

Template free mild hydrothermal fabrication of sizecontrolled core-shell CuO@Cu2O visible light photocatalyst, structural stability and their interfacial charge transfer mechanistic investigation

Journal:	Journal of Materials Chemistry A
Manuscript ID	TA-ART-06-2019-007009
Article Type:	Paper
Date Submitted by the Author:	30-Jun-2019
Complete List of Authors:	SEKAR, KARTHIKEYAN; Kyushu University, Department of Earth Resources Engineering, Faculty of Engineering; Chuaicham, Chitiphon; Kyushu University Pawar, Radheshyam; Kyushu University, Department of Earth Resources Engineering, Kyushu University, Department of Earth Resources Engineering Li, Wei; Aston University, Lee, Adam; RMIT University, School of Science Wilson, Karen; RMIT University, School of Science

Template free mild hydrothermal fabrication of size-controlled core-shell CuO@Cu₂O visible light photocatalyst, structural stability and their interfacial charge transfer mechanistic investigation

Sekar Karthikeyan, [†]Chitiphon Chuaicham, [†]Radheshyam R Pawar, [†]Keiko Sasaki, ^{†*}Wei Li, [‡]Adam F. Lee,^{||}Karen Wilson,^{||}

[†]Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan

[‡]European Bioenergy Research Institute, Aston University, Birmingham B4 7ET, UK [#]Applied Chemistry & Environmental Science, RMIT University, Melbourne VIC 3000, Australia.

*Corresponding Author

Prof. Keiko Sasaki, E-mail: keikos@mine.kyushu-u.ac.jp, Tel & Fax: +81-92-802-3338

Abstract

Solar-driven photocatalytic processes rely on potential method for clean environment and environmental remediation. Semiconducting copper oxides (Cu₂O, CuO) photocatalysts showed efficient solar energy conversion applications in the visible light by tuning the structural and electronic properties. To understand the structure-function-relationship and stability of the photocatalysts, we have demonstrated low hydrothermal template free synthesis of hollow, hierarchical, core-shell CuO@Cu₂O, Cu₂O, Cu/CuO@Cu₂O architecture by low hydrothermal with size ranges from 200 nm to 2µm. The superior activity and stability of the photocatalysts investigated by N-acetyl-para-aminophenol (as a model pharmaceutical organic compound) under visible light. The photocatalyst surface/bulk electronic properties and mechanistic investigation as well as the stability was investigated by surface oxidation states, apparent quantum efficiency, and rates of charge recombination as well as the efficiency competing with other bench mark reports. This work anticipated to provide significant insight of constructing other core-shell/hollow, hierarchical structures for variety of solar-driven photocatalytic energy conversion applications with high-performance.

Keywords: Core-shell CuO/Cu₂O; hierarchical, photocatalysis; N-acetyl-para-aminophenol, visible light.

1. Introduction

Recently, solar energy utilization from semiconductors has great attention and potential technology for solar energy, clean environment and fine chemical production applications. Last few decades, TiO_2 is considered most promising bench mark photocatalyst for efficient solar energy utilization in various applications such as solar fuels, environmental remediation, microorganism inactivation, and personal care products¹. However, titanium dioxide activates only 5% of the UV light region, which limits the successful practical application². Copper oxide (Cu₂O) is an economical and earth abundant p-type semiconductor (band gap 2.0 to 2.2 eV) with favourable conduction and valence bands position for effective photocatalytic activity towards visible region³. The unique electronic properties of Cu₂O have

high absorption coefficient, excellent conductivity, and high photocatalytic activity for solar fuel conversion, water splitting and environmental remediation. Research strategy engineering the Cu₂O physicochemical, electronic and surface/interface properties by controlling sizes⁴, structures⁵, cocatalyst loading⁶, hetero junctions⁷, and crystal facet frameworks⁸ for favourable light absorption on the extended axial route, prolong life time and an efficient charge separation between the interface and the axial direction towards efficient photoconversion applications. but poor quantum efficiency and the stability⁹. Cupric oxide (CuO, band gap 1.2 to 1.7 eV) is an excellent co-catalyst can improve the kinetic stability of Cu₂O as well as efficiently improve the charge separation to minimize the electron hole-pair recombination between the interface of CuO/Cu₂O, which accelerated the favourable valence band potential and enhance the charge transport facility and minimizing electron-hole pair recombination of photoinduced electrons between the interface^{10, 11}. Design nanostructures, core-shell/hollow, hierarchical architectures have multifunctional characteristics, synergistic surface, quantum confinement, quantum coherence, interface effects and excellent stability for higher catalytic, photocatalytic and electrochemical performances ¹²⁻¹⁴. To date, reports on core-shell/hollow Cu/Cu₂O, CuO/Cu₂O hybrids synthesised by various approaches such as template assisted electrodeposition¹⁵, high temperatures (<450 °C)^{16,17}, toluene assisted high temperature 200 °C for 12–48 h¹², template free hydrothermal 200 °C¹⁸, size controlled but high temperature 270°C¹⁹, template assisted size controlled (230 to 260 nm) Cu₂O hollow²⁰, bilayer Cu₂O/CuO by double-potential pulse chronoamperometric deposition²¹, DMF with high temperature 150 to 210 °C²². Chen et al. 2018 reported two spatially separated location of the surface (built-in electric field) having potential candidate for efficiency electron-hole (e-h+) pair separation, fast charge carrier transport and advantages for wider chemical reactions ²³. Yang et al. 2016 reported the heterojunction between Cu₂O/CuO the photogenerated e⁻ in conduction band (CB) of copper (I) oxide transferred to CB of CuO at Cu₂O/CuO interface; meanwhile, the leaving positive holes in CuO are transferred to Cu₂O under visible-light irradiation²¹. However, core-shell/hollow CuO/Cu₂O architectures and their solar-driven photoreactions were very rarely described in the above previous reports. Based on our previous report⁴, well defined Cu₂O nanocube with size ranges (50 to 500 nm) and the highest phenol photocatalytic activity was achieved 300 to 500 nm.

Here we demonstrated the continued interest for systematic study of their corresponding size-structureactivity relationships by new synthetic route fabrication of hollow, hierarchical, core-shell CuO@Cu₂O, Cu₂O, Cu/CuO@Cu₂O architecture by low hydrothermal with size ranges from 200 nm to 2μ and their corresponding photocatalytic properties. The physicochemical, surface and bulk electronic properties, optical band gaps, electronic band energies were characterised by diverse analytical techniques such as XANES, XRD, STEM-elemental mapping, HRTEM, XPS, N₂ porosimetry, SEM, DRUVS, photoluminescence spectroscopy etc., The complete mechanistic investigation as well as stability of the photocatalysts investigated by APAP under visible light by surface oxidation state of copper, apparent quantum efficiency, and rates of charge recombination as well as the efficiency compared with other reports. This report gives significant insight of core-shell/hollow structured high-performance materials by simple one pot synthesis potential for clean environment application, not limited other photocatalytic applications.

