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We study a phase diagram for the sliding Luttinger liquid (SLL) of coupled one-dimensional quan-
tum wires packed in a two-dimensional array in the absence of a magnetic field. We analyse whether
nearest-neighbour inter-wire interactions, stabilise the SLL phase. We construct an analogue of a
Su-Schriefer-Heeger (SSH) model (allowing alternating couplings between wires). Calculating the
scaling dimensions of the two most relevant perturbations, charge-density wave, and superconduct-
ing inter-wire couplings, but excluding the inter-wire single-particle hybridisation, we find a finite
stability region for the SLL. It emerges due to the inter-wire forward scattering interaction, and
remains stable up to a significant asymmetry between alternating couplings.

INTRODUCTION

The behavior of interacting electrons in 1d systems
(Tomonaga- Luttinger model [1, 2]) has many features
that differ them from electrons in 2d and 3d systems.
The latter form Fermi liquid (FL) described by the Lan-
dau theory, which instead of strongly interacting fermions
considers low energy quasiparticles retaining their Fermi
statistics. This approach does not work in one dimen-
sional systems, where geometrical constraints impose
strong limitations on the electron-electron scattering. As
a result the bosonic multielectron excitations play the
dominant role [3]. A possibility of observing such a non-
Fermi liquid behavior in higher dimensional systems was
discussed in Ref. [4] with the aim to explain the un-
usual physics of high Tc superconductors. Later on the
strategy for creating a non Fermi liquid state, put for-
ward in Refs. [5–10], was to consider a highly anisotropic
2D or 3D array of parallel identical periodically arranged
quantum wires, coupled by forward scattering interac-
tions. The electron liquid in these setups may form a so
called Sliding Luttinger liquid phase (SLL), which was
supposed to exhibit low energy physics similar to that of
individual wires. It was expected that the conductivity
of multi-channel (quasi-1D) strongly correlated systems
demonstrated power law temperature dependence, which
together with some other unusual properties was really
observed in a number of strongly anisotropic systems [11–
19]. These measurements were carried out at relatively
high temperatures, where single particle and many parti-
cle processes, which potentially are capable of destroying
the SLL state, were rather weak. The single particle
back scattering in the individual wires [20, 21] can block
the flow at low temperatures. That is why these wires
must be clean of any defects which may cause scatter-
ing. There are also three interwire mechanisms which,
when RG (renormalization group) relevant, can also de-
stroy the SLL phase. These mechanisms are: single elec-
tron tunneling, which converts the SLL state into a FL

state; two types of the multielectron interwire process
can result either in a superconducting (SC)[22] or charge
density wave (CDW)[23] states.

Recently the problem of quantum wires coupled by
Coulomb interaction under the condition that single elec-
tron interwire tunnelings are suppressed, was addressed
in Ref. [24]. A study was carried out of SLL in a stack
of wires arranged in a lattice under the assumption that
the Coulomb repulsion between electrons of the neigh-
boring wires is dominant. This Coulombic SLL appears
to be unstable towards formation of a CDW. It was also
emphasized in [25] that all three mechanisms always lead
to the instability and it is impossible to create realistic
conditions when all of them are irrelevant. It was also
outlined that SLL state can be realized in the systems
where both single electron and SC tunneling are effec-
tively suppressed.

In this paper we consider a 2D system of parallel quan-
tum wires separated by barriers of alternating trans-
parencies in analogy to the Su-Schriefer-Heeger (SSH)
model [26]. We calculate analytically the scaling dimen-
sions of CDW and SC inter-wire perturbations and find
that there exists a finite region of stability of SLL, where
both perturbations are irrelevant, and Luttinger liquid
description is valid for a two-dimensional system.

MODEL

The system of N parallel quantum wires is described
by the standard bosonized Lagrangian

L =
1

4π

[
∂tϕ∂xθ +

1

2
∂xθ

TVθ∂xθ +
1

2
∂xϕ

TVϕ∂xϕ

]
.

