
NT2 Derived Neuronal and Astrocytic Network Signalling
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Abstract

A major focus of stem cell research is the generation of neurons that may then be implanted to treat neurodegenerative
diseases. However, a picture is emerging where astrocytes are partners to neurons in sustaining and modulating brain
function. We therefore investigated the functional properties of NT2 derived astrocytes and neurons using
electrophysiological and calcium imaging approaches. NT2 neurons (NT2Ns) expressed sodium dependent action
potentials, as well as responses to depolarisation and the neurotransmitter glutamate. NT2Ns exhibited spontaneous and
coordinated calcium elevations in clusters and in extended processes, indicating local and long distance signalling.
Tetrodotoxin sensitive network activity could also be evoked by electrical stimulation. Similarly, NT2 astrocytes (NT2As)
exhibited morphology and functional properties consistent with this glial cell type. NT2As responded to neuronal activity
and to exogenously applied neurotransmitters with calcium elevations, and in contrast to neurons, also exhibited
spontaneous rhythmic calcium oscillations. NT2As also generated propagating calcium waves that were gap junction and
purinergic signalling dependent. Our results show that NT2 derived astrocytes exhibit appropriate functionality and that
NT2N networks interact with NT2A networks in co-culture. These findings underline the utility of such cultures to investigate
human brain cell type signalling under controlled conditions. Furthermore, since stem cell derived neuron function and
survival is of great importance therapeutically, our findings suggest that the presence of complementary astrocytes may be
valuable in supporting stem cell derived neuronal networks. Indeed, this also supports the intriguing possibility of selective
therapeutic replacement of astrocytes in diseases where these cells are either lost or lose functionality.
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Introduction

There is currently great scientific and medical interest in the

potential of tissue grown from stem cells. To control stem cell

differentiation to produce specific tissues would enable the grafting

and possible replacement of diseased and damaged organs. In

addition, it would also present opportunities for generating model

systems for drug screening and toxicological testing which would

be expected to be more relevant to human outcomes than animal

based tissue preparations.

The NTERA-2 (NT2) cell line is derived from a human male

germ cell carcinoma. It is one of the best documented stem cell

lines, as it can be differentiated into neuronal cells (NT2N) by

retinoic acid treatment [1,2,3,4]. NT2.D1 cells are similar to the

murine P19 embryocarcinoma cell line [5]. P19 cells can also be

differentiated using RA to produce neuronal cells which appear

within the first few days of treatment and astrocytes by day 10.

Both cells have the advantage that the cells are immortal thus

allowing for the creation of almost unlimited amounts of material

for differentiation. These cells are easy to grow and maintain in the

undifferentiated state but they can also be efficiently induced to

differentiate by simple manipulation of the culture conditions.

However, as the NT2.D1 cells are human in origin they have

a distinct advantage over the murine P19 cells for studying aspects

of human neuronal systems and also regarding therapeutic

potential, to the point where they have been used in human

neural transplantation trials in patients following stroke [6].

Characterisation of NT2N cells through immunocytochemical

staining has revealed their neuronal features, including expression

of MAP2, the dendritic filament marker. Within the NT2N

population, heterogenous sub-populations are also produced;

indeed, putative dopaminergic cells have been identified by

immunocytochemical or RT-PCR identification of tyrosine

hydroxylase, cholinergic neurons by cholineacetyltransferase,

GABAergic neurons by GAD staining and glutamatergic neurons

by staining for vesicular glutamate transporters [7]. Great focus

has also been placed on defining the electrophysiological

properties of these cells, since functional neurons must also have

the ability to generate action potentials and sustain neurotrans-

mitter release, as well as respond to neurotransmitters. These are

therefore prerequisites for NT2N to be considered functional

neurons. Crucially, NT2N cells have been found to generate

action potentials on depolarisation [8,9], and they also express the

high voltage activated calcium channel currents pharmacologically

classified as L, N, P/Q and R [10] and calcium activated BK
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channels, which are involved in neuronal hyperpolarisation

following action potential firing [11]. Receptors which would

detect different released neurotransmitters are also present on

NT2Ns including NMDA receptors [12], nicotinic acetylcholine

receptors [13] and GABAA receptors [14].

The potential competence of stem cell derived neurons to

integrate in vivo depends on the ability to form synaptic

connections with each other and with native neuronal networks.

