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Background: Type 2 diabetes (T2D) is associated with an increased risk of cognitive 

impairment and dementia with poorly understood underlying mechanisms.  

 

Objective: We examined the role of blood pressure (BP), aortic stiffness, and hemodynamics 

in this association.   

 

Methods: Cross-sectional sample of late middle-aged twins discordant for T2D from the 

Australian Twin Registry. Measurements included neuropsychological battery and brain MRI 

including Arterial Spin Labelling (ASL) to measure cerebral perfusion. Mobil-o-Graph 

devices were used to non-invasively obtain 24hr BP, aortic stiffness and hemodynamic 

measures. Using mixed modelling, we studied associations of T2D with cognition, MRI 

measures, BP, aortic stiffness and hemodynamics.  

  

Results: There were 23 twin pairs with mean age 63.7 (SD=6.1) years. T2D (β=-0.45, 

p<0.001) and age (β=-0.05, p=0.022) were independently associated with poorer attention but 

not with memory or perceptual speed. T2D was associated with reduced nocturnal central 

systolic BP dipping (β=-3.79, p=0.027), but not with BP, aortic stiffness, cerebral perfusion, 

or other hemodynamic measures. There was a statistically significant interaction between 

T2D and central systolic BP dipping in predicting attention scores (both p<0.05 for the 

interaction term) whereby there was a positive association between BP dipping and attention 

scores in those with T2D, but not in those without T2D. 

 

Conclusion: We found an association between T2D and reduced nocturnal central systolic 

dipping, but not with any other measures of BP, stiffness or hemodynamic measures. Further 
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study of the role of nocturnal central BP dipping in the association between T2D and 

cognitive impairment may help identify potential mechanisms. 

  

Keywords: dementia; diabetes mellitus, type 2; blood pressure; vascular stiffness; 

hemodynamics, cognitive dysfunction, cerebrovascular circulation 
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Introduction 

Type 2 diabetes mellitus (T2D) is associated with an increased risk of dementia [1] but the 

mechanisms underlying this association are poorly understood. T2D is associated with 

hypertension, central (aortic) and peripheral artery disease [2]. Prior evidence suggests that 

blood pressure (BP) modifies the risk of dementia in those with T2D [3-6], but the 

mechanisms underlying this are not clear.  

 

T2D and hypertension are associated with aortic stiffness [2, 7] which may result in excessive 

systolic pulsatile pressures damaging the blood brain barrier [8], potentially leading to 

neuronal injury cell death [7, 9]. Furthermore, stiffening of the aorta seen in T2D and 

hypertension affects aortic (central) hemodynamics, and specifically reduces reservoir 

function of the aorta [10], which refers to the ability of the aorta to act as a reservoir, enabling 

it to maintain an even flow of blood to the peripheral circulation even during diastolic filling 

[11].  Impaired reservoir function could thus result in reduced cerebral perfusion, due to 

reduced flow during diastole. In addition, the loss of a cushioning effect by the aorta may 

lead to the peripheral transmission of the high pressures generated during cardiac systole, and 

thus may further damage the blood brain barrier [8].  

 

Another hemodynamic variable, nocturnal BP dipping has been linked to the presence of 

cognitive impairment [12, 13]. In normal adult human physiology, both SBP and DBP drop 

10 to 20% during sleep [13]. In T2D this nocturnal BP dipping is reduced or absent [14, 15], 

resulting in a greater risk of cardiovascular events [13]. An association between reduced 

dipping and cognitive impairment may occur through exposure of the cerebral 

microvasculature to higher pulsatile flow for longer periods of time. 
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To our knowledge, the relationships between BP, aortic stiffness, central hemodynamics and 

BP dipping on brain perfusion, structure and function have not been studied in the context of 

T2D. We aimed to study these relationships in a sample of twins discordant for T2D. We 

hypothesized that T2D would be associated with increased BP and aortic stiffness, poorer 

aortic reservoir function, and reduced nocturnal BP dipping, and that these associations 

would mediate or modify the association between T2D and brain health (cognition, brain 

perfusion and structure). 

 

Methods 

Sample  

The sample was derived from the Australian Twin Registry (ATR), a national registry of over 

30,000 volunteer twins. To be eligible, twin pairs had to be discordant for T2D, aged ≥50 

years, with one twin having T2D confirmed by a physician and validated with fasting glucose 

level ≥7.0mmol/L (≥126mg/dL), and their co-twin without T2D having a fasting glucose 

level of <7.0mmol/L (<126mg/dL).  Exclusion criteria were a history of significant 

neurological disease (seizures, dementia, Parkinson’s Disease, severe head trauma), those 

with insufficient English language ability for cognitive testing, or contraindication to 

magnetic resonance imaging (MRI). The sampling frame consisted of 90 twin pairs identified 

as being discordant for T2D, some of whom had participated in our previous study of brain 

activation [16]. Those twin pairs with T2D discordance were mailed an invitation to 

participate in the study. Zygosity was ascertained using standard responses to questions 

shown to have 95% accuracy for that purpose [17]. This study was approved by the Monash 

University Human Research Ethics Committee and the Monash Health Human Research 

Ethics Committee.  
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Hemodynamic measures 

Hemodynamic measures were collected using the Mobil-o-Graph device which incorporates a 

standard oscillometric cuff BP device, as well as estimation of central aortic BP by pressure 

waveform analysis [18, 19], a method with an accuracy for estimating central systolic BP 

within 3mmHg (SD 6mmHg) [20]. This device has been specifically validated in those with 

T2D by comparing to invasive methods [20].  The cuff was applied to the left arm for 24 

hours and participants were advised to continue their usual daily activities. The device was 

configured to record brachial mean arterial pressure (MAP) and pulse waveform every 15 

minutes during daytime, and every 30 minutes at night.   

