannot be empirically tested. In fact, this is the same critique as that of 
Roll (1977) for the capital asset pricing model. However, the results provided in 

                                                            
28 Trzcinka (1986) showed that the number of statistical estimated factors increases with the size of the 
sample, but the first factor remains dominant.  
29 A similar result holds in the expected return-variance framework. Namely, consider a large number 
of securities, the efficient frontier of these securities and an efficient benchmark, call it q, other than the 
GMVP. Suppose that the single index model holds for a well-diversified portfolio, call it s, using the 
the return of the efficient benchmark q as the independent variable. Then portfolio s lies on the line 
drawn from the expected return of the zero-beta portfolio to q that passes tangent to the efficient 

frontier at the point ( ( ), ( ))E R R
q q

 .  In this case the LBPE holds for portfolio s. 
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Corollary A3 can be used to illustrate the relationship between a multi-factor APM 
and the CAPM.  
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Appendix B:  

Proof of the Relation between the Arbitrage Pricing Model and the LBPUI 

Proof of ( , ) 0Cov R U
q p

  

After making use of Equations (4) and (12) in the main text we get: 

  ( , ) ( ( ) ... , ( ) ... )
1 1 1 1

Cov R R Cov E R b f b f E R b f b f
q p q q qK K p p pK K p

                                                

                                                                                                                             (B1) 

Taking into account the assumptions of the return generating model, Equation (B1) 
implies:  

                          2 2( , ) ( ) ... ( )
1 1 1

Cov R R b b f b b f
q p q p qK pK K

                        (B2) 

Next, one can employ Equation (4) to obtain (where q is a well-diversified portfolio): 

 

                                   2 2 2 2 2( ) ( ) ... ( )
1 1

R b f b f
q q qK K

                                   (B3) 

Thus, substituting Equations (B2) and (B3) into Equation (7) after some 
straightforward algebraic manipulation yields: 

                      2 2( ) ( ) ... ( ) ( ) 0
1 1 1 1

b b b f b b b f
q p q qK pK qk K

                     (B4) 

Also holds 

 

( , ) ( ( ) ... , )
1 1

( , ) ... ( , )
1 1

Cov R U Cov E R b f b f U
q p q q qK K p

b Cov U f b Cov U f
q p qK p K

    
                (B5)                                    

                                                                                                           

Utilizing the return generating model for U
p

 (Equation (14)) into Equation (B5) and 

taking into account Equation (9) gives: 

    

 ( , ) (( ) , ) ... (( ) , )
1 1 1 1 1

Cov R U b Cov b b f f b Cov b b f f
q p q p q qK pK qk K K

                        

                                                                                                                             (B6) 

From Equations (B6) and (B4) it follows that 
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          2 2( , ) ( ) ( ) ... ( ) ( ) 0
1 1 1 1

Cov R U b b b f b b b f
q p q p q qK pK qk K

        

 

Proof of Corollary III.1 

Equation (17) can be written in matrix form as follows: 

 

                                                   phqVXpVX                                                (B7) 

where ph  the N x 1  vector of covariances between the security returns and the 

residual termU
p

.  

Using Equation (A15) into Equation (B7) and solving the resulting equation for pX   

provides Equation (18). 

 

Proof of Corollary IV.1 

 (i)  (ii)  Suppose Equation (19) is valid. Consider a multi-factor inefficient and not 
well diversified benchmark p and a multi-factor well-diversified efficient benchmark 
q with ( ) ( )E R E R

p q
 . Then a combination of Equations (A5) and (B7) can be used to 

derive:  

       
2 2 2( ) ( ) ( )

1 2 ...
1 22 2 2 2( ) ( ) ( ) ( )

f f f
kb b b

q q qk
R R R R
q q q q

  

   
   

VX - hp p B B B1 2 K                   (B8) 

 

Let y  be a N x 1 vector of weights defining an arbitrage free portfolio. If this 

portfolio has no systematic risks due to the factors that influence its return, then 
making use of Equations (A2) and (B8) the following equation is obtained:                                                

                                               0
)(2

' 
















q
R

ph-pVX
y                                                      (B9) 

Next, noting that 0ey'  (from Equations (19) , 0' 
k

By , Kk ,...,2,1 ), 0uy'  

where u  is N x 1 unit matrix, and taking into account Equation (B9) it can be written: 
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
















)(221

q
R

 ph-pVX
ue                                      (B10) 

where  ,
1 2
   are constants.  

