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a b s t r a c t 

A Domestic Operational Rating (DOR) scheme is presented for assessing the energy performance of oc- 

cupied dwellings. The DOR is complementary to the method used to generate the asset rating of UK 

dwellings: the Standard Assessment Procedure (SAP). The DOR is transparent, easy to calculate, based 

on readily available information, producible from daily smart meter data, calculable for any period on a 

rolling year basis and applicable across all UK homes. 

The DOR method was developed using a new primary data set collected from 114 homes as part of the 

DEFACTO project. All were semi-detached, gas centrally heated, privately owned and internet connected 

properties, located in the English Midlands. The mean daily energy demands are analysed alongside in- 

formation gathered through an energy survey and household questionnaires. These data are presented 

and analysed for the first time in this paper. 

The DOR method, which is described in full, generates metrics that indicate the absolute and relative 

energy demands, greenhouse gas emissions and energy costs of homes. The DOR ratings for the D114 

homes were stable from year to year. Comparing the DOR with homes’ asset (SAP) ratings, indicates 

that the SAP rating poorly reflects the inter-home variation of households’ actual energy demand. For 

the D114 homes, it was possible produce a reduced data Domestic Operational Rating, rdDOR, using the 

energy demands measured on only a few cold days. 

Although developed in the UK context, the DOR is generally applicable to national, regional or local 

housing stocks in which daily energy demand is metered. Potential improvements to the DOR, and the 

need for trials using smart meter data from diverse homes and locations, are discussed. 

© 2019 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

The United Kingdom (UK) has the oldest housing stock of EU

Member States, with nearly 38% of homes dating from before 1946

[5] . The energy use of this stock is currently 480.26 TWh pa, 1 

which is 29% of all UK energy use [15,16] . The stock therefore rep-

resents, on the one hand, a major opportunity to reduce energy

demands and greenhouse gas (GHG) emissions but on the other

hand, a problem: a massive drain on energy resources, a major

source of GHGs and a burden on the finances of UK households.
∗ Corresponding author. 

E-mail address: k.j.lomas@lboro.ac.uk (K.J. Lomas). 
1 To convert from tonnes of oil equivalent (toe), the measure used in some UK 

government documents such as the Digest of UK Energy Statistics [15,16] , a figure 

of 11,630 kWh per toe is used. 
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et energy demand reduction is essential if the UK is to meet its

HG emissions reduction targets [58] . 

Over the last 50 years there have been impressive improve-

ents in the energy efficiency of the UK housing stock. GHG emis-

ions resulting from energy use have fallen despite a 42% increase

n the number of dwellings 2 and an increase in the internal winter-

ime temperatures. The real cost of energy to households is similar

o that in 1970 ( Fig. 1 ). This has been achieved by decarbonising

he fuel used to heat homes, notably shifting from coal burning to
2 Domestic building, and like terms, need to be treated with caution. In this paper 

omestic building is synonymous with dwelling, which means the physical object, 

he house, flat, bungalow etc. A home is an occupied dwelling, and a household, 

ssentially, a group of individuals living together in the same dwelling. Throughout 

his paper an attempt has been made to use terms according to this system, but 

ny errors will not affect the sense of the arguments. 

nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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3 The CCC produces the five yearly carbon budgets and advice reports to the UK 

government to help keep GHG emissions reductions on track to achieve at least 80% 

reduction by 2050 compared to the 1990 level. 
4 At the end of 2018, smart meters were installed in c27% of GB homes with 

mains electricity and c25% with a gas connection [21] . 
5 DUKES first published in 1950. 
Nomenclature 

Uppercase 

B Benchmark 

C Linear equation constant coefficient 

DD Degree-days at dwelling/ °C.days 

DDS Standard number of degree-days 

DOR Dwelling operational rating 

DORB Dwelling operational rating band 

DY Days 

EC Energy cost/£

ED Energy demand/kWh 

EER Energy efficiency rating 

EERB Energy efficiency rating band 

EIR Environmental impact rating 

EIRB Environmental impact rating band 

GG Greenhouse gas emissions/kgCO 2e 

GGF Greenhouse gas emissions factor/kgCO 2e /kWh 

M Linear equation multiplication coefficient 

P Percentage/% 

SC Standing charge of fuel/£ per year 

T Mean daily ambient temperature 

TFA Total usable floor area/m 

2 

UC Unit cost of fuel/£/kWh 

WCF Weather correction factor 

WCW Weather correction weighting 

Lower case 

e Electricity 

f Fuel 

g Gas 

h Heat 

o Other purposes 

s Space heating 

t Total 

Subscripts 

a Annual 

d Day 

ddb Degree-day base temperature 

e Estimated 

h Hour 

n Normalised by TFA 

SAP Standard assessment procedure 

w Weather corrected 

Y1 Year 1 

Y2 Year 2 

5 When 4 < T < 6 °C 

< 15.5 Ambient temperature below 15.5 °C 

> 15.5 Ambient temperature above 15.5 °C 

he use of efficient gas central heating systems, and by decarbon-

sing the electricity supply. 

Incremental improvements to the energy efficiency of new

wellings, driven by the gradual tightening of the Building Regu-

ations, together with initiatives to improve the energy efficiency

f the existing housing stock have, since the turn of the millen-

ium, begun to drive down the absolute energy demand of the

tock. These improvements have been hard won and the oppor-

unities for further efficiencies to the fabric and heating system of

K homes are diminishing. 
The UK Committee on Climate Change (CCC) 3 sees improve-

ent in the transparency of, and ability to manage domestic en-

rgy demand as crucial to achieving the required step-change in

HG emissions [8] ; this is enabled by the introduction of so-called

mart meters. Such meters enable more transparent energy billing

nd more versatile fuel tariffs, but they also pave the way for

takeholders, from the central government through to the individ-

al households, to better understand how much energy is used,

hen it is used, and how the use is changing over time. 

Across Europe, some 80 million such meters have already been

nstalled, representing 30% of homes, and over 200 million are ex-

ected by 2020 [33] . Smart meter data have been used to give

nsights into energy usage in the domestic sector e.g.: estimat-

ng temperature set-points and fabric thermal efficiency in hous-

ng stocks in Denmark [34] ; estimating the potential of demand

esponse for air conditioning in California [25] ; consumption pat-

ern analysis in China [61] ; and attempts at non-intrusive load dis-

ggregation in Australia [40] . 

In the UK the ambition is that every homes and business will

ave been offered a smart meter by the end of 2020 [51] 4 The

K smart meters will record at 30 min intervals and these data

ill be collected and stored centrally by the Data and Commu-

ications Company [51] . There is however, tremendous sensitiv-

ty around smart meter data (e.g. [60] ). The intention, therefore, is

hat UK householders will control what data is collected, at what

ime intervals and who can use it [13] . ‘Energy services’ might be

rovided in return for data access, for example, by providing an

n-Home Display (IHD) which shows the current and past energy

se, and how this compared with the energy use of other house-

olds. Making the fuel used by households more transparent could

ncentivise more energy efficient behaviours. 

This paper proposes, for the first time, a Domestic Operational

ating (DOR) for the UK that capitalises on the availability of smart

eter data. The intention is that the DOR will complement the ex-

sting UK asset rating scheme ( Section 2 ) but quantify the actual,

n-use energy demand (DORED), GHG emissions (DORGG) and en-

rgy costs (DOREC) of every UK home. It will account for all fuel

se, the physical form of the dwelling, the heating system installed,

he behaviour of the occupants and the effects of ambient temper-

ture. 

A fully functioning DOR could also facilitate the achievement

f the CCC’s call for a strengthening of the energy use in buildings

 compliance and enforcement framework so that it is ‘outcomes-based’

8] , i.e. based on the actual ‘energy efficiency’ of dwellings rather

han the calculated/predicted carbon emissions; a move supported

y others in the industry [12] . 

The DOR is developed using a new primary data set gathered

rom homes in the English Midlands, as part of the Digital Energy

eedback and Control Technology Optimisation (DEFACTO) project

45] . All the homes were owner-occupied and semi-detached with

as fired central heating, which represents the most commonly oc-

urring occupant/house/system combination in the UK [17] . The

EFACTO project and data set collected is described in Section 3 ,

ut more fully in Haines et al. [35] . 

Every effort is made to document the proposed DOR scheme

horoughly ( Section 4 ). Supporting data needed by the DOR

cheme is taken from authoritative, primary sources: the compo-

ition of the English and UK housing stock [14] , [46] , [47] ; national

evel energy-use data from the digest of UK energy statistics 5 [15] ,
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Fig. 1. Trends in the number of UK dwellings, the average heat loss, internal temperature and fuel costs, and the total stock energy demands and CO 2 emissions (derived 

from data tables associated with [55] ). 
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9 Which perhaps portrays its 1986 origins as the Milton Keynes Energy Cost Index 

[48] . 
10 The EPCs were issued to the DEFACTO residents (e.g. Fig. 2 ) at the time the 
annual weather data [16] , 6 a breakdown of energy demand by sec-

tor and the usage UK [17] 6 , GHG emissions [18] and household fuel

bills [19] . Most of these data sources have associated tabular data

or Excel files 7 8 . Supplementary Information to this paper illustrates

the functioning of the DOR equations for three selected homes and

from the sample as a whole [42] and Excel tables provide the un-

derpinning data [43] . 

2. Established energy rating schemes and the DOR scheme 

If any proposed UK DOR scheme is to gain traction, it must

complement, and sit harmoniously alongside, the existing well-

established energy rating systems. A brief web-based review of in-

ternational energy rating schemes revealed 17 asset rating schemes

but only four operational rating schemes (see also [1] ). 

2.1. Dwelling asset rating schemes 

All but two of the asset rating schemes, including the UK

schemes, are mandatory and developed in response to the Euro-

pean Energy Performance of Buildings Directive (EPBD) [29] , or its

recast [30] and subsequent revisions (e.g. [31] ). These, and a more

recent Directive [32] , require that “The methodology applied for the

determination of the energy performance of a building shall be trans-

parent and open to innovation ”. 

All the European schemes place a dwelling within a rating band

(usually identified using an A to G scale) based on the calculated

energy demand per year normalised by dwelling floor area. The
6 Available annually since 1970. 
7 The documents and associated data files emerge frequently, but every attempt 

has been made to use the most up to date information at the time of authoring this 

paper. 
8 To ensure that the basis of the DOR is traceable, the exact table from which 

data has been taken is provided wherever possible. 
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yprus, French, Ireland and Spanish schemes also produce a rating

ased on annual normalised GHG emissions. Asset ratings must be

roduced when dwellings are built or sold. 

The UK Standard Assessment Procedure (SAP) is an exception

ecause the Energy Efficiency Rating (EER SAP ) is based on the nor-

alised annual energy costs, 9 although an Environmental Impact

ating (EIR SAP ), based on the normalised annual GHG emissions, is

lso calculated and included on a dwelling’s Energy Performance

ertificate (EPC) ( Fig. 2 ). 10 The two ratings are determined, using

tandard energy cost and GHG emission factors, from the calcu-

ated annual regulated energy demands. These are the energy de-

ands that are controlled by the Building Regulations [37] and

hich therefore exclude the energy used by plug-in appliances,

hich was c26% of all UK domestic demand in 2016 [17] . 

As for other asset rating schemes, the data needed for SAP cal-

ulations is obtained from a home energy survey undertaken by a

ualified assessor. A reduced data SAP, rdSAP, is invariably calcu-

ated as this has less onerous survey data requirements. The na-

ional Energy Performance of Buildings Register, currently holds

ver 18 million records, each of which includes the dwellings’ total

sable floor area (TFA) 11 and the heating fuels used. The SAP has

volved through six or more official versions [4] culminating in the

012 official version [22] . Although SAP2016 has been documented
overnment was promoting The Green Deal. Launched in 2013, the scheme sought 

o help homeowners finance the installation of energy efficiency measures. The 

reen Deal was however, as the Secretary of State at the time, Edward Davey put it, 

 clunky and complex’ [23] and ultimately, it was disbanded, with the National Audit 

ffice concluding that it ‘ not only failed to deliver any meaningful benefit, it increased 

uppliers’ costs ’ [49] . 
11 Which is required for normalising the measured energy demand in the pro- 

osed DOR scheme and is defined in the Building Regulations as ’.the total area of 

all enclosed spaces measured to the internal face of the external walls’. 
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Fig. 2. Example Energy Performance Certificate (EPC) for D114 House #8: a. EPC 

page one showing the Energy Efficiency Rating and Band (EER SAP , EERB SAP ) and b. 

excerpt from page 4 showing the Environmental Impact Rating and Band (EIR SAP , 

EIRB SAP ). 
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13 An asset rating (EPC) is also required for non-domestic buildings, and these 

must be updated when the building changes hands. The rating is based on the cal- 

culated monthly regulated energy use and GHG emissions for a standard occupancy 
6] , it will be overtaken by SAP10 [7] in 2019/20; the essential fea-

ures of all three are, however, the same. 12 

A more complete explanation of the UK asset rating, set against

he backdrop of trends in UK domestic energy demand, the build-

ng regulations and the introduction of smart meters, is given in

urther Supplementary Information to this paper [41] . 

.2. Dwelling operational rating schemes 

There is no UK operational rating for dwellings but a brief in-

ernational review [41] revealed four schemes; in the USA, China,

ermany and Latvia. All the schemes rated dwellings based on nor-

alised and weather-corrected annual energy demands. The Ger-

an scheme can generate two types of energy certificate (En-

rgieausweis), an energy demand certificate (Bedarfsausweis) and

n energy consumption certificate (Verbrauchsausweis). The de-
12 At the time of writing, the proposed 2016 version was available for consultation 

ut not for official use [6] . Very recently it has become apparent that this 2016 

ersion is unlikely ever to come into force and will be overtaken by SAP10, the 

ontent of which is published [7] . There is no difference between these versions in 

ll aspects that affect the DOR except that the emissions rating for grid electricity 

as fallen substantially between SAP2012 and SAP10. 

r

a

a

s

t

a

and certificate provides an asset rating following the usual EPBD-

ompliance approach, while the consumption certificate reports an

perational rating. One or other must be provided when a dwelling

s bought or sold. Interestingly, the operational rating is seen as a

heaper and simpler alternative. Ratings for both the delivered and

rimary energy are based on fuel bills for three accounting periods

nd the location of the building (postcode), the age of the building,

he floor area and the age of the heating system. The energy de-

and is weather-corrected, and the main focus is on space and hot

ater heating [39] . 

