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Abstract 

Braun et al. (2006) recommended using the h-index as an alternative 

to the journal impact factor (IF) to qualify journals. In this paper, a 

Bayesian-based sensitivity analysis is performed with the aid of 

mathematical models to examine the behavior of the journal h-index 

to changes in the publication/citation counts of journals. Sensitivity of 

the h-index was most apparent for changes in the number of citations, 

revealing similar patterns of behavior for almost all models and 

independently to the field of research. In general, the h-index was 

found to be robust to changes in citations up to approximately the 25th 

percentile of the citation distribution, inflating its value afterwards.   

Keywords: journal h-index; Bayesian inference; sensitivity analysis; 
robustness; citations; publications. 

 

1 Introduction 

Hirsch (2005) introduced the h-index for the assessment of the research 

performance of scientists. Not only the indicator has found a wide use in a very short 

time, but also a series of articles were subsequently published either proposing 

modifications of the original h-index for its improvement, or new implementations of 

the proposed index. Increasingly, the h-index is proposed as an alternative to the most 

commonly used IF for evaluating the scientific impact of journals (see, e.g. Bornmann 

et al., 2012; Malesios and Arabatzis, 2012; Schubert, 2015). Despite the fact that 
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various mathematical models for the h-index have been proposed, yet little is known 

about the mechanisms governing the relationship between the h-index and 

publications (P)/citations (C) and its robustness to the latter indicators by utilizing the 

aforementioned models. The general perspective is that the (journal) h-index is robust 

to changes in number of publications and citations. Franceschini et al. (2013) for 

instance deduce that h-indices are robust to small variations in the publication/citation 

data and even to significant changes in the C values of the papers of interest, by 

investigating the robustness of the h-index to missing or wrong citation records. 

Courtault and Hayek (2008) have theoretically shown that a significant number of 

papers significantly cited must be published to increase the h-index. In the same lines, 

Rousseau (2007) found, by utilizing theoretical models, that a relative small number 

of highly cited publications have a small influence on the h-index. According to 

Minasny et al. (2013), the h-index is less sensitive to the increase in the number of 

citations and it does not penalize a journal for publishing a larger number of papers. 

For a more applied examination concerning the robustness of the h-index we refer the 

interested reader to Vanclay (2007).  

 However, the latter claims have not been examined thoroughly up to now, 

especially in the context of the h-index of a research journal. One may ask: what are 

small variations in P, C and how they can be quantified? This paper tries to fill this 

gap and answer the following question; how the h-index varies according to specific 

changes in the number of P and C? This research question cannot be addressed 

without specifying a mathematical relation between h, P and C. Hence, by relying on 

some of the well-established mathematical functions relating h-index with P, C, an 

empirical contribution to the issue of quantifying the sensitivity of the h-index by 

adopting a statistical modeling view is attempted, within the Bayesian paradigm. 

Bayesian methods permit model flexibility and appropriateness and the present study 

shall attempt to highlight the practical benefits of the Bayesian view of statistics.  

In this context, it shall be also attempted to answer which model is more robust 

when compared to the others. The proposed methodology is illustrated utilizing two 

different datasets consisting of the h-indices, P and C of the journals in the fields of 

ecology and forestry included in the Web of Science (WoS) (Collection date: March, 

2013 and November 2011 for ecology and forestry journals respectively). The total 

samples consisted of 264,519 and 71,683 research publications from 134 ecology and 

54 forestry, scientific journals, respectively, thus constituting two diverse groups of 
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data suitable for credible inferences. For more details on the collected data see 

Malesios (2015).  

   

2 Methods 

 

2.1 Introduction to Bayesian model-based inference 

 

Statistics uses two major paradigms, classical (or conventional or frequentist) and 

Bayesian. Bayesian methods can incorporate scientific hypothesis in the analysis 

through the prior distribution and also have the advantage of being applied to 

problems with too complex structures that cannot be solved through classical statistics 

(Bernardo, 2003). Many statistical models are currently too complex to be fitted using 

classical statistical methods, but they can be fitted using Bayesian computational 

methods.  

