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A B S T R A C T

Zn and Co electrodes have been successfully coated with five different zeolitic imidazolate frameworks
ZIFs (ZIF-4, ZIF-7, ZIF-8, ZIF-14 and ZIF-67) via the anodic dissolution method. Careful control of the
reaction conditions allows for electrode coating growth; in contrast to previous reports of
electrochemical ZIF growth, which have not succeeded in obtaining ZIF electrode coatings. Coating
crystallinity is also shown to be heavily dependent upon reaction conditions, with amorphous rather
than crystalline material generated at shorter reaction times and lower linker concentrations.
Electrochemical applications for ZIF-coated electrodes are highlighted with the observation of an areal
capacitance of 10.45 mF cm�2 at 0.01 V s�1 for additive-free ZIF-67 coated Co electrodes. This is superior
to many reported metal organic framework (MOF)/graphene composites and to capacitance values
previously reported for additive-free MOFs.
ã 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Metal-Organic Frameworks (MOFs) are nanoporous materials
consisting of individual metal ions, or metal containing inorganic
clusters, co-ordinated by the heteroatoms of organic molecules
known as linkers [1]. These linkers co-ordinate multiple metal
ions, or metal-containing inorganic clusters, to produce a
framework structure containing a network of pores in one, two
or three dimensions [1]. Ever since MOFs were first conceptualised
[2] there has been great interest in the potential applications of
their nanoporosity, however it was not until a MOF capable of
maintaining its porosity in the absence of guest molecules was
reported that assessment of MOFs for potential applications could
begin [3]. Specific applications described to date include the use of
MOFs as catalysts [4,5] and as catalyst supports [6–8], for gas
separation [9–11] and storage [12–14], for drug delivery [15–17]
and chromatography [18]. Powders of MOFs acquired by the
standard solvothermal synthetic techniques are sufficient for these
applications, but for many applications the MOF is preferred in the
form of a coating. Biofilm inhibitors[19], sensors [20–23], photonic
antennae [24], nanostructure electrodeposition templates [25],
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supercapacitors [26–33] and electronic, optoelectronic [34] and
information storage devices [35,36] are all promising applications
which share this requirement.

A variety of non-electrochemical methodologies have been
developed to obtain MOFs as coatings which include the seeding
method [37–39], the molten linker method [40], electroless metal
oxidation [41,42], self-assembled monolayers (SAMs) [43–45],
SAMs with Liquid Phase Epitaxy (LPE) [46–48], SAMS with atomic
force microscopy nanografting [49],LPE with digital microfluidics
[50], LPE with Langmuir- Blodgett film growth [51], UV lithography
and imprinting [52], colloidal chemical solution deposition [53],
microwave assisted synthesis [54], lithographically controlled
wetting and evaporation [55] and pen type lithography [56,57].
Many of these processes are effective in obtaining coatings but
require either high temperatures, in the cases of the molten linker
method and electroless metal oxidation, excessively long synthesis
times in the case of the seeding, SAM, LPE and colloidal methods or
require specialised equipment such as UV or pen type lithography
set ups.

Electrochemical techniques, in contrast, enable good quality
coatings to be obtained at low temperature, with short reaction
times and without specialised equipment. The only real limitation
is that the growth substrates must be conductive, however this is
also a potential advantage as the ability to obtain MOF coatings
directly on electrodes could permit their applications in electro-
chemical energy storage to be studied more readily.
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There are two main electrochemical methods for obtaining
MOFs as coatings which can be broadly described as cathodic and
anodic. In the cathodic method both the metal cation and linker
species are present in the electrolyte solution. Electrochemical
reduction of a pro-base generates a base, which goes on to reduce
water to produce a high pH environment local to the cathode
surface [58,59]. A high pH environment can promote MOF
formation; basic solutions of trialkylamines are often added in
traditional solvothermal syntheses. High pH favours MOF forma-
tion as it increases the equilibrium concentration of the
deprotonated, anionic form of the linker, which interacts with
the cationic metal species to produce the MOF. As the high pH
environment generated in the cathodic electrochemical method is
local to the cathode surface, formation of a MOF coating is favoured
over formation of bulk MOF in solution [58,59]. Recent work by the
same group has further expanded upon this mechanistic under-
standing [60] and the method has allowed for the production of
coatings of Zn [58–60], Eu [21], Tb [23] and Zr [61] MOFs via this
method.