Importantly, functional synapses have been identified in NT2N

cultures [8] and spontaneous excitatory and inhibitory currents

likely to correspond with glutamatergic excitatory postsynaptic

currents and GABAergic inhibitory postsynaptic currents have

also been recorded [15]. Furthermore, when grown on micro-

electrode arrays, NT2N cells also form functional networks which

exhibit spontaneous activity, although the activity was sparser and

less synchronised than primary cultures of rat cortical neurons

[6,16].

A notable revolution that has occurred within neuroscience in

the past 10 years involves the realisation of the role of glial cells in

brain function, where astrocytes are active partners in synaptic

transmission. Previously, astrocytes that ensheath synapses in the

brain were considered to primarily conduct housekeeping func-

tions such as glutamate uptake and potassium balance [17]. The

current hypothesis, encapsulated by the concept of the tripartite

synapse [18] posits that astrocytes sense neuronal synaptic

transmitter release and in turn release gliotransmitters which can

feedback to modulate neuronal activity.

These newly realised astrocytic roles in the brain have

fundamental implications within the context of stem cell derived

neuronal networks. If the aim of stem cell neuroscience is to

generate functional neuronal networks that behave as networks do

in the brain, then it becomes clear that we must include and

understand all the cellular components that comprise that

network, and which are important to support synaptic integrity

and cell to cell signalling. A prominent overlooked cell in this

regard is the astrocyte.

Following injection into mouse brains, NT2 cells differentiate

into neuronal and glial cell types [19]. However, despite this very

little is known about the functional properties or potential of

NT2A cells. It is however, known that NT2N cells generally

survive for 2–3 months in normal media [4], whereas mixed

NT2.N/A cultures typically survive for 6–9 months, clearly

demonstrating the importance of neuronal-astrocytic interactions

for neuronal maintenance [4,20,21]. Growing NT2N cells on

astrocytes is also known to be favourable to synapse formation [8].

It has also been found that NT2A cells are coupled via connexin

43 containing gap junctions [20]. In addition, in our laboratory we

have used the NT2N/NT2A co-culture system, to demonstrate

that astrocytes confer significantly increased neuronal resilience to

chemical toxicity and that neurons and astrocytes display

markedly differential sensitivities to a number of CNS toxins

[22,23]. Such findings therefore provide evidence of the distinct

functionality of NT2A cells.

In this study, we therefore utilised culture methods developed to

produce pure, and mixed cultures of NT2N and NT2A cells to

investigate the functional properties of NT2A cells, the function of

NT2N networks in the presence of NT2A cells and interactions of

the astrocyte network with the neuronal network. We found that

NT2 cells differentiate into distinct cell types in culture with

functional characteristics consistent with their neuronal and

astrocytic cellular classification. We also found that neuronal

networks signal to astrocytes, and that astrocytic networks

communicate via gap junction mediated and gliotransmitter

signalling. These findings illustrate that stem cell derived NT2A

cells possess all of the tested functional competencies of in vivo

astrocytes.

Results

To investigate the functional characteristics of NT2 derived

astrocytes and neurons. NT2 stem cells were differentiated as

previously described [24]. In their undifferentiated state stem cells

displayed their characteristic amorphous structure devoid of

processes (Fig. 1A). Following treatment with retinoic acid, two

cell populations were generated in culture. NT2 Astrocytes

(NT2A) preferentially occupied the base of the culture dishes

forming planar associations, whilst NT2 neurons (NT2N) formed

clusters above (Fig. 1B). Filling of single cells via a patch pipette

with Alexa 488 further revealed distinct morphological character-

istics, with neurons having small diameter somas (8.260.41 mm,

n=15) and long processes (.100 mm), whilst astrocytes had somas

of diameter 18.861.2 mm (n= 12) and no visible elongated

processes. (Fig. 1B, C). Patch clamp recordings revealed that

NT2 neurons and astrocytes had distinct electrophysiological

properties and expressed different voltage dependent currents.

NT2Ns had an input resistance of 65611.2 MV (n = 5). In voltage

clamp recording mode they exhibited a fast inward transient

current on depolarisation followed by an outward current that had

inactivating and sustained components (Fig. 1D). The current –

voltage relationship of the NT2 neurons revealed an outwardly

rectifying current with little inward current to hyperpolarisation.

