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Abstract

An important goal in neural map learning, which can conveniently be accomplished
by magnification control, is to achieve information optimal coding in the sense of
information theory. In the present contribution we consider the winner relaxing ap-
proach for the neural gas network. Originally, winner relaxing learning is a slight
modification of the self-organizing map learning rule that allows for adjustment of
the magnification behavior by an a priori chosen control parameter. We transfer this
approach to the neural gas algorithm. The magnification exponent can be calculated
analytically for arbitrary dimension from a continuum theory, and the entropy of
the resulting map is studied numerically conf irming the theoretical prediction. The
influence of a diagonal term, which can be added without impacting the magnifica-
tion, is studied numerically. This approach to maps of maximal mutual information
is interesting for applications as the winner relaxing term only adds computational
cost of same order and is easy to implement. In particular, it is not necessary to
estimate the generally unknown data probability density as in other magnification
control approaches.

Key words: Neural gas, Self-organizing maps, Magnification control, Vector
quantization

1 Introduction

Neural maps are a widely ranging class of neural vector quantizers which
are commonly used e.g. in data visualization, feature extraction, principle
component analysis, image processing, and classification tasks. A well studied
approach is the Neural Gas Network (NG) [21]. An important advantage of
the NG is the adaptation dynamics, which minimizes a potential, in contrast
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to the self-organizing map (SOM) [17] frequently used in vector quantization
problems.

In the present paper we consider a new control scheme for the magnification of
the map [2,10,12,20,24,27]. Controlling the magnification factor is relevant for
many applications in control theory or robotics, were (neural) vector quan-
tizers are often used to determine the actual state of the system in a first
step, which is an objective of the control task [31,27]. For instance, in [28]
was demonstrated that the application of a magnification control scheme for
the neural gas based classification system of position and movement state
of a robot can reduce the crash probability. Another area of application is
information-theoretically optimal coding of high-dimensional data as occur in
satellite remote sensing image analysis of hyperspectral images [22,30] which
is, in fact, the task of equiprobabilistic mapping [26]. Further applications
can be found in medical visualization and classification tasks [32]. Generally,
vector quantization according to an arbitrary lp-norm can be related to the
problem of magnification control as it is explained below.

2 The neural gas network

The NGmaps data vectors v from a (possibly high-dimensional) data manifold
D ⊆R

d onto a set A of neurons i, formally written as ΨD→A : D → A. Each
neuron i is associated with a pointer wi ∈Rd also called weight vector, or
codebook vector. All weight vectors establish the set W = {wi}i∈A. The
mapping description is a winner take all rule, i.e. a stimulus vector v ∈ D
is mapped onto the neuron s ∈ A the pointer ws of which is closest to the
actually presented stimulus vector v,

ΨD→A : v 7→ s (v) = argmin
i∈A

‖v −wi‖ . (1)

The neuron s (v) is called winner neuron. The set

Ωi = {v ∈D|ΨD→A (v) = i} (2)

is called (masked) receptive field of the neuron i.

During the adaptation process a sequence of data points v ∈ D is presented
to the map with respect to the stimuli distribution P (D). Each time the
currently most proximate neuron s according to (1) is determined, and the
pointer ws as well as all pointers wi of neurons in the neighborhood of ws are
shifted towards v, according to

△wi = ǫhλ (i,v,W) (v −wi) . (3)

2



The property of “being in the neighborhood of ws” is represented by a neigh-
borhood function hλ (i,v,W). The neighborhood function is defined as

hλ (i,v,W) = exp

(

−
ki (v,W)

λ

)

, (4)

where ki (v,W) is defined as the number of pointers wj for which the relation
‖v −wj‖ ≤ ‖v −wi‖ is valid, i.e. ki (v,W) is the winning rank [21]. In
particular, for the winning neuron s we have hλ (s,v,W) = 1.0. We remark
that in contrast to the SOM the neighborhood function is evaluated in the
input space. Moreover, the adaptation rule for the weight vectors in average
follows a potential dynamics [21].