We will now compute the constants 2,1  . Let zqX  be an N x 1 vector of weights 

that defines the orthogonal minimum variance portfolio of q. Then 0qVX'
zqX  or

0) ph-p︵VX
'
zqX .  So pre- multiplying Equation (B10) by '

zqX  gives

( )
1

E R
zp

  . In this case Equation (B10) can be expressed as: 

                                    

















)(22)(

q
R

zpREe


 ph-pVX
u                                          (B11) 

Pre-multiplying Equation (B11) by '
qX  and using Equation (16) we take:         

                                               ( ) ( )
2

E R E R
q zp

                                                   (B12) 

or  

                                               ( ) ( )
2

E R E R
p zp

                                                   (B13) 

 

Finally, a combination of Equations (B11) and (B13) gives Equation (20). 

 

(ii)  (i) Assume that Equation (20) is true. After utilizing Equations (1), (12) and 
(14) the following equations hold: 

 

                    2 2( ) ... ( )
1 1

b f b f
p pK k
    VX B B εp 1 K                                 (B14) 

and  

                  2 2( ) ... ( )
1 1

b f b f
Up UpK k

    h B B εp 1 K                                    (B15) 

 

where ε the N x 1 vectors with elements ( , )Cov
i p
  , i = 1,2,3,…,N. 
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Equations (B14) and (B15) can be substituted into Equation (20) leading to: 





















  KB1Bue

)(2

)(2

)(...
)(2

)
1

(2

)
11

()()((

q
R

K
f

UpK
b

pK
b

q
R

f

Up
b

p
b

zp
RE

p
RERE









︶zp                                     

                                                                                                                               (B16) 

After using Equation (9) Equation (B16) becomes:   

                                       ...
1

      e u B B1 K  

where  ( )E R
zp o

  and 
)(2

)(2
)()(

qR

kf

qkb
zp

RE
p

REk 


 



  , Kk ,...,2,1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Electronic copy available at: https://ssrn.com/abstract=3397020 



44 
 

References 

 
Black, F., M. C. Jensen, and  M. Scholes (1972), The capital asset pricing model: Some 
empirical tests, in: M. Jensen, ed., Studies in the theory of capital markets, (Praeger 
Publishers, Inc., New York), 79-121. 
 
Blume, M. E., and I. Friend (1973), A new look at the capital asset pricing model, 
Journal of Finance, 28,  19-33. 
 
Chamberlain, S. G. (1983), Funds, factors and diversification in arbitrage pricing 
models, Econometrica, 51, 1305-1323. 

  
Chamberlain, G., and M. Rothschild (1983), Arbitrage, factor structure, and mean-
variance analysis on large assets markets, Econometrica, 51, 1281-1304.   
 
Chan, L. K. C.,  Y. Hamao, and J. Lakonishok (1991), Fundamentals and stock 
returns in Japan, Journal of Finance, 46, 1739-1764.  
 
 
Chen, N. F., and  J. Ingersoll (1983),  Exact pricing in linear factor models with 
infinitely many assets: A note,  Journal of Finance, 38 , 985-988. 
 
 
Connor, G. (1984), A Unified beta pricing theory,  Journal of Economic Theory, 34  
13-31. 
 
Connor, G., and R. Korajczyk (1988), Risk and return in equilibrium APT: 
Application of a new test methodology, Journal of Financial Economics, 21, 255-290. 
 
Diacogiannis, G (1999), A three-dimensional risk-return relationship based upon the 
inefficiency of a portfolio: Derivation and implications, The European Journal 
of Finance,5, 225-235. 
 
Diacogiannis, G., and D. Feldman (2013), Linear beta pricing with inefficient 
benchmarks, Quarterly Journal of Finance, 3, 1350004 1-35. 
 
Dybvig, P. (1983), An explicit bound on individual assets’ deviation from APT pricing 
in a finite economy, Journal of Financial Economics, 12, 483-496. 
 
Dybvig, P. H., and S. A. Ross (1985), Yes the APT is testable, Journal of Finance, 40, 
1173-1188.  
 