2. Experimental

2.1. Chemicals

Copper (II) chloride dihydrate (CuCl₂.2H₂O Sigma, 97%), polyethylene glycol (Wako, Average molecular weight: 560 to 640), sodium hydroxide (NaOH, 98% Wako), hydrazine monohydrate (H₄N₂.H₂O, 98% Wako), ethanol (99.5%, Wako), Acetonitrile, 99.8% (Wako, Japan), HPLC water (Wako, Japan), (N-acetyl-para-aminophenol or Paracetamol (4-hydroxyacetnilide, $C_8H_9NO_2$, 98%; TCI, Japan).

2.2. Fabrication of Core-Shell CuO@Cu₂O photocatalyst

A Core-Shell CuO@Cu₂O photocatalyst was fabricated by a simple template free low hydrothermal method. Typically, 50 mL of 0. 2 M copper chloride dihydrate and 3 mL of 0.01 M PEG-600 along with 6mL of water by magnetic stirring speed at 600 rpm and 60 °C for 10 min, resulting reaction mixtures were observed in deep blue solution. Simultaneously, mixture of 10 mL of 2 M NaOH and 1mL of 2M hydrazine monohydrate (H₄N₂.H₂O) with 10 mL D.I. water added dropwise to the above reaction and stirring continued another 15 min. Then post reaction mixtures were transferred to a sealed round bottom flask under N₂ for 30 min to allow formation of a yellowish-red CuO@Cu₂O precipitate. Then precipitate of CuO@Cu₂O catalyst washed three times with water followed by ethanol three times to make sure removal any residual PEG and centrifugation for 6 min at 10000 rpm, and then freeze dried for 24h; named as Cu₂O-B and stored in desiccator. The core-shell formation mechanism, the PEG and CuCl₂.2H₂O initiate reaction to complexation of Cu (II) oxide and Cu (II) oxide in the presence of NaOH and hydrazine monohydrate addition.

Scheme 1: Synthesis scheme of Core-Shell CuO@Cu₂O

The schematic illustration of CuO@Cu₂O synthetic scheme processes showed in Scheme. 1.

$$4CuCl_2 + N_2H_4H_2O + 8NaOH \rightarrow 2Cu_2O + N_2 + 8NaCl + 7H_2O$$
(1)

The hydroxyl groups in PEG compound at 60°C are possible to control the Cu ions dimensions, which results core-shell CuO@Cu₂O catalyst. In above schematic reaction, the Cu (II) ions are converted into to Cu (I) and Cu(II) ions and subsequently oxidized to form CuO/Cu₂O spherical particles in presence of reducing and stabilizing agents. The formation spherical particles have to self-aggregate presence of N₂ around the liquid-gas interface to form core-shell structures, and other structures and size varied by controlling PEG concentration and reducing agent. For Cu₂O-A (same above method was followed as Cu₂O-B, only hydrazine monohydrate was 0.5mL). For Cu₂O-C reducing agent concentration was 1M (0.5mL) and addition of reagents, first sodium hydroxide followed by reducing agent. For Cu₂O-D, same procedure as Cu₂O-C, and amount of PEG was 0.5mL.

2.3. N-acetyl-para-aminophenol (APAP) photodegradation experiment

20 mg of photocatalysts dispersed 50 mL of APAP aqueous solution (0.06 mM) and then sonicated 5 min for complete dispersion was transferred to 250 mL photoreactor. Prior light illumination above this mixture was continued stirring in dark to make sure any adsorption. After adsorption, aliquots were collected for HPLC analysis, and then started light illumination reaction with 500 W Xe lamp with a cut-off filter 420 nm under visible light (temperature maintained 25° C, stirring speed RPM was maintained 500; light intensity 1.82 mV/cm², effective irradiation area 4.5 cm and distance from light source to reaction mixture is 14. 9 cm). Aliquots were collected at different time intervals and filtered using CPO20AN filter for all samples including initial samples by standard calibration by HPLC.

For APAP concentration:

$$APAP(\%) = \frac{APAP \text{ initial} - APAP \text{ final}}{APAP \text{ initial}} \times 100$$
(2)

Where, 'initial and final' is the molar concentration of N-acetyl-para-aminophenol.

Quantum efficiency (%) =
$$\frac{\text{APAP removal rate}}{\text{Neins}} \times 100$$
 (3)

Quantum efficiency calculations (supporting information eqs: S1-S6)

2.4. HPLC calibration

APAP was analysed using a high performance liquid chromatography system (JASCO UV plus 2075 serious, Japan)) coupled with an intelligent UV/Vis detector selected at λ =243 nm and a Shodex C18M4E analytical column (4.6 I.D × 250mm), separation factor (α 1=2.42 and α 2=1.47) with a constant temperature of 25°C and pressure maximum 20 MPa, pressure minimum 0.2 MPa. The eluent consists of 30:70 (v/ v) acetonitrile: water (Wako, Japan) with a flow rate of 0.6mL/min.

2.5. X-ray absorption near edge structure (XANES)

XANES spectra of the synthesised core-shell catalysts and standard substances (Cu-metal, Cu₂O and CuO) were measured using an ionization chamber in transmission mode for Cu K-edge using a silicon drift detector (SDD) on a BL15 at the Kyushu Synchrotron Light Research Center (SAGA-LS; Tosu, Japan). The samples were prepared by mixing with boron nitride for this measurement.

The photon energy was scanned using Si double crystal monochromator with high energy resolution Cu K-edge in the range from 8.9 to 9.2 keV for the Cu K-edge. The operation current of 171.9 mA and the electronic energy of 1.40 GeV received in electronic accelerator from storage ring. The linear combination fitting (LCF) analysis of all sample were done by Athena-Demeter 0.9.26 program in the Demeter computer package.

2.6. Core-Shell CuO@Cu₂O Characterization

(supporting information)

3. Results and discussion

The electronic and optical absorption properties of core-shell $CuO@Cu_2O$ was calculated from solid state DRS-UV spectroscopy. **Fig.1a** showed the solid state DRS-UV of core-shell $CuO@Cu_2O$ photocatalysts broad absorbance around 200-600 nm assigned to copper oxides region, which is close agreement with our previous report ⁴, and corresponding band gaps calculated from Tauc plots presented in **Fig.S1** and the calculation was made using Eq. (4):

Fig. 1 a) solid state DRS-UV, b) XRD pattern core-shell CuO@Cu₂O photocatalyst (\circ Cu₂O, \land CuO, \Box Cu₂(OH)Cl, +Cu)

 $\alpha h v = A(h v - E_q)^{\eta}$

(4)

Where, A is absorption coefficient, α is linear absorption coefficient, h -Planck's constant, h v - photon energy, Eg band gap. The band gap of fabricated photocatalysts were determined using Kubelka-Munk Eq. (5):

$$a = \frac{(1-R)^2}{2R}$$
(5)

