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1 Abstract

Nonconvulsive epileptic seizures (NCSz) and nonconvulsive status epilepticus (NCSE) are two neurological entities

associated with increment in morbidity and mortality in critically ill patients. In a previous work, we introduced a

method which accurately detected NCSz in EEG data (referred here as ‘Batch method’). However, this approach was

less effective when the EEG features identified at the beginning of the recording changed over time. Such pattern

drift is an issue that causes failures of automated seizure detection methods. This paper presents a support vector

machine (SVM)-based incremental learning method for NCSz detection that for the first time addresses the seizure

evolution in EEG records from patients with epileptic disorders and from ICU having NCSz. To implement the in-

cremental learning SVM, three methodologies are tested. These approaches differ in the way they reduce the set of
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potentially available support vectors that are used to build the decision function of the classifier. To evaluate the

suitability of the three incremental learning approaches proposed here for NCSz detection, first, a comparative study

between the three methods is performed. Secondly, the incremental learning approach with the best performance is

compared with the Batch method and three other batch methods from the literature. From this comparison, the incre-

mental learning method based on maximum relevance minimum redundancy (MRMR IL) obtained the best results.

MRMR IL method proved to be an effective tool for NCSz detection in a real-time setting, achieving sensitivity and

accuracy values above 99%.

Keywords Nonconvulsive epileptic seizures, Hilbert Huang Transform, Multiway Data Analysis, Incremental

Learning.

2 Introduction

Nonconvulsive epileptic seizures (NCSz) and nonconvulsive status epilepticus (NCSE) are two related neurological

entities that are frequently found in critically ill patients [1, 2]. Despite the nonconvulsive nature, they are associated

with increment in morbidity and mortality in the intensive care unit (ICU). Since NCSz/NCSE present subtle or no

overt clinical signs, it is not uncommon that in patients with altered mental status or coma they remain unnoticed and

untreated for long periods of time. Studies carried out in this population have reported though that NCSE lasting

more than 10 hrs are associated with permanent disabilities, while mortality is very high in NCSE lasting more than

20 hrs [3].

When suspected, NCSz/NCSE diagnosis is carried out using continuous EEG (cEEG) monitoring. However,

several studies have reported that the likelihood to detect the first NCSz increases in patients at risk (i.e.: comatose

patients and children) when EEG is recorded for more than 24 hours [4]. Hence, seizure detection in ICU could

be an exhausting and time-consuming process. To assist on the visual identification of changes, quantitative trends

summarizing EEG amplitude and frequency composition as well as annotating the presence of seizures have been

recently introduced to the continuous EEG monitoring technique.

Previous algorithms developed for NCSz detection combined wavelet analysis [5, 6, 7, 8], entropy [9, 10], nonlinear

parameters [6, 9, 11], statistical and spectral features of the EEG [9, 10, 11, 12, 13, 14] with various machine learning

techniques [8, 9, 10, 11, 13, 15] or thresholds [6, 7, 12, 14] to detect the NCSzs. These algorithms obtained a reasonable

sensitivity (over 90% in most cases) during the test process [16]. Among the methods with better results in the context

of NCSz detection in patients with epileptic etiology are those proposed by Kollialil at al (2013) [9], Sharma et al (2014)

[8] and Fatma et al (2016) [14].

Figures 1, 2 and 3 display the block diagrams of Kollialil’s, Sharma’s and Fatma’s methods respectively. As can

be appreciated, the cited methods iterate over the EEG channels at least until the feature extraction step. This means

the features are extracted from a single channel without considering important characteristics of the seizure as the

synchronization and spread out/in of the seizure activity over the EEG channels [17]. These methods intended to

exploit the possible cross information of the channels by combining the features computed individually into one

classifier, as in Kollialil’s method, or imposing hard thresholds, as in Sharma’s and Fatma’s methods.

Kollialil et al. proposed a patient independent training for a linear SVM. The NCSz characteristics vary enor-

mously across patients. This implies that the number of patterns used to train a patient independent classifier must
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Figure 1: Block diagram of the method proposed by Kollialil et al. [9] absence seizure detection. The proposal

uses a multiclass SVM and a single feature vector computed from the fifth detail wavelet coefficients. Features as

energy, mean energy, entropy, mean cross-correlation, mean curve length, the coefficient of variation, interquartile

range (IQR) and median absolute deviation (MAD) are compared to obtain an optimal single feature. The data for

this experiment consisted of normal, epileptic and interictal EEG data from 100 subjects, from a reputed Neurology

Clinic. The best performances were found for the energy, entropy, MAD, and IQR with an accuracy above 95%. The

best feature was the IQR with an accuracy value of 99.66 %.

be quite large. Given the nonconvulsive nature of NCSz the existent databases are small. With such databases it is not

likely to successfully train a classifier capable to generalize the acquired knowledge to other NCSz data, especially

in case the data originate from ICU patients. Taking into account this characteristic of the NCSz, Sharma et al. and

Fatma et al. proposed patient specific methods. However, their approaches ignore the fact that the EEG patterns

present in a specific record could also differ. Having this in mind, the methods proposed by Sharma et al. and Fatma

et al. cannot guarantee to maintain their performance in longer records where these changes are more likely to occur.