Inference for classical statistical modelling traditionally is based on the Maximum 

Likelihood (ML), where parameter estimates and corresponding confidence intervals 

are valid only for large samples. In contrast, Bayesian inference is exact for any 

sample, regardless of its size. Another distinctive characteristic of the Bayesian 

paradigm is that the data are treated as a fixed quantity and the parameters as random 

variables. Hence, in this sense, every parameter is assigned distributions, in contrast to 

classical statistics, where parameters are treated as fixed unknown constants. 

Although Bayesian inference has been criticized for the use of the prior 

distribution, alternatively to utilizing an informative prior distribution it is also 

possible to specify ignorance in Bayesian analysis (i.e. we do not know anything about 

the parameters of interest) by assigning an uninformative (or vague or diffuse) prior. 

By the term uninformative prior, we mean assigning to the parameter a prior 

distribution with a very large variance. 

In a general setting, under Bayesian inference we denote by ( )tkθθθ ,...,, 21=θ  the 

vector of a set of, say k, unobserved parameters, and by x  the observed data. Bayesian 

inference is based on Bayes’ theorem, according to which the posterior distribution, 

denoted by ( )xθ |p  is given by: 
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Equation (1) states that the probability of parameters θ  given the data x  is 

proportional to the likelihood function ( ) ( )θxθ |pL =  and the prior distribution of θ ,  

( )θp , i.e.: 

 

prior.  likelihoodposterior ×∝  

 

The latter constitutes the intuitive basis of model-based Bayesian inference 

combining the information that we know before (through prior distribution), updated 

using the likelihood function (the data) in order to obtain the posterior distribution 

which gives information about the parameter of interest. 

The most challenging issue in Bayesian inference is - as is well known – the 

normalizing term ( )xp  (often called the marginal likelihood) in the denominator of 

equation (1), due to that in most modelling cases ( )xp  includes complex high-

dimensional integrals which are analytically intractable. Due to this issue, the problem 

of generating samples from the posterior distribution ( )xθ |p  is not straightforward. 
Only after the mid-1980s the implementation of simulation-based computing 

algorithms like Markov chain Monte Carlo (McMC) (Gelman et al., 2003) on widely 

accessible powerful computers helped to overcome these problems and led to an 

explosion of interest in Bayesian modelling (Ntzoufras, 2011).  
Markov chain simulation yields a sample from the posterior distribution ( )xθ |p  

of a parameter. One of the most widely used McMC techniques is Gibbs sampler 

(Geman and Geman, 1984; Gelfand et al., 1990). A brief description of the Gibbs 

sampler iterative scheme for obtaining posterior samples for parameters θ  is presented 

below: 
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(c)  Repeat step (b) an adequate number of iterations (e.g. N=10000, 100000) in 

order to obtain the posterior distribution of each iθ  ),...,2,1( ki = . 

 

During these iterative schemes, the monitoring of the convergence of the 

algorithm is required. From a theoretical point of view, convergence of the algorithm 

implies convergence to the stationary distribution of the parameter, which in this case 

of Bayesian inference is the posterior distribution. In practice, there are several 

diagnostics for checking this, both visual and more formal. Trace plots (or history 

plots) are for example one visual way for examining convergence. If the chains of 

posterior samples, plotted against the sampling time, appear stable in certain areas of 

the parameter space, there is indication of convergence. For a detailed presentation of 

formal diagnostic techniques for assessing convergence we refer the interested reader 

to Brooks and Roberts (1998).   

When convergence is reached then after discarding the first B  posterior samples 

we then consider the remaining ( ) ( ) ( ){ }NBB θθθ ,...,, 21 ++  samples. Summary measures, 

such as the median or the mean of the posterior distribution can be used as point 

estimates for the parameters θ , whereas the  2/α  and 2/1 α− posterior quantiles can 

be used to construct the ( ) %1001 α−  posterior credible intervals for the θ s.  

