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ABSTRACT Due to the rapid development of mobile Internet techniques, such as online social networking
and location-based services, massive amount of multimedia data with geographical information is generated
and uploaded to the Internet. In this paper, we propose a novel type of cross-modal multimedia retrieval,
called geo-multimedia cross-modal retrieval, which aims to find a set of geo-multimedia objects according to
geographical distance proximity and semantic concept similarity. Previous studies for cross-modal retrieval
and spatial keyword search cannot address this problem effectively because they do not consider multimedia
data with geo-tags (geo-multimedia). Firstly, we present the definition of kNN geo-multimedia cross-modal
query and introduce relevant concepts such as spatial distance and semantic similarity measurement. As
the key notion of this work, cross-modal semantic representation space is formulated at the first time. A
novel framework for geo-multimedia cross-modal retrieval is proposed, which includes multi-modal feature
extraction, cross-modal semantic space mapping, geo-multimedia spatial index and cross-modal semantic
similarity measurement. To bridge the semantic gap between different modalities, we also propose a method
named cross-modal semantic matching (CoSMat for shot) which contains two important components,
i.e., CorrProj and LogsTran, which aims to build a common semantic representation space for cross-
modal semantic similarity measurement. In addition, to implement semantic similarity measurement, we
employ deep learning based method to learn multi-modal features that contains more high level semantic
information. Moreover, a novel hybrid index, GMR-Tree is carefully designed, which combines signatures
of semantic representations and R-Tree. An efficient GMR-Tree based kNN search algorithm called
kGMCMS is developed. Comprehensive experimental evaluations on real and synthetic datasets clearly
demonstrate that our approach outperforms the-state-of-the-art methods.

INDEX TERMS Cross-Modal Retrieval, Deep Learning, kNN Spatial Search, Geo-Multimedia

I. INTRODUCTION
Due to the rapid popularity of mobile Internet techniques,
online social networking and location-based services, mas-
sive amount of multimedia data is generated and uploaded
to the Internet. For example, as the largest online social
networking site, Facebook1 has 1.15 billion users registered
and the total number of images uploaded is 250 billion since
its establishment. Twitter2 has more than 140 million users

1https://facebook.com/
2http://www.twitter.com/

who post 400 million tweets in the form of text and image all
around the world. In China, the active users of Sina Weibo3

were 376 million on September 2017. They post and share
hundreds of thousands of texts, pictures or videos everyday
in this platform. For the photo sharing service, more than
3.5 million new photos were uploaded everyday in 2013 to
Flickr4, which is the most popular photo shared web site and
it had a total of 87 million registered users. For the video

3https://weibo.com/
4https://www.flickr.com/
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FIGURE 1: An example of cross-modal retrieval. Several images are retrieved from the multimedia database by a textual query. The images
in green rectangle are the correct results and the failed cases are in the red rectangle.

sharing service, YouTube5 shares more than 100 hours of
videos every minutes as of the end of 2013. The number
of independent users monthly in IQIYI6, the most popular
video website in China, reached 230 million and the total
watch time monthly exceeded 42 billion minutes. As the
largest online encyclopedia, Wikipedia7 comprises more than
40 million articles with pictures in 301 different languages.
Unlike traditional structured data, these large-scale multime-
dia [1] data has different modalities [2], e.g. text, image,
audio, video. Apparently, the emergence of massive multi-
modal data [3], [4] brings great challenges to data storage,
mining and retrieval [5]–[7]. This necessitates efficient meth-
ods for multimedia data retrieval and processing.

As mentioned above, multi-modal data (text, image, audio,
video) describes the world from different perspectives [8].
Each of these modalities corresponds to each perception
of human. For instance, our languages can be preserved
in the form of text; natural scene can be represented by
photos or videos; vocal signals can be recoded in audio
files. To ulteriorly imitate human understanding of different
modalities and then make search engines have the same
capabilities, multi-modal and cross-modal representation and
retrieval [9]–[12] problem has been proposed, which involves
feature extraction and fusion [13]–[16], representation, se-
mantic understanding, etc. And it is based on many tech-
niques for unimodality retrieval.

Image is one of the most common modalities, and many
image retrieval [17] techniques support cross-modal retrieval.
Content-based image retrieval (CBIR) is a hot issue in the
multimedia area and lots of approaches have been proposed
to improve precision and efficiency of image search. Several
CBIR systems such as K-DIME [18], IRMFRCAMF [19]
and gMRBIR [20] have been proposed to develop advanced
multimedia retrieval systems. Moreover, traditional feature
extraction methods like scale-invariant feature transform

5https://www.youtube.com/
6http://www.iqiyi.com/
7https://www.wikipedia.org/

(SIFT) [21], [22] and visual representation model such as
bag-of-visual-words (BoVW) [23] are applied in cross-modal
retrieval. Recently, CNN [26], [27] based image recogni-
tion [24], [25] and retrieval is becoming a hot issue with the
rise of deep learning techniques [28]. For instance, [29] re-
ported a quantum jump in image classification, which has the
great improvement in performance in ImageNet large scale
visual recognition challenge [30]. Other works like [31]–[33]
introduced serval new solutions for image search via deep
learning.

Another common modality is text, which exists over
the Internet environment. Just like image retrieval, text
search and understand plays an important role in both nat-
ural language processing and information retrieval studies.
Many works using deep learning techniques, i.e., CNN [34],
LSTM [35], [36], and siamese networks [37] to develop novel
solution for semantic textual similarity measurement [38],
[39] and retrieval [40].

Unlike the unimodality retrieval above-mentioned, tradi-
tional cross-modal retrieval aims to find objects with one
modality by the query with another modality. For example,
we can issue a query to search an image that can best demon-
strate a given sentence or paragraph, or find an article or a
poem in text which can describe a given photo. Example 1.1
is an example of traditional cross-modal retrieval.
Example 1.1: Fig. 1 illustrates a typical example of cross-
modal retrieval. A user needs to find some pictures about
famous geysers. She writes down a short introduction or
description of geysers and put it into cross-modal retrieval
system. The system then returns several images that are
highly relevant to the input text from the multimedia database
by cross-modal similarity measurement. Unlike the keyword-
based retrieval, cross-modal retrieval is based on understand-
ing of multi-modal data and finding the cross-modal semantic
correlation. Clearly, the images in green rectangle are the
correct results, which are the photos of geysers. However,
the failed cases in the red rectangle are other categories of
pictures, i.e., waterfall, spoondrift, water spouts of whales,
etc., which are similar to the geysers in the aspect of visual
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content.
As the locating techniques (e.g., GPS and gyroscope) and

HD camera are applied widely in smart mobile devices such
as smartphones and tablets, massive multimedia data with
geo-tags, i.e., geo-images [41], geo-texts and geo-videos
have been conveniently collected and uploaded to the In-
ternet. Location-based services such as Google Places and
Dianping use geo-texts, geo-images to support spatial object
query services, e.g., Where is the nearest seafood restaurant,
Which shop nearby sells this type of handbag. Spatial textual
or visual query is a hot spot in the spatial database commu-
nity, which includes range query [42], kNN query [43], top-k
range query [44], interactive query [45], etc. It is concerned
by lots of researches these days and several efficient indexing
techniques like I3 [46], KR∗-tree [42], IL-Quadtree [47],
[48], IR-tree [49] and its variations [50], WIR-tree [51], etc.
have been proposed to improve performance of the system.

Motivation. It is a pity that traditional spatial keyword
or geo-image queries just consider unimodality during the
retrieval. That means these approaches cannot be applied in
the cross-modal retrieval directly. On the other hand, previous
studies of traditional multi-modal and cross-modal retrieval
do not consider the geo-multimedia data. These existing
methods cannot improve the retrieval performance by us-
ing spatial information. Undoubtedly, geographical location
is another significant information for supporting advanced
search engines and location-based services. To the best of
our knowledge, there is no one who has paid attention on the
problem of geo-multimedia cross-modal retrieval at present.
To describe this novel retrieval paradigm clearly, a motivating
example is introduced below, in which both the cross-modal
search and geographical distance proximity are considered.
Example 1.2: As illustrated in Fig. 2, consider a tourist is
traveling in a historic city. She is particularly interested in
Baroque architecture and wants to visit some ancient build-
ings in Baroque style. However, she have no idea how many
ancient buildings are near her and do not know where these
buildings are located. Due to time limit, she cannot seem to
go all over the city to find them. In such case, she can write
a short paragraph or just a sentence to describe the desirable
buildings or the scenery, and put them into search engine as
a kNN spatial cross-modal query. The system will return the
k nearest ancient buildings geographical location and their
photos taken by other people according to her description.
With the help of the query, the tourist can find some nearest
spots which meet her interests.

In this paper, we aim to combat the challenge described
in example 1.2, namely, retrieve a set of results containing k
geo-multimedia objects that are nearest to the query location
and highly similar to the query in the aspect of semantic
concepts. For the first time, we present the definition of
a new query paradigm called kNN geo-multimedia cross-
modal query and propose a novel score function that consider
the geographical distance proximity and semantic similarity
between two different geo-multimedia objects. Besides, we
introduce the notion of cross-modal semantic representation

space and discuss the basic idea of solving cross-modal
retrieval. A novel framework of geo-multimedia cross-modal
retrieval is presented, which is based on deep learning and
spatial indexing techniques. To implement this framework,
a novel approach called DeCoSReS is proposed, which em-
ploys deep learning techniques to construct a common se-
mantic representation space for different modalities to bridge
the semantic gap. In addition, we develop a novel hybrid
indexing structure named GMR-Tree that is a combination
of signature files and R-Tree to boost the performance. And
based on it, an efficient search algorithm named kGMCMS
is developed to implement kNN geo-multimedia cross-modal
query.