The magnification of the trained map reflects the relation between the data
density P (D) and the density ρ of the weight vectors [23]. For the NG the
relation

ρ (w) ∝ P (D)αNG (5)

with

αNG =
d

d+ 2
(6)

has been derived [21]. The exponent αNG is called magnification factor. For
the NG it depends on the intrinsic dimensionality d of the data which can
be numerically determined by several methods [5,6,7,14,25]. For simplicity we
further require that the (embedding) data dimension is the intrinsic one.

Generally, the information transfer is not independent of the magnification
of the map [33]. It is known that for a vector quantizer (or a neural map
in our context) with optimal information transfer the relation α = 1 holds.
Otherwise, a vector quantizer which minimizes the mean distortion error

Eγ =
∫

D

‖ws − v‖γ P (v) dv (7)

has the magnification factor

α =
d

d+ γ
(8)

with v ∈D ⊆ R
d, i.e. the magnification of a vector quantizer is directly related

to the minimization of the description error according to a certain lp-norm [33].
Hence, the NG minimizes the usual E2 distortion error.
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We now address the question how to extend the NG to achieve an a priori
chosen optimization goal, i.e. an a priori chosen magnification factor.

3 Controlling the magnification in NG

For the SOM several methods exist to control the magnification of the map.
The first approach to influence the magnification of a learning vector quantizer,
proposed in [13] is called the mechanism of conscience. For this purpose a bias
term is added in the winner rule (1):

ΨD→A : v 7→ s (v) = argmin
i∈A

(

‖v −wi‖ − γ
(

1

N
− pi

))

(9)

where pi is the actual winning probability of the neuron i and γ is a balance fac-
tor. Hence, the winner determination is influenced by this modification. The al-
gorithm should converge such that the winning probabilities of all neurons are
equalized. This is related to a maximization of the entropy and consequently
the resulting magnification is equal to unity. However, as pointed out by [26],
adding a conscience algorithm to the SOM does not equate to equiprobabilis-
tic mapping, in general. Only for very high dimensions, a minimum distortion
quantizer (such as the conscience algorithm) approaches an equiprobable quan-
tizer ([26] - page 93). Further, an arbitrary magnification cannot be achieved
by this mechanism. Moreover, numerical studies of the algorithm have shown
instabilities [26]. To control the magnification, a local learning parameter was
introduced [1] into the usual SOM-learning scheme. The now localized learning
allows in principle an arbitrary magnification. Other authors proposed vari-
ants which lead more away from the original SOM by kernel methods [26] or
statistical approaches [19].

For the NG a solution of the magnification control problem can be realized
by introducing an adaptive local learning step size ǫs(v) [27] according to the
above mentioned approach for SOM [1]. Then, the new localized learning rule
reads as

△wi = ǫs(v)hλ (i,v,W) (v −wi) (10)

with the local learning parameters ǫi = ǫ (wi) depending on the stimulus
density P at the position of the weight vectors wi via

〈ǫi〉 = ǫ0P (wi)
m . (11)

The brackets 〈. . .〉 denote the average in time, and s (v) is the best–matching
neuron with respect to (1). Note, that the local learning rate ǫs(v) of the
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winning neuron is applied in the adaptation step (10) for each neuron. This
approach finally leads to the new magnification law

α′ = αNG · (m+ 1) (12)

which is a modification of the old one. Hence, the parameter m plays the role
of a control parameter.

However, in real applications one has to estimate the generally unknown data
distribution P . Usually this is done by estimation of the volume of the receptive
fields and the firing rates [1,29]. This may lead to numerical instabilities of the
control mechanism [15,26,31]. Therefore, an alternative control mechanism is
demanded.

Recently, a new approach for magnification control of the SOM was introduced
[8,9] which avoids the P -estimation problem. The respective approach is a
generalization of a modification of the usual SOM [16]. It is called (generalized)
Winner Relaxing SOM (WRSOM) [8,9]. In winner relaxing SOM an additional
term occurs in weight vector update for the winning neuron, implementing
a relaxing behavior. The relaxing force is a weighted sum of the difference
between the weight vectors and the input according to their distance rank. The
relaxing term was originally introduced in [16] to obtain a learning dynamic
for SOM according to an average reconstruction error including the effect of
shifting Voronoi borders.