From the KM function the calculated direct band gap (Eg) values were 2.43 eV for Cu₂O-A, 2.48 eV for Cu₂O-B, 2.21eV for Cu₂O-C and 2.01eV for Cu₂O-D respectively. Here, the Cu₂O-B greatly influenced the valency band and conduction band energy levels, which could be due to the strong interfacial connection between CuO and Cu₂O core-shell. The synthesised core-shell CuO@Cu₂O photocatalysts phase purity and crystallinity was characterized by PXRD (**Fig.1b**) and the volume-average crystalline size calculated using by Scherrer equation (**Table 1**). The diffraction 20 values of Cu₂O-A were 29.62°, 32.4°, 36.48°, 39.48°, 42.34°, 50.18°, 53.57°, 61.48°,68.49° and 73.42°, and corresponding d-spaces were 3.01(ang), 2.76 (ang), 2.46(ang), 2.26 (ang), 2.13 (ang), 1.81 (ang), 1.70 (ang), 1.51 (ang), 1.36 (ang), and 1.29 (ang), respectively, all assigned peaks observed mixture of Cu₂O, CuO, and Cu phase. Cu₂O-B 20 at 29.68°(d=3.0), 30.90 (d=2.9), 32.43°(d=2.75), 35.46°(d=2.52), 36.5°(d=2.46), 38.65(d=2.32), 39.82°(d=2.26), 42.38°(d=2.13), 50.29°(d=1.81), 53.68°(d=1.7), 61.40°(d=1.5), 68.22°(d=1.37) and 73.42°(d=1.28), corresponding PDF card numbers were 01-078-2076 (Cu⁺), 01-073-6372, 01-087-0679(Cu²⁺), and 01-07-3038 (Cu) phase, respectively^{13, 24}.

Catalyst	Crystalline size /nm ^a	BET surface area ^b / m ² .g ⁻¹	Band gap /eV ^c	VB edge potential/eV ^d	CB edge potential/eV	Average particle size/ nm TEM ^e
Cu ₂ O-A	11.8	24.72	2.43	1.18	-1.25	240-300
Cu ₂ O-B	37.1	21.34	2.48	1.12	-1.36	350-500
Cu ₂ O-C	13.1	17.56	2.21	0.91	-1.30	350-400
Cu ₂ O-D	52.0	12.31	2.01	0.83	-1.27	2700
[a] XRD [b] N2 porosimetry [c] DRUVS [d] calculated from valence band XPS and DRUVS [e] Cu 2n XPS [f]						

Table 1 Physicochemical characterizations of Core-Shell CuO@Cu₂O photocatalyst

[a] XRD. [b] N2 porosimetry. [c] DRUVS. [d] calculated from valence band XPS and DRUVS. [e] Cu 2p XPS. [f] TEM

To further prove core -shell structure by PXRD using d-spacing values were 1.81 A° corresponding to (200) plane of Cu core, whereas the inner shell/first shell d-space is 2.46 A° corresponding to (111) plane for Cu₂O²⁵; and the second shell/outer shell d-space is 2.52 A° corresponding to (111) plane for

CuO¹⁷, which is further proved by STEM and Electron energy loss spectroscopy (EELS). PXRD patten of Cu₂O-C was assigned all 2θ values indicated only pure Cu₂O phase, no other impurity reflections were observed during 30 min reaction, due to reducing agent concentration (0.5mL) and controlled addition of reagents, first sodium hydroxide and then reducing agent.

Further to prove the core and shell CuO/Cu₂O architectures and the particle distributions by scanning transmission electron microscopy and transmission electron microscopy. The uniform distributions of core-shell CuO/Cu₂O architectures from low hydrothermal template free morphology at higher and lower magnification clearly evidenced by STEM showed **Fig.2 a-d** (higher magnification) **and Fig. S2** (lower magnification), and the distribution of Cu and oxygen species in the Cu₂O-B catalyst further confirmed by elemental mapping at lower magnification (**Fig.2 e-f**). The STEM images clearly showed smaller hollow and broken particles in Cu₂O-A, which is due to amount of hydrazine monohydrate (0.5mL). Whereas, bigger particles observed in Cu₂O-D is due to amount of PEG (0.5mL) and Cu (II)-less PEG complex with $H_4N_2.H_2O$, indicated the complete self-aggregation small particles in too bigger. The core-shell CuO and Cu₂O and presence of small amount Cu species in Cu₂O-B further evidenced with lattice interplanar spacing of 2.52 Å, 2.46 Å, 1.81 Å (**Fig. 2j** and **Fig. 2g** insert), which is corresponding to (111), (111), (200), and lattice planes of CuO, Cu₂O and Cu species consisted with XRD results and reports^{4, 17, 26}.

Fig.2 STEM images of a) Cu₂O-A, b) Cu₂O-B, c) Cu₂O-C, d) Cu₂O-D, e and f) Cu₂O-B elemental mapping, g-j) STEM images of Cu₂O-B at different magnifications, and electron energy loss spectroscopy (embedded) (h-and i).

From STEM images, the core-shell formation clearly evidenced that the smaller unit nanoparticles started self-aggregation followed by nucleation growth to integrated lager unit's with size distributions around 350 to 500 nm. The electron energy loss spectroscopy (EELS) provides sensitive chemical environment and the fine structures of the atoms, the lines shape is different for metallic copper than oxygen surrounded Cu in the CuO and Cu₂O. Here, the location of Cu⁺ and Cu²⁺ species were confirmed by EELS beam focused on different surface locations in Cu₂O-B catalysts (embedded in Fig.2h and i), indicated that the line shapes and edges of L2, and L3 ratios were different from CuO than Cu₂O²⁷. Additionally, EELS spectrum of CuO line shapes CuL3 and CuL2 showed lower curve than Cu₂O, which clear information on the different species as well as the location of two species, and Cu⁰ does not have any line shapes, due to filled conduction band consisted with reports^{28, 29}. The structural characterization showed the existence of Cu²⁺ species in the form of CuO at the surface played an important role to control the kinetic stabilization rates of Cu₂O to further oxidation ³⁰. Field emission scanning electron microscopy images of fabricated core-shell CuO/Cu₂O photocatalysts at higher and lower magnification presented Fig. 3a-d (higher magnification) and Fig. S3 (lower magnification). The core-shell architectures were formed by hundreds of smaller CuO units (first layer) followed by Cu₂O (second layer) are aggregated differently like cauliflower morphologies due to structure directing agents, time heavily influenced the nucleation growth of particles with distribution rages from 300 to 500 nm (Fig.3a-d, insert). While, the amount of structure directing agent controlling particle sizes, consisted with our previous report⁴.

Fig. 3 Higher magnification FE-SEM images of a) Cu₂O-A, b) Cu₂O-B, c) Cu₂O-C, d) Cu₂O-D

The core-shell CuO/Cu₂O formation described by self-transformation methods of agglomerated smaller units together by the localized Ostwald ripening³¹. Similar size (~400 nm) and structures (different core-shell) controlled was achieved by H-terminated p-type Si (100) substrate using electrodeposition techniques¹⁵. The formation of core shell/ hollow spheres due to the PEG initially formed micelles when heated the reaction mixture and the copper-hydroxyl species formed by electrostatic interaction between Cu²⁺ and OH⁻, which direct to improve copper (II) spices and interface between hydrophilic (OH) groups in PEG in the reaction mixture. Copper (II) spices reduced to Copper (I) oxide by Ostwald ripening processes²⁰.