Conversely in the anodic method only the linker species is
present in the electrolyte solution; electrochemical oxidation of
the metallic anode provides the source of metal cations for the
MOF formation [62]. Having originally been developed as a method
for bulk solution synthesis of MOFs [62] it was discovered that,
dependent upon the reaction conditions, formation of a MOF
coating on the anode could be favoured and used to coat defined
electrode architectures [63,64]. Utilising this methodology, and in
some cases incorporating minor modifications such as the use of
galvanic displacement [65] or a high temperature, high pressure
(HTHP) cell [19], coatings of Cu [63–66], Fe [19], Tb[22], Gd[22], Zn
[67] and Zr [61] MOFs have been obtained. However attempts to
synthesise Al MOFs and Zn Zeolitic Imidazolate Frameworks (ZIFs)
as coatings via this methodology failed, with the material forming
instead exclusively in solution [68]. This was attributed to the
larger induction times for the synthesis of these materials, which
Scheme 1. Illustration of the experimental setup used to synthesise the ZIF coatings. Tw
(TBMAMS) in N, N-dimethylformamide (DMF):H2O electrolyte solution containing an im
2.5 V applied potential difference generates the ZIF coating on the anode.
favours homogenous solution growth over heterogeneous elec-
trode surface growth [68].

ZIFs are a subset of MOFs that are so named due to the
topologies they adopt being found in zeolites and the linkers used
in their syntheses all being imidazole derivatives [69]. Obtaining
ZIF coatings electrochemically is of interest as for many of the
previously reported applications for MOF coatings stability to
temperature, humidity and a variety of solvents is needed and
ZIFs, unlike many of the MOFs made as electrochemical coatings
to date, meet these requirements [69]. Combining these useful
properties of ZIFs, with the previously mentioned advantages of
the electrochemical methods for obtaining MOFs as coatings, is
therefore an attractive proposition. Additionally there are over
150 reported ZIFs so far with a wide range of pore sizes and
properties which further increase their attractiveness as coatings
[70]. With a single exception, where a complicated indirect
bipolar electrodeposition modification was used to obtain Zn ZIF-
8 [71], no ZIFs have to date been synthesised as coatings
electrochemically.

Recently there has been increasing interest in MOFs, particu-
larly ZIFs, as materials for supercapacitor electrodes due to their
intrinsically high surface areas, which should be ideal for the
storage of charge in the electrical double layer. However due to the
low electrical conductivity of most MOFs, in all cases reported
hitherto conductive additives were used (such as graphene,
graphene oxide, polyaniline or carbon black) or the MOF was
pyrolysed to give porous carbons or metal oxides [26–32]. One
report combined ZIF-67 with polyaniline to obtain exceptionally
high areal capacitance values, however without the polymer
additive the value was three orders of magnitude lower [27]. The
much greater extent of integration between the MOF and the
electrode surface provided by the anodic growth method, as
compared to the dispersion of MOF crystals onto electrode
surfaces, should mitigate the need for conductive additives and
give rise to higher “pure” MOF based capacitance values.
o Co or Zn electrodes are immersed in a tributylmethylammonium methyl sulphate
idazolate linker. Heat is applied whilst deaerating the solution with N2(g) and the
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Here we present the successful electrochemical synthesis of five
ZIF coatings via the anodic method encompassing two metals, Zn
and Co, and four linkers, imidazole (IM), benzimidazole (bIM), 2-
methylimidazole (mIM) and 2-ethylimidazole (eIM). The identity
of the coatings is confirmed by powder X-ray diffraction (PXRD),
the morphology and quality of the ZIF coatings is analysed by SEM,
and the apparent Brunauer-Emmett-Teller (BET) surface area is
compared against literature values using N2(g) adsorption. We
demonstrate how careful control of the synthesis conditions
enables us to overcome the issue of the separation of the
nucleation and growth processes and that it is possible to obtain
topologies other than the most thermodynamically stable for a
given metal linker combination, increasing the potential of the
anodic method for generating a wide variety of thermally and
chemically stable porous ZIF coatings. Finally we demonstrate the
potential advantage of the anodic dissolution method for obtaining
MOF coatings for electrochemical applications, utilising the Co and
mIM example, by utilising them as supercapacitor electrodes.

2. Experimental

2.1. Materials

Co foil (99.9%) and Zn foil (99.9%) were obtained from Advent
Research Materials. IM (99%) was obtained from Acros Organics.
eIM (98%) and mIM (99%) were obtained from Aldrich. bIM (99%),
N,N-dimethylformamide (DMF) (99.7%) and tetraethylammonium
tetrafluoroborate (TEATFB) (99%) were obtained from Alfa Aesar.
Acetonitrile (HPLC grade) was obtained from Fisher Scientific.
Ultra-pure water (18.2 MV cm resistivity) was obtained from a
Milli-Q Millipore Direct 8 purification unit. Methanol (�99.8%),
tributylmethylammonium methyl sulphate (TBMAMS) (�95%) and
Whatman Grade 1 Qualitative Filter Paper were obtained from
Sigma Aldrich. All materials were used as received.

