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Abstract

Malaria constitutes an important cause of human mortality. After 2009 Greece experienced

a resurgence of malaria. Here, we develop a model-based framework that integrates ento-

mological, geographical, social and environmental evidence in order to guide the mosquito

control efforts and apply this framework to data from an entomological survey study con-

ducted in Central Greece. Our results indicate that malaria transmission risk in Greece is

potentially substantial. In addition, specific districts such as seaside, lakeside and rice field

regions appear to represent potential malaria hotspots in Central Greece. We found that

appropriate maps depicting the basic reproduction number, R0, are useful tools for informing

policy makers on the risk of malaria resurgence and can serve as a guide to inform recom-

mendations regarding control measures.

Introduction

Malaria is one of the well-studied vector-borne diseases in terms of its transmission and the

potential for transmission’s change. Malaria is endemic in about 100 countries around the

world, mainly in sub-Saharan Africa and Asia ([1]). It is a mosquito-borne parasitic infectious

disease, transmitted through the bite of the infected female Anopheles mosquito. Five types of

plasmodia cause disease to humans: Plasmodium falciparum, Plasmodium vivax, Plasmodium
ovale, Plasmodium malariae and Plasmodium knowlesi, of which P. falciparum and P. vivax are

the most prevalent and P. falciparum the most dangerous ([2]). In 2015 the number of malaria

deaths globally were 438000 whereas 3.2 billion people being at risk, with more deaths occur-

ring in Africa (90%), followed by South-East Asia (7%) and the Eastern Mediterranean region

(2%) ([1]). (Climatic determinants are considered particularly important for malaria, since

both the disease agent (Plasmodium) and vectors (Anopheles mosquitoes) are strongly affected

by climate ([3]). Global warming has been considered as a potential risk for malaria resurgence

in northern hemisphere areas ([4]). Therefore, most studies have used statistical relationships
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between malaria transmission or vector occurrence and climate in order to project the poten-

tial future distribution of malaria transmission areas ([5]).

Epidemics in general, can be caused, except from climate conditions, by many other factors,

for instance movement and displacement of human populations. Recently, an increasing num-

ber of studies point towards a shift from climate as the main driver for malaria occurrence, to

additional non-climate factors as responsible for malaria occurrence and transmission ([6];

[7]; [8]). Others suggested a more realistic approach, proposing that this complex system of

malaria transmission is based on a combination of climate and non-climate factors ([9]). A

notable such factor relates to movement and displacement of human populations. Human

migrants infected elsewhere can move, temporarily or permanently, into a new non-infected

region or country. There is a significant body of literature that concentrates on mobile popula-

tions and their importance as a malaria transmission factor (see, e.g., [10]; [11]; [12]). Under-

standing the spatio-temporal distribution of risk for mosquito-borne infections, such as

malaria, is important ([13]).

Free movement within the European Union has been largely facilitated by an environment

essentially free of important diseases. However several European regions have recently seen an

influx of new-coming populations, including migrants and refugees. This fact, combined with

natural habitats which can serve as hot spots for malaria resurgence due to their suitability in

terms of mosquito populations, suggest that increased vigilance is required in order to avoid

the (re-)establishment of previously endemic diseases ([14]). Already in the years 2011 and

2012, in Southeast Europe renewed malaria transmission was observed, with Greece and Tur-

key counting localized outbreaks as a result of malaria importation from endemic countries

([1]).

