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The  binding of [3H]inositol hexakisphosphate ([3H] 
InsP6)  to  rat  cerebellar  membranes  has been charac- 
terized  with  the objective of establishing  the  role, if 
any, of a membrane  protein  receptor.  In  the  presence 
of EDTA, we  have  previously  identified an InsP6-bind- 
ing  site  with a capacity of -20 pmol/mg protein  (Hawk- 
ins, P. T., Reynolds, D. J. M., Poyner, D. R., and 
Hanley, M. R. (1990) Biochem.  Biophys. Res. Com- 
nun.  167,  819-827).  However, in the  presence of 1 
mM Mg2+, the  capacity of [3H]InsP6 binding  to mem- 
branes  was  increased -9-fold. This  enhancing  effect of 
Mg2+ was  reversed by  addition of 10 p~ of several 
cation  chelators,  suggesting that  the increased  binding 
required  trace  quantities of other  metal  cations.  This 
is supported  by  experiments  where  it  was possible to 
saturate binding by addition of excess  membranes,  de- 
spite not  significantly  depleting  radioligand,  pointing 
to removal of some other  factor.  Removal of endoge- 
nous  cations  from the binding assay by pretreatment 
with chelex resin  also  prevents  the Mg2+-induced po- 
tentiation.  Consideration of the specificity of the che- 
lators able  to  abolish  this  potentiation  suggested  in- 
volvement of Fe3+ or A13+. Both  these  ions  (but  not 
several  others)  were  able  to  increase [3H]InsP6 binding 
to  chelex-pretreated  membranes  at  concentrations of 1 
PM. It is possible to  demonstrate  synergy  between Fe3+ 
and Mg2+ under  these  conditions. We propose that [3H] 
InsP6 may interact  with  membranes  through  non-pro- 
tein  recognition, possibly via phospholipids,  in a man- 
ner dependent upon trace metals. The  implications of 
this for  InsP6 biology are considered. 

Inositol hexakisphosphate  is usually  found a t  concentra- 
tions of between  10 pM and 1 mM in most, if not all, plant 
and animal cells (cg. Refs. 1-7). However, its  functions  re- 
main largely mysterious. Studies of its metabolism  suggest 
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that  the  synthesis of InsP6’  is  not directly linked  to inositol 
phosphates or lipids involved in signal transduction (7). There 
are several reports which  suggest that  it  has extracellular 
actions  to excite  nerve cells (8-10,23).  Additionally,  a number 
of intracellular roles have  been  proposed for it,  such  as  acting 
as a phosphate  store or antioxidant (11, 12).  In  an effort to 
learn more about  its biology, we and  others (13, 14) have 
carried  out  studies with [3H]In~P6  to  see if it  can  bind  to 
membranes. A membrane-binding  site might be expected to 
mediate  any physiological extracellular  actions of InsP6  and 
might  also be involved in  a  more general  intracellular  “house- 
keeping” role. In  our previous study, working  in  a  buffer 
containing 5 mM EDTA, we described  a site of high  capacity 
associated with  most  neuronal  structures in the  brain  (13). 
Nicoletti et al. (14) also  described  a membrane-binding  site 
for InsPs, in rat  cerebral cortical membranes, which was 
similar  to  the  site found in  the cerebellum. In  an effort to 
understand  the biological importance of these  InsP6-binding 
sites, we investigated the effects of various physiologically 
important  cations (e.g.  Mg2+ and  Caz+)  on  [3H]In~Ps binding. 
This  has led  us to discover that  the  binding is extremely 
sensitive  to  trace  quantities of certain  metal  ions  and  that 
this  has  important  implications for assessing the significance 
of this binding. 

MATERIALS AND METHODS 

Membrane Preparation-Cerebella were removed from rats  and 
homogenized in 10  volumes of 5 mM EDTA, 20 mM Tris,  pH 7.7, and 
crude  membrane  fractions  prepared by centrifugation (35,000 X g, 30 
min).  Membranes were resuspended, washed (1 volumes of 20 mM 
Tris,  pH 7.7), and resuspended at  -0.2 mg protein/ml  (in 20 mM 
Tris,  pH 7.7) together  with  other  ions or chelators  as required  (see 
the figure  legends). All operations were carried  out a t  4 “C. 

In  certain  experiments  the  membranes  and radioligand were 
treated  with chelex  resin to remove  endogenous cations.  Membranes 
(40 ml, see above) were incubated  with chelex resin  slurry (10-ml 
packed volume)  for 15 min at  4 “C, followed by  removal of resin  by a 
brief centrifugation (2000 X g, 5’, 4 “ c ) .  [3H]InsP6 (1 ml  of 50 nM 
[3H]InsPG) was incubated  with chelex resin (0.2-ml packed  volume) 
for 45 min a t  room temperature  and  the  supernatant recovered by 
brief centrifugation  through a small  plastic column (Kontes, 10-ml 
plastic column with 0.45-PM filter  attached). 