2.2. ZIF coating synthesis

ZIF coatings were synthesised by immersing two metal foil
electrodes (geometric area �16 cm2 in the case of Zn and 2 cm2 in
the case of Co) held approximately 2 cm apart into a heated, de-
aerated electrolyte solution containing linker. A PGSTAT302 N
potentiostat (Metrohm Autolab B.V., The Netherlands) was used to
apply a fixed potential difference of 2.5 V between the two metal
foil electrodes for a set time, generating a coating of the ZIF on the
anode surface (see Scheme 1). Table 1 contains the range of
conditions used to explore the synthesis of each of the five ZIF
coatings. The coated anodes were rinsed three times with
methanol post synthesis to remove unreacted linker and support-
ing electrolyte. Material is also formed in solution in many of these
syntheses but, as we are only interested in the coating, this will not
be considered further.
Table 1
Summary of synthesis parameters employed for the anodic growth of ZIF-4, ZIF-7, ZIF-

Electrodes Linker
c/mol dm�3

vol% DMF/v

ZIF-4 Zn IM
0.15–0.30

90–25/10–7

ZIF-7 Zn bIM
0.52

100/0 

ZIF-8 Zn mIM
3.00

0/100 

ZIF-14 Zn eIM
0.10–0.20

28/72 

ZIF-67 Co mIM
0.12–0.24

75/25 
2.3. Characterisation of ZIF coatings

The morphology and quality of the ZIF coatings were
characterised on the anode surface using a FEI Quanta 200
(Environmental) Scanning Electron Microscope (E)SEM. All images
were obtained at 20 kV, under low vacuum with a water vapour
pressure of 0.83 Torr and utilising both Secondary and Back-
scattered Electron Detectors.

The identities of the ZIF coatings were confirmed using a
PANalytical X’Pert X-ray diffractometer. Powder X-ray diffraction
(PXRD) patterns were obtained from ground samples of the
removed coatings using Cu-Ka radiation at 40 kV and 30 mA, in the
range 3–60 2u� (with a step size of 0.017 2u� and scan step time of
66 s) whilst spinning.

The N2 adsorption isotherms of the ZIF coatings were obtained
using a Micromeritics ASAP 2010 Volumetric Adsorption Analyser
at 77 K. Ground samples of the removed coatings were first stirred
in methanol overnight to remove excess linker and electrolyte from
the pores and then degassed overnight at 100 �C before analysis.
The BET multipoint method [72] was used on the adsorption
isotherm to calculate the apparent surface areas.

2.4. Capacitance measurements and calculations

All electrochemical measurements were performed in a
symmetrical two electrode configuration. Bare or ZIF-67 coated,
2 cm2 Co foil electrodes (1.2 cm2 active areas) and ZIF �zni, ZIF � 7,
ZIF � 8 or ZIF � 14, 2 cm2 Zn foil electrodes (1.2 cm 2 active areas)
were separated by Whatman Grade 1 Qualitative Filter Paper in
1 M TEATFB in acetonitrile.

Electrochemical Impedance Spectroscopy (EIS) was performed
over the frequency range 1 MHz � 200 mHz with a 10 mV RMS
perturbation voltage. The experimental Nyquist plot was fitted
with the standard Randles circuit.

Cyclic voltammetry was performed in the potential range 0 to
1.5 V, the step potential was 0.61 mV and the scan rate varied from
0.01 to 1 V s�1.

Areal capacitance was calculated from the cyclic voltammo-
grams using Eq. (1):

C ¼
ZE2

E1

i Eð ÞdE
E2 � E1ð ÞAv ð1Þ

Where E1 is the cathodic potential, E2 is the anodic potential, i(E) is
the instantaneous current, the integral gives the total power
obtained from the positive and negative sweeps in the cyclic
voltammogram, n is the scan rate and A is the active electrode area
of one electrode.

Galvanostatic charge-discharge was performed with the
charging and discharging current densities varied between
4.2 mA cm�2 to 40 mA cm�2 and �4.2 mA cm�2 to �40 mA cm�2
8, ZIF-14 and ZIF-67 coatings.

ol% H2O MTBAMS
c/mol dm�3

T/�C t/min

5 0.06–0.12 85 15–60

0.06 55 120

0.06 55 60

0.06–0.12 85 60

0.06–0.12 55–100 60–300



S.D. Worrall et al. / Electrochimica Acta 197 (2016) 228–240 231
respectively, whilst the voltage the system was charged to varied
from 1.5–0.25 V depending on the charging/discharging currents
used.

Areal Capacitance was calculated from the charge-discharge
curves using Eqs. (2a) and (2b):

C ¼
4 I
dV=dt

A
ð2aÞ

C ¼ 4
2I

Z t1

t0

V tð Þdt

V 02

A
ð2bÞ

Where I is the discharging current, dV/dt is the slope of the
discharge curve, A is the active electrode area of both electrodes, t1
is the time at the end of the discharge process, t0 is the time at the
beginning of the discharge process and V’ is the voltage range of
the discharge curve.