The surface oxidation states of fabricated core-shell CuO/Cu₂O photocatalysts were examined by copper core level Cu2p X-ray photoelectron spectroscopy presented in **Fig.4a**. The surface Cu⁺ and Cu²⁺ species played important role in the present photocatalytic system, the observed strong main binding energy peaks at 931.7 \pm 0.5 eV and 951.6 \pm 0.2 associated to spin-orbit split of Cu2p_{3/2} and Cu2p_{1/2} peaks in Cu/Cu₂O, and the existence small amount metallic coper evidenced from XRD. The strong shakeup satellite at higher binding energy of 937.4 eV and 957.2 eV (along with weak 941 eV satellite feature), peaks in both Cu₂O-B and Cu₂O-D corresponds to CuO²⁶ (core surface) consisted with TEM d-spacing result.

Fig. 4 a) Cu2p XP spectra (spectra offset for clarity), b) XANES spectra of standard and synthesised catalysts

The characteristic of strong shakeup features corresponds to incompletely occupied $3d^9$ shell arrangement of Cu²⁺ species at outer shell surface, and existence of CuO shell prevent the stability of Cu₂O surface to further oxidation¹⁹. Further to confirm the oxidation potentials of the fabricated coreshell CuO/Cu₂O archistructures by electronic valency band maximum from intercept of tangent by VB XP spectra (**Fig.S4**). The VB edge potential of Cu₂O-A (1.18 eV) and Cu₂O-D (0.83 eV) decreased due to increasing particle size, similar phenomena was observed our previous report⁴. The conduction band potential determined from VB edge potentials and the calculated CB potentials values are -1.25 eV for Cu₂O-A, -1.36 eV for Cu₂O-B, -1.30 eV for Cu₂O-C, and -1.27 eV for Cu₂O-D, which is significantly higher than the required reactive oxygen species potentials (-0.16 (E0) [V] at pH 7)³². XANES spectra provide bulk information about presence of Cu⁰, Cu⁺ and Cu²⁺ species in the synthetic composite samples, which are challenging to describe Cu/Cu₂O phases from XPS and other techniques. We have performed Cu K-edge XANES analysis of Cu₂O-A to Cu₂O-D catalysts, which is compared with standard Cu-metal, Cu₂O and CuO and confirmed the oxidation states as well as the quantitative compositions by linear combination fitting (LCF). The XANES spectra of Cu₂O-B catalysts absorption edge energy observed values were 8978.4, 8978.9 and 8982.4 eV, corresponding characteristic features of Cu (3d¹⁰4s, 1s→4p), Cu⁺ (1s→4p_{x,y}) and Cu²⁺ (1s→3d)³³, which is compared with Cu₂O-A to Cu₂O-D (**Fig.4b**). The quantitative phase percentages of synthesised catalysts obtained from normalized absorption near edge by LCF method presented in **Table 2**.

Catalyst	Copper I / %	Copper II /%	Cu /%	Cu I /Cu II	R-factor
Cu ₂ O-A	13.8	84.7	1.5	0.16	0.0030
Cu ₂ O-B	22.1	75.8	2.1	0.29	0.0042
Cu ₂ O-C	84. 6	15.4	-	5.49	0.0002
Cu ₂ O-D	81.3	18.7		4.34	0.0008

Table 2 Copper phase composition of synthesised catalysts by XANES using LCF analysis

As we expected the Cu₂O-A and Cu₂O-B catalysts showed majority of CuO phase along with Cu₂O and Cu phase. While, Cu₂O-C and Cu₂O-D showed majorly Cu₂O phase and small amount of CuO phase percentage. The quantitative XANES results confirmed the Cu₂O, CuO, and the Cu phase mixtures almost which are in good agreement with the XRD results.

Surface textural properties synthesised core -shell CuO/Cu₂O architectures determined by N₂ porosimetry showed type II adsorption-desorption isotherms with small H3-type hysteresis loops (**Fig. S5**). Specific surface area of the synthesised core-shell/ hollow CuO/Cu₂O structures determined from BET measurements and the results were 24.72 m² g⁻¹ (for Cu₂O-A), 21.34(for Cu₂O-B), 17.56 m² g⁻¹ (for Cu₂O-C), 12.31 m² g⁻¹ (for Cu₂O-D), respectively. Surface areas were decreased with increasing time due to particle aggregations and size effect. Off course, the smaller sizes catalysts are efficient in photocatalytic processes because of high reactive surface area. But, other surface factors (e.g. electron

mobility between heterojunctions, inhibited charge recombination, and surface termination) may favour bigger nanostructures³⁴.

3.1. Photocatalytic APAP oxidation

Here, the selected N-acetyl-para-aminophenol (APAP) as a model organic pharmaceuticals compound has great attention in aqueous contaminants because presence of these huge amount, analgesics, antibiotics, anti-inflammatories, lipid regulators, and anti-epileptics in wastewaters (concentration levels ng L⁻¹ to μ g L⁻¹), including ground and drinking water²⁶. In Japan, 41 pharmaceuticals and phytochemicals and the concentration ranges from ng/L to μ g/L, with highest level of 92 μ g/L found in hospital wastewater³⁵. Among the drugs, the N-acetyl-para-aminophenol is one of the most heavily used humans and animal drugs in overall the world as an antipyretic and analgesic, and the concentrations levels in 6 μ g L⁻¹ in Europe sewage treatment plant, 10 μ g L⁻¹in USA natural water³⁶, and more than 65 μ g L-1 in the Tyne river in the United Kingdom³⁷.

Fig. 5 N-acetyl-para-aminophenol (APAP) removal rate by fabricated core-shell CuO@Cu₂O photocatalyst under visible light, a) initial removal rate, b) area normalised rate (Experimental conditions: 0.06 mmol APAP in 50 mL water, 20 mg catalyst, visible light source cut-off filter 420 nm, 90 min reaction)

According to **Kim et. al.** in South Korea the surface and STP water concentration of 0.033 and 6.8 μ g L^{-1 38}, 1.7 μ g/L in WWTPs effluent in Japan³⁹. The importance of N-acetyl-para-aminophenol is chosen because no visible light region absorbance properties, and it will not affect the genuine photocatalytic efficacy ⁴⁰. Here, we have systematically studied the different core-shell/ hollow CuO/Cu₂O photocatalyst for APAP photodegradation under visible light. The adsorption capacity of the

synthesised photocatalysts were performed in dark at 1h, and negligible amount of adsorption observed and light only photoreaction showed only 3.6 %. The photocatalytic efficiency of the fabricated catalysts was performed for APAP decomposition and the initial removal rates of 2.5, 7.0, 5.0, and 3.5 ×10⁻³ / mmol. g⁻¹. min⁻¹ for Cu₂O-A, Cu₂O-B, Cu₂O-C and Cu₂O-D, respectively, while the surface area normalized rates of 0.02, 0.065, 0.057 and 0.056×10⁻⁴ / mmol. m². min⁻¹ for Cu₂O-A to Cu₂O-D under visible light presented **Fig.5 a-b**.