The US ‘Energy Star: Home Energy Yardstick’ provides house-

olds with a direct means of comparing their energy use with that

f similar households via a free-to-use web-based calculator [27] .

he yardstick was used about 14,0 0 0 times in 2017 [38] . The un-

erlying method is an updated version of that reported in [28] , the

nputs to which are the homes’ zip code, floor area, number of oc-

upants, fuels used and 12 months of energy bills for each fuel. The

ating is given on a scale of 0–10 where 0 is the worst, 10 the best

nd 5 average (median) when compared to a distribution. The dis-

ribution was calculated from 12,093 homes sampled as part of the

009 Residential Energy Consumption Survey [26] using a multi-

le linear regression model that was trained to predict the annual

nergy demand from floor area, number of occupants and heat-

ng and cooling degree days. The homes in the sample were then

anked by the ratio of their actual energy use to the regression

odel prediction [28] . The web-based calculator uses the regres-

ion model to calculate the ratio for any home and compares the

atio to the distribution to give the rating. 

.3. Operational rating in the UK 

Although there is currently no UK operational rating scheme for

wellings, there is for non-domestic buildings. 13 The rating is cal-

ulated using approved software (e.g. [50] ) based on the measured

otal 14 annual fossil fuel and electricity consumption. From these 

ata, the normalised GHG emissions for the year in question are

alculated and compared to a bespoke benchmark emissions fig-

re for that building. This benchmark is the ‘stock average’ nor-

alised GHG emissions of all buildings in the same category [2] .

tandard benchmarks for 29 categories of building (e.g. general of-

ce, large fuel store, etc.) can be found in CIBSE Technical Memo-

andum TM46 [10] . 

The building-specific benchmark figure is calculated by adjust-

ng the standard value to account for the duration of occupancy

nd location (and so weather conditions) during the year of me-

ering. The weather-correction is based on the local degree-days to

ase 15.5 °C, compared to a national average figure of 2021 °C.days.

orrections are, however, only applied to a proportion of the fossil

uel and electricity demands because only a portion of each fuel is

eemed to be weather dependent. 15 

The operational rating must be renewed annually and the Dis-

lay Energy Certificate (DEC) must show the rating obtained for

he last two years. The DEC also, like a domestic EPC, also contains

ther useful data including the asset (EPC) rating. Further insight

nto UK operational rating is given in Lomas and Allinson [41] . 
egimen and calculated using the Simplified Building Energy Model (SBEM) or other 

pproved calculation programme used [50] . 
14 I.E. not just the regulated energy, as used for asset rating of both non-domestic 

nd domestic buildings. 
15 Part of the energy demand is also excluded from the calculation, the so-called 

eparable energy. This is the energy used for process within the building such as 

rading floors, regional server rooms, bakery ovens, sports flood lighting, furnaces 

nd blast chilling and freezing plant, etc. 
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Fig. 3. Comparison of rating and banding scales as used in the UK for domestic asset rating (a. non-linear and b. non-linear), for non-domestic operational rating (b. linear), 

and as proposed for the DOR (a. linear and b. linear). 
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18 The problem with weather-correcting the benchmark, is that the proportion of 

the benchmark energy demand that is weather-sensitive, and so to be corrected, 
2.4. Operational and asset rating scales 

An important decision when considering a DOR is the choice

of rating scale, both the underlying calculation and the definition

of the rating bands. The rating scale used to produce the EER SAP 

is curious, being partly linear and partly non-linear with respect

to the energy costs (kWh/m 

2 pa) and largely, but not quite, inde-

pendent of the dwelling’s floor area (see Appendix A ). The scale is

framed such that a home that has zero annual energy costs is rated

100 and the rating falls as the energy costs increase ( Fig. 3 a). The

EIR SAP curves mirror the EER SAP rating scale with a zero-emission

dwelling having a rating of 100 ( Fig. 3 b). The rating bands are of

unequal ‘size’ 16 and the divisions can be set to produce any desired

distribution of bandings across the national stock [36] . 

In contrast, the scale used to produce an operational rating for

non-domestic buildings (and also the non-domestic asset rating)

is quite different ( Fig. 3 b), being linear such that lower emissions

produce a lower rating and a better the rating band (a rating of 0

to 25 is Band A). The bands are divided into equal increments of 25

rating points and organised so that a building with zero GHG emis-

sions is rated zero and a building that produces the stock average

GHG emissions is rated 100, which is positioned at the interface

between Band D and Band E. The simple equations to calculate the

operational ratings for energy costs and GHG emissions 17 are given

in Appendix A . 

Self-evidently, any chosen DOR scale cannot simultaneously

align with the UK domestic asset rating scales and with the non-

domestic operational rating scales. 

2.5. Features of the DOR scheme 

Flowing from the discussion above, the key features of a func-

tioning UK DOR scheme can be outlined. Most obviously, it should

be applicable to all UK homes and use a transparent and reliably

replicable method of calculation. It should capitalise on the best
16 If EER SAP or EIR SAP is greater than 92, the Band is A; 91 to 81 Band B; 80-69 

Band C; 68-55 Band D; 54-39 Band E; 38-21 Band F; and 20 or less Band G ( [6] ; 

Figs. 2 and 3 ). 
17 The equations are shown for benchmark costs and emissions of 14.40 £/m 

2 and 

46.17 kgCO 2e /m 

2 respectively. A linear rating scale based on energy demand can 

also be easily constructed. 

f

o

n

e

w

nternational practice for the operational rating of dwellings but it

ust operate in harmony with the existing UK domestic asset rat-

ng [22] . The DOR can therefore capitalise on the known dwelling

uel types and TFAs, which are provided by the asset rating survey.

In developing the DOR, the idea of comparing measured en-

rgy demand, GHG emissions and costs to external benchmarks is

dopted, much like the approach used for UK non-domestic op-

rational rating. Also, in keeping with this approach, and because

he measured energy demands of the DEFACTO homes affirmed

ts appropriateness (see Section 4 ), a degree-day base of 15.5 °C
as used of weather normalisation. However, in contrast to the

K non-domestic operational rating scheme, the actual energy de-

ands of homes are weather-corrected rather than the benchmark

gainst which uncorrected demands are compared. 18 This correc-

ion method inherently adjusts the proportion of each fuel that

s weather-corrected (depending on the mode of space and DHW

eating demand and the fuel used). 

Concerning rating scales, a linear scale has clear advantages:

eing simpler and more transparent but still offering flexibility to

overnments or other regulatory bodies to set any desired rating

and intervals, as in the SAP method. A linear scale is also much

asier for a household to understand and it enables the impact

f changes in energy demand, GHG emissions and energy costs to

e estimated. For example, for dwellings with a near stock-average

oor area of 100 m 

2 ( Table 4 ), an annual reduction in energy cost

f £14.40 would always yield a reduction (improvement) in the rat-

ng of one point (see Fig. 3 a scale). 19 

The DOR certificate might follow the style of EPC certificates

nd include multiple ratings for energy demand (DORED), GHG

missions (DORGG) and energy costs (DOREC) and also additional

nformation to guide households that wish to reduce their energy
has to be chosen. In practice, whilst this might be possible for non-domestic build- 

ings, the proportion to be corrected could vary markedly from home to home, and 

or any given home, from year to year. Thus, any assumption about the proportion 

f the benchmark to be weather-corrected cannot be correct for all homes simulta- 

eously. 
19 A zero-cost dwelling has, quite logically, a rating of zero and, if a house has 

mbedded generation, a ‘profit’ from the sale of energy would yield a negative cost, 

hich could be recognised, for example, by the creation of an A + rating band. 
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Table 1 

Desired features of a DOR scheme. 

• Applicable to all UK dwellings irrespective of type, insulation standards, heating system and occupancy. 

• Calculation should be transparent, simple and clearly documented. 

• Complementary to established asset rating systems (the Standard Assessment Procedure). 

• Based on the total, not just regulated, normalised and weather-corrected annual energy demands. 

• Annual ratings should be possible starting at any point in time. 

• Produces ratings for all fuel types, not just those that are regularly metered. 

• Minimal need for any data other than that from smart meters. 

• Disaggregation of space heating, domestic hot water and electrical energy use. 

• Respectful of household’s privacy, and so based on measurements at daily, or less frequent, intervals. 

• Provides ratings for energy demand (DORED), GHG emissions (DORGG) and energy costs (DOREC). 

• DORGG should be sensitive to changes in the grid and locally generated energy. 

• DOREC should be sensitive to changes in annual fuel prices. 

• All ratings should be stable year-on-year in the absence of energy saving actions. 

• DOR certificates might provide other useful energy, GHG and cost-related information to households. 

• Information to households might be relayed in an easy-to-assimilate manner through an in-home display. 

• Enables a national stock-wide data base of energy demand, GHG emissions and energy costs. 

• Supports moves towards performance-based regulation of domestic energy demand. 

Fig. 4. DEFACTO project time line (after [35] ). 
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20 The primary aim of the DEFACTO project was to measure the energy saving ca- 

pability of, so-called, smart heating controls when used with gas-fired, low-pressure 

hot water central heating systems. The evidence for the energy savings and cost ef- 

fectiveness of such controls is either very weak or non-existent [44] . 
21 Of the 400 that agreed to take part, seven withdrew immediately and before 

their addresses were passed to the research team. 
22 Temperatures were also measured in all the rooms of the homes at 5 minute 

intervals. Gas metering only, was installed in 63 homes and electricity and space 

temperature monitoring only in 2 homes. 
23 For example, the 2017 English Housing Survey collected gas data from c160 

homes. 
emand, costs or GHG emissions. Such information emerges from

he proposed DOR calculation strategy. The established ‘rainbow’

olour palette for the energy bands can be adopted. 

Other desirable features of a DOR scheme are also listed in

able 1 . Whilst framed in the context of the UK, these features

ould guide the development of a DOR scheme for any country.

mportantly, the DOR scheme will drive the creation of a national,

tock-wide data base of in-use energy demand, GHG emissions and

nergy costs. This would provide a solid platform for developing

ational domestic energy policy. 

. Description of the data set 

.1. The DEFACTO cohort 

The development of the DOR was made possible through the

ollection and analysis of the data gathered as part of the DE-

ACTO project, which started in November 2012 and ran to Oc-

ober 2018 ( Fig. 4 ). The cohort of owner-occupied, semi-detached,

as centrally-heated homes, were located in the English Midlands

n seven clusters, each with an associated weather station ( Fig. 5 ).

he sample was chosen because less is known about the energy

emand of owner-occupied homes compared, say, to households

n social housing, and the house type and heating system are rep-

esentative of the most frequently occurring combination in the UK
tock. The central location ensures that the weather conditions will

e close to the UK average. 20 

Of the 393 households 21 recruited to the study, a full set of half

ourly gas measurements, and two minutely electricity demand

easurements were available from 186 homes 22 for the period

rom 1st September 2015 to 31st August 2016. When aggregated

hese produce a half-hourly dataset analogous to that from smart

eters. In addition, all 393 households completed a recruitment

nterview, 167 the initial household questionnaire, and a home en-

rgy survey (EPC + ) was undertaken for 174 homes; 163 homes had

ll three sets of information, and 134 all three sets of information

nd monitored energy demand data. This is believed to be one of

he largest and longest unbroken streams of domestic half-hourly

as and electricity energy use data in the UK that has matched

welling and occupant data 23 . 
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Fig. 5. Location of homes in the DEFACTO study showing: Red - numbers recruited 

(total 393); Blue, large - the number in the D114 Year 1 sample; Blue, small - the 

number in the D114 Year 2 sample; and Black - the weather station codes (see Table 

3 ). (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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The EPC + survey was an extended version of that used to gen-

erate the Energy Rating (EER SAP ) of the homes. It yielded the total

usable floor area (TFA), which is needed for the DOR calculations,

as well as the dwellings’ SAP rating. Considerable effort was di-

rected towards ensuring the reliability of the EPC + survey data.

Detailed information about the recruitment, questionnaires, EPC +
survey, energy monitoring, data cleaning and cohort maintenance

processes can be found elsewhere [35] . 

Throughout the DEFACTO project, considerable effort was di-

rected towards maintaining the largest possible cohort of homes.

Nevertheless, there was gradual attrition as households withdrew

from the study, and, ironically, as smart meters were installed;

such attrition is not unusual with longitudinal studies of this type.

3.2. The D114 sample 

The DOR scheme was developed and illustrated using a subset

of 114 homes, which were drawn from the 134 for which a recruit-

ment interview, household questionnaire, EPC + survey, and mon-

itored data for the year (of 366 days 24 ) from 1st September 2015

to 31st August 2016 was available. For 20 homes, data inspection

and cleaning indicated that some of the data may not have been

sufficiently reliable for derivation of the DOR scheme. 25 

Daily energy use data for the subsequent year, 1st September

2016 to 31st August 2017, was also used in order to evaluate the

stability of the values produced by the DOR scheme. Cohort attri-

tion meant that, of the 114 homes selected for Year 1, only 44 con-
24 The extra day during the leap year of 2016, was ignored as the effect of the 

extra day on energy demand calculations, is small, < 0.3%. Adjusting for the extra 

day also adds unnecessary complexity, but in a full implementation of the DOR this 

adjustment could be made. 
25 Daily gas data: for many homes, there were days of zero gas demand scattered 

throughout the year and in some cases, periods of two weeks or more of no gas 

use. If gas demand was recorded in the subsequent winter, the home was retained 

in the sample. Daily electricity data: some meters were found to be faulty and so 

replaced but this resulted in large gaps in the electricity data and so these homes 

were excluded. Two homes were excluded because they were found to no longer 

meet the original project inclusion criteria, e.g. solar PV panels had been installed. 

t  

d  

l  

o

n

s

inued to produce reliable gas and electricity data for the whole of

ear 2. 