Contributions. The main contributions of this paper can
be summarized as follows:

• To the best of our knowledge, this is the first work to
investigate the problem of geo-multimedia cross-modal
retrieval. We formulate the definition of geo-multimedia
object and kNN geo-multimedia cross-modal query,
and then propose the notion of cross-modal semantic
representation space.

• To solve the problem of geo-multimedia cross-modal
retrieval, we introduce a novel framework that consists
of multi-modal feature extraction, cross-modal semantic
space mapping, geo-multimedia spatial index and cross-
modal semantic similarity measurement.

• To bridge the semantic gap between different modali-
ties in the processing of retrieval, we propose a novel
approach named CoSMat that consists of two important
components i.e., CorrProj and LogsTran. Based on it, a
deep learning based method called DeCoSReS is used
to generate cross-modal semantic representation.

• To improve the search performance, we present a novel
hybrid indexing structure named GMR-Tree which is
a combination of signature technique, multi-modal se-
mantic representations and R-Tree. Based on it we
develop a novel search algorithm named kGMCMS to
boost the retrieval.

• We have conducted extensive experiments on real and
synthetic datasets. Experimental results demonstrate
that our solution outperforms the-state-of-the-art meth-
ods.

Roadmap. The remainder of this paper is organized as
follows: the related works are reviewed in Section II. In Sec-
tion III we introduce the definition of kNN geo-multimedia
cross-modal query and relevant concepts. In Section IV, a
novel framework of geo-multimedia cross-modal retrieval is
proposed. In Section V, we propose the method named cross-
modal semantic matching and then a framework of cross-
modal semantic representation construction by using deep
learning techniques. In Section VI, we design a novel hybrid
indexing structure named GMR-Tree and an efficient search
algorithm called kGMCMS is developed to support geo-
multimedia cross-modal query. Our experimental results are
presented in Section VII, and finally we draw the conclusion
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FIGURE 2: An example of kNN spatial cross-modal retrieval.

in Section VIII.

II. RELATED WORK
In this section, we introduce an overview of previous works
of multi-modal and cross-modal retrieval, deep learning
based multimedia retrieval and spatial textual search, which
are related to this work. To the best of our knowledge, there
is no existing work on the problem of geo-multimedia cross-
modal retrieval.

A. MULTI-MODAL AND CROSS-MODAL RETRIEVAL
Multi-modal and cross-modal retrieval are two hot issues in
the field of multimedia analysis and retrieval. A research
problem or data set is characterized as multi-modal when it
includes multiple modalities [8] such as text, image, audio,
video. In the past few years, lots of researchers focus on
multi-modal and cross-modal retrieval problem and many
significant results have been proposed to improve the re-
trieval performance.

Multi-Modal Retrieval. Multi-modal retrieval [52] aims
to search multimedia data [53] with multiple modalities. Lae-
nen et al. [54] proposed a novel multi-modal fashion search
paradigm, which allows users to input a multi-modal query
composed of both an image and text. To address this problem,
they presented a common, multi-modal space for visual and
textual fashion attributes where their inner product measures
their semantic similarity. For image raking problem, Yu et
al. [55] proposed a novel deep multi-modal distance metric
learning method named Deep-MDML to address the two
main limitations of similarity estimation in existing CBIR
methods: (i) Mahalanobis distance is applied to build a linear
distance metric; (ii) these methods are unsuitable for han-
dling multi-modal data [56]. Jin et al. [57] presented a new
multi-modal hashing method named SNGH which is to pre-
serve the fine-grained similarity metric based on the semantic
graph. They defined a function based on the local similarity
in particular to adaptively calculate multi-level similarity by
encoding the intra-class and inter-class variations. Rafailidis

et al. [58] designed a unified framework for multi-modal
content retrieval which supports retrieval for rich media
objects as unified sets of different modalities. The main idea
is combining all monomodal heterogeneous similarities to a
global one according to an automatic weighting scheme to
construct a multi-modal space to capture the semantic corre-
lations among multiple modalities. Moon et al. [59] proposed
a transfer deep learning (TDL) framework that can transfer
the knowledge obtained from a single-modal neural network
to a network with a different modality. Several embedding
approaches for transferring knowledge between the target
and source modalities were proposed by them. Dang-Nguyen
et al. [60] proposed a novel framework that can produce a
visual description of a tourist attraction by choosing the most
diverse pictures from community-contributed datasets to de-
scribe the queried location more comprehensively. Based
on multi-graph enabled active learning, Wang et al. [61]
presented a multi-modal web image retrieval technique to
leverage the heterogeneous data on the web to improve re-
trieval precision. In this solution, three graphes, i.e., Content-
Graph, Text-Graph and Link-Graph which are constructed
on visual content features, textual annotations and hyper-
links respectively, provide complimentary information on
the images. To solve the problem of recipe-oriented image-
ingredient correlation learning, Min et al. [62] proposed a
multi-modal multitask deep belief network (M3TDBN) to
learn joint image-ingredient representation regularized by
different attributes.

Cross-Modal Retrieval. Unlike unimodal retrieval, gen-
erally the modalities of query and results are different in
cross-modal retrieval, e.g. the retrieval of text documents
in response to a query image, and the retrieval of images
in response to a query text [63]. To exploit the correla-
tion between multiple modalities, Bredin et al. [64] utilized
canonical correlation analysis (CCA) [67] and Co-Inertia
Analysis (CoIA) for the task of audio-visual based talking-
face biometric verification. Due to the importance of negative
correlation, Zhai et al. [65] proposed a novel cross-modality
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correlation propagation approach to simultaneously deal with
positive correlation and negative correlation between media
objects of different modalities. Rasiwasia et al. [66] proposed
a novel method named cluster canonical correlation analysis
(cluster-CCA) for joint dimensionality reduction of two sets
of data points. Based on it they designed a kernel extension
named kernel cluster canonical correlation analysis (cluster-
KCCA) which achieves superior state of the art performance
in cross-modal retrieval task. In another work Rasiwasia
et al. [63] studied the problem of joint modeling the text
and image components of multimedia documents. They in-
vestigated two hypotheses and using canonical correlation
analysis to learn the correlations between text and image.
To measure the cross-modal similarities, Jia et al. [68] pre-
sented a novel Markov random field based model which
learns cross-modality similarity from a document corpus that
has multinomial data. Chu et al. [69] developed a flexible
multimodality graph (MMG) fusion framework to fuse the
complex multi-modal data from different media and a topic
recovery approach to effectively detect topics from cross-
media data.

It is unfortunate that all the researches aforementioned
cannot be directly applied to geo-multimedia cross-modal
retrieval because they do not consider both the geographical
location and multimedia information during the processing
of multi-modal or cross-modal retrieval. These solutions are
really significant for multimedia information retrieval but
they are not adequately suitable to the problem of geo-
multimedia cross-modal retrieval. Thus, there is an urgent
need to develop efficient methods for geo-multimedia cross-
modal retrieval.

B. MULTIMEDIA RETRIEVAL VIA DEEP LEARNING
More recently, lots of multimedia retrieval problems have
been solve by new models via deep neural networks [70]–
[74]. Content-based image retrieval is one of the significant
problems, and many researches improve the retrieval preci-
sion with the power of deep learning. Fu et al. [75] proposed
a CBIR system based on CNN and SVM. In this framework,
CNN is applied to extract the feature representations and
SVM is used to learn the similarity measures. A validation
set is generated in the training of SVM to tune to parameters.
By extending SIFT-based SMK [76], [77]methods, Zhou et
al. [78] proposed a unified framework of CNN-based match
kernels to encode the two complementary features: low level
features and high level features, which can provide comple-
mentary information for image retrieval task. To evaluate
whether deep learning is a hope for bridging the semantic
gap in CBIR and how much empirical improvements can
be achieved for learning feature representations and simi-
larity measures, Wan. et al. [79] investigated a framework
of deep learning with application to CBIR tasks with an
extensive set of empirical studies by examining a state-of-
the-art deep convolutional neural network for CBIR tasks
under varied settings. Sun et al. [80] proposed a CNN-based
image retrieval approach using Siamese network to learn

a CNN model for image feature extraction. They used a
contrastive loss function to enhance the discriminability of
output features. Zagoruyko et al. [81] proposed a general
similarity function for patches based on CNN model for
learning directly from raw image pixels.

C. SPATIAL TEXTUAL SEARCH
Spatial textual search has been well studied for several years
since this technique is significant to local-based services and
advanced search engines. It aims to efficiently retrieve a set
of spatial textual objects that have a high textual similarity
to query keywords and are close enough to query location.
Existing literatures show that there are several types of spa-
tial textual search, such as top-k search, k-nearest-neighbor
query, range search query, etc.

A wide range of works have been conducted focus on
spatial textual search and many solutions have been proposed
to improve the system performance. R-Tree is one of the
most significant spatial indexing techniques proposed by
Guttman [82], which uses minimum bounding area (MBR)
to partition the geographical space. Cao et al. [83] studied the
problem of collective spatial keyword querying. They proved
that the two variants of this problem are NP-complete. For
location-aware top-k text retrieval, Cong et al. [50] presented
a new indexing framework that integrates the inverted file for
text retrieval and the R-tree for spatial proximity querying.
Li et al. [84] proposed a novel indexing technique named
BR-tree by integrating a spatial component and a textual
component to solve the problem of keyword-based kNN
search in spatial databases. Based on Quadtree, Zhang et
al. [46] proposed a scalable integrated inverted index named
I3. Furthermore, they proposed a novel storage mechanism
to improve the efficiency of retrieval and preserve summary
information for pruning. To boost the performance of top-
k spatial keyword queries, João B. Rocha-Junior et al. [85]
designed a novel index named spatial inverted index (S2I)
that maps each distinct term to a set of objects containing the
term. Li et al. [49] introduced an index structure named IR-
Tree which indexes both the textual and spatial contents of
documents to support document retrieval and then designed a
top-k document search algorithm. Zhang et al. [86] proposed
an effective approach to solve the top-k distance-sensitive
spatial keyword query by modeling it as the well-known top-
k aggregation problem. Zhang et al. [87] introduced a new
spatial keyword query problem called m-closest keywords
(mCK) query which aims to search out the spatially closest
tuples that matchm user-specified keywords. To speed up the
search, they designed a novel index called the bR∗-tree that
is extended from R∗-tree [88]. Moreover, They exploited a
priori-based search strategy to effectively reduce the search
space. For collective spatial keyword query problem, Long et
al. [89] proposed a distance owner-driven method including
an exact algorithm that defeats the best-known existing al-
gorithm and an approximate algorithm which improves the
constant approximation factor from 2 to 1.375. For top-k
spatial keyword search problem, Zhang et al. [47] presented
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an advanced index structure named inverted linear quadtree
(IL-Quadtree) to improve efficiency dramatically.