Malaria has been eradicated from Greece in 1974 after coordinated efforts by the WHO and

the local authorities ([15]). Over the last decade a large population of migrants from countries

were malaria is endemic came to Greece. As a result, in the recent years, a small number of

imported cases of malaria have been reported annually ([16]). Although these cases are spo-

radic, they raise the chance of local transmission ([17]). Specifically, in 2009 and 2010 some

cases of P. vivax malaria (51 and 44, respectively) were laboratory confirmed in Greece (mainly

in the agricultural area of Evrotas, Laconia in Peloponnese in Southern Greece). In 2011, an

outbreak reached a total number of 96 laboratory confirmed P. vivax cases of which the 54

were imported cases of migrants from malaria endemic countries, and 42 were domestically

transmitted cases ([16]). In 2012, a total of 93 laboratory confirmed cases of malaria were

reported in Greece, of which 73 were imported (64 in migrants from malaria endemic coun-

tries). After the 2011 outbreak, a multidisciplinary strategy with a variety of intensive response

activities, was adopted and implemented in Evrotas ([15]). Despite the fact that during 2014

Greece had no domestically transmitted cases of malaria, there were 6 new cases in 2015, indi-

cating the need for constant vigilance in the region ([1]). See Table 1 below for an analytical

description of malaria cases during 2009–2015.

From the information presented above, we may recognize that malaria represents an

important emerging public health issue in Greece, particularly in the Central and Southern

regions of mainland Greece ([15]; [18]). A malaria resurgence risk in Greece varies dramati-

cally with space and depends, among other factors, on environmental changes as well as the

introduction of parasite carriers. Therefore, it is imperative that malaria early-warning systems

are put in place to enhance public health decision making for prevention and control of

malaria epidemics. This aim can be achieved via the development of a prediction model which

incorporates all the relevant sources of evidence, including mosquito abundance and potential

disease transmitters.

A spatial predictive model for malaria resurgence
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In the current paper, in order to determine the potential transmission risk of malaria

resurgence in Greece, we develop and present an appropriate host-vector spatially explicit

model which integrates entomological, geographical, social and environmental evidence in

order to guide the mosquito control efforts. This model, which is a suitably tailored version

of the classical Ross-Macdonald model ([19]) combines entomological, environmental and

social data. We present spatial maps with three distinct but complementary severity scales;

(i) the basic reproduction number, which is a combination of human to mosquito and mos-

quito to human transmission and represents the (mosquito-driven) disease potential from

one (infected) human host to other humans, (ii) the probability of getting infected, which

incorporates the initial number of infected humans and (iii) the expected number of infected

cases.

Materials and methods

GIS database and data collection

Study area. The entomological evidence for this study is informed by a large-scale mos-

quito abatement program conducted by Bioapplications Ltd during the last three years in cen-

tral Greece. The study took place in 8 municipalities of the Prefecture of central Greece (see

S1 Fig). The study area covers about 406.000 ha.

We established “MALGDB” as a Malaria Geographical Database which gathers together

geographical, environmental, population, entomological and epidemiological data. We used

ArcGIS 10.3 software to create, develop and populate that database. Nomad rugged handheld

computers running Arcpad 7.1 software were used to gather field data and information. All

data collected were sent via GPRS connection to the main MALGDB. The database that was

build contains administrative units, populated places, digital elevation model, land cover, sur-

face temperature and humidity, population density and composition, # of migrants from

malaria endemic countries, larvae and adult anopheles positions and population, human cases,

etc.

As concerns the species involved in the study, it has been found after morphological exami-

nation that the species Anopheles sacharovi, An. maculipennis, An. superpictus, An. claviger and

An. hyrcanus are the most important species in the study region (account for approximately

90% of all Anopheles species in the region). It should be noted that all these types of identified

species are potential malaria vectors. According to the above, in our study we suppose that all

the positive samplings for Anopheles mosquito larvae are larvae belonging to species that can

transmit malaria.

As regards the larval sampling, net mesh has been utilized. The diameter of the net mesh

was 20 cm and for each sample we scanned 5 different lines of 1 meter long each. Based on the

Table 1. Total numbers of malaria confirmed cases in Greece (period: 2009–2015).