.2.1. Comparison with English housing stock 

The resulting D114 sample is different from the English hous-

ng stock of 14,755,0 0 0 homes for those features that were delib-

rately selected: tenure, house type and heating system ( Table 2 ).

he proportion of condensing combi-boilers was also much higher

ompared to the English stock (62% cf. 39%); hence the percentage

f standard (non-condensing) boilers was much lower. 

Although the average floor area of the D114 homes was sim-

lar to the English average, because all the homes were semi-

etached, the variation is floor area was compressed, with notably

ewer homes having a floor area of < 69 m 

2 (4.45%, cf. 16.8% na-

ionally), which is typical of flats and apartments. The households

ere larger than the English stock as a whole, there were fewer

ousehold representative persons in full time work and a larger

roportion that were in the ‘other inactive’ category. 26 The in-

ome of the D114 households was however similarly distributed

cross the income quintiles. Concerning the energy efficiency of

he homes, which is important for the development of the DOR,

he homes spanned the SAP bands but there were fewer very inef-

cient homes (Bands F and G) than in the English stock. 

.2.2. The weather conditions 

The weather data were collected from seven sites operated by

he British Atmospheric Data Centre, which were located close to

he D114 homes ( Fig. 5 ). Each site reported hourly ambient air

emperatures from which the mean daily and monthly tempera-

ures and the degree-days to base 15.5 °C were calculated. During

he period of interest, 1st September 2015 to 31st August 2016, the

owest mean daily temperature was −0.41 °C on 20th January 2015

t Coventry and the highest 24.7 °C on 19th July 2016 at Coleshill.

ecause of the close proximity of the clusters of dwellings, the

ean daily temperatures differed very little: by less than 2 K across

ll seven sites for all but 22 of the 243 days in the nominal heating

eason (September 2015 to April 2016); the largest difference dur-

ng this period was 3.3 K on 27th December. The mean monthly

emperatures were therefore also similar, never differing from each

ther by more than 1.3 K (December 2015), with Keele, which is

he northern-most site, being cooler than the other sites in every

onth of the year ( Table 3 ). Because of the geographically central

ocation of the D114 homes, the mean monthly temperatures were

lso close to the reported Central England Temperature (CET) 27 and

B-wide means for the same period ( Table 3 ). 

During the monitoring period, the weather conditions were

ery close to the long-term average for GB, the UK and the En-

lish Midlands region ( Table 3 ), all of which are very similar. In the

rst half of the winter (November, December and January) temper-

tures were lower than the long-term averages 28 but during the

econd half they were higher. The net result was that the degree-

ays to base 15.5 °C (DD 15.5 ), ranged from 2186 °C.days in Keele to

920 °C.days in Coventry, with an average across all seven sites of

995 °C.days. This average is very close to the average value for GB

s a whole for the same period, 1984 °C.days [16] and also close

o, but a little less than, the long term Midlands and UK average

egree-days of 2080 and 2021 °C.days respectively ( Table 3 ). The

atter value is used for weather correction when calculating the

perational rating of non-domestic buildings [10] . 
26 In making these comparisons it is assumed that the householders that preferred 

ot to disclose information were proportionately distributed across the positive re- 

ponse categories. 
27 The Central England Temperature (CET) represents that recorded in the triangle 

joining Bristol, London and Lancaster, and is the world’s longest unbroken stream 

of mean monthly data, stretching back to 1659 [56] . 
28 In fact, nationally, December 2015 was the warmest December since 1910. 
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Concerning the development and evaluation of the DOR

cheme, a disadvantage of the weather experienced by the D114

omes is that, because it is close to the long-term average, the ap-

roach to weather-correction is not rigorously tested. An advan-
Table 2 

Comparison of D114 cohort and 2015 English housing stock. 

D114 English Stock 2015 

% a % b 

Households: tenure, size, work status and income c 

Tenure Owner occupied 100 62.7 

Private rented 0 20.1 

Local authority 0 7.0 

Housing assoc. 0 10.2 

Number in 

household 

1–2 47 64 

3–5 

> 5 

41 

13 

36 

Age of 

Household 

Represent. 

Person d 

(years) 

16–24 0 0.5 

25–34 5 8.9 

35–44 20 15.4 

45–54 23 21.3 

55–64 31 19.0 

65 or over 21 34.9 

Economic 

status of HRP 

Full-time work 45 52.9 

Part-time work 8 8.2 

Retired 31 35.3 

Unemployed 3 0.9 

Full-time education 1 0.2 

Other inactive 12 2.6 

Income 

band 

(£) 

First quintile 11 12.8 

Second quintile 16 17.0 

Third quintile 27 20.0 

Fourth quintile 20 23.7 

Fifth quintile 26 26.6 

Dwellings: type, age and construction e 

Type Terraced 0 26.0 

Semi-detached 100 30.6 

Detached 0 25.1 

Bungalow 0 10.3 

Flats/apartments 0 8.0 

Usable floor 

area (m 

2 ) 

< 50 m 

2 0 3 

50 – 69 5 13.8 

70–89 40 29.8 

90–109 26 19.7 

> 110 m 

2 29 33.8 

House age 

(years) 

Pre 1919 12 20.3 

1919–1944 32 17.7 

1945–1964 17 19.1 

1965–1980 35 19.6 

1981–1990 0 7.9 

1991–2002 1 7.9 

post 2003 3 7.5 

Wall 

construction 

And insulation 

Cavity wall no insulation 12 20.6 

Cavity wall insulated 61 49.6 

Solid wall no insulation 23 25.8 

Solid walls insulated 1 2.2 

Other 2 1.8 

Loft insul’n 200 mm or more 40 37.8 

Glazing Double glazed 96 81.4 

Heating system 

e 

System type Central heating 100 95.3 

Storage heating 0 3.2 

Fixed or port. heat. 0 1.6 
age is that valid comparisons might be made between the energy

emand of the D114 sample and the national average energy de-

ands for the same year. 
Data sources and comments 

[46] , AT2, Fig 2.1. Number of owner occupied homes: DEFACTO 114; 

English stock, 14,755,000. Average time living at the current address: 

D114, 20.5 years; owner occupied homes national average 17.8 years. 

(Owned outright 24.4 years, owned with mortgage, 10.2 years, [46] , 

Headline report). 

ONS [52] . Average household size: DEFACTO 3.1 persons, English 

stock 2.4 persons [52,53] . 

MHCLG [46] Table AT1.3 owner occupied homes 

MHCLG [46] Table AT1.3 owner occupied homes. 

Approximated by condensing DEFACTO decile bandings to annual 

gross income bands calculated from MHCLG [46] Table AT1.3. Owner 

occupied homes only. 

The quintile bands are: First quint ≤ £14,803; Second £14,804 to 

£23,795; Third £23,796 to £35,631; Fourth £35,632 to £53,695 Fifth 

quint. ≥ £53,696. 

MHCLG [46] Fig 2.3 Owner occupied dwellings. 

MHCLG [46] Fig 2.4, and Table AT2.1 ‘Usable floor area’, owner 

occupied dwellings. Values for all forms of tenure are very different. 

Average floor area: D114, 100 m 

2 ; English stock, owner occupied 

homes. 108 m 

2 , all tenures, 94 m 

2 . 

MHCLG [46] Fig 2.2, Table AT2.1, owner occupied homes. 

DEFACTO values interpolated from age bands used in questionnaire 

survey. 

MHCLG [46] Table AT2.13, owner occupied homes of all types. 

D114, ‘Other’, were all timber framed. 

MHCLG [46] Table AT2.12, all tenancies. 

MHCLG [46] Table AT2.12, all tenancies. 

MHCLG [46] Table AT2.9, owner occupied. 

( continued on next page ) 
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Table 2 ( continued ) 

D114 English Stock 2015 Data sources and comments 

% a % b 

Boiler type Standard non-cond. 7 21.4 MHCLG [46] Table AT2.11 figures for owner occupied homes and all 

dwelling types. Standard cond. 17 19.9 

Combi. boiler 12 11.0 

Combi. cond. 64 39.0 

Back boiler 0 3.1 

No boiler 0 5.6 

SAP rating band e 

Band A/B 3 1.0 MHCLG [46] Table AT2.7, owner occupied homes, rating bands. 

MHCLG [46] Table AT2.6, owner occupied homes, mean SAP rating 

60.5. 

D114 mean rating 63.9. 

DBEIS [17] , Table 3.15, mean SAP rating for all UK homes, 62. 

Band C 26 22.7 

Band D 63 52.4 

Band E 8 18.7 

Band F 0 4.2 

Band G 0 1.0 

Bold italic deliberately selected feature of DEFACTO cohort. 
a In general, percentages given for the owner occupied homes only, exceptions are noted. 
b Percentages ignore null responses, which were: Household size 28 responses (24%); Age of HRP, 25 responses (22%); Economic status, 29 responses 25%; 

Income band, 40 responses (35%). 
c D114 from household questionnaire surveys. 
d The Household Representative Person was usually the person that completed the recruitment questionnaire. 
e D114 values from EPC + Home Energy Survey. 

Table 3 

Weather conditions in Year 1 and regional, GB and UK comparators. 

Year 01/09/ 2015 to 31/08/2016 Averages and standard values 

Measured at DEFACTO weather stations CET a GB b GB c Av. 

1981–2010 

SAP 2012 & 2016 

Nt Nh Ke EM Ch CC MB Av. Range Mid’s d UK d 

Monthly mean temperatures/ °C 

Sep 12.3 12.5 11.7 12.4 12.2 12.4 12.1 12.2 0.8 12.6 12.7 14.0 14.0 14.1 

Oct 10.6 10.8 10.2 10.9 10.6 10.7 10.5 10.6 0.7 11.0 10.9 10.6 10.5 10.6 

Nov 8.9 9.4 8.5 9.3 9.4 9.4 9.0 9.1 0.9 9.5 9.5 7.3 7.1 7.1 

Dec 9.2 9.9 8.6 9.8 9.9 9.8 9.4 9.5 1.3 9.7 9.5 4.7 4.2 4.2 

Jan 5.3 5.3 4.7 5.7 5.5 5.4 5.1 5.3 1.0 5.4 5.7 4.6 4.3 4.3 

Feb 4.7 4.9 4.1 5.0 4.9 5.0 4.6 4.7 0.9 4.9 5.1 4.6 4.8 4.9 

Mar 5.4 5.3 4.8 5.6 5.6 5.6 5.1 5.4 0.8 5.8 6.1 6.5 6.6 6.5 

Apr 6.9 7.2 6.6 7.1 7.3 7.3 6.9 7.0 0.7 7.5 7.5 8.4 9.0 8.9 

May 11.9 12.2 11.8 12.1 12.2 12.4 11.8 12.1 0.6 12.5 12.2 11.4 11.8 11.7 

Jun 14.6 14.7 14.3 14.9 15.1 15.1 14.6 14.8 0.8 15.2 14.9 14.1 14.8 14.6 

Jul 16.9 17.3 15.5 17.1 17.0 17.2 16.6 16.8 0.8 16.9 16.7 16.4 16.6 16.6 

Aug 16.8 17.4 15.6 17.0 17.0 17.2 16.7 16.8 0.8 17.0 16.9 16.2 16.5 16.4 

Average 10.3 10.6 9.7 10.6 10.6 10.6 10.2 10.4 0.8 10.7 10.5 9.9 10.0 10.0 

Annual Degree days to base/15.5 °C 

Annual 2018 1939 2186 1928 1931 1920 2042 1995 266 – 1887 e 2176 f 2080 g 2021 g 

Key: Nt, Nottingham Watnall; Nh, Northampton Moulton; Ke, Keele; EM, East Midlands; Ch, Coleshill; CC, Coventry Coundon; MB, Market 

Bosworth. 
a Central England Temperature record, source [56] . 
b DBEIS [16] Table 1.1.9. Mean air temperatures. 
c DBEIS [16] from Table 1.1.7. Mean air temperature deviations. 
d The Standard Assessment Procedure (SAP), mean monthly temperatures for the English Midlands and for UK as a whole are given in 

SAP 2012 [22] , SAP 2016 [6] and SAP10 [7] . 
e Calculated for the period from 01/09/15 to 31/08/16, using the monthly degree-days from 17 weather stations in DBEIS [16] Table 1.1.8. 
f The GB average for the period from 1981 to 2010, DBEIS [16] Table 1.1.8. 
g Technical Memorandum TM46 [10] , Table A1.1. 
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3.2.3. The energy demand and estimated GHG emissions and energy 

costs 

The credibility of the measured D114 mean energy demands,

and the mean energy costs and mean GHG emissions calculated

using SAP2016 conversion factors, can be assessed by comparison

to the known mean values for the UK stock of 27,672,0 0 0 homes,

for all types and tenure for the year 2016 29 [17] , ( Table 4 ). 
29 Government statistics are given by calendar year. It is not possible to determine 

the UK stock values for the exact same year as the DEFACTO homes’ measurements. 

The figures available are not broken down by tenure. 

s  

U

The D114 sample has mean gas and electricity demands that are

igher than the UK mean, the total demand being 9% greater. How-

ver, because the D114 homes have, on average, a larger floor area

han the national average (100.1 m 

2 cf. 94 m 

2 ), the normalised

ean gas, electricity and total energy demands are only 3 to 4%

reater than the UK stock mean. This small difference could be be-

ause the D114 homes experienced colder conditions than the UK

tock of 2016. 30 The mean split between gas and electricity de-
30 The D114 average degree-days for 2015/16, 1995 °C.days, is 5% higher than the 

K average for 2016 of 1887 °C.days [16] . 
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Table 4 

Comparison of the energy demand, GHG emissions and energy costs of the D114 homes with the mean for the 2016 UK stock. 