Upon visible light illumination on core-shell photocatalysts, the initial and surface area normalized rates of Cu₂O-A and Cu₂O-B catalysts were direct relationship with APAP photooxidation, and Cu₂O-B photocatalyst showed enhanced photocatalytic performance than other family of catalysts, which is due to the influence of either surface core-shell Cu⁺, Cu²⁺ species or bulk electronic properties. Additionally, the strong interfacial contact between CuO-Cu₂O architectures, which is responsible to facilitate the charge transfer performance and the role of Cu species acted electron trapping tendency that can effectively separate charges form photoinduced electron and hole pairs.

Fig. 6 a) N-acetyl-para-aminophenol (APAP) removal percentage over core-shell photocatalyst under visible light (Experimental conditions: 0.06 mmol APAP in 50 mL water, 20 mg catalyst, visible light source cut-off filter 420 nm, 300 min reaction.), b) corresponding apparent quantum efficiency.

The higher photocatalytic efficiency not only lower recombination of charges evidenced by solid state PL, but also several scatting effect inside the shell and to absorb more number of photons⁴¹. The photocatalytic APAP removal efficiency was compared with other family of photocatalysts (**Fig.6a**), the higher efficiency of Cu₂O-B catalyst due to active surface of CuO, Cu₂O, effective solar light harnessing, and lower recombination properties to enhance the charge transfer facilities longer time for improved photocatalytic performance. Apparent quantum efficiencies calculated from rates of APAP

degradation (**Fig. 6b**), and Cu₂O-B catalysts showed 2-fold higher than other family of photocatalysts. The photocatalytic degradation performance of APAP over core-shell CuO/Cu₂O compared with other bench mark photocatalysts (neither reported apparent quantum efficiency) in terms of light source and mass of catalysts (**Table S1; references S1-S6**), and the rates of synthesised catalysts significantly higher than alternative semiconducting photocatalyst. The enhanced photocatalytic performance was further evidenced by the charge separation and recombination properties. Photo luminance spectra (excitation @380, and 572nm) and the emission were recorded 420, 572 nm and 616 nm of synthesised photocatalyst (**Fig.7a-b**), confirmed the recombination properties, the slower radiative recombination presence of Cu species may accelerate the valency and conduction band positions, and trap electrons from the photoexcited electron-hole pairs for higher photocatalytic activity⁴²⁻⁴⁴.

Verified the charge separation and recombination properties by PL spectrum, it can be observed the weak PL intensity in Cu₂O-B catalyst clear indication about the suppressing recombination of charges from photoinduced electron and hole pairs. The lower recombination property in the catalysts showed higher photocatalytic activity, due to small amount of Cu species as receiver of electrons from surface Cu₂O and CuO acts as an electron transfer sites and stabilize the Cu₂O to further oxidation may advantages for efficient photocatalytic applications. The APAP decomposition over core-shell CuO/Cu₂O photooxidation by-products were determined using HPLC, negligible intermediate compounds were detected initially in our experiment, may be due to separation of these organics by the solvent system or fast intermediates conversation into another products.

Scheme 2: Schematic by-products formation during our photocatalytic reaction.

However, the final reaction mixtures we observed some intermediates such as lower molecular weight aromatics as well as short chain organic acid intermediates (hydroquinone (HQ), benzoquinone (BQ), fumaric acid (FA), maleic acid (MA) and oxalic acid (OA)) by standard calibration from HPLC provided **Fig.S6 and Scheme 2.** The formation of intermediate species from APPA photocatalytic oxidation is due to cleavage of benzene ring and subsequent hydroxyl radical attack may produce carbon dioxide and water molecules in the reaction system⁴⁵. The photocatalytic APAP degradation pathway by reactive species and ^OOH radicals attack following route, the APAP mineralization via hydroxyl radicals attach on the aromatic ring in para position respect with -OH in APAP, and initially hydroquinone oxidation with hydroxyl radicals to form benzoquinone, and then further oxidation with hydroxyl radicals to ring opening mechanism produced dicarboxylic acids, consisted with previous report⁴⁶.

Fig. 8a) APAP removal rates using scavengers, b) hydroxyl radicals trapping by PL spectroscopy, c) Cu 2p XP spectra of Cu₂O-B before and after photoreaction with APAP (20h), d) XRD pattern of Cu₂O-B before and after APAP photodegradation (20h)

Furthermore, influencing reactive species for APAP photodegradation performances in the system confirmed by scavenging effects using benzoquinone (BQ), isopropyl alcohol (IPA), and disodium ethylenediaminetetraacetic acid (EDTA) for superoxide radicals (O_2^{-}) , hydroxyl radicals ('OH), and holes (h_{vb}^+) . **Fig. 8a** showed that the APAP removal rate is 0.007 mmol.g⁻¹.min⁻¹ higher when no scavengers used, while the removal rate decreased 0.0015, 0.004, 0.0035 mmol.g⁻¹.min⁻¹, when introducing IPA, BQ and EDTA scavengers, suggesting that a greater number of hydroxyl radicals ('OH) formation heavily influenced APAP photodegradation performances and the influencing order IPA > EDTA >BQ, respectively. Additionally, the formation of superoxide radicals (O_2^{-}) in the CuO/Cu₂O photocatalytic system, which can further react with water to produce hydroxyl radicals through redox reactions. Furthermore, the radical formation in the APAP degradation mechanisms by CuO/Cu₂O with photoinduced reactions with was further established through ('OH) radicals trapping experiment performed by fluorescence spectroscopy using terephthalic acid (TA) as probe molecule.

Upon light illumination, the TA reacts with CuO/Cu_2O system to produce 'OH radicals to produce 2hydroxyterephthalic acid (HTA) in the reaction mixtures, corresponding fluorescence characteristic emission measured at 425 nm (excitation at 315 nm) presented in **Fig. 8b**.

Fig. 9 SEM of Cu₂O-B before (a-b) and after (c-d) photoreaction with APAP (20h).

Results suggest that the hydroxyl radical formation increased with illumination time using CuO/Cu₂O photocatalytic system. The reusability and stability of the catalyst is important issues in the long-term application. Catalyst stability towards APAP photodegradation under visible light was assessed for the CuO/Cu₂O over four cycles showed negligible activity loss during reactions (**Fig. S7**), and the initial surface and crystallinity properties retained, confirmed from XPS and XRD (**Fig. 8c and d**). Hence, the synthesised catalysts showed excellent surface and long-term stability. Additionally, the structural stability of spent catalyst was determined by SEM, resulting photocatalyst core-shell structure well preserved in the post photocatalytic reaction mixture, and there is no structural deformation was observed from SEM after 20h reaction with APAP (**Fig.9 a-d**). Thus, synthesised CuO/Cu₂O core shell structured catalyst for potential high photocatalytic stability for the removal organics from pharmaceuticals wastewater, not limited solar-driven photocatalytic energy conversion applications.