Binding Assays-Binding was carried  out a t  4 “C for 90 min in 20 
mM Tris,  pH 7.7, with  additions  as described under  “Results” section 
and  terminated by centrifugation,  as described earlier  (13).  Routine 
assays were performed  in a final volume of 1.0  ml with 0.5 nM [3H] 
InsPG (-90,000 dpm/assay)  and -0.2 mg/ml membrane  protein. All 
metal ion solutions were initially dissolved to a final  concentration 

The  abbreviations used  are: InsPB, InsP1, InsP6,  InsPs, inositol 
tris-,  tetrakis-,  pentakis-  and  hexakisphosphate  (isomers  are  num- 
bered  according to  IUPAC  recommendations  (38));  HPLC, high pres- 
sure liquid chromotography. 
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of 1 M in H20 and  then used at  the appropriate dilutions within 30 
min. 

Preparation of fH]InsP, and pH]hP6 Isorner~-[~H]InsP~  and 
[’HH]InsP6 isomers were prepared by phosphorylation of [3H]inositol 
(Amersham) as described previously (13, 15). The resulting radioli- 
gands had specific activities of approximately 80 Ci/mmol. The 
unlabeled InsPS isomers were prepared as described previously (15). 

HPLC Analysis of pH]InSP6 Metabolism-This was done as de- 
scribed previously (13). 

Analysis of Binding Data-Best values f standard  errors of the 
parameters were obtained from non-linear regression analysis using 
the Hanvell Library routine VBQllA (27) and the following equation. 

Relative amount bound 1 - + IC6.] (Eq. l) 
X“H 

IC,, = concentration of unlabeled ligand displacing 50% of the spe- 
cifically bound radioligand, a. = concentration of unlabeled ligand, 
nH = Hill coefficient. 

RESULTS 

In  our  initial  study (13), the  binding of [ 3 H ] I n s P ~   t o  cere- 
bellar  membranes  was  carried  out  under  conditions  previously 
used  for  Ins(1, 4, 5)P3  binding  (Ref. 16: 100 mM KCl,  20 mM 
NaCl, 5 mM EDTA, 20 mM Tris, pH 7.7, at 4 “C).  While 
removal of the  monovalent  cations (K+, Na’) made  little 
difference  to  [3H]InsPs  binding,  replacement of EDTA  by 
divalent  cations  caused  an  increase  in the amount of [3H] 
InsPs associated  with  the  membranes  (potency Ba2+ > Ca2+ 
> Mg2+),  see  Table I). 

Since  high  concentrations of M e  (>1 mM) are found  both 
inside  and  outside  cells, we investigated the Mg2”induced 
binding  further.  The  kinetics of [3H]InSP~  binding  in  the 
presence of 1 mM Mg2+ are  shown  in  Fig. 1. This  rate  plot 
resembles that seen  in 5 mM EDTA, 100 mM KC1 (13)  in that 
both  association  and  dissociation rates appear t o  be biphasic, 
with the more  rapid  components  occurring  too  quickly  to  be 
measured  accurately  by a microfuge  binding  assay. The spec- 
ificity of binding  in the presence of 1 mM Mg2+  is  shown  in 
Table 11. The  most  potent  compound  in  competing  with [3H] 
InsPs is In@, itself  with  an IC50 of  0.1 pM, followed  by  the 
various  InsP5  isomers  with IC50 values  varying  between  0.3 
and 2 PM. Four  InsP6  isomers  are  chromatographically  resolv- 
able  by  non-chiral  techniques  (15, 24); the  potency  order 
for  inhibition of InsPs binding  is  DL-Ins(1,2,3,5,6)P5 2 
Ins(1,2,3,4,6)P5 > DL-Ins(2,3,4,5,6)P5 2 Ins(1,3,4,5,6)P5. I t  
was  not  possible  to  assess  the  potency of Ins(1,3,4,5)P4 and 
Ins(1,4,5)P3  due  to  their  rapid  metabolism  in  the  presence of 
1 mM M$+ (data  not  shown). HPLC analysis of supernatants 

1mM lnsP6 
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FIG. 1. Association and dissociation of [3H]InsP6. EDTA- 
washed cerebellar membranes were prepared and resuspended in 
buffer containing 1 mM MgCI, as described under “Materials and 
Methods.” The membranes were then incubated at 4 “C with 0.5 nM 
[3H]InsP6 for the various times indicated to determine the association 
rate (closed circles). After 55 min, 1 mM unlabeled InsP6  was added 
to a portion of the incuhations and  the dissociation rate followed 
(open circles). Nonspecific binding was defined in the presence of 1 
mM unlabeled InsP, (triangles). Each point represents the mean of 
triplicate  determinations from a single experiment, representative of 
two. 

TABLE I1 
Binding of inositol phosphates in the presence of I mM Mg” 

EDTA-washed membranes were prepared and resuspended in 
buffer containing 1 mM MgC12 as described under “Experimental 
Procedures.” The binding of  0.5  nM [3H]InSP6 was measured in the 
presence of increasing concentrations of unlabeled inositol phos- 
phates for 90 min at 4  “C. The  data was analyzed as described under 
“Experimental Procedures” to obtain the IC,, and Hill coefficient 
( n d .  Values are mean f S.E. of experiments carried out three to five 
times. Control values in the absence of any added inositol phosphate 
were typically 2500 cpm/assay. 