Fuel Symbol Units D114 Homes UK stock 2016 a Source 

Mean Median Max. Min. Sd. Mean 

Energy demand 

Gas EDg kWh 14,977 13,588 45,068 2691 6437 13,810 DBEIS [15] , Table3.03, 2016 

Elec. EDe kWh 4290 3896 12,730 993 1908 3889 

Total EDt kWh 19,267 17,888 57,799 5800 7708 17,699 

Split: gas/elec. % 77:23 78:22 90:10 –36:64 - 78:22 

GHG emissions b 

Gas GGe kgCO 2 3115 2826 9374 560 1339 

Elec. GGg kgCO 2 1707 1550 5067 395 759 

Total GGt kgCO 2 4823 4460 14,441 1619 1886 3843 c DBEIS [18] Table 3, 2016 

Split: gas/elec. % 64/36 65/35 83/17 23/77 –

Energy cost g 

Gas ECg £ 742 682 2042 211 278 620 h DBEIS [19] Table 2.3.2 

Elec. ECe £ 724 664 2017 219 292 549 d 

Total ECt £ 1466 1373 4059 614 508 1169 

Split: gas/elec. % 51/49 51/49 71/29 20/80 – 53:47 

Floor areas 

– TFA m 

2 100.1 92.0 210 62 28.8 94.0 e 

Normalised energy demand, GHG emissions and Energy costs f 

Gas EDgn kWh/m 

2 151.3 147.8 286.0 32.5 51.6 146.9 As above divided by 94 

Elec. EDen kWh/m 

2 43.2 42.5 95.0 12.9 15.0 41.4 

Total demand EDt n kWh/m 

2 194.5 194.8 338.6 57.4 57.1 188.3 

GHG emissions GGt n kgCO 2e /m 

2 48.7 47.6 80.9 16.0 13.5 40.9 

Energy costs ECt n £/m 

2 14.89 14.52 22.96 6.45 8.3 15.59 

a UK stock mean for 2016 all tenures, breakdown by tenure type not available. 
b The GHG emissions for the D114 homes are estimated by using the SAP2016 GHG emissions intensities of 0.208 kgCO 2e /kWh for gas and 

0.398 kgCO 2e /kWh for electricity [6] . 
c Figure derived by dividing the UK stock GHG emissions of 106.7 MtCO 2e , as given in the stated source, by total number of UK households in 2016, 

27,672,0 0 0 ( [17] , Table 3.03). 
d The cost of electricity was derived by averaging the cost of 3800 kWh of standard tariff electricity (i.e. ignoring Economy 7 tariffs) for all three 

methods of payment, and for all three UK administrations, England/Wales, Scotland and Northern Ireland as given in the stated source. The resulting 

cost of 14.13p/kWh was then scaled to the actual mean demand of the UK stock, 3889 kWh. 
e The floor area of the UK stock was not readily available. Figures presume the 2016 UK stock has same mean floor area as English homes, i.e. 

94 m 

2 (see Table 2 ). 
f The normalisation for the D114 homes is undertaken on a house by house basis, whilst for the UK stock it is obtained by dividing the mean values 

by the mean floor area (94 m 

2 ). 
g The costs of energy for the D114 homes are estimated using the SAP2016 [6] values of £95 standing annual charge and 4.32 p/kWh for gas, and 

£67 standing charge and 15.32 p/kWh for electricity. 
h The cost of gas was derived by simply averaging the costs of 15,0 0 0 kWh for all three methods of payment for both England/Wales and Scotland 

as given in the stated source. (Nb. the figure is thus for GB not the UK, as incorrectly stated by DBEIS in the title of the reference). The resulting cost 

4.49 p/kWh, was then scaled to the actual mean demand of the UK stock, 13,810 kWh. 
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and of 77%:23% is very similar to the split for the UK stock as a

hole. 

The estimated mean energy cost for a D114 household, which

as deduced from the standard gas and electricity costs given

n SAP2016, was £1466 pa. This is 25% more than the UK mean,

ut after normalisation by floor area is just 4.5% less. The nor-

alised GHG emissions of 48.7 kgCO 2e /m 

2 are greater than the UK

ean by 19%, which, given the similarity of the energy demands,

s clearly a consequence of the emissions factor associated with

he DEFACTO measurements. In fact, the difference may be entirely

ue to the fall in the emissions from electricity generation 

31 ; the

AP2016 emissions factors for electricity is about 71% greater than

he emissions factor used in SAP10 [7] . Whilst these comparisons

ive assurances about the reliability of measured energy demands

nd calculated energy costs they suggest that the absolute GHG
31 The emissions factor for mains gas of 0.208 kgCO 2 /m 

2 has remained stable over 

he last three versions of SAP, whereas the value for electricity has fallen progres- 

ively as the proportion of renewable and low-carbon energy sources has increased; 

AP2012, 0.519; SAP 2016, 0.398; and SAP10, 0.233 Had the SAP10 emissions fac- 

or for standard electricity of 0.233 kgCO 2 e/kWh rather than the SAP2016 value of 

.398 been used, the mean D114 household emission from electricity would have 

een 999 KgCO 2e rather than 1707 kgCO 2e giving a total of 4114 kgCO 2e , which is 

1.1 kgCO 2e /m 

2 ; just 0.5% higher than the UK stock average of 40.9 kgCO 2e /m 

2 . 
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missions might be overestimated, 32 the consequence of rapidly

hanging GHG emissions (and energy costs) for a DOR scheme is

iscussed later ( Section 10 ). 

Within the D114 sample, there was considerable variability in

he energy demands of the individual homes. The highest consum-

ng household used 17 times more gas and 13 times more electric-

ty, and 10 times more energy in total, than the lowest consumer

see max. and min. values in Table 4 ). The gas demand was sig-

ificantly positively skewed. 33 After normalising, the variation be-

ween the highest and lowest consumers was reduced with the

ighest gas, electricity and total energy using households using,

espectively, 8, 7.4 and 5.9 times more energy ( Table 4 ). The gas

emand distribution remained significantly positively skewed, 34 

hough slightly less so than the non-normalised distribution. The

ariations in the energy costs and GHG emissions are similar. 

The split between the gas and electricity demand varied

arkedly from home to home ( Table 4 ), from 90%:10%, gas: elec-
32 But, provided the same emissions factors are adopted in developing the GHG 

issions benchmark, the operational rating based on GHG emissions (DORGG) will 

ot be affected (see Appendix B ). 
33 Shapiro-Wilk test 0.940, skewness 0.596. 
34 Shapiro-Wilk test 0.967, skewness 0.312. 
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Fig. 6. Variation of the mean daily gas and electricity demand of the D114 homes with the mean daily ambient temperature recorded across the seven weather data sites. 
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tricity to 36%:64%, gas: electricity. Clearly, any advice associated

with a DOR about how to save energy would be very different de-

pending on whether a household has a high or low energy use and

whether it is their gas or electricity demand that is particularly

high. 

4. The D114 homes and weather correction 

Central to any DOR scheme is the approach used for weather-

correction. Two things need to be considered, the ambient tem-

perature (degree-day base) below which corrections should be ap-

plied and the proportion of any fuel that should be corrected (see

Section 2 ). In the UK a degree-day base temperature of 15.5 °C has

been used for many years but given the gradual improvements to

the thermal efficiency of the fabric of UK dwellings ( Fig. 1 ), this

may no longer be appropriate. To explore these matters, the rela-

tionship between ambient temperature and the energy demand of

the D114 homes was investigated. 

The mean daily gas and electricity demands of the D114 homes

show distinct, but different, variations with ambient temperature

( Fig. 6 ). In summer, the mean daily gas demand was just c9kWh

and largely independent of temperature, but in winter the demand

was highly temperature dependent reaching a peak of c100kWh

in mid-January when the mean daily temperature averaged across

all seven weather stations was about 1 °C. In contrast the mean

electricity demand increased slowly from summer (mean daily de-

mand c9kWh) to winter (c16kWh) and was largely independent of

ambient temperature. These observations suggest that for the D114

homes, gas demands should be weather-corrected but the electric-

ity demands not. 
To explore further, the daily normalised gas and electricity de-

and of every D114 home was plotted against ambient tempera-

ure. Here, and in subsequent sections, three homes with similar

AP ratings are used as exemplars, #41, SAP Rating (EER SAP ) 67,

hich had the largest floor area of the D114 homes, #199, Rating

9, which had the smallest floor area, and #345, Rating 65, which

ad a floor area close to the mean of all D114 homes. As a group

hey iluustrate features observed within all 114 homes. 

It is evident that the electricity demand for these three homes

 Fig. 7 ) is only lightly temperature dependent and is greater in

inter than in summer. There may be genuine weather-related

easons for this, for example more cooking of hot meals and drink-

ng hot beverages as the days become colder and, as the day length

which is loosely correlated with temperature) decreases, the use

f electric lighting will increase, and TVs and other electronic de-

ices may be used more. 

The demand for gas is also very low and largely independent

f temperature at mean daily ambient temperatures above 15.5 °C,

 > 15.5 . This is to be expected as in mild weather gas is used

ainly for hot water heating and cooking rather than space heat-

ng. Interestingly, home #345 used no gas at all in summer; this

ouse had an electric immersion heater to provide hot water and,

resumably, the household cooked using electricity. 

When the mean daily ambient temperature was below 15.5 °C,

 < 15.5 , the gas demand in the homes began to increase with de-

reasing ambient temperature. In some homes, e.g. #41 and #345

he relationship between temperature and gas demand is clear,

hilst in others there was much greater scatter with occasional

ays with zero demand being evident (e.g. #199). There are both

hysical and behavioural reasons for the observed scatter. 
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Fig. 7. Variation of daily gas and electricity demand with the local mean daily ambient temperature: homes #41, #199 and #345. 
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36 If the measurement year is colder than the standard year, the actual degree 

days to base, ddb, are more than the standard value, and the right hand term in 

Eq. (1 ) becomes negative; thus scaling down the weather-related fuel demand. The 

reverse is true if the measurement year is warmer than the standard year. 
At temperatures just below 15.5 °C, fabric heat loss, which is

ambient temperature dependent, is small and so other factors such

as solar gain, wind (which influences infiltration), internal heat

gains, and thermal mass effects, which are not captured in the

simple ambient temperature/demand plots, can be important influ-

ences on heat flows. In these cool, but not cold conditions, warmer

and perhaps sunny days are interspersed with cooler days (e.g.

Fig. 6 ) so occupants might choose to ‘endure’ the colder morn-

ing conditions rather than switch on the heating system, perhaps

knowing that the day will warm up later. 

At all ambient temperatures, interventions to switch the heat-

ing on and off, rather than simply leaving the programmed heating

schedule to operate may occur, reducing, and sometimes eliminat-

ing, the daily gas use. Such actions, perhaps undertaken in an ef-

fort to save money, are normal in the UK. 

The important observations for the development of the DOR

was that none of the D114 homes displayed clear evidence of

gas space heating until the mean daily ambient temperatures

dropped below 15.5 °C, T < 15.5 . Therefore, it might be concluded

that weather-correction using the standard base temperature of

15.5 °C (see Section 2 ) is suitable for the D114 homes. 

The implications for homes that do not use space heating until

the ambient temperature is lower than 15.5 °C is discussed later

( Section 10 ). It is equally evident that the electricity demands

should not be weather-corrected using a degree-day method; this

matter is also discussed later. 

5. The DORs for energy demand, GHG emissions and energy 

costs 

There are five main steps in the calculation of the DORs

( Fig. 8 ): 

1 Weather-correction of the measured daily gas and electricity 35 

demands; 

2 Calculation of the total weather corrected energy demands,

GHG emissions and energy costs; 

3 Normalisation of the energy demands, GHG emissions and en-

ergy costs; 

4 Selection of suitable benchmarks; and 

5 Production of the operational ratings for energy demand

(DORED), GHG emissions (DORGG) and energy costs (DOREC)

and the associated rating bands. 

The general equations used in each step for homes that use

any mix of fuels for space heating and other purposes are given

in Sections 5.1 –5.5 . Comment is also made about the veracity of

the approach with three homes used as examples, #41, #119 and

#345. A more thorough reflection on the DOR scheme is contained

in the Discussion ( Section 10 ). 

The specific equations for homes that use electricity and gas for

heating are in the Supplementary Information [42] , which includes

illustrative results for three further homes #8, #11 and #250, and

for the D114 cohort as a whole. Data tables of the measured and

derived values for all D114 homes are available at [43] . 

5.1. Weather correction 

The first step in deriving the DORs is to weather-correct the

measured energy demands. By doing so it is possible to: compare

the ratings of homes in different locations, which experience dif-

ferent weather; make comparisons with fixed nationally-applicable

benchmarks, and so generate ratings and rating bands; and this
35 All or part of the electricity demand may, or may not be weather-corrected, 

depending on whether electricity is used for space heating. 

w

w

hould yield DORs that are stable from one year to the next de-

pite the changing weather. 

The general equation for the weather corrected energy demand

f a fuel, EDf w 

, is given by: 

D f w 

= EDf + ED f < ddb × WCWf × ( WCF f ddb − 1 ) kWh (1)

here: 

EDf = Measured annual total fuel demand kWh 

EDf < ddb = Total fuel demand on days when the mean daily 

ambient temperature, T, is below the degree-day base 

temperature, ddb 

kWh 

WCWf = Weather correction weighting for the fuel (0–1) 

WCFf ddb = Weather correction factor for the fuel. 

With WCFf ddb given by: 

CF f ddb = DD S ddb / D D ddb (2)

here: 

DDS ddb = Standard degree days to base temperature °C.days 

DD ddb = Actual degree days at the dwelling location °C.days 

Similar equations are used for all other heating fuels used in

he home. 

For the D114 homes, the calculations used the conventional

egree-day base temperature, ddb = 15.5 °C for weather correc-

ions and, for the standard year, a value of DDS 15. 5 = 2021 °C.days

as adopted, which is the UK-wide value used in the asset rat-

ng of all UK non-domestic buildings [10] . The weather correction

actors for gas demand (WCFg 15.5 ) varied from 1.053 to 0.925 de-

ending on the location ( Fig. 5 ) of the home 36 (see [42] ). 

The weather correction weighting, WCWf, defines the propor-

ion of the fuel used on days when the ambient temperature is

elow the base temperature that is to be weather-corrected. For

xample, in a home that uses a particular fuel only for heating, the

eighting would be one. If a fuel is not used for heating, e.g. the

lectricity used in most UK homes, the weighting might be small

r zero. Values between these extremes are appropriate when a

roportion of a fuel is used for heating and a proportion for other

on-heating purposes, for example homes that use gas for both

eating and cooking, or homes which use electricity for all pur-

oses. These complexities for are discussed further in Section10 . 

