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Abstract 

Hexaphenylbiadamantane-based microporous organic polymers (MOPs) were successfully synthesized by 

Suzuki coupling under mild conditions. The obtained MOPs show high surface area (891 m
2
 g

-1
), ultra-high 

thermal (less than 40% mass loss at temperatures up to 1000 
o
C) and chemical (no apparent decomposition in 

organic solvents for more than 7 days) stability, gas (H2, CO2, CH4) capture  capabilities and vapor (benzene, 

hexane) adsorption. These combined abilities render the synthesized MOPs an attractive candidate as thermo-

chemically stable adsorbents for practical use in gas storage and pollutant vapor adsorption. 
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1. Introduction  

Great attention has been paid to porous materials in recent years as a consequence of their potential in a 

wide range of applications, such as gas adsorption [1], separation [2], storage [3] and catalysis [4]. Porous 

polymers having tailor-made functionality and being constructed from simple molecular synthons are now a 

major focus in this field. Microporous organic polymers (MOPs), in particular, have been intensively studied 

in an attempt to exploit their inherent internal cavities, which give rise to high surface area in the range of 

>600 m
2
 g

-1 
[5-9].  

High thermochemical stability is important for MOPs if they are to be employed in practical applications 

such as gas storage and hazardous vapor adsorption. Traditionally porous covalent organic frameworks  have 

been reported to absorb a large amount of gas molecules especially CO2 [10], yet they lack physicochemical 

stability, thus it is difficult to deploy them for long time storage or repeated use. Many porous metal-organic 

frameworks have also been shown to be unstable under harsh conditions due to the weak coordination bonds 

that compromise their macromolecular construct[11]. Typically, stable microporosity requires the use of rigid 

building blocks for synthesizing MOPs. Porous aromatic framework-1, for instance, has been found be stable 

and reusable, having extensive lifetime due to the use of somewhat ‘strong’ aromatic compounds as building 

units [12].  

Adamantane, the simplest of the so-called diamondoid, is unique in that it is both rigid and virtually stress-

free [13]. Motivated by our recent success in the synthesis of a diamondoid framework, 3,3’,5,5’,7,7’-

hexakis(4-bromophenyl)-1,1'-biadamantane (HBPBA) [14] compromising a highly rigid biadamantane core 

surrounded by six phenyl groups, building macromolecular constructs from HBPBA would provide access to 

MOPs with desired stability. Herein we report the synthesis of highly stable MOPs containing 1,1’-

biadamantane core and flanking aromatic linkers, using Pd-catalyzed coupling polymerization, showing 

superior thermo-chemical stability and capabilities in gas or hazardous vapor adsorption. 

2. Experimental procedure 



3 

 

Hexakis (4-bromophenyl)-1,1’-biadamantane (e.g. 240 mg, 0.2mmol), diboronic acid (e.g. 3eq.), 

Pd(PPh3)4 (23 mg, 0.02mmol), NMP (dry, 20 mL) and 5 mL of a 2M aqueous Cs2CO3 solution were added 

into a 100 mL Schelenk flask and degassed by 3 freeze-thaw cycles. The mixture was then heated to 110 
o
C 

for 48h under Ar atmosphere. After cooling to room temperature, water was added and the solid polymer 

precipitate was collected by filtration. The residue was successively washed with water, acetone, chloroform 

and THF followed by extraction with THF (24 h) and chloroform (24h) and dried under vacuum, to obtain 

purified MOPs.  

Solid-state 
13

C CP/MAS NMR experiments were performed on a Bruker Avance III HD 400 spectrometer. 

Thermogravimetric analysis (TGA) was performed using STA-409 PC thermal analyzer system in the 

temperature range 30-1000 
o
C at heating rate of 10 

o
C/min under N2 atmosphere. FT-IR spectra were 

measured within the 4000-400 cm
-1

 region using a Nicolet 380 Fourier transform spectrometer with KBr 

pellets. The nitrogen adsorption-desorption isotherms were measured on 3H-2000PM2 analyzer. Prior to gas 

sorption measurements samples were degassed at 150 
o
C in vacuum for 12h. BET surface areas were 

determined in a P/P0 range from 0.05 to 0.1. The sorption of hydrogen, methane and carbon dioxide analyses 

was measured on 3H-2000PS2 apparatus at 77 K/1 bar (H2) and 273 K/1 bar (CH4 and CO2). The benzene and 

hexane vapor adsorption isotherms were measured on 3H-2000PW apparatus at 298K and relative pressure 

P/P0=0.8. Field emission scanning electron microscopy (SEM) was recorded using JSM-7001F with an 

acceleration voltage of 15.0 KV. 

3. Results and discussion 

Three HBPBA-based MOPs were prepared and the synthetic pathway is shown in Scheme 1. The synthesis 

of HBPBA-1, -2 and -3 was achieved by Suzuki polycondensation of HBPBA with 1,4-phenyldiboronic acid 

(1), 4,4’-biphenyldiboronic acid (2) and 4,4’-tolandiboronic acid (3), respectively, in a mixture of N-methyl-

2-pyrrolidinone (NMP) and water (20%), using Pd(PPh3)4 as catalyst. 
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Scheme 1. Synthetic pathway towards the MOP networks. (i) cat. Pd(PPh3)4, Cs2CO3, NMP/H2O (4/1), 

110 
o
C. 