3.2. Photocatalytic APAP removal Mechanism

Photocatalytic APAP degradation over core-shell CuO@Cu₂O mechanism under visible light is proposed based on CB and VB positions and the band alignment (Scheme 3, supporting information). The band gaps of Cu₂O (1.9 to 2.4 eV), CuO (1.2 to 1.5 eV) and both Cu⁺ and Cu²⁺ oxides have tendency

to adsorb wider range solar spectrum and produce photogenerated electrons and holes ^{19, 47}. The photogenerated electron and hole charge carriers and migration based on adjacent materials with strong interfacial connection responsible for controlling the charge transport and electron trapping tendency to minimize the charge recombination property for prolong photoreaction. Similar observation Chen et al **2013 reported**, existence of Cu species played important role for trapping electrons from photoexcited Cu₂O electrons and higher charge separation to minimize recombination property for enhanced photocatalytic efficiency prolong time ⁴⁸. The valency band (+1.12 eV) and conduction band (-1.36 eV) positions of CuO@Cu2O are located below the valence band (+2.16 eV) and conduction band (+0.46 eV) vs. normal hydrogen electrode (NHE) of CuO⁴⁹. The band energy alignment of core-shell CuO/Cu₂O architectures strong evidenced that the photogenerated electrons transferred to conduction band of CuO from Cu₂O, leaving positive holes in CuO transferred to valency band of Cu₂O¹⁶, and Cu species in the network accept photogenerated electrons from conduction band of Cu₂O to avoid the recombination property. The electron-hole pair charge recombination is significantly inhibited in coreshell CuO@Cu₂O system (which is confirmed by PL spectrum), indicated that the charge transport and hole migration is more efficient by photoinduced electrons. Thus, photogenerated charge carriers in the core-shell system efficiently separated and transfer, which results higher photocatalytic efficiency for prolong life time. Moreover, photoinduced electrons and presence of oxygen (O_2) in the conduction band of copper oxide able to scavenge to produce superoxide radical anions (O^{2-}) , and this superoxide radical reacted with water produce and hydrogen peroxide (H_2O_2) from conduction band (CB), holes in the valence band Cu₂O reacted with hydroxyl ions to form hydroxyl radical. The formation of hydroxyl and super oxide radicals is responsible for photo degradation of APAP in the aqueous solution. The different photocatalytic activity CuO@Cu₂O is related to the different electronic, active dominant (111) facets, different specific surface areas, and direct band gaps much influenced the APAP degradation.

4. Conclusions

A novel one pot low hydrothermal synthesis of core-shell CuO@Cu₂O efficient visible light photocatalyst, structural stability and mechanistic investigation. We have successfully highlighted the construction of core-shell, hierarchical photocatalyst for efficient organic pollutant decomposition with high stability under visible light and the potential photocatalytic performance was investigated through photophysical, surface/bulk electronic, notably the charge trapping, and charge-separation rates, and apparent quantum efficiency are closely related with surface structure and particle sizes towards APAP photodegradation activity under visible light. Despite their surface-active species controlling the kinetic stability of the Cu₂O to further oxidation and superior APAP photooxidation with excellent stability over 20h reusability confirmed by post reaction catalysts (XPS, XRD and SEM). These results are potential for constructing semiconductors and new insights for photocatalytic environmental remediation and other solar-driven photo/electrocatalytic energy conversion applications.

Conflicts of interest

The authors declare no conflict of interest.

Acknowledgments

The author SK would like to thank the Japan Society for the Promotion of Sciences (JSPS) for providing postdoctoral fellowship for foreign researchers (P18387) and Prof. KS thanks to JSPS KAKENHI JP18F18387.

References

- 1. A. Fujishima, T. N. Rao and D. A. Tryk, *Journal of Photochemistry and Photobiology C: Photochemistry Reviews*, 2000, **1**, 1-21.
- 2. W.-K. Jo, S. Kumar, M. A. Isaacs, A. F. Lee and S. Karthikeyan, *Applied Catalysis B: Environmental*, 2017, **201**, 159-168.
- 3. M. B. Gawande, A. Goswami, F.-X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril and R. S. Varma, *Chemical Reviews*, 2016, **116**, 3722-3811.
- 4. S. Karthikeyan, S. Kumar, L. J. Durndell, M. A. Isaacs, C. M. A. Parlett, B. Coulson, R. E. Douthwaite, Z. Jiang, K. Wilson and A. F. Lee, *ChemCatChem*, 2018, **10**, 3554-3563.
- 5. M. J. Siegfried and K. S. Choi, *Angewandte Chemie International Edition*, 2005, **44**, 3218-3223.
- 6. Y. Liu, B. Zhang, L. Luo, X. Chen, Z. Wang, E. Wu, D. Su and W. Huang, *Angewandte Chemie International Edition*, 2015, **54**, 15260-15265.
- 7. F. Wang, W. Septina, A. Chemseddine, F. F. Abdi, D. Friedrich, P. Bogdanoff, R. van de Krol, S. D. Tilley and S. P. Berglund, *Journal of the American Chemical Society*, 2017, **139**, 15094-15103.
- 8. W.-C. Huang, L.-M. Lyu, Y.-C. Yang and M. H. Huang, *Journal of the American Chemical Society*, 2012, **134**, 1261-1267.
- 9. Y. Su, H. Li, H. Ma, H. Wang, J. Robertson and A. Nathan, *ACS Omega*, 2018, **3**, 1939-1945.
- 10. Y. Kwon, A. Soon, H. Han and H. Lee, *Journal of Materials Chemistry A*, 2015, **3**, 156-162.
- 11. W. Wang, J. Wang, Z. Wang, X. Wei, L. Liu, Q. Ren, W. Gao, Y. Liang and H. Shi, *Dalton Transactions*, 2014, **43**, 6735-6743.
- 12. Z. Ai, L. Zhang, S. Lee and W. Ho, *The Journal of Physical Chemistry C*, 2009, **113**, 20896-20902.
- 13. J. Kou, A. Saha, C. Bennett-Stamper and R. S. Varma, *Chemical Communications*, 2012, **48**, 5862-5864.
- 14. C. C. Yec and H. C. Zeng, *Chemistry of Materials*, 2012, **24**, 1917-1929.
- 15. A. Radi, D. Pradhan, Y. Sohn and K. T. Leung, ACS Nano, 2010, 4, 1553-1560.
- 16. H. Li, Z. Su, S. Hu and Y. Yan, *Applied Catalysis B: Environmental*, 2017, **207**, 134-142.
- 17. W. Chen, Z. Fan and Z. Lai, *Journal of Materials Chemistry A*, 2013, **1**, 13862-13868.
- 18. H. Yu, J. Yu, S. Liu and S. Mann, *Chemistry of Materials*, 2007, **19**, 4327-4334.
- 19. M. Yin, C.-K. Wu, Y. Lou, C. Burda, J. T. Koberstein, Y. Zhu and S. O'Brien, *Journal of the American Chemical Society*, 2005, **127**, 9506-9511.
- 20. H. Xu and W. Wang, *Angewandte Chemie*, 2007, **119**, 1511-1514.
- 21. Y. Yang, D. Xu, Q. Wu and P. Diao, *Scientific Reports*, 2016, **6**, 35158.
- 22. J. J. Teo, Y. Chang and H. C. Zeng, *Langmuir*, 2006, **22**, 7369-7377.
- 23. R. Chen, S. Pang, H. An, J. Zhu, S. Ye, Y. Gao, F. Fan and C. Li, *Nature Energy*, 2018, **3**, 655-663.
- 24. Q. Song, W. Liu, C. D. Bohn, R. N. Harper, E. Sivaniah, S. A. Scott and J. S. Dennis, *Energy & Environmental Science*, 2013, **6**, 288-298.
- 25. S. B. Kalidindi, U. Sanyal and B. R. Jagirdar, *Physical Chemistry Chemical Physics*, 2008, **10**, 5870-5874.
- H. Azimi, S. Kuhri, A. Osvet, G. Matt, L. S. Khanzada, M. Lemmer, N. A. Luechinger, M. I. Larsson,
 E. Zeira, D. M. Guldi and C. J. Brabec, *Journal of the American Chemical Society*, 2014, 136, 7233-7236.