Compound ICs0 nw 

InsP6 0.10 f 0.02 0.87 f 0.12 

Ins(1,2,3,4,6)PS 0.31 f 0.06 0.55 k 0.06 

DL-Ins(1,2,3,5,6)P5 0.25 f 0.01 0.62 f 0.02 

DL-h(2,3,4,5,6)Ps 1.44 f 0.12 0.54 f 0.05 

Ins(1,3,4,5,6)P6 1.90 f 0.19 0.63 f 0.04 
TABLE I 

Effects of metal cations on rHlInsP6 binding 
EDTA-washed membranes were prepared as described under “Ex- 

perimental Procedures” and resuspended in buffer containing  either 
5 mM EDTA (control) or in the indicated concentration of metal ion 
(present as the chloride salt). Binding assays were carried out with 
0.5 nM [3H]In~Ps for 90  min at 4 “C, as described under “Experimental 
Procedures.” Values represent mean -+ S.E. Control values were 
typically 2500 cpm/assay. Number of determinations is shown in 
brackets. 

Cation % [‘HH]InsPti 
bound Cation % [3H]InsPti 

bound 

Control 100  100 @M Ca2+ 400 f 47 (2) 

10 p~ Mg2+ 166 + 24 (3) 1 mM Ca2+ 1608 + 228 (2) 

100 p M  M e  444 rt 71 (3) 100 @M Ba2+ 530 (1) 

1 mM M T  942 * 144 (15) 1 mM Ba2+ 1717 (1) 

taken at the  end of the  binding  experiments  indicated that 
[3H]InSP~  was  not  significantly  metabolized  under  these  con- 
ditions  (data  not  shown). It should  be  noted  that  the  binding 
curves  for  the InsP5 isomers  all  have  Hill  slopes  significantly 
less  than  unity  which  suggests  the  presence of multiple or 
interacting  binding  sites. 

As  can  be  seen  from  Table I, in  the  presence of 1 mM M e  
there is a 9.4-fold  increase  in  the  amount of InsPs which  is 
membrane-associated.  Since  [3H]In~Ps  is  present  in  these 
experiments at concentrations  well  below  its  apparent Kd 
(estimated at 60 n M  in 5 mM EDTA,  Ref.  13),  the  increased 
binding  could,  in  principle, be due to either an increase  in  the 
affinity or the  capacity  of  the  sites, or some  combination of 
these  effects.  However,  although a contribution  from a modest 
shift  in  affinity  cannot  be  ruled  out,  the  apparent IC50 of this 
site(s)  for  InsPG  in  the  presence of 1 mM Mg2+  was  found  to 
be -100 nM (Table 11), and thus  i t   i s  likely tha t  M$+ increases 
the  total  capacity of the  InsPs-binding  site(s). 
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A variety of pharmacologically active  substances were 
screened  to see if any of them could alter  [3H]In~Ps  binding 
in  the presence of 1 mM Mg2+. Only  isoprenaline inhibited 
binding (legend, Table 111). This was not  acting via 6-adre- 
noceptors  as deduced from three pieces of evidence: (i)  the 
effect was not stereospecific  (difference  between inhibition 
produced by (+)isoprenaline  and  (+)isoprenaline = 9.3 + 
5.4%); (ii)  the effect was not blocked by propanolol; and  (iii) 
the structure  activity  relationship for the effect was not  that 
predicted for activation of 6-receptors  (Table 111). Indeed, the 
biologically active part of the molecule was the  catechol 
moiety. The dose-response  curves  for  isoprenaline and  cate- 
chol  are  almost superimposable  (Fig. 2, isoprenaline, ICso = 
0.84 k 0.26 pM; catechol  ICbo = 2.4 f 0.84 pM). 

Compounds such  as  catechol, with two vicinal  hydroxyl 
groups are good chelators of divalent  and  trivalent  metal  ions 

TABLE I11 
Effects of drugs on [’H]InsP6 binding 

EDTA-washed  membranes were resuspended in buffer containing 
1 mM MgC12 and  incubated for 90 min at  4 “C in the  presence of 0.5 
nM [“H]InsP6  with  the various agents  as  indicated in the  table. Values 
are  the  means f S.E. of three  to five determinations  and  are expressed 
as percentages of the  binding seen in  the absence of any  drug  addition 
(typically 2500 cpm/assay).  The following did not  inhibit binding: 
quisqualate,  nitrendipine, cromoglycate, trifluoroperazine,  dantro- 
lene,  histamine, carbachol (all at  10 g ~ ) ,  glycine, and  glutamate (100 
U M ) .  r-- -,- 

Drug Oio [“H]InsP6 Drug bound  bound 
% [3H]InsP6 

100 g~ isoprenaline 12  f 1 10 p~ dopamine 22 f 3 

1 g M  propranolol 101 & 3 10 g M  dichloroiso- 113 f 7 
prenaline 

10 MM adrenaline 21 k 6 10 ,uM tyrosine 110 f 6 

10 p~ noradrenaline 18 f 5 10 p~ homovallinic 92 f 6 
acid 

10 p~ normetraden- 44 f 2 100 p~ phenylephrine  103 * 11 
aline 

01 I I I I I 
iod  IO-’ iod  iod  io4  i o 4  

log Idrug1 

FIG. 2. Inhibition of [3H]InsPe binding by isoprenaline and 
catechol. EDTA-washed cerebellar membranes were prepared  and 
resuspended in buffer containing 1 mM MgC12 as described under 
“Materials  and Methods.” The  membranes were then  incubated  with 
0.5 nM [‘HH]InsP6 and increasing concentrations of catechol (open 
squares)  or isoprenaline (closed squares)  and  the  binding  determined 
after 90 min at  4 “C  as described under  “Materials  and  Methods.” 
Each  point  represents  the  mean f S.E. of three  to five determinations. 
Fitted values are  as follows: catechol, ICs0 = 2.4 f 0.8 pM, Hill 
coefficient = 0.9 k 0.2; isoprenaline, ICso = 0.84 f 0.26 pM, Hill 
coefficient = 0.85 f 0.2. 

