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Abstract—A simple, high-accuracy and non-destructive 
method for the measurement of diaphragm thickness and 
microgap width based on modulated tri-beam interference is 
demonstrated. With this method, a theoretical estimation 
error less than 0.5% for a diaphragm thickness of ~1 m is 
achievable. Several fiber-tip air bubbles with different 
diaphragm thicknesses (6.25, 5.0, 2.5 and 1.25 m) were 
fabricated to verify our proposed measurement method. 
Furthermore, an improved technique was introduced by 
immersing the measured object into a liquid environment to 
simplify a four-beam interference into tri-beam one. By 
applying this improved technique, the diaphragm thickness of 
a fabricated in-fiber rectangular air bubble is measured to be 
about 1.47 m, and the averaged microgap width of a 
standard silica capillary is measured to be about 10.07 m, 
giving a corresponding measurement error only 1.27% 
compared with actual scanning electron microscope (SEM) 
results. 

Index Terms— Diaphragm measurement; microgap 
measurement; fiber optics communications; tri-beam 
interference. 

I. INTRODUCTION 

ARIOUS types of optical devices with a thin 
diaphragm have been reported, for example, 

Fabry-Perot interferometers (FPIs) [1]-[4], 
whispering-gallery-modes (WGMs) resonator [5-8] and 
optomechanical cavity [9]-[11]. Such devices are suitable 
for sensing pressure [1]-[3], [7], acoustics [12], strain [4], 
and vibration [10], [11]. 1Typically, the WGM resonator 
[5]-[8], with ultra-thin silica-wall diaphragm and microgap 
channel, has been developed into an excellent 
optomechanical sensor that will help unlock vibrational 
secrets of chemical and biological samples at the nanoscale. 
This type of resonators is considered as the first-ever 
bridge between optomechanics and microfluidics, which 
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has been used to sense refractive index [13] and detect 
biomolecules [14]. However, their sensing ability strongly 
relies on the spatial and temporal confinement of light by 
the resonator, characterized by its mode volume V and its 
quality factor Q. These characteristics have a close 
relationship with the silica-wall diaphragm thickness of the 
resonator along its equator surface. For a given WGM, an 
optimized silica-wall diaphragm thickness will 
significantly enhance the response sensitivity in sensing 
[15]. As a result, knowing the size of diaphragm thickness 
and microgap width is important for optimizing sensing 
applications within specific environments. Generally, the 
methods of measuring the diaphragm thickness and 
microgap width are divided into direct and indirect 
measurement. The former can directly and accurately 
measure the diaphragm thickness and microgap width, 
generally by using a scanning electron microscope (SEM) 
[1] or a transmission electron microscope (TEM) [16]. 
However, this method not just requires expensive 
instruments but also destroys the structure of the sample. 
The indirect measurement has been reported by employing 
optical techniques, which are non-destructive for 
measuring diaphragm thickness, such as using the optical 
microscope [2], prism coupler [17], ellipsometry [18] and 
Fizeau interferometer [19]. However, these optical methods 
also need complex optical elements and the calculation for 
obtaining the diaphragm thickness is more sophisticated.  

In this paper, we propose and demonstrate a novel, 
simple and non-destructive measurement method for 
measuring diaphragm thickness and microgap width with 
high accuracy. This method is based on monitoring the free 
spectral range (FSR) of an envelope generated from 
tri-beam interference. Firstly, we theoretically derive an 
analytic mode for an FPI with three reflected surfaces and 
use it to calculate the diaphragm thickness and microgap 
width. Then, we demonstrate the experimental 
measurement employing this tri-beam interference method 
for several fabricated fiber-tip air bubbles with different 
diaphragm thicknesses and compare the results with 
theoretical values and the measurement results using 
standard SEM. Finally, an improved measurement 
technique is introduced for measuring two different type 
samples, i.e. in-fiber rectangle air bubble with a thin 
diaphragm and silica capillary with a microgap. The 
corresponding diaphragm thickness and averaged microgap 

width are measured to be about 1.47 and 10.07 m, 
respectively, and the measurement error is only 1.27%.  

