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By combining machine learning methods and the dis-
persive Fourier transform we demonstrate, to the best
of our knowledge, for the first time a possibility to de-
termine the temporal duration of picosecond-scale laser
pulses using nanosecond photodetector. A fiber figure
of eight (F-8) laser with two amplifiers in a resonator
was used to generate pulses with duration varying from
28 to 160 ps and spectral width varied in the range of
0.75 to 12 nm. Average power of the pulses was in range
from 40 to 300 mW. The trained artificial neural network
makes it possible to predict the pulse duration with the
mean agreement of 95%. The proposed technique paves
the way to creating compact and low cost feedback for
complex laser systems. © 2019 Optical Society of America
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1. INTRODUCTION

One of the modern trends in development of mode-locked fiber
lasers is a focus on precise adjustment of temporal and spectral
properties of optical pulses [1–4] at the expense of increasing
complexity of system design. The resulting large number of
cavity parameters defining laser performance requires new ap-
proaches to controlling them. From this view point, the machine
learning based techniques are attractive for control and manage-
ment of complex laser systems. Machine learning algorithms
have been already used for optimization of laser performance
[5], self-starting [6] and adjustment of system parameters to
environmental changes [7].

Key part of any self-adjusting laser system is a feedback loop
which links together laser performance and variable laser cav-
ity parameters. In general, experimental realization of such
feedback system requires a set of measurement devices and
(desirably) electronically controlled feedback to laser cavity pa-
rameters. To optimize performance of electronically controlled

mode-locked fiber laser based on nonlinear polarization evolu-
tion four devices were used: autocorrelator, optical and radiofre-
quency analyzers, oscilloscope [5, 6]. In fiber laser with spatial
light modulator autocorrelator and optical analyzer formed a
feedback system to generate 40 fs pulses [1]. Laser performance
could be also optimized outside its cavity, for example, by pulse
compressor that requires frequency – resolved optical gating
measurement as a feedback response [8]. To sum up, the com-
mon way to create a feedback for adaptive fiber lasers is to use
optical spectrum analyzer, oscilloscope and autocorrelator(or
other device measuring duration of ultra-short pulses) as mea-
surement setups. These devices provide information about basic
pulse parameters: optical spectrum, time duration, repetition
rate, average power, energy and peak power. In principle, pulse
has to be measured in both time and frequency domains be-
cause of nontrivial relation between optical spectrum and time
envelope of the pulse [9].

A large set of tools leads to complexity and corresponding
cost of the controlled devices that greatly limit application of the
emerging feedback based approaches to laboratory experiments.
Reduction in the number of measurement tools and devices
required for realization of feedback loop is a critical challenge in
development of “smart” laser systems. In broader perspective,
first attempt to reduce the number of measurement setups was
made in [10], where neural network predicts pulse parameters
of x-ray free electron laser.

The novelty of our work is an experimental demonstration of
a feedback system that requires nanosecond detector to measure
all listed basic parameters of a picosecond pulse. We implement
this novel technique using the following steps using acquisi-
tion of an oscilloscope trace. First, registration of time-domain
comb of pulses indicates the mode-locking regime. Second,
Fourier transform of oscilloscope trace provides information
about radio-frequency spectrum of the mode-locked regime and,
consequently, about a quality of mode-locking. And finally,
dispersive Fourier transform (DFT) analysis available from the
oscilloscope trace of dispersively stretched pulses, allows one
to measure optical spectrum of the pulses [11]. We would like
to stress that oscilloscope trace of short optical pulses does not
give directly any information about their duration. Sensitivity
of photodetector is limited by its relaxation time, which makes

http://dx.doi.org/10.1364/ao.XX.XXXXXX


Letter Optics Letters 2

Fig. 1. (a) Experimental setup. (b) ACF examples of coherent (blue line) and noise-like (green line) output pulses. (c) Example of
optical spectrum of a pulse with significant Raman part. (d) Example of radio-frequency spectrum of a pulse comb near funda-
mental mode of a laser cavity. (e) Oscilloscope trace of a pulse comb detected after propagation through long spool of a fiber. (f)
Fourier transformation of oscilloscope trace representing radio-frequency spectrum of DFT pulse comb. (g) Dispersive Fourier
transformation of a pulse comb presenting optical spectrum of a pulse per roundtrip.

impossible to measure duration of optical pulses less than hun-
dreds of picoseconds.