(17).  Clearly chelation of magnesium is unlikely to explain 
the effectiveness of these  compounds, since they  are active at  
concentrations which remove only 1% of this metal. However, 
in  the  presence of 1 mM Mg2+,  a  second ion which is present 
in  trace  quantities could be  essential for the observed  increase 
in binding.  Catechol would therefore produce its effect by 
removing this  hypothetical second  cation. To test  this possi- 
bility,  a  variety of structurally  distinct  metal ion chelators 
were added  to  incubations  at  concentrations of 1-100 p ~ ,  to 
see if they could inhibit  the Mg2+ potentiated binding. As can 
be seen in  Table IV, all of the compounds tested were active 
at  10 p~ to  inhibit  this binding. So far  as we are aware, the 
only property  they have in common is their ability to  chelate 
metal ions. While EGTA, tetrakis-2-pyridylmethylethylene- 
diamine  and  maltol  are relatively  non-selective,  desferriox- 
amine shows a marked preference for trivalent  cations such 
as Fe3+ and A13+ (25). 

Other evidence supports  the  notion  that  the key factor  in 
the Mg2+ potentiated  binding is a  second metal  cation found 
in  the assay  buffer and ligand preparation.  In Fig. 3a it  can 
be seen that  the  [3H]InsP6  binding  saturated  at  concentra- 
tions of membranes  greater  than 1 mg/ml, despite  the fact 
that  the bulk (>80%) of the radioligand remained  unhydro- 
lyzed and available for binding (assessed by HPLC  chroma- 
tography of the  supernatant  at  the  end of the  binding assay, 
Fig. 3b). This is consistent  with  the second ion being  limiting, 
such  that  it was depleted by adding more tissue before the 
free concentration of [ 3 H ] h ~ P s  was itself significantly  re- 
duced. If this  “depleted  supernatant was removed from the 
membranes  after  the  binding assay and  added  to  fresh  mem- 
branes  (pretreated with 10 PM isoprenaline, 1 mM MgC12, to 
remove any endogenous  source of the second ion),  binding 
was greatly  reduced  compared to  that  seen when fresh  super- 
natant  and [3H]InSP6 were added,  (Table VA). In  contrast, if 
fresh [3H]In~Ps  and assay  buffer were added to  membranes 
apparently  saturated  with  bound radioligand  (see Fig. 3a), 
then  it was possible to get  a further increase in binding, 
consistent with the  addition of more of the limiting  second 
ion  (Table VA). If the  membranes  and  the solution containing 
the radioligand were treated  with chelex resin  (to remove 
endogenous cations)  prior  to use in a binding  study,  then  the 
observed M$+ enhancement was only  16 k 2%  of that seen 
normally (Table  VB).  It  is  interesting  to  note  that if only the 
radioligand solution was chelex treated  prior  to  addition  to 
the  binding assay, then  the Mg2+ potentiation was still  re- 
duced by 50% (Table VB). This suggests that  the radioligand 
solution itself may contribute  the second  ion in  these  experi- 
ments. Because [3H]InsP6  is  prepared by lyophilization from 
2 M ammonium  formate  (15),  it is possible that  the  hypothet- 
ical ion becomes concentrated at  this stage. (For example, 
using data provided  for BDH  Analar  Grade  ammonium for- 

TABLE IV 
Effects of chelators  on fH]InSP6 binding 

EDTA-washed  membranes were resuspended in buffer containing 
1 mM  MgC1, and  the  binding of 0.5 nM [3H]InSP6 measured after 
incubation for 90 min a t  4 “C in  the presence of the various chelators 
indicated below. Values are  means & S.E. of three  determinations, 
expressed as a percentage relative to& control  binding  in  the 
absence of any  chelator (typically 2500 cpm/assay). TPEN, tetrakis- 
2-pyridylmethylethylenediamine. 

Chelator % [3H]InsPe  bound 

10 p~ maltol 44 & 7 
IO g M  catechol  31 ? 6 
10 pM EDTA 35 2 1 
10 pM TPEN 53 f 6 
10 g~ desferrioxamine 21 f 12 
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FIG. 3. Panel  a, effect of membrane  concentration  on [3H] In~P6  
binding. EDTA-washed cerebellar membranes were prepared  and 
resuspended  in buffer containing 1 mM  MgC12 a t  up  to 4 mg/ml, and 
incubated  with 0.5 nM [3H]InsP6 for 90  minutes a t  4 “C  as described 
under  “Materials  and  Methods.”  Each  point is the  mean of triplicate 
determinates from  a  single experiment,  representative of two. Ap- 
proximately 55,000 cpm of [3H]InsP6 were added  to  each  incubation 
and  at  the  end of the  assay, 44,900 cpm were recovered in  the 
supernatant  from  the 4 mg/ml incubation (see b )  below). Panel  b, 
HPLC analysis of [3H]InsP6 following a binding assay. The  super- 
natant was taken from the 4  mg/ml incubation  in panel a after  the 
protein  had been  pelleted by microcentrifugation.  This was  analyzed 
by  HPLC using  a Partisil-10  SAX column as described  previously 
(13). The arrow marks  the  elution  point of a [3H]In~P6  standard  run 
in a  parallel  analysis. 

mate,  the molar ratio of Fe3+ to  InsPs in the radioligand 
solution could be  as high as 1.51.). 