Areal energy density (W h cm�2) was calculated using Eq. (3):

U ¼
1
2CV

02

3600
ð3Þ

Where C is the areal capacitance calculated from Eq. (2) (F cm�2), V’
is the voltage range of the discharge curve (V) and the factor of
3600 converts W s cm�2 to W h cm �2.
Fig. 1. PXRD (A) confirms the identity of the coating as ZIF-4 with the reflections in the ex
(B) of the coherency of the coating of ZIF-4 on the anode and (C) the clear morphology
behaviour. (For interpretation of the references to colour in this figure legend, the read
Areal power density (W cm�2) was calculated using Eq. (4):

P ¼ U
t

ð4Þ

Where U is the areal energy density calculated using Eq. (3)
(W h cm�2) and t is the discharge time (hours).

3. Results and Discussion

3.1. Characterisation of ZIF electrode coatings and their syntheses

3.1.1. ZIF � 4
PXRD shows that, of the many ZIF structures reported in the

literature of Zn and IM, the coating material consists of ZIF-4
(Fig. 1A). ZIF-4 is unusual in that it is not truly a “zeolitic”
framework as no known zeolite adopts the same structure. The cag
topology that it adopts (named after the chemical formula,
CaGa2O4, of a mineral of the same structure) is instead found in
materials such as variscite [73]. That the coating is ZIF-4 is of
particular interest as it is not the densest, most thermodynamically
stable Zn and IM ZIF. The most stable Zn and IM ZIF is a nonporous
material with the zni topology (named after zinc iodide which
adopts the same structure) [74,75]. As proof of the relative
instability of the cag topology compared to the zni topology,
heating the dry powder samples at 125 �C for 30 minutes converted
the ZIF-4 coating into the non porous zni phase (Fig. 2A). It also
subsequently became apparent that over longer time scales at
perimental pattern (red) matching the predicted positions (black) [69]. SEM images
 of the constituent crystals. N2 adsorption (D) shows the expected type I isotherm
er is referred to the web version of this article.)



Fig. 2. PXRD (A) confirms the identity of the ZIF-4 degradation product as ZIF-zni with the reflections in the experimental pattern (red) matching the predicted positions
(black) [88]. (B) The evolution of the coating material from an amorphous precursor to crystalline ZIF-4 over time is shown. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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room temperature this conversion also occurred. Despite varying
the linker concentration, the DMF:water ratio in the solvent, the
supporting electrolyte concentration and reaction time, the only
crystalline material obtained as a coating was ZIF-4. Under some
conditions an amorphous phase was also formed. This demon-
strates the importance of optimising the reaction conditions in
obtaining MOF coatings. Whilst the main difference from previous
literature syntheses of anodic MOF coatings was the �50% higher
reaction temperature used in order to favour crystallisation [63]
Fig. 3. PXRD (A) confirms the identity of the coating as ZIF-7 with the reflections in the ex
of (B) the small crystal size and lack of a clear morphology of the constituent crystals and
expected type I isotherm behaviour. (For interpretation of the references to colour in t
the importance of reaction time, effectively metal cation concen-
tration, is also evident. When the Zn2+: IM ratio is too low (i.e. at
short reaction times) an amorphous phase is seen to form, with
ZIF-4 only being observed once the concentration of Zn2+ in
solution increases (Fig. 2B).

The coherency of the coating was assessed by SEM, utilising the
Z contrast provided by backscattered electrons with brighter
sections corresponding to areas with little or no coating. The
abundance of brighter areas observed at low magnification
perimental pattern (red) matching the predicted positions (black) [69]. SEM images
 (C) the coherency of the coating of ZIF-7 on the anode. N2 adsorption (D) shows the
his figure legend, the reader is referred to the web version of this article.)
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(Fig. 1B) demonstrates the poor quality of the coating in terms of
coverage and extent of intergrowth. However some individual
crystals were seen to adopt the orthorhombic dipyramidal crystal
shape, at higher magnification, therefore matching the ortho-
rhombic crystal system of variscite as seen in Fig. 1C.

The N2 adsorption isotherm shows the expected type I
behaviour and the low BET surface area of 75 m2g�1 is expected
for a material with only 0.2 nm pore openings (Fig. 1D) [9]. The
isotherm also clearly shows evidence of hysteresis, which to the
authors knowledge has only previously been observed at higher
pressures [76]. There appear to be no previous reports on the
adsorption behaviour of ZIF-4 over smaller pressure ranges; but
with such a small pore size it is not unreasonable that hysteresis
may occur at lower pressures as well.