Year Imported cases Seemingly domestically transmitted cases Plasmodium

2009 44 7 P.vivax

2010 40 4 P.vivax

2011 54 42 P.vivax

2012 73 20 P.vivax & P.falciparum

2013 22 3 P.vivax & P.falciparum

2014 38 0 P.vivax

2015 79 6 P.vivax

https://doi.org/10.1371/journal.pone.0178836.t001
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morphology of the natural (relief, streams etc.) and the human environment (lakes, rice fields,

irrigation system, settlements) we selected 10 areas where we had established sample-collecting

stations. The sampling stations were situated in the outskirts of towns and villages. Each sta-

tion consisted of CO2 mosquito traps. Breeding sites included canals, rice pads, tanks etc. Mos-

quito breeding sites were monitored on a weekly basis from the end of April to the end of

autumn in order to record the larval dynamics and some of the physicochemical parameters of

breeding sites, such as pH temperature conductivity. In total, there were more than 4000 dif-

ferent mosquito breeding sites in the study areas. Up to 200 different sites were positive at least

once for Anopheles larvae.

Following collection, mosquito samples were transported to the laboratory, where they

were identified and separated by species using morphological identification. The samples pro-

vided evidence regarding the variation of the population of Anopheles mosquitoes between the

different seasons of the year and highlighted the areas where Anopheles occurred in high

density.

The main malaria reservoirs in Greece relates to migrants from countries where malaria is

endemic. Thus, the exact locations of these migrants’ habitats were marked up to a GIS data-

base by using field computers. We also kept records of their population in each site. This

migrant monitoring was repeated in 3 different periods (in June, early August and mid-Sep-

tember respectively) in order to obtain as possible as accurate data.

The larvae sampling and monitoring was conducted by using digital sampling protocols.

We created a user-friendly database (domains in geodatabases), for data collected from the

field and loaded in field rugged computers (see Fig 1a and 1b). In total, the larvae data from

the study area comprised of more than 4000 records.

Every 10 to 15 days we were placing CO2 traps in 10 places. The results from the adult trap-

ping were embodied in the MALGDB. Temperature data were recorded from the meteorologi-

cal stations of National Observatory of Athens (NOA) (see Fig 2a and 2b for examples of

temperature collection data at varying time periods). There were 10 meteorological stations of

the NOA recording temperature data at the study area. For our modeling, we utilized the aver-

age temperature values with a 30-day interval, starting from the first Saturday of each month,

between the April and November of each year (2012 & 2013). The inverse distance weighting

(IDW) interpolation method was additionally used to estimate the average temperatures at the

locations where no measurements were available.

Methods

The main disease severity measure utilized in this paper is the basic reproduction number, R0,

which can be interpreted as the expected number of (human) hosts that would be infected by

the introduction of an infected host into a large fully susceptible population. The prospects for

the success of disease control depend crucially on this measure ([20]). Hence, R0 appears to be

an appropriate measure and our control strategies are mostly concerned with proportionally

reducing R0. We could also calculate the vectorial capacity, a purely entomological equivalent

of R0, defined as the expected number of mosquito bites that would eventually arise from all

the mosquitoes which would bite an infectious individual on a single day. However, since the

mobile populations appear to be an important potential driver of transmission we mostly

focus upon R0 since it incorporates the vectorial capacity as well as the exposure due to poten-

tially infected human hosts within a single measure. Some of the parameters necessary for R0

estimation were simulated based upon values reported in the literature and these results were

fused with entomological information collected in the field by Bioapplications Staff (see S1

Table for the parameter details).

A spatial predictive model for malaria resurgence
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The spatial predictive model

In this paper we utilize a host-vector model that combines entomological, environmental and

geographical data to provide estimates on the average infection number due to malaria in cen-

tral Greece. To achieve this, the methodology proposed here takes into account the potential

host population in the region, related to migrants from countries where malaria is endemic, in

addition to the standard entomological parameters which are based on the well-established

Ross-Macdonald mathematical model of mosquito-borne pathogen transmission ([21]).