In the D114 homes, to maintain simplicity, and because gas is

redominantly used for space and water heating, all the gas used

n days when T < 15.5 °C was weather-corrected (WCWg = 1).

his represented between 84.1% and 99.9% of the annual gas use

f the homes [42] . Because electricity was not the primary mode

f space heating, and because the mean electricity demand of the

114 homes showed no clear change at any particular threshold

emperature ( Figs. 6 and 7 ) none of the electricity was weather-

orrected (WCWe = 0). These simplification gloss over the com-

lexities introduced by the few D114 homes that often (6 homes)

r occasionally (12 homes) use electricity for heating, or which

ometimes use open fires. 37 In a fully functioning national DOR

cheme protocols to deal with such cases would need to be de-

eloped 

38 ( Section 10 ). 
37 But this does not undermine the proposed DOR scheme’s development. 
38 The protocol for disaggregating the gas demand so that which is used for hot 

ater heating and cooking is not weather corrected, or not corrected in the same 

ay as the gas used for space heating, could also be established. 
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Fig. 8. Overview of approach to calculating DORs for gas heated homes: required external values in bold, calculated values in italic s. 
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.2. Calculating the GHG emissions and costs 

Determination of the gas emissions and energy costs can be

one most expediently by applying simple conversion factors

o the energy demand for each fuel. Derivation of the annual

eather-corrected GHG emissions, GGf w 

, is thus given by: 

G f w 

= ED f w 

× GGFf kgC O 2e (3) 

here: 

GGFf = GHG emissions factor for the fuel kgCO 2e /kWh 

Similarly, for the annual weather-corrected energy costs: 

C f w 

= ED f w 

× UCf + SCf £ (4) 

here: 

Cf = Cost per unit of fuel used £/ kWh (5) 

SCf = Annual standing (i.e. fixed) charge of the fuel £

Using the approach outlined here, both the GHG emissions and

nergy costs are simple linear multiples of the measured demand

f each fuel. However, because the proportion of each fuel used

iffers from one home to another, the relative total GHG emissions

nd energy costs differ, and so too do the relative DORs for energy

emands, GHG emissions and costs. 
The actual cost of fuel and the actual GHG emissions from a

ome in any specific year can, of course, be estimated by using

he non-weather corrected fuel demands within Eqs. (4) and ( 5 ).

he SAP documents (e.g. [6] ), conveniently lists ‘approved’ values

or all the fuels used in UK homes, including values for various

ains electricity tariffs and for community energy schemes, etc.

o estimate the GHG emissions factors and energy costs for the

114 homes the values listed for ‘mains gas’, and ‘standard tariff,

lectricity’ were adopted ( Table 5 ). 

This approach is of course very simple, yet it maintains com-

atibility with the SAP asset rating approach for UK homes, pro-

uces stable year-on-year ratings (the SAP emissions and cost fac-

ors change only slowly) and enables compatible benchmark values

o be generated ( Appendix B ). However, it fails to reflect the real

nergy cost to the household, which may be quite different and

hange frequently as the supplier alters (usually increases) prices

nd the household choose a different tariff. In the UK such changes

re frequent. Likewise, the approach fails to account for the dif-

erent emissions factors associated with the electricity from differ-

nt suppliers. These and other related matters are discussed below

 Section 10 ). 

.3. Normalising and total energy demands, GHG emissions and costs 

One reason for differences in energy demand (and GHG emis-

ions and energy costs) compared to other homes and benchmark

alues, may be simply because houses differ in size. Ener gy rating
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Table 5 

Emissions factors & energy costs. 

Fuel GHG emissions 

factor ( EF ) 

Fuel Cost 

Standing charge ( SC ) Cost per unit ( UCx100 ) 

kgCO 2e /kWh £ p/kWh 

Mains gas 0.208 95 4.32 

Elec. Stand. tariff 0.398 67 15.32 

All values drawn from SAP2016 [6] . 

Table 6 

Benchmark values. 

Benchmark Units Symbol Value 

Energy demand kWh/m 

2 BEDt wn 188.58 

Energy cost £/m 

2 BEC wn 14.40 

GHG emissions kgCO 2e /m 

2 BGG wn 46.17 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 

Number of D114 homes in each Dwelling Operational Rating Band. 
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a  
schemes, whether asset rating or operational rating, therefore nor-

malise energy demands, GHG emissions and costs by total usable

floor area (TFA). 

The normalisation of the weather-corrected energy demand for

each fuel, EDf wn , is simply given by: 

ED f w n = ED f w 

/ TFA kWh / m 

2 (6)

where: 

TFA = Total floor area of dwelling m 

2 

The total floor area of dwellings in the UK is increasingly made

available, for example a value derived from a home energy survey

is given in all Energy Performance Certificates. 

The total weather corrected and normalised energy demand,

EDt wn , is then given by: 

ED t wn = �f=1 
f=n ED f wn kWh / m 

2 (7)

where: 

n = the number of fuels used by the household. 

The same approach is used to obtain the normalised and

weather-corrected GHG emissions, GGf wn , and energy costs, ECf wc ,

for each fuel and for the total emissions (GGt wn ) and energy costs

(ECt wn ) (see [42] ). 

The variation of the total weather-corrected and normalised gas,

electricity and total energy demands between the different D114

households was considerable ( Fig. 9 ). The highest gas, electricity

and total energy-using households used, respectively, 8.6, 7.7 and

5.8 times more energy than the lowest consuming household [42] .

5.4. Establishing the benchmarks 

The ‘ Energy Consumption in the UK’ tables [17] provide annual

figures for the energy demand, and weather-corrected energy de-

mand, by fuel type for the entire UK housing stock. The calculated

mean weather-corrected and normalised total energy demand for

the calendar year 2016, which is the year closest to the period for

which the DEFACTO homes were monitored, was calculated (see

Appendix B ) and used as the benchmark, BEDt wn , for assessing the

D114 homes ( Table 6 ). 

Authoritative government sources also exist for UK domestic

GHG emissions and energy costs, ( [18] , [19] ). 39 Ideally, these tab-

ulated values, or the principles behind the derivation of them (e.g.
39 These sources produce average annual household values of 40.9 kgCO 2e /m 

2 and 

15.59 £/m 

2 ( Table 4 ). 

b

 

s  

h  
he assumed fuel emissions factors and costs) would form the basis

or the benchmark GHG and energy cost values. Unfortunately, it is

ot clear how the energy costs were derived and whether the costs

nd GHG emissions are compatible with the tabulated fuel use fig-

res. Therefore, to ensure both calculation compatibility and align-

ent with the UK approach to the asset rating of dwellings, the

enchmarks for GHG emissions (BGG wn ) and energy costs (BEC wn )

ere calculated from the published consumption of each fuel type

 Appendix B ), using the emissions factors and costs of each indi-

idual fuel as given in SAP2016 [6] . The resulting benchmark val-

es are also given in Table 6 . 

Any proposed benchmarks could be retained for a period of

ime, but then changed as the energy demands, fuel mix, associ-

ted GHG emissions and costs for the UK stock change. How, when

his is done, the implications of different approaches for the com-

lexity and stability of a DOR scheme would need careful consid-

ration. 

.5. Calculating the dwelling operational ratings 

The approach used to produce the operational rating of UK non-

omestic buildings [10] , was used to calculate the dwelling opera-

ional ratings (See Section 2 ). The method is simple and transpar-

nt and produces a rating on an easy-to-understand, linear, rating

cale: 

ORED = 100 × ED t wn / BE D wn (8)

ORGG = 100 × GG t wn / BG G wn (9)

OREC = 100 × EC t wn / BE C wn (10)

The operational rating bands, DORED, DORGG and DOREC, could

e set to produce any desired proportion of the dwelling stock in

ach band (see Section 2 ). Here though, the rating bands are set

t equal increments of 25 rating points ( Table 7 ). A dwelling with

 weather-corrected and normalised energy demand equal to the

enchmark value thus sits at the interface of Bands D and E. 

The calculated DORED of the D114 homes ( Fig. 9 and Table 7 )

pan the range from Band B to Band G; lowest rating 31.4 and

ighest 182.8. All but 10 homes were in Bands C to F. The mean
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Fig. 9. Weather-corrected and normalised gas and electricity demand for the D114 homes, split of gas use for space heating and other purposes, and the corresponding 

Domestic Operational Rating and Rating Band. 
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ating of all the 114 homes was 103.5 [42] , which might be ex-

ected as the mean normalised total energy demands of the D114

omes was just 3.3% higher than the 2016 UK stock mean nor-

alised demand ( Table 4 ). The DORGG and DOREC values exhib-

ted a spread of values similar to the DORED ( Table 7 ), with mean

atings of 105.7 and 103.6 respectively [42] . 

It is not surprising that the total number of homes in any given

ating Band is similar across all three rating scales; all the D114

omes use mains electricity, and gas for heating. Many homes pro-

uced the same, or a similar, rating by all three scales (e.g. home

41 rated F on all three scales and home #345, E). Some homes

owever, use a very different mix of electricity and gas and so their

perational ratings differ depending on the scale used, for example,

199 ( Table 8 ). It is homes like these that illustrate the benefit of

sing three different scales, even when the form of heating and the

uel used is nominally the same. The value of the different scales

ould be even more clearly demonstrated across homes with dif-

erent forms of heating and which use different fuels. 

.6. The DOR certificate 

The DOR certificate might most usefully be presented in a form

imilar to that used for dwelling Energy Performance Certificates

 Fig. 2 ) and non-domestic Display Energy Certificates. Such certifi-

ates might include information about the dwelling, the DORs and

lso energy demand, GHG emissions and cost data used to calcu-

ate the DORs. Information relevant to the three exemplar homes,

41, #199 and #345, is given in Table 8 . 

There are clear differences between the SAP and DOR rat-

ngs for the exemplar homes ( Table 8 ). The differences for all the
114, and possible reasons for the differences, are considered in

ection 9 . 

. Additional useful information 

Other parameters that describe the energy demand of a home

an easily be produced as a by-product of the DOR calculations

nd some of these will be of value to households, energy efficiency

dvisors, and those concerned with national energy demand. 

.1. The relative demand for different fuels 

From a householder’s perspective, knowing the actual split of

nergy demands, GHG emissions and costs associated with each

uel in the specific year of measurement is perhaps most helpful;

ven if a home is heated by one fuel, say gas, the annual spend

n another fuel might be higher. For those concerned with energy

olicy, the weather-corrected and normalised splits might be more

ppropriate. 

For a household using just two fuels, one electricity, e, and the

ther for heating, h, the percentage of the total energy used that is

or heating, PEDh wn , and the percentage used as electricity, PEDe wn 

re given by: 

ED h wn = ( ED h wn / ED t wn ) × 100 % (11) 

ED e wn = ( ED e wn / ED t wn ) × 100 % (12) 

where: 

EDh wn = weather corrected and normalised heating energy demand kWh/m 

2 

EDe wn = weather corrected and normalised electrical energy demand kWh/m 

2 
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Table 8 

Information that could appear on a Domestic Operational Rating certificate: examples for three dwellings. 
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Similar equations can be used to find the split of GHG emis-

sions and costs 40 resulting from the use of each fuel [42] . The DOR

calculations also yields the splits in energy demand, GHG emis-

sions and costs at temperatures below and above the degree day

base temperature 41 [42] . 

The split between the gas and electricity demand for each

of the D114 homes is illustrated in Fig. 9 . The average split,

PEDg wn :PEDe wn , was 76.9%:23.1%, which produced a mean split of

64.1% GHG emissions from gas and 35.9% from electricity, and a

split in the annual energy costs of 50.8% for gas and 49.2% for

electricity. For individual homes however, the splits varied sub-

stantially, home #211 had the highest proportion of gas to elec-

tricity demand, 90.7%:9.3%, which yielded the highest ratios of gas

to electricity GHG emissions, 83.6%:16.4%, and costs 71.2%:28.2%.

The home with the lowest percentage of gas compared to electric-

ity use was #318, 36.7%:63.3%, which produced gas to electricity

ratios for GHG emissions and costs of 23.2%:76.8% and 20.5%:79.5%

respectively. Interestingly both homes had all electric kitchen ap-

pliances but home #318 had particularly low absolute gas demand

(the lowest of the D114 sample) and the electricity demand was

not particularly high. Clearly, the advice provided to households

would focus on different fuels depending on whether the aim is
40 But the standing charge for energy supply must be apportioned on an equiva- 

lent daily basis. 
41 To calculate the split of energy costs separately for temperatures above and be- 

low the degree day base temperature, the standing charge for the fuel must be 

apportioned on a daily basis. 

c  

(

t

a

o reducing energy demand, GHG or energy costs and the focus

ould change from home to home. The splits for three example

omes are given in Table 8 . 

.2. Estimating the split of heating fuel for space heating and for 

ther purposes 

An estimate can be made of the way that the heating fuel use is

plit between that used for space heating 42 and that used for other

urposes; primarily domestic hot water (DHW) heating but also for

as cooking, although the latter is generally quite small ( [17] , Ta-

le 3.07). To do this, the assumption is made that, on all of the

ays when the ambient temperature is above the degree-day base

emperature, the heating fuel is used only for purposes other than

pace heating. The mean of the daily fuel demands on these days

an be calculated and an assumption made that the same (mean)

aily demand is used for other purposes on the days when the am-

ient temperature is below the base temperature. Of course, this

s not absolutely correct because in winter a little more heat is

eeded to produce a given amount of DHW (because the supply

emperature is lower), people may use more hot water to bathe on

older days and more heating fuel may be used for cooking, be-

ause more hot meals may be prepared in winter ( Section 4 ). Ac-

ount could be taken of these small differences but only if a simple
42 The fuel may be burned by the central heating system or by a secondary heater 

such as a gas fire). Clearly, the meaning of this sort of split is less clear for homes 

hat have a large kitchen range, which is permanently on, and used both for cooking 

nd for heating part of the house. 
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(  
odel is presumed. 43 Here, in the spirit of retaining a transparent

nd wholly data driven approach, these effects are ignored, and the

stimated split between the heating fuel used for space heating

EDhs wn ), and that used for other purposes (EDho wn ), is calculated

s follows: 

Dh o wn = D Y a × ED h wn > ddb / D Y > ddb kWh (13) 

and 

Dh s wn = ED t wn − EDh o wn kWh (14) 

here 

DYa = Total days in year in year, e.g. 365 or 366 for a leap year. 