- 27. L. Chen, S. Shet, H. Tang, H. Wang, T. Deutsch, Y. Yan, J. Turner and M. Al-Jassim, *Journal of Materials Chemistry*, 2010, **20**, 6962-6967.
- 28. N. J. Long and A. K. Petford-Long, *Ultramicroscopy*, 1986, **20**, 151-159.
- 29. R. D. Leapman, L. A. Grunes and P. L. Fejes, *Physical Review B*, 1982, **26**, 614-635.
- 30. V. R. Palkar, P. Ayyub, S. Chattopadhyay and M. Multani, *Physical Review B*, 1996, **53**, 2167-2170.
- 31. X. Meng, G. Tian, Y. Chen, Y. Qu, J. Zhou, K. Pan, W. Zhou, G. Zhang and H. Fu, *RSC Advances*, 2012, **2**, 2875-2881.
- 32. J. Li, M. Jiang, H. Zhou, P. Jin, K. M. C. Cheung, P. K. Chu and K. W. K. Yeung, *Global Challenges*, 2019, **3**, 1800058.
- 33. I. J. Drake, K. L. Fujdala, S. Baxamusa, A. T. Bell and T. D. Tilley, *The Journal of Physical Chemistry B*, 2004, **108**, 18421-18434.
- 34. F. Amano, E. Ishinaga and A. Yamakata, *The Journal of Physical Chemistry C*, 2013, **117**, 22584-22590.
- 35. T. Azuma, N. Arima, A. Tsukada, S. Hirami, R. Matsuoka, R. Moriwake, H. Ishiuchi, T. Inoyama, Y. Teranishi, M. Yamaoka, Y. Mino, T. Hayashi, Y. Fujita and M. Masada, *Science of The Total Environment*, 2016, **548-549**, 189-197.
- 36. M. Skoumal, P.-L. Cabot, F. Centellas, C. Arias, R. M. Rodríguez, J. A. Garrido and E. Brillas, *Applied Catalysis B: Environmental*, 2006, **66**, 228-240.
- 37. L. Yang, L. E. Yu and M. B. Ray, *Environmental Science & Technology*, 2009, **43**, 460-465.
- 38. S. D. Kim, J. Cho, I. S. Kim, B. J. Vanderford and S. A. Snyder, *Water research*, 2007, **41**, 1013-1021.
- 39. T. Okuda, Y. Kobayashi, R. Nagao, N. Yamashita, H. Tanaka, S. Tanaka, S. Fujii, C. Konishi and I. Houwa, *Water Science and Technology*, 2008, **57**, 65-71.
- 40. N. Barbero and D. Vione, ACS Publications, 2016.
- 41. L. Luo, K. Li, A. Zhang, H. Shi, G. Zhang, J. Ma, W. Zhang, J. Tang, C. Song and X. Guo, *Journal of Materials Chemistry A*, 2019.
- 42. I. Mukherjee, S. Chatterjee and N. A. Kulkarni, *The Journal of Physical Chemistry C*, 2016, **120**, 1077-1082.
- 43. S. Kumar, M. A. Isaacs, R. Trofimovaite, L. Durndell, C. M. Parlett, R. E. Douthwaite, B. Coulson, M. C. Cockett, K. Wilson and A. F. Lee, *Applied Catalysis B: Environmental*, 2017, **209**, 394-404.
- 44. A. Gómez-Avilés, M. Peñas-Garzón, J. Bedia, D. D. Dionysiou, J. J. Rodríguez and C. Belver, *Applied Catalysis B: Environmental*, 2019.
- 45. L. Yang, E. Y. Liya and M. B. Ray, *Water research*, 2008, **42**, 3480-3488.
- 46. D. Vogna, R. Marotta, A. Napolitano and M. d'Ischia, *The Journal of Organic Chemistry*, 2002, **67**, 6143-6151.
- 47. M. Heinemann, B. Eifert and C. Heiliger, *Physical Review B*, 2013, **87**, 115111.
- 48. W. Chen, Z. Fan and Z. Lai, *Journal of Materials Chemistry A*, 2013, **1**, 13862-13868.
- 49. W. Wang, J. Wang, Z. Wang, X. Wei, L. Liu, Q. Ren, W. Gao, Y. Liang and H. Shi, *Dalton Transactions*, 2014, **43**, 6735-6743.

Table of content

Template free mild hydrothermal fabrication of size-controlled core-shell CuO@Cu₂O photocatalyst for *N-acetyl-para-aminophenol* decomposition under visible light

-Supporting information –

Template free mild hydrothermal fabrication of size-controlled core-shell CuO@Cu₂O visible light photocatalyst, structural stability and their interfacial charge transfer mechanistic investigation

Sekar Karthikeyan, [†] Chitiphon Chuaicham, [†] Radheshyam R Pawar, [†] Keiko Sasaki, ^{†*} Wei Li, [‡] Adam F. Lee,[¶] Karen Wilson,[¶]

[†]Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan

[‡]European Bioenergy Research Institute, Aston University, Birmingham B4 7ET, UK [¶]Applied Chemistry & Environmental Science, RMIT University, Melbourne VIC 3000, Australia.