To investigate the  nature of the second ion involved in 
M$+-potentiated  [3H]In~Ps  binding,  various  ions were added 
t o  membranes at concentrations between 10 l M  and 1 mM, in 
the absence of Mg2+, to see if they could promote binding. 
Zn2+,  AI3+, Pb”, and Fe3+ were particularly effective in  pro- 
moting  up  to 8-fold increases  in  binding a t  concentrations 
510  PM (Table VI and  data  not  shown),  whereas  Cu2+, Ni”, 
Co2+, Ba2+,  and Ca2+ were effective  only a t  much  higher 
concentrations  (data  not shown). The  mechanism of action 
of the  cations  under  these  conditions is difficult to  interpret; 
they could be mimicking the effect of the  unknown  cation, or 
synergizing  with it  in a  more  complicated interaction.  In  an 
attempt  to provide  a better  reconstituted  system,  the  mem- 
branes  and radioligand were each  pretreated with  chelex resin 
t o  remove endogenous cations,  and  the effects of readdition 
of various cations was examined.  When  added  back  at 1 PM, 
only A13+ and Fe3+ were able  to  cause a substantial  increase 
in  [3H]In~Ps binding  (Table VI). Furthermore,  it was possible 
t o  demonstrate a  synergy  between  Mg2+ and Fe3+. As can be 
seen in Fig. 4, the  interactions between the two cations  are 
complex. At high concentrations of Fe3+ (10 PM),  addition of 
Mg2+ makes little difference to  the increase in binding.  How- 
ever, at  lower concentrations of Fe3+ (<1 l ~ ) ,  Mg2+ increases 
the binding markedly. In  the absence of added Fe3+,  simply 
increasing  the Mg2+ concentration will increase binding by 
-2-fold. However, it is unclear  whether  this is a direct effect 

TABLE V 
Effects of metal  ion  removal  on  PH]InsP6  binding 

A, EDTA-washed  membranes were resuspended at  4 mg protein/ 
ml, in  the  presence of buffer containing 1 mM EGTA or 1 mM Mg’ 
and  distributed as 1-ml  aliquots  in  Eppendorf microfuge tubes. A 
small volume of [3H]InsP6  (10 pl, -50,000 cpm, giving a  final concen- 
tration of [3H]InsP~ in  the  assay of 0.5  nM) was added to some of the 
samples at  this  stage. All samples were incubated for 90 min a t  4 “C, 
after which time  they were pelleted in a microfuge and  the  superna- 
tants  separated  from  the  membrane  pellets  (see  “Experimental  Pro- 
cedures”).  For  the  assays which contained  [3H]InSP~,  the  membrane 
pellets were counted  to  determine  the  amounts of [3H]InSP6 bound 
and  the  supernatants were used as  “depleted  supernatant  in  the  next 
stage of the  experiment  (the  “depleted”  supernatants  contained 
44,900 f 100 cpm/ml of [3H]InsP6 at  this stage). The membrane 
pellets from samples which  did not  contain  [3H]InsP6  and which were 
originally resuspended  in buffer containing 1 mM EGTA were used 
as  the source of “resuspended  membranes”  in  the  next stage of the 
experiment. The resuspended membranes were then  incubated in a 
final  volume of -1 ml with  either  “depleted  supernatants” or “fresh 
supernatants”  (fresh  supernatants were prepared using incubation 
buffer containing 0.5 nM [ 3 H ] h ~ P 6  and  either 1 mM EGTA or 1 mM 
Mg”) for 90 min at  4 “C,  and  the  amount of [3H]InsP6  bound  then 
redetermined (see “Experimental  Procedures”).  Data  represents 
means k S.E. of triplicate  assays from  a single experiment. B, EDTA- 
washed membranes were resuspended a t  1 mg/ml protein.  Control 
membranes were not  further  treated. A portion of [3H]InsP6 was 
chelex treated  as described in “Experimental  Procedures,”  as was a 
portion of the  membranes (chelexed membranes). Binding assays 
were set  up  with  non-chelex-treated 0.5 nM [3H]InsP6  and controol 
membranes,  chelex-treated 0.5 nM [3H]InsP6  and chelexed  mem- 
branes,  and  chelex-treated 0.5 nM [%H]InsP6 and  control  membranes, 
all either  in  the presence of 1 mM EGTA or 1 mM Mg2+, for 90 min 
a t  4 “C.  Data  represents  mean f S.E. of triplicate  assays from  a  single 
experiment. 