The structures of the purified MOPs were analyzed by FT-IR, solid-state 
13

C CP/MAS NMR, and SEM. 

FT-IR spectra (Figure S1) revealed that the polycondensation reaction was successful. Analysis of the C-Br 

region suggests the occurrence of the phenyl-phenyl coupling as the characteristic band at 1079 cm
-1

 

belonging to bromine end-groups is hardly observed. The bands appeared at 2931 and 2855 cm
-1

 are 

characteristic vibrations of 1,1’-biadamantane (-CH2-),  band at 2211 cm
-1

 is attributed to C≡C stretching 

vibration for HBPBA-3, and peaks at 1605 and 1497 cm
-1

 belonging to the aromatic C=C stretching 

vibrations, are indicative of phenyl rings in HBPBA networks. NMR spectra (Figure 1) also confirmed the 

successful polycondensation. Detailed assignment of the resonances for particular carbon types in each 

compound is listed in Table S1.  
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Figure 1. 
13

C CP/MAS NMR spectra of the HBPBAs. 

To reveal the porous structure of HBPBAs, nitrogen (N2) sorption isotherms were measured at 77 K, as 

shown in Figure 2a. The steep uptake of N2 at very low relative pressures suggests the existence of abundant 

micropores within samples. Furthermore, increase in N2 adsorption above p/p0 = 0.9 may result from 

interparticulate porosity [15], as seen from cavities between agglomerated nanospheres  (Figure S2). The 

apparent BET surface area for HBPBA-1, -2 and -3, is calculated to be 742, 760 and 891 m
2
 g

-1
 respectively 

(Figure S3). Rather narrow pore size distributions (centered at 0.4-0.6 nm, Table S2)  were found for all 

HBPBAs, according to nonlocal density functional theory . 
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Figure 2. (a) N2 adsorption (filled) and desorption (hollow) isotherms of the MOPs at 77 K. (b) TGA plots of 

weight loss. 

All MOP samples possess extremely high thermal stability. TGA results (Figure 2b) show that the 

decomposition temperature is typically higher than 480 
o
C, with the maximum weight loss at about 570 

o
C. 

Surprisingly, the residual weights at 1000 
o
C for HBPBA-1, -2 and -3 were up to 58, 62, and 63wt% of its 

original weight, respectively, far more than any commonly known polymers would endure. Upon heating the 

samples at 300 
o
C in air for 2 h, we found no significant changes in structure (Figure S4) or N2 physisorption 

properties (Table S3), further confirming their excellent thermal-performance, superior to most MOPs (Table 

S4) [7, 16, 17]. In addition to thermal stability, HBPBAs show superior chemical stability. For instance, they 

cannot be dissolved in common solvents such as THF, CHCl3 and CHCl2, even in boiling NMP and DMF for 

more than 7 days. 

The combination of ultrahigh thermochemical stability, microporous nature and narrow pore sizes make the 

newly synthesized MOPs attractive candidates for gas-capture applications. We show in Figure 3 (a)-(c) the 

isothermal adsorption ability of the samples over gases of H2, CH4 and CO2, and it came out that the HBPBAs 

possess capabilities of gas uptake in the high range values (Table S5). The total amount of CO2 adsorbed by 

HBPBAs at 273K can reach >10wt% of sample mass, which is even better than some MOPs with ultrahigh 

surface area, such as PAF-1 (9.1 wt%, 5640 m
2
 g

-1
) [18] and COF-103 (7.6 wt%, 3530 m

2
 g

-1
) [19]. Similarly, 

the uptake of H2 and CH4 by HBPBAs are superior to other MOPs with comparable surface area. For instance, 

the HBPBAs adsorbed 1.11-1.16 wt% of H2 at 77 K versus 1.04 wt% by PIM-1 having surface area of 760 m
2
 

g
-1

,[20]  1.01 wt% by CMP-1, 834 m
2
 g

-1 
[21] and 1.12 wt% by CTC-COF, 1710 m

2
 g

-1 
[22]. Values of 1.38-
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1.76 wt% for CH4 uptakes at  273K further confirm HBPBAs are good at gas capture [23]. Figure 4 (d) shows 

the vapor uptake isotherms at 298K of the HBPBAs. They can absorb a large number of vapor molecules of 

benzene/hexane, with the largest values up to 359.57 mg g
-1

 (benzene) and 306.69 mg g
-1 

(hexane), which is 

superior/comparable to MOPs[24, 25] (Table S6). 

 

 

Figure 3. Adsorption isotherms of H2 (a) at 77 K, CO2 (b) and CH4 (c) at 273K, benzene (values offseted) and 

hexane vapor (d) at 298K.  

3. Conclusions 

MOPs containing a hexaphenylbiadamantane building unit were successfully synthesized by Suzuki 

coupling by simple heating the solvated monomers. Microporous HBPBAs show high specific surface areas 

with narrow pore sizes, extremely high thermal and chemical stability, good adsorption ability towards 
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hydrogen, methane, carbon dioxide, benzene and hexane vapor capture. These combined properties in our 

new MOPs open opportunities in gas storage and chemical pollutant collection in harsh environments. 
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Highlights 

 

 Microporous polymers containing adamantane core & aromatic linkers are 
synthesized.  

 The rigid polymers display ultra-high thermal and chemical stability. 
 Their adsorption capability towards gas and pollutant vapor is demonstrated. 
 

 

 