3.1.2. ZIF � 7
PXRD confirms the identity of the coating material as ZIF � 7

(Fig. 3A). ZIF-7 adopts the sodalite (SOD) structure and is denser
and more thermodynamically stable than the other Zn and bIM
ZIF, ZIF-11, which adopts the RHO structure topology [69]. It is not
therefore surprising that ZIF-7, rather than ZIF-11, is obtained as
the coating although this represents a contrast from the
formation of the kinetically favoured ZIF-4, which was obtained
when using IM. The breadth of the diffraction peaks, causing the
overlap of the two most intense reflections at 2u = 7.2� and 7.7�, is
indicative of poor crystallinity or small particle size, sub 1 mm.
The SEM images indicate that poor crystallinity is the cause as
they show a highly irregular coating of crystals � 1 mm with no
Fig. 4. PXRD (A) confirms the identity of the coating as ZIF-8 with the reflections in the ex
of (B) the coherency of the coating of ZIF-8 over areas of many square micrometres on th
shows the expected type I isotherm behaviour. (For interpretation of the references to c
clear morphology (Fig. 3B). A lack of a clear morphology is not
uncommon in the MOF crystals obtained as anode coatings and,
whilst not ideal, is not necessarily prohibitive to potential
applications [19,61,66].

The probable reason for the lack of a clear morphology and
poor crystallinity, versus other MOF crystals obtained as anode
coatings [63], is the ca. 10 times greater concentration of linker
utilised in this synthesis. A much greater concentration of linker
was identified as one potential method for overcoming the
problem that the induction time causes for obtaining ZIF anode
coatings; a significantly higher linker concentration increasing
the probability of nucleation. Whilst raising the concentration of
benzimidazole was successful in obtaining ZIF-7 as a coating, the
side effect of increasing the nucleation rate in any crystallisation
is that smaller crystals, with no clear morphology, often form as is
observed to be the case here. The ZIF-7 coating is mostly coherent
with some brighter areas indicating that the coverage is not
complete (Fig. 3C), an issue for some potential applications but
not all.

The N2 adsorption isotherm shows the expected type I
behaviour and the calculated BET surface area of 358 m2g�1

matches well with literature values for material obtained by
standard solvothermal synthesis [77] (Fig. 3D); demonstrating that
despite the greater concentration of linker, the porosity of the
coating is not compromised. As was found for ZIF-4 (Fig. 1D),
the isotherm exhibits hysteresis but in this case this phenomenon
has been documented previously at the same pressures as used
here [78].
perimental pattern (red) matching the predicted positions (black)[69]. SEM images
e anode and (C) the clear morphology of the constituent crystals. N2 adsorption (D)
olour in this figure legend, the reader is referred to the web version of this article.)
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3.1.3. ZIF � 8
PXRD confirms that ZIF-8, which like ZIF-7 adopts the stable

SOD structure, was synthesised as the coating when using Zn and
mIM (Fig. 4A). This was expected as ZIF-8 is the only ZIF reported to
date obtained using Zn and mIM [79]. The comparatively narrower
peaks observed in the pattern, as compared to ZIF-7 (Fig. 3A),
indicates a higher quality of crystal.

Initially SEM appears to indicate that the crystals constituting
the coating are again small and lack clear morphology (Fig. 4B) but
upon closer inspection the expected rhombic dodecahedral
morphology of the ZIF-8 crystals can be observed (Fig. 4C). The
coherency of the coating also appears to be better than in the case
of ZIF-7, with no obvious brighter areas visible in the backscattered
electron SEM image (Fig. 4B). Some potential applications for MOF
coatings, such as acting as templates for electrodeposition [25],
require coatings of a high coherency making this observation of
interest for future work.

The N2 adsorption isotherm shows the expected type I
behaviour but the calculated BET surface area of 1730 m2g�1 is
around 10% lower than some of the literature values quoted for
material obtained by standard solvothermal synthesis [69]
(Fig. 4D). This is attributed to the even higher concentration of
linker, ca. 60 times greater, used in this synthesis as compared to
the anodic MOF coating synthesis in the literature [63]. This high
concentration was used in combination with an aqueous electro-
lyte which is unusual for ZIF synthesis. This was because previous
work in the literature demonstrated that a vast excess of linker in
aqueous solution gave a 80% yield of ZIF-8 after only 5 minutes
Fig. 5. PXRD (A) confirms the identity of the coating as ZIF-14 with the reflections in the e
of (B) the clear morphology of the constituent crystals and (C) the coherency of the coa
behaviour. (For interpretation of the references to colour in this figure legend, the read
reaction at room temperature [80]. This synthesis clearly overcame
the induction time problem and it is believed that by combining
this high linker concentration, with the additional application of
the mild temperature utilised in all successful anodic MOF coating
syntheses reported here, a ZIF-8 coating could be obtained and the
problems outlined in the literature in forming coherent coatings
would be overcome [68]. Whilst this combination was clearly
successful in obtaining the coating, the use of such a vast excess of
linker suggests that trapped linker may be responsible for the
lower than expected BET surface area. It is worth noting that the
aqueous, high linker concentration electrochemical ZIF-8 synthesis
appears to produce a superior product to the solvothermal method
it was based upon [80]. The calculated BET surface area is 60%
higher, the expected crystal morphology for ZIF-8 is more clearly
observed and the reflections in the PXRD are sharper [80].