The goal of this work is to demonstrate a feasibility of mea-
surement of the temporal characteristics of the output pulses of
F-8 fiber laser employing DFT trace of pulse comb and machine
learning technique. To determine temporal width of pulses we
used machine learning techniques focusing on artificial neural
network. We demonstrate the general approach using as an
example the F-8 fiber lasers with two amplifiers where a large
number of pulse regimes with different spectral and temporal
characteristics can be observe. We believe that our findings pave
the way to implement compact and relatively low cost feedback
loop for laser systems.

2. EXPERIMENT

Figure 1(a) illustrates the F-8 mode-locked fiber laser under
study. The laser cavity consists of two fiber loops, unidirectional
(main) and bidirectional (nonlinear amplifying loop mirror) ones,
connected to each other by a 40/60 coupler. The main loop in-
cludes 70% output coupler and a high-power Faraday isolator
that provides unidirectional propagation. Both loops comprise
2.5-m long amplifying sections of double-clad Yb-doped fibers
with absorption of 3.9 dB/m at 978 nm. Active fibers are pumped
through fiber beam combiners by independently controlled mul-
timode laser diodes with an optical power of up to 4.5 W at a
wavelength of 978 nm. The fibers inside the cavity, both passive
and active, are polarization-maintaining.

To measure basic parameters of the mode-locked pulse such
as time duration, optical spectrum and radio-frequency spec-
trum the following tools were used: the A.P.E. pulseCheck au-
tocorrelator with scanning range from 120 fs up to 160 ps, Tek-
tronix RSA 3308B radio-frequency spectrum analyzer with 2-Hz
resolution for inter-mode beat signal measuring, the Yokogawa
AQ 6375 optical spectrum analyzer (OSA) with resolution 0.1 nm,
the Tektronix DPO71604C oscilloscope connected with photo
detector with bandwidth of 1 GHz.

A full-width half maximum of autocorrelation function (ACF)
was used as a measure of pulse duration. ACF duration of gener-
ated pulses varied from 28 to 160 ps. To distinguish single-scale
(coherent) and double-scale (noise-like) pulses we also measure
a contrast of ACF coherence spike (Fig. 1 (b)). The contrast of
coherence spike was calculated as a difference between a height
of coherence spike and a height of ACF envelope of normalized
ACF trace. To derive the height of ACF envelope, we applied to
ACF trace the low-pass 3-order Butterworth filter with 0.01 (π
rad/sample) cut-off frequency. For example, the contrast of ACF
coherence spike of a noise-like pulse shown in Fig. 1 (b) (green
line) is 0.32. Contrast of coherence spike varied from 0.0036 to
0.5. We assume that noise-like pulses have coherence spike con-
trast higher than 0.02. Optical spectrum of mode-locked pulses
generated by the fiber laser includes two parts, corresponding
to signal pulse and noisy Raman pulse (Fig. 1 (c)). Both pulses
were characterized by average power and spectrum width. For
the signal part, these values ranged between 40 and 300 mW
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and 0.75 and 12 nm respectively. The average power of Raman
ranged between 0 and 35 % of total power. The signal to noise ra-
tio of radio-frequency inter-mode beats (RF contrast in RF maps)
was measured as a contrast between the background level and
the spike at fundamental frequency (Fig. 1 (d)). The RF-contrast
varied between 0 and 73 dB.