There are two main drawbacks in the methods proposed in the literature for NCSz detection. First, they employ a

patient independent training of the classifiers and, second, thresholds for the detection are arbitrarily set. In general,

the duration of the seizure and the number of channels displaying seizure activity are the most popular thresholding

criteria [7, 15, 13, 8]. If the seizure is too short in time or affects just a few channels it is not detected. Furthermore,

NCSz characteristics vary across patients. EEG patterns present in a specific record could also differ depending on the

patient disease’s etiology. Therefore, a threshold or classifier which works for one patient will not necessarily work

for another. Additionally, a more meaningful description of the seizure’s spatial localization should be considered,

for instance its whole head topography instead of its distribution in a limited number of channels.

In [18] we proposed a patient-specific method that mitigates the need of thresholds to detect the NCSz. This

method identifies the NCSz by exploiting the similarity between the first NCSz detected by the physician on the

EEG and the rest of the NCSz in the recording [19].The method expands the EEG using the Hilbert Huang Transform

(HHT) into a third-order tensor. This multiway representation of the data exploits the EEG high-dimensional struc-

ture by analyzing its spectral, temporal and spatial properties simultaneously. This is a fundamental difference com-

pared to the methods of Sharma [8] and Fatma [14] : in our approach, multichannel information is integrated at the
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Figure 2: Block diagram of the patient specific method proposed by Sharma et al. [8] for nonconvulsive epileptic

seizures detection (] denotes “number of ”). The proposed algorithm analyzed the EEG in epochs of 1-second du-

ration. Each epoch was denoised using wavelet analysis applying cubic thresholding. The extracted features are

the IQR, the MAD, and the Normalized Covariance, normalized by the median of their background EEG features.

The dataset used for testing consisted of 24 seizures recorded from the EEG of 9 subjects in the All India Institute of

Medical Sciences. This method requires the seizure activity to be present in at least 50% of the channels. Otherwise,

the seizures will be missed. The method reported 100% of sensitivity and 99.3% of specificity.

Figure 3: Block diagram of the patient specific method proposed by Fatma et al. [11] for nonconvulsive epileptic

seizures detection (] denotes “number of ”). The algorithm analyzes the EEG in epochs of 1-second duration from

which the mean absolute difference is computed. To differentiate seizure from normal EEG, the method uses thresh-

olds over the computed parameter. The method reported sensitivity and specificity of 100% and 99.21% respectively.
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Figure 4: . General block diagram of the patient specific method proposed by Rodrı́guez et al. [18] for nonconvulsive

epileptic seizures. This method identifies the NCSz by exploiting the similarity between the first NCSz detected

by the physician on the EEG and the rest of the NCSz in the recording. The explored features are obtained by

means of a multiway analysis of the EEG signal represented as a third-order tensor X ∈ R(F×T×Ch) with modes

frequency × time × channels. The tensors are computed by expanding EEG segments of 3 s duration using Hilbert

Huang Transform (HHT). The tensor decomposition is performed with Canonical Polyadic Decomposition (CPD).

The method uses the spatial component from the CPD as features of a SVM to discriminate between seizure and

non-seizure segments.

level of feature extraction via a tensor decomposition, as opposed to performing separate feature extraction per chan-

nel. There is evidence that exploiting the (multi)-linear structure inherently present in multichannel EEG achieves

superior performance compared to methods that ignore such structure [20, 21].The spatial component extracted from

this multiway EEG representation with canonical polyadic decomposition (CPD) accurately characterized the seizure

pattern. The algorithm achieved average sensitivity and specificity values over 98%. Figure 4 shows the block dia-

gram of the method proposed in [18]. However, this approach also disregarded the seizure pattern changes within

an EEG record. It showed to be less accurate for records where the EEG morphology evolved over time and the

morphological characteristics varied with respect to the beginning of the record.

Nonconvulsive epileptic seizures and status in epileptic and critically ill patients present a different temporal and

morphological evolution. It is common, for instance, that seizures in a critically ill patient develop from an ictal-

interictal continuum composed of periodic discharges or rhythmic activity, waxing and waning over long periods

of time, or fluctuations from low amplitude and/or low frequency seizures. These phenomena are the reason why

seizure detection algorithms developed for epilepsy studies fail in the critical care context [22, 23, 24]. Trained and

experienced medical specialists are able to identify epileptic seizure EEG patterns in complex scenarios, e.g. when the

background EEG resembles ictal activity. Similarly, automatic seizure detection methods need appropriate training

to solve a complex signal processing and pattern recognition task.

