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Abstract 

Lipid extraction from microalgae is maximized by defining the optimal operating conditions of 

the microwave pretreatment method. Using the experimental data, a robust model that describes 

the lipid extraction is generated using fuzzy logic. Then, the optimal extraction conditions of the 

lipid are determined using Particle Swarm Optimization (PSO) algorithm. Three different 

operating parameters influence on the recovered lipid from Microalgae. These parameters are 

power (W), heating time (minutes), and extraction time (hours). Accordingly, during the 

optimization process, these parameters are used as a decision variables for PSO optimizer in 

order to maximize the recovered lipid that used as a cost function. The resulting plots 

demonstrated a well-fitting between the fuzzy model and the experimental data. Based on the 

built model, the optimization process achieved a significant increase in the lipid extraction by 

22% compared to that obtained experimentally and using the ANOVA. 
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1. Introduction 

Environmental impact and limited resources of fossil fuels, resulted in rapid growth usage of 

renewable energy [1-5]. Among the different renewable energy sources, biomass energy is not 

only a renewable and clean energy source, but also it can contribute to the waste management 

projects if it is planned correctly [6-9]. Transportation sector consumes huge amounts of diesel 

that is coming from fossil fuel [10, 11]. Biodiesel is an alternative diesel fuel that is renewable 

and offers better environmental impacts [12, 13] when compared with conventional diesel oil. It 

is currently produced, commercially, from plant and animal oils, such as soybeans, animal fat, 

palm oil, waste cooking oil [14]. However, these feedstocks are recognized limited which 

affected the further expansion of producing biodiesel [15]. Alternatively, it has been recognized 

that triacylglycerol, the fundamental component needed in biodiesel production, is contained as 

lipid within the microalgae cells [16-18]. Indeed, microalgae offers more advantages when 

compared with other feedstocks, including higher growth rates, significantly better CO2 fixation 

rates (almost double their dry weight in some cases), and the fact that they don’t compete with 

land or food crops. Moreover, coupling microalgae cultivation with wastewater treatment has 

been intensively studied aiming to use the nutrients in wastewater to cultivate microalgae for 

different applications [19]. Biodiesel production from microalgae consists four different stages, 

namely, the cultivation, harvesting, lipid extraction, and transesterification. On the other hand, 

due to the recalcitrant nature of microalga cell wall and composition, lipid extraction is a major 

limitation that needs substation research [20]. However, it is proven that the lipid extraction 

process is a key to increasing the whole process efficiency by increasing the amount of lipid 

exposed during transesterification, and thus enhancing the economic feasibility of the process 

[21, 22]. Cell disruption is a fundamental process in the lipid extraction, during which, lipids are 

released from cellular components and move to the adjacent medium [23]. Different techniques 

were used to assure that, including mechanical and non-mechanical methods. Mechanical 

methods were used to physically rupture the microalgae cell walls, using either high pressure 

homogenizers or bead beating, while other methods tend to weaken the cell membrane to 

increase the penetration of the solvent and help in extracting, either chemically, biologically, or 

thermally [24]. The use of microwaves as a cell rupture technique was explored since 2008, with 

the benefit of quick and economic heating compared with the conventional heating systems [25]. 

Moreover, it has been proven that microwave is more efficient in small scale extraction due to 



the non-corrosive and low maintenance cost [26]. Microwaves induce the vibration in the wet 

biomass medium which will result in water evaporation and in applying a high pressure on the 

cell walls leading to cell disruption, along with the thermal effect that is weakening the cell walls 

[27]. Several reports were carried out to study the operating parameters microwave extraction. It 

is found that lipid extraction is increased with increasing microwave power [28, 29]. For instance 

increasing microwave power from 400 to 1000 W resulted in increasing lipid extraction from 

14% to 28% using n-heptane/2-propanol (2/1) [28]. Biller et al. demonstrated that increasing the 

microwave power from 25 to 61 Wh/g resulted in increasing lipid extraction from 1.6 to 10% 

using Nannochloropsis sp. [30]. In another study, Passos et al. reported that lipid extraction 

increased with increasing the microwave power depending on the temperature and duration of 

the irradiance [31]. Some researchers used optimization algorithms as effective tools for 

maximizing the yielding process and the biodiesel production using a minimum number of 

experiments [32, 33].  For instance,  Anyanwu et al. [34] optimized the effect of air temperature 

and velocity on the dewatering of the microalgae using Response Surface Methodology (RSM). 