Obviously, these solutions aforementioned just only con-
sider the situation that the geo-location objects containing
only one modality data, i.e., text or keywords. In other words,
These methods cannot be directly applied to spatial cross-
modal retrieval in the geo-multimedia database. This neces-
sitates the development of novel and efficient cross-modal
search methods for geo-multimedia data. To the best of our
knowledge, this it the first work to imvestigate the problem
of geo-multimedia cross-modal retrieval considering both
different features of multimodality data and the geographical
information.

III. PRELIMINARY
In this section, we firstly formulate the definition of the geo-
multimedia object and some relevant notions, then the defini-
tion of kNN geo-multimedia cross-modal query is proposed
for the first time. Furthermore, we introduce the concept
of cross-modal semantic representation mapping. Table 1
summarizes the mathematical notations used throughout this
paper to facilitate the discussion of our work.

A. PROBLEM DEFINITION
Definition 1 (Geo-Multimedia Object): A geo-multimedia
objects database is defined asO = {o1, o2, ..., o|O|}, wherein
|O| represents the number of objects in O. Each geo-
multimedia object o ∈ O is associated with a geographical
information descriptor o.λ and a modality content descriptor
o.M . A geographical information descriptor includes a 2-
dimensional geographical location with longitude X and
latitude Y is denoted by o.λ = (X,Y ). Let M be the
modality set. In this paper we consider two most common
modalities, i.e., text and image, thus M = {T , I}, where
T represents text modality and I represents image modality.
If a geo-multimedia object contains a text, it is denoted as
o.MT . Similarly, If an object contains an image, it is denoted
as o.MI .MT andMI denote the feature vector generated by
a text and an image respectively. Let ST and SI be the feature
spaces of text and image, ∀oi ∈ O, if oi contains a text, then
oi.MT ∈ ST . If oi contains an image, then oi.MI ∈ SI .

Based on the definition of geo-multimedia objects, we
define the kNN geo-multimedia cross-modal query. Firstly,
we consider the query without geographical information. In
other words, we give the definition of cross-modal query and
then extend it to the query in the geo-multimedia database.
Definition 2 (Coss-Modal Query): Given a multimedia ob-
jects database O = {o1, o2, ..., o|O|}, in which each ob-
ject contains one of the following two modalities, i.e., text
modality T and image modality I. There are two types of
cross-modal query can be defined: (1) QT 2I is defined as a
text query which aims to search our the most relevant mul-
timedia object o ∈ O contains an image, and QT 2I .MT ∈
ST ,o.MI ∈ SI . (2)QI2T is defined as a image query which
aims to search out the most relevant multimedia object o ∈ O
contains a text, and QI2T .MI ∈ SI ,oi.MT ∈ ST .

Notation Definition
O A given database of geo-multimedia objects
|O| The number of objects in O
o.λ The geo-location information descriptor of o
o.ψ A visual content descriptor of o
Qk A kNN geo-multimedia cross-modal query
QT 2I A text query to search images
QI2T A image query to search texts
M A modality set
T Text modality
I Image modality
ST A text feature space
SI A image feature space
MT a feature vector of a text
MI a feature vector of an image
X The longitude of a geo-location
Y The latitude of a geo-location
k The number of final results
Fscore(Q, o) The score function
R The set of results
µ A parameter to balance distance proximity and

semantic similarity
Dst(Q, o) The spatial distance function.
δ(Q, o) The Euclidean distance betweenQ and o
Sim(Q, o) The semantic similarity betweenQ and o
WT An intermediate representation space of text

modality
WI An intermediate representation space of image

modality
RT The semantic representation space of text modal-

ity
RI The semantic representation space of image

modality
Ψ A mapping from text feature space to image

feature space
W A cross-modal semantic representation space
LT A non-linear transformation for text modality
LI A non-linear transformation for image modality
ΘT A projection from text feature space to interme-

diate representation space
ΘI A projection from image feature space to inter-

mediate representation space
C The set of semantic concepts
Υ The set of classes
ι A visual feature vector of a geo-image I
τ A text feature vector of a geo-text T
Ni A node of GMR-Tree
Si A signature
HSIG(.) A hashing function to generate signatures

TABLE 1: The summary of notations

Definition 3 (kNN Geo-Multimedia Cross-Modal Query):
Given a geo-multimedia objects databaseO = {o1, o2, ..., o|O|},
a kNN Geo-Multimedia Cross-Modal Query Qk = (λ,M)
aims to return k nearest geo-multimedia objects whose
modalities features are highly relevant to the query. Like
Definition 3, we define these two types of query asQkT 2I and
QkI2T , which are named kNN geo-multimedia text to image
query (kT2IQ) and kNN geo-multimedia image to text query
(kI2TQ) respectively. In more detail, QkT 2I aims to return
k nearest geo-multimedia objects which contain images that
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are highly relevant to the query text, and QkI2T aims to find
k nearest objects which contain texts that are highly relevant
to the query image. The relevancy between text and image is
the semantic correlation between them. Formally, For query
QkT 2I , the result is k geo-multimedia objects RT 2I which
are ranked by the a score function Fscore(QkT 2I , o),i.e.,

RT 2I = {o|∀o ∈ O, o′ ∈ O \ RT 2I ,

Fscore(QkT 2I , o) > Fscore(QkT 2I , o
′)},

RT 2I ⊆ O, |RT 2I | = k

(1)

likewise, for query QkI2T , the result is k geo-multimedia
objects RT 2I ranked by Fscore(QkI2T , o), i.e.,

RI2T = {o|∀o ∈ O, o′ ∈ O \ RI2T ,

Fscore(QkI2T , o) > Fscore(QkI2T , o
′)},

RI2T ⊆ O, |RI2T | = k

(2)

and the score function is defined as follows:

Fscore(Q, o) = µDst(Q, o) + (1− µ)Sim(Q.o) (3)

where Q represents a query, and µ ∈ [0, 1] is a param-
eter which is to balance the importance between distance
proximity component and semantic similarity component. If
µ > 0.5, it means the distance proximity is more important
than the semantic similarity. And if µ = 0, it means this
function is just used to measure the semantic similarity
between Q and o.

In this paper, we focus on the kT2IQ query QkT 2I : given a
query text, the system will measure the geographical distance
proximity according the geo-locations of query and objects,
and meanwhile measure the relevance between query text and
images contained in objects. To facilitate the expression, we
abbreviate QkT 2I as Q. In the following part we introduce
how to measure spatial distance proximity and the cross-
modal semantic correlation.
Definition 4 (Spatial distance proximity measurement):
Given a geo-multimedia objects databaseO = {o1, o2, ..., o|O|}
and a kT2IQ queryQ, ∀o ∈ O, the spatial distance proximity
is measured by the following function:

Dst(Q, o) = 1− δ(Q, o)
δmax(Q,O)

(4)

where δ(Q, o) represents Euclidean distance between the
query Q and the object o. δmax(Q,O) represents the max-
imum spatial distance betweenQ and any objects inO. They
are defined in detail as follows:

δ(Q, o) =
√

(Q.λ.X − o.λ.X)2 + (Q.λ.Y − o.λ.Y )2 (5)

δmax(Q,O) = max({δ(Q, o)|∀o ∈ O}) (6)

where the function max(X ) is to return the maximum value
of element in the set X . It is easily to know that for spatial
distance proximity measurement, the objects with the small
score values are preferred (i,e., ranked higher).
Definition 5 (Cross-modal semantic similarity measure-
ment): Given a geo-multimedia objects database O =

{o1, o2, ..., o|O|} and a kT2IQ query Q, ∀o ∈ O, the cross-
modal semantic similarity is measured by cosine similarity
measurement, as shown in the following equation:

Sim(Q, o)

=

∑
i∈Q.MT

Q.M (i)
T ∗ o.M

(i)
I√∑

i∈Q.MT
(Q.M (i)

T )2 ∗
√∑

i∈o.MI
(o.M

(i)
I )2

(7)

where Q.M (i)
T and o.M (i)

I represent ith feature element in
representation vector Q.MT and o.MI respectively.

B. CROSS-MODAL SEMANTIC REPRESENTATION
SPACE
It is common knowledge that semantic gap is a ticklish
problem for cross-modal retrieval. In other words, we cannot
directly measure similarity between query and object which
belongs to different modalities by equation (7). Because
Q.MI and o.MI cannot be mapped into a common space.
Therefore, this task cannot be reduced to a classical informa-
tion retrieval task in which there is a mapping between query
representation space and object representation space. It can
be described in formal as follows: for a query Q with a text
and a geo-multimedia object o with an image, the features
spaces of them are denoted as ST and SI respectively, and
Q.MT ∈ ST , o.MI ∈ SI , the mapping between ST and SI
is represented as

Ψ : ST −→ SI

and the inverse mapping is represented as

Ψ−1 : SI −→ ST

Thus, the cross-modal text to image query can be denoted
as QT 2I ⇐⇒ Ψ(Q.MT ). As discussed above, it is
hard to find this mapping between feature spaces of different
modalities.