 

Pressure waveform analysis was used to derive central systolic BP (SBP), central diastolic BP 

(DBP), estimated aortic pulse wave velocity (PWV), and the augmentation index. Central 

pulse pressure (PP) was also derived by subtracting central DBP from central SBP. The 

augmentation index (augmentation pressure adjusted for pulse pressure) is considered to be a 

measure of the total effect of wave reflection [21, 22] and reflects arterial stiffness in addition 

to other factors such as branching and tapering of the arteries, and body size [22]. 

Augmentation index has previously been associated with cardiovascular events, myocardial 

hypertrophy, heart failure, and mortality [22, 23].  

 

Aortic reservoir function [reservoir pressure (pReservoir) and excess pressure (pExcess)] was 

measured using the algorithm developed by Parker [10]. Reservoir pressure is defined as the 

pressure required to fill the aortic reservoir, whereas pExcess is defined as the pressure 

difference when the reservoir pressure is subtracted from the overall pressure waveform, and 

represents excess work performed by the left ventricle during systole [28].  
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The degree of nocturnal dipping of central and peripheral SBP was calculated as a percentage 

of mean BP reduction at night time (0100 to 0600 hours) compared with daytime (1000 to 

2100 hours) and expressed as a percentage. 

 

𝑠𝑦𝑠𝑡𝑜𝑙𝑖𝑐 𝑑𝑖𝑝𝑝𝑖𝑛𝑔 % =
mean daytime SBP−mean night time SBP 

mean daytime SBP 𝑋 100 

 

Diastolic dipping was calculated in the same manner. These time periods were chosen to 

maximise the likelihood that a participant would be asleep at the time of night measurements, 

and awake during times of day measurement, regardless of personal lifestyle.  

 

MRI acquisition 

MRI scans were obtained using a single 3T Siemens Magnetom Skyra scanner (Siemens, 

Erlangen, Germany). The following structural imaging sequences and parameters were used: 

T1: repetition time (TR) =1900ms, echo time (TE) =2.43ms, flip angle =9°, field of view 

(FOV) =240mm, 192x192 matrix, and slice thickness=0.6mm; Fluid attenuated inversion 

recovery (FLAIR): TR=9000ms, TE=81ms, flip angle=150°, FOV=220mm, acquisition 

matrix 320x217, and slice thickness=4mm. We used pulsed arterial spin labelling (PASL) to 

measure cerebral perfusion using QUIPSS II (quantitative imaging of perfusion using a single 

subtraction) with parameters: TR=2500ms, TE=11ms, FOV=192mm, matrix 64x64, tag 

thickness 10cm, proximal slice gap 22.1mm, bolus duration=700ms, inversion time=1800ms, 

and slice thickness=6mm. QUIPSS II is a PASL based technique designed to make the 

sequence less prone to transit-time error [24].   

 

Image Processing 
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Tissue classification was performed using FreeSurfer 5.3 to derive brain volumes and white 

matter hyperintensity (WMH volume). FreeSurfer removes non-brain tissue using a hybrid 

deformation procedure [25]. It performs automated Talairach transformation, segmentation of 

the subcortical white matter and deep gray matter volumetric structures [26], intensity 

normalization [27], tessellation of the gray matter white matter boundary, automated 

topology correction [28, 29], and surface deformation following intensity gradients to 

optimally place the gray/white and gray/cerebrospinal fluid borders at the location of the 

greatest shift in signal intensity [30-32].  

 

ASL and FLAIR images were first aligned with the T1-weighted using the co-registration 

facility in the Statistical Parametric Mapping (SPM12) software, Wellcome Trust Centre for 

Neuroimaging. Co-registration between ASL and T1 is needed to calculate mean signal for 

each lobe, whereas co-registration between FLAIR and T1 is required to identify WMH. 

Global cerebral blood flow (CBF, in ml/min/100g brain tissue) was estimated from the ASL 

images using BASIL (Bayesian Inference for Arterial Spin Labelling) [33] from the FSL 

package. A nonlinear transformation to standard MNI space was estimated using the SPM12 

unified segmentation procedure applied to the T1-weighted images and used to transform 

CBF images to standard space for voxel-wise statistics. A lobe-based parcellation was also 

produced and mean CBF was computed for each lobe using the FreeSurfer output 

(https://surfer.nmr.harvard.edu/fswiki/CorticalParcellation). 