In contrast, NT2As had an input resistance of 30.766.6 (n = 5,

P,0.05) MV. NT2As displayed no transient currents, and large

currents were elicited in depolarising and hyperpolarising direc-

tions giving a linear current-voltage relationship (Fig. 1E).

In neurons, electrical activity is transduced to a biochemical

signal by the elevation of calcium entry via voltage gated calcium

channels. Neurotransmitter receptor activation is also coupled to

calcium increases. Although astrocytes are electrically non-excit-

able, their excitability is defined by variations in intracellular

calcium [17]. We therefore used a calcium imaging approach to

probe functional signalling in the NT2 derived cells. Cultures were

loaded with the cell permeable calcium indicator fluo-4, and

activity imaged over time (Fig. 2). Increasing extracellular

potassium concentration to depolarise neurons and astrocytes

induced calcium elevations in both neurons (28.265.34, n = 4

fields) and astrocytes (Fig. 2A)(35.0166.05, n = 4 fields) with

a greater calcium increase in neurons (31.6862.67%) compared to

astrocytes (13.8461.04, P,0.0005), consistent with depolarisation

induced activation of voltage gated calcium channels.

The main neurotransmitter in the brain mediating chemical

signalling between neurons and from neurons to astrocytes is the

amino acid glutamate, and the main transmitter molecule

implicated in astrocytic signalling is ATP [25]. Indeed, application

of 100 mM glutamate resulted in calcium elevations in neurons

(31.66622.12, n= 6) and astrocytes (50.55614.41) with similar

magnitude fluorescence increases (neurons: 34.2261.98% astro-

cytes: 25.2661.11 Fig. 2B). Application of ATP also elicited

calcium elevations in both neurons and astrocytes (Fig. 2C)

however with a greater magnitude in astrocytes (Fig. 2C, neurons

5.6360.69%, astrocytes 30.2361.29%, n= 4). ATP induced

calcium elevations were inhibited by the intracellular store

depletor thapsigargin (neurons: 1.2760.35%, astrocytes:

1.1460.84%, P,0.0005) consistent with these being the main

calcium stores for signalling in astrocytes.

Neurons and astrocytes studied in in vivo and in ex vivo brain slice

preparations exhibit spontaneous activity [26,27,28]. Conducting

time lapse imaging over a 10 minute period without stimulation

NT2-Astrocyte-Neuron Networks
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revealed spontaneous calcium activity in neurons (16.0166.28)

and astrocytes (26.81613.51, n= 5)(Fig. 3.) showing that in the

absence of external input the NT2 cultures are capable of

generating activity. The features of the observed activity were

different between the cell types. Neurons within clusters displayed

sporadic activity which could be synchronised with other neurons

in the cluster (Fig. 3A). Activity could also be seen to propagate

along neuronal processes to distant clusters. Astrocytes however,

often exhibited regular ‘‘pacemaker’’ type oscillatory activity

(Fig. 3B). The mean inter-event interval of neuronal and astrocytic

activity was 63.1569.37 s (n = 54 neurons, 3 preparations) and

93.166.3 s (n = 108 astrocytes, 4 preparations). The rhythmicity

of astrocytic oscillations compared to neuronal activity was

revealed by autocorrelation analysis (Fig. 3C).

Acute application of glutamate and ATP (Fig. 2) demonstrated

that NT2N and NT2A cell types expressed functional responses to

the two transmitters. To determine whether these transmitters

could participitate potentially in longer term signalling, such as

spontaneous oscillations seen in Fig. 3, the effects of transmitters

were determined over longer periods (Fig. 4). Application of

glutamate elicited transient calcium elevations as previously

observed, which were sustained in neurons (Fig. 4A) but transient

in astrocytes. Glutamate did not affect the number of astrocytes

displaying repetitive calcium oscillatory activity (control:

3.362.20, glutamate 3.3360.67, n = 3,)(Fig. 4A,C), but reduced

neuronal oscillatory activity (control:261, glutamate: 060, n= 3)

seemingly abrogating network activity.