Several authors addressed this phenomenon in methods proposed for convulsive epileptic seizure detection al-

lowing the user to control the classification process using thresholds or tuning some parameters [25, 26, 27]. However,

these algorithms are not able to learn new seizure patterns that may appear on the EEG. Other authors [28, 29] used

online learning techniques in their proposals to incorporate novel patterns to be added to the already known ones by

the classifier. None of the methods proposed for NCSz addressed this issue.
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The most commonly used training strategy for a machine learning algorithm is the batch method [18, 8, 9, 14, 30].

In the batch method, the algorithm has a fixed number of samples that are used to train a classifier. The trained

classifier is then applied to new samples without further updating. Most classifiers are trained with batches of data

coming from several patients. However, patient-specific solutions are expected to perform much better. In a better

solution, the patients’ EEG should be recorded for some time to train the classifier. As new information is continu-

ously becoming available, and the patients’ seizures may evolve in morphology, the classifier must be updated online

using the latest EEG data. However, simply including all new incoming data is not practical as it would continuously

increase memory and computational requirements.

This paper presents an SVM-based incremental learning method for NCSz detection that for the first time ad-

dresses the seizure evolution in EEG records from patients with epileptic disorders and from ICU having NCSz. The

method proposed here, provides improved performance compared to the method introduced in [18] (referred here as

‘Batch method’), while maintaining similar memory requirements. To introduce the incremental learning step in the

Batch method, three methodologies are tested. These approaches differ in the way they reduce the set of potentially

available support vectors (i.e. training samples) that are used to build the decision function of the classifier: 1) Discard

a fixed number of support vectors after the classifier retraining, based on a predefined threshold. From now referred

as ‘Hard IL’, 2) Select an optimal support vector subset using cross-validation. From now referred as ‘Cross IL’, and

3) Select an optimal support vector subset using an approximate technique for incremental SVM proposed by Yang

[31] based on the maximum relevance minimum redundancy (MRMR) feature selection method [32]. From now re-

ferred as ‘MRMR IL’. To our knowledge this is the first time Yang’s algorithm is used for a practical implementation.

The MRMR IL approach provides an algorithm to select appropriately the patterns to update the classifier, avoiding

to incorporate random patterns as done in [28] and not requiring the user intervention in the updating process as in

[29]. To evaluate the suitability of the three incremental learning approaches proposed here for NCSz detection, first,

a comparative study between the three methods is performed. Secondly, the incremental learning approach with the

best performance is compared with the Batch method and three other batch methods from the literature [8, 9, 14] that

reported better performance than the Batch method in some sense (for the results of this comparison, see [18]).

3 Materials and methods

3.1 EEG data

The EEG data were collected at the Epilepsy Unit of the Cuban International Neurological Restoration Center (CIREN)

and the ICU of the Clinical Surgical Hospital “Hermanos Ameijeiras ”, both in Havana City. A video-telemetry EEG

(vEEG) study was performed on all patients. For clarity of exposition, we will denote the patients recorded at the

Epilepsy Unit as vEEG, and the ones recorded at the ICU, as ICU. The dataset comprised EEG clips of about 14min

to more than 21h (mean 280min 21s) of 14 patients with ages between 18 and 57 years and different brain disorders

leading to NCSz. The visual inspection and seizure labeling were performed by two pairs of neurophysiologists

(including the authors VRR and LMC). All recordings were re-analyzed for the purpose of this study. Each pair of

neurophysiologists independently labeled the ICU or vEEG seizures. In case of disagreement it was resolved by

discussion. A total of 117 NCSz were identified (55/117 were associated to coma or other acute brain dysfunction).
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Table 1 presents a more detailed description of the dataset. The data were anonymized before their use in this study.

All procedures were reviewed and approved by the Ethical Committees of the CIREN and “Hermanos Ameijeiras”

Hospital respectively.

Table 1: Description of the EEG Database. In the table ’x’ and ’o’ indicate whether the signal was recorded or not

together with the EEG for each patient. vEEG stands for video-telemetry EEG. ICU stands for continuous EEG

recorded in the intensive care unit.

Patient data Recording Protocol

Patient Gender Diagnosis Type Seizures Channels EKG EOG EMG Video

1 M Temporal lobe epilepsy vEEG 6 19 o o o x

2 M Temporal lobe epilepsy vEEG 3 19 o o o x

3 M Temporal lobe epilepsy vEEG 13 19 o o o x

4 F Temporal lobe epilepsy vEEG 5 19 o o o x

5 F Lennox-Gastaut syndrome vEEG 2 19 o o o x

6 F Temporal lobe epilepsy vEEG 2 19 o o o x

7 F Temporal lobe epilepsy vEEG 12 17 x x x x

8 F Juvenil myoclonic epilepsy vEEG 6 17 x x x x

9 M Frontal lobe epilepsy vEEG 34 17 x x x x

10 F Coma /Subaracnoid Haemorrhage ICU 40 19 x x x x

11 M Myoclonic Seizures /Brain Tumor ICU 2 13 x o x x

12 F Coma/ Systemic Vasculitis ICU 6 8 x x x x

13 F Seizures/Brain Tumor /Sepsis ICU 5 19 x x x x

14 F Generalized Tonic-Clonic Seizures ICU 3 14 x x o x

3.2 Batch method

The Batch method in [18] analyses the EEG data in non-overlapping segments (epochs) of 3 seconds long. All epochs

are expanded in the time-frequency domain using an Hilbert Huang Transform (HHT). A 3rd order tensor is built

from every epoch with modes frequency × time× channels.