II. ANALYTICAL MODEL AND NUMERICAL SIMULATION 

As shown in Fig. 1(a), a typical measurement set-up is 
employed for monitoring the reflection spectrum of an  
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Fig. 1. (a) The corresponding optical measurement set-up. (b) the standard 
model of tri-beam interference based on in-fiber FPI with silica 
diaphragm. 

in-fiber Fabry-Perot interferometer (FPI), which consists of 
a 3dB fiber coupler, a broad-band light source (BBS), and 
an optical spectrum analyzer (OSA). This typical 
measurement set-up is employed in both the simulation and 
the actual experiment as following discussion. The 
schematic of in-fiber FPI based on an air-cavity and a silica 
diaphragm is illustrated in Fig. 1(b), where n1, n2, and n3 
are the effective reflective indexes of fiber-end surface, 
air-cavity, and silica diaphragm, respectively. 

The reflectivity from a silica glass in-fiber FPI is very 
low, only about 3.5 %, so that the high-order reflections of 
the light in the FP-cavity are negligible. It can be seen 
clearly in Fig. 1(b), the light from the broad-band light 
source is launched into the in-fiber FPI, and propagates 
though the air-cavity and silica diaphragm. Based on the 
Fresnel equations, the propagating light is reflected on the 
fiber end surface (I), inner (II) and outer (III) surfaces of 
the silica diaphragm, respectively. Therefore, the 
interference spectrum captured by OSA is formed by these 
three reflected lights. Then, the corresponding interference 
spectrum can be simply described by a tri-beam 
interference approximation. So the total reflected intensity 
can therefore be written as below [20]: 
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where E1, E2, E3 are the amplitudes of reflected light from 
the three surfaces (I, II, III), t is thickness of the silica 
diaphragm, d is FPI’s air-cavity length,   is an input light 

wavelength, and nair and nsilica are the refractive indices of 
the air and silica, here, n1=n3=nsilica, and n2=nair. 

Notice that, Eq. (1) includes four terms, and the first 
term-A is a constant. According to standard two-beam 
interference [21], the second term-B can be considered as 
the air-cavity interference between surface-(I, E1) and 
surface-(II, E2), which depends on both the FP-cavity 
length of d and air refractive index nair. Similarly, the third 
term-C is the diaphragm interference between surface-(II, 
E2) and surface-(III, E3) with an FP-cavity length of t and 
silica refractive index nsilica. For individual interference 
generated by term-B or term-C, thus, the FSR of the 
reflection spectrum can thus be calculated by [21]: 

 
Fig. 2. (a) The envelope FSR of the interference spectrum is enlarging 
with a reduced diaphragm thickness. (b) The enlarged view of interference 
spectrum at the wavelength range from 1640 to 1670 nm.  
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where 
m is the resonance wavelength of the mth order 

interference dip/peak and neff is the effective-index of 
intra-cavity medium, and LFP-cavity is the FP-cavity length. 
However, in Eq. (1), the linear superposition between 
term-B and term-C is modulated by the correlation term-D, 
which is an associated reflection interference, modulating 
the entire spectrum with a slowly varying envelope. 

To investigate the relationship between envelope and 
diaphragm thickness, a numerical simulation based on Eq. 
(1), has been achieved covering the wavelength range from 
900 to 1600 nm with a step of 0.1 nm, and under condition 

of nsilica=1.45, nair=1, d=100 m, satisfying nsilicat << naird;  
here, it is assumed that the input light from optical fiber is 
strictly perpendicular to the parallel reflection surfaces (I, 
II, III) shown in Fig. 1(b), and the higher-order reflections 
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from the reflected surfaces (I, II, III) is ignored due to the 
small reflectivity of the silica–air interface, only about 
3.5%. For simplify, the amplitudes of reflected light from 
the three surfaces are set as the same value, i.e. E1=E2=E3. 
Thus, the normalized spectra can be calculated and shown 
in Fig. 2(a), and we can see that the interference spectrum 
is modulated by a slowly varying envelope (the dotted line), 
whose FSR changes with the thickness of the silica 
diaphragm. This envelope is fitted by the MATLAB’s 

toolbox (Fit type：Smoothing Spline, Curve Fitting Tool in 

MATLAB R2018a), and R-square (R2) of the curve fitting 
is selected to describe the goodness of fit [22], where the 
R2 is calculated to be 0.9927, 0.9994, 0.9999, and 1, 
describing the goodness of fit of the spectral envelope with 

diaphragm thickness 10, 5, 3, and 1 m, respectively. 
Notice that the estimation errors are closely related to the 
numerical sampling intervals, which determine the value 
accuracy of the envelope peak/dip. 