(1)
written in terms of the fields

θ = {θ1, θ2, · · · θN}
ϕ = {ϕ1, ϕ2, · · ·ϕN}.
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These fields represent the density δρi = 1
π∂xϕi and cur-

rent ji = 1
π∂xθi fluctuations. The matrices Vϕ and Vθ

are tri- diagonal with the principal diagonal elements ex-
pressed in terms of velocity v and Luttinger parameter
K, independent the number i of the wire, i.e. all the
wires are identical. These parameters are in their turn
expressed in terms of forward g4 and back g2 scattering
amplitudes. These two parameters are assumed to be
equal. We also use the units in which the Fermi velocity
vF = 1. As for the off-diagonal terms they alternate so
that matrix elements connecting the wire i with i+ 1 for
odd i are also equal each other but differ from those with
even i. As a result the density-density interaction matrix
takes the form,

V̂φ =


1 + g go 0 0 · · · 0 0
go 1 + g ge 0 · · · 0 0
0 ge 1 + g ge · · · 0 0
0 0 go 1 + g · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · go 1 + g

 (2)

with g = 2π(g4 + g2). Below, we will analyze in de-
tail the commonly accepted model that includes only a
density-density neglecting the current – current inter-
wire interaction. Hence the current-current interaction
matrix V̂θ = 1̂ in Eq. (1).

It is convenient to define a Luttinger matrix K̂ [27–33]
which is a generalization of the Luttinger parameter K of
a single channel. All scaling dimensions of all symmetry
allowed perturbations can be expressed using this sin-
gle matrix K̂. This matrix provides information on the
relevance of the perturbations and, therefore, on the sta-
bility region of the SLL phase. In our case the K̂-matrix
is the solution of the matrix equation K̂V̂φK̂ = 1̂, i.e.

the square root of the interaction matrix K̂ = V̂
−1/2
φ .

EIGENFUNCTIONS OF INTERACTION MATRIX

In order to find K̂ we need to know the eigenvalues
and eigenvectors of the matrix V̂φ. The equations for the

eigenvectors ψ and eigenvalues λ of the matrix V̂φ read

go ψ(2j − 1) + ge ψ(2j + 1) = ε ψ(2j) ,

j = 1, ...,M ; (3)

ge ψ(2j − 2) + go ψ(2j) = ε ψ(2j − 1) ,

j = 1, ...,M + 1 , (4)

where we define ε = λ − (1 + g). The second equation
is extended by including the sites 0 and 2M + 2, which
satisfy the boundary conditions

ψ(0) = ψ(2M + 2) = 0 , (5)

We will seek eigenfunctions labelled by the wave vector
k,

ψk(2j) = ek e
ikj + e−k e

−ikj ; (6)

ψk(2j − 1) = ok e
ikj + o−k e

−ikj . (7)

The coefficients ek and ok satisfy the equations

ḡk ek = εk ok , (8)

gk ok = εk ek , (9)

where gk = go + ge e
ik and overline denotes the complex

conjugation.
The boundary conditions Eq. (5) presented in the form

e−k = −ek , and sin k(M + 1) = 0 , (10)

impose quantisation of the wave vector

k =
πl

M + 1
, l = 1, ...,M . (11)

It follows from Eqs. (8) and (9) that the eigenvalues
form two bands

ε±k = ± |gk| . (12)

whereas the corresponding 2M normalized eigenvectors
are:

ψ±
k (2j) =

1√
M + 1

sin kj ,

j = 1, . . . ,M (13)

ψ±
k (2j − 1) = ± 1√

M + 1
sin(kj − φk) , (14)

j = 1, . . . , M + 1,

where the half phase of reflection coefficient of the ’odd’
component is defined by the equation

gk = go + ge e
ik = |gk| eiφk . (15)

Apart from the above 2M bulk eigenvectors labelled
by the wave vector k, there is one more solution exactly
at ε = 0. It is exponentially localised at the left boundary
for go < ge

ψ0(2j − 1) = N
−1/2
0

(
−go
ge

)j
, ψ0(2j) = 0 , (16)

where

N0 =
1− (−go/ge)M+1

1 + go/ge

and a similar solution, exponentially localized near the
right boundary, exists at go > ge.

As we have mentioned above K̂ = V̂
−1/2
φ . The diag-

onalization of the interaction matrix, carried out above,
allows us to obtain the Luttinger matrix in the form

K̂ij = K

 ∑
k,σ=±

Λ
−1/2
k,σ ψσk (i)ψσk (j) + ψ0(i)ψ0(j)

 .(17)
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where we made use of the eigen values

λk,± =
1

K2
Λk,± = ±|gk|+ 1 + g (18)

and λ0 = 1 + g ≡ K−2 ,

and the corresponding eigenvectors ψ±
k (i) and ψ0(i). We

can readily write equation for the inverse Luttinger ma-
trix

(K̂−1)ij = K

 ∑
k,σ=±

Λ
1/2
k,σ ψ

σ
k (i)ψσk (j) + ψ0(i)ψ0(j)

 .(19)

We are looking for the situation when the SLL phase is
stable with respect to two processes: formation of CDW
and SC states. For this we have to make sure that the
corresponding processes are RG irrelevant. The scaling
dimensions of couplings between the wires i and j are

∆CDW
ij = K̂ii + K̂jj − 2K̂ij (20)

and

∆SC
ij = (K̂−1)ii + (K̂−1)jj − 2(K̂−1)ij (21)

for the processes responsible for the CDW and SC phases
formation respectively. We consider here only the most
dangerous among them, corresponding to neighboring
wires, so that j = i+ 1.