To this end, we assume that there exist two mappings
which map text and image feature spaces into two intermedi-
ate representation WT and WI respectively, that is:

ΩT : ST −→WT

ΩI : SI −→WI

and the inverse mappings of them are denoted respectively as

Ω−1
T : WT −→ ST

Ω−1
I : WI −→ SI

and existing a mapping Φ:

Φ : WT −→WI

that means there is a semantic correlation between these two
isomorphic spaces WT and WI .

According to this assumption, we redescribe the cross-
modal text to image query in the following forms: Given a
geo-multimedia database O, a kT2IQ query Q is to search
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African elephants are elephants of the genus Loxodonta. The genus 
consists of two extant species: the Af rican bush elephant, L. 
africana, and the smaller African forest elephant, L. cyclotis. 
Loxodonta (from Greek λοξός, loxós: 'slanting, crosswise, oblique 
sided' + ὀδούς, odoús: stem odónt-, 'tooth') is one of two existing 
genera of the family Elephantidae. Fossil remains of Loxodonta have 
been found only in Africa, in strata as old as the middle Pliocene. 
However, sequence analysis of DNA extracted from fossils of an 
extinct  elephant species undermines the validity of the genus.

Led Zeppelin are widely considered one of  the most successful, 
innovative, and influential rock groups in history. They are one of 
the best-selling music artists in the history of audio recording; 
various sources est imate the group's record sales at 200 to 300 
million units worldwide. With RIAA-cert ified sales of 111.5 million 
units, they are the second-best-selling band in the US. Each of their 
nine studio albums placed in the top 10 of the Billboard album chart 
and six reached the number-one spot. They achieved eight 
consecutive UK number-one albums. 

It spouted at regular intervals nine 
times during our stay, the columns of 
boiling water being thrown from ninety 
to one hundred and twenty-five feet at 
each discharge, which lasted from 
fifteen to twenty  minutes. We gave it 
the name of "Old Faithful." 

In 1604 the construction of the new church was begun, to the 
design of Gaspare Guerra. The project, halted eight years later, was 
revamped in 1653 by Francesco Borromini, who is responsible of the 
apse, the tambour of the cupola,[4] and the square campanile with 
four orders. After his death, the construction was continued by 
Mattia De Rossi. The late Renaissance-style façade, with two orders 
divided by pilasters, was completed in 1826, thanks to funds 
provided the Testament of Cardinal Ercole Consalvi.
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FIGURE 3: The construction of cross-modal semantics representation space. Herein we only consider geo-image and geo-text modalities.
Two feature extractors map the geo-multimedia objects from original modality space to feature space, and the feature vectors of image and
text are transformed into semantic representations in cross-modal semantic representations space via two non-linear mappings.

out the most relevant object contains image that is repre-
sented as Ω−1

I (Φ(ΩT (Q.MT ))) in SI . In other words, This
idea is to use two intermediate representation spaces WT and
WI to implement the mapping from ST to SI .

According to the above discussion, the most difficult prob-
lem for implementing efficient cross-modal retrieval is to
learn the intermediate representation spaces WT and WI .
To overcome this challenge, we introduce a notion named
CrOss-modal Semantics Representation Space (CoSReS),
shown as follows.
Definition 6 (Cross-Modal Semantic Representation Space
(CoSReS)): Given a geo-multimedia database O and modal-
ity set M = {T , I}. Let ST and SI be the feature spaces
of text and image respectively, RT and RI be the semantic
space of text and image respectively. A CoSReS W is a
isomorphic representation space for modalities T and I
in a high-level semantic abstraction, if existing two non-
linear transformations TT and TI , RT = TT (ST ) and
RI = TI(SI), then W = RT = RI .

Fig. 3 demonstrates the concept of CoSReS. For two
different modalities, CoSReS have a set of common seman-
tic concepts. After extracting features for texts and images
respectively, the feature vectors of texts and images can be
transformed into semantic representation vectors in CoSReS.
Therefore, we can easily measure the semantic similarity in
this common representation space.

IV. THE FRAMEWORK
In this section, we propose a novel framework for geo-
multimedia cross-modal retrieval, which includes multi-
modal feature extraction, cross-modal semantic space map-
ping, geo-multimedia spatial index and cross-modal semantic
similarity measurement. As mentioned above, this frame-

work is desinged for kNN geo-text to geo-image query
kT2IQ, but this approach can also be extended for other
modalities, e.g. audio and video by changing the feature
representation component. In this section, a overview of this
framework is given and the details of each component are
presented in the next two sections.

Feature Extraction. Specifically, two datasets, as shown
in Fig. 4, i.e., geo-image set and geo-text set are used to
train the feature extraction models called VisNet and TxtNet
for image and text respectively, which generate feature rep-
resentations. In other words, VisNet and TxtNet play the
roles of feature mappings that maps geo-image objects and
geo-text objects into visual feature space and text feature
space, namely VisNet({I1, I2, ...Im};θ) = {ι1, ι2, ..., ιm},
TxtNet({T1, T2, ...Tm};ψ) = {τ1, τ2, ..., τm}, where θ and
ψ are the model parameters of VisNet and TxtNet. Ap-
parently, there are several ways to implement VisNet and
TxtNet, such as SIFT, BoW, LDA in a traditional manner,
or CNN and LSTM in a deep learning based manner. In this
work we employ AlexNet and LDA model to implement Vis-
Net and TxtNet, which are explained minutely in Section V.
Other techniques will be exploited in our future works.

Semantic Representation. As discussed above, the main
obstacle of the cross-modal retrieval problem is the semantic
gap between different modalities. How to bridge the semantic
gap is one of the main challenges of cross-modal retrieval
task. To this end, we propose to construct a cross-modal
semantic representation space in which different modalities
objects can be represented by common highe-level semantic
concepts. In other words, the semantic similarity between
these cross-modal objects can be easily measured precisely
in a traditional way (e.g., cosine similarity). We propose
a novel method named Cross-modal Semantic Matching
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The Rhacophor idae ar e a family of  f rog species,  which occur in 
tr opi cal sub-Saharan Af rica,  South India and Sri  Lanka, J apan;  
nor theastern Indi a to eastern China south through the Phi lippines  
and Gr eat er  Sundas,  and Sul awesi . They ar e com monly known as  
shr ub frogs,  or more ambiguousl y as  "moss  f rogs" or "bush f rogs". 
Some Rhacophor idae are called "t ree f rogs". Among the most 
spect acular members  of t his family are numer ous  "flying fr ogs".  
Alt hough a few gr oups are pr imaril y ter rest rial,  r hacophorids  are 
predomi nantly treefr ogs which ar e arboreal . Mat ing fr ogs, whil e in 
ampl exus,  hol d on to a br anch,  and beat  t hei r l egs  to form a foam. 
The eggs  are l ai d in the f oam, and covered wit h seminal f luid, before 
the f oam hardens into a pr ot ecti ve casi ng. In some speci es , this  is  
done in a large gr oup. The foam i s lai d above a wat er  sour ce, so t he 
tadpoles  fall  into t he wat er  once they hatch.[1]  
The species within this  famil y vary i n si ze f rom 1.5 t o 12 cm (0.59 to 
4.72 in).[ 1]  Like ot her  arbor eal  fr ogs , t hey have toe discs , and those of 
the genus Chir omanti s have t wo opposable fi ngers on each hand. This  
famil y al so contains the Old Wor ld f lying fr ogs , i ncluding Wallace's  
fl yi ng f rog (Rhacophorus  nigropalm at us).  These frogs have ext ensi ve 
webbing between thei r foreli mbs  and hindl imbs,  all owing t hem to 
glide thr ough the ai r.
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The Rhacophori dae are a family of  fr og speci es , whi ch occur in t ropical sub-Saharan Afr ica, 
South India and Sr i Lanka, Japan; nor theastern Indi a to eastern China sout h through the 
Phi lippines  and Great er Sundas,  and Sulawesi.  They are commonl y known as  shrub fr ogs, or  
more ambiguousl y as "moss fr ogs"  or  "bush fr ogs". Some Rhacophori dae ar e call ed "t ree 
fr ogs".  Among t he most  spectacular mem bers  of this  famil y ar e numerous "fl yi ng f rogs".  
Alt hough a few gr oups ar e pri mar ily terr estr ial, rhacophor ids ar e predomi nantly tr eefr ogs  
which ar e ar bor eal.  Mating fr ogs , whil e in ampl exus, hold on t o a br anch,  and beat  t heir  legs t o 
for m a f oam. The eggs  are laid in the f oam, and covered wit h seminal f luid, befor e the foam 
har dens into a protective cas ing.  In some species , t hi s is done in a lar ge group.  The f oam is laid 
above a wat er  source, so the tadpoles  fall  into t he water  once they hatch.[1] 
The species wit hi n this  f ami ly var y in s ize fr om 1.5 t o 12 cm (0.59 to 4. 72 i n) .[1]  Like ot her  
arboreal  fr ogs , they have t oe discs , and those of the genus Chir omant is have two opposable 
fi ngers  on each hand. This famil y al so cont ai ns  t he Ol d World f lying fr ogs,  i ncludi ng Wal lace's  
fl yi ng f rog (Rhacophorus  nigropal mat us).  These fr ogs  have ext ensive webbing bet ween their  

for el imbs and hi ndli mbs, al lowing them to glide t hr ough the ai r.

A r ose i s a woody perenni al  f lower ing plant  of  t he 
genus Rosa,  i n the f ami ly Rosaceae,  or the f lower  i t 
bears . Ther e are over thr ee hundred species and 
thousands  of cul tivars . They f or m a gr oup of  plants  
that can be er ect shr ubs , cli mbi ng, or tr ai ling, with 
s tems t hat are oft en armed wi th sharp pr ickl es . 
Flower s vary in s ize and shape and ar e usually l ar ge 
and showy,  i n col our s rangi ng from white through 
yel lows and reds.  Most  speci es  are nati ve t o As ia, with 
smal ler number s nati ve t o Eur ope, Nort h Amer ica,  and 
nor thwest er n Afri ca. Speci es , cult ivar s and hybri ds  are 
all widely gr own for  t hei r beauty and of ten are 
fr agr ant.  Roses have acquired cultural s ignif icance in 
many societ ies . 