 

Cognitive measures 

Cognitive tests were conducted to examine several domains of cognitive function. These 

included the Hopkins Verbal Learning Test (verbal memory) [34], Rey-Osterrieth Complex 

Figure Test copy (visuospatial, perceptual function, organisation) and delay (visual memory) 
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[34], and components of the Cambridge Neuropsychological Test Automated Test Battery 

(CANTAB) including paired associate learning (PAL, episodic memory and learning), and 

simple reaction time (SRT, speed) [35]. Also included were components from the Wechsler 

Memory Scale 3rd version (WMS-III) including mental control (maintaining mental set), digit 

span forwards (simple attention) and backwards (working memory) [36]. The National Adult 

Reading Test (NART) was conducted to assess premorbid intelligence [37]. 

 

Other measurements 

Demographic information and medical history including cardiovascular factors 

(hypertension, hyperlipidaemia, stroke, coronary artery disease), diabetes complications, 

medication use, and age of diabetes onset were recorded using a standardized, structured 

questionnaire. Height, weight, waist and hip circumference were measured. Two readings 

were taken for each measurement, and if there was a difference of 2cm or more between 

these two readings, a third was performed, and the average of the measurements was used. 

Body mass index (BMI) and waist-hip ratio (WHR) were then calculated. Blood samples 

were analysed for fasting glucose, HbA1c, and insulin levels. A Beckman Coulter DXC800 

Analyser was used to determine glucose concentration using oxygen rate method utilising a 

glucose oxygen electrode (Beckman Coulter, Inc, Indianapolis, IN, USA) and HbA1c was 

measured using an ADAMS ARKRAY Glycohaemoglobin Analyser HA8160 (ARKRAY, 

Inc, Kyoto, Japan). Serum insulin levels were measured using the immune-enzymatic 

Access/DXI Ultrasensitive Insulin assay (Beckman Coulter, Inc, Indianapolis, IN, USA) and 

insulin resistance was calculated using the Homeostatic Model Assessment (HOMA2) 

method [38].  

 

Statistical analyses 



	

10	
	

Similar to our previous work [39], neuropsychological test scores were subjected to data 

reduction using confirmatory factor analysis, yielding three factors. Based on loading of tests, 

the factors represented the cognitive domains of attention, memory, and perceptual speed 

(Supplementary Table 1). Factor scores were developed for individuals in each factor using 

Thomson’s method [40], which were then used in subsequent analyses. 

 

McNemar’s test and paired t-tests were used to compare categorical and continuous 

characteristics between discordant twin pairs. Linear mixed level modelling was used to 

examine the relationships between T2D, hemodynamic variables and brain variables. In these 

models, a unique twin pair identification code was entered as a random effect, so that the 

model incorporated both within-pair comparisons and between-pair comparisons and allowed 

the incorporation of covariates such as age and sex, along with primary variables of interest 

(T2D, BP and hemodynamic measures) into the model.  

 

To examine whether BP and hemodynamic measures mediated the associations detected 

between T2D and the brain outcomes (perfusion, brain structure, cognition), we added terms 

for hemodynamic measures that were associated with T2D into the models relating T2DM to 

relevant outcomes, adjusting for age and sex. As with our previous work [41], if the 

hemodynamic measure introduced substantially attenuated the β coefficient for T2DM and 

the coefficient of the brain outcome measure remained unchanged from its unadjusted value 

without T2D in the model, it was to be considered a potential mediator. Two-way interactions 

were also planned using a test of significance of product terms to assess effect modification. 

Standard regression diagnostics were conducted to assess the adequacy of models. A p value 

of <0.05 was used as a threshold for statistical significance. Stata statistical package software 

(version 13.0, StataCorp, College Station, TX, USA) was used for these analyses. 
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Results 

Sample 

Of the 90 twin pairs approached between April 2015 and May 2016, there were 10 pairs in 

which at least one twin did not respond, 45 pairs in which at least one twin declined to 

participate, and 9 pairs who agreed to participate but were unable to meet the logistical 

requirements to attend all study assessments. Thus 26/90 pairs (11 pairs from our previous 

sample and 15 new pairs) were enrolled and underwent all measurements, a recruitment rate 

of 32%. Two pairs were subsequently excluded because both twins in both pairs were found 

to have T2D based on fasting glucose levels. A further pair was excluded due to failure of 

one of the twins to attend assessment, leaving 23 pairs (12 dizygotic pairs, 11 monozygotic 

pairs) with data available for analysis.  

 

The mean age of the sample was 63.7 years (SD 6.1), with mean duration of T2D of 10.7 

years (SD 11) in affected individuals (Table 1). Compared with their unaffected co-twins, 

those with T2D had a significantly greater HbA1c, fasting glucose, BMI, and WHR, were 

more likely to report of a history of hyperlipidaemia and myocardial infarction, and more 

likely to be on BP lowering medications, and oral hypoglycaemic agents (all p<0.05). All 

individuals without T2D had fasting glucose <7.0 mmol/L but eight of these individuals had a 

fasting glucose >5.5 mmol/L, consistent with impaired glucose tolerance. Systolic central BP 

dipping was the only detectable difference in hemodynamic variables (using paired 

comparisons; Table 2). 