 

 

2.2 Bayesian methods in scientometrics 

 

In the field of scientometrics in general – and particularly of research assessment 

with h-type indices – techniques from Bayesian statistics have hardly been used. 

Hence, the utilization of a Bayesian statistical modelling view may also serve as a 

guideline for future research applying Bayesian inference. 

The few examples of applying Bayesian methods in scientometrics include the 

paper of Ibáñez et al. (2011), utilizing Bayesian networks to examine relationships 

between bibliometric indices (see also the recent publication of Bornmann et al. 

(2016) presenting applications based on Bayesian networks) and Malesios (2015) 

performing parameter estimation from a Bayesian modeling perspective, by 

statistically fitting the most well-established mathematical models for the h-index 

using a McMC sampling scheme. The proposed by Malesios (2015) methodology was 
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illustrated utilizing the two previously presented journal bibliometric data and 

assuming typical alternative distributions for count data such as the values of the h-

index. The results revealed significant differences among the fitted models as concerns 

their fit. Most suitable models for the association between the h-index and P, C were 

found to be the Glänzel-Schubert model (Schubert and Glänzel, 2007) and a three-

parameter Hirsch model1 (Ye, 2011), whereas the negative binomial (NB) distribution 

assumed for the h-index values has been found to be a useful alternative to the 

commonly utilized Gaussian distribution.  

For the current analysis the best fitted models as were identified in Malesios 

(2015) are utilized, i.e. the Gaussian Glänzel-Schubert model (Schubert and Glänzel, 

2007), and the three-parameter Hirsch model (Ye, 2011) assuming a Gaussian and a 

NB distribution for the h-index values.  

 

 In addition, based on further research conducted by the author, an additional 

mathematical function is included that was found to perform similarly with the three 

previously described models. The proposed function is a modification of the classic 

Lotkaian model α/1Ph = of Egghe and Rousseau (2006) (see also Franceschini et al., 

2013) that depends on C and a single parameter α through: 
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PCA  and α >2 (see Table 1 for the mathematical forms of the 

fitted statistical models in the current analysis). Attempts to fit models based on a 

dynamic temporal h-index (see Egghe, 2009) resulted in poor fit and thus the latter 

models were excluded from further analyses. 

Specifically, the theoretical mathematical model functions of Table 1 are utilized 

in order to fit Bayesian regression-type models of the following general form: 
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1 In Malesios (2015) a slightly varied version of the three-parameter Hirsch model used here has been 
utilized, assuming a=α , however the results of both analyses were very similar with no significant 
variations.  
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where iH  is the random variable of the theoretical h-index following distribution 

f (i.e. either the Gaussian or the Negative Binomial distribution),  ( )⋅= hiθ  denotes 

the link function of the mean h-index to each of the functions in Table 1 (being 

( ) iih μμ =  and ( ) ( )
i

i
i q

qr
h

−
=

1
μ  for the Gaussian and the negative binomial 

distribution, respectively), and finally ( )⋅g  denotes each of the 4 theoretical functions 

tested. ( ( )130,...,2,1=i  and ( )54,...,2,1=i  for the ecology and forestry journals, 

respectively). 

 
 

(TABLE 1 APPROXIMATELY HERE) 
 
 

As already described in Section 2.1, in order to implement Bayesian inference 

concerning the parameters of the four h-index regression-type models, one has to 

specify both the likelihood and the prior distributions for the models’ parameters. 

Then – after obtaining the posterior distribution – summary measures and density plots 

can be used to describe the posterior parameter estimates. To illustrate this, 

expressions (4) to (7) describe the Glänzel-Schubert Gaussian model in Bayesian 

notation: 
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priors: 

( )    ,100 ,1~ Normalα  (5)

( ),100 ,0~ Normalc (6)

( )001.0 ,001.0~ Gammaτ .  (7)

 

where στ /1=  the precision and subscript i  the sample size. Hence, the parameters 

α  and c  are given independent non-informative priors with mean one and zero 

respectively and with some precision. Additionally, the precision is picked from a 

Gamma distribution with a specified mean and shape parameter.   
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Figure A1 in the Appendix shows part of the WinBUGS program (Lunn et al., 

2000) that describes the prior distribution of the parameters and the likelihood of the 

data for one of the fitted models (the Glänzel-Schubert model – ecology field).  