In the following discussion, we will analyze the physical 
significance of Eq. (1) under two limiting mathematical 
conditions. Here, we assume the diaphragm thickness is 

very thin, i.e. t0, as the first condition, and satisfying 
nsilicat << naird. Eq. (1) can then be simplified as: 
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    (3) 

If t0, in Eq. (1), there is almost no phase difference 
between the B- and D- terms. For Eq. (3), we clearly see 
that the total reflected interference intensity I is the result 
of the linear superposition by two interfering 

wave-functions, i.e. B and C, corresponding to the 
air-cavity and diaphragm interference mentioned above. 
Obviously, the spectral envelope is the diaphragm 
interference, which slowly modulates the fringe of 
air-cavity interference spectrum. So, the air-cavity length 
and diaphragm thickness can be estimated by deriving Eq. 
(2): 
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where, 
m is the interference dip of the spectral envelope, 

and 
( , 1)envelope m mFSR 

is the corresponding length of the 

spectral envelope. Using Eq. (4) and the simulated results 
in Fig. 2(a), the diaphragm thickness t can be estimated by 
a series of envelope FSRs.  

As shown in Fig. 2(a), five contiguous resonant dips of 
envelope, are selected to be 1154, 1202, 1255, 1312, and 
1375 nm, corresponding to the marked points A1, A2, A3, 
A4 and A5, respectively. The silica diaphragm thicknesses 

are calculated to be about 9.96, 9.82, 9.96, and 9.87 m, 

comparing to the theoretical diaphragm thickness of 10 m, 
the estimation error is about 0.98%. When the theoretical 

diaphragm thickness is 5 m, we also select five 
contiguous resonant dips of envelope as 1031, 1111, 1204, 
1315, and 1444 nm, i.e. the wavelength values of marked 
points B1, B2, B3, B4 and B5, respectively. Four silica 

diaphragm thicknesses (4.94, 4.96, 4.92, and 5.08 m) can 

be calculated approximately by means of Eq. (4), and the 
estimation error is about 0.50%. Similarly, we calculate the 
estimation error to be about 0.67% and 0.20% relative to 

the theoretical diaphragm thicknesses 3 and 1 m, 
respectively. Thus, we clearly see that the envelope FSR of 
the interference spectrum increases with the decreases of 
the diaphragm thickness, and the silica diaphragm 
thickness can be estimated by means of Eq. (4), where the 
estimation accuracy increases with the silica diaphragm 
thickness decreasing.  

Analogously, an enlarged view of the interference 
spectrum with wavelength range from 1640 to 1670 nm is 
shown in Fig. 2(b). From these zoomed figures, it can be 
seen that the FSR of the FPI interference spectrum also 
gradually increases with the decreases of the diaphragm 
thickness, as we see the simulated FSR values for the FPI 
interference at around 1655 nm are 12.6, 13.1, 13.3, and 
13.6 nm, respectively. Similarly, combining with the 
results of Fig. 2(b), the estimated air-cavity lengths are 

calculated to be 108.39, 104.50, 102.48, and 100.65 m, 
respectively. Comparing with the theoretical value of 

air-cavity length 100 m, the corresponding estimated 
errors are 8.39%, 4.5%, 2.48%, and 0.65%, respectively. 
Thus, the approximation of Eq. (3) is reasonable under the 

first assumed condition (i.e. t0). Therefore, we can 
optically measure the thickness of silica diaphragm using 
Eq. (4) and the slow-varying envelope FSR when the silica 
diaphragm is very thin. 

For the second condition, assuming the FPI air-cavity 

length is very short, i.e. d0, which can be regarded as a 
microgap, which satisfies naird << nsilicat. Eq. (1) can then 
be simplified into: 
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As in the analysis of Eq. (4), the modulation of the fringe 
envelope is regarded as the microgap interference, and the 
microgap width d can be calculated from: 
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In other word, using Eq. (4) and Eq. (6), we can estimate 
the diaphragm thickness and microgap width of the FPI 
system by monitoring the envelope FSR of the tri-beam 
interference spectrum, where the two mathematical 

conditions t0 and d0 are satisfied respectively. 