Similarly, sustained ATP stimulation of neurons did not induce

oscillatory activity (control: 0.3360.33, ATP: 1.3360.88, n= 3),

whilst ATP led to the generation of regular calcium oscillations in

astrocytes (control: 361.52, ATP: 11.362.9, n= 3, P,0.05)

The NT2 neurons in our cultures exhibited voltage gated

sodium currents (Fig. 1), and individual cells exhibited spontane-

ous calcium elevations. The step depolarisation of NT2 neurons in

current clamp mode elicited transient spikes (13.761.2 mV, n= 4)

which were blocked by TTX, identifying them as Na+ channel

dependent action potentials. A greater amplitude than this might

be expected to be required to sustain synaptic transmission,

therefore to determine whether the NT2 neurons were capable of

signalling synaptically during electrical activity in the NT2

networks, we stimulated with a bipolar electrode. Stimulation

resulted in calcium elevations in neuronal cell bodies and processes

(Fig. 5) throughout the observed network (11.7162.41%, n= 5).

These were blocked in the presence of TTX (1.9460.62%,

P,0.0005) indicating that signal propagation throughout the

neuronal network is indeed action potential dependent. Astrocytic

calcium elevations in the vicinity of the neurons were also evoked

by electrical stimulation (15.6961.46%, n= 5), and these were

blocked by TTX (to 2.8960.57%, P,0.0005). Since astrocytes do

not express TTX sensitive currents this is consistent with

electrically induced neuronal neurotransmitter release activating

Figure 1. Distinct functional properties of NT2 neurons and astrocytes. A. DIC image of undifferentiated NT2 stem cells displaying
undifferentiated morphology. B. Leftmost panel shows DIC image of a patched neuron in a cluster. Central image shows the same cell excited at
488 nm to reveal neuronal morphology from the patch pipette filling by Alexa 488. Rightmost panel superimposes the green and DIC channels,
illustrating the pathway of the neuron’s processes within and efferent from the cluster. C. Leftmost panel shows DIC image of a patched astrocyte,
image to right shows a fluorescent image of the field taken 20 minutes after patch clamping an astrocyte with Alexa 488 containing pipette. Many
astrocytes can be seen to be filled, and displaying a ‘‘tile-like’’ morphology. Middle panel shows an image taken 15 minutes later illustrating further
spread of the Alexa 488 dye. Righmost panel superimposes the green and DIC channels. D. Current responses elicited by voltage steps in a patch
clamped neuron. Depolarisations elicit a transient inward current and sustained inactivating outward current. The maximal and steady state
amplitude of the outward component (Black and Red symbols respectively) are plotted to the right illustrating an outwardly rectifying nature. E.
Current responses in an astrocyte elicited by voltage steps, displaying lack of transient components. The plot of instantaneous and steady state
current reveal a linear I–V relation. Cells were used within 14 days of differentiation.
doi:10.1371/journal.pone.0036098.g001
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astrocytic receptors as seen in brain slice preparations [29,30] and

in vivo [31].

Whilst the main mechanism of information transfer between

neurons is the synaptic release of chemical neurotransmitters,

astrocytes in the brain are coupled via gap junctions [32]. These

enable the inter-astrocytic transfer of metabolically important

molecules such as glucose [33], and possible signalling molecules

such as IP3 [34]. Another feature of astrocytic syncytia is that they

can propagate calcium waves in response to chemical and

mechanical stimulation [35]. We tested this property in pure

cultures of NT2 astrocytes. A mechanical stimulation was applied

using a micromanipulator controlled patch pipette placed above

a single astrocyte, and lowered to stimulate a single astrocyte.

