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A high-dielectric constant (high-k) TiOx thin layer was fabricated on hydrogen-terminated diamond 

(H-diamond) surface by low temperature oxidation of a thin titanium layer in ambient air. The metallic 

titanium layer was deposited by sputter deposition. The dielectric constant of the resultant TiOx was 

calculated to be around 12. The capacitance density of the metal-oxide-semiconductor (MOS) based on 

the TiOx/H-diamond was as high as 0.75 µF/cm2 contributed from the high-k value and the very thin 

thickness of the TiOx layer. The leakage current was lower than 10-13 A at reverse biases and 10-7A at the 

forward bias of -2 V. The MOS field-effect transistor based on the high-k TiOx/H-diamond was 

demonstrated. The utilization of the high-k TiOx with a very thin thickness brought forward the features 

of an ideally low subthreshold swing slope of 65 mV per decade and improved drain current at low gate 

voltages. The advantages of the utilization high-k dielectric for diamond MOSFETs are anticipated.  
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The outstanding properties of diamond such as wide band gap energy (5.47 eV), high thermal 

conductivity, high breakdown field, and high carrier mobility offer the highest figure-of-merits for 

electronic devices applications. It is well known that both acceptor (boron: 0.37 eV) and donor 

(phosphorus: 0.57 eV) form deep levels in diamond, making the practical applications of diamond as a 

traditional semiconductor difficult.1 Fortunately, the unique surface conductivity of hydrogen-terminated 

diamond (H-diamond) provides a promising semiconductor channel for the development of metal-oxide 

semiconductor field effect transistors (MOSFETs) or metal Schottky-FETs capable of operation under a 

broad temperature range from 20 to 673 K.2-5 The improvement of the output of the MOSFETs has 

usually relied on the following two aspects up to now: the increase of the semiconductor channel 

conductivity and the optimization of the device configuration. The holes related to the H-diamond surface 

are usually located at the surface with a sheet density of 1012~1013 cm-2 after exposure to air.3 A hole 

density as high as 1014 cm-2 was also reported on H-diamond after NO2 adsorption or heating in NH3 

ambient.6,7 By using submicron gate length, the maximum drain current density of the MOSFET based on 

NO2 gas processed H-diamond surface reached as high as 1.3A/mm.7    

Alternatively, in order to further improve the drain current density and reduce the threshold voltage, 

the enhancement of the capacitive coupling between the gate and the semiconductor channel is also 

crucial. Up to now, in addition to the gate insulators such as SiO2 and AlN, 8,9 Al2O3 is the mostly utilized 

insulator on H-diamond surface for MOSFETs.5 As previously disclosed, a gate insulator with high 

dielectric constant (high-k) could control high carrier densities even at small electric fields.10 We have 

developed several high-k gate insulators on H-diamond surface for the fabrication of MOSFETs, such as 

Ta2O5, HfO2, and ZrO2/Al2O3.10-12 Although these insulators had k values higher than that of Al2O3, the 

effective capacitance are still needed to be improved to compete with a single Al2O3 layer. The reasons 

for the relatively small gate capacitances are (i) the insertion of a thin Al2O3 layer between diamond and 

the high-k oxides and (ii) the large thickness of the gate insulators. 

Therefore, the development of a thin high-k insulator directly contacting to the H-diamond surface is 

our ultimate target to achieve high-output diamond MOSFETs and low energy consumption. Titanium 
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dioxide (TiO2) is a promising candidate as a high-k gate insulator with a k value as high as 100.13 

Although atomic layer deposition (ALD) is considered to be a powerful strategy for the growth of TiO2 

thin films, the properties of the ALD-TiO2 thin films and the semiconductor surface are sensitive to the 

precursors.14 In addition, elevated temperatures (100-300oC) were generally required for the deposition of 

high-k TiO2 thin films by ALD.15 Reactive sputter-deposition of TiO2 usually makes damage to the 

H-diamond surface by oxygen species.16 In this work, we aim to develop high-k TiOx thin films by 

sputter-deposition of a Ti thin film directly on the H-diamond surface, subsequently followed by air 

oxidation at low temperatures.  