 

Associations between T2D and hemodynamic measures 

T2D was negatively associated with nocturnal dipping of central SBP in univariable analysis 

(β=-3.96, 95% CI -7.28 to -0.65, p=0.019) and following adjustment for age and sex (β=-
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3.79, 95% CI -7.15 to -0.42, p=0.027; Table 3). Sex was not associated with nocturnal 

central SBP dipping. There were no other detectable associations between T2D and other BP, 

stiffness, hemodynamic measures, or with global cerebral perfusion (Table 3). In a sub-group 

analysis by zygosity, the association between T2D and nocturnal dipping of SBP was 

stronger among dizygotic pairs (β=-4.88, p=0.006) than among monozygotic pairs β=-2.96, 

p=0.34). Otherwise, the associations for other hemodynamic variables by zygosity were not 

different in magnitude compared with the whole sample. 

 

Associations between T2D and cognition 

T2D was associated with poorer attention scores (β=-0.45, 95%CI -0.68 to 0.21, p<0.001) 

independent of age and sex, but not with memory (β=-0.31, 95%CI -0.68 to 0.056, p=0.10) or 

perceptual speed (β=-0.20 95%CI -0.52 to 0.12, p=0.22). Addition of education level into 

these models did not change the associations, which were similar in magnitude in both 

monozygotic and dizygotic subgroups. 

 

Associations between hemodynamic measures and cerebral perfusion 

Adjusting for age and sex, there was a negative association between peak excess pressure and 

global CBF (β=-0.78, 95%CI	-0.15 to 0.03, p=0.043) and between central SBP and global 

CBF (β=-0.19, 95%CI -0.44 to 0.05, p=0.013; Table 4). There were no detectable 

associations between any of the other BP, hemodynamic, or stiffness variables and cerebral 

perfusion. 

 

Associations of hemodynamic measures with cognition and brain structure 

Higher aortic reservoir pressure (β=0.02, 95%CI 0.01 to 0.04, p=0.01) was associated with 

better attention score, wider central pulse pressure was associated with better memory score 
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(β =0.02, 95%CI 0.01 to 0.05, p=0.02), and wider peripheral PP was associated with poorer 

perceptual speed (β =-0.03, 95%CI -0.05 to -0.01, p=0.03), independent of age and sex 

(Supplementary Table 2). We were unable to detect any other associations between other 

central or peripheral hemodynamic variables and cognition. Wider peripheral PP was 

associated with lower total brain volume (β =-2108, 95%CI -3822 to -395, p=0.016, 

Supplementary Table 3.  

 

Moderation and interactions 

There was a statistically significant interaction between T2D and nocturnal dipping of central 

systolic BP in predicting attention scores (β=0.031, 95%CI	0.0066 to 0.055, p=0.013 for the 

interaction term) whereby in those with T2D, reduced nocturnal BP dipping was associated 

with poorer attention scores but not in those without T2D (Figure 1). There was also a 

similar interaction between T2D and dipping of peripheral systolic BP in predicting attention 

scores (β=0.034, 95%CI	0.0065 to 0.061, p=0.015 for the interaction term) whereby there 

was a positive association between BP dipping and attention scores in those with T2D, but 

not in those without T2D. However no other interactions were detected between T2D and 

hemodynamic variables in predicting cognitive domain scores.  

 

Discussion 

In this discordant twin sample, we found that T2D was associated with reduced nocturnal BP 

dipping, but not other hemodynamic measures. We also detected a modifying effect of 

nocturnal systolic BP dipping on the association between T2D and attentional ability, raising 

interesting speculation about underlying biological explanations and the potential for 

impaired nocturnal BP dipping as a mediator of cognitive dysfunction in T2D. Additionally, 
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we identified associations of some BP and hemodynamic measures with cognition and total 

brain volume, and associations of excess pressure and central SBP with cerebral perfusion. 

 

One interesting finding in our study was the interaction between T2D and nocturnal systolic 

BP dipping in predicting cognition, specifically attentional ability. T2D is known to be 

associated with reduced nocturnal dipping [14, 15]. One explanation for impaired dipping in 

T2D may be the presence of co-existent sleep apnoea, which is known to be associated with 

nocturnal hypertension [14]. However, we were unable to investigate this issue as we did not 

have measures of sleep apnoea. Alternatively, reduction in dipping may be the result of 

increased sympathetic nervous system activation during sleep [42], but salt sensitivity, 

reduced renal salt excretion, corticosteroid levels, leptin, insulin resistance, and endothelial 

dysfunction all may have a role [43]. Reduced nocturnal BP dipping has been associated with 

poorer cognition previously in people without T2D [44-46], but to our knowledge, not in the 

context of T2D. Others have previously raised the possibility that impaired dipping could be 

mechanistically related to target organ damage, including the brain [13]. It could be 

hypothesized that reduced nocturnal BP dipping is indicative of microvascular dysfunction, 

which could lead to impaired blood brain barrier function, neuronal damage and reduced 

cognition over time. T2D is also associated with microvascular dysfunction and thus may 

amplify the effect of impaired dipping on cognition. This interaction between nocturnal BP 

dipping and T2D on cognition and deserves exploration and replication in future larger and 

longitudinal studies. An interesting finding in sub-group analysis by zygosity showed a 

stronger relationship between T2D and nocturnal dipping among dizygotic pairs than among 

monozygotic pairs. Although this raises speculation that genes may have a strong 

contribution to this association, these findings must be regarded as hypothesis-generating 

given the small size of the subgroups. Similarly the lack of differences by zygosity in 



	

15	
	

analyses of T2D against other hemodynamic variables or cognition may also be due to the 

small subgroup samples. 