Following stimulus, a calcium elevation was induced in the

stimulated astrocyte which then propagated through the astrocytic

field, by an apparent sequential recruitment of adjacent astrocytes

(Fig. 6A,B). A linear regression of distance against time of peak

calcium elevation yielded a slope of 3.1 and r2 = 0.5. The mean

velocity calculated from the distance from stimulus origin and peak

of calcium elevation was 5.5960.43 mm/s (n= 25, 4

preparations)(Fig. 6C), similar to that seen from studies of

astrocytic primary culture and signal propagation in brain slice

[26]. The propagation was at least partly dependent on gap

junction communication since the amplitude of calcium elevations

at astrocytes .50 mm distant (25.3360.66%, n= 3) from the

origin astrocyte was reduced in the presence of the gap junction

blocker carbenoxolone (CBX) (4.7260.33% P,0.0005). This

recovered on CBX wash-off (11.6060.51% P,0.0005). In

addition to gap junction contribution to calcium wave propagation

[36,37], the gliotransmitter ATP is implicated in mediating waves

[35]. We therefore investigated the effect of purinergic P2X and

P2Y receptor antagonist PPADS (100 mM) on propagation. The

presence of PPADS resulted in a reduction in the amplitude of

measured astrocytic calcium elevations in the pathway of the wave

from 11.7960.72% to 4.1460.54% (P,0.0001) which recovered

Figure 2. Neurons and astrocytes respond to chemical stimulation. A. Images taken at different stages during an experiment illustrating
responses to increased potassium. Traces below plot fluorescence over the time course for indicated neuron (white circle) and astrocyte (green circle).
Bargraphs to the right display the number of neurons and astrocytes responding with calcium elevations to potassium and the amplitude of
fluorescence increase in the two different cell populations. B. Images illustrating calcium elevations in response to glutamate. Responses from the
neuron (white circle) and astrocyte (green circle) are plotted in the traces below. Bargraphs to the right display the number of neurons and astrocytes
responding with calcium elevations to glutamate and the amplitude of fluorescence increase in the two different cell populations. C. Images
illustrating calcium elevations in response to ATP. Responses from the neuron (white circle) and astrocyte (green circle) are plotted in the traces
below. Grey traces show responses following thapsigargin treatment. Bargraphs to the right display the number of neurons and astrocytes
responding with calcium elevations to ATP and the amplitude of fluorescence increase in the two different cell types in control conditions and
following thapsigargin treatment. Cells were used within 14 days of differentiation.
doi:10.1371/journal.pone.0036098.g002

NT2-Astrocyte-Neuron Networks
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on wash (7.4960.74, n= 76 astrocytes, 4 preparations), consistent

with a restricted extent of wave propagation (Fig. 6D,E).

Discussion

It is now becoming clear from in vitro brain slice and in vivo

experiments, that for synaptic communication in the brain

astrocytes and neurons form a functional unit, known as the

‘tripartite synapse’ [18]. This challenges the traditional neuro-

centric view of brain function and contends that it is the

interactions between astrocytes and neurons that govern how the

brain operates.

In the same way, to understand stem cell-derived neurons, and

their potential cellular and network functions, as well as

understanding how to optimise this function, most certainly

requires their study within the context of their association with

astrocytes. It may be reasonably expected that the full functional

potential of stem cell derived neuronal networks will most likely be

realised when they differentiate and develop in the presence of

their astrocytic counterparts. If these models are to be applied to

the investigation of human neuronal function, it is thus essential

Figure 3. Stem cell derived neurons and astrocytes display spontaneous activity. A. Image on the left displays an NT2N neuronal
aggregate with extending processes. The white dotted area is displayed expanded to the right at indicated time points during the experiment. White
arrows indicate processes that become active during acquisition. Red numbered circles indicate exemplar active cells with corresponding
fluorescence timecourse displayed below. Neurons can display synchronised activity (1,3). Propagating activity from distant processes can also be
detected (4). B. Image on the left displays an NT2N-A coculture. Spontaneously active astrocytes are circled and numbered. White dotted area is
displayed expanded to the right at indicated time points during the experiment. White arrows indicate active astrocytes. Fluorescence time courses
from the astrocytes are illustrated below, indicating regular calcium oscillations. C. Autocorrelation analysis of neurons from experiment A and
astrocytes from experiment B. Scale bars A-1-4: 2, 0.5, 10, 10%. B-1-4: 5, 5,10, 10%. Cells were used within 14 days of differentiation.
doi:10.1371/journal.pone.0036098.g003
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that the neuron-astrocyte relationship is sufficiently representative