In this work we aim to replace these three measurement
tools by a single oscilloscope that measures DFT trace of optical
pulses. To measure DFT trace of optical pulses we used 14.93-km-
long fiber span with dispersion β2 = 15.1e-27 s2/m. Stretched
pulses were measured by the oscilloscope with the sampling
rate of 3 GS/s (Fig. 1 (e)). Some pulse parameters such as radio-
frequency and optical spectrum can be measured directly from
DFT trace. Fourier transformation of DFT trace gives radio-
frequency spectrum of a pulse comb (Fig. 1 (f)). Using obtained
radio-frequency spectrum we calculated number, average power
and standard deviation of radio-frequency peaks. Rescaling DFT
trace provides optical spectrum of pulses per roundtrip (Fig. 1
g), and therefore gives similar information as optical spectrum
analyzer.

The most challenging part was to determine temporal dura-
tion of a pulse. In fact, there is no direct relation between its
optical or radio-frequency spectrum and time duration. How-
ever, laser system with specific chromatic dispersion, nonlin-
ear coefficient and Stokes shift generates specific set of pulsed
regimes and, therefore, there is no need to make a universal mea-
surement tool to determine pulse parameters. In this work we
demonstrate that it is possible to train artificial neural network
to determine with acceptable accuracy a temporal duration of
the pulses by following features extracted from DFT trace: (i) op-
tical spectral width of signal, (ii) optical spectral width of Raman
pulse, (iii) optical power of signal, (iv) optical power of Raman
pulse, (v) total optical power, (vi) number of radio-frequency
spectrum peaks, (vii) average power of radio-frequency spec-
trum peaks, (viii) standard deviation (std) of radio-frequency
peaks power.

It worth to mention that direct measuring of optical spectrum
of a pulse using DFT setup requires careful adjusting of input
power to reduce influence of nonlinear effects such as self-phase
modulation and Raman scattering. We would have to implement
a variable attenuator to control input power and measure optical
spectrum width of the pulses with average powers from 40
to 300 mW. Instead of using an attenuator we apply artificial
neural network to predict a width of optical spectrum at the laser
output, assuming nonlinear dependency between the spectra
width at the DFT line input and output.

3. MACHINE LEARNING APPROACH

At the first stage we estimate ACF width for the whole vari-
ety of generated optical pulses, including partially coherent
double-scale pulses. Artificial neural network (ANN) model
from TensorFlow software library [12] was employed to deter-
mine full-width-half-maximum (FWHM) of the ACF trace. The
ANN is comprised of 3 hidden layers with 32, 32, and 16 neurons.
For the training of ANN, a data set containing 13600 examples
was used. To obtain data, we continuously changed the powers
of both pumping diodes in the range from 4.5 to 0.5 W in the
following order. At a fixed power of the LD1, we gradually
reduced the power of the LD2 from 4.5 to 0.5 W with a step of
0.03 W and measured the parameters of the output radiation at
each power step. Then the power of LD1 was reduced by 0.03
W and the procedure was repeated until LD1 power became

equal to 0.5 W. Eight parameters extracted from DFT trace were
used as features for estimate: signal and Raman powers, spec-
tral width of signal and Raman pulses, number and average
power of radio-frequency spectrum peaks, standard deviation
and normalized standard deviation of the radio-frequency peaks
power. Note, that we were keeping only the variables showing
a high correlation with the target characteristics. Instead of nor-
malization of the features we used batch normalization layer
before each nonlinear layer of the network. We also removed
outliers in the outputs, corresponding to continuous-wave gen-
eration, unstable generation of fully stochastic radiation and
broken measurements. For this purpose, we filtered out exam-
ples with radio-frequency contrast less than 50 dB. This filtering
process removed 30% of the initial data. Distribution of the ACF
durations after filtration is shown in Fig. 2(a). The dataset then
was then divided randomly into training (80%) and testing (20%)
sets. Part of the training set was used for model validation. The
testing set was kept isolated from the rest during the training
and optimization of the model. For ANN training we employed
Adam optimization algorithm and Mean Squared Error (MSE)
loss function commonly used for regression problems. To avoid
overfitting, regularization and early stopping techniques were
applied. After training the model, it was applied to the test set
to predict durations of the ACF traces.

We found out that the model is able to predict the ACF dura-
tion with a mean absolute error near 3 ps or 4.8% mean absolute
percentage error. Figure 2(b) shows measured values compared
to the predicted ones. Note, that 69% and 89% of the testing
samples were predicted with more than 5% and 10% relative
error correspondingly. Only 3% of the testing data showed more
than 20% relative error.