It was shown that the generalized winner relaxing mechanism applied in WR-
SOM can be used for magnification control in SOM, too [8]. Thereby, the
winner relaxing approach provides a magnification control scheme for SOM
which is independent of the shape of the data distribution only depending on
parameters of the winner relaxing term.

3.1 The winner relaxing neural gas

We now transfer the generalized winner relaxing approach for SOM to the
NG and consider its influence on the magnification. In complete analogy to
the WRSOM we add a general winner relaxing term R (ξ, κ) to the usual
NG-learning dynamic (3). Then the weight update reads as

△wi = ǫhλ (i,v,W) (v −wi) +R (ξ, κ) , (13)

whereby the winner relaxing term is defined as

R (ξ, κ) = (ξ + κ) (v −wi) δis − κδis
∑

j

hλ (j,v,W) (v −wj) (14)
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depending on the additional weighting parameters ξ and κ. We refer to this
algorithm as the winner relaxing NG (WRNG). The original winner relaxing
term described in [16] is obtained for the special parameter choice ξ = 0, κ = 1

2
.

Note, that the relaxing term only contributes to the winner weight vector
update as in the original approach.

3.2 Derivation of the Magnification for WRNG

We now derive a relation between the densities ρ and P in analogy to [21] for
the winner relaxing learning (13). The procedure is very similar as in [21,27].
The average change 〈△wi〉 for the winner relaxing NG learning rule (13) is

〈△wi〉=
∫

P (v)hλ (i,v,W) (v −wi) + (ξ + κ) ·δis · (v −wi)

−δisκ
∑

j

hλ (j,v,W) (v −wj) dv. (15)

We now consider the equilibrium state, i.e. 〈△wi〉 = 0.

For this purpose, we first separate the integral (15) into

〈△wi〉 = I1 + I2 + I3 (16)

with

I1 =
∫

P (v) hλ (i,v,W) (v −wi) dv, (17)

I2 =
∫

P (v) (ξ + κ) ·δis · (v −wi) dv (18)

and

I3 = −
∫

P (v) δisκ
∑

j

hλ (j,v,W) (v−wj) dv (19)

The integral I1 is the usual one according to the NG dynamics whereas I2, I3
are related to the winner relaxing scheme. In the following we treat each inte-
gral in a separate manner. Thereby we always assume a continuum approach,
i.e. the index i becomes continuous. Hence, for a given input v one can find
an optimal ws fulfilling even ws = v [24].

Doing so, the I2-integral vanishes in the (first order) continuum limit because
the integration over δis only contributes for ws, but in this case (v −ws) = 0
holds.
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We now pay attention to the I3-integral: The continuum assumption made
above allows a turn over from sum

∑

j hλ (wj,v,W) (v −wj) to the integral
form

∫

hλ (w,v,W) (v −w) dw in (19). The further treatment is in complete
analogy to the derivation of the magnification in the usual NG [21]. Let r be
the difference vector

r = v −wi (20)

The winning rank ki (v,W) only depends on r, therefore we introduce the
new variable

x (r) = r̂ · ki (r)
1

d (21)

which can be assumed as monotonously increasing with ‖r‖. Thus, the inverse
r (x) exists and we can rewrite the I3-integral (19) into

I3 =
∫

P (v) δisκ
[
∫

hλ (x) · r (x) · J (x) dx
]

dv (22)

with the d× d–Jacobian–matrix

J (x) = det

(

∂rk
∂xl

)

. (23)

I3 only contributes to 〈△wi〉 for the winning weight (realized by δis), i.e., for
wi = ws which is equal to v according to the continuum approach. Hence, the
integration over v yields

I3 = κP (wi) ·
∫

hλ (x) · r (x) · J (x) dx (24)

If hλ (ki (r)) rapidly decreases to zero with increasing r, we can replace the
quantities r (x), J (x) by the first terms of their respective Taylor expansions
around the point x = 0 neglecting higher derivatives. We obtain

x (r) = r (τdρ (wi))
1

d

(

1 +
r · ∂rρ (wi)

d · ρ (wi)
+O

(

r2
)

)

(25)

which corresponds to

r (x) = x (τdρ (wi))
−

1

d

(

1− (τdρ (wi))
−

1

d ·
x · ∂rρ (wi)

d · ρ (wi)
+O

(

x2
)

)

(26)

with τd = π
d

2/Γ
(

d
2
+ 1

)

as the volume of a d–dimensional unit sphere [21].
Further,
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J (x)=

(

J (0) + xk

∂J

∂xk

+ . . .