The tensors built in this way are decomposed using a canonical polyadic decomposition (CPD) [33] with rank one.

In other words, we model the EEG data as the outer product of three vectors, that describe the signature of the EEG in

time, frequency and across channels. The values of these signature vectors can be used as features for classification,

as we will describe below. From now on, we will refer to the channel mode vector as ’spatial signature’. In [18] we

have shown that the spatial signature is a powerful feature to discriminate between NCSz and NCSz-free (n-NCSz)

epochs. Therefore, we will use only the spatial signature in this study.

To discriminate between the two classes NCSz and n-NCSz (seizure and seizure free) a support vector machine

(SVM) classifier is used. Given a set of S training data {xs}Ss=1 , xs ∈ RCh×1 (Ch is the number of channels) with

labels {ys}Ss=1 ∈ {±1} (seizure or seizure-free), the SVM attempts to infer a model M0 that correctly estimates the
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labels ŷnew of a new test vector xnew based on a function of the form

ŷnew = sign[wTφ(xnew) + w0] (1)

where w, a set of weights and φ is a nonlinear transformation that maps the input data to a higher dimensional

feature space. The objective of the SVM formulation is to construct a separating hyperplane in the feature space with

maximal margin. This can be translated to a convex optimization problem. In the dual space, the classifier takes the

form

ŷnew = sign
S∑

s=1

αsysk(xs,xnew) + b (2)

where k(xs,xnew) = φ(xnew)φ(xs) is a symmetric and positive definite kernel function that defines the inner

product of xnew and xs in the higher dimensional space. Here, we use a Gaussian kernel. The xs input vectors

corresponding to non-zero αk values are called support vectors.

As described in [18], we propose to start the NCSz monitoring after the clinicians identify the first epileptic seizure.

The duration of the first seizure determines the number of NCSz epochs used for the training. The same number

of n-NCSz epochs are selected as non-seizure training points, starting from the beginning of the first seizure and

going back towards the beginning of the recording. In other words, if the first seizure is of length L ‘epochs’, then

S = 2bL/3c.

3.3 Incremental learning

3.3.1 Training rounds

The batch method uses a fixed model M0 throughout the whole duration of the monitoring, that is trained based on

the data up to the first seizure. As opposed to this, the purpose of incremental learning is to regularly update the

model in order to ensure adaptability to the evoling EEG morphology within the same patient. We propose to update

the model after regular time intervals of duration t using the EEG data collected during this time period. The value of

t is selected arbitrarily as t = 10min for short EEG recordings (< 2h) and t = 2h for longer recordings (> 2h). These

values were chosen based on evaluating the real chance of observing morphology changes in the EEG. The clinicians

establish the recording time for a patient by considering how long it would take to register an epileptic event given

the patient etiology or clinical state. It is assumed in this approach that the duration of the EEG will depend on when

the clinician is expecting to see the EEG changes. That is, in short recordings we expect that EEG changes will develop

sooner than in longer recordings. In practice, the parameter t can be specified by the specialist at the start of the EEG

monitoring. The data collected during this time is defined as a training round.

3.3.2 Double labeling of training data

After t time has elapsed since the last seizure, it is time to obtain the new model Mt including the newly collected

datapoints xnnew and their corresponding labels ynnew in the existing training dataset. However, in a practical setting,

no expert is available to provide labels to the new datapoints. To overcome this problem and obtain training labels

for computing the new model Mt, we will use the labels that are predicted by Mt−1 (see Fig. 5 for the definition of
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the notation used). However, the labels estimated by Mt−1 could be erroneous. If this is the case, the error could be

propagated into the classifier during the updating process, leading to a so-called concept drift [34]. Concept drifts

are problematic since they lead to conflicts in the classification. The classifier performance will decrease until the

model can be updated appropriately. To reduce the chances of generating a concept drift with the labels provided by

the model Mt−1, a double set of labels are predicted, one provided by Mt−1, and additionally, another set using the

partial least squares method (PLS) [35].

The PLS prediction model is trained with the same xs samples used to estimate the model Mt−1 and their cor-

responding ys labels provided by the neurophysiologist. Then, the trained PLS model is used to predict the y[PLS]
nnew

labels of the xnnew
samples. In order to verify the suitability of the PLS method within this context, we first tested its

performance using a batch approach, prior to applying it for the double labeling in the incremental learning setting.

The PLS model was tested on a set of 14 EEG recordings and showed a positive predictive value (PPV) of 98.9% and

a sensitivity of 97.6%. We describe the details of this study in [36].

Due to the double labeling, two sets of labels are available for xnnew
: ynnew

provided by the model Mt−1 and

y
[PLS]
nnew provided by PLS. The samples xnsel

for which both methods estimate the same label ( ynnew
= y

[PLS]
nnew ) are

selected for estimating Mt.