Elephant s ar e large mammals of t he family 
Elephant idae in t he or der Probosci dea. Three species 
are curr entl y recognised: the Afr ican bush el ephant  
(Loxodonta af ri cana) , the Afr ican f orest  elephant (L. 
cyclotis ),  and the As ian elephant  ( El ephas  m aximus) . 
Elephant s ar e scat tered thr oughout sub-Saharan 
Afr ica, South As ia, and Southeast Asia. El ephant idae i s 
the only surviving famil y of the or der Probosci dea; 
other, now ext inct , member s of the or der include 
dei not heres , gomphotheres,  mast odons, anancids  and 
s tegodont ids; Elephant idae i tsel f al so cont ai ns  several 
now ext inct gr oups , such as t he mammot hs and 
s traight-tusked elephant s.  

A dr agonfly is  an insect bel onging t o t he order 
Odonata, infr aorder Ani soptera (fr om Gr eek ἄνι σος 
ani sos,  "unequal"  and πτερόν pteron, "wing", because 
the hi ndwing i s broader than t he forewing). Adul t 
dragonfl ies ar e char acteri zed by l ar ge, mult ifacet ed 
eyes,  t wo pair s of  st rong,  tr anspar ent wings , 
someti mes  wi th coloured pat ches,  and an el ongat ed 
body. Dragonfli es  can be mist aken f or  the r el at ed 
group,  damself lies (Zygoptera),  which are si milar in 
s tructure, though usually li ghter  in build; however , t he 
wings of  most  dragonfl ies ar e held flat and away f rom 
the body, while damself lies hol d the wi ngs folded at 
rest, al ong or above t he abdomen.  Mangoes  ar e juicy st one f ruit (dr upe) f rom numerous 

speci es  of  t ropical  t rees  belongi ng to t he fl oweri ng 
plant  genus Mangifer a,  culti vated mostl y f or  thei r 
edi bl e fr ui t. The majori ty of these speci es  are f ound in 
nat ur e as wil d mangoes . The genus  belongs  t o t he 
cashew family Anacardiaceae.  Mangoes ar e nat ive to 
South As ia,[ 1] [2] f rom where t he "common mango" or 
" Indi an mango", Mangi fera indica,  has  been dis tr ibut ed 
worldwide to become one of  the most widely 
cul tivated fr ui ts  in t he t ropics. Other  Mangi fera species 
(e.g. hor se mango, Mangif er a foetida) ar e gr own on a 
more l ocal ized basis . 

Bat s are m ammals  of  t he or der  Chir opter a; [a] with 
their  f or el imbs adapted as wings, they are t he only 
mammal s nat urally capable of tr ue and sustained 
fl ight . Bats  ar e more manoeuvr able than bi rds,  f lyi ng 
wit h their  ver y long spread-out  digit s cover ed with a 
thin membr ane or  patagi um.  The smal lest  bat, and 
arguably t he small est extant mammal , is Kitt i' s hog-
nosed bat,  which is  29–34 mm (1.14–1.34 in) in lengt h, 
15 cm (5.91 in) across  t he wi ngs and 2–2.6 g (0.07–0.09 
oz)  in mass.  The largest bat s ar e the f lying foxes  and 
the giant  golden-crowned f lyi ng f ox, Acerodon j ubatus,  
which can weigh 1. 6 kg ( 4 lb) and have a wi ngspan of 
1.7 m ( 5 ft  7 in).  

A hedgehog is  any of the spiny mammals  of t he 
subfamil y Eri naceinae,  in the eulipotyphl an family 
Erinaceidae.  Ther e ar e seventeen speci es  of hedgehog 
in f ive gener a found thr ough part s of Europe, Asia, and 
Afr ica, and i n New Zealand by i nt roducti on. There are 
no hedgehogs  nat ive to Aust rali a and no li ving species 
nat ive to t he Ameri cas (the ext inct  genus Am phechinus 
was once pr esent  in Nor th America). Hedgehogs  share 
dis tant  ancest ry with shrews (f am ily Soricidae) , with 
gymnures possi bly bei ng the i nt er medi at e li nk, and 
they have changed li tt le over  the l ast 15 mi lli on 
years .[ 2]  Like many of  t he fir st  mammals , they have 
adapted to a noct ur nal way of  li fe.[3] 

The reindeer (Rangif er  t ar andus) , als o known as  t he 
car ibou in North Amer ica,[ 3] i s a speci es  of deer with 
c ircumpolar dis tr ibut ion,  nati ve t o Arcti c,  s ub-Arcti c, 
tundra, boreal, and mountainous  r egions of  nort hern 
Eur ope, Si ber ia, and Nort h Amer ica. [2] This  incl udes 
bot h s edent ary and migr at or y populati ons . Rangi fer 
her d si ze varies gr eat ly in dif ferent geogr aphic regions . 
The Taimyr herd of migrating Siber ian tundr a reindeer  
(R. t . s ibir icus ) in Russ ia i s the l ar ges t wild r eindeer 
her d in t he wor ld,[ 4] [5] varying bet ween 400, 000 and 
1,000,000.  What was  once t he second largest  herd i s 
the mi gr at ory bor eal  woodland car ibou ( R. t . cari bou) 
Geor ge Ri ver her d in Canada, wi th f ormer vari at ions 
bet ween 28, 000 and 385,000.  

Gibbons ar e apes  in t he f am ily Hylobati dae. The family 
his torically cont ai ned one genus , but  now is  spl it into 
four gener a and 18 species . Gibbons  li ve i n tr opical  and 
subtr opi cal rainf or ests  f rom eastern Bangladesh and 
nor theast I ndia to southern Chi na and Indonesia 
(i ncluding the is lands of  Sum at ra, Borneo,  and J ava). 
Also call ed the smal ler apes or lesser  apes , gi bbons 
diff er  f rom great apes  ( chimpanzees , bonobos,  gor ill as , 
orangutans, and humans)  i n being smaller,  exhibit ing 
low sexual di mor phi sm, and not  making nests .[3] In 
cer tain anatomical  detail s,  t hey super fi ciall y more 
closely r esemble monkeys than gr eat  apes do,  but  l ike 
all apes, gi bbons  are t ai lless. 

Rabbit s ar e small  mammal s in t he f ami ly Lepori dae of 
the or der Lagom or pha ( al ong wi th t he hare and t he 
pika) . Oryct ol agus cuniculus includes t he Eur opean 
rabbit speci es  and i ts  descendants , the wor ld's 305 
breeds[1] of domest ic rabbit.  Sylvi lagus  i ncludes  13 
wil d r abbit species,  among t hem the 7 t ypes of 
cot tontail.  The European rabbi t, which has been 
intr oduced on every cont inent  except  Antarcti ca, is  
famil iar throughout  t he world as  a wild pr ey animal 
and as  a domesticated form of l ivestock and pet . With 
it s widespread ef fect on ecologies  and cul tures,  t he 
rabbit (or bunny) is , in many areas of  t he worl d,  a par t 
of dail y lif e—as food, cl ot hing,  a compani on,  and as  a 
source of art is tic i nspirati on. 

A r aven is  one of  several l ar ger-bodied s pecies of  t he 
genus Cor vus . These species  do not f or m a si ngle 
taxonomic gr oup wit hi n t he genus.  There is  no 
consi st ent  dis tinction between "crows" and "ravens", 
and t hese appel lations have been assi gned to dif ferent 
speci es  chief ly on the basi s of t heir  size, cr ows 
generally being small er  t han r avens . The largest  raven 
speci es  ar e t he common r aven and the t hi ck-bill ed 
raven. The ter m "raven" ori gi nall y r ef er red t o t he 
common r aven (Corvus  cor ax) , t he type species of  t he 
genus Corvus,  which has a larger di str ibution t han any 
other species  of Corvus , rangi ng over much of  t he 
Northern Hemisphere. 

Monkey is  a common name t hat  may r efer t o groups  or 
speci es  of mammal s,  in part , t he simi ans  of infraorder 
Simii formes.  The t er m i s appl ied descr iptively to groups 
of pr imates,  such as famil ies  of  new worl d monkeys  
and ol d worl d monkeys. Many monkey species are 
tr ee-dwel ling ( ar bor eal) , al though t her e are species 
that live pr imaril y on the ground,  such as baboons . 
Most  species ar e also acti ve duri ng t he day ( di ur nal) . 
Monkeys  ar e generally consi dered t o be i nt el ligent , 
especiall y the ol d wor ld monkeys  of Cat ar rhini. 
Simians and t ar sier s emer ged wit hi n hapl or rhines 
some 60 mi lli on year s ago. New World monkeys  and 
cat ar rhine monkeys  emerged wit hi n the s imians some 
35 mill ion years  ago. 