 
 
2.3 Sensitivity Analysis 

Sensitivity analysis is an extremely useful methodological tool (Saltelli et al., 

2004). A number of studies have previously demonstrated that “goodness of fit” alone 

is insufficient in reliably classifying the credibility of a model and sensitivity analysis 

is commonly employed as a secondary method for evaluating the suitability of a 

particular model (Saithong et al., 2010). In this stage we proceed with exploring the 

effect of P and C on the h-index via suitable sensitivity analysis techniques. Inference 

with the proposed scheme is implemented by McMC posterior simulation, allowing 

formal sensitivity analysis with respect to prior and likelihood assumptions of the 

original model analysis. Specifically, inference for alternative scenarios is derived via 

the implementation of a multivariate probabilistic sensitivity analysis-type scheme, 

where sensitivity analysis is obtained by increasing each parameter by a given 

percentage while leaving all others constant and quantifying the change in the model’s 

output. By this, it is made possible to quantify in an accurate way the magnitude of 

the effects each one of P and C has on the h-index. In this context, we utilize distinct 

values for either P or C keeping the other covariate fixed at its median value for the 

model including both P and C, and then sample from the posterior density of the 

response by sampling from the posterior of the covariates’ coefficient estimates. The 

use of the posterior samples obtained by the Bayesian inference instead of fixed 

estimates for the parameters of the mathematical models constitutes the probabilistic 

nature of the proposed methodology. There are certain advantages when following 

this approach; the probabilistic sensitivity analysis under a Bayesian framework 

proposed in this paper is chosen for certain desirable properties such as the ability to 

introduce uncertainty inherent in the parameters of interest, by using samples from 

their posterior distributions instead of the standard static sensitivity analysis where 

arbitrary values are usually assigned to them. This feature is desirable at least for the 

mathematical models examined here since that some of the parameters are not 

unknown but restricted to certain intervals. Furthermore, when multiple parameters 
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are estimated from the same model, it is likely that correlations will be induced 

between them. Probabilistic sensitivity analyses schemes adequately account for the 

latter since that by using the posterior output we preserve the potential correlation 

structure, an important aspect especially in estimating (non)-linear functionals. To 

implement this scheme we use the posterior samples for the parameters derived from 

the fit of the Bayesian models based on the functions of Table 1. Hence, we conduct 

Bayesian posterior estimation and then export the posterior samples of parameters of 

interest to another statistical program that allows implementing the probabilistic 

sensitivity analysis.  

Sensitivity of the h-index for our analysis is visually determined by plots of input 

vs. the output values and more formally by utilizing the sensitivity index (SI) given 

by: 

,
max

minmax

h
hh

SI
−

=  (4)

where maxh and minh  denote the maximum and minimum output values resulting from 

varying the input over its entire range (Hoffman and Gardner, 1983). SI ranges 

between 0 and 1, with larger values indicating higher sensitivity. 

 

2.4 Inference 

Bayesian inference is implemented with the use of an McMC sampling algorithm, 

as described previously. For specifying the priors, low information prior distributions 

were used (i.e. Gaussian distributions with zero mean and very large variance), 

truncated though accordingly to comply with the theoretical specification range for 

each parameter as is shown in Table 1. To fit the theoretical functions under the 

Bayesian framework the WinBUGS software was used. WinBUGS uses McMC 

methods to generate samples from the posterior distribution of the specified models.  