3.1.4. ZIF � 14
PXRD shows that ZIF-14 was obtained as the coating when Zn

and eIM were used (Fig. 5A). ZIF-14 adopts the analcime (ANA)
zeolite structure, which is slightly denser and more thermody-
namically stable than the only other reported Zn and eIM structure
which adopts the RHO topology [81]. There is also evidence of a
second phase which is identified as ZnO [82], the presence of
which is logical considering the synthesis process is reliant upon
the anodic oxidation of Zn. Sharp reflections indicate, as seen with
ZIF-8, high crystallinity but this is not corroborated by SEM where
it is not clear whether the expected icositetrahedral crystal
morphology is observed or not [83] (Fig. 5B). Lower magnification
xperimental pattern (red) matching the predicted positions (black) [84]. SEM images
ting of ZIF-14 on the anode. N2 adsorption (D) shows the expected type I isotherm
er is referred to the web version of this article.)
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SEM images show that the coating is of a generally poor quality
(Fig. 5C). It is worth noting that, alongside the elevated reaction
temperature, the concentration of linker is key to obtaining the
desired material as the coating. When the Zn2+: eIM ratio was too
high (i.e. the starting linker concentration was too low) ZnO
became the predominant component of the coating, with ZIF-
14 only potentially present as a very minor phase.

The porosity of ZIF-14 has been the source of recent
controversy. The first paper to report on its synthesis found that
it had only a very modest surface area (� 29 m2g�1) [84] but very
recently a surface area 20 times greater (649–701 m2g�1) has
been reported [85]. It has been suggested that this large
discrepancy may be due to difficulty in fully evacuating ZIF-14,
requiring higher temperatures than expected, and the slow rate at
which N2(g) penetrates the pore structure [85]. The adsorption
isotherm we report here shows the type I behaviour indicative of
true microporosity and the calculated BET surface area of
598 m2g�1 matches far better with the more recently reported
higher values (649–701 m2g�1) and lends support to the theory
of ineffective degassing and slow analysis gas penetration
(Fig. 5D).

3.1.5. ZIF � 67
PXRD confirms that ZIF-67 was obtained as the coating when Co

and mIM were used (Fig. 6A). To the best of our knowledge this is
the first Co MOF to be obtained as a coating via the anodic method.
As the Co analogue of Zn ZIF-8, ZIF-67 also adopts the
thermodynamically stable SOD structure and displays a similarly
high calculated BET surface area of 1521 m2/g (Fig. 6B) which is
comparable to literature values [86].
Fig. 6. PXRD (A) confirms the identity of the coating as ZIF-67 with the reflections in
adsoprtion (B) shows the expected type I isotherm behaviour. SEM images of (C) the cohe
the constituent crystals. (For interpretation of the references to colour in this figure le
The coherency of the film appeared to be quite high (Fig. 6C)
and upon closer inspection the expected rhombic dodecahedral
morphology was observed (Fig. 6D)

Of the five coatings obtained ZIF-67 is potentially of most
interest as a supercapacitor electrode material, as its bandgap of
1.98 eV is markedly lower than those of the other ZIFs obtained as
coatings, such as ZIF-8 with a bandgap of 4.9 eV, which should give
the former material a reasonable conductivity compared to the
other ZIFs synthesised here [86]. EIS was performed, in order to
assess the resistance of each of the five electrochemically obtained
ZIF coatings.

3.2. Capacitance measurements

3.2.1. Electrochemical Impedance Spectroscopy
The Nyquist plot (Fig. 7A) demonstrates clearly that whilst the

solution resistance for all five ZIF coated electrodes is similar, as
evidenced by the real axis values at the high frequency intercept
for each material being within 1 V, that the charge transfer
resistance of at least the four ZIF coated Zn electrodes varies
significantly, as evidenced by the approximately 80 kV variation in
the real axis values at the low frequency intercept. The Nyquist plot
for ZIF-67 is only truly visible in the inset of Fig. 7A from which it is
apparent that the shape of the plot is significantly different to that
of the other ZIFs. The semi-circular shape of the plots for the four
ZIF coated Zn electrodes shows that these materials acted as
resistors over the frequency range used, with the width of the
semicircle proportional to the charge transfer resistance. In
contrast, the linear shape of the ZIF-67 plot makes clear that over
the frequency range used ZIF-67 acted as a capacitor, with the 45�
 the experimental pattern (red) matching the predicted positions (black) [9]. N2

rency of the coating of ZIF-67 on the anode and (D) the lack of a clear morphology in
gend, the reader is referred to the web version of this article.)