Specifically, since the number of expected infections for the different regions (i = 1, 2, . . .,

710 and i = 1, 2, . . ., 183 for each of the years 2012 and 2013, respectively), say E (infections) is

given by:

EðinfectionsÞ ¼ PrðinfectionÞ � ð# of susceptiblesÞ;

Fig 1. Indicative examples of the mosquito sampling stations used in the study (yellow and red dots

represent parts of locations for larvae and adult mosquito sampling stations, respectively). (a) Larvae

mosquito sampling stations (b) Adult mosquito sampling stations.

https://doi.org/10.1371/journal.pone.0178836.g001
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we seek to estimate the probability of infection, τ = Pr(infection). If we denote with t̂ this esti-

mate, let us assume that the latter is a function of two different measures, one describing the

disease potential due to mosquito abundance and the other the component attributed to host

infections. The reproduction number R0 is utilized for the former whereas for the latter trans-

mission route we use the proportion of initially infected human hosts, denoted by μ0.

For the calculations concerning R̂0, which describes the expected number of hosts that

would be infected by a single infected host in a large susceptible population, we are obtaining a

different estimate of R0 for each region, calculated as:

R̂0i ¼
Vi � bi � c

ri
; ð1Þ

where V denotes the vectorial capacity, i.e. the expected number of infective mosquito bites

that would eventually arise from all the mosquitoes that would bite a single fully infectious

Fig 2. Indicative examples of calculation and utilization of average temperature data with IDW

interpolation method. (a) Average temperatures (July 2012) b) Average temperatures (August 2012).

https://doi.org/10.1371/journal.pone.0178836.g002
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person on a single day ([22]), and is given by:

Vi ¼
mi � a

2
i � expð� gi � viÞ

gi
: ð2Þ

In Eqs 1 and 2, mi denotes the ratio of mosquitoes to humans in each region i; αi the biting

rate, i.e. the proportion of mosquitoes that feed on humans each day; bi the probability a bite

produces infection to a human; ri the average recovery rate per day; vi the mosquito latent

period, i.e. the number of days from infection to infectiousness; gi the mosquito instantaneous

death rate per day. Finally, with c we denote the probability a mosquito becomes infected after

biting an infected human, which for our analysis is set to the constant value 0.5.

The parameters αi, bi, ri and vi were sampled from suitable distributions according to the

relevant literature (see S1 Table for a detailed description of model parameters and corre-

sponding values and distributions assigned).

For the purposes of the current study, we modify Eq 2 to account for the more realistic

assumptions of temperature-dependence of the mosquito latent period (vi) and the mosquito

instantaneous death rate per day (gi). Hence, since vi is known to be strongly dependent on

temperature, Ti, (see [23]; [24]; [25]), we incorporate the latter dependence into our modeling

via the following equation:

Vi ¼
mi � a

2
i � exp½� giðdi þ vi þ a� 1

i Þ�

gi
; ð3Þ

where the pre-blood meal period (or infection delay), δi, is a function of temperature through:

di ¼ 0:0163 � T2

i � 0:95 � Ti þ 14:769:

The above relationship has been obtained through experiments on Anopheles mosquitoes

([24]). Note also that in order to calculate gi we are assuming that it changes with the tempera-

ture levels ([13]), since that temperature is known to influence the mosquito life cycle and in

particular the development rate of larvae and adult survival ([26]), hence:

gi ¼
1

� 4:4þ 1:31 � Ti � 0:003 � T2
i

;

where each gi corresponds to the maximum of the calculated values for each one of the differ-

ent temperatures, i.e. gi = max {gij}, for temperatures Ti recorded at i = 1, 2, ‥, 30 (see also [27]

for a study on how to modify the mosquito daily mortality rate gi to account for the immature

mosquito stages).

As regards the estimation of the external host component due to the migration, denoted by

μ0, expressing the proportion of initially infected hosts in each one of the 710 and 183 sub-

regions for 2012 and 2013 respectively, we use the following approximation:

m̂0i ¼

X3

k¼1

m0ik �Wik;

where Wik is a simple exponential kernel function of the form:

Wik ¼ alpha � expð� alpha � dikÞ;

that is used to model the spatial component of migrant transmission, through the distances dik

from the larvae areas, measured during the three periods of migrant monitoring k = 1, 2, 3.