An optimized operating conditions of 4 m/s air velocity and an air temperature of 48 °C achieved 

92.83% dewatering efficiency. In our previous study, we used the microwave to extract lipid 

from Scenesdemus quadricauda microalgae. We used ANOVA to optimize the extraction 

conditions that revealed a 49 % lipid extraction at optimum conditions of 600 W, 8 min heating 

time and an extraction time of 3.5 minutes [26]. Applying fuzzy logic modeling in conjunction 

with the optimization techniques enriches the industrial and control applications [35-37]. The 

main contribution of this work is to present a new methodology based on Fuzzy logic and the 

Particle Swarm Optimization (PSO) to determine the optimum parameters required to achieve 

the maximum lipid recovery. Based on the experimental data set of the lipid extraction process, 

an accurate Fuzzy logic based-model for the lipid extraction process is created. Then, the optimal 

operating parameters are identified using PSO algorithm. Three different operating parameters 

influence on the recovered lipid from Microalgae. These parameters are power, heating time, and 

extraction time. Accordingly, during the optimization process, these parameters are used as a 

decision variable for PSO optimizer in order to maximize the recovered lipid that used as a cost 

function. Finally, a comparison between both techniques is also presented.  
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2. Experimental Setup 

A 50 ml of Scenesdemus quadricauda was cultured in the University of the West of Scotland, 

using the unicellular culture medium (K10) in 4 L flasks as described in [26]. During cultivation, 

cell concentration has changed from 1.815108 cell/ml at the beginning to 7.76371016 cell/ml by 

the end of the cultivation duration (20 days). Afterward, a sample of 500 ml of the wet algae was 

subjected to microwave pre-treatment using a round bottom open glass. The samples were pre-

treated at a microwave power ranging between 180 W to 600 W for times ranging between 2 

minutes to 8 minutes. Furthermore, different extraction times were tested between 3 and 4 hours. 

15 experiments were recorded according to the design matrix used in [26] as shown in Table 1: 

Table 1: Design matrix showing the effect of the parameters on the recovered lipid [26] 

 

 

3. Fuzzy Modelling of the Lipid Extraction from Microalgae 

Fuzzy logic (FL) is still proving as an efficient modeling tools in many industrial and control 

applications despite it has been emerged in the mid of sixties. Its robustness comes from its 

ability to track the data trend even if it is superimposed with noise or it is uncertain. Therefore, 

the model can be built using fuzzy modeling technique with very few numbers of training 

epochs. Three modeling phases are the fuzzy modeling procedure. It starts by the fuzzification 

phase which maps the crisp value to its corresponding fuzzy value via membership functions 

Power  

[W] 

Heating time 

[min] 

Extraction time 

[hours] 

Recovered lipid 

[%] 

180 5 3 14.01 

180 2 3.5 14.14 

180 8 3.5 10.38 

180 5 4 18.86 

390 2 3 18.87 

390 8 3 18.87 

390 5 3.5 32.43 

390 5 3.5 11.68 

390 5 3.5 25.46 

390 2 4 14.44 

390 8 4 37.84 

600 5 3 32.43 

600 2 3.5 18.69 

600 8 3.5 48.65 

600 5 4 25.45 



(MFs). Every MF represents the degree of belonging to a subset/class of data over the domain of 

discourse. The very popular fuzzifying MFs are the Gaussian and triangular shapes. The fuzzy 

variable is then fed to the rule-base, the core of the fuzzy inference system, in the second phase. 

The Mamdani and Takagi-Sugeno-Kang (TSK or Sugeno) types are the two forms of the fuzzy 

rule. They only differ in the output formulation. However, the Mamdani-type forms the output as 

a fuzzy MF while the TSK considers the output as a function of the inputs. The antecedent is 

produced by the logical AND or the Min operator of the fuzzy inputs. The fired fuzzy rules are 

then aggregated to produce the final fuzzy output. To obtain the final crisp output, a 

defuzzification method is applied which represents the third and last phase. There are many well-

known defuzzification methods in the literatures, but Center of Gravity (COG) is very common 

in Mamdani-form, however the Weighted Average (Wtaver) is preferred in the case of TSK-

form. 

  

For the sake of enhancing the production of biodiesel from wet microalgae using microwave pre-

treatment, some operating variables such as the microwave power (W), heating time (minutes) 

and extraction time (hours)  are controlling parameters in the lipid extraction process. In our 

previous study [26], we have investigated the effect of these three operating parameters on the 

lipid extraction process. Implementing Design of Experiment methodologies, modeling and 

optimization were carried out using a set of 15 different experiments conducted at different 

operation conditions. As it has been mentioned previously, FL offers robust modeling for 

uncertain and noisy data. The model obtained in our previous study using ANOVA [26] is highly 

nonlinear with noisy data set as shown in Figure (1). In this work, we have built a fuzzy model 

using a 3-input and one-output set of the 15 runs conducted in our previous study [26]. The data 

set is divided into training and testing with 13 data points used for training the system and 2 data 

points used for testing. The features of the fuzzy model are shown in Table 2. 