3.3.3 Conservative updating

The selected samples xnsel
are split into training and validation sets. The updating is then performed in two steps.

First, a temporary model Mtemp is estimated only using the selected training samples. Secondly, the support vectors

(SV) from Mt−1 and Mtemp are combined together. An optimal subset of the combined SVs are used to build the

model Mop, that is tested on the validation set (An explanation on why and how to choose the optimal subset will

follow below in section 3.3.4). Then, the modelMt−1 is also tested on the validation set. Finally, after comparingMt−1

and Mop, the one with the better performance is assigned to be the new Mt model. The same updating procedure is

performed after every training round.

3.3.4 Controlling model growth

Following the procedure above without the selection of an optimal subset of SVs, the size of the model, defined by

the number of support vectors (SVs), would grow with the number of new training samples after each update.

Therefore, it is necessary to take some actions to limit the number of SVs in the solution. A regularization factor

φ = NsvMt
/Nsv is introduced to limit the growth of the number of SVs, φ ∈ R : 0 < φ ≤ 1. NsvMt

denotes the number

of SVs from the model Mt, while Nsv denotes the sum of the SV from Mtemp and Mt−1. Finally, the size of the SV

subset is computed as SVsub = φNsv .

The three methodologies, defined in the introduction as Hard IL, Cross IL, and MRMR IL, are tested, to select

the optimal subset of SV. For all methodologies the new samples are divided into training and test set. A new model

Mtemp is trained with the training set. The SV from the models Mt−1 and Mtemp will become candidate SVs for the

new model Mop.

To control the model growth, Hard IL accumulates the SV of a number of training rounds, tr (user-specified

parameter). Then, after tr training rounds, at every new training round, the oldest Nsv − φNsv SV are discarded to
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obtain the SV subset for the model Mop. For this implementation, tr = 2 was selected. For tr > 2 the execution time

increases without significant improvements in the algorithm accuracy. Fig. 5 (B) describes the Hard IL algorithm.

For Cross IL given the SV from the models Mt−1 and Mtemp a 5-fold (of length φNsv) cross-validation is applied

to find the optimal subset of SVs. This means that the set of all available SV is shuffled into five different subsets of

size φNsv . Hence, the performance of the five subsets is tested, and the subset with the best performance will become

Mop. Fig. 5 (C) illustrates the diagram of the Cross IL algorithm.

The MRMR IL approach implements the incremental SVM algorithm proposed in [31] to estimate the optimal

subset of SVs. In [31] the selection of the subset of SVs is formulated as equivalent to a feature selection problem. The

equivalence can be observed if the SVM decision function in the dual space is written as

f(x) = ωTK + ω0
T (3)

where ω = [α1y1, α2y2 . . . , αNsv
yNsv

] is the weight vector, K ∈ RNsv×Nsv is the kernel matrix, with the element in

the ith row and jth column Ki,j = k(xi, xj). Nsv is the number of SVs and ω0 ∈ R1×NSV , is a bias vector containing

the bias term ω0 in each element. The decisions are made according to sign(f(x)). This equation is very similar to the

decision function of a simple linear classifier

g(x) = βTX + βT
0 (4)

where X ∈ RL×M is a data matrix with L number of features describing M data samples, β ∈ RL×1 the corre-

sponding weight vector and β0 ∈ RM×1 is the vector containing the bias term β0 in each element.

In the context of feature selection, the aim is to drop some of the features (i.e. the rows of the data matrix X) and

the corresponding weights, but at the same time achieving correct decisions using g(x).

By exploiting the similarities between (3) and (4) the kernel matrix K ∈ RNsv×Nsv can be interpreted as a data

matrix in the feature selection context where each column of K corresponds to a data sample and each row of K (i.e.

support vector) corresponds to a feature. Hence, the number of SVs can be reduced by dropping rows in the kernel

matrix K, while keeping the number of columns unchanged [31]. To select the best subset of SVs, Yang proposed the

feature selection technique MRMR introduced in [32].

Following the MRMR scheme to find the optimal subset of support vectors the first step is to select the row of K

with the highest F-statistic Fi defined as [31],

Fi =
[
∑2

c=1 nc(K̄
c
i. − K̄i.)]

σ2
(5)

where Ki. denotes the ith row of the feature matrix K, nc is the number of samples from the cth class. K̄i. is the

mean value of the row Ki. and K̄c
i. is the mean value of Ki. within the cth class. σ2 is the pooled variance defined as

[31],

σ2 =
[
∑

c(nc − 1)σ2
c ]

N̂sv − 2
(6)

where σ2
c is the variance of Ki. within the class c.
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The row with the highest Fi is the first element of the final subset. At each iteration, the rest of the unselected

support vectors are evaluated with (5), and the one with the largest Fi is added to the subset. The subset is evaluated

according to the relevance and the redundancy defined as [31],

maxRF
c

with RF =
1

|N̂sv|2
∑
i

F (i, c) (7)

and

minRcoff

K∈N̂sv

with Rcoff =
1

|N̂sv|2
∑

i,j∈N̂sv

C(i, j) (8)

respectively.