Ehrhardt,  M. C. (1987), A mean-variance deviation of a multi-factor equilibrium 
model, Journal of Financial and Quantitative Analysis, 22, 227-236.  
 
Fama, E. (1977), Foundations of Finance, Basic Books, New York.  
 
Fama, E. F. (1996) Multifactor portfolio efficiency and multifactor asset pricing, 
Journal of Financial and Quantitative Analysis, 31, 441-465. 
 
Fama, E. F., and J.D. MacBeth (1973), Risk, Return and Equilibrium: Empirical 

 Electronic copy available at: https://ssrn.com/abstract=3397020 



45 
 

Tests,  Journal of Political Economy, 81, 607–636. 
 
Ferguson, M. F., and R. L. Shockley (2003), Equilibrium anomalies, Journal of 
Finance, 58, 2549-2580. 
 
Ferson, W. E., and A. F. Siegel (2001), The efficient  use of conditioning information 
in portfolios, Journal of Finance, 56, 967-982. 

 
Ferson, W. E., A. F. Siegel, and P. Xu (2006), Mimicking portfolios with 
conditioning information, Journal of Financial and Quantitative Analysis, 41, 607-
635. 
 
Fletcher, J. (1994),  The mean-variance efficiency of benchmark portfolios: UK 
evidence, Journal of Banking and Finance, 18, 673-685.   
 
Gibbons, M. R. (1982), Multivariate test of financial models: A new approach, 
Journal of Financial Economics,10, 3–27. 
 
Gibbons, M. R., S. A. Ross, and J. Shanken (1989), A test of the efficiency of a 
given portfolio, Econometrica, 57, 1121–1152. 
 
Green R. (1986), Benchmark portfolio inefficiency and deviations from the security 
market line, Journal of Finance, 41, 295-312.  
 
Green, C. J. (1990), Asset demands and asset prices in UK: Is there a risk premium. 
Manchester School of Economics and Social Studies, 58. 
 
Grinblatt, M., and S. Titman (1983), Factor pricing in a finite economy, Journal of 
Financial Economics, 12, 497-508.   
 
Grinblatt, M., and S. Titman (1987), The relation between mean-variance efficiency 
and arbitrage pricing, Journal of Business, 60, 97-112. 
 
Hansen, L. P., and S. F. Richard (1987), The role of conditioning information in 
deducing testable restrictions implied by dynamic asset pricing models, 
Econometrica, 55, 587-614. 
 
Hawawini, G. (1993), Market efficiency and equity pricing: International evidence 
and implication for global investing, In D.K. Das (ED.) International Finance, 
Contemporary Issues, London and New York.  
 
Huberman, G. (1982), A simple approach to arbitrage pricing theory, Journal of 
Economic Theory, 28, 183-191. 
�

Huberman, G.,  and Z. Wang (2005), Arbitrage pricing theory, The new 
Palgrave dictionary of economics, 2nd edition, edited by L. Blume and S. Durlauf 
(London: Palgrave Macmillan). 

 

 Electronic copy available at: https://ssrn.com/abstract=3397020 



46 
 

Huberman, G., S. Kandel, and R. F. Stambaugh (1987), Mimicking portfolios and exact 
arbitrage pricing, Journal of Finance, 42, 1-9. 
 
Ingersoll, J. (1984), Some results in the theory of arbitrage pricing, Journal of 
Finance, 39, 1021-1039.   

Jagannathan, R., (1996), Relation between the slopes of the conditional and 
unconditional mean-standard deviation frontiers of asset returns, in Modern Portfolio 
Theory and Its Applications, Inquiries into Valuation problems, Saito, S., Sawaki, K. 
and Kubota, K, editors, 1-8, Center for Academic Societies, Osaka, Japan. 
  
Jobson, J. D. and B. Korkie, (1982), Potential performance and tests of portfolio 
efficiency, Journal of Financial Economics, 10, 433-466.   
 
Jobson, J. D., and B. Korkie (1985), Some tests of linear asset pricing with 
multivariate normality, Canadian Journal of Administrative Sciences, 2, 114-138.  
 