Table 2: Features of the Fuzzy Model  

Fuzzy Process  Attribute 

Rules form Sugeno-type 

Rule-base builder SC 

ANDing Operation Product 



ORing Operation Probabilistic OR 

Defuzzifying Method Wtaver 

Implication Min 

Aggregation  Max 

Number of Rules 13 

Number of Training Epochs 50 

Output  Linear function 

 

Before starting the training phase, the rule-base and the structure of the fuzzy have been 

constructed, and an ANFIS of ‘Sugeno-type’ is built based on 3-inputs and one ‘linear’ output. 

The rule-base is configured using the ‘Subtractive Clustering’ method. The proposed model has 

13 fuzzy rules. The model’s training process has been done with 13 samples for 50 epochs. The 

accuracy of the modeling is confirmed through training the model till an adequate small testing 

error is met. Furthermore, the mean squared errors (MSE) were calculated for the models’ 

predictions in both the training and testing phases and compared to those of the experimental 

data. The MSEs were found to be 4.2275*10-07, 0.67325 and 0.089768 for training, testing, and 

whole data, respectively, which were found the lowest over all the training trials. Figure (1) 

shows a comparison between the obtained results using the fuzzy model obtained in this study in 

comparison with the measured data as well as the optimized results using ANOVA. As clear 

from the figure, the built model using fuzzy is well matching the experimental results to a large 

extent compared to those in case of the ANOVA one indicating the reliability of the fuzzy 

model. The Root Mean Squared Error (RMSE) and the coefficient of determination (R2) as 

statistical test metrics between the proposed fuzzy model and the ANOVA model have been 

estimated. The RMSE values are 0.0898 and 114.09 for fuzzy model and ANOVA respectively. 

Whereas as the values of the coefficient of determination are 0.994 and 0.7854 respectively for 

fuzzy model and ANOVA. This prove the superiority of the fuzzy model, which gave minimum 

RMSE and maximum R2 values. 



 

Fig. 1. The fuzzy and ANOVA models’ performances against the experimental data 

 

Figure (2) shows a 3-D spatial shape of the recovered lipids for each combination of the input 

data in the fuzzy model, while the fuzzy membership functions of the system inputs are shown in 

Figure (3). 

 



 

 



 

Fig. 2 The 3-D spatial shape of the recovered lipid using inputs data of a) power and heating time 

inputs, b) power and extraction time, and c) heating time and extraction time. 

 

 

Fig. 3 The fuzzy model inputs’ MFs 



Testing the modeling accuracy to assure the resulting performance of the model for any unseen 

pattern of the input data is very crucial. For assessing the prediction accuracy, the model’s 

performance (prediction) is plotted against the experimental output (target) in both training and 

testing phases as presented in Figure (4). The plot illustrates that the fuzzy model’s predictions 

for both training and testing phases are spreaded closely around the diagonal line that represents 

the one hundred percent accuracy.  

 

Fig.4 Prediction Accuracy 

4. Parameter determination based on Particle Swarm Optimization 

Particle Swarm Optimization (PSO) emulates the birds movements. Its main idea is based on the 

use of some suggested solutions typically named particles [38]. The proposed particles move 

inside the searching area to hopefully locate the optimal solution. Throughout the searching task, 

each particle is modifying its orientation and location iteratively according to the best location of 

itself in addition to the best location found so far of the whole swarm’s particles [39]. In each 



iteration, every particle in the swarm updates its velocity v(k+1) and position p(k+1) based on the 

previous velocity v(k) and position p(k)  using the following relations [40]; 

p (k+1)= p(k) + v (k+1)                                         (1) 

v (k+1)= w*v (k)+ c1 * r1 * (pBest – p) + c2 * r2 * (gBest – p)  (2) 

where, w is the weight of inertia; pBest denotes the local best; gBest is the global best; c1 and c2 

represent the local experience weight and the global experience weight, respectively; r1 and r2 

are two variables changes randomly from 0 to 1. 

 

Three different operating parameters influence on the recovered lipid from Microalgae. These 

parameters are power (W), heating time (minutes), and extraction time (hours). Accordingly, 

during the optimization process, these parameters are used as a decision variable for PSO 

optimizer in order to maximize the recovered lipid that used as a cost function, as illustrated in 

Figure (5). 