The Rhacophori dae are a f ami ly of frog species, which 
occur i n tr opical  sub-Saharan Af ri ca, South India and Sri  
Lanka, J apan;  nort heast ern Indi a t o eastern Chi na 
south t hrough t he Phili ppines and Greater Sundas,  and 
Sul awesi . They are commonl y known as  shr ub frogs,  or 
more ambiguous ly as "m oss fr ogs" or "bush f rogs". 
Some Rhacophor idae ar e call ed "t ree fr ogs".  Among 
the most spectacular member s of t hi s f ami ly are 
numer ous  "flying f rogs". Al though a f ew groups  are 
prim ar ily terr estr ial, rhacophor ids ar e predomi nantly 
tr eef rogs  whi ch ar e arboreal . Mat ing fr ogs , whi le i n 
ampl exus,  hol d on to a br anch, and beat  t heir  l egs to 
for m a foam. The eggs  ar e laid in the foam, and 
covered wit h seminal fluid, bef or e the f oam har dens 
into a pr ot ecti ve cas ing. 
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FIGURE 4: The proposed framework for geo-multimedia cross-modal retrieval. It is designed for kNN geo-multimedia text to image query
kT2IQ. Two feature extractors, namely VisNet and TxtNet, which are learning based methods to extract visual features and text features from
geo-images and geo-texts, respectively. In other words, they map geo-images and geo-texts into visual feature space and text feature space.
To overcome the challenge of semantic gap between image modality and text modality, we propose to construct a corss-modal semantic
representation space in which we can measure the semantic similarity between the semantic representations of geo-images and geo-texts.
Based on the cross-modal semantic representations, a novel hybrid index that is a combination of R-Tree and signature files is carefully
designed and an efficient kNN geo-multimedia cross-modal search algorithm is developed to speed up the retrieval. Aaccording to the score
function Fscore(Q, o) = µDst(Q, o) + (1− µ)Sim(Q.o), the system can measure the similarity between query Q and an geo-multimedia
object o in both aspects of geo-location and semantic concept precisely.

(CoSMat) consists of two novel techniques, namely CorrProj
and LogsTran to implement non-linear mappings from fea-
ture space to semantic space. This method is described in
Section V in detail.

Spatial Indexing. To boost the efficiency of the large-scale
geo-multimedia retrieval, we propose to develop a hybrid
spatial index structure and integrate it into this framework.
Inspired by traditional spatial textual search techniques, i.e.,
R-Tree and signature method, an exquisitely designed index
structure named GMR-Tree is proposed, in which the cross-
modal semantic representations in CoSReS are used to gen-
erate signature files in binary and stored in the tree nodes.
Similar to R-Tree, the geo-location informantion such as
longitude and latitude are used to partition the geographical
space in the form of minimum bounding area (MBR). This
part is detailed discussed in Section VI.

Similarity Measurement and Search. Based on GMR-
Tree, we design a kNN geo-multimedia cross-modal
search algorithm, called kGMCMS. The score function
Fscore(Q, o) = µDst(Q, o) + (1 − µ)Sim(Q.o) defined
in Section III is used to measure the similarity between the

query Q and the geo-multimedia object o in both aspects
of geographical proximity and semantic correlation. The
implementation of this algorithm is introduced in Section VI.

V. CROSS-MODAL SEMANTIC REPRESENTATION
SPACE CONSTRUCTION WITH DEEP LEARNING
In this section, we reduce the task of bridging the semantic
gaps between different modalities into the problem of in-
termediate representation space construction, which can be
represented by cross-modal semantic representation space
(CoSReS). In this section, we present a deep learning based
solution to construct the CoSReS based on the concept pre-
sented in subsection III-B. First we discuss how to learn a
common semantic representation space for text and image
data. Then an effective approach named DeCoSReS is in-
troduced, which utilizes convolution neural networks (CNN)
and Latent Dirichlet Allocation [91] (LDA) to learn the
representation speace.

A. CROSS-MODAL SEMANTIC MATCHING
We use the method called cross-modal semantic matching
(CoSMat) to construct CoSReS so that it provides a common
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semantic representation space for different modalities. This
algorithm consists of two components, i.e., (1)CCA based
Correlation Projection (CorrProj) and (2)logistic regres-
sion based Transformation (LogsTran). The former aims
to learn subspaces from feature spaces of different modal-
ities, and the latter is to learn semantic mappings in these
subspaces. We introduce these two important techniques
respectively in the following part.

CorrProj. Canonical correlation analysis [90] (CCA) is
a popular dimensionality reduction method. We use it to
learn γ-dimensional subspaces Wγ

T ∈ ST and Wγ
I ∈ SI

to find the correlations between these two subspaces. CCA
method learns directions in text and image feature spaces,
i.e., ΓT ∈ ST and ΓI ∈ SI along the directions of the data
maximally correlated. That is, for feature vectors MT and
MI , measuring the maximun correlation:

u = ΓTTMT ,

v = ΓTIMI ,

maxCorr(u, v) =
ΓTT ΣT IΓI√

ΓTT ΣT T ΓT

√
ΓTIΣIIΓI

(8)

wherein ΣT T and ΣII are the empirical covariance matrices
of space ST and SI , i.e., ΣT T = Cov(ST ) and ΣII =
Cov(SI), ΣT I is the empirical cross-covariance matrix of
them, i.e., ΣT I = Cov(ST ,SI), and ΣT I = ΣTIT .

The first γ canonical components {ΓT1}γ and {ΓI1}γ
represent a basis for projection ST and SI on subspace WT
and WI . For each text MT in space SI , it can be mapped
into the projection ΘT (MT ) onto {ΓT1}γ . Likewise, for each
image MI in space SI , it can be mapped into the projection
ΘI(MI) onto {ΓI1}γ . Therefore, the method CorrProj can
learn two projections ΘT (MT ) and ΘI(MI) from ST and
SI , which can be used to define two γ-dimension subspaces
for text and image, i.e.,

ΘT : ST −→WT

and,
ΘI : SI −→WI

After that, this approach used another component named
LogsTran to learn two semantic mappings from these two
subspace, which is described as follows.

LogsTran. The method aforementioned is to map feature
spaces of text and image to maximally correlated subspaces
WT and WI . Then we use another method called LogsTran
to find the correspondence between ST and SI by rep-
resented objects at a higher-level of semantic abstraction.
It can map text and image space into a common seman-
tic representation space with a set of semantic concepts
C = {c1, c2, ..., cn}, such as "airplane","cat" or "house".
We utilize logistic regression to learn two transformation
LT and LI . LT transforms a text contained by a geo-
multimedia object o.MT ∈ ST into a vector of posterior
probabilities PΥ

T (υi|T ), in which Υ = {υ1, υ2, ..., υk} is a

set of classes. Likewise, LI transforms an image contained
by a geo-multimedia object o.MI ∈ SI into a vector of
posterior probabilities PΥ

I (υi|I). The spaces RT and RI
of these posterior probabilities vectors are referred to the
semantic representation space of text and image respectively.
Formally, they can be presented as follows:

LT : ST −→ RT

LI : SI −→ RI

Multi-class logistic regression is utilized, which produces
a linear classifier. It calculates the posterior probability of
class ci by the following logistic function:

PΥ
M (ci|Mx;$) =

1∑
ci
exp($T

ciMx)
exp($T

ciMx) (9)

whereM represents the modalities information. For example,
for text, M = T and for image , M = I. Mx is the features
vector in the input space. $ = ($1, $2, ..., $k) is a vector
of parameters for class ci.

According to the logistic regression, in semantic represen-
tation spaces RT and RI , the features are semantic concept
probabilities, for instance, the probability of a text belongs
to "cat" class or the probability of an image belongs to
"airplane" class. Furthermore, texts and images are repre-
sented as posterior probabilities vectors in regard to same
classes. In addition, the semantic representation spaces RT
and RI are isomorphic, and they can be regarded as the
same, i.e., RT = RI . Therefore, the cross-modal semantic
representation space W = RT = RI .

The CosMat method is a combination of CorrProj and
LogsTran. In the first step, CorrProj is applied to learn
two maximally correlated subspaces WT and WI based
on feature spaces ST and SI . Then LogsTran method is
used to generate two transformations LT and LI to create
the isomorphic semantic representation spaces RT and RI .
Thus, we can measure the semantic similarity of text and
image in the CoSReS W, i.e., Sim(ξT , ξI), where ξT =
LT (ΘT (ST )), ξI = LI(ΘI(SI)). It is an significant step
of implementing kT2IQ.

B. CROSS-MODAL SEMANTIC REPRESENTATION
SPACE LEARNING
Deep learning techniques such as CNN, RNN, etc. are widely
applied in the area of multimedia retrieval. To implement
cross-modal semantic representation space construction and
cross-modal retrieval, we employ AlexNet and LDA model
to implement VisNet and TxtNet respectively. Fig. 5 is the
deep learning based framework of cross-modal semantic
representation space construction.

VisNet. For visual features extraction, we use the pre-
trained CNN model, AlexNet, proposed by [29] in this frame-
work. It contains five convolutional layers and two fully-
connected layers, trained by 1 million images. Specifically,
each image is resized to 256 × 256 at first and then put
into this model. The first convolutional layer filters the
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Th e Rh aco pho rid ae a re a fami ly of frog  species, which  occu r in  tro pical  sub-
Sa haran  Afric a, So uth  Ind ia  a nd  Sri  Lan ka, Ja pan ; n orthea stern Ind ia to  e astern 
Ch in a so uth th ro ug h the  Phi l ip pines a nd Grea te r Sun das, an d Su la wesi . T hey 
are  co mmo nly kno wn as shru b frogs, or more  ambigu ous ly as "mo ss frogs" o r 
"bu sh fro gs". Some  Rh aco pho rid ae a re cal led " tre e frog s". Amo ng th e mo st 
spe ctacu lar mem bers of this fam ily are num erou s "flying frogs". 
Altho ug h a fe w gro up s a re  p rim arily terrestrial , rha coph orids are 
pre dom in antly treefro gs which are  a rbore al . Ma tin g frogs, whi le  in  a mplexu s, 
ho ld  o n to a bran ch, and  b eat their le gs to  fo rm a  fo am. T he eg gs a re la id  in the 
foam , an d cove red with  se minal  fluid, before  th e fo am ha rd en s into  a 
pro tective casing. In  so me spe cie s, this is do ne  in a la rg e grou p. T he foa m is laid 
ab ove  a wate r sou rce, so th e tadp oles fall  in to the water on ce they ha tch.[1] 
Th e spec ie s within this fam ily vary in size  from  1 .5  to  1 2 cm (0 .5 9 to 4.72 in).[1 ] 
Like oth er a rbore al  frog s, they  h ave toe  discs, a nd  tho se of th e gen us 
Ch iro man tis hav e two  o pp osab le  finge rs o n each  h and . Th is fami ly a lso  co ntains 
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FIGURE 5: The deep learning based framework of cross-modal semantic representation space construction. The VisNet is implemented by
AlexNet and the TxtNet is implemented by a LDA Model.