Bulk scaling dimensions

Now we have to substitute the known eigenvalues and
eigenfunctions into Eqs. (17) and (19) and then into Eqs.
(20) and (21). After ordering the terms we get two CDW
scaling dimensions

∆CDW
e =

2K

∫ π

0

dk

π

[
λ
−1/2
+ sin2 φ

2
+ λ

−1/2
− cos2 φ

2

]
(22)

∆CDW
o =

2K

∫ π

0

dk

π

[
λ
−1/2
+ sin2 φ− k

2
+ λ

−1/2
− cos2 φ− k

2

]
(23)

and two SC scaling dimensions

∆SC
e =

2K

∫ π

0

dk

π

[
λ

1/2
+ sin2 φ

2
+ λ

1/2
− cos2 φ

2

]
, (24)

∆SC
o =

2K

∫ π

0

dk

π

[
λ

1/2
+ sin2 φ− k

2
+ λ

1/2
− cos2 φ− k

2

]
(25)

These equations for scaling dimensions are valid far from
the edges in the limit M → ∞, since we have neglected
exponentially decaying edge terms and averaged strongly
oscillating terms at large i. The index i may correspond
to the even or odd wire with alternating coupling con-
stants. That is why we get two CDW scaling dimensions
and SC dimensions.

It is convenient to introduce two inter-channel param-
eters (instead of ge,o=̃g ∓∆), i.e the relative strength of

the inter-channel interaction α = 2g̃
1+g and the relative

strength of asymmetry β = ∆
g̃ , i.e. modulation. The two

parameters K, α, vary between 0 and 1. In principle, β
varies between -1 and 1, but as we’ll see below the sym-
metry allows us to reduce the range for β also to (0, 1).
Now we can use the relations

λ±k = 1± α
√

cos2
k

2
+ β2 sin2 k

2
(26)

cosφk =
cos2 k

2 − β sin2 k
2√

cos2 k
2 + β2 sin2 k

2

cos(φk − k) =
cos2 k

2 + β sin2 k
2√

cos2 k
2 + β2 sin2 k

2

sinφk =
cos k2 sin k

2 (1 + β)√
cos2 k

2 + β2 sin2 k
2

(27)

In each pair of scaling dimensions one of the dimensions
is more dangerous and it is used to get integrals (29) and
(30). We notice that due to the two following inequalities
λ+
k > λ−k , and cos(φk − k) > cos(φk), we have to use in-

tegrals in Eqs.(22) and (25) as more dangerous (smaller),
respectively (for β > 0). For β < 0 the integrals in each
pair interchange. As a result we get equations for the
scaling dimensions, which are even in β. Therefore it is
sufficient to consider β varying from 0 to 1. Finally, we
represent scaling dimensions in the form

∆CDW = 2
K

KCDW
, ∆SC = 2

KSc

K
(28)

where
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K−1
CDW =

∫ π/2

0

dk

π

[
1√

1 + αr

(
1− cos2 k − |β| sin2 k

r

)
+

1√
1− αr

(
1 +

cos2 k − |β| sin2 k

r

)]
(29)

KSC =

∫ π/2

0

dk

π

[√
1 + αr

(
1− cos2 k + |β| sin2 k

r

)
+
√

1− αr
(

1 +
cos2 k + |β| sin2 k

r

)]
(30)

where r =
√

cos2 k + β2 sin2 k.
The interactions responsible for transitions to CDW or

SC phases are both RG irrelevant if both scaling dimen-
sions (28) are larger than 2. It means that the intrawire
Luttinger parameter K must satisfy the condition

KSC > K > KCDW . (31)

It follows from equation (31) that it can be always satis-
fied (by choosing a proper Luttinger parameter K) if the
product of integrals defined in equations (29) and (30) is
larger than 1:

Π ≡ KSCK
−1
CDW > 1. (32)

The inequality (32) allows us to find straightforwardly
the region of stability of the SLL phase. Figure 1 shows
a 3D graph of the product of integrals Π (32) as a function
of the two parameters α and β crossed by the flat surface
drawn at level 1. There is a sector in the α − β plane
where the product Π is above the flat plane, i.e., Π > 1.
This is the area where K values, satisfying inequality
(32), can be found. At these values of (α, β) one can find
the value of the third parameter K such that both CDW
and SC processes are RG irrelevant and the SLL phase
is stable. This area is clearly exposed in the view from
above of the same 3D plot in Fig. 2 .