The 200nm-thick H-diamond epilayer used in this study was deposited on the Ib-type HPHT single 

crystalline diamond (100) substrate by a microwave plasma-enhanced chemical vapor deposition 

technique for 2 hours.17 Before the deposition, the diamond (100) substrate was boiled in a mixture 

solution of H2SO4 and HNO3 for 3 hours. The deposition temperatures for the H-diamond epilayer were 

900~940 ºC with H2 and CH4 flow rates of 500 and 0.5 sccm, respectively. The microwave power is 400 

W. The TiOx thin film was formed on diamond substrates by thermal oxidation of the Ti thin film in air. 

The Ti thin film with a nominal thickness around 10 nm was deposited by a radio-frequency sputter 

apparatus at 150 W with a base pressure of 10-8 Torr. During sputtering, Ar was used as the working gas 

at a pressure of 1 Pa. The as-deposited Ti thin film was confirmed to be metallic by a multimeter. After 

air oxidation, the TiOx film turned to be an insulator. To fabricate the TiOx/H-diamond MOSFETs, source 

and drain contacts were firstly deposited on the H-diamond surface with a mesa structure, which was 

achieved by the standard photolithography process. The source and drain electrodes were deposited by 

using an electron-beam evaporator, which were the multilayer of Au/Ti/Pd (200/20/10 nm). The Pd 

directly contacts to H-diamond surface. Assisted by a photolithography process, a Ti thin film (10 nm) 

was deposited on the gate area followed by air oxidation at 120oC to form the TiOx layer. Tungsten 

carbide was grown by sputter deposition at ambient substrate temperature (no intentional heating) as the 

gate electrode on the top of the TiOx layer.  

The composition and chemical bonding states of the TiOx phase were analyzed by X-ray 
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photoelectron spectroscopy (XPS) measurements (Thermo ESCAlab 250), by which the source was Al Kα 

X-radiation with an excitation energy of 15 keV and emission current of 6 mA. The analyzer pass energy 

was 20 eV with step of 0.1 eV and dwell time of 50 ms for the measurements. The current-voltage (I-V) 

characteristics of the TiOx/H-diamond MOS structure and the MOSFET was measured by a HP 4140B 

semiconductor test system and an electrical probe station. The capacitance-voltage (C-V) measurements 

were carried out by a Keithley 4200 semiconductor analyzer. The gate bias was swept from negative to 

positive followed by an opposite sweeping direction in the C-V measurements. The frequency was from 

10-100 kHz.  

In order to confirm the formation of TiOx, the chemical bonding states of the TiOx thin film was 

analyzed by XPS. The resultant XPS spectra were calibrated in binding energies by referring to the C 1s 

peak at 248.8 eV from surface contamination. 18 Figure 1 (a) shows the XPS spectrum corresponding to 

the Ti 2p region acquired from the TiOx sample. The peak position at 458.9 eV was identified, which can 

be attributed to the Ti4+ valence state.19 The peak at 464.7 eV corresponds to the Ti 2p1/2 of the Ti4+ 

valence state. No peak from the metallic Ti was observed from the TiOx layer, consistent with the 

electrical conductivity measurements. In order to further confirm the formation of TiOx, the O 1s 

spectrum was also collected, as shown in Fig.1 (b). The peak deconvolution analysis leads to two peaks, 

located at around 530.4 and 531.6 eV, respectively. The peak at 530.4 eV is due to the lattice oxygen 

bonded in TiOx, and the other one at 531.6 eV is from the non-lattice oxygen due to C-O bonding by air 

absorption. 19 The composition of the 15 nm-TiOx layer was calculated to be around TiO1.88 from the XPS 

spectra. The valance band spectra related to TiOx and H-diamond were also measured by XPS, for which 

three set of samples: pure H-diamond, 15 nm TiOx on oxygen-terminated diamond (O-diamond), and 5 

nm-TiOx/H-diamond, were utilized. The compositions of all the TiOx layers here were almost the same. 

The valance band maximum (VBM) and C 1s (C-C) of the H-diamond were 1.2 eV and 284.3 eV, 

respectively.21 For the 15 nm-TiOx on O-diamond, the VBM was around 3.1 eV. The core energy levels 

of C 1s and Ti 2p 3/2 for the sample of 5 nm-TiOx/H-diamond were 284.1 eV and 459.1 eV, respectively. 
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Therefore, the valance band offset (ΔEV) between TiOx and H-diamond can be estimated by the following 

expression20 

Δ𝐸! = (𝐸!" − 𝐸!"#)!!!"#$%&! − (𝐸!" − 𝐸!"#)!"#$ − Δ𝐸!"          (1) 

where (𝐸!" − 𝐸!"#)!!!"#$%&!  is the difference in binding energy between the C 1s and the VBM 

value of the H-diamond, (𝐸!" − 𝐸!"#)!"#$ is the difference in binding energy between the Ti 2p3/2 and 