N̂sv denotes the size of the desired feature subset (i.e.φNsv ). c is the target class and F (i, c) is the F-statistic

between the feature i and the class c. C(i, j) is the correlation between the ith and jth rows of K.

Then, the algorithm selects the subset that maximizes the relation,

maxR
K∈N̂sv

with R =
RF

Rcoff
(9)

The MRMR algorithm receives as input the kernel matrix K ∈ RNsv×Nsv , a vector of length Nsv with the SV

positions, and φ to compute the length of the desired SV subset. The subset of SV selected by the MRMR algorithm

are then the SV of the model Mop.

Finally, similarly as Hard IL and Cross IL, the MRMR IL method compares the performance of the models Mt−1

and Mop on the validation set. The model with better performance is selected to become the updated classifier Mt.

Fig.5 (D) illustrates the algorithmic flow.
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Figure 5: Flow chart of the NCSz detection method with incremental learning. Section (A) describes the Batch method. The three implementations of

incremental learning approaches tested: HardIL, Cross IL, and MRMR IL are described in sections (B),(C), and (D) of the diagram. For the graph simplicity,

{x1, y1}, {x2, y2}, . . . , {xt, yt} refers to the samples resulting from the double labeling. SV stands for support vector.
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3.4 Alternative batch approaches

The three methods, [9],[8] and [14], were implemented and tested on our data. For each implementation, we tune

the parameters to maximize the classification performance. We included some minimal variations in the training

to tune the methods to the available dataset. First, the training set was composed of the first NCSz and the same

number of epochs of n-NCSz EEG prior to it. For the methods of Sharma and Fatma, the EEG was segmented using

non-overlapping epoch of 1 s duration (length defined by the authors). In the case of Kollialil’s method, two ways

of training were implemented. First, the classifier was trained with all data from 7 of the 14 available cases, and the

unseen cases were used to test the classifier. The cases were selected in such a way that each set included vEEG as

well as ICU cases. Second, given that this method is not patient-specific, the training set assembled all training sets

of all cases, i.e. the first NCSz and the same number of epochs of n-NCSz EEG prior to it.

3.5 Performance metrics

The performance for all methods was assessed by means of the sensitivity, specificity and positive predictive value

(PPV) defined as,

Sen =
TP

TP + FN
∗ 100% (10)

Spec =
TN

TN + FP
∗ 100% (11)

PPV =
TP

TP + FP
∗ 100% (12)

respectively.

TP (true positives) is the number of samples identified as seizure by the algorithm and the human expert. FN

(false negative) is the number of samples identified as nonseizure by the algorithm marked as seizure by the human

expert. FP (false positive) is the number of samples identified as seizure by the algorithm marked as nonseizure by

the human expert, and TN (true negative) is the number of samples classified as negative by the algorithm which are

confirmed by the human expert.

To assess the significance of the improvement introduced by incremental learning, the different methods were

statistically compared using a paired t-test.

4 Results and Discussion

The performance of Hard IL, Cross IL, and MRMR IL was first mutually compared, to establish the best method

to select the subset of support vectors to update the classifier. The method with the best performance was then

compared with the Batch method and the batch methods proposed in [9],[8] and [14] (from now referred in the text

as ‘Koliallil’, ‘Sharma’ and ‘Fatma’ respectively). Since the Batch method is the basis for all incremental learning

methods proposed here, it is logical to compare their performances to assess the achieved improvement, if there is

any.
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To present the results, the recordings are subdivided in two groups taking into account the origin of the NCSz.

The first group comprised all patients with an underlying epilepsy (Group I, recordings from 1 to 9 in Table 1). The

second group comprised all patients that develop NCSz as a consequence of an acute brain dysfunction (Group II,

recordings from 10 to 14 Table 1).

4.1 Comparison of Incremental Learning Approaches

All incremental learning approaches, as can be appreciated in Table 2, outperformed the Batch method in at least one

of the metrics assessed.

The average performance of the Hard IL approach showed an increase in specificity, PPV, and a lower number

of false detections per hour compared to the Batch method. However, the method experiences a drop in sensitivity

and specificity for Group I and II respectively. The arbitrary removal of support vectors seems to cause the forgetting

of relevant information for the NCSz classification. It is possible that for more extended recordings, the catastrophic

forgetting phenomenon [37] could appear if the EEG morphology changes too fast.

Table 2: Performance of the Batch Method, Hard IL, Cross IL and MRMR IL in Group I and II. Group I + Group II is

the performance when both groups are considered together. Spec: specificity, Sen: Sensitivity, PPV:positive predictive

value, FP/h: false positive detected per hour.