DY > ddb = Number of days when the ambient temperature is above the 

base temperature 

EDhwn > ddb = Total weather corrected and normalised heating fuel 

demand when the ambient temperature exceeds the ddb. 

The split for the D114 homes is illustrated in Fig. 9 . 

The estimated split between the heating fuel used for heating

nd for other purposes, expressed as a percentage of the heating

nergy demand, 44 is thus: 

EDhs = EDh s wn / ED h wn × 100 % (15) 

EDho = EDh o wn / ED h wn × 100 % (16) 

The split of the GHG emissions resulting from space heating

nd other purposes is the same as for heating energy demand. The

plit for energy costs is not quite the same, because the standing

harge of fuels is fixed and not proportional to energy use. 45 The

plits for three example homes are given in Table 8 . 

For the D114 homes, the mean split of the weather-corrected

as demand between that used for heating and that used for other

urposes was 78%:22%. The higher value for space heating is ex-

ected both because there are more days when the ambient tem-

erature is below 15.5 °C than above (302 to 323 days below, de-

ending on the weather station, 43 to 64 days above) and because

n cold days the energy used for space heating is much greater

han that used to heat water. For 2016, the gas split for the UK do-

estic stock is reported as 85%:15% [17] , but this is (also) based on

odelling rather than actual measurement. 

Interestingly, there were marked differences between the

omes in the cohort. Home #345 used virtually no gas use when

 > 15.5 °C, possibly because an electric immersion heater was

sed to provide hot water, thus 100% of any gas used is attributed

o space heating 46 ( Table 8 ). At the other extreme it was estimated

hat home #318 used just 12% of the gas for space heating and 88%

or other purposes. 

Whilst an estimation of the splits of heating energy demands,

HG emissions and costs that result from space heating and other

eating purposes uses may give some useful insight, further work

s needed to understand how reliable the estimates are for differ-

nt household types. 
43 For example, the SAP [22] assumes that the DHW is c11K colder in January than 

n July. The DBEIS split of fuels into end use is also based on this modelling [17] . 
44 The alternative is to express the fuel used for space heating and other purposes 

s a percentage of the total energy. However, the split of the heating fuel uses is 

nly approximate whereas the split between the heating fuel(s) and electricity use 

s exact. Therefore, distinguishing between the two types of split is preferred. 
45 The standing charge must be spread across the individual days, e.g. 1/365th of 

he standing charge per day. This portion of the cost is thus fixed per day rather 

han being proportional to the energy used per day. 
46 It might be that the gas boiler, rather than the immersion heater, was used to 

eat water in the winter. The estimation method cannot account for this change be- 

ween the summer and winter; and so gas used for winter DHW heating is wrongly 

ttributed to space heating. 
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. Year-on-year stability of the DOR 

It is important that any DOR remains stable over time, pro-

iding essentially the same DOR value unless purposeful changes

hich influence energy demand are made. To test the year-on-year

tability of DOR calculations, the values calculated for the D114

omes, Year 1, were compared with the values calculated for the

ubsequent year, 1st September 2016 to 31st August 2017, Year 2.

owever, because of the gradual loss of participants from the study

his inter-year comparison could only be made for a sub-sample

f forty-four homes, D44. Prior to analysis, the Year 2 data were

hecked, cleaned and missing data filled, as described for Year 1

35] and the Year 2 DOR calculations were made in exactly the

ame way as for Year 1. 

Of course, although no purposeful interventions were made by

he DEFACTO research team in the D44 homes, it is impossible to

e sure there were no changes that might have affected energy de-

and. Therefore, the inter-year comparison is not a rigorous test

f the DOR calculations’ stability. However, if the Year 1 and Year

 values are, on average, for the whole D44 sample, the same, and

f there are no systematic differences in the DORs of the individual

omes, and if the scatter from year to year is relatively small, it

ould tend to indicate that DOR values remain stable in the ab-

ence of purposeful interventions. 

Encouragingly, there was actually a very close overall correla-

ion between the energy demand, GHG emissions and costs be-

ween the two years, and so the DORs were also similar. For exam-

le, for the DOR based on energy demand DORED ( Fig. 10 ), linear

egression (R 

2 = 0.913) produced the relationship: 

ORE D Y2 = 1 . 01 × DORE D Y1 + 0 . 32 (17)

The mean DORED value of the D44 sub-sample changed by only

 small amount; from 94.8 kWh/m 

2 in Year 1 to 95.7 kWh/m 

2 in

ear 2. Only 7 homes changed rating by more than ±10 points.

f these, the two that changed most (#8, + 19.9 points, and #186,

13.7 points) were both occupied by retired couples, aged over 65,

n low income, £15k to £20k pa. The rating of these two homes

hanged by one band as did the rating for 9 others, five improving

y one Band and six to a Band lower. Clearly, any change in Rating

ill change the Band for homes that have a DOR close to the Band

oundary. 

From this analysis, it is concluded that the DOR is suitably sen-

itive to changes in the year-to-year energy demand changes but

hat, in the absence of substantive or behavioural energy-saving in-

erventions, it will yield stable year-to-year values. Clearly, further

xploration is needed. 

. Energy demands on a cold day and a reduced data DOR 

A number of researchers in the domestic energy demand field

e.g. [54,57] ) have used the heating and electrical energy demand

t a mean daily ambient temperature of 5 °C as an indicator of

nnual energy demand. Whilst not necessary for the calculation

f the DOR, the energy costs on a cold day could be interesting

nd useful information for households and enable comparisons be-

ween different dwellings using a readily understandable metric. It

s also straight forward to calculate the GHG emissions on a cold

ay. 

More importantly, if the energy demands on a cold day are

ell-correlated with annual energy demands it might be possible

o calculate a reduced data Domestic Operational Rating (rdDOR),

hich is based on the energy demands measured on just a few

old days, thus obviating needing a whole year’s data. This possi-

ility is also investigated for the D114 homes. 



108 K.J. Lomas, A. Beizaee and D. Allinson et al. / Energy & Buildings 201 (2019) 90–117 

Fig. 10. Comparison of the DORED based on energy demand for two successive years. Data are from the D44 sub-sample. 
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8.1. Energy demand on a cold day 

By calculating the total energy demand GHG emissions and the

consequential energy costs, it might be possible to provide in-

formation that is readily understandable to households, e.g.’ how

much energy is used in your home on a cold day. What are the GHG

emissions and how much does it cost you ?’. The beauty of the ap-

proach is that the need for weather-correction is obviated because

the mean temperature on the energy-sampling days is always the

same, even though the overall year may be warmer or cooler than

average. It therefore seems worth exploring the value of including

such a measure on a DOR certificate. 

Previous researchers have placed a regression line through a

graph of daily heating energy demand versus mean daily ambient

temperatures (T) to interpolate the demand at T = 5 °C; which is

called here a ‘cold day’. This can, however, be unreliable (note the

data scatter in Figs. 6 and 7 ) so here, in keeping with the phi-

losophy of simplicity and transparency, the mean 

47 fuel demand

(EDf 5 ) when the mean daily ambient temperature, T, was in the
47 Other approaches to determining the energy demand values were considered, 

such as weighing the energy demand values based on how close the ambient tem- 

perature was to 5 °C, EDf T5 = 

∑ d5= DY 5 
d5=1 [ EDf d5 x (1-|T-5|)], but this added complexity 

for no gain in accuracy. 

r  

w  

a  

a  
ange 4 °C < T < 6 °C was calculated: 

D f 5 = 

[ ∑ d5= DY 5 

d5=1 
ED f d5 

] 
/ D Y 5 kWh (18)

here: 

d5 = a day with a mean ambient temperature, T, such that 4 °C < T < 6 °C. 

EDf d5 = measured fuel demand on a d5 day kWh 

DY 5 = total number of d5 days in the year. 

The total energy demand on a cold day is calculated by sim-

le addition of the measured demand for each fuel, and the GHG

missions and energy costs by multiplication by each fuel’s GHG

missions factors and the unit energy costs 48 ( Table 5 ). 

For such metrics to be robust, the number of days, DY 5 , for

hich 4 °C < T < 6 °C, must be sufficiently large to produce reliable

alues for the cold-day fuel demands irrespective of house location

nd, ideally, for all weather years both now and in the near future.

o investigate, four of the CIBSE weather years released in 2016

11,59] , for each of 14 UK locations, were interrogated: the cur-

ent Test Reference Year (TRY) and Design Summer Year 3 (DSY3),

hich represents a long hot year; and the TRY and DSY3 for 2050

ssuming a 90 percentile high emissions scenario. The DSY3 years

re likely to have the smallest number of cold days. In the current
48 With the standing charge for energy costs applied on a per-day basis. 
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Table 9 

Information that could appear on a Reduced Data Domestic Operational Rating Certificate: examples for three 

dwellings, Years 1 and 2. 
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Fig. 11. Relationship between the annual energy demands and the energy demands 

at a mean ambient temperature of 5 °C. 
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49 Equally strong correlations were obtained when the normalised and weather 

corrected annual gas and electricity demands were plotted against the normalised 
RYs and DSY3s there were 18 or more days at all locations with T

n the range 4 °C < T < 6 °C, i.e. DY 5 ≥ 18, and in the future TRYs

here were at least 10 such days, DY 5 ≥ 10. It was concluded there-

ore, that cold day metrics could always be calculated with reason-

ble accuracy using the simple averaging approach ( Eqs. (18) ). For

he D114 homes, DY5 was between 33 and 42 depending on the

eather station ( Table 3 ). 

The total energy demand (EDt 5 ), GHG emissions (GGt 5 ) and en-

rgy costs (ECt 5 ) on a cold day were calculated for all the D114

omes: the mean values were 82.2 kWh, 19.5 kgCO 2e and £5.38 per

ay. The largest house in the sample, #41 produced the highest

gures: 216 kWh, 19.5 kgCO 2e and £14.08 ( Table 9 ). The smallest

ouse in the sample, #199 62 m 

2 , had almost the lowest figures:

0.37 kWh, 5.85 kgCO 2e and £2.05 per day ( Table 9 ). A pleasing

eature of these figures is that they have a magnitude that can be

eadily assimilated by people, e.g. ‘ it costs £5.38 to heat this house

n a cold day’ . Normalised daily costs are harder for people to en-

isage and the figures are small giving the impression that energy

s rather an insignificant cost to a household; they varied from

.7 p/m 

2 , home #98, to 8.3 p/m 

2 , home #45, with a D114 mean

f 2.8 p/m 

2 . 

.2. A reduced data DOR 

If the energy demands on a cold day are well-correlated with

he annual energy demands for particular categories of dwellings

nd households, there is the prospect of calculating a reduced data

omestic operational rating, rdDOR, which is analogous to the con-

ept of rdSAP used for the asset rating of UK homes [41] . 

As well as producing a DOR more quickly, and with less data,

dDOR calculations would be much simpler because the mea-

ured cold day energy demands inherently incorporates weather-

orrection. This is because, irrespective of whether the winter as

 whole is especially mild or particularly cold, the data sam-

le is always taken from within the same temperature window

 < T < 6 °C. Therefore, because no weather-correction is needed,

he mean energy demand measured on a few cold days might be
sed directly as a short-cut way of estimating the actual annual,

eather corrected energy demands. 

To test this proposition, the mean gas demand on a cold day,

Dg 5 , for the D114 homes was compared with the annual weather-

orrected gas energy demand, EDg w 

; regression analysis produced

 strong correlation, R 

2 = 0.94, There was a similarly strong rela-

ionship, R 

2 = 0.92, between the electricity demand on a cold day,

De 5 , and the calculated annual weather-corrected electricity de-

and, EDe w 

( Fig. 11 ) . 49 
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Fig. 12. Comparison of the actual DOR with an estimated value, rdDOR, based on a few cold days’ data. 
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In general, for any dwellings and households for which the de-

mand for each fuel on a cold day, EDf 5 , is strongly correlated with

the corresponding annual weather corrected fuel demand, EDf w 

, it

is possible to estimate of the annual weather corrected fuel de-

mand, EDf ew 

, from: 

ED f ew 

= Mf × ED f 5 + Cf kWh (19)

where: 

Mf is the slope of the EDf w versus EDf 5 regression line 

Cf is the x-axis intercept of the regression line/kWh 

For the D114 homes, the values of Mf and Cf for gas demand

were 232.6 and −1207 kWh respectively, and for electricity de-

mand 318.0 and 292 kWh respectively ( Fig. 11 ). 

By using the estimated fuel demands, EDf ew 

, in place of the ac-

tual fuel demands, EDf w 

, in Eq. (6 ) onwards, it is possible to pro-

duce a reduced data DOR for energy demand, rdDORED, GHG emis-

sions, rdDORGG, and energy costs, rdDOREC; and hence produce

rating bands ( Table 7 ). The specific equations for gas and electri-

cally heated homes, e.g. the D114 homes, are given in [42] . 

For the D114 homes, there was a very strong correlation

(0.92 < R 

2 < 0.94) between the actual DORs (calculated from a

whole years’ data) and the rdDORs (based on a few cold days of

data), and the slope was very close to unity; see e.g. Fig. 12 for
demands on a cold day, the slopes and intercepts for gas and electricity were ex- 

actly the same. 

s  

1  

j  

(

he comparison based on energy costs. This result is intriguing

nd might have value in domestic energy demand research beyond

imply the calculation of an rdDORs (see Section 10 ). 

The strong correlation between each DOR and rdDOR offers

he prospect of generating rdDOR certificates for some classes

f dwelling and occupancy that would be beneficial even if the

mount of data included is necessarily less than on a standard DOR

ertificate ( Table 9 ). 

. Comparison of operational (DOR) and asset (SAP) ratings 

It is illuminating to compare the Energy Efficiency Rating of the

114 homes as calculated by the SAP, EER SAP , which is based on

he normalised cost of fuel, to the DOREC rating. Whilst the former

s essentially an asset rating and the later an operational rating,

ne might expect some agreement between the two. In particular,

ven if the ratings and the rating bands were not the same, one

ight expect that, the rank order of the homes to be similar by

ach assessment. 