)

(27)

= (τd · ρ)
−1

(

1− (τd · ρ)
−

1

d

(

1 +
1

d

)

· x ·
∂rρ

ρ

)

+O
(

x2
)

(28)

and, hence,

∂J

∂x

∣

∣

∣

∣

∣

x=0

= − (τd · ρ)
−(1+ 1

d
) ∂rρ

ρ
. (29)

Therefore, the integral in equation (24) can be rewritten as

I3= ǫ′κP (τd · ρ)
−

1

d

∫

D

hλ (x) · x · (30)

·

(

(τd · ρ)
−1 −

(

1 +
1

d

)

(τd · ρ)
−(1+ 1

d
) · x ·

∂rρ

ρ
+ . . .

)

·

(

1− (τd · ρ)
−

1

d · x ·
∂rρ

d · ρ
+ . . .

)

dx

The integral terms in (30) of odd order in x vanish because of the rotational
symmetry of hλ (x). Then (24) yields, neglecting terms in higher order in x,

I3 = ǫ′κP
d+ 2

d

∂rρ

ρ
(31)

with

ǫ′ =
ǫ0

(τd · ρ)
2+d

d

∫

D

hλ (x) · ‖x‖
2 dx. (32)

It remains to consider the I1-integral. As mentioned above, it is identical to
the averaged adaptation of the usual NG. Hence, the treatment can be taken
from there and we get

I1 = ǫ′
(

∂rP − P ·
d+ 2

d
·
∂rρ

ρ

)

(33)

as an equivalent equation [21].

Taking together (33) and (31), the stationary solution of (13) is given by

〈△wi〉 = 0 = ∂rP − P ·
d+ 2

d
·
∂rρ

ρ
+ Pκ

d+ 2

d

∂rρ

ρ
(34)
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This differential equation roughly has the same form as the one for the usual
Neural Gas (33). Its solution is given by

ρ ∝ P αWRNG (35)

with the exponent

αWRNG =
1

1− κ

d

d+ 2
(36)

being the magnification factor. Hence, the magnification factor of the WRNG
can be described also in terms of the magnification of the usual neural gas

αWRNG =
1

1− κ
αNG (37)

Note, that the parameter ξ of the winner relaxing term R (ξ, κ) does not
influence the magnification.

3.3 Discussion of the theoretical result and comparison with winner relaxing

SOM

Two direct observations can be immediately made: Firstly, the magnification
exponent appears to be independent of the additional diagonal term (con-
trolled by ξ) for the winner which is in agreement with the WRSOM result
[8]. Therefore ξ = 0 again is the usual setting in WRNG for magnification con-
trol. Secondly, by adjusting κ appropriately, the magnification exponent can
be adjusted, e.g. to the most interesting case of maximum mutual information
[18,33]. Maximum mutual information, which corresponds to optimal informa-
tion transfer, is obtained when magnification equals the unit [3,4]. Hence, we
have for this case the optimum value

κopt =
2

d+ 2
. (38)

If the same stability borders |κ| = 1 of the WRSOM also are valid here, one
can expect to increase the NG exponent by positive values of κ, or to lower
the NG exponent by a factor 1/2 for κ = −1. In contrast to the Winner
Enhancing SOM, where the relaxing term has to be inverted (κ < 0) to in-
crease the magnification exponent, for the neural gas positive values of κ are
required to increase the magnification exponent. However, the magnification
factor still remains dependent on the generally unknown (intrinsic) dimension
of the data. If this dimension is known, the parameter κ can be set a priori
to obtain a neural gas of maximal mutual information. In this approach it is
not necessary to keep track of the local reconstruction errors and firing rate
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for each neuron to adjust a local learning rate. Possibilities for estimating the
intrinsic dimension are the well-known Grassberger-Procaccia-analysis [14] or
the neural network approach using again a NG [5].