The obtained results were also compared with the predictions
of basic linear regression and "Extreme Gradient Boosting" (XG-
Boost) machine learning technique [13], based on gradient boost-
ing of regression trees [14]. The algorithm used the following
parameters: the boosted trees number (150), the maximum tree
depth (7) and the learning rate (0.08). The linear model achieves
only 15% mean absolute percentage error, which confirms the
nonlinearity of the problem. The quality of prediction drops
down if duration of ACF trace exceeds 100 ps (Fig. 2(d)). The
XGBoost regression demonstrated ∼5% average error, which
is very close to prediction results obtained with the neural net-
work (Fig. 2(c)). At the same time, XGBoost takes less time to be
trained relative to ANN and does not require rigorous parameter
settings (number of hidden layers and neurons on each layer,
learning rate, etc.). In our case, the difference between the XG-
Boost and ANN is not significant and both methods performed
well in solving the regression problem.

Table 1. Mean error of the different prediction examples

model ACF width RF contrast Signal ∆λ

ANN 4.8% (3.1 ps) 3.1% (1.9 dB) 5.8% (0.13 nm)

XGBoost 5% (3.2 ps) 3% (1.8 dB) 4.8% (0.11 nm)

Linear 15% (10.2 ps) 4% (2.3 dB) 14% (0.29 nm)

At the next stage we tried to determine the other essential
characteristics of the realized pulses, such as optical spectral
width (∆λ) and radio-frequency beating spectra contrast before
propagation in fibers pool of the DFT measurement setup. it is
worth noting, that the same ANN architecture and parameters
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Fig. 2. (a) Distribution of the ACF durations. (b-d) Measured width of ACF traces compared to the predicted ones for the test set
using the neural network (b), XGBRegressor (c) and linear regression model (d).

of xgboost as for ACF trace duration were used for prediction.
Mean percentage and absolute errors of the different prediction
examples obtained from each of the three models are summa-
rized in the table 1. Therefore, the building models are able to
make accurate predictions for basic characteristics of the single-
pulse generation regime of the F-8 laser.
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Fig. 3. Comparison of the measured and predicted ACF dura-
tions of operating laser. Inset: Accuracy of prediction.

Finally, the trained neural network was applied to operating
F-8 fiber laser. We measured ACF of a pulsed regime and its
DFT trace independently and calculated prediction accuracy of a
pulse duration. Time series of the measured and predicted width
of the ACFs, corresponding to the two mode-locked regimes
with ∼84 ps and ∼108 ps output pulses, are shown in Fig. 3.
Time fluctuations of the predicted width exceed fluctuations
of the measured width due to difference in integration time
of the autocorrelator and oscilloscope and can be attributed to
fluctuations of the pulse train at the laser output. The average
error maintained below 5% level during the whole measurement
time (Fig. 3, inset). We tested our model on different pulsed
regimes and made sure that predictions had the same degree
of accuracy. Thus, DFT analysis in combination with machine
learning algorithms can be used for control of the F-8 fiber laser
operation, for example, for calculation of objective functions of
the pulsed regimes. [15].

4. CONCLUSION

In conclusion, we demonstrated for the first time a novel method
for determination of a temporal duration of the mode-locked
pulses using DFT trace of pulse comb and machine learning
technique. This method can be further improved, e.g. by more

advanced filtering of the noisy and unstable signal generation
regimes. Of course, different types of fiber lasers will generate
pulses with different properties and distributions of key param-
eters. Their investigation will require new researching efforts
and adjusting of machine learning algorithms. However, the
obtained results clearly show a feasibility of accurate prediction
of the basic pulse characteristics of F-8 fiber laser, i.e. temporal
width, optical spectrum and radio-frequency spectrum using
data extracted from the oscilloscope measurements. In other
words, a single device could be used for resolving all key laser
pulse parameters. Such compact and robust measuring device
can be a key component for realization of feedback loop in sys-
tems that require self-starting and self-optimization.
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