 

Apart from the interaction between T2D and nocturnal BP dipping, we did not uncover 

associations of T2D with other hemodynamic variables. This is in contrast to several studies 

of T2D in which central BP and aortic stiffness were examined [15, 47-49]. In a sample of 37 

people with T2D (mean age 63 years), compared to 37 people without T2D (mean age 52 

years), we previously reported that T2D was associated with higher central and peripheral 

SBP, as well as higher excess and reservoir pressure [15]. Similarly, Cakar et al., found that 

in 20 people with T2D (mean age 40 years) compared to 17 healthy controls (mean age 48 

years), those with T2D had increased aortic PWV, and central and brachial BP [48]. 

Kozakova et al., similarly found that aortic PWV, carotid artery BP , and LV mass were 

higher in those with T2D (n=125) compared to healthy volunteers (n=101, whole sample 

mean age 57.5 years) [49] However, Scott et al., found that there was no difference in central 

BP between 73 people with T2D and 73 healthy volunteers at rest (mean age 53.5 years), but 

that those with T2D were more likely to have an exaggerated central BP response to aerobic 

exercise [47].  

 

There are several possible reasons why we did not detect similar associations between T2D 

and BP, aortic stiffness, and hemodynamic measures. The method we utilised is a validated 

non-invasive cuff-based method to measure central BP and the aforementioned studies 

incorporated a similar method [48], or a tonometric method [15, 47, 49]; methods found to be 

similar when compared to oscillometry [19]. Furthermore, such methods have been 

specifically validated by comparing to invasive methods in those with T2D [50]. Although it 

is not possible to validate ambulatory methods against invasive methods, ambulatory central 
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BP has been shown to outperform conventional ambulatory BP [51]. Therefore the validity of 

these measurements does not likely explain the lack of associations observed. However one 

exception is that the Mobil-o-Graph may underestimate PWV compared with carotid-femoral 

waveform assessment, the gold standard technique [52].  A potential explanation for our 

inability to detect associations between T2D and BP and haemodynamic measures may be the 

effective use of BP reducing medications (mean defined daily dose of antihypertensive 

medication in T2D group=1.9 compared to 0.8 in control, p=0.002), and the relatively tight 

glycaemic control (mean HbA1c=7.1% in T2D group) in a high proportion of our sample 

with T2D, thus minimising any disease-related differences in BP. Finally, the relatively small 

size of our sample may have also further reduced our chances of uncovering associations, 

even though our discordant twin study design provides tight control of important 

confounders.  

 

There were few associations between BP, aortic stiffness, and hemodynamics and cognition 

in our study. Higher reservoir pressure was associated with higher attention score, and wider 

central PP was associated with higher memory score, whilst wider peripheral PP was 

associated with poorer perceptual speed score. Regarding the association between reservoir 

pressure and attention, Climie et al., previously studied a sample of people with T2D and 

healthy controls, and found that higher excess pressure, but not reservoir pressure, was 

associated with lower grey matter volume in people with T2D [15]. There have been no other 

studies examining the role of excess pressure or reservoir pressure in cognitive impairment in 

T2D. The aortic pressure waveform can be divided into excess pressure and reservoir 

pressure with excess pressure representing excess work performed by the left ventricle, 

whereas reservoir pressure indicates the pressure required to fill the physiologic reservoir 

[53]. Therefore, a higher reservoir pressure, as opposed to excess pressure, may be indicative 
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of more efficient reservoir function. Such efficient reservoir physiology might represent 

reduced arterial stiffness, which could adversely affect the brain. Therefore, this may explain 

the association seen between reservoir pressure and attention. Surprisingly, wider central PP 

was associated with higher memory score in our study. Although PP is considered a marker 

of arterial stiffness, the gold standard measure is PWV [54], which was not associated with 

memory score in our study.  

 

Except for an inverse association between peripheral PP and total brain volume, we did not 

find any associations between other measures of aortic stiffness, central hemodynamics or BP 

dipping with total or regional brain volumes. We did however find that higher central systolic 

BP and higher excess pressure were associated with lower cerebral perfusion, but neither 

were associated with T2D in our sample. Hence we were unable to establish mediation. 

Detailed studies of the links between central hemodynamics and cerebral perfusion or brain 

structure are lacking. The relationship between aortic stiffness and cerebral perfusion has 

been examined previously in only two studies, and none in the context of T2D. In one study, 

athletes had lower PWV and greater occipitoparietal blood flow, as assessed by ASL, than 

sedentary individuals and there was a statistically significant correlation between PWV and 

occipitoparietal blood flow [55]. In another study, people with T1D (mean age 46 years, 

n=51) were compared to those without T1D (mean age 44 years, n=34) [56]. In that study, 

T1D was associated with lesser grey and white matter volume and greater CBF, while both 

PWV and CBF were independently associated with white matter volume in those with T1D 

only [56]. Associations between PWV and CBF were not examined [56]. 