III. MATERIALS AND METHODS 

Fig. 3(a) illustrates a standard model of tri-beam 
interference based on in-fiber FPI with silica diaphragm; 
however, it is difficult to fabricate this standard model 
in-fiber. In the following discussion, an approximate model, 
i.e. fiber-tip air bubble, is fabricated for verifying the 
method of diaphragm measurement based on the tri-beam 
interference. As shown in Fig. 3(b), the fiber-tip air bubble 
has three reflected surfaces, inner surface-I of the air 
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Fig. 3. The schematic of (a) standard tri-beam interference and (b) in-fiber 
air bubble. (c) shell-shaped structures with silica-wall diaphragm and (d) 
standard silica capillary with microgap, corresponding to the schematic of 
four-beam interference (e) and (f) in air environment. (g) The schematic 
of the simplified tri-beam interference by immersing in a liquid 
environment. 

bubble, inner surface-II and outer surface-III of the 
silica-wall diaphragm, which will generate a tri-beam 
interference.  

Unlike the fiber-tip air bubble discussed above, as 
shown in Fig. 3(c), a variety of shell-shaped structures with 
silica-wall diaphragm do not satisfy the conditions of the 
standard tri-beam interference, for example, micro-bottle 
[24], micro-tube [25] or micro-bubble [5], [26]. In air 
environment, they generally generate four-beam 
interference, as shown in Fig. 3(e), due to the reflection 
coming from the double-layer surface of the silica-shell 
diaphragm, i.e. the reflected surface I, II, III, and IV, 
respectively. Similarly, as shown in Fig. 3(d), the structures 
with micro-gap also generate four-beam interference while 
the input light is strictly perpendicular to the reflection 
surfaces illustrated in Fig. 3(f). However, the four-beam 
interference spectrum has no obvious regularity and 
spectral envelope. Therefore, the sub-micron diaphragm 
thickness or the sub-micron gap width cannot be calculated 
by Eq. (4).  

In order to measure the diaphragm thickness or the gap 
width by means of the method introduced in Section II, the 
four-beam interference may be simplified into a tri-beam 
interference by a simple technique to eliminate the 
reflected surface (IV). Taking the diaphragm measurement 
as an example illustrated in Fig. 3(g), this can be 
implemented by immersing the shell-shaped structures into 
a liquid environment, such as water, paraffin oil, or 
commercial refractive index (RI) matching liquid. As a 
result, there will be no reflection from the top surface (IV) 
as the wall thickness on the top can be regarded as infinite 
when immersed in liquid. In the actual experiment, the 
shell-shaped structure is demonstrated by using an in-fiber 
rectangular air bubble with a silica-wall diaphragm, a 
taper-fiber probe coupling input light is fabricated by a 

fusion splitter and fixed on a translation stage to control the 
probe position. 

Notice that (1) in our experiments, as shown in Fig. 3(g), 
a taper fiber with a hemispherical and smooth end is 
employed as a probe. There are three purposes for 
employing the taper fiber, (a) it is used to couple the light 
into the silica-wall surface of shell-shaped structures along 
its orthogonal direction, (b) the two reflected light mode 
fields from the end of the taper fiber and the wall surface of 
shell-shaped structures, are matched with each other due to 
their similar circular-arc surface, (c) the taper fiber is more 
easily positioned at the measurement point in the wall 
surface of the shell-shaped structures. (2) In the actual 
experiment, the measurement errors should be taken into 
account in the experiment, i.e. the errors mainly induced by 
the setting step of OSA, normal incidence or not and the 
curve fit for approaching resolving the center points of the 
envelope. For example, the best resolution of the employed 
OSA is 0.02 nm, which induces an envelope FSR error of 
0.04 nm; furthermore, if the input light incidents not in the 
normal direction, the measurement accuracy of the 
diaphragm and microgap would be decreased sharply. 

IV. EXPERIMENTAL RESULTS 

A. Tri-beam Interference 

In order to demonstrate the tri-beam interference, as 
shown in Fig. 4, a series of fiber-tip air bubbles, with 
different silica diaphragm thicknesses were fabricated by 
means of the improved electrical arc discharge technique, 
whose details are described in Ref. [23]. Fig. 4(b) shows 
the microscope images of the fabricated fiber-tip air 
bubbles, by use of a microscope objective (20×, NA=0.4). 
The reflection spectra of FPIs based on fiber-tip air bubbles 
of different silica diaphragm thicknesses are measured by 
using the typical measurement set-up shown in Fig. 1, and 
a broad-band light source covering a range from 400 to 
2400 nm and OSA with scanning range from 600 to 1700 
nm are employed. As shown in Fig. 4(a), we can clearly 
see the interferences are modulated by a slowly varying 
envelop due to tri-beam interference effect. 

