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modulated FBG was designed and fabricated. In the numerical simulations we have shown the desired MZI functionality of the designed FBG, and for illustrative purpose the optical intensity distribution inside the Bragg grating has also been calculated, showing how the forward Bragg scattering generates a single common path interference in a distributed way along the Bragg grating.  It is worth noting that here we also report the first experimental demonstration of a phase-modulated FBG for the synthesis of a specific spectral response in transmission mode, which were proposed but only numerically demonstrated in [25] for some pulse shaping applications. It is also important to differentiate the MZI functional block, which performs a general functionality that delivers an output signal depending on the input signal, from pulse shapers, which deliver a much more fixed operation, where a specific desired output waveform is obtained from a usually previously known input waveform. Sensitivity to environmental changes is typically high in conventional two path based MZIs, where any relative variation of the effective optical paths of the interfering components in the order of a fraction of a wavelength produces a significant variation of the response, making them very suitable for sensing applications of small perturbations. Additionally, for in-fiber implementation of two-paths MZIs, any relative difference in the polarization state in the MZI paths will affect to the performance. In our case, the proposed Bragg-MZI has a common interfering path, leading to a high robustness to environmental changes. With an athermal packaged FBG a thermal sensitivity of < 0.01 nm (OEquest, part number 91000223-063), in a temperature range from -5 °C to +70 °C can be obtained, which correspond to maximum MZI relative phase variation ϕ <78.4 mrad over a temperature range of 75 °C . Due to its robustness and we envision its main use for the implementation of DLI functionality in all optical signal processing, with less relevance in optical sensing applications. Compared to other DLIs approaches, this approach only provides one signal output, which indeed could be a demerit in some cases. However, it also offers other very interesting possibilities, such as the possibility of passive athermal packaging without any power consumption, instead of active temperature control used in other waveguide type MZIs. It also has a clear potential in extremely inexpensive manufacturing procedure (e.g. by a using custom phase mask in the Bragg writing), Moreover, the combined resonant optical processing together to the operation in transmission mode lead to a device that has the unique capability of performing a DLI operation in a controlled limited spectral band, leaving the rest of the optical spectral bands essentially undistorted. And finally, fiber gratings have a natural compatibility with optical fibers, being able to directly process optical signals without the need for coupling/re-coupling alignments required by bulk-optics or chip based devices, thus provide a low-loss, stable, cost-effective and ultra-fast solution for optical signal processing.  In conclusion, we introduce here a new paradigm for DLIs, based on Bragg structures and interfering transmission modes in a common optical path, which can be applied to any kind of Bragg grating technology (such as volume Bragg gratings, dielectric mirrors, silicon photonics, or other optical waveguide technologies based Bragg structures) beyond the demonstrated in-fiber implementation here. 
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