Fig. 7. Nyquist plots (A), (B) magnification of the low Z’ region of (A) and Bode phase plots (C) for the five ZIF coated electrodes.
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slope indicative of diffusion being a limiting process. Diffusion-
limited capacitance must be due to Faradaic processes which
means that any capacitance observed from ZIF-67 coated Co
electrodes would primarily be from pseudo-capacitance. Fitting
the data for each of the five ZIF coated electrodes with the standard
Randles circuit (with the addition of a Warburg impedance for ZIF-
67 to account for the pseudo-capacitance) gave the solution and
charge transfer resistances listed in Table 2. It should be noted that
prior to this analysis the ZIF-4 coating had degraded to ZIF � zni. As
stated the solution resistance values are very similar, within 1 V,
whilst the charge transfer resistance values vary over approxi-
mately an 80 kV range. As predicted ZIF-67 exhibits a significantly
lower charge transfer resistance than the other four ZIFs, between
approximately 200 and 4300 times.

The Bode phase plots (Fig. 7C) show a similar trend to the
Nyquist plots (Fig. 7A) with the four ZIF coated Zn electrodes
displaying one plot shape and the ZIF-67 coated Co electrode
showing another. The shape of the ZIF � 67 plot is characteristic of
a pseudo capacitor, with the initial plateau in the phase at � 45�

followed by a steady decrease in phase towards 0� with increasing
Table 2
Summary of the solution Rs and charge transfer RCT resistances
calculated from the fitting of EIS data.

Rs/V RCT/V

ZIF-zni 2.10 62600
ZIF-7 2.25 86100
ZIF-8 3.45 3740
ZIF-14 3.21 8320
ZIF-67 2.77 21
frequency. The frequency, which is proportional to discharge rate,
at which the phase begins to decrease towards 0� is a measure of
how quickly a supercapacitor electrode can operate and is
dependent on the resistance of the material being used. The more
resistive the material, the lower the frequency at which resistance
begins to dominate over capacitance and the lower the maximum
speed at which the supercapacitor can operate. The phase first
begins to decrease at around 1 Hz and then decreases more
rapidly after 1000 Hz, indicating the maximum speed at which
the ZIF-67 based supercapacitor can operate. The shape of the
plots for the four ZIF coated Zn electrodes show a different
behaviour with the phase starting close to 0� at low frequency,
before rising to plateau between 60� and 75� at medium
frequencies and then finally decreasing again at higher frequen-
cies. This behaviour can indicate corrosion of the underlying
metal electrode [87] and could make the ZIF coated Zn electrodes
unsuitable for supercapacitor electrodes, in addition to their high
charge transfer resistances. Cyclic voltammetry (results not
shown) is enough to confirm that Zn corrosion indeed occurs
in this electrolyte system even at modest potentials, with the
current from the oxidation making it impossible to make out any
small potential capacitive effect from the ZIF coatings. For both
these reasons only the ZIF-67 coated Co electrodes were taken
forward for further capacitance analysis

3.2.2. Cyclic Voltammetry
The capacitive response of bare Co electrodes (with no ZIF-

67 coating) was extensively analysed by cyclic voltammetry and as
expected a low capacitance was observed. Cyclic voltammetry
clearly demonstrates that the ZIF-67 coated Co electrodes possess a
significantly higher capacitance than bare Co electrodes. This is
attributed at least in part to the extensive double layer created by



Fig. 8. Cyclic voltammetry shows the increased capacitive response due to the ZIF-67 coating at 1 V s�1 (A), the variation with scan rate (B), the change in charge storage
mechanism from one assigned to double layer capacitance at lower potentials to a pseudo-capacitive process at higher potentials at 1 V s�1 (C) and the dependence of areal
capacitance on scan rate (D).
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the porous structure of ZIF-67 but primarily due to pseudo-
capacitance originating from redox processes occurring in the ZIF-
67 coating (Fig. 8A). The area inside the curve also increases with
scan rate as expected (Fig. 8B). The observed increase in the slope
of the cyclic voltammagrams with scan rate reflects that, despite
being markedly more conductive than the other ZIFs, ZIF-67 is still
a poor conductor. At higher potentials, particularly above 1 V, there
is an evident Faradaic process that contributes to the observed
capacititve effect (Fig. 8C). The process appears to be essentially
irreversible and its absence when bare Co electrodes are used
indicates that it is related to the ZIF-67 coating and not due to
species present in solution, for example dissolved oxygen.

Using cyclic voltammetry data the calculated capacitance varies
with scan rate as expected, with the maximum of 10.45 mF cm�2 at
0.01 V s�1 and 22% of that value retained at 1 V s�1 (Fig. 8D). This
value is greater than that of many MOF/graphene composites [26]
and seven times that of the highest reported value for “additive
free” MOFs [27]. This is a crucial distinction as whilst there are
many reports of much higher capacitances for various MOFs
(including ZIF-67) they all, without exception, use some form of
conductive additive to aid the performance of the material.