the VBM value of the TiOx. The Δ𝐸!" is the difference in binding energy between the Ti 2p3/2 and C 1s 

of the sample 5nm-TiOx/H-diamond. The valence band offset was thus estimated to be around 2.6 eV for 

the TiOx/H-diamond junction. The microstructure of the TiOx/diamond was investigated by transmission 

electron microscopy (TEM), as shown in Fig.2. The thickness of the TiOx layer was measured to be 

around 15 nm. The composition of the cross-section of the TiOx/diamond was examined by energy 

dispersive X-ray analysis (EDX). The corresponding elements mapping was obtained by EDX, shown in 

in Fig. 2 (b) and (c), revealing the uniform distribution of the Ti and O elements within the TiOx film 

without diffusion into diamond. The high-resolution TEM (HRTEM) image in Fig. 2 (d) discloses that the 

TiOx thin film is amorphous. 

The TiOx/H-diamond MOSFET structure was illustrated in Fig. 3(a). The I-V characteristics of the 

TiOx/H-diamond MOS structure was obtained from the gate and source, as displayed in Fig. 3(b). The 

leakage current at reverse bias (positive gate voltage) is extremely low, beyond the detection limit (10-13 

A) of the measurement system. At forward bias (negative gate voltage), the leakage current is as low as 

10-7 A at -2 V. The low leakage current reveals the good dielectric properties of the TiOx fabricated by the 

present low-temperature method. The electrical transport at forward bias was well fitted by 

Fowler-Nordheim field emission tunneling mechanism: 𝐼 ∝ 𝑉! exp !
!
+ 𝑎   21, as shown in Fig. 3(c). 

This suggests the holes tunneling process from diamond through the TiOx insulator at high electric fields 

is the main leakage mechanism.  

Figure 4 (a) illustrates the C-V characteristics of the TiOx/H-diamond MOS structure, which were 

measured at different frequencies. The depletion and accumulation of charge depending on the gate bias 
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are obviously observed, revealing a typical MOS structure behavior. The gate capacitance shows little 

dependence on frequency or little frequency dispersion at the frequency range from 10-100k Hz. The 

maximum gate capacitance density in the accumulation region reaches as high as 0.75 µF·cm-2, which is 

more than twice of our previous results on high-k/H-diamond MOS structures based on ZrO2 and HfO2 

11,12.  The capacitance density is close to those of electrolyte gated FET.22 The dielectric constant of the 

fabricated TiOx was estimated to be around 12. The C-V characteristics suggest that the gate capacitance 

at 0 V is at the minimum, similar to that in the depletion mode. Therefore, there is little charge at 0 V and 

the MOSFETs based on the TiOx/H-diamond should exhibit normally-off feature. The normally-off 

feature is possibly due to the existence of fixed positive charges in the TiOx layer. The C-V 

characteristics was also measured by sweeping the gate bias from positive to negative direction followed 

by an opposite direction sweeping, as shown in Fig. 4 (b). There is almost no hysteresis or voltage shift 

during the gate biases sweeping, suggesting little charges trapped at the TiOx/H-diamond interface or in 

the TiOx thin film due to carriers injection.  

The dependence of the drain current density on the drain voltage (IDS-VDS) at different gate voltages 

for the TiOx/H-diamond MOSFET with a gate length of 40 µm and width of 200 µm, is illustrated in Fig. 

5 (a). The gate voltage (VGS) is varied from 0 to -2 V with a step of -0.5 V. The p-type channel 

characteristics is expectedly revealed in the TiOx/H-diamond MOSFET. The maximum IDS (IDSmax) for the 

gate length 40 µm is 2.8 mA·mm-1 at VGS= -2 V and increased to be 5.1 mA·mm-1 with the gate length 

decreased to 30 µm. The IDSmax values are larger than those obtained on the 

SD-LaAlO3/ALD-Al2O3/H-diamond MOSFETs with the same device dimensions20. We note that higher 

drain current density was achieved even at smaller gate voltages, i.e. VGS=-2 V here, compared to VGS=-8 

V for the SD-LaAlO3/ALD-Al2O3/H-diamond MOSFETs20. The ON resistance (RON), composed of 

source/drain contact resistance, channel resistance beneath the oxide, and resistance between source/drain 

and gate, was calculated from the linear regime in Fig. 5(a), which was around 218 Ω·mm at VGS=-2V. 