In practice however, there was a very poor correlation between

he DOREC rating and the EER SAP rating (R 

2 = 0.06, Fig. 13 ). The

OREC ratings were also much more widely distributed across the

ating scale than were the EER SAP . Whereas the DOREC ratings

panned from 46.3 (Band B) through to 156.9 (Band G), average

03.8 (Band E), the EEC SAP ratings spanned from 91 (Band B) to

ust 44 (Band E), and the average rating 64 (Band D) was higher

 Fig. 13 ). 
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Fig. 13. Comparison of SAP energy efficiency rating of the D114 homes with the DOR energy cost rating. 
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To investigate further the rank ordering of the EER SAP values for

he D114 homes was compared with the rank order of the rat-

ngs by the DOREC method. The Spearman rank correlation test

roduced a weak correlation coefficient of 0.3 and the sign test

evealed a significant difference in the rankings ( p < 0.05). The

esults are not simply due to the different rating scales (and the

ay that the DOR was calculated). When the measured energy

osts (ECf w 

, Eq. (4 )) were fed into the SAP2016 rating scale equa-

ions ( Appendix B ), the ratings spanned from 73 (Band C) to 16

Band G), average 42 (Band E), i.e. quite different from the EER SAP 

alues. 

Although the results reported here are for a particular set of

omes for just one year, they do indicate that the SAP Energy Ef-

ciency Rating (EER SAP ) is significantly different from the corre-

ponding, measured, operational energy cost rating. 

It is concluded that the SAP is a poor indicator of the actual en-

rgy demands and costs of occupied homes. The compressed range

f energy demands, and thus ratings, produced by the SAP is to

e expected because asset rating schemes deliberately exclude the

ffect on energy demand of households’ behaviour; and it is differ-

nces in behaviour that drive variability in energy demand, even

etween households that inhabit houses with similar inherent en-

rgy efficiency. These results reinforce the need to move to a more

ealistic, measurement-based, approach to quantifying the energy

emands of homes. 
r  
0. Discussion 

A simple and transparent strategy for producing DORs, which

ould operate alongside the existing dwellings asset rating (SAP)

ystem, has been demonstrated and tested. There are, however,

 number of areas that are worthy of discussion. Firstly, there

re matters related to the method of calculation that need to

e resolved before a fully-functioning, nationally-applicable DOR

cheme could be launched. Secondly, looking to the future, the re-

ationship between the dwellings and the energy system will be-

ome more interactive, with wider use of embedded generation

nd storage, and time-of-use pricing. In such an energy system, the

roposed ‘static’ DOR, which uses ‘standard’ fuel prices and GHG

missions factors, may be inappropriate and instead a ‘dynamic’

OR, which can account for changes in fuel price and emissions

etween homes and over time would be more appropriate. Thirdly,

he value of the DEFACTO data set in supporting the development

f either sort of DOR, and the need for new data, is discussed. 

0.1. Developing a nationally applicable DOR 

0.1.1. Occupancy effects: holidays and household size 

Some of the non-UK dwelling rating systems reviewed ( Section

 ) excluded periods when occupants were not at home, basing the

ating on energy used on the remaining, occupied days. The DOR
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53 The number of degree days in the standard year will change with any change 

in degree-day base temperature but the degree-days at the dwelling location will 

also change and by a similar percentage. 
54 Interventions to central heating systems might include: turning the heating off

entirely, e.g. when on holiday, when a set-back temperature may or may not be 
developed here included all days of the year, whether occupants

were present or not. Whilst a DOR based on the annual ‘occupied-

only’ energy demand might be possible, there would be difficulties

and it is questionable whether it should be done. 

Firstly, it is hard to identify reliably when a house is unoccupied

based only on the metered daily energy use. Low or zero heating

energy demand might mean the home is unoccupied, alternatively

it may simply reflect the purposeful (energy saving) behaviour of

the occupants. For example, choosing not to heat all or part of the

house or selecting a lower heating set-point temperature. To ex-

clude such a period would mean that the DOR fails to reward pur-

poseful energy saving behaviour. Secondly, in homes where heating

fuel is not metered on daily basis, e.g. because the fuel is deliv-

ered in bulk, it is not possible to identify unoccupied periods, so

all such homes would be systematically advantaged if a DOR cal-

culation were to account for absences. 50 Thirdly, whilst the energy

demand of homes could be based on fuel used per occupied day,

national fuel use benchmark will always include all energy used

by all homes, occupied or not. 51 Finally, and probably most im-

portantly, there is the question of personal privacy and intrusion

and households would, quite rightly, be concerned if they felt the

timing and duration of their absences was being inferred from me-

tered energy data. 

Some rating schemes offer different benchmarks, depending on

the number of people in a household. Such an approach enables

homes with more people to use more energy without a detrimen-

tal impact on the DOR. Aside from the philosophical question of

whether such an approach is desirable, questions of privacy miti-

gate against taking account of the number of people, and the num-

bers may be practically impossible to define, for example in homes

of multiple occupancy, where tenants come and go frequently. An

alternative approach might be to alert people, perhaps by a note

on the DOR certificate, to the fact that larger households tend to

use more energy. 52 Occupants moving into a new property with a

DOR certificate could then infer how demand might change purely

because they have a larger or smaller household than the previous

occupiers. 

10.1.2. Weather correction and degree-day base temperature 

In the proposed DOR scheme, the weather-correction weight-

ing of a fuel (WCWf) makes it possible to correct only the pro-

portion of the fuel that is weather sensitive. It is therefore pos-

sible to accommodate homes that use a mix of fuels for heat-

ing, e.g. gas central heating with secondary electric heating, and

homes in which the same fuel might be used for space heating as

for other purposes, notably in all electric homes. A set of agreed,

standard, weighting conventions might be devised for all plausible

combinations of heating systems and fuels; much like the many

look-up tables needed for asset rating (SAP) calculations. The exist-

ing database of EPC surveys provide the fuels and heating systems

used in each home. Alternatively, it might be possible to infer the

weightings to use based only on the measured (smart meter) data,

which would be a much easier approach, and one tailored to, but

varying with, each home’s use of fuels. 

The DOR calculation could begin on any day and be based on

the energy demand for the subsequent year. The year could begin

as soon as a property changes hands for example. To enable this,

however, the weather-correction factor would need to be known
50 Because including days with no occupancy and no heating fuel use will depress 

the annual daily mean demand. 
51 Thus, homes that are actually or apparently unoccupied for a period of time 

will have a higher demand per occupied day relative to the benchmark. 
52 Larger household tend to use more energy so fuel poverty calculations use fuel 

cost equivalisation factors which, for households of one, two, three, four and five or 

more people are, respectively, 0.82, 1.00, 1.07, 1.21 and 1.32 [20] . 

s

o

a

I

s

l

l

d

i

or every dwelling and location for a year which starts on any one

f 365 days. This is perfectly possible to do, but is might be sim-

ler to constrain DOR calculations to start at, say the beginning of

ach month, thus enabling the generation and publication of ‘ap-

roved’ regional or sub-regional monthly degree days. This would

etain the simplicity and transparency but capitalise on the inher-

nt flexibility of the DOR scheme. 

A degree-day base temperature of 15.5 °C was adopted for

eather-correction in the DOR scheme, which is the value com-

only used in UK energy demand calculations. It is worth con-

idering the likely errors of using a fixed value for all homes, and

he possible alternative approaches. Regarding errors, if the degree-

ay base temperature is too high for a particular dwelling, the

nergy used between the chosen base temperature and the true

ase temperature will be weighted when it should not be. The re-

erse is true if the base temperature is too low for the dwelling

n question. However, the heating energy demands on days near

he base temperature are small, e.g. compared to those on much

older days, and so the effect of the error is small. Secondly, and

ore importantly, because weather-correction is based on the ra-

io between the degree-days in a standard year and those at the

welling location ( Eq. (2 )), the choice of base temperature will

ave only a small impact on the correction factor. 53 Even though

ny errors are small, in the interests of rigour, other approaches to

efining the base temperature are worth investigating. 

Broken stick regression, using plots such as those in Fig. 7 ,

ere explored as a route to identifying house-specific degree-day

ase temperatures. Whilst, for many homes this method proved

atisfactory, for other homes, the regression coefficient was very

oor and for some, no credible regressions line was produced.

he physical reasons for this are clear: firstly, people intervene in

heir heating 54 and so the energy demand is not entirely ambi-

nt temperature-driven; secondly, secondary heating, which may

r may not use the same fuel, or may be used alongside or in-

tead of the central heating system; and finally, the degree-day

ase temperature would depend on the heating schedule, being

ower if the heating is on only during the day rather than for 24 h

er day. 55 This latter point is interesting and has perhaps not been

ighlighted before. 

An alternative strategy would be to use the Heat Loss Coef-

cient, which is calculated as part of an EPC energy survey as

he basis for determining the base temperatures (in fact, SAP rat-

ngs used to be based on a variable-base degree day calculations).

his does however introduce complexity, further entwines the DOR

cheme with the asset rating scheme, and yet still entails an esti-

ation of the base temperature. 

The standard number of degree-days used in this work was

021 °C.days. This value could change over time, for example as the

limate warms. However, provided the same value is used for de-

iving the weather-corrected national benchmark energy demands

hen the effect of a change on DORs will be very small. 
et; adjusting the thermostat setting; adjusting the heating schedule; or increasing 

r decreasing the flow temperature from the boiler. 
55 For example, in a home heated for 24 hours per day, the heating might be initi- 

ted when the mean ambient daily (i.e. 24 h) temperature drops below, say, 15.5 °C. 

f the schedule in the same house were set to daytime only heating, it would be 

witched on when the mean daytime (i.e. excluding the night time hours) drops be- 

ow 15.5 °C; the corresponding 24 h mean temperature would almost certainly be 

ower than 15.5 °C, because it is usually colder at night. Thus, the effective degree- 

ay base temperature is likely to be lower in homes with daytime only heating than 

n those with all-day heating. 
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A final point revolves around how to weather-correct fuels that

re not used for space heating, in particular fuel used for hot water

eating and, perhaps, cooking. Likewise, electricity demands vary

rom summer to winter and so weather correction should be con-

idered. For these fuels, the usage increases steadily as ambient

emperatures fall rather than when temperatures fall below a par-

icular threshold (e.g. Figs. 6 and 7 ). This might be due to the over-

ll temperature decrease from summer to winter, or due to other

actors, like a shortening of the day length resulting in greater use

f lights and appliances. For such fuel usage, weather-correction

ight more credibly be based on the average, whole year, temper-

ture, or some other measure, 56 rather than a degree-day thresh-

ld weighting. The effect on the calculated DORs, whether or not

uch fuels are weather corrected, is though, likely to be small. 

0.1.3. Benchmarks, the rating year and rating bands 

The selection of robust benchmark values is crucial to the cred-

bility of the DOR scheme. To this end, UK government originated

eather-corrected energy demands for 2016 were used [17] with

he benchmarks for GHG emissions and the energy costs calcu-

ated using the SAP-tabulated emissions factors and energy prices

or each fuel ( Appendix B ). The way that the energy demands, GHG

missions and costs for each house were calculated was however

 little different: the approach to weather-correction may have dif-

ered from that used by DBEIS; the GHG emissions factors, espe-

ially for electricity, are likely to have been different (see Section

 ) 57 ; and the same electricity prices were used for all houses ir-

espective of the tariff. In a fully functioning DOR however, such

nconsistencies could easily be resolved, for example by using the

uel tariff used to generate each home’s EPC (SAP2016, lists eight

lectricity tariffs and 17 community energy prices). 58 

The benchmark values will change over time. For example, de-

arbonisation of the grid will decrease the emissions factor for

lectricity but the emissions factor used to calculate each DOR

ould also change. Thus, the evolution of the grid, which is beyond

he control of households, can be reflected in changed benchmarks

ithout affecting the DORs. (In the SAP, which doesn’t use exter-

al benchmarks for rating, any change in emissions factors imme-

iately changes the SAP rating of homes; thus, revisions to the SAP

re made infrequently.) Improvements to the energy efficiency of

he national housing stock, e.g. through refurbishment and new

uild, would gradually decrease the energy demand benchmark

nd so homes that do not remain in step would have a gradually

ncreasing DOR. This would, quite properly, create an incentive for

ndividual households to become more energy efficient. 

To comply with the forthcoming EU directive it is required that

The energy performance of a building shall be expressed by a nu-

eric indicator of primary energy use in kWh/(m 

2 .y) ” [32] . It is

nticipated therefore that the UK rating schemes will shift to a

rimary rating basis. 59 A DOR based on primary energy demand

DORPE) might readily be calculated since the SAP documentation

ncludes primary energy conversion factors. In SAP 2016 [6] these

re 1.127 and 2.364 for gas and electricity respectively. The ratio of

hese, 1:2.10, is actually close to the SAP-listed ratio between the

HG emissions for gas and grid electricity, 1:1.98; the DORGG and

ORPE values for homes might therefore be rather similar. 
56 In the case of electrical energy use, and considering day-length as being a de- 

and driver, time of year and latitude might be used? 
57 For example, working from the residential fuel use in DBEIS [17] and applying 

he SAP emissions factors produces a value of 4299 kgCO 2e per UK dwelling for 

016, which is a little larger than the value of 4150 calculated from other sources 

18] . 
58 Although this increases the extent to which the DOR depends on EPC data, it 

oes avoid the need to know the exact fuel tariff for every fuel in every household. 
59 Although, at the time of writing, BREXIT ‘negotiations’ meant that there was 

onsiderable uncertainty over the future relationship between the UK and the EU. 
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The approach to producing ratings and rating bands mimicked

hat used for UK non-domestic operational rating. In a fully oper-

tional DOR however, it would be possible to set the linear rat-

ng scale differently, for example with 100 representing the me-

ian or modal stock-wide value (of energy demand, GHG emissions

nd energy costs). Also, and perhaps more importantly, the band-

ng divisions could be unevenly distributed, for example so that

ach band captures a chosen percentage of the national housing

tock. The distribution of the national stock energy demands, GHG

missions and costs, would be readily available once smart meters

re deployed. 