Model selection was performed based upon Bayesian model comparison and 

model selection criteria. Specifically, the mean of the posterior deviance ( D ) is 

utilized, based upon the deviance: 

 

( ) ( ),|log2 θθ xpD −=  (5)
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where ( )θ|xp  is the likelihood and θ  some parameter. According to equation (5), 

high values of ( )θD  indicate low values for the likelihood which accordingly means 

that the model does not fit the data well. From a Bayesian perspective, since the 

deviance ( )θD  is a function of the θ  parameter which is assumed as having a 

posterior distribution, ( )θD  also has a posterior distribution. Averaging the posterior 

deviance values obtained by McMC we obtain the mean of the posterior deviance, 

with smaller values being preferable (Full details on D  can be found in Spiegelhalter 

et al., 2002).  

The posterior results for the models’ parameters have been obtained by using 

5,000 iterations as initial burn-in period and an additional sample of 50,000 iterations. 

Sensitivity analyses are performed with the use of the R software (R Core Team, 

2012). The WinBUGS code for all fitted models and the data as well as the R code for 

performing sensitivity analyses is available upon request by the author. 

 

3 Results and Discussion 

Table 2 provides the fit statistics for the analyzed models under Bayesian 

inference. As is observed, the Egghe-Rousseau model under a negative binomial 

distribution is a competitive alternative to the other three best fitted models identified 

in previous analyses (Malesios, 2015), especially for the forestry data. However best 

fit is shown by the Glänzel-Schubert model for both journal categories, as shown by 

the mean deviance values D .  

(TABLE 2 APPROXIMATELY HERE) 
 

The corresponding posterior distributions of the deviance values for the eight 

fitted models are presented in the following violin plots (Figure 1). The plots provide 

an additional visual indication as concerns the selection of the best model. 



11 
 

  
Fig 1. Violin plots of the distribution of deviance values for the fitted models 

 

Posterior medians for the models’ parameters are summarized in Table 3. 

 
(TABLE 3 APPROXIMATELY HERE) 

 

History plots of the posterior samples of parameters (see for example Figure 2 for 

the parameters α and c of the Glänzel-Schubert model) indicated no lack of 

convergence for all fitted models. 

 

Fig 2. History plots for the posterior parameter estimates of the best fitted model 
(Glänzel-Schubert model – ecology field) estimated from 50,000 iterations. 
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Next we proceed with the sensitivity analysis results as described in section 2.1, 

performed for the four selected theoretical models. Two separate sensitivity analyses 

are performed, first by utilizing the complete data output on P, C (see Tables A1 and 

A2 in the Appendix for the descriptive statistics of the three variables’ values used for 

the analysis) for the two journal categories, and subsequently using artificial values of 

the two variables to examine locally the sensitivity of h using distinct selected values 

for P, C near their medians (i.e. the range between -30% and 30% of P, C values 

around their medians with increments of 5%). Tables 4 and 5 show the values of SIs 

for the complete publication/citation data and the - local to the median - values, 

respectively. 

 

(TABLE 4 APPROXIMATELY HERE) 
 
 

(TABLE 5 APPROXIMATELY HERE) 
 

 

Figures A2 and A3 in the Appendix depict the h-index values obtained by the 

sensitivity analysis on the complete data. For the varying levels of P, C I utilize 

percentiles from the overall publication/citation distribution in each field (i.e. the 5%, 

10%, 25%, 50%, 75%, 90% and 95%). It is clear from the inspection of the graphs 

that the h-index as a function of the C- and P-percentiles shows a convex trend. The 

corresponding progressive values of SIs for the two journal categories are shown in 

Figures A4 and A5. Interestingly, it is the selected distribution for the data that mostly 

characterizes the shape of the curves for the h-index and the SIs, rather than the 

mathematical functions.   