of anatomical and functional reality to permit rational hypothesis

testing. In this study we therefore used selective methods to

generate either cultures containing one of the cell types or cultures

containing both, in contrast to the standard methods used to

generate pure neuronal cultures utilised in neuro-centric focused

studies. Neurons and astrocytes in the brain have distinct

electrophysiological and morphological properties. Neurons ex-

tend axons to synapse on other neurons and possess dendritic

processes onto which other neurons synapse. Neurons notably

express voltage gated sodium channels that underlie action

potential firing which depolarise the presynaptic terminal to allow

calcium entry, neurotransmitter release and so initiate synaptic

information transfer. Astrocytes, on the other hand, display

electrophysiologically passive properties and have fine, restricted

processes. In NT2 co-cultures there was a clear morphological

distinction between NT2N and NT2A cells. NT2N cells formed

clusters which were often connected by long tracts. NT2A cells

formed a layer below the clusters and displayed a tile like

morphology characteristic of cultured astrocytes. Filling individual

cells with fluorescent Alexa 488 revealed the stereotypical

neuronal morphology of NT2N cells in clusters, with apparent

dendritic processes, and longer axonal process which could extend

into the inter-cluster tracts. This indicates that morphologically,

NT2 neurons have the structural capability to signal between and

possibly within clusters. Calcium imaging experiments confirmed

the signalling role of these processes.

Filling of astrocytes, revealed stereotypical cellular morphology,

as well as a time dependent-filling of adjacent astrocytes, a pattern

not seen with neuronal filling. This confirms previous reports that

NT2A cells are physically coupled via gap junctions [20], as

astrocytes are in the brain. Such coupling has most recently been

suggested to be involved in controlling the supply of glucose to

neurons in the hippocampus [33]. It is therefore possible that they

could be fulfilling a similar function for NT2N cells. It has also

been shown that embryonic stem cell derived astrocytes can

integrate into native rat syncytia [38]. Our patch clamp recordings

confirmed that neurons displayed voltage activated currents,

notable fast sodium transients consistent with recordings from

a previous study [9] whilst astrocytes exhibited a passive profile.

The main neurotransmitter in the brain is glutamate, whilst

ATP is also a transmitter at some synapses [39]. ATP and

glutamate are also gliotransmitters, released from astrocytes in

a calcium dependent manner [35,40]. Astrocytic glutamate release

is known to modulate synaptic transmission in the hippocampus

[41], whilst ATP release and its possible degradation to adenosine

are also implicated in synaptic modulation [42]. ATP release from

astrocytes has also been shown to act in a paracrine manner in

propagating astrocytic excitability which can affect heterosynaptic

depression [43]. Our findings thus show that in addition to

reported neuronal receptor expression [12,13,14,44], NT2 astro-

cytes also express transmitter receptors providing them with the

potential to participate in astrocyte-neuron and astrocyte-astrocyte

communication in vitro and in brain grafts.

The main way that astrocytes sense neuronal activity in the

brain is by responding to synaptically released neurotransmitters.

In vivo experiments have shown that sensory stimulation in the

form of rodent whisker stimulation [31] or ferret visual stimuli can

elicit astrocytic calcium elevations. Indeed, astrocytes in the visual

cortex exhibit orientation selectivity [45]. Our results show that

neuronal stimulation also leads to astrocytic calcium elevation and

that blocking neuronal transmission with TTX blocks astrocytic

responses, indicating that NT2 astrocytes can sense NT2 network

synaptic activity.

A widely reported feature of astrocytes in the brain is the

expression of spontaneous calcium activity [26,28], this likely

reflects many processes, including reaction to ongoing synaptic

activity. However, astrocytes also display calcium oscillations when

neuronal activity is blocked, and these oscillations can display

regular pacemaker patterns [46]. We also found this activity in

NT2 astrocytes, which differed from the calcium oscillations seen

Figure 4. Sustained transmitter exposure in eliciting calcium
oscillations. A. Fluorescence time courses from astrocytes and
neurons in the same experiment before (left panels), and following
(right panels) sustained application of glutamate. Activity in the same
cell is indicated by colour. B. Activity in astrocytes and neurones before
(left panels) and following (right panels) application of ATP. C.
Bargraphs summarising results from a number of experiments
illustrating the effect of sustained glutamate and ATP application on
the number of astrocytes and neurons expressing calcium oscillations.
Cells were used within 14 days of differentiation.
doi:10.1371/journal.pone.0036098.g004
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in neurons. The role of such activity is unknown, although it is

possible that these oscillations drive the release of signalling

molecules such as gliotransmitters, cytokines or trophic factors.

Our findings that sustained exposure to ATP induced astrocytic

calcium oscillations indicates that ATP may be involved in the

generation of such activity in NT2A cells and also that transmitters

can induce longer term activity patterns in these cells which

depending on the subsequent astrocytic output could have

significant functional effects on NT2N neuronal networks.