However, one has to be cautious when transferring the λ → 0 result obtained
above (which would require to increase the number of neurons as well) to a
realistic situation where a decrease of λ with time will be limited to a final
finite value to avoid the stability problems found in [15]. If the neighborhood
length in SOM is kept small but fixed for the limit of fine discretization, the
neighborhood function of the second but one winner will again be of order 1
(as for the winner). For the NG however the neighborhood is defined by the
rank list. As the winner is not present in the I2 + I3 integral, all terms share
the factor e−λ by hλ(k) = e−λhλ(k− 1) which indicates that in the discretized
algorithm κ has to be rescaled by e+λ to agree with the continuum theory. 1

4 Numerical results

A numerical study shows how the winner-relaxing mechanism is able to control
the magnification for optimization of the mutual information of a map gener-
ated by the WRNG. Using a standard setup as in [15] of N = 50 Neurons and
107 training steps with a probability density P (x1 . . . xd) =

∏

i sin(πxi), with
fixed λ = 1.5 and ǫ decaying from 0.5 to 0.05, the entropy of the resulting map
computed for an input dimension of 1, 2 and 3 is plotted in Fig. 1. Thereby,
the entropy is computed using the winning probabilty pi of the neurons:

H = −
N
∑

i=1

pi ln (pi) (39)

The entropy shows a dimension-dependent maximum approximately at κ =
2

d+2
eλ. The scaling of the position of the entropy maximum with input dimen-

sion is in agreement with the continuum theory, as well as the prediction of
the opposite sign of κ that has to be taken to increase mutual information.
Our numerical investigation indicates that the above discussed prefactor, in
fact, has to be taken in account for finite λ and a finite number of neurons.
We obtain, within a broad range around the optimal κ the entropy is close to
the maximum

∑N
i=1 Pi ln(Pi) = ln(N) given by information theory.

In a second numerical study we investigate the influence of the additional
diagonal term (controlled by ξ) for the winner. Already for the WRSOM
the magnification exponent is independent of this diagonal term [8]. In the
respective derviation (I2-integral (18)) only first order approximations were

1 In particular, for a finite λ the maximum coefficient hλ that contributes to the
I2 + I3 integral is given by the prefactor of the second but one winner, which is
given by eλ.
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Fig. 1. Plot of the entropy H according (39) curves for varying values of κ for
one- (⋄), two- (+), and three-dimensional (✷) data. The entropy has the maxi-
mum ln(50) ≃ 3.912 if the magnification equals unity [33]. The arrows indicate the
rescaled κopt-values for the respective data dimensions.

used. Otherwise, I2 may contribute in higher orders. To verify that the con-
tribution of an additionally added diagonal term is marginal, the entropy was
calculated both for ξ = 0 and (κ + ξ) = 0 [11]. However, no influence on the
entropy was found for the choice κ + ξ = 0 instead of ξ = 0. (Fig 2). More
pronounced is the influence of the diagonal term on stability; according to the
larger prefactor no stable behavior has been found for |ξ| ≥ 1, therefore ξ = 0
is the recommended setting.

5 Conclusions

We introduced a winner-relaxing term in neural gas algorithm to obtain a
winner-relaxing neural gas with the possibility of magnification control. The
winner relaxing scheme is adopted from winner-relaxing SOM. The new con-
trolling scheme offers a method which is independent on the explicit knowledge
of the generally unknown data distribution which is an advantage in compari-
son to the earlier presented neural gas with localized learning for magnification
control. In particular, we avoid the difficult determination of the data proba-
bility density by estimation of the volume of the receptive fields of the neuron
and the firing rate. Numerical simulations show the abilities of the proposed
algorithm.
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Fig. 2. Comparison of the entropies curves for different κ-values for ξ = 0 (straight)
and (ξ + κ) = 0 (dashed) with respect to one- (⋄), two- (+), and three-dimensional
(✷) data.
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