The results in Tables 4 and 5 and the corresponding figures indicate that all 

models exhibit similar patterns in terms of sensitivity of the h-index to the varying 

levels of P, C. However, higher and lower levels of sensitivity are shown by the 

Glänzel-Schubert model. Indeed, less sensitive to changes is the Glänzel-Schubert 

model that measures changes in the number of publications (see Figures A2e – A5e), 

keeping the number of citations at their median. In addition, especially constraining 

the sensitivity analysis at a local range around the median values of C, P we find that 

the Glänzel-Schubert model is the most sensitive in terms of citations (see Table 5). A 

general behavior seems to be followed in all tested models where the h-index is 
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approximately robust up to the 10-25th percentile of the total citation distribution of 

the journals in the specific field and then inflates (see Figures A2, A3). This is also 

verified by the inspection of the progress of SIs (Figures A4 and A5), where the 

increase of the h-index’s sensitivity is apparent between the 10th-25th percentile of the 

C distribution. A similar fluctuation is observed at the 95th percentile of the citation 

distribution in both datasets. Sensitivity with regard to changes in publications does 

not increase after the 95th percentile of the P distribution, as is the case with C. Again 

this characteristic applies to both datasets used for our analyses. The similar patterns 

of sensitivity in both fields of research could serve as a guide for the editor of any 

given journal on steps (s)he should undertake in order to grow the h-index of the 

journal. Hence, it seems that in order to substantially increase a journal’s h-index, it is 

required the journal’s citation output to reach at least the citations of the 10th 

percentile of the citation distribution in the specific field (e.g., approximately 52 and 

755 citations for forestry and ecology, respectively) or, in other words, the journal 

should be among the 90% most cited journals. Similarly, retaining the number of 

citations at a constant level, one has to achieve a large reduction in publications to 

achieve a significant increase in h.  

 

4 Conclusions 

This paper aimed at investigating for the first time in a systematic way the 

sensitivity of the journal h-index to changes in the number of publications and 

citations, by utilizing some of the most popular h-index mathematical models. In 

doing this, the Bayesian paradigm was followed as regards the statistical 

methodology, offering a different view of model-based inference compared to 

classical statistics. The results showed that a model, including both C and P as 

explanatories for h is more sensitive to changes in C than models relying solely on C, 

especially when restricting these changes locally around the median C. Examination 

of the h-index’s sensitivity to large variations of C, P revealed a pattern for almost all 

models, with the h-index values exhibiting robust behavior up to a certain value for C 

and inflating afterwards. Robustness of the h-index is considerably more apparent for 

P in comparison to C, verifying the theoretical beliefs. Clearly, the number of 

citations shows a stronger effect on the h-index in comparison to the number of 

publications, at least when utilizing the Glänzel-Schubert mathematical function. 
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Recognizing that although this initial analysis is far from exhaustive, the latter 

findings may prove useful for editorial policies, for instance, in assisting journal 

editors that seek to increase the reputation of their journal in terms of their respective 

h-index values. In doing this, the particular estimates from each field could be utilized 

for testing scenarios associated with varying the input parameters of P, C and gaining 

insight on how a specific journal’s h-index varies according to these scenarios. The 

proposed methodology is currently applied also to other h-type indices for comparing 

their robustness with that of the h-index and this is a subject of ongoing research.  
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TABLES 

 

 
model parameters range reference 

α

α
α

1

1
2

⎟
⎠
⎞

⎜
⎝
⎛

−
−

= Ah  
α  α  ϵ (2,∞ ) Egghe-Rousseau 

(Egghe and 
Rousseau, 2006) 

( ) ( ) ( )
1

1 1/h cP C P
αα α+ +=  ( ),cα  α  ϵ (1,∞ ); c  ϵ (0,∞ ) Glänzel-Schubert 

model (Schubert 
and Glänzel, 2007)

ab
1

⎟
⎠
⎞

⎜
⎝
⎛=
α
Ch  

( )ba,,α  α  , a ϵ 
(1,∞ ); ( )ab f=  

Three-parameter 
Hirsch model (Ye, 
2011) 

Table 1. Theoretical models for the h-index based on P and C 
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Model Distribution D  
(ecology) 

D  
(forestry) 