A standard approach of monitoring neuronal population

activity is by using microelectrode arrays, and this approach has

also been used to probe NT2N neuronal network activity. One

disadvantage of this approach is, however, that activity in only

a small proportion of the actual network is recorded due to

limitations of electrode spacing. To address this in the living brain,

researchers have developed complex multiphoton imaging and

sampling methods [47]. In this study, we also show that for

monitoring large populations of NT2 neurons and astrocytes in

culture, calcium fluorescence imaging is an effective alternative or

complement to electrophysiological recording.

The results from this study show that in coculture, NT2N and

NT2A cells are distinct cell types which express the expected

functional properties of neurons and astrocytes. Whilst it has been

established that NT2 neurons can form functional networks, the

findings of this study extends the knowledge of stem cell derived

human neuron-astrocyte cultures to show that NT2 astrocytes

exhibit functional calcium elevations to exogenously applied

neurotransmitters, as well as to synaptic stimulation. NT2-

Astrocytes also respond to mechanical stimulation and can

propagate activity through the astrocyte syncytium, as observed

in vivo. Overall, the findings indicate that NT2 neuron and NT2

astrocyte networks can communicate, and so have the potential to

interact in a tripartite manner as is seen in vivo. This study

therefore lays the foundation for further development of stem cell

derived neurons and astrocytes into therapautic cell replacement

and human toxicology/disease models.

Materials and Methods

Generation of NT2N and NT2A cells and Cell Culture
Human NT2/D1 cells were kindly donated by Prof. P.W

Andrews (University of Sheffield, UK). To generate pure NT2N

NT2N and NT2NA cultures, NT2 cells were differentiated with

10 mM Retinoic Acid for 4 weeks. Subsequent to plating, cells

were treated with media containing mitotic inhibitors [1 mM
cytosine arabinoside (ARAC) for 1 week, 10 mM fluorodeoxyur-

idine (FDU) and 10 mM uridine (U) for 3 weeks to produce

a neuronal monoculture. To derive a neural-astrocytic co-culture

NT2 cells were also differentiated with 10 mM Retinoic Acid for 4

weeks, but with anti-proliferative treatment with media containing

a lower concentration of mitotic inhibitors according to the

method described in [24]. Following differentiation with

161025 M retinoic acid for 4 weeks, NT2 cells were seeded into

CellBIND 12-well plates (Corning, USA) at a density of 2.256106

cells/well. To suppress the proliferation of non-neural cell types,

mitotic inhibitor treatment was performed. Cells were treated with

media containing 0.1 mM cytosine arabinoside for 1 week, 3 mM
fluorodeoxyuridine and 5 mM uridine for 4 weeks to generate

mixed cultures of neurons and astrocytes. Upon replating of RA

treated cells, neuron-like cells with small neurite outgrowths could

be observed growing out from larger clusters of cells. Sandhu et al

2002 [4]demonstrated that cells replated after RA treatment could

be mechanically treated to remove these loosely attached neuronal

cells to establish astroglial cultures that matured over a period of 6

passages to produce 99% pure astrocytic cultures without the use

of MI. These cells have morphological characteristics that are

consistent with fibrous or stellate astrocytes and protoplasmic or

polygonal astrocytes, respectively.

In our method, upon replating these clusters by mechanical

dissociation and subsequent MI treatment we were able to

suppress the growth of immature astrocytes/astrocytic precursors

using 1 mM ARAC and 10 mM FDU and U to produce pure

neuronal cultures. However, if cells were replated into media

Figure 5. NT2 neurons support network activity. A. Centre image shows neuronal cell bodies and processes. Plots of fluorescence over time
from the circled areas are displayed to the right and below. Black traces illustrate response to electrical stimulation in control conditions and grey
traces following TTX application. B. Bargraphs summarise calcium elevation responses of neurons and astrocytes for a number of experiments. Scale
bar in A, 5 mV, 2 ms. Cells were used within 14 days of differentiation.
doi:10.1371/journal.pone.0036098.g005
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containing lower concentrations of mitotic inhibitors then these

immature astrocytes were able to proliferate and differentiate into

GFAP positive cells after 28 days that no longer divided. This

would suggest that after 28 days in RA, immature astrocytes/

astrocytic precursors are present in the cultures and that their

growth is suppressed by treatment with high concentrations of MI.