Therefore, the cost function will be represented by Eq 3. 

f(x) = -(RLipeds)                      (3) 

Where, RLipids is the recovered lipids’ percentage, the negative sign here used for the ease change 

from maximization to minimization. 

Table 3 illustrates the parameters of the PSO used in this study and Figure 5 shows the 

optimization process configuration. The plot of the maximum cost-function found so far all over 

the 100 runs through optimization process is shown in Figure 6.  

Table 3: The PSO parameters 

Parameter Value 

Maximum Iterations 50 

Population Size 10 

Local experience 1.5 

Global experience 2.0 

Weight of Inertia 1 
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Fig. 5. Schematic diagram showing the optimization of lipid recover process 

 

 

 



 

Fig. 6 The plot of the maximum cost-function all over the 100 runs optimization process 

Table 4 shows a comparison between the optimal operating conditions and the corresponding 

outputs obtained in this study compared to those obtained in our previous work  [26]. As clear 

from the table, applying the PSO optimizer based on the fuzzy model resulted in a significant 

increase in the lipid recovery by 22% over that in [26]. 

Table 4: Lipid recovery percentages and the optimal parameters obtained in this study compared 

to those obtained in ANOVA [26] 

Method 
Power 

(W) 

Heating Time 

(minutes) 

Extraction Time  

(hours) 

Lipids 

(%) 

Optimal as in [26]  

 

 

600  

 

8  

 

3.5  

 

48.65  

Optimal using Fuzzy 

Model-PSO 

672.51 10 4.18 62.97 

 

 



Due to the stochastic behavior of the swarm optimizers, the optimizer results cannot trusted 

unless many trial have been done. Therefore, the optimization process was executed for 100 

times. The values of the statistical metrics of the whole runs are presented in Table 5. The 

metrics included the minimum (Min) value, the maximum (Max) value, the average (Avg) value, 

the standard deviation (StD) and the RMSE. By a simple comparison, it can be noticed from 

Table 5 that the average value of the extracted lipids is found to be very near to the maximum 

value which reinforces the results obtained from the PSO optimizer and make it more reliable. 

The optimization results are also strengthened by the very small value of the standard deviation 

StD which ensures that the outputs of the 100 runs are distributed closely around the average 

value.  

Table 5: The values of statistical metrics of the resulting output and their associated optimal 

variables of the 100 optimization runs 

Statistical 

Metric 

Lipids 

(%) 

Associated Decision Variables 

Power 

(W) 

Heating 

Time 

(minutes) 

Extraction 

Time  

(hours) 

Min 61.6494 750.0  10.0 3.5195 

Max 62.9700 672.5136  10.0 4.1795 

Avg 62.9302 674.8366  10.0 4.1598 

StD 0.2264 13.2870 0.0 0.1134 

RMSE 0.2287 13.4230              0 0.1145   

 
 

To illustrate the convergence, the movements of the solution particles are recorded during the 

optimization process. Figures (7a), (7b), and (7c) illustrate the convergence curves for the 

solutions with the optimizing variables of the power, heating time and extraction time, 

respectively.  



 

Fig. 7a. Particles’ convergence plots for the power. 

 

Fig. 7b. Particles’ convergence plots for the heating time. 



 

Fig. 7c. Particles’ convergence plots for the extraction time. 

4. Conclusions 

A robust model of the lipid extraction from microalgae following a microwave cell rupture 

method was carried out using the fuzzy logic based on the experimental data provided in [26]. 

Furthermore, the optimized operating conditions of the lipid recovery process were determined 

using Particle Swarm Optimization (PSO) optimizer. The decision variables used in the 

optimization process were; microwave power, heating times and extraction time aiming to 

maximize the percentage of lipid recovery. The Fuzzy model built was trained with 13 samples 

for 50 epochs till an adequate small testing error is met. The model’s predictions for both 

training and testing phases were found spread very near to the diagonal line which represented 

high accuracy. The RMSE values are 0.0898 and 11.0925 for fuzzy model and ANOVA 

respectively. Whereas as the values of the coefficient of determination are 0.994 and 0.7854 

respectively for fuzzy model and ANOVA. This prove the superiority of the fuzzy model, which 

gave minimum RMSE and maximum coefficient of determination values. Moreover, The lipid 

recovery obtained under the optimized operating conditions was compared with those achieved 

under optimized experimental conditions. The obtained results confirmed that using the proposed 



PSO based fuzzy model resulted in a higher lipid percentage. The recovered lipid achieved was 

62 %, i.e., a 22% increase over the results reported by using Design of Experiments 

methodology. The optimum parameters can be used for achieving high lipid extraction rates on 

both lab and pilot scale. 
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