A 

Original  Conditions  Resuspended  Membranes 

Incubation [3H]InSPs Incubation medium [3H]InsPG  bound, 
medium  bound,  cpm/mg  cpm/mg 

1 mM EGTA 476 f 33 Depleted supernatant, 412 f 18 

Depleted supernatant, 495 k 34 
1 mM EGTA 

1 mM Mg2+ 

1 mM M$+ 2257 f 72 Fresh  supernatant, 1 1212 f 47 
mM EGTA 

mM M F  
Fresh  supernatant, 1 2020 f 8 

B 

Membranes  Radioligand  Incubation  medium ‘3H11nsP6 bound’ cum/mp  orotein 

Control  Control 1 mM EGTA 640 f 77 
1 mM Mg2+ 4798 f 368 

Control Chelexed 1 mM EGTA 285 f 10 
1 mM M F  1173 f 7 

Chelexed  Chelexed 1 mM EGTA 
1 mM Me2+ 

253 f 50 
557 f 38 

of Mg2+ or whether  it  is “sensitizing” the  membranes  to  traces 
of Fe3+ not removed by the chelex treatment  (note:  the selec- 
tive iron-chelator desferrioxamine is  able  to reduce the  basal 
binding  obtained  in  the absence of any  added  ions by 55 k 
2%).  (It  is difficult to  tell  whether  it  is possible to  saturate 
the  binding by increasing  the Fe3+ concentration, because at 
concentrations  greater  than 10 PM precipitation of the  radi- 
oligand takes place (data  not  shown).) 

Using chelex-pretreated  membranes  and radioligand  solu- 
tion,  it is possible to  demonstrate a  synergy between added 
Fe3+ and Mg2+ in  potentiating  [3H]In~Ps  binding (see above). 
It  is  thus proposed that Fe3+ is the “second-ion’’ that is 
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TABLE VI 
Effects  of  cations  on [’H]InsPG binding to normal  and  cheler-treated 

membranes 
EDTA-washed  membranes were prepared.  Normal  membranes 

were not  treated  further  and were incubated for 90 min at  4 “C with 
0.5 nM [3H]InsPG  and various metal  ions (chloride salts)  as  indicated. 
Chelex-treated  membranes  (prepared  as described under  “Experimen- 
tal Procedures”) were preincubated  with chelex  resin, and  then  in- 
cubated with chelex-treated 0.5 nM [:’H]InSP6 (prepared  as described 
under  “Experimental  Procedures”)  and  metal  cations,  as for the 
normal membranes. Data  represents  the percentage of [3H]InsPs 
bound relative to  the  binding  seen  with  non-chelex-treated  mem- 
branes suspended in 5 mM EDTA (1500 cpm/assay),  and  are  means 
f S.E. from three  determinations. 

Ion membranes 
Normal  Chelex-treated  membranes 

7% [‘H]1nsP6 bound  Ion % [‘HH]InsP6 bound 

5 mM EDTA 100 5 mM EDTA 67 
10 g~ Zn” 378 & 67 1 ,LM Zn2+ 90 f 10 
10 ,LM Pb” 848 f 221 1 g M  Pb2+ 
10 g M  AI’+ 807 f 68 1 g M  AI3+ 

71 f 11 
246 f 15 

10 g M  Fez+ 244 ? 34 1 g~ Fe3+  198 f 16 

” 0 lOnM 30nM 1WnM 3WnM 1vM 3pM IOpM 
iFe(lll)I 

FIG. 4. Effects of Fe3+ and Mg2+ on [3H]InsPB binding. Both 
[:’H]InsP6  and  EDTA-washed  membranes were chelex treated  as 
described under  “Materials  and Methods.” The  membranes were 
incubated with 0.5 nM [3H]InSP~  together  with  Fe,(S04)a  as  indicated, 
in  the presence of buffer containing  5 mM EDTA (solid  bars), 300 ,LM 
MgCI, (cross-  hatched  bars), or 10 mM MgCI2 (stippled  bars) for 90 
min  at 4 ”C. The level of binding was expressed  relative to  that seen 
in 5 mM EDTA  in  the absence of added Fe”. Each bar represent  the 
means f S.E. of three  determinations. 

responsible for Mg2+-potentiated [3H]In~P6 binding in the 
non-chelex-pretreated  binding  assay. However, this  explana- 
tion does not explain all  the observations. Remarkably,  ad- 
dition of the iron chelator desferrioxamine  (10 p ~ )  does not 
inhibit  the Fe3+- or A13+-induced  increase  in binding in  a 
chelex-pretreated  binding assay but  actually  increases  the 
binding  (data  not  shown).  This  phenomenon implies  a  com- 
plex  interaction between different  metal  ions,  InsP6,  and  the 
membrane-binding  site. 

We have  investigated [‘HH]InsPs binding  to  membranes 
prepared from  a number of different  rat  tissues.  In every 
tissue examined (heart, liver, kidney,  spleen, lung, and  brain 
(cerebellum, forebrain,  hindbrain,  and  cortex)), we found sig- 
nificant  InsP6-displaceable  [%]InsPs  binding  (data  not 
shown). Evidence that  similar  binding  sites were being meas- 
ured in these  tissues is provided by the  similar  amounts of 
radioligand  displaced by 100 nM InsPs  (between 32 and  48%). 
The  degree of metal  ion-potentiated  binding  appeared  to vary 
quite widely between different  tissues (e.g.  isoprenaline  inhib- 
ited binding by 88% in cerebellum but by only 44% in  kidney). 
Autoradiographic examination of [3H]InsP6-binding  sites  in 
rat  brain, in the presence of 1 mM Mg”, showed  a distribution 
similar  to  that described previously in 5 mM EDTA (13, data 
not  shown), suggesting that Mg2+ did  not  create new sites  in 
regions not previously expressing [%]InsP6 binding.  How- 
ever, without knowing the endogenous concentrations of the 

relevant  metal  ions  or  their buffering capacity in the various 
tissues  it is obviously impossible to  arrive  at a  more quanti- 
tative  estimate of the degree of metal  ion-potentiated  binding 
in  each tissue. 