This value is also lower than those obtained from the SD-LaAlO3/ALD-Al2O3/H-diamond MOSFETs 

with a similar gate length of 40 µm 20. The TiOx/H-diamond MOSFET is basically operated in 
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enhancement mode. The threshold voltage calculated to be around -0.7 V by plotting the curve of - 𝐼!" 

vs. VGS. The drain on/off current ratio at the VDS of -2.5 V is larger than 108, which is desirable for the 

practical logic circuit applications. The effective hole mobility was calculated to be around 88 cm2/V·s.  

The subthreshold swing (SS) is one of the key parameters to determine the power consumption for 

the integrated circuit applications. A low SS value is preferred to minimize the power consumption. As 

revealed in Fig. 5(b), the SS value was calculated to be 65 mV per decade in the depletion region at a 

drain voltage of -2.5 V. The SS value of the 15nm-TiOx/H-diamond is much lower than that of 25 

nm-Al2O3/H-diamond (120 mV per decade). Typically, the subthreshold swing relates to the 

semiconductor and insulator through the following expression23 

𝑆𝑆 = 1+ !!!!!"
!!"

!"
!
ln(10)                                                 (2) 

In order to reduce the SS value, the gate oxide insulator Cox should be increased and the capacitance Cs 

associated with the semiconductor channel and Cit related to the interface defects should be decreased. In 

the ideal case, the minimum SS value is around 60 mV per decade at room temperature. Therefore, the SS 

value of the TiOx/H-diamond MOSFET is very low, promising for low-power consumption integrated 

circuits. According to eq. (2), (Cs+Cit)/Cox was estimated to be around 0.23, from which the (Cs +Cit) was 

estimated to be around 16 pF. If the semiconductor capacitance is neglibile in the deep subthreshold 

region, the interface states density Dit was evaluated to be around 1012eV-1cm-2 .  

Up to now, direct deposition of high-k Ta2O5 was only conducted on oxygen-terminated boron-doped 

p-type diamond by our group initially10. However, in order to supress the large leakage current, the 

thickness of the Ta2O5 film was as high as 118 nm, leading to an effectively low capacitance density. 

Hydrogenated diamond surface displays negative electronic affinity, which enables the wide selection of 

the high-k oxides as the gate of diamond MOSFETs. Although the TiOx in the present work has a lower 

bandgap than diamond, the leakage current is quite low. The low temperature oxidation process in air has 

little damage on the H-diamond surface. Compared to previous high-k oxides/H-diamond MOS structures, 

there is no insertion layer between the high-k TiOx and diamond. This greatly benefits to the achievement 
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of the effectively high capacitance density. As a result, the control of high channel density at low fields 

becomes possible, and the subthreshold swing slope is ideally low. These features provide promising 

avenue for the development of low-power consumption diamond integrated circuits.  

In summary, the direct assembly of thin high-k TiOx layer on H-diamond was achieved at low 

temperature with a value of around 12. Due to the thin thickness of the TiOx layer, a high capacitance 

density of 0.75 µF·cm-2 was obtained. By using the TiOx layer as the gate insulator, the MOSFET based 

on H-diamond was demonstrated with enhancement mode. The resultant TiOx/H-diamond MOSFET 

revealed a relatively low ON-resistance and high on/off current ratio. Benefited from the high-k value and 

the thin thickness of TiOx, an ideally low subthreshold swing slope was achieved. In addition, the trap 

density of the TiOx/H-diamond was rather low. The k-value may be increased when the crystallinity of the 

TiOx was improved by increasing the annealing temperature.  
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Figure captions 

 

FIG. 1. XPS spectra of the 15nm-TiOx revealing the chemical states of (a) Ti 2p and (b) O 1s.   

 

FIG.2 (a) Cross-section TEM image of the TiOx/diamond. The top showing the corresponding materials 

in the image. (b), (c) EDX elemental mapping of O and Ti, respectively, (d) HRTEM image of the 

TiOx/diamond. 

 

FIG. 3. Electrical properties of the MOS structure based on TiOx/H-diamond. (a) Schematic device 

geometry, (b) current-voltage characteristics, and (c) fitting of the IV at forward biases by tunneling 

mechanism. 

 

FIG.4. (a) Capacitance voltage characteristics at different frequencies and (b) capacitance-voltage 

characteristics for different bias sweeping directions. 

 

FIG. 5. (a) Drain current versus drain voltage at different gate biases and (b) drain current dependence on 

gate voltage at a drain voltage of -1 V.  
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FIG. 5. (a) Drain current versus drain voltage at different gate biases and (b) drain current dependence on 

gate voltage at a drain voltage of -1 V.  
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Figure 4 
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Figure 5 

 

 

 

 

 

 

 

 

 