 

The strengths of our study are its discordant twin pair design, careful phenotyping of T2D, 

and comprehensive measures of BP, hemodynamics, cognition and structural imaging. One 
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limitation is our relatively small sample size, and another is that our T2D sample had 

relatively well-controlled T2D and were more likely to be on protective therapies than those 

without T2D, thus restricting our ability to detect small effects. This limitation is somewhat 

offset by the potential increased sensitivity of this study design to detect small effects. It is 

also recognized that a person who has a co-twin with T2D is at a high risk of developing T2D 

in the future and therefore may not be considered to be a true “control”. Indeed, some 

participants without T2D had fasting glucose levels consistent with pre-diabetes which has 

the potential to reduce our ability to detect within-pair differences.  However, this may be 

considered a strength as it allows for isolation of the effect of T2D from other factors 

associated with T2D such as impaired fasting glucose, hypertension and obesity, and early 

age lifestyle exposures. Furthermore, we did not apply a correction for multiple hypotheses, 

which increases the likelihood of false positive results. However, our hypotheses were pre-

specified. Additionally, this is a cross-sectional study which is susceptible to potential 

information bias such as that which can result from self-reporting questionnaires, and 

furthermore causation cannot be inferred in any associations found. Finally, our recruitment 

rate was only 32%, and many of the included twins had participated in our twin previous 

study [16], which may have caused sampling bias, since such individuals may differ from the 

remaining eligible study sample in characteristics such as health literacy and participation. 

 

Conclusions 

The potential role of nocturnal central blood pressure dipping in explaining the association 

between T2D and cognitive dysfunction requires further confirmation in larger, 

longitudinalstudies, with exploration of potential underlying mechanisms such as sleep apnea.  
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Table 1: Sample characteristics 

 Type 2 diabetes 
(N=23) 

n (%) or mean (SD) 

No type 2 diabetes 
(N=23) 

n (%) or mean (SD) 

P value 

Age 63.7 (6.1) 63.7 (6.1) N/A 

Female sex 12 (52) 15 (65) 0.37 

National Adult Reading Test 
(NART) Intelligence 
Quotient 

109 (11) 110 (11) 0.49 

College degree 6 (26.1) 8 (34.8) 0.69 

Geriatric Depression Scale 
score 

2.1 (2.0) 2.4 (2.9) 0.56 

Hypertension 18 (78) 12 (52) 0.09 

Defined daily dose of 
antihypertensive medication 

1.9 (0.3) 0.8 (0.2) 0.002 

Hyperlipidemia 18 (78) 11 (48) 0.048 

Stroke 1 (4) 0 (0) 0.31 

Myocardial infarction 3 (13) 0 (0) 0.07 

Ever smoker 11 (48) 9 (39) 0.55 

Body mass index 34.4 (5.9) 29.8 (5.7) 0.006 

Waist-hip ratio 0.97 0.94 0.026 

Fasting glucose (mmol/L) 7.9 (2.6) 5.4 (0.5) <0.001 

Fasting glucose (mg/dL) 142.2  (46.8) 97.2 (9.0) <0.001 

Hemoglobin A1c (%) 7.1 (1.4) 5.6 (0.3) <0.001 

Homeostatic Model 
Assessment 2 (mg/dL) 

1.7 (1.2) 1.1 (1.4) 0.03 

Current oral hypoglycaemic 
use 

19 (82.6) 0 (0) <0.001 

Current insulin use 2 (9.7) 0 (0) 0.16 

p values derived using paired t-tests or McNemar’s test 
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Table 2: Blood pressure, aortic stiffness, and hemodynamic measures using paired t tests 

 Type 2 diabetes 
(N=23) 

n (%) or mean 
(SD) 

No type 2 diabetes 
(N=23) 

n (%) or mean (SD) 

P value 

Central SBP (mmHg) 131.1 (12.3) 133.6 (17.4) 0.42 

Peripheral SBP (mmHg) 128.4 (11.7) 129.0 (14.6) 0.83 

Central DBP (mmHg) 77.9 (9.0) 80.9 (76.9) 0.17 

Peripheral DBP (mmHg) 75.9 (9.0) 79.1 (8.8) 0.16 

Systolic central BP dipping (%) 6.9 (8.3) 12.9 (14.1) 0.029 

Systolic peripheral BP dipping 
(%) 

13.9 (12.7) 18.9 (13.7) 0.069 

Diastolic central BP dipping (%) 20.0 (16.5) 25.2 (16.4) 0.21 

Diastolic peripheral BP dipping 
(%) 

19.8 (18.5) 24.8 (15.1) 0.24 

Central PP (mmHg) 52.9 (10.0) 52.7 (13.4) 0.94 

Peripheral PP (mmHg) 52.5 (7.1) 49.8 (9.8) 0.21 

Pulse wave velocity (m/s) 9.8 (1.3) 9.9 (1.3) 0.69 

Augmentation index (at 75 bpm) 28.8 (6.9) 28.5 (7.7) 0.89 

Peak excess pressure (mmHg) 20.6 (3.9) 21.0 (18.8) 0.73 

Peak reservoir pressure (mmHg) 119.0 (12.4) 117.3 (14.5) 0.70 

SD: standard deviation, SBP: systolic blood pressure, DBP: diastolic blood pressure, BP: blood 
pressure, PP: pulse pressure 
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Table 3: Associations between T2D and hemodynamic measures 