DISCUSSION 

Specific [%H]InsPs binding  to cerebellar membranes  can be 
dramatically  potentiated by Mg2+ (1 mM), and  this effect is 
dependent  on  limiting  quantities of at  least one further  trace 
metal ion. The  “metal ion potentiated”  binding resembles the 
binding previously  described  in the presence of 5 mM EDTA 
(13), in that  it  has a similar  affinity for InsPs  and  has similar 
kinetics.  The  mechanism of this  potentiation is uncertain,  but 
it is likely to  result from an increase in  the capacity of the 
[3H]InsP6-binding  sites.  Furthermore, with the  addition of 
increasing amounts of cations  it  cannot be shown to be 
saturable.  These  results  are  in  broad  agreement with an 
observation made by Nicoletti et al. (14), who reported that 
various divalent  cations  (25 p M )  potentiated [3H]In~Ps  bind- 
ing to  membranes  prepared from primary  cultures of rat 
cerebellar granule cells and may explain why they were unable 
to observe saturable  binding  at high membrane  protein  con- 
centrations  (their  membranes were not  prepared  in  the  pres- 
ence of cation  chelators). 

The  relationship between specific [3H]InsPs  binding in the 
presence of 5 mM EDTA  and  the  metal ion potentiated 
binding is unclear. Given that  InsPs  is  an excellent chelator 
of cations (e.g.  1, 18, 19),  InsP6 may be complexed to endog- 
enous  metal  ions even  in the presence of excess EDTA,  and 
accordingly it might be that all InsPs-membrane  interactions 
require  some  form of metal  ion  participation  (this would be 
analogous to  kinase recognition of Mg ATP). However, che- 
lators  such  as desferrioxamine, although  they  can reduce 
InsPs binding, do not abolish it.  Therefore,  the  small  contri- 
bution of a metal  ion-independent  binding  site will be masked 
by the much greater  metal  ion-potentiated binding.  A strong 
argument in  favor of a separate  membrane  protein being 
responsible for [3H]In~P6 binding in the presence of EDTA is 
the  recent  purification of an inositol polyphosphate-binding 
protein from solubilized rat cerebellar membranes (26). This 
purified protein  exhibits similar  recognition characteristics  in 
the presence of EDTA  to  [3H]In~Ps  binding  to  intact mem- 
branes.  We do not know whether  InsPs  binding  to  this purified 
protein is potentiated by transition  metal ions, although we 
think  it is unlikely that  metal  ion-potentiated  InsPs  binding 
is mediated by a specific protein (see below). 

The  data suggest multivalent  cations influence the  inter- 
actions of InsP6 with biological membranes.  The mechanism 
of the  metal ion InsPs  membrane association is unexpectedly 
complex. When chelex  resin is used to remove endogenous 
cations from binding  solutions  and  membrane  preparations, 
then relatively high concentrations of Fe3+ and A13+ (1 p ~ )  
can  enhance  InsP6 binding. It may be that some divalent 
cations  on  their own are also  able to  promote  binding when 
present at  concentrations  in excess of 1 mM. However, we 
have obtained  clear evidence that in the case  of 1 mM Mg2+, 
the  enhanced  binding  in  non-chelex-treated  binding assays is 
possibly due to  small  quantities of a  second  ion, perhaps Fe3+ 
or Al”. Although readdition of Fe3+ to  chelex-treated  mem- 
branes  can mimic some aspects of the  situation, we find in 
natural  membranes  that  there  are paradoxical potentiation 
effects of the  iron  chelator desferrioxamine, which indicate 
that  the  reconstituted ionic conditions may not  match  phys- 
iological conditions. 

Although  a number of models may explain how the  different 
metal  ions  can  act  together  to  promote  InsP6 binding,  a 
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significant  constraint  on  these models is our ignorance of the 
nature of the  [3H]InsP6-binding site. The  metal  ion-poten- 
tiated  site is of very high  capacity; we have  been unable  to 
obtain convincing data  that  it  can  be  saturated,  and  it  seems 
t o  be ubiquitous  in membranes from mammalian tissues. 
Taken  together,  these  data  argue  against a specific membrane 
protein being the  site of metal  ion-potentiated  InsP,  binding, 
and argues  in  favor of a  more abundant  membrane compo- 
nent, possibly negatively charged lipids or derivatives of them. 
This suggests that one explanation for the role of metal  ions 
in InsP,  binding  is  that  they  act  as “bridges”  between the 
InsP,  and  the negatively  charged  phospholipid phosphate 
groups of membranes. The more heavily  charged trivalent 
metal  ions might be expected to  be  particularly effective in 
taking  part  in  the  phosphate-metal ion phosphate complex 
required by this scheme (16-18). M$+ could interact directly 
with  the  InsPs,  increasing  its  affinity for the second ion, or 
perhaps allowing it  to  take  part more  readily in  phosphate 
bridge  complexes  with the  membranes.  InsP, is an excellent 
chelator of metal  ions,  and  in some  cases the  binding of one 
ion may increase its  affinity for  a  second (20). However, an 
alternative  mechanism  is for large quantities of  M$+ to  
saturate  metal  ion-binding  sites of the  membranes,  in  the 
process increasing the effective concentration of the second 
ion  in solution. In  this scenario,  in the  absence of Mg2+,  the 
second ion is all bound  to  the  membrane  at  sites which are 
unable  to allow the  formation of the  InsPs-ion sandwich. 
InsPs by itself is unable  to  strip  the second  ion  from these 
non-productive  binding  sites because it does not have  a suf- 
ficiently high affinity for this  metal ion. The “second  ion” 
promoted  potentiation of InsP6  binding is consistent  with 
most of our data. However, we cannot  yet provide an  expla- 
nation of why chelators  can  promote  InsP,  binding  under 
conditions when certain  ions  are added  back. A full explana- 
tion of the effects of metal  ions  on  InsPs  binding will require 
a much more extensive  study of both  the occurrence and 
concentrations of various metal  ions  in  the  binding  assays 
and  the  chemistry of metal  ion-InsPs  interactions. 