 

Fig. 4. (a) The measured interference spectra of fiber-tip air bubbles with 
different diaphragm thicknesses, showing modulated slow varying 
envelope. (b) The 20 microscope images of fiber-tip air bubbles with 
measured wall thickness. 
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As shown in Fig. 4(a), in the state-1, we have fitted the 
experimental results and the resonant peaks (marked points, 
E1, E2, E3, E4, E5) of the spectral envelope are obtained 
as to be 1219, 1302, 1397, 1508, and 1636 nm. Using Eq. 
(4), the silica diaphragm thickness is estimated 

successively to be 6.59, 6.60, 6.54, and 6.65 m, 
comparing to the measured diaphragm thickness of 6.25 

m from microscope images, the measurement error is 
about 5.0%. In the state-2, we also select contiguous 
resonant peaks (marked points, F1, F2, F3, F4) of the 
spectral envelope as 1195, 1305, 1441, and 1611 nm, 
respectively. So the silica diaphragm thicknesses can be 

calculated approximately to be 4.89, 4.80, and 4.71 m by 
means of Eq. (4), and the measurement error is about 4%. 
Similarly, in the state-3, the resonant peaks (marked points, 
G1, G2, G3) of the spectral envelope is 1090, 1259, and 
1489 nm, and the silica diaphragm thickness is calculated 

to be 2.80 and 2.81 m, which are close to the measured 

diaphragm thickness of 2.5 m. In the state-4, there is only 
one complete FSR of the spectral envelope. The resonant 
peaks are fitted to be 1140 and 1595 nm, which are used 

for calculating the silica diaphragm thickness 1.38 m. 

Comparing to the measured value of 1.25 m, the 

measurement error is only 0.13 m. Therefore, it clearly 
showing the effectiveness of the tri-beam interference 
method to measure the thickness of the diaphragm in the 
fiber-tip air bubble and the thickness error is less than 1 

m. 
It is noteworthy that the measured spectra in Fig. 4(a) is 

different from the simulated spectra in Fig. 2(a), here, main 
reasons can be reduced to two parts that (1) As shown in 
Fig. 2(a) simulated by Eq.(1), there is an ideal assumption 
of amplitudes E1=E2=E3, however, in the actual experiment, 
the three reflected surfaces of the fiber-tip air bubble are 
not strictly parallel and non-uniform thickness, which leads 
the actual values of E2 and E3 to be much smaller than E1; 
(2) The numerical values of the simulation shown in Fig. 
2(a) are normalized and absolute value, however, in reality, 
the measured spectra of the fiber-tip air bubble are the 
reflected light relative to the well-cleaved fiber end. 
Furthermore, the measurement errors of the microscope 

images depend on the resolution (~0.25 m) of optical 
microscope with the microscope objective (20×, NA=0.4).  

B. Diaphragm Thickness Measurement 

As an example, we will here demonstrate how to 
measure the silica-shell diaphragm thickness of an in-fiber 
rectangular air bubble reported in Ref. [25]. In Fig. 5(a), 
the microscope image shows an actual structure of the 
in-fiber rectangular air bubble and the taper fiber probe 
with a hemispherical and smooth end. In air environment, 
the rectangular air bubble generate four-beam interference 
due to the reflection coming from the double-layer surface 
of the silica-wall diaphragm (schematic shown in Fig. 3(e)); 
and the overall reflection spectrum is measured covering 
wavelength range from 900 to 1700 nm, as shown in Fig. 
5(d). However, the four-beam interference spectrum has no 
obvious regularity and spectral envelope. Therefore, the 
wall thickness of the rectangular air bubble cannot be 
calculated by using Eq. (4).  

 
Fig. 5 (a) Microscope image and (b) SEM image of the in-fiber 
rectangular air bubble. (c) Enlarged partial view of the wall 
silica-diaphragm. (d) Four-beam interference spectra. (e) The measured 
interference spectrum with a slow varying envelope. 