After 28 days in lower concentrations of MI a co-culture of

neuronal and astrocytes was established. However, in the co-

culture these cells were not inhibited but differentiated into GFAP

positive cells with morphological features of mature astrocytes.

The putative neuronal cells present after 28 days RA treatment,

continued to extend neurite-like processes during MI treatment,

irrespective of the differentiation strategy used. After 28 days these

cells displayed distinct mature neuronal morphology.

The proportion of cell types produced by this method in this

study were in agreement with previously published values (3364%

neurons and 6364% astrocytes) [23]. NT2A cultures in our hands

typically survive .9 months (unpublished data).

Once differentiated cells were shown to no longer divide they

were therefore maintained in Dulbecco’s Modified Eagle Medium

(D-MEM)-high glucose supplemented with 10% heat inactivated

foetal bovine serum (FBS, Invitrogen), 100 units/ml Penicillin,

100 mg/ml Streptomycin (Invitrogen). All experiments were

performed on cells within 2 weeks of the differentiation process.

Electrophysiology
The recording chamber and manipulators were mounted on

a moveable top plate platform (MP MTP-01, Scientifica, UK).

Patch clamp recordings were made using pipettes (2–4 MV)
containing an internal solution of composition (in mM): KMeSO4

120, HEPES 10, EGTA 0.1, Na2ATP 4, GTP 0.5. and Alexa-

hydrazide 488 0.1, for morphological identification. Currents were

recorded using a Multiclamp700B amplifier, digitized with

a Digidata 1440A and acquired and analysed using PClamp

(Molecular Devices, Ca. USA). Voltage clamp recordings were

made at indicated potentials. Cells with $20% change in access

resistance were excluded. Acquired data was analysed using the

Clampfit routine of PClamp. Data was exported to Sigmaplot

(Jandel) for further analysis and plotting.

Figure 6. Calcium wave propagation in astrocytic networks. A. Images showing a field in a pure NT2 astrocyte culture loaded with Fluo-4.
Following image at t = 0 s, a mechanical stimulation was applied at point indicated by orange triangle tip. Subsequent images display the
progression of a calcium wave in surrounding astrocytes. B. The time course of fluorescence in the circled astrocytes at different distances from the
origin. C. Plot of wave distance with time for a number of experiments fitted with a linear regression. D. Maximum projection images showing extent
of wave propagation in control, with PPADS and following PPADS wash off. E. Bargraphs summarising a number of experiments where fluorescence
was measured in astrocytes during wave propagation, and the effect of CBX and PPADS. Cells were used within 14 days of differentiation.
doi:10.1371/journal.pone.0036098.g006

NT2-Astrocyte-Neuron Networks

PLoS ONE | www.plosone.org 8 May 2012 | Volume 7 | Issue 5 | e36098



Synaptic stimulation
Synaptic stimulation was achieved with a computer controlled

constant current isolated stimulator (STG1002, Multichannel

Systems, Germany) and bipolar electrodes, which were placed

typically .200 mm from the imaged field.

Fluorescence imaging
In these experiments, cultures were loaded with Fluo-4 or Fura-

2 AM (Molecular Probes, Eugene, Or., USA). This was done by

incubating for ,50 min at 37uC with 5 mM of the indicator dye

and 0.01% pluronic acid. The recording chamber and manip-

ulators were mounted on a motorized moveable bridge (Luigs and

Neumann, Germany) and fluorescence dyes were excited using an

Optoscan monochromator system (Cairn, UK), fitted to a Nikon

FN1 upright microscope; filter cubes were obtained from Chroma

(Chroma VT, USA). Images of areas of 444 mm6341 mm were

routinely acquired every 5 s with a 620 objective lens (NA=0.8)

or 218 mm6168 mm with a640 lens (NA=0.9) using an ORCA

ER CCD camera (Hamamatsu) and analysed using Simple PCI

software (Compix Hamamatsu, Digital Pixel, UK). Autocorrela-

tion analysis was conducted using pClamp (Molecular Devices).

Statistics
All quantitative data in the text and figures are presented as

mean6s.e.m. unless otherwise stated. Significance was calculated

using multivariate ANOVA and unpaired or paired Student’s t-test

as appropriate.
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