Kandel, S., and R.F. Stambaugh, (1987), On correlations and inferences about mean-
variance efficiency, Journal of Financial Economics, 18, 61-90.  
 
Kandel, S., and R. F. Stambaugh, (1989), A mean variance framework for tests of asset 
pricing modes, Review of Financial Studies, 2, 125-156.   
 
Kim,  M. K., and C. Wu (1987), Macro-economic factors and stock returns, The 
Journal of Financial Research, 10, 87-98.   
 
Lehmann, B. N. (1987), Orthogonal frontiers and alternative mean variance efficiency 
tests, Journal of Finance, 42, 601-619. 
 
Lehmann, B. N. (1992), Empirical testing of asset pricing models in: P. Newman, M. 
Milgate and J. Eatwell, eds., the new palgrave dictionary of money and finance, 
Stockton Press, NY, 749-759.  
 
Lehmann, B. N., and D.  Modest (1988), The Empirical Foundation of 
the Arbitrage Pricing Theory. Journal of Financial Economics, 21, 213–254. 
 
Mackinlay, A. G. , and M. P. Richardson (1991), Using generalised methods of 
moments to test mean-variance efficiency, Journal of Finance, 46, 511-527. 
 

Naranjo, A., M. Nimalendran, and M. Ryngaert (1998), Stock Returns, Dividend yield 
and taxes, Journal of Finance, 53,  2029-2057. 

Roll, R. (1977), A critique of the asset pricing theory's tests Part I: On past and 
potential testability of the theory, Journal of Financial Economics, 4, 129-176. 

Roll, R. (1980), Orthogonal portfolios, Journal of Financial and Quantitative Analysis, 
15, 1005-1023. 
 
Roll, R.,  and S. A. Ross (1994), On the cross sectional Relation between expected 
returns and betas, Journal of Financial Economics, 49, 101–121. 

 Electronic copy available at: https://ssrn.com/abstract=3397020 



47 
 

 
Ross, S. A. (1976a), The arbitrage theory of capital asset pricing, Journal of Economic 
Theory, 13, 341-360. 
 
Ross, S. (1976b), Risk, return and arbitrage, Risk Return in Finance ed. I. Friend and 
J. Bicksler, Cambridge, Mass.: Ballinger. 
 

Ross, S. (1977), The capital asset pricing model (CAPM) short selling restrictions and 
related issues, Journal of Finance, 32, 177-183. 
 
Ross, S. A., and M. M. Walsh (1983), A simple approach to the pricing of risky assets 
with uncertain exchange rates, Research in International Business and Finance, 3, 39-
54.   
 
Shanken, J. (1985), Multivariate tests of the zero-beta CAPM, Journal of 
Financial Economics, 14, 327–348. 
 
Shanken, J. (1987),   Multivariate proxies and asset pricing relations: Living with 
Roll’s critique, Journal of Financial Economics, 18, 91-110.  
 
Shanken, J. (1996), Statistical methods in tests of portfolio efficiency: A Synthesis,  
In: G.S. Maddala and C.R. Rao (eds.), Handbook of Statistics 14: Statistical Methods 
in Finance, 693 – 711, North-Holland. 
 
Sharpe, W. F. (1977), The capital asset pricing model: A multi-beta interpretation, in: 
H. Levy and M. Sarnat, eds, Financial Decision Making under Uncertainty, Academic 
Press, New York.  
 
Solkin, B. H. (1983), International arbitrage pricing theory, Journal of Finance, 38, 
449-457. 
 
Stambaugh, R.  (1982), On the exclusion of assets from tests of the two parameter 
model: A sensitivity analysis, Journal of Financial Economics, 10, 237–268. 
 
Trzcinka, C. (1986), On the number of the factors in the Arbitrage Pricing Model, 
Journal of Finance, 41, 347-368.  
 
Wei, K. C. J. (1988), An Asset-pricing theory unifying the CAPM and APT, Journal of 
Finance, 43, 881-892.  
 
Zhou, G. (1991), Small sample tests of portfolio efficiency, Journal of Financial 
Economics, 30, 165-191.  
 

 

 

 

 

 

 Electronic copy available at: https://ssrn.com/abstract=3397020 



48 
 

 

 

 

 

 Electronic copy available at: https://ssrn.com/abstract=3397020 


