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A new concept of nanoroporous metal organic framework 
particles stabilising emulsions was investigated. The copper 
benzenetricarboxylate MOF particles adsorbed at oil/water 
interface play an exceptional function in stabilising both oil-
in-water and water-in-oil emulsions.  10 

 Pickering emulsion has many important applications in our 
daily lives, involving food, pharmaceutics, cosmetics, oil well 
drilling fluids and fuel conversion.1 This interesting phenomenon 
is achieved by adsorption of small size solid particles at the 
interface of immiscible liquid phases. To stabilise emulsion 15 

effectively, the solid particles are required to have hydrophilic 
and hydrophobic characteristics similar to surfactants, are able to 
be wetted by both oil and aqueous phases with an ideal contact 
angle ~ 90o at the interface.2 Adsorption of the solid particles at 
the interface is irreversible. Desorption requires much higher 20 

energy than the thermal energy at ambient temperature.3 This 
differs solid particle stabilisers from surfactants used in emulsion 
stabilisation. A number of micro/nanoparticles such as silica, 
bacteria, proteins, gold nanoparticles, clay, metal oxides, carbon 
black and latex colloids, have been used for stabilising 25 

emulsions.1e,4 For these particles, to achieve the desired 
emulsions, surface modification is the prerequisite. We herein 
report a new approach to use nanoporous metal organic 
framework (MOF) particles to stabilise oil-water emulsions. 
 Different from the other solids, nanoporous MOFs are a new 30 

class of crystalline materials, consisting of organic ligands and 
inorganic metal cations, have a high surface area ~ 1000 - 7000 
m2 g-1. Their diverse coordination and organic functionalities give 
MOFs the tonable shape and size of nanopores and unique 
hydrophilic and hydrophobic features. The guest molecules 35 

adsorbed in the pores to some extent provide MOFs with an 
‘additional’ functionality. These characteristics have MOFs found 
a wide potential applications, for example hydrogen storage, 
anticancer drug delivery, catalytic reaction and electrochemical 
applications.5 In making new microstructure objects through 40 

Pickering emulsion, MOFs will have distinct advantages over 
other solids currently in use. To our best knowledge, relevant 
study is rare at this time. 
 In this study, the nanoporous MOF nanoparticles were 
prepared at ambient temperature using a simply stirring reaction 45 

method (see ESI), which could be scaled up more easily than a  
hydrothermal method. 1,3,5-benzenetricarboxylic acids (H3BTC) 
reacted with copper acetates in an ethanol/water medium, 

yielding a turquoise blue coloured MOF slurry (Cu-BTC). The 
obtained Cu-BTC particles have an effective diameter ca ~ 291 50 

nm with a polydispersity of 0.113 and a zeta potential of - 0.3 
mV. The X-ray diffraction pattern of Cu-BTC particles were in a 
good agreement with that of single crystals produced by the 
hydrothermal method (Fig. S1, ESI). 
 The nanoporous Cu-BTC MOFs (HKUST-16) structure was 55 

illustrated in Fig. S2 (ESI). The square-shaped pores accounts for 
around 40% of the material porosity, which are accessible to 
many interesting molecules such as hydrogen, bioactive nitric 
oxide, pyridine, 4-(methylamino) pyridine.5f,7 Furthermore, the 
hybrid structure built by coordination of copper cations and 60 

benzentricarboxylate endows the Cu-BTC particles with a 
combined hydrophilic and lipophilic feature that is necessary for 
solid particles to stabilise the water-in-oil or the oil-in-water 
dispersion system. Next concern was centred on the feasibility of 
MOF particles in stabilising emulsions without further surface 65 

modification.   
 The aqueous dispersion of the Cu-BTC nanoparticles was used 
as the aqueous phase for the subsequent preparation of oil-water 
emulsions. In this study, the emulsions type was defined by a 
lower volume ratio of the disperse phase to the continuous phase 70 

in favour of the formation of disperse droplets. Both types of 
emulsions (oil-in-water and water-in-oil) were successfully 
prepared using a rotor-stator high speed homogenization method 
(Fig. 1a and e). In the water-in-oil emulsion (Fig. 1a), the 
aqueous droplets were heavier than the oil and therefore creamed 75 

down to the bottom of the container. After a few hours, a 
translucent and colourless oil layer was formed at the top. In 
contrast, the oil droplets in the oil-in-water emulsion (Fig. 1e) 
were lighter than the aqueous phase and thus creamed up as the 
blue layer. Underneath was a clear aqueous phase without the 80 

precipitated particles at the bottom. It suggests all of the Cu-BTC 
nanoparticles being virtually adsorbed at the oil-water interface. 
These emulsions were stable in a sealed container without the 
droplet appearance changing.   
 To study the droplet appearance and the interactions of the 85 

droplet-droplet and the droplets to the continuous phase, optical 
microscopic method was adopted to examine a single layer of the 
droplets. Obviously, the droplets in both types of emulsions 
clearly identified themselves from the continuous phase. The 
aqueous droplets dispersed in the oil gradually lost their inner 90 

volume, caused by the evaporation of aqueous phase, led the 
surface to become wrinkled with a clearly visible skin/shell as 
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Fig. 2. Oil-in-water emulsions were produced by a rotating membrane emulsification method. (a) droplet formation process on the surface of a
at 300 rpm, recorded by a high speed camera at 3000 frame per second; (b) an emulsion sample with top layer: oil dr

and bottom layer: excess particles; (c) the formed oil droplets in uniform size of 200

Fig. 3. Interfacial tension profile of
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applications in the controlled drug delivery, 
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