*Corresponding Author

Prof. Keiko Sasaki, E-mail: keikos@mine.kyushu-u.ac.jp, Tel & Fax: +81-92-802-3338

Core-Shell CuO@Cu₂O Characterization

Core-Shell CuO@Cu₂O photocatalysts were characterized diverse analytical techniques such as powder X-ray diffraction (PXRD) using a Rigaku Ultima IV diffractometer, Japan. Cu Kα X-ray radiation was used at 40 kV at an applied current of 40 mA with 0.02° divergence. Band gap energy (Eg) was estimated using diffuse reflectance spectroscopy (DRS-UVis) by a Shimadzu UV-2450 spectrophotometer equipped with ISR-2200 integrating sphere attachment (Kyoto, Japan, serial no. A106453). Solid state Photoluminescence Spectroscopy (PL) was measured using JASCO F-6600 Spectro fluorometer made in Japan (Model FP-6600DS, Serial number: B011060822). Transmission electron microscopy (TEM) images of core-shell CuO@Cu2O catalysts were imaged using a TEM (JEM-2100HCKM, JEOL, Akishima, Japan). TEM and STEM samples prepared by appropriate amount of catalyst was dispersed ethanol and sonicated for even dispersion and then drop coated using carbon coated copper grid (separately molybdenum grid was used for elemental mapping) and then dried for imaging. X-ray photoelectron spectra (XPS) were collected on an ESCA 5800 (ULVAC-PHI, Inc., Kanagawa, Japan). A monochromatic Al Ka X-ray operated at 200 W was used as a source. The binding energy (EB) was calibrated using the C 1s peak at 284.6 eV for the contamination carbon from the apparatus, and peak separation was carried out with Casa XPS software (Version 2.3.16 PR 1.6). The specific surface area (SSA) and pore size distribution of the photocatalysts were determined by Japan BEL-Max, BEL (Osaka, Japan). The degradation products were determined on a JASCO LC-netII/ADC high performance liquid chromatography (HPLC) system PU-2089 plus pump, C0-2065 plus column oven and UV-2075 plus detector equipped with a C18 column (K009450, Shodex, Japan). The eluent consists of 30:70 (v/v) acetonitrile: water (Wako, Japan) with a flow rate of 0.6mL/min.

Fig. S1 Solid state DR-UV Tauc plot, a) Cu₂O-A, b) Cu₂O-B, c) Cu₂O-C, d) Cu₂O-D

Fig. S2 Lower magnification TEM images of a) Cu₂O-A, b) Cu₂O-B, c) Cu₂O-C, d) Cu₂O-D and lower magnification elemental mapping of Cu₂O-B (e and f)

Fig. S3 Lower magnification FE-SEM images of a) Cu₂O-A, b) Cu₂O-B, c) Cu₂O-C, d) Cu₂O-D

Fig.S4 VB XP spectra of synthesized photocatalyst.

Fig.S5 N_2 adsorption-desorption isotherm of prepared photocatalyst.

				D.C
Catalyst	Rate	Catalyst mass and APAP	Flux of light source	Referen
	constant	concentration		ce
	/ min-1			
TiO ₂	0.0105	0.4 g L^{-1} catalyst, $4\mu M$	15W-UVC lamp (output at	1
		paracetamol	254nm), intensity at 12.6	
			mW/cm ⁻²	
Cu-doped TiO ₂	0.0243	Photocatalyst 4.0 g/L, APAP 25	Rayonet RPR-100	
		mL in aqueous solution	photoreactor equipped with	2
			16 visible-light lamps	
Platinum-	0.030	5mg/L^{-1} catalyst, 40 μ M APAP in	photolysis by UVC with low-	
loaded TiO ₂		aqueous solution	pressure Hg lamp and	3
			intensity at 107.4 W/cm ⁻²	
			(254 nm)	
ZnO nanorod	0.0125	100 mg of ZnO, 50 mg/L APAP	300 W Xe lamp with external	
		in aqueous solution, and the	applied bias, UV radiation.	4
		active was 1 cm ²		
ZnFe -LDH/rGO	0.00737	25 mg catalyst, 50 mL APAP in	500 W xenon lamp with a	5
		aqueous solution (5 mg/L)	300 nm cut-off filter,	
Hollow TiO ₂	0.0448	50 mg/L APAP in aqueous	500W Hg-lamp, UV light.	6
microspheres		solution		
Core-shell	0.0679	20 mg of CuO/Cu ₂ O dispersed 50	500 W Xe lamp with $a < 400$	Present
CuO/Cu ₂ O		mL of APAP (0.06 mM) in	nm cut-off filter, light	work
		aqueous solution	intensity 1.82 mV/cm ²	

Table S1. Photocatalytic APAP degradation comparison.

Fig. S6 HPLC of before (a), and after (b) photocatalytic APAP degradation presence of Cu₂O-B.

Fig.S7 Mass normalized APAP decomposition over Cu₂O-B (photocatalytic reusability/stability)

Apparent quantum efficiency (AQE) determination

The apparent quantum efficiency under visible light irradiation was measured at 420 nm bandpass filter according to the following equations:

Apparent quantum efficiency (%) = $\frac{\text{Mols of reacted electrons per unit time}}{\text{Mols of incident photons per unit time}} \times 100$ (S1)

Mols incident photons per unit time ($N_{Einstein}$) = Number incident photons per unit time / N_A

Number of incident photons N_p per unit time can be calculated by:

$$N_P = \frac{\text{Intensity (E)}}{\text{Photon energy (E_p)}}$$
; and photon energy $(E_p) = \frac{hc}{\lambda}$ (S2)

$$E = \text{Irradiance} \times \text{reactor area illuminated}$$

$$E_{p} = \frac{(6.625 \times 10^{-34} \text{ J.s}) (3 \times 10^{17} \text{ nm.s}^{-1})}{\lambda \text{ (nm)}} = \frac{19.88 \times 10^{-17}}{\lambda \text{ (nm)}} = 4.73 \text{ x} 10^{-19} \text{ J}$$
(S3)

$$N_{p} = \frac{E}{E_{p}} = 0.00819 / 4.73 \times 10^{-19} = 1.73 \times 10^{16} \text{ s}^{-1}$$
(S4)

$$N_{\text{Einstein}} = \frac{N_{\text{P}}}{N_{\text{A}}} = 2.87 \text{E-06 mols.s}^{-1}$$
(S5)

For phenol photodegradation:

Quantum efficiency (%) = $\frac{Phenol removal rate}{Neins} \times 100$ (S6)

Scheme 3: Schematic band positions of fabricated a) Cu₂O-A, b) Cu₂O-B, c) Cu₂O-C, d) Cu₂O-D

References

- 1. L. Yang, E. Y. Liya and M. B. Ray, *Water research*, 2008, **42**, 3480-3488.
- 2. C.-J. Lin and W.-T. Yang, *Chemical Engineering Journal*, 2014, **237**, 131-137.
- 3. A. Ziylan-Yavaş and N. H. Ince, *Chemosphere*, 2016, **162**, 324-332.
- 4. C. J. Lin, S.-J. Liao, L.-C. Kao and S. Y. H. Liou, *Journal of Hazardous Materials*, 2015, **291**, 9-17.
- 5. J. Zhu, Z. Zhu, H. Zhang, H. Lu, W. Zhang, Y. Qiu, L. Zhu and S. Küppers, *Applied Catalysis B: Environmental*, 2018, **225**, 550-562.
- 6. C. J. Lin, W.-T. Yang, C.-Y. Chou and S. Y. H. Liou, *Chemosphere*, 2016, **152**, 490-495.