Group I Group II Group I + Group II

Method Spec Sen PPV FP/h Spec Sen PPV FP/h Spec Sen PPV FP/h

Batch Method 98.7 98.2 84.6 5.9 99.4 99.98 77.7 4.9 99.0 98.8 82.1 5.5

Hard IL 99.1 96.0 88.2 4.1 99.1 100 80.9 3.4 99.1 97.4 85.6 3.8

Cross IL 99.7 94.8 93.3 1.4 99.6 100 85.6 1.8 99.7 96.7 90.5 1.6

MRMR IL 99.4 99.2 92.3 3.3 99.7 100 86.1 0.8 99.5 99.5 90.1 2.4

The sensitivity values obtained by Cross IL for Group I are lower than the ones obtained by the Batch method.

Yet, Cross IL displayed an increase in specificity and PPV for this group. Cross IL outperformed the Batch methods

in all the metrics assessed for Group II. This method achieved the lowest average number of false detections among

the two groups with only 1.6 false positives per hour. The results obtained with Cross IL demonstrate to be unstable

since they depend on the support vector subset resulting after the cross-validation process (not always the same, and

not always better). The performed tests show that the winning subset does not always show the best performance

for new samples.

The MRMR IL displayed values of specificity, sensitivity above 99% for the two groups assessed, and a PPV of

92.3 % and 86.1% for Group I and II respectively. The low average PPV value obtained for both groups, despite

the high sensitivity and specificity values, may be caused by the unbalanced test sets in some cases. The MRMR IL

generates an average of 2.4 false detections per hour for both groups, 3.1 less than the Batch method. The MRMR IL

yields the best results among the compared methods, showing the highest average performances for all metrics.

Regarding the errors made by the MRMR IL algorithm during the classification, it was found that the epochs
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misclassified as false positives in Group I corresponded to preictal activity occurring just before a seizure. However,

the preictal activity that appeared several seconds before the seizure onset (say 4 − 6s), was not marked by the

neurophysiologist as seizure activity. On the other hand, the end of the seizure is marked by the doctors immediately

after the postictal activity. As can be seen in Fig. 6, the patterns of the preictal and postictal activity are very similar.

Postictal activity was always labeled as part of the seizure by the doctors. Hence, if the patterns of the postictal

activity (similar to preictal) are added to the training set, the algorithm recognizes the preictal activity as a seizure.

In Group II the false positives are found in cases 10 and 11. The false positives detected in these cases are given

by similarity between the background EEG and the seizure activity, making it difficult to detect the beginning of the

seizure. False negative detections were found for recordings 1 and 9 (Group I). The false negatives identified occurred

before the first updating of the classifier where the occurrence of errors will affect the performance of the incremental

learning approach.

The execution time for the MRMR IL approach is expected to be the same as the Batch method since the model up-

dating is performed in the background while monitoring and seizure detection are running. Therefore, the execution

time of this algorithm is assumed to be in the same time range as the Batch method (0.37s to 3s for the classification

task). The classifier retraining execution time ranged from 0.03s to 14.36s for t = 10min and from 0.94s to 1.79min

for t = 2h. This means that the highest delay in the classifier updating was approximately 14.36s and 1.79min for a

time window of 10min and 2h respectively. The maximum detection delay found was 12.42s and occurred after the

algorithm failed to detect the first three 3-seconds epochs of a seizure (3s× 4) and took 0.42s to detect the fourth one.

All tests were performed on a computer with an Intel Core-i3 processor at 1.70GHz with 8GB of RAM.

We have also considered other state-of-the-art incremental learning approaches to improve the Batch method

[37, 38, 39]. However, we discarded them after some analysis. Specifically, the method proposed in [37] performs

well when the classifier is trained with balanced training sets which happens in the initial training of most cases.

However, in the retraining step this cannot be guaranteed; the upcoming samples during the retraining window t

could be all from one class, negative samples in most of cases. After the retraining step this incremental learning

method does not recognize properly the positive samples. The method introduced in [38] is proposed for a linear

SVM. The linear SVM was excluded as possible classifier in our methodology in a previous work [30]. Finally, the

method proposed in [39] was also evaluated, and the implementation cost was found too high.

4.2 MRMR IL and Batch methods Comparison

Table 3 lists the classification results of the Batch, MRMR IL, Kollialil, Sharma and Fatma methods for Group I and

II. The MRMR IL clearly outperformed the Batch method in all metrics for both groups. It should be noted that the

performance of the Batch method for this database was already high before including incremental learning, which

does not leave much room for improvement. In general, the MRMR IL shows the same performance as the Batch

method in the 5 cases for which the classification outcome was perfect, and improved the classification results for

the other nine. However, the short duration of some EEG clips hindered the assessment of the real capabilities of the

MRMR IL approach for NCSz detection in comparison with the Batch method. MRMR IL should be tested in longer

EEG to assess the statistical significance of the improvement achieved with the addition of the incremental learning

to the Batch method.
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According to the paired t-test performed, the MRMR IL improvement was statistically significant compared to

Kollialil, Sharma, and Fatma methods. From the two training processes performed for Kollialil, the first one (using

7 cases for training and the rest for testing) (Kollialil 1), achieved specificity and sensitivity values of 43.2% and