The prevalence of asymptomatic malaria varies widely between and within country (see e.g.

A spatial predictive model for malaria resurgence
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[28]; [29]; [30]) and also depends upon the detection method. Therefore, we used three distinct

scenarios where the baseline prevalence was set to 10% and we also examined a prevalence of

5% and 20% in deterministic sensitivity analyses. Hence, the estimated proportion of initially

infected hosts, m̂0i, is multiplied with the latter pre-specified incidence rates.

Having obtained the R̂0i and m̂0i estimates for each region, we proceed to the estimation of t̂

by solving the following non-linear equation for R̂0i � 1:

1þ m̂0i � t̂ i � expð� t̂ i � R̂0iÞ ¼ 0;

whereas for R̂0i < 1 we set t̂ i ¼ 0: Accordingly, we can estimate the E(infections). We have

used the R package ([31]) for data manipulation and in order to fit the above described model

to central Greece malaria resurgence data for the years 2012 & 2013. The R code of the spatio-

temporal model is available upon request by the corresponding author. The data for the years

2012 & 2013 can be obtained from S1 and S2 Files, respectively.

In order to aid the illustration of our results, we construct R0 maps that can be used for

informing policy makers on the risks of malaria resurgence. Similar maps, in the case of other

infectious viruses, have been presented elsewhere; see for instance [32] for an application of

R0-based maps on the bluetongue virus.

Under the modeling framework described in the previous section we calculated estimates

of the basic reproductive number (R0) for each of the regions of Central Greece (710 and 183

for the years 2012 and 2013, respectively), for the periods between April and November. The

basic reproductive number provides a threshold criterion. When R0 >1 the disease may spread

over a large part of the population while when R0 <1 the disease may only affect a small pro-

portion of the population. The estimated R0 values showed marked differences between the

regions of central Greece, in both years. The density surfaces in the R0 geographical maps are

based upon point estimates. In particular, the maps shown in Figs 3 and 4 present the median

R0 values above the threshold of 1 across the two years.

An altitude zone that includes the areas between 0 and 300 m was applied as a threshold in

order to avoid the depiction of the density in areas which are unlikely to be affected from the

represented phenomenon. Therefore, we decided to effectively preclude interpolation methods

since those may or may not be appropriate in our setting due to the presence of intermediate

areas of high altitude which could have been depicted as high risk when, in fact, this is not the

case.

The method used to map the results was “Kernel Density” (Spatial Analyst of ArcGIS—Arc-

Map v.10.3). The Density tool distributes a measured quantity of an input point layer through-

out the landscape to produce a continuous surface. These geographical maps can be used to

identify the areas of higher risk for a malaria outbreak after the introduction (see a detailed

explanation of the method in S3 File). As we observe, for both years there exists a geographical

similarity as regards the potential malaria transmission hotspots.

Results

Approximately ten distinct geographical units in malaria resurgence can be identified by

inspecting the two graphs. Specifically, the areas of higher resurgence risk can be identified

around the cities of Lamia, Levadeia and Chalkida, as well as in the Northern and Southern

parts of Evoia. Generally, risk of malaria resurgence is increased in seaside areas, areas near

lakes where the Anopheles mosquito population density peaks (e.g. Chalkida), or at the Anoph-
eles breeding habitats such as areas with paddies (e.g. Lamia).

The findings point to the fact that resurgence is possible in both areas of sparse human pop-

ulations (rural areas) and areas with dense human populations (urban areas). In case of disease

A spatial predictive model for malaria resurgence
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resurgence or outbreak, interventions could be targeted in these areas identified by our analy-

sis as regions of high transmission intensity.