To satisfy the conditions of the standard tri-beam 
interference, as shown in Fig. 5(a), both in-fiber 
rectangular air bubble and taper-fiber probe are immersed 
into water. Fig. 5(e) illuminates a typical reflection 
spectrum, clearly exhibiting the tri-beam interference 
pattern with a slow varying envelope, and the envelope 
FSR (one envelope length) is about 345.3 nm with two dips 
of about 1060.2 and 1405.5 nm, respectively. Thus, the 
wall thickness of in-fiber rectangular air bubble at the 

marked-point “A” is calculated about 1.47 m by using Eq. 
(4). 

In order to prove that our calculated result matches the 
actual wall thickness of the in-fiber rectangular air bubble, 
which is cut open along its equatorial direction by a 
femtosecond laser and measured by an SEM system. The 
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SEM image of the cross section of the in-fiber rectangular 
air bubble is shown in Fig. 5(b). An enlarged partial view 
of the silica-wall diaphragm is shown in Fig. 5(c), where 
the wall thickness is measured at different positions to be 

1.10, 1.33, and 1.45 m, respectively. Although the silica 
wall has no uniform thickness along its equatorial plane, 

the values are very close to the calculated value of 1.47 m 
at the marked-point “A” using the tri-beam interference 
envelope method. 

C. Microgap Measurement 

If one satisfies the second mathematical condition of 

d0 and naird << nsilicat, by using Eq.(6), the width of a 
microgap may also be measured using the tri-beam 
interference method. As shown in Fig. 6(a), a standard 

silica capillary with an inner diameter of 10 m 
(https://www.molex.com) is used to validate the measure- 

 
Fig. 6 (a) The optical microscope image of a silica capillary immersed in 
water environment. (b) The measured interference spectrum and fitted 
spectral envelope. (c) SEM image of the cross section of silica capillary. 
(d) Enlarged partial view of the inner diameter.  

ment method based on tri-beam interference. 

To reduce the four-beam reflection to a tri-beam one, the 
capillary is immersed in water environment. Similar to 
measure the diaphragm thickness of the in-fiber rectangular 
air bubble, here, the corresponding reflection spectrum is 
measured by the OSA with a scanning wavelength from 
1200 to 1600 nm, and a slowly varying envelope is 
evidence as clearly shown in Fig. 6(b). Three FSRs of 
spectral envelope are measured as 80.3, 92.3, and 109.8 nm. 
Employing Eq. (6), the widths of the microgap (i.e. the 
inner diameter of the air-cavity of the silica capillary) are 

calculated to be 10.24, 10.14, and 9.83 m，respectively. 

As a result, the averaged value of the microgap of the silica 

capillary is about 10.07 m.  
Similarly, in order to examine this calculation result, the 

silica capillary is cut by an optical fiber cleaver and 
measured using an SEM image. Fig. 6(c) shows the cross 
section of the silica capillary, for which the corresponding 

outer diameter is about 126 m. An enlarged partial view 
of the inner diameter (microgap) shows it to be about 10.20 

m in Fig. 6(d). Comparing with the averaged value of 

10.07 m above, the measurement error by using Eq. (6) is 
only about 1.27%. As a result, the obvious advantages of 
the tri-beam interference method are proved to be low cost, 
undamaged, and high measurement accuracy, comparing 
with the methods reported, i.e. SEM [1] or a TEM [16]. 
Notice that the measurement errors including measurement 
accuracy of the OSA, noise levels in the system, the curve 
fit for approaching resolving the center points of the 
envelope, etc. For example, the minimum resolution of the 
OSA we used is 0.02 nm, which adds a possible error. 

V. CONCLUSION 

For estimating diaphragm thickness and microgap width 
in the micron range, we have demonstrated a simple, high 
accuracy and non-destructive measurement method, which 
is based on a tri-beam interference effect. The analytic 
model has been developed for two limiting conditions, 
where the thickness of the silica diaphragm and the FPI’s 
air-cavity length are about submicron. In order to validate 
the tri-beam interference method, the test samples (fiber-tip 
air bubble, in-fiber rectangular air bubble and a silica 
capillary) were measured by the microscope and SEM 
images, and the values from the tri-beam interference 
method agree well with the microscope and SEM results 
with measurement errors less than 1.27%. It is foreseeing 
this simple, high accuracy and non-destructive tri-beam 
interference method can be used for many other types of 
optical diaphragms and microgaps thickness determining, 
detecting crystal cracks and as well as measuring many 
other microstructures in real applications. 
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