63.1% respectively for Group I. For Group II, Kollialil 1 obtained specificity and sensitivity values of 65.9% and 74%

respectively. This method obtained the lowest PPV among all the methods evaluated 10.6% (7.7% for Group I and

15.8% for Group II). The second way of training using the Kollialil method (assembling for all cases the first NCSz and

the same number of epochs of n-NCSz EEG prior to it) (Kollialil 2), increased the performance significantly compared

to Kollialil 1. For Group I, specificity value of 77.6%, a sensitivity of 72.2% and a PPV of 23.3% were obtained.
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Figure 6: Epoch from Case 6 misclassified by the Incremental Learning approach. The red box indicates seizure activity. The blue boxes highlight the preictal

and postictal EEG patterns. As can be observed the patterns from both preictal and postictal activities are very similar. Since the postictal was included in the

classifier as seizure, its morphological similarity with the preictal activity induced this error.
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For Group II, the specificity, sensitivity and PPV, using Kollialil 2 was respectively 94.8%, 58.1% and 26%. The

overall performance of the Kollialil method was poor (average specificity and sensitivity values under 85%). These

results, could be due to two possible causes. First, the training set was not big enough for classifier learning thereby

deteriorating the classification performance. Second, the classifier was not able to recognize patterns that were not

used during training, when using the Inter-quartile Range (IQR) as feature.

Table 3: Performance of MRMR IL, Kollialil(1 and 2), Sharma, and Fatma for Groups I and II. Group I + Group II is

the performance when both groups are considered together. Spec: specificity, Sen: Sensitivity, PPV:positive predictive

value.

Group I Group II Group I + Group II

Method Spec Sen PPV Spec Sen PPV Spec Sen PPV

Batch Method 98.7 98.2 84.6 99.4 100 77.7 99.0 98.8 82.1

MRMR IL 99.4 99.2 92.3 99.7 100 86.1 99.5 99.5 90.1

Kollialil 1 43.2 63.1 7.7 65.9 74.0 15.8 51.3 67.0 10.6

Kollialil 2 77.6 72.2 23.3 94.8 58.1 26.8 83.8 67.2 24.5

Sharma 55.4 100.0 28.7 93.6 100 47.9 69.0 100.0 35.6

Fatma 91.9 73.2 37.8 96.2 43.3 47.5 93.4 62.6 41.3

Sharma method showed its best performance for Group II with specificity, sensitivity and PPV of 93.6%, 100%

and 47.9% respectively. For Group I, a decrease in specificity and PPV was observed, 55.4% and 28.7% respectively.

The performance of the Sharma method decayed for patients in which the training set was extremely unbalanced

(case 3) or too small (cases 7, 8 and 9). The method obtained the lowest specificity values and PPV for these cases.

The MRMR IL outperformed the Sharma method in all metrics assessed except for the sensitivity, where Sharma

displayed a 100% average value.

Fatma method achieved similar results in specificity (values over 90%) for the two groups analyzed. Regarding

the sensitivity, a decrease was observed for Group II. Since this method does not use classifiers, the only plausible

reason for the low sensitivity outcome is that the threshold defined for the seizure detection needs to be individually

adjusted for each group. The method of Fatma was inferior to MRMR IL for all the metrics evaluated, achieving an

average specificity of 93.4% with a PPV of 41.3%. This algorithm displayed the lowest average sensitivity over all

tested methods (around 62%).

Concerning the execution time, the MRMR IL was only compared with Kollialil method in this regard since

Sharma’s and Fatma’s methods uses a different lenght of analysis epochs. The algorithm from Kollialil executed

the classification process of the 3 s epochs in 0.28s to 0.19s. An outlier of 25.25s was observed for one of the epochs

of Case 10 which was disregarded for the time performance analysis. The superiority of Kollialil could be due to

the fact that the tensorization and the tensor decomposition processes are more time consuming than the IQR range

computation. Nevertheless, based on our results, we believe that both, MRMR IL and the Batch method will perform

properly in a real-time monitoring setting.
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5 Conclusion

This paper proposed a method that uses incremental learning to improve the nonconvulsive epileptic seizures (NCSz)

detection during continuous and long-term EEG monitoring. The proposed algorithm, namely MRMR IL, is based on

our previously proposed tensor-based batch solution [18]. The MRMR IL retrains the original classifier periodically

to improve the seizure recognition in case of changes in the EEG morphology over time. The obtained results show

that the MRMR IL outperforms the original method.

Three detection methods proposed in the literature [9],[8] and [14] were evaluated on the available database and

compared to MRMR IL. MRMR IL was shown to outperform the three methods in all measured metrics.

In summary the MRMR IL method proved to be an effective tool for NCSz detection in a real-time setting. The

proposed method detected the NCSz caused by an epileptic disorder and those that appear as a consequence of an

acute brain dysfunction with specificity and sensitivity values over 99%. For further application, it is necessary to

test the method using EEG of longer duration (more than 12 hours).
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