Another important—complementary to the R0 –factor in disease modeling is the probabil-

ity of infection, τ, and accordingly the amount of people that are expected to be infected in

case of the disease resurgence in the areas under investigation. These two outcomes are com-

plementary but add extra source of information, hence we additionally present the results of

the two outcomes in the supporting information. S2 to S5 Figs show the latter measures, for

the years 2012 and 2013, respectively. We can see from the inspection of the t̂ estimates (S2 &

S3 Figs) that the human populations with the higher risk for infection are located mainly in

the wider region of the city of Lamia, and in the region of Northern Evoia. This is a result that

seems to be time invariant for both years of research. In addition, a high risk for infection is

Fig 3. Spatial distribution of risk in malaria resurgence in central Greece as indicated by the median R0 estimates (Year 2012).

https://doi.org/10.1371/journal.pone.0178836.g003
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also present in the seaside areas of the Fthiotida region. Higher values of t̂ are also found in

southern Evoia for the 2013 year.

Next, as regards the model estimates of the numbers of expected infections from malaria

(see S4 & S5 Figs), we observe similar results between the years 2012 and 2013. The highest

amounts of people expected to be infected are widely scattered in the regions of central Greece,

with higher at the city of Lamia and neighboring regions. We also observe high values for

northern Evoia and other seaside areas.

As expected, malaria transmission is highly seasonal, with transmission limited to the warm

and rainy summer months. Cases in general increase by the end of June, peak in late summer

and decline by the end of November. The average seasonal pattern in malaria incidence follows

the periodicity in rainfall and temperature, with a 3 to 4 month lag ([3]).

Fig 4. Spatial distribution of risk in malaria resurgence in central Greece as indicated by the median R0 estimates (Year 2013).

https://doi.org/10.1371/journal.pone.0178836.g004
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In the following table (Table 2) the summary values of median R0 are presented, for various

periods of the two years as were estimated from our model, thus giving a picture of the season-

ality pattern. Besides the total median R0 estimates, we also report the median R0 for both the

urban and rural regions of Central Greece. As we observe, there is a seasonal trend of R0

increase in both years, occurring during the summer months when the temperatures are obvi-

ously higher. The R0 values are showing a decline by October-November, where the transmis-

sion potential is lower. We note that the major peaks in potential risk resurgence are in July,

August and September.

It is also noteworthy that malaria resurgence is more likely to occur in rural regions of Cen-

tral Greece. S2 & S3 Tables present the corresponding estimates for the probabilities of infec-

tion τ and the average number of potential infections in the human populations in case of the

disease resurgence. It is found that for the year 2012, the average number of potential human

infections ranges between 15 and 17 for the complete populations, whereas the numbers are

slightly increased in the case of rural regions of central Greece. The highest values are shown

during the period between May and October. The results for the year 2013 are elevated, with

the favorable transmission period being between June and September, with approximately 24

and 26 human infections, for the total population and rural regions, respectively.

Finally, S4 Table shows the results of sensitivity analysis where we are varying the value of

the baseline prevalence. As seen in S4 Table, the three outcomes do not alter significantly from

the changes in the baseline prevalence.

Discussion and conclusions

We adopted a model-based framework that integrates entomological, geographical, social and

environmental evidence in order to examine the potential for malaria resurgence in Greece. In

addition, disease risk maps were generated in order to assist the interpretation of the results.

The results clearly indicate a potential malaria transmission risk in Greece. Our results charac-

terize the higher and lower risk areas of malaria resurgence in parts of central Greece. We

term as hotspots for malaria resurgence those areas with R0 > 1. It has been shown that there

are spatial variations in the risk for malaria resurgence. Similar results have been reported in

another recent study modeling the risk of malaria resurgence using a mathematical model in

Portugal ([10]). Malaria resurgence in Greece may occur, even in areas that are currently free

from the disease. Among the main findings is that at elevated temperatures the new-emer-

gence regions are more susceptible to potential outbreaks. Therefore, authorities should be vig-

ilant in order to avoid future outbreaks in areas of high disease potential. We also found that

the potential for malaria transmission resurgence, especially in the regions identified by our

study, is affected not only by the potential of the virus or the specific climate conditions but

also by the number of potential disease hosts who are the main drivers of disease risk. Our

model highlighted areas of central Greece as being particularly suitable for disease resurgence.