The stability area has a shape close to a right triangle
with catheti of about 0.5 along the β axis and 0.5 along
the α axis. It occupies an ample share of the total α −
β phase space - close to 10%. In order to estimate at
what values of the Luttinger parameter K the SLL phase
remains stable with respect to the formation of CDW and
SC phase we prepare another 3D plot, which shows the
surface 1 (blue online) for the function K−1

CDW (α, β), and
surface 2 (yellow online) for the function KSC(α, β). The
inequality (31) can be fulfilled if the surface 1 lies above
the surface 2, and the desirableK values must lie between
these surfaces. One can readily see from Fig. 3 that the
maximal span from 0.5 to 0.65 of the allowed K values is
at α = 1, β = 0. Then the span gradually narrows and
goes to zero with the increasing β or decreasing α.

Fig. 3 allows us also to address the opposite question -
what happens when both CDW and SC perturbations are
relevant. This happens when inequality signs in Eq. (31)
are inverse. In that case the perturbations compete, and
in addition to the scaling dimensions, the initial values
of perturbation amplitudes play an important role.

One can readily see that integrals (29) and (30) equal
one at α = 0, i.e. Π = 1. It means that the span of

FIG. 1. (Color online) A 3D plot of the product Π, Eq. (32),
showing the surface 1 (red online), which is crossed by the
flat surface 2 (blue online). The part of the surface 1 residing
above the surface 2 corresponds to a sector in (α, β) plane
where the SLL phase is stable.

allowed values of K reduces to zero and SLL phase is
marginally stable only in the point at K = 1. There is
a stability stripe going from the stability triangle along
the α axis up to this point. The stripe is so narrow that
it cannot be seen in Figs. 1 or 2. On the other hand
the integral (29) diverges at its low limit at α → 1. It
means that there is also a very narrow stripe of stability
going parallel to the β axis along the line α = 1. To
illustrate this type of behavior we plot the characteristic
product Π as a function of α (see Fig. 4). The curve 1
corresponding to β = 0 is always above 1, grows slowly
within the stability stripe, and then after reaching the
triangle it starts growing more rapidly and diverges at
α → 1. At β = 0.3 the curve 2 first goes down below
1 (instability) and only at α = 0.85 crosses the level 1.0
and enters the stability region. At large β = 0.8 the
SLL phase is nearly always unstable, except for a narrow
region at α→ 1.
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FIG. 2. (Color online) A 3D plot of the product Π, Eq. (32),
showing the surface 1 (yellow online) crossed by the flat sur-
face 2 (white online) - view from above. The region of stability
of the SLL phase is clearly seen.

FIG. 3. (Color online) α - β - K diagram. Surface 1 (blue
online) corresponds to K−1

CDW (α, β), and surface 2 (yellow on-
line) corresponds toKSC(α, β). There is a sector in (α, β) (the
same as in Figure 1) where the surface 1 is above the surface
2 and stable SLL solutions are possible. The corresponding
K values lie between these two surfaces.

FIG. 4. The plot of the product Π as function of the param-
eter α for three values of the modulation parameter β; (1) -
β = 0; (2) - β = 0.3; (3) - β = 0.8.

CONCLUDING REMARKS

We have investigated stability conditions of the Slid-
ing Luttinger liquid phase in a 2D system of parallel
quantum wires with alternating coupling between near-
est neighbor wires. We took the density - density inter-
action into account as the principle coupling mechanism
between the wires and neglected the current - current in-
teraction. The direct single electron tunneling is assumed
to be suppressed. We present an analytical derivation of
the CDW and SC scaling dimensions. It is shown that in
the α−β parameter space there exists a region of stabil-
ity where both CDW and SC processes are RG irrelevant.
That stability region exists at any value of the relative
coupling strength α from 0 to 1. However, a weak mod-
ulation β causes an instability at small α. It can be an
indication also that disorder of inter-wire couplings may
also cause an instability of an otherwise stable SLL phase.
At strong coupling for α close to one we found a rather
broad stability region comprising about 10% of the total
α−β space. Correspondingly, the values of the Luttinger
parameter K ensuring stability lies between 0.5 to 0.65
for α = 1 and β = 0 (the widest span).
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