Glänzel-Schubert (G-S) Gaussian 894.4 302.2 
Egghe and Rousseau (E-R) NB 1044 321.6 
Three-parameter Hirsch (H G) Gaussian 1020 328.5 
Three-parameter Hirsch (H NB) NB 960.1 310.7 

Table 2. Mean deviance ( D ) for the fitted models 
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Model Distribution   parameters 

  (ecology) (forestry) 

  a  a b c  a  a b c  

Egghe-
Rousseau NB 

5.346 

(5.25-
5.44) 

-- -- -- 5.798

(5.58-
6.03) 

-- -- -- 

Glänzel-
Schubert Gaussian 

1.77 

(1.65-
1.89) 

-- -- 0.7 

(0.64-
0.75) 

1.966

(1.68-
2.3) 

-- -- 0.784 

(0.65-
0.95) 

Three-
parameter 
Hirsch 

Gaussian 
4.362 

(2.64-
6.84) 

2.129

(0.76-
5.03)

1.01 

(0.41-
2.72 

-- 4.499

(3.07-
5.92) 

1.889 

(1.02-
4.45)

1.265 

(0.49-
2.5) 

-- 

Three-
parameter 
Hirsch 

NB 
0.156 

(0.08-
0.29) 

1.372

(1.09-
1.71)

6.299

(5.06-
7.9) 

-- 1.166

(0.47-
2.93) 

1.103 

(0.88-
1.46)

6.62 

(5.09-
7.93) 

-- 

Table 3. Posterior parameter estimates (medians) along with the 95% credible 
intervals of the theoretical models for the h-index, obtained from simulation of 50,000 
values 
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Model SI (ecology) SI (forestry) 
Egghe and Rousseau (NB) 0.994 0.986 
Three-parameter Hirsch (Gaussian) 0.986 0.988 
Three-parameter Hirsch (NB) 0.988 0.980 
Glänzel-Schubert (Gaussian) C 0.998 0.999 
Glänzel-Schubert (Gaussian) P 0.765 0.867 

Table 4. Sensitivity index for the tested models (complete data output) 
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Model SI (ecology) SI (forestry) 
Egghe and Rousseau (NB) 0.301 0.236 
Three-parameter Hirsch 
(Gaussian) 0.246 0.225 

Three-parameter Hirsch (NB) 0.267 0.218 
Glänzel-Schubert (Gaussian) C 0.327 0.337 
Glänzel-Schubert (Gaussian) P 0.158 0.184 

Table 5. Sensitivity index for the tested models (-30% to 30% range of P, C values 
around their medians) 
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APPENDIX 

 

 

  h P C 
min 2 48 19 
5% 7 145.4 291 
10% 11.9 215 754.6 
25% 25.25 565 3651.5 

median 45.5 1351 14917.5 
75% 83.75 2875.5 46843 
90% 122 4631.8 143452.1
95% 153.3 6560.6 193911.8
max 246 8678 456498 

Table A1. Descriptive statistics for the h-index, P and C (Ecology journals) 

 

  h P C 
min 1 18 3 
5% 2 46.9 20.65 
10% 3 69 51.6 
25% 4.25 173.25 122.5 

median 19 405.5 2435 
75% 39 1616 13743.75
90% 73.7 3173.5 44343.2 
95% 85.8 6116 63350.15
max 101 8374 135245 

Table A2. Descriptive statistics for the h-index, P and C (Forestry journals) 
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Fig A1. Example of WinBUGS code specifying the prior distributions and the 
likelihood for computing the posterior distribution of parameters ( )c,αθ =  for the 
Glänzel-Schubert model. 
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Fig A2. Sensitivity analysis graphs for the h-index based on percent of 
publications/citations distribution (WoS Ecology journals) 
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Fig A3. Sensitivity analysis graphs for the h-index based on percent of 
publications/citations distribution (WoS Forestry journals) 
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Fig A4. SIs for the h-index based on percent of publications/citations distribution  
(WoS Ecology journals) 
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Fig A5. SIs for the h-index based on percent of publications/citations distribution  
(WoS Forestry journals) 