Table 2. Median basic reproductive numbers by month/region type (Years 2012 & 2013).

Year Apr May Jun Jul Aug Sep Oct Nov

2012 Total 0.078 0.266 0.585 0.906 1.058 1.068 0.740 0.011

Urban 0.043 0.138 0.154 0.365 0.423 0.422 0.288 0.039

Rural 0.136 0.334 0.801 1.255 1.449 1.437 1.011 0.017

2013 Total 0.808 0.715 1.140 1.253 1.231 1.270 0.143 - - -

Urban 0.257 0.333 0.393 0.396 0.295 0.396 0.072 - - -

Rural 0.851 1.028 1.353 1.450 1.456 1.430 0.226 - - -

https://doi.org/10.1371/journal.pone.0178836.t002
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One important question relates to the stability of potential regions for disease resurgence.

Our study is indicative of a positive answer to this question, since that the comparative analysis

between the two years under study did not showed significant variations. The spatial clusters

of high probability for disease resurgence generally do not seem to vary significantly over time.

Further research is warranted in this direction since a large time-horizon will give stronger evi-

dence regarding this issue.

The results emphasize the importance of maintaining population and health systems aware-

ness on the potential resurgence of malaria in Greece. Enhanced prevention and control strate-

gies should be planned for rapid implementation in the case of future pathogen importation to

prevent malaria resurgence. An approach of this kind ought to be used in order to plan, con-

trol, assess and manage a malaria prevention and control program in Greece. In particular,

this study suggests a prediction mechanism which should be put in place so that mosquito con-

trol programs be efficient in the case of malaria resurgence along with rapid public health

response to treat any infection. These two types of action operate in a complementary manner.

Therefore, continuous data update and new data monitoring is critical in order to estimate the

relative merit of each and assist public health authorities to respond to potential risks of

malaria in a cost-effective manner.

One immediately apparent outcome of this work relates to the need to strengthen surveil-

lance and perform integrated mosquito control programs that will help to eliminate the poten-

tial risk of malaria reintroduction and reestablishment. We used a contemporary technique

which offers control over a massive amount of field data in real time. Consequently, we maxi-

mize the effectiveness of the abatement programs in terms of public health risk. This approach

suggests a mechanism for efficient and reliable mosquito control programs: use GIS technol-

ogy and telematics in order to plan, control, assess and modify abatement applications in-situ

and in a real-time manner.

Our study has a number of drawbacks. The selected regions were based upon field

studies and were not selected within a large randomized experiment. Therefore these results

are representative of the studied (and similar) region but further studies are required in

order to generalize these findings to wider regions. Also, as with all such field studies, we

obtained approximate larvae numbers and a rough estimate of their survival based upon its

relationship with temperature. In addition, weekly—and not daily—samples were collected

so these numbers are subject to sampling bias. Future studies will mark selected mosquitoes

and use capture-recapture methodology for more accurate vector estimates. Also, while

validation against an external/independent source of evidence is desirable whenever an analy-

sis with potential for policy action is performed, this seemed nearly impossible in our case

since we are essentially looking at counterfactual scenarios because what actually happened is

the result of different interventions of distinct nature for each area. However, when interest

focuses on highlighting the disease potential and the lack of evidence regarding several impor-

tant aspects of the disease, this can be thought of an acceptable drawback. Finally, we had lim-

ited data on the mobility patterns of potential hosts. Further evidence regarding their

movement habits would inform a more realistic dynamic movement network leading to more

powerful results. Such information, if available, can easily be fused within our model-based

framework.

The current study represents an attempt towards an integrated method for predicting risk

resurgence of malaria, based on a spatio-temporal mathematical modeling approach, com-

bined with a proposed framework for constructing R0 maps. Future work should include larger

geographical areas, both at national and international level, leading to more widely applicable

conclusions.
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