 Type 2 Diabetes 
Univariable Adjusted for age and sex 
β (95%CI) 
p value 

β (95%CI) 
p value 

Central SBP (mmHg) -2.51 (-8.34 to 3.33) 
0.40 

-3.01 (-9.04 to 3.03) 
0.33 

Peripheral SBP (mmHg) -0.59 (-5.79 to 4.60) 
0.82 

-0.63 (-5.94 to 4.68) 
0.82 

Central DBP (mmHg) -3.00 (-7.00 to 1.0) 
0.14 

-3.79 (-7.81 to 0.22) 
0.064 

Peripheral DBP (mmHg) -3.15 (-7.31 to 1.01) 
0.14 

-3.92 (-8.02 to 0.19) 
0.06 

Systolic central dipping (%) -3.96 (-7.28 to -0.65) 
0.019 

-3.79 (-7.15 to -0.42) 
0.027 

Systolic peripheral dipping (%) -3.24 (-6.85 to 0.38) 
0.08 

-3.56 (-7.22 to 0.11) 
0.06 

Diastolic central dipping (%) -4.03 (-9.30 to 1.22) 
0.13 

-3.21 (-7.92 to 1.50) 
0.18 

Diastolic peripheral dipping (%) -3.46 (-8.70 to 1.78) 
0.20 

-2.29 (-6.48 to 1.90) 
0.29 

Central PP (mmHg) 0.23 (-5.14 to 5.59) 
0.93 

0.35 (-5.06 to 5.76) 
0.90 

Peripheral PP (mmHg) 2.68 (-1.30 to 6.66) 
0.19 

3.32 (-0.43 to 7.08) 
0.083 

Pulse wave velocity (m/s) -0.43 (-0.25 to 0.16) 
0.68 

-0.60 (-0.24 to 0.23) 
0.96 

Augmentation index 0.23 (-2.95 to 3.42) 
0.89 

1.78 (-0.39 to 3.95) 
0.11 

Peal excess pressure (mmHg) 1.37 (-1.15 to 3.89) 
0.29 

1.30 (-1.13 to 3.74) 
0.29 

Peak reservoir pressure (mmHg) -4.21 (-9.44 to 1.02) 
0.12 

-4.80 (-10.25 to 0.65) 
0.084 

Global cerebral perfusion 
(ml/min/100g) 

-3.16 (-9.93 to 2.60) 
0.28 

-2.55 (-7.93 to 2.83) 
0.35 

SBP: systolic blood pressure, DBP: diastolic blood pressure, PP: pulse pressure,  
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Table 4: Associations between hemodynamic measures and global cerebral perfusion 

 Global cerebral perfusion (ml/min/kg) 
Univariable Adjusted for age and sex 
β (95%CI) 
p value 

β (95%CI) 
p value 

Central SBP (mmHg) -0.22 (-0.45 to 0.13) 
0.065 

-0.19 (-0.44 to 0.05) 
0.013 

Peripheral SBP (mmHg) -0.18 (-0.46 to 0.10) 
0.21 

-0.17 (-0.45 to 0.11) 
0.22 

Central DBP (mmHg) -0.23 (-0.63 to 0.17) 
0.26 

-0.18 (-0.58 to 0.21) 
0.36 

Peripheral DBP (mmHg) -0.18 (-0.58 to 0.23) 
0.39 

-0.14 (-0.54 to 0.25) 
0.47 

Systolic central BP dipping 
(%) 

0.14 (-0.27 to 0.54) 
0.51 

0.14 (-0.26 to 0.54) 
0.50 

Systolic peripheral BP 
dipping (%) 

0.01 (-0.37 to 0.38) 
0.97 

-0.01 (-0.38 to 0.35) 
0.95 

Diastolic central BP dipping 
(%) 

0.30 (-0.25 to 0.62) 
0.07 

0.24 (-0.11 to 0.59) 
0.18 

Diastolic peripheral BP 
dipping (%) 

0.19 (-0.14 to 0.53) 
0.26 

0.14 (-0.20 to 0.49) 
0.41 

Central PP (mmHg) -0.18 (-0.45 to 0.10) 
0.22 

-0.16 (-0.46 to 0.15) 
0.31 

Peripheral PP (mmHg) -0.17 (-0.55 to 0.21) 
0.37 

-0.23 (-0.65 to 0.19) 
0.28 

Pulse wave velocity (m/s) -2.35 (-4.82 to 0.11) 
0.062 

-4.66 (-11.13 to 1.82) 
0.16 

Augmentation index -0.23 (-0.24 to 0.69) 
0.34 

0.01 (-0.82 to 0.83) 
0.99 

Excess pressure (mmHg) -0.87 (-1.62 to -0.12) 
0.023 

-0.78 (-1.53 to -0.03) 
0.043 

Reservoir pressure (mmHg) -0.18 (-0.47 to 0.11) 
0.22 

-0.13 (-0.42 to 0.16) 
0.37 

SBP: systolic blood pressure, DBP: diastolic blood pressure, BP: blood pressure, PP: pulse pressure 
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Figure 1: Interaction between T2D and central systolic dipping in explaining attention scores 
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Supplementary Table 1: Factor loading of cognitive tests 