The biological significance of the  metal  ion-potentiated 
binding of [3H]InsP6  cannot be addressed  without  further 
study.  It  is  not  clear  whether,  under physiological conditions, 
traces of appropriate  metal  cations would allow significant 
amounts of InsPs  to become membrane-bound.  It seems  likely, 
however, that  this  metal  ion-potentiated  binding may affect 
certain in vitro experiments. I t  may, for example, confound 
attempts  to  assess  the  true  intracellular  distribution of InsPs 
or it may lead to  the  unwitting  introduction of InsP,  (and/or 
its associated cations)  into  assays  with  membranes (e.g. as  an 
inhibitor of inositol phosphate  phosphatases, Ref. 21). 

This work emphasizes the  ability of InsPs  to  act  as a quite 
remarkable ion chelator. I t  seems  that  certain  metal  ions  can 
significantly modify the physiochemical properties of InsPs 
and  the role of InsP,  as a putative physiological chelating 
agent should be  borne in mind when  considering the biology 
of metals  such  as A13+ or Fe3+. In  this regard, there  are gaps 
in our knowledge of how cells handle  iron which require  a low 
molecular weight iron-binding molecule to  shuttle  iron be- 
tween  transport  and  storage  proteins (e.g. transferrin  and 
ferritin)  and  their  ultimate  destinations in the cell, the  pro- 
teins which require iron  to  function (see  for  example, Refs. 
28-30). A number of molecules have  been  postulated  to  exert 
such a role, e.g. nucleotides, citrate, glycine, and glucose, but 
the  evidence seems  somewhat  unconvincing  in view of their 
relatively low affinity  and specificity  for iron  and  their  proven 
roles in other major areas of metabolism. InsPs would seem 
t o  be an  attractive  candidate for such a role since it  both 

possesses  a high affinity for iron  (our  preliminary  experiments 
based on  the solubilization of Fe(OH)3  precipitates  and  the 
decolorization of various  Fe3+  ligand  complexes suggest that 
the  affinity  constant of InsP, for  Fe3+ is  in  the range 1025-1030 
and  the  stoichiometry of binding  is 4-5 Fe3+/InsP6, data  not 
shown)  and  prevents  the  bound  iron from participating in 
potentially  damaging free  radical reactions (12, 31). A further 
attractive  feature of such  speculation  is  that  the  rapid,  “futile 
cycling” of specific phosphate groups on  InsP, which is seen 
in cells (7) would open  the door to  rapid,  directional  transport 
of bound  metal  ions  mediated by controlled and localized 
phosphorylation  and  dephosphorylation reactions. 

InsPs  has  been  reported  to  have a number of extracellular 
actions (8-10, 23,  32-34). Furthermore, two possible sites of 
intracellular  action have  recently  been identified 1) a highly 
selective interaction with the  G-protein receptor  regulatory 
protein,  arrestin (35,36) and 2) a novel inositol  polyphosphate 
receptor which appears  to be a  gated potassium  channel (37). 
The  ubiquitous  metal  ion-dependent  binding  site described 
here is unlikely to  mediate  any physiological response to  this 
compound,  but will certainly mask any lower capacity binding 
site which might be involved in producing these responses. 
Consequently, radioligand binding  to crude membranes may 
be limited  in  its applicability to  the  analysis of the  membrane 
actions of InsPs. A more  productive approach may be the 
purification of inositol polyphosphate-binding  proteins from 
detergent-solubilized membranes (26). However, the  interac- 
tion of InsPs with cations does  raise questions  about  studies 
on  InsP6-induced cellular 45Ca accumulation (10,34). Recently 
it  has been  claimed that metabolically dead cells accumulate 
45Ca when treated with InsPs (22). This may be another 
instance of the  formation of a metal  ion-InsPs-membrane 
complex involving  Ca2+. In  this regard,  Nicoletti et al. (14) 
have  noted a good correlation between the ability of divalent 
cations  to  both  potentiate  InsP6-stimulated 45Ca accumulation 
and  InsPs  binding. More  generally, it is now clear that  exper- 
iments designed to  investigate  membrane  actions of InsPs 
should carefully control for the possibility that  InsPs  can  bind 
to cell membranes via metal  ions  and  thus  alter  their biological 
properties,  in  an  apparently very specific, yet  probably un- 
physiological manner. 
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