224 × 224 × 3 input image, which has 96 kernels of size
11× 11× 3. The second convolutional layer has 256 kernels
of size 5 × 5 × 96. The third convolutional layer has 384
kernels of size 3 × 3 × 256. The fourth convolutional layer
has 384 kernels of size 3 × 3 × 192. The fifth convolutional
layer has 256 kernels with size of 3 × 3 × 192. The fully-
connected layers have 4096 neurons each, which denote
4096 dimensional features after ReLU. In order to improve
the performance of visual information recognition, we fine-
tune the network parameters by retraining this model on our
experimental dataset, namely Flickr.

TxtNet. For textual feature extraction, we utilize Latent
Dirichlet Allocation (LDA) model to generate the represen-
tation of the input text. LDA is a generative model for a text
corpus in which the semantic content of a text is summarized
as a mixture of serval topics. Specifically, a text is modeled
by a multinomial distribution over κ topics and each word
in a text is generated by first sampling a topic from the text-
speccific topic distribution [91].

As the first study of geo-multimedia cross-modal retrieval,
we use the simple but effective method (AlexNet and LDA)
for CoSReS learning. Nevertheless, this combination is by no
means the only choice. Other powerful deep learning model
e.g. VGGNet [92], GoogLeNet [93] and ResNet [94] for
image, and RNN [95], BiLSTM [96], [97] for text can also
play the role of VisNet and TxtNet. We will investigate these
models in our future work.

After generating multi-modal feature representations via
VisNet and TxtNet, CorrProj and LogsTran are combined
to generate cross-modal semantic representation space W.
Specifically, for image and text, the correlation subspaces
WT and WI are built by CorrProj from the textual and visual
feature vectors. Then, two semantic mappings are learned
from WT and WI by LogsTran. That means LT and LI map

the text and image into a common metric space. Therefore,
based on these two semantic mapping, the similarity of text
and image can be measured.

VI. HYBIRD INDEXING FOR GEO-MULTIMEDIA
CROSS-MODAL RETRIEVAL
In this section, we present a novel hybrid spatial indexing
technique for efficient geo-multimedia cross-modal retrieval.
We call this index Geo-Multimedia R-Tree (GMR-Tree).
Firstly we introduce the basic structure of GMR-Tree and
related concepts. Then we propose our search algorithm that
can boost the performance of geo-multimedia cross-modal
query.

A. HYBRID INDEXING STRUCTURE
The proposed hybrid index is called GMR-Tree. It is a
combination of an R-Tree [82] and signature files. Different
from R-Tree, the nodes of GMR-Tree not only contain geo-
location information, but carry modality semantic represen-
tation information as well. The geo-location information is
represented in the form of minimum bounding area (MBR)
and semantic representation information is in the form of
a signature. In the following part, we introduce this novel
indexing technique in detail.

Fig. 6 illustrates the structure of a GMR-Tree. Generally,
a GMR-Tree is a height-balanced tree structure. Each non-
leaf node denoted as a triple 〈MBR, SIG,PTRN 〉 contains
three components. MBR is defined as in the R-Tree, which
represents the geo-location in the form of minimum bounding
area (MBR). SIG is a signature file generated from the geo-
multimedia objects in this MBR. For the ith object oi in MBR,
its signature is denoted as Si = HSIG(oi.MI), wherein
HSIG(.) is a hashing function which is used to generate
a signature from the semantic representation vector. For a
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FIGURE 6: A GMR-Tree. It is a combination of R-Tree and signature files. The semantic representations of geo-multimedia objects are
stored in the tree nodes and the geographical space is partitioned by MBR.

MBR1, the signature SIG1 = S1

∨
S2

∨
...
∨
Si, wherein

the operator
∨

represents binary OR-ing operation. In other
words, the signature of a node is equivalent to a signature
that superimposes the signatures of the children nodes. In
addition, the length of the signatures in each level is the same.
The third component of node is a pointer PTRN , which refers
to a subnode. Similarly, the leaf note in GMR-Tree is the form
of 〈MBR, SIG,PTRo〉 but the pointer PTRo refers to point
geo-multimedia objects.

There is a very useful property of GMR-Tree, which can
provide well support for the spatial search. We describe it as
follows.
Property 1: Given a query Q and a node Ni, the signatures
of Q and Ni are SIGQ and SIGi respectively. If SIGQ =
SIGQ

∨
SIG, that means the query Q contains some same

semantic concepts as the objects in Ni. In other words, the
query may be similar to some objects inNi on semantic level.
Otherwise, Q may be dissimilar to the objects in the node.

B. KNN GEO-MULTIMEDIA CROSS-MODAL SEARCH
ALGORITHM
Based on GMR-Tree and its property, we design an efficient
spatial search algorithm to support kNN geo-multimedia
cross-modal retrieval. The pseudo-code of kGMCMS algo-
rithm is demonstrated in Algorithm 1. Algorithm 2 is the
GMR-Tree based nearest neighbor search algorithm that is
used in kGMCMS.

For Algorithm 1, in the first step, a priority queue L is
initialized as a empty set and an integer α which is used for
counting during the search. R is the set of results. First the
algorithm puts the root node of GMR-Tree G into L, and

then generates the signature for query Q. In this process,
each element of semantic representation vector Q.MT is
reassigned by a hashing function HSIG(.) that converts the
element of Q.MT into a hash code. After that, the search
process is implemented by a While loop. During the process,
the nearest neighbor o of query Q is found out and then
the score of o is calculated by score function Fscore(Q, o)
which is introduced in section III. Here we set µ = 0.5. That
means the geographical distance proximity is same important
as semantic correlation.

For Algorithm 2, we initialize a variable E to store a tree
node. L will be checked circularly whether it is empty or not.
If L is not empty, the algorithm gets a node stored in L by a
Dequeue(.) operation and put it into E . If this node is a non-
leaf node, and exist an object whose SIG matches the query,
then measures the distance between Q and MBR of E . It will
be put into L again. If E is a leaf node, all objects in it will be
checked and put the object which matches the query in to L.

VII. EXPERIMENTAL EVALUATION
In this section, we conduct a comprehensive experiments on
a real and a synthetic dataset to evaluate the performance of
the proposed method, i.e., DeCoSReS+GMR-Tree. Firstly
we introduce the datasets and workload in subsection VII-A,
and then discuss the evaluations in subsection VII-B.

A. DATESET AND WORKLOAD

Dataset. Our experiments aim to evaluate the performance of
the proposed approach on a real geo-multimedia dataset and
a synthetic dataset:
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Some samples of Flickr dataset

Some samples of ImageNet dataset

FIGURE 7: The samples of the real and synthetic dataset. The real dataset is a collection of geo-images crawled from Flickr
(http://www.flickr.com/), which have geo-location information. The synthetic dataset contains images from ImageNet (http://image-
net.org/index), and these images are tagged by the geo-locations from Rtree-Portal (http://www.rtreeportal.org).

Algorithm 1 kNN Geo-Multimedia Cross-Modal
Search (kGMCMS)

1: Input A GMR-Tree G, a queryQ.
2: Output A results setR.
3: Initializing:R← ∅;
4: Initializing: a priority queue L ← ∅;
5: Initializing: an integer α← 0;
6: L.Enqueue(G.Root, 0)
7: for each element M(i)

T ∈ Q.MT do
8: M

(i)
T ←HSIG(M

(i)
T );

9: end for
10: while α < Q.k do
11: PTRo ← NearestNeighbor(Q.λ,Q.MT ,L)
12: o← LoadObject(PTRo);
13: if Fscore(Q, o) > Fscore(Q, o′), ∀o′ ∈ O \ R then
14: R← AddObject(o);
15: α← α+ 1;
16: end if
17: end while
18: returnR;

• Flickr. The real dataset Flickr includes over one mil-
lion geo-tagged images that are crawled from Flickr
(http://www.flickr.com/), a popular web site for users to
share and embed personal photographs. To evaluate the
scalability of our proposed algorithm, The dataset size

Algorithm 2 NearestNeighbor(Q.λ,Q.MT ,L)
1: Input A queryQ, a list L.
2: Output A results setR.
3: Initializing: a variable E ← ∅;
4: while L.IsNotEmpty() do
5: E ← L.Dequeue();
6: if E is a non-leaf node then
7: for each 〈MBR, SIG,PTRN 〉 in E do
8: if SIG matchesQ.MT then
9: L.Enqueue(LoadNode(PTRN ), Dst(Q.λ,MBR));

10: end if
11: end for
12: else if E is a leaf node then
13: for each 〈MBR, SIG,PTRo〉 in E do
14: if SIG matchesQ.MT then
15: L.Enqueue(LoadNode(PTRo), Dst(Q.λ,MBR));
16: end if
17: end for
18: else
19: return E ;
20: end if
21: end while

varies from 40k to 200k. The spatial locations of Flickr
is obtained from the US Board on Geographic Names
(http://geonames.usgs.gov).