3.2.3. Galvanostatic charge � discharge
The capacitive response of ZIF-67 coated Co electrodes was also

assessed using galvanostatic charge-discharge measurements in
order to more accurately reflect the real working conditions of a
supercapacitor device. Charge-discharge behaviour was assessed
at a range of current densities over two orders of magnitude
(Fig. 9A). The observed shape of the charge curves, with an initial
sharp increase in potential with time followed by a slower increase
up to EMAX, reflects the fact that the device is resistive with the
effect becoming more pronounced at lower currents. This
corroborates well with the cyclic voltammetry (Fig. 8B) that
showed a marked increase in the slope of the cyclic voltammo-
grams with scan rate. Only the three highest current densities used
(4.17 mA cm�2, 2.92 mA cm�2 and 1.67 mA cm�2) were sufficient to
charge the device to 1.5 V, at the lower current densities of
0.42 mA cm�2, 0.29 mA cm�2, 0.17 mA cm�2and 0.04 mA cm�2 the
device was instead charged to 1.25 V, 0.75 V, 0.5 V and 0.25 V
respectively. This is attributed to the still somewhat poor
conductivity of ZIF-67 which for a given applied current limits
the charging potential. Fitting the discharge curves (Fig. 9B) to a
linear response gave fairly poor R2 values between 0.92 and 0.98.
This poor linearity is due to the pseudo-capacitive nature of the
material. The capacitance was calculated from the slope of the
discharge curves using Eq. (2a) to best compare with the literature.
However, to more accurately assess the capacitance it was also
calculated from the area under the discharge curve using Eq. (2b).
The maximum capacitance calculated from Eq. (2a) was 2.61 mF
cm�2 with a charging current density of 0.42 mA cm�2, at EMAX

equal to 1.0 V and a discharge time of 2.5 s. The corresponding
capacitance calculated from cyclic voltammetry (EMAX = 1.0 V and
Half cycle time = 2.5 s) was 4.09 mF cm�2 which compares
reasonably well with a difference of � 36%. The maximum areal
energy and power densities obtained of 0.42 mW h cm�2 and
2.08 mW cm�2 (at 0.42 mA cm�2 and 2.9 mA cm�2 respectively) are
comparable to those of recently reported MOF- graphene and
MOF-polyaniline composites [26,27]. Using Eq. (2b) the maximum
areal capacitance, energy density and power density decrease to
1.15 mF cm�2, 0.18 mW h cm�2 and 1.60 mW cm�2 respectively.



Fig. 9. Charge-discharge plots at a range of EMAX and current values (A), discharge curves (B) and a plot of C/CMAX against number of successive charge-discharge cycles (C).
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Finally the durability of the ZIF-67 based capacitance was
assessed by performing repeated charge-discharge measurements,
with EMAX = 0.5 V and i = 0.2 mA cm�2. Capacitance as a percentage
of maximum capacitance (C/CMAX) was still greater than 67% after
over 600 cycles (Fig. 9C). Whilst this cycling performance is worse
by an order of magnitude when compared to some MOF composite
materials [26,27] it is also superior by an order of magnitude to
others [33]. In order to assess the cause of the decrease in
capacitance with repeated cycling the used ZIF-67 coated Co
Fig.10. PXRD (A) indicates the presence of a small amount of crystalline ZIF-67 still prese
experimental pattern (red) matching the predicted positions (black) [9]. SEM images o
testing. (For interpretation of the references to colour in this figure legend, the reader
electrodes were characterised again by PXRD (Fig. 10A) and SEM
(Fig. 10B).

The PXRD showed that the crystalline ZIF-67 coating had
mostly degraded into an amorphous material but that there was
still a small amount of crystalline material present. The SEM
showed an increased prevalence of brighter areas (indicative of
exposed metal) compared to that seen prior to electrochemical
studies (Fig. 6C); demonstrating that not only was the coating
degraded but the amount of material present on the electrode had
nt in the coating after electrochemical testing with those peaks still observable in the
f (B) the coherency of the coating of ZIF-67 on the electrode after electrochemical

 is referred to the web version of this article.)
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also decreased. Conversely it did also show that there was still a
significant amount of material present, explaining how the
capacitive behaviour of ZIF-67 coated Co electrodes was still
retained after such extensive electrochemical testing.

4. Conclusions

Five ZIFs have been obtained as electrode coatings via the
anodic growth method, four of which had not previously been
obtained as coatings. These new coatings were obtained by tuning
the parameters of the anodic growth method in order to favour
coating growth over growth in solution. Surveying the reaction
conditions in each case demonstrates that generally longer
reaction times (a proxy for higher metal ion concentration),
higher linker concentration and higher reaction temperature all
favour coating growth over solution growth. Additionally these
reaction conditions have a strong influence on the crystallinity of
the coatings. These results also indicate that, for a given metal
and linker combination, it is possible to obtain topologies other
than the most thermodynamically stable, potentially expanding
the number of structures that could be obtained as coatings via
this method. Finally the potential of this additive free ZIF-
67 coated Co as a supercapacitor electrode has been demonstrat-
ed and shown to outperform all reported supercapacitor
materials based purely on MOFs and many MOF/graphene
composite materials.
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