 Memory Attention Perceptual Speed 

Rey Complex copy [34] 0.28 0.19 0.48 

Delayed Rey Complex recall  0.49 0.055 0.43 

WMSIII- digit span forward 0.11 0.75 0.05 

WMSIII- digit span backward 0.09 0.67 0.005 

WMSIII- mental control 0.15 0.34 0.34 

HLVT immediate recall 0.84 0.12 0.11 

HLVT delayed recall 0.83 0.039 0.069 

HLVT recognition trial 0.51 0.066 0.037 

CANTAB: SRT mean correct 

latency 

0.030 0.16 -0.41 

CANTAB: PAL mean total errors 

adjusted 

-0.54 -0.14 0.15 

WMSIII: Weschler Memory Scale 3 [34], HVLT: Hopkins Visual Learning Test1, CANTAB: 

Cambridge Neuropsychological Test Automated Test Battery [35], SRT: simple reaction 

time, PAL: paired associates learning. 
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Supplementary Table 2: Associations between hemodynamics and cognition, adjusted for age 
and sex 

 Attention Memory Speed 
β (95%CI) 

p value 
β (95%CI) 

p value 
β (95%CI) 

p value 
Central SBP 0.14 (-0.01 to 0.3) 

0.07 
0.01 (-0.01 to 0.03) 

0.13 
-0.01 (-0.04 to 0.03) 

0.12 
Peripheral SBP 0.01 (-0.01 to 0.02) 

0.40 
0.01 (-0.02 to 0.02) 

0.67 
-0.01 (-0.03 to 0.01) 

0.06 
Central DBP 0.2 (-0.06 to 0.04) 

0.13 
-0.01 (-0.03 to 0.02) 

0.78 
-0.01 (-0.03 to 0.01) 

0.48 
Peripheral DBP 0.01 (-0.01 to 0.04) 

0.24 
-0.01 (-0.03 to 0.02) 

0.86 
-0.01 (-0.03 to 0.01) 

0.43 
Systolic central 

BP dipping 
0.01 (-0.02 to 0.04) 

0.48 
-0.01 (-0.04 to 0.02) 

0.68 
0.01 (-0.02 to 0.03) 

0.66 
Systolic 

peripheral BP 
dipping 

0.01 (-0.02 to 0.04) 
0.44 

-0.01 (-0.03 to 0.03) 
0.82 

0.01 (-0.02 to 0.02) 
0.78 

Diastolic central 
BP dipping 

-0.01 (-0.03 to 0.02) 
0.60 

0.01 (-0.03 to 0.03) 
0.88 

0.01 (-0.01 to 0.03) 
0.39 

Diastolic 
peripheral BP 

dipping 

-0.01 (-0.03 to 0.02) 
0.76 

0.01 (-0.02 to 0.03) 
0.66 

0.01 (-0.01 to 0.03) 
0.48 

Central PP 0.01 (-0.01 to 0.03) 
0.24 

0.02 (0.01 to 0.05) 
0.02 

-0.01 (-0.03 to 0.01) 
0.27 

Peripheral PP 0.01 (-0.03 to 0.03) 
0.96 

0.01 (-0.02 to 0.04) 
0.44 

-0.03 (-0.05 to -0.01) 
0.03 

Pulse wave 
velocity 

0.36 (-0.02 to 0.74) 
0.06 

0.42 (-0.02 to 0.85) 
0.06 

-0.29 (-0.64 to 0.06) 
0.11 

Augmentation 
index 

-0.01 (-0.05 to 0.04) 
0.98 

-0.02 (-0.07 to 0.03) 
0.50 

0.01 (-0.04 to 0.04) 
0.93 

Excess pressure 0.01 (-0.04 to 0.05) 
0.84 

0.04 (-0.01 to 0.09) 
0.12 

-0.02 (-0.06 to 0.03) 
0.45 

Reservoir 
pressure 

0.02 (0.01 to 0.04) 
0.01 

0.01 (-0.01 to 0.03) 
0.25 

-0.01 (-0.03 to 0.01) 
0.18 

SBP: systolic blood pressure, DBP: diastolic blood pressure, BP: blood pressure, PP: pulse pressure 
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Supplementary Table 3: Associations between hemodynamics and total brain volume, 
adjusted for age, sex and total intracranial volume 

 Total brain volume (mm3) 
β (95%CI) 

p value 
Central SBP -280 (-1403 to 843) 

0.63 
Peripheral SBP -1020 (-2244 to 204) 

0.10 
Central DBP 786 (-1218 to 2790) 

0.44 
Peripheral DBP 613 (-1330 to 2556) 

0.54 
Systolic central BP dipping -179 (-1987 to 1628) 

0.85 
Systolic peripheral BP dipping -290 (-1919 to 1340) 

0.73 
Diastolic central BP dipping 687 (-920 to 2295) 

0.40 
Diastolic peripheral BP dipping 1295 (-253 to 2843) 

0.10 
Central PP -517 (-1836 to 803) 

0.443 
Peripheral PP -2108 (-3822 to -395) 

0.016 
Pulse wave velocity -7303 (-35007 to 20401) 

0.61 
Augmentation index -443 (-3476 to 2591 

0.78 
Excess pressure -2609 (-5985 to 768) 

0.13 
Reservoir pressure 88 (-1269 to 1446) 

0.90 
SBP: systolic blood pressure, DBP: diastolic blood pressure, BP: blood pressure, PP: pulse pressure 

 

	