• ImageNet. The synthetic dataset ImageNet is generated
by obtaining the spatial locations from corresponding
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4 0 k 8 0 k 1 2 0 k 1 6 0 k 2 0 0 k
0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

Re
spo

nse
 Ti

me
 (m

s)

D a t a s e t  S i z e

 D e C o S R e S + G M R - T r e e
 D e C o S R e S + R - T r e e
 S M + R - T r e e
 C C A + G M R - T r e e
 G M A + R - T r e e

(a) Different size of dataset

5 1 0 2 0 5 0 1 0 0
0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0
Re

spo
nse

 Ti
me

 (m
s)

T h e  n u m b e r  o f  r e s u l t s  ( k )

 D e C o S R e S + G M R - T r e e
 D e C o S R e S + R - T r e e
 S M + R - T r e e
 C C A + G M R - T r e e
 G M A + R - T r e e

(b) Different number of results

FIGURE 9: Evaluation on ImageNet dataset

spatial dataset Rtree-Portal (http://www.rtreeportal.org)
and randomly geo-tagging these objects with images
in ImageNet (http://image-net.org/index). ImageNet is
a famous image database organized according to the
WordNet hierarchy (currently only the nouns), in which
each node of the hierarchy is depicted by hundreds
and thousands of images. There are more than 100,000
synsets in WordNet, majority of them are nouns
(80,000+). ImageNet provides on average 1000 images
to illustrate each synset. Images of each concept are
quality-controlled and human-annotated.

Some samples of Flickr and ImageNet dataset are shown in
Fig. 7.

Workload. A workload for kNN geo-multimedia cross-
modal query experiment includes 100 input queries. The
query locations are randomly selected from the locations of
the underlying objects. By default, the number of final results

k = 10, and data number N = 80k. We use response time
and precision to evaluate the performance of the algorithms.
The size of dataset is set to 40k, 80k, 120k, 160k and 200k.
The number of results k is set to 5, 10, 20, 50 and 100.
Our experiments are run on a workstation with Intel(R) CPU
Xeon 2.60GHz, 16GB memory and NVIDIA GeForce GTX
1080 GPU running Ubuntu 16.04 LTS Operation System. All
algorithms in the experiments are implemented in Java and
Python.

Baseline. To our best knowledge, this work is the
first time to study the problem of kNN geo-multimedia
cross-modal query. That means there is no existing ap-
proach for this problem. We devise four baseline methods,
i.e., DeCoSReS+R-Tree and Semantic Matching [63]+R-
Tree (SM+R-Tree), Canonical Correlation Analysis [67]+R-
tree (CCA+R-Tree), and Generalized Multiview Analy-
sis [98]+R-Tree (GMA+R-Tree), briefly introduced as fol-
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FIGURE 10: Cofusion matrices of classification precision on Flickr dataset. (a) DeCoSReS+GMR-Tree. (b) SM+R-Tree. (c)
CCA+R-Tree. (d) GMA+R-Tree.
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FIGURE 11: Cofusion matrices of classification precision on ImageNet dataset. (a) DeCoSReS+GMR-Tree. (b) SM+R-Tree.
(c) CCA+R-Tree. (d) GMA+R-Tree.

lows:
• DeCoSReS+R-Tree, the combination of the proposed

deep learning based cross-modal retrieval method and
R-Tree.

• SM+R-Tree, the combination of Semantic Matching
and R-Tree. Semantic Matching model the semantic
correlations between multi-modal data by learning a
common semantic space.

• CCA+R-Tree, the combination of Canonical Correla-
tion Analysis and R-Tree. Canonical Correlation Anal-
ysis aims to generate a common space by linear trans-
formations to measure the correlations of multi-modal
data.

• GMA+R-Tree, the combination of Generalized Mul-
tiview Analysis and R-Tree. Generalized Multiview
Analysis uses labels of multi-modal data to learn the
maps from multi-modal spaces to a common space. It
is a kernelizable extension of CCA.

The feature representation technique used in these baselines
is BoW model (BoVW for image), and the spatial area of
geo-multimedia dataset is partitioned by R-Tree.

B. RESULTS OF EXPERIMENTS
1) Evaluation on Flickr Dataset
Evaluation on different size of dataset. We evaluate the per-
formance of our approach DeCoSReS+GMR-Tree and four
baselines, i.e., DeCoSReS+R-Tree, SM+R-Tree, CCA+R-
Tree and GMA+R-Tree with the increment of dataset size.
Fig. 8(a) shows how the variations of dataset size affect the
search performance. With the increasing of dataset size, the

response time of all these methods increase gradually. Not
surprisingly, the proposed approach has the smallest response
time due to the application of the proposed hybrid indexing
structure GMR-Tree, which can speed up the spatial search
markedly. It increases obviously and slow down when the
dataset size is larger than 120k. The efficiency of SM+R-Tree
is a bit higher than DeCoSReS+R-Tree, which is showing
a rise trend of volatility between 50k and 200k. And at
last, the response time of these two baselines are nearly
5000ms. The efficiency of CCA+R-Tree and GMA+R-Tree
are similar to DeCoSReS+R-Tree. The response time of them
rise with slight fluctuations and nearly 4950ms when the
dataset size increases to 200k, which is much higher than
DeCoSReS+GMR-Tree. This verifies that the combination of
semantic representation signature technique and MBR tech-
nique can outperform R-Tree for the task of geo-multimedia
cross-modal retrieval.

Evaluation on different number of results k.
We evaluate the performance of DeCoSReS+GMR-
Tree, DeCoSReS+R-Tree, SM+R-Tree, CCA+R-Tree and
GMA+R-Tree with the increasing of number of results k, as
illustrated in Fig. 8(b). In this evaluation, we increase k from
5 to 100. Clearly, the response time of DeCoSReS+GMR-
Tree is going up with the rising of k. When k = 5, the
response time is smaller than 1000ms, and it increases step
by step in the interval of [10, 100]. By contrast, the efficiency
of other four approaches are much lower than the proposed
method. Likewise, the response time of them climb step
by step. Similar to the situation shown in Fig. 8(a), the
performance of DeCoSReS+R-Tree, SM+R-Tree, CCA+R-
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Tree and GMA+R-Tree are similar, which are much lower
than DeCoSReS+GMR-Tree.

2) Evaluation on ImageNet Dataset
Evaluation on different size of dataset. Fig. 9(a) illustrates
the comparison of DeCoSReS+GMR-Tree, DeCoSReS+R-
Tree, SM+R-Tree, CCA+R-Tree and GMA+R-Tree on the
synthetic dataset ImageNet under the variations of dataset
size. Obviously, the performances of these methods decrease
step by step with the increasing of dataset size. By com-
parison, the proposed method defeats the opponents by an
obvious superiority due to the benefit from GMR-Tree. When
the dataset size is smaller than 100k, the response time of it
is less than 2000ms. On the other hand, the time cost of other
four approaches are very close. They increase faster in the
interval of [50k, 100k]. After that, the growth of them slow
down. Like the comparison in the Flickr dataset, the search
efficiency of R-Tree based methods cannot outperform the
GMR-Tree based method.

Evaluation on different number of results k. Fig. 9(b)
shows the evaluation of efficiency of DeCoSReS+GMR-Tree
and other four opponents with the increment of number of
results k. Similar to the situations on Flickr dataset, the
efficiency of DeCoSReS+GMR-Tree slows down bit by bit
with k increasing from 10 to 100. However, it is still the
best approach among them due to the usage of GMR-Tree.
The response time of other four algorithms are much higher
than the proposed approaches. Like the evaluations above, the
trends of DeCoSReS+R-Tree, SM+R-Tree, CCA+R-Tree
and GMA+R-Tree are still similar since the same spatial
search technique is employed. Specifically, they rise with
slight fluctuations. At k = 5, they are nearly 3000ms. When
k = 100, they increase to 4600ms around.

3) Evaluation on cross-modal retrieval precision
Evaluation on Flickr Dataset. Fig. 10 demonstrates that the
confusion matrices of cross-modal retrieval on Flickr dataset
by DeCoSReS+GMR-Tree, SM+R-Tree, CCA+R-Tree and
GMA+R-Tree. The techniques of semantic representation
space construction are different, which is the main factor
affecting the retrieval precision. Specifically, the proposed
method DeCoSReS+GMR-Tree employs AlexNet and LDA
model for cross-modal feature representation as discussed in
Section V, which has the best performance for the retrieval.
The opponent SM+R-Tree uses SITF and BoVW to extract
visual features in a traditional manner. Obviously, precision
of it is lower than DeCoSReS+GMR-Tree. On the other hand,
SM+R-Tree is a little bit better CCA+R-Tree and GMA+R-
Tree due to the SM technique can represent multimodal
semantic concepts precisely. However, all of these three
methods are based on SIFT features that cannot represent the
semantic correlations between different modalities, which is
illustrated clearly by the comparison.

Evaluation on ImageNet Dataset. We compare the cross-
modal classification precision of DeCoSReS+GMR-Tree
with other three approaches on ImageNet dataset, shown as in

Fig. 11. Similar to the evaluation on Flickr, the performance
of our method is better obviously, which is benefit from the
deep CNN based semantic representation space technique.
For some classes, e.g. balloon, zebra and basketball, the
precision of DeCoSReS+GMR-Tree is nearly 76%. On the
other hand, SM+R-Tree, CCA+R-Tree and GMA+R-Tree
cannot achieve such high precision.

VIII. CONCLUSION
In this paper, we propose a novel problem named kNN
geo-multimedia cross-modal retrieval. It aims to return k
nearest geo-multimedia objects that are highly similar to
the query in the aspect of semantics. For the first time, we
propose the definition of geo-multimedia object and kNN
geo-multimedia cross-modal query, as well as the notion
of cross-modal semantic representation space. To overcome
this challenge, a novel framework of geo-multimedia cross-
modal retrieval is proposed, which includes multi-modal fea-
ture extraction, cross-modal semantic space mapping, geo-
multimedia spatial index and cross-modal semantic similarity
measurement. To address the ticklish problem of semantic
gap between different modalities, we present an approach
called cross-modal semantic matching and an implementa-
tion via deep learning techniques to construct a common
semantic representation space for multi-modal data. To speed
up the geo-multimedia search, we propose a novel hybrid
index structure, named GMR-Tree, which is a combination
of R-Tree and signature files that are generated from the
semantic representations of geo-multimedia objects. Based
on it, we design an efficient kNN search algorithm named
kGMCMS to support efficient geo-multimedia cross-modal
retrieval. The experimental results show that our approach
outperforms the-state-of-the-art methods.
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