0.1.4. Reduced data DORs 

A method of producing a reduced data DOR (rdDOR) has been

roposed based on the energy demands measured on a few cold

ays. Although the approach was successful for the D114 homes,

he sample consists of homes with similar geometry and heating

ystem type and they were exposed to similar weather condition

hat were very close to the long term national average. 

Whilst the approach offers intriguing possibilities, it may be

ess successful for other dwelling types. For example, dwellings

hat are much better insulated, or which have greater thermal iner-

ia, will respond to temperatures evolved over several days rather

han those on a particular day. Likewise, if solar gain contributes

 high proportion of the space heating demand, mean daily sol-

ir temperature [9] may, for example, correlate better with daily

nergy demands than the mean daily dry-bulb temperature, There

s therefore, a need to test the rdDOR concept for other types of

omes subject to different and atypical weather conditions. Should

he method remains robust, it may be possible to devise simple rd-

OR equations (like Eq. (19) ) for different classes of dwelling and

ccupants. 

0.1.5. A DOR for non-daily metered fuels 

The DOR scheme proposed will not work for homes that use fu-

ls that are not metered daily (so, called, non-daily metered (NDM)

uels). This is likely to be the case for homes that use heating oil,

iofuel and coal, where only delivery notes and infrequent manu-

lly meter readings may be available. For such UK homes, a way

f estimating the DOR from an annual measure of fuel use may

e necessary, i.e. a reduced annual DOR, raDOR. One way to do

his might be to specify the proportion of each fuel that is to be

eather corrected, the approach used in the UK non-domestic op-

rational rating system [10] . Unfortunately, there is like to be a

arge inter-home variation in the proportion of fuel that should be

orrected. (In the DOR homes, the mean gas demand to be cor-

ected was 96.7% but this varied from 84.1% to 99.9%. 60 ) Further-

ore, the proportion to be corrected will vary with winter temper-

ture; with a higher percentage to be corrected in cold years and

ower percentage in a mild year. Further exploration is therefore

eeded to develop a raDOR for homes with bulk fuel deliveries. 

0.2. A dynamic DOR 

The DOR described in this paper uses static, standardised val-

es for GHG emissions and energy costs that change occasionally

o reflect the evolution of the whole energy supply system. Such

n approach fails to address some features of a heterogeneous new

nergy system, in which there is a much more dynamic interac-

ion between the buildings that consume energy and the energy

ystem. Such a system is characterised by small scale ‘community

nergy schemes’, dwellings that supply and store energy, innova-

ive time-of-use fuel tariffs, new energy suppliers and energy ser-
60 These are the proportion of gas used at ambient below 15.5 °C. 
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vice companies, and innovative energy pricing structures; all sup-

ported by the introduction of smart meters. A DOR that is sensitive

to GHG emissions factors and energy costs that change over time

on a daily, or even hourly basis, and from house to house would

support such changes. It would foster the emergence of dwelling-

integrated and community-based energy systems, and low carbon

and renewable energy systems, stimulating households to search

for lower-cost fuel tariffs. 

To effect such a DOR, it would be necessary to know the daily

energy demand along with the corresponding GHG emissions fac-

tor 61 and fuel cost on that day. These two values would be needed

either in real time or retrospectively shortly after the day in ques-

tion in order to calculate the rolling year DORGG and DOREC val-

ues; in effect, adding a daily GHG emission factor and energy cost

alongside the smart meter-recorded energy demands. 

Just as daily energy demands recorded by smart meters could

be collected centrally to produce the national energy benchmarks

on a rolling year basis, so too could the corresponding GHG emis-

sions factors and energy costs data for every UK home. The techni-

cal challenges are not insurmountable, and the data flows are not,

by today’s standards, large; but the procedures would need to be

evolved, tested and refined. 

Any fully dynamic DOR system would require the cooperation

of energy suppliers who would know the fuel costs and the daily

emissions factors for each household that they supply. Such data

are likely to be confidential, both to protect the suppliers’ commer-

cial interests and the privacy of the households that they supply.

However, it may not be possible to operate a fully dynamic DOR

system using a government backed intermediary organisation that

is independent of, but trusted by fuel suppliers. 62 

Any DOR system, whether static or dynamic, could provide

feedback to households through an in-home display (IHD) along-

side advice and guidance on how the households’ DORs might be

improved. Such advice, perhaps delivered independently of the en-

ergy supplier, would stimulate business opportunities, e.g. for new

energy suppliers, energy service companies, providers of energy ef-

ficiency advice etc. It would also stimulate household behavioural

change, driven by GHG emissions and energy cost concerns, based

on real past behaviour rather than artificial behaviour norms. 

Of course, a much more dynamic DOR system would immedi-

ately divorce it, both philosophically and in its practical operation,

from the SAP asset rating system. The latter is highly transpar-

ent and static in time, and it is purposefully designed to be so.

In contrast, a dynamic DOR system would, by intent, be responsive

to spatial variations and short term changes in the use of energy

and the associated costs and emissions. It would be a system for a

smart meter-enabled, 21stcentury energy system. 

10.3. Limitations of the DOR dataset 

Whilst the D114 dataset had undoubted value for developing

the DOR, it does have inherent limitations. Most obviously, all the

homes had gas central heating, were owner occupied and semi-

detached. Also, they were all were located in the English Midlands

and exposed to weather close to the long-term UK average. 

To fully evaluate and refine the DOR, there is clearly a need for

data from a much wider range of homes, including flats, large de-

tached homes, homes without central heating and which use fuels

other than gas, and homes that use non-daily metered fuels. Like-

wise, data from homes exposed to more extreme weather would
61 In practice GHG emissions factors change through the day (e.g. half hourly) and 

so a mechanism for providing daily effective factors would need to be devised. 
62 Note, only the running annual total energy demands, GHG emissions and energy 

costs are needed, not the daily values. 
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3

nable the veracity of the weather-correction process to be more

everely tested. 

The viability of the DOR also needs to be tested for homes with

ew and renewable energy systems such as PV and heat pumps as

ell as for homes which might be very well insulated and so have

ery low energy demands. 

Finally of course, the DEFACTO data were surrogate smart meter

ata, and whilst this posed its own challenges with regard to data

leaning, such issues will also arise with smart meter data. The

xtent to which this could help or hinder the development of a

ationwide DOR scheme needs to be explored. 

1. Conclusions 

A method for rating the energy performance of UK homes

ased on metered gas and electricity demand is presented for the

rst time in this paper. The proposed Domestic Operational Rat-

ng (DOR) scheme is complementary to the scheme used in the

K to provide the asset rating of domestic buildings, the Standard

ssessment Procedure (SAP), and is in harmony with the method

sed for the operational rating of non-domestic buildings. 

The DOR scheme is transparent, simple to calculate and clearly

ocumented. In addition to a household’s daily energy demands,

nly the dwelling floor area and the annual degree-days for the

egion are needed. Energy costs and GHG emissions are calculated

sing standard conversion factors. The proposed DOR could there-

ore readily be produced for all UK homes with daily-metered en-

rgy demands, e.g. daily smart meter data. 

The DOR scheme was developed using of a new primary data

et collected from 114 semi-detached, centrally-heated, privately

wned and internet connected homes located in the English Mid-

ands. Gas and electricity demand data were collected at 30 min

nd two minute intervals respectively. An energy survey and

ousehold questionnaire surveys were also undertaken. The data

ere cleaned, organised and averaged to produce a stream of daily

as and electricity use lasting up to three years. 

The D114 homes were exposed to monthly temperatures close

o the UK average for the years studied and, fortuitously, winter-

ime temperatures close to the long-term UK average. The mea-

ured mean annual normalised gas and electricity demands of

51 kWh/m 

2 and 43 kWh/m 

2 , and mean annual estimated energy

ost of £14.89/m 

2 , are all within 4.5% of the UK stock-wide figures.

t is concluded that the homes therefore offer a sound platform on

hich to develop a nationally-applicable DOR scheme. 

For all D114 homes, the gas demand was low during the sum-

er, but increased when the mean daily ambient temperature

ell below 15.5 °C because space heating was initiated. Electricity

emand showed no clear temperature-initiated demand increase.

herefore, the total gas demand at temperatures below 15.5 °C was

eather-corrected by the ratio of the site-specific degree days to

he national long-term average value, 2021 °C.days. Electricity de-

ands were not corrected. 

Three DORs are calculated based on annual energy demand

DORED), GHG emissions (DORGG) and energy costs (DOREC). The

ORED is derived by comparing the measured, annual, floor area

ormalised and weather-corrected total fuel use with a national,

tock-wide, benchmark derived from annually-published govern-

ent sources. Simple linear rating scales are used, such that zero

oints represent a zero-energy home, and 100 points, a stock aver-

ge home. Equal rating bands of 25 points, are constructed such

hat Band A represent a home that uses less than 25% of the

enchmark demand, and Band G more than 150% of the bench-

ark demand; DORGG and DOREC rating scales and bands follow

he same principle. The D114 homes had DORED ratings between

1.0 (Band B) and 182.8 (Band G). 
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63 The same banding, and energy cost deflator, is used in SAP 2012, SAP 2016 and 

the proposed SAP10. 
For 44 of the homes that produced good quality data for two

uccessive years, the DORs scheme produced ratings in year two

hat were very similar to those in year 1; and there was no sig-

ificant difference in the ranking of the DORs between the years.

he result suggests that, in the absence of purposeful energy sav-

ng actions, the DOR scheme produces ratings that are stable year-

n-year. 

There was a very poor correlation (R 

2 = 0.06) between the

OREC of the D114 homes and the SAP asset rating, which is also

ased on energy costs. There was also a significant difference in

he relative ranking of the homes by the two metrics. These results

ndicate that SAP ratings are a very poor indicator of the actual en-

rgy demand and energy costs of occupied homes. The DOREC rat-

ngs were also much more widely spread across the rating scale,

uggesting it is a better discriminator of the relative energy de-

and of different homes. 

A method of producing a reduced data DOR has been proposed

ased on the energy demands measured on a few cold days. The

pproach was successful for the D114 homes, producing rdDORs

ery similar to the DORs calculated using a whole years’ data. A

ethod of producing a DOR for homes that use non-daily metered

uels is also desirable, a reduced annual DOR. The robustness of the

dDOR approach and a concept for an raDOR needs testing using a

ore diverse range of dwellings subject to different, non-average

eather conditions. 

The proposed DOR scheme is compatible with existing inter-

ational asset and operational rating schemes, notably those used

n the UK. There is however, a need to test the scheme using a

uch more diverse set of dwelling types, with different modes of

ome ownership, which use different heating systems and which

re exposed to a wider range of winter weather conditions. Such a

ataset would enable the approach to weather-correction, deriving

enchmarks and producing rating bands to be tested more thor-

ughly. 

Finally, there is merit in exploring the benefits of a much more

ynamic approach to producing DORs, one that captures fully the

patial and temporal variability in homes’ energy costs and green-

ouse gas emissions, most obviously as the mix of electricity gen-

rators changes. Costs and emissions are likely to vary much more,

oth spatially and temporally (e.g. half-hourly), in the integrated

nergy system of the future. Capturing this variability will be in-

reasingly important in a DOR scheme as heating shifts from fossil

uels to electricity. 
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ppendix A: The SAP rating equations and rating bands 

The SAP rating scales are partly linear and partly non-linear

nd do not make use of any external, e.g. stock averaged, bench-

ark value. The Energy Efficiency Rating (EER) is framed such that

 building which has zero energy cost achieves a rating on 100: 

E R SAP = 117 − 121 × lo g 10 ( ECF ) for ECF ≥ 3 . 5 

E R SAP = 100 − 13 . 95 × ECF for ECF < 3 . 5 

(A1) 

here: 

ECF = DEF × total energy cost/(TFA + 45) 63 £/m 

2 

TFA = total dwelling floor area m 

2 

DEF = Energy cost deflator = 0.42 

The energy cost deflator is used to maintain continuity of SAP

atings over time despite changing fuel costs [36] . In SAP2016

5] the energy cost deflator is 0.42 as it was in SAP2012 [22] and

s is proposed for SAP10 [7] . 

The Environmental Impact Rating (EIR SAP ) has a very similar

orm, and is framed such that a zero emissions building has a rat-

ng of 100: 

I R SAP = 200 − 95 × lo g 10 ( CF ) for CF ≥ 28 . 3 

I R SAP = 100 − 1 . 34 × CF for CF < 28 . 3 

(A2) 

here: 

CF = (CO 2e emissions)/(TFA + 45) kgCO 2e /m 

2 

The addition of 45 to the total floor area in both equations

as introduced in SAP2001 [24] to render the ECF, and so the en-

rgy efficiency rating, far less sensitive to dwelling floor area. In

AP1998 and earlier, the denominator in the calculation of the ECF

as TFA and not TFA + 45 [3] . 

To produce the rating bands (EERB SAP and EIRB SAP ), the EER SAP 

nd the EIR SAP values are firstly rounded to the nearest whole

umber and then divided up into bands of equal ‘size’: if EER SAP 

r EIR SAP is greater than 92, the Band is A 

63 ; 91 to 81 Band B; 80–

9 Band C; 68–55 Band D; 54–39 Band E; 38–21 Band F; and 20

r less Band G (see [41] for further information). 

In contrast to the SAP rating scales, linear scales, which might

e used in any DOR scheme, are much simpler. For an energy cost

enchmark of 14.40 £/m 

2 : 

OREC = ( EC t wn / 14 . 40 ) × 100 (A3) 

here: 

ECt wn = total weather-corrected and normalised energy costs £/m 

2 

http://dx.doi.org/10.13039/501100000266
https://doi.org/10.1016/j.enbuild.2019.07.021
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Table B1 

Annual UK household energy demands for 2016 and calculated standard energy costs and emissions. 

Fuel Total UK domestic 2016 Weather corrected energy demand, costs and emissions 

Energy demand Energy demands Energy cost f Greenhouse gas emissions 

Total all 

households a 
Demand per 

household c 
Mean per UK 

household e 
Fuel 

fraction 

Standing 

charge 

Cost per 

kWh 

Mean per UK 

household 

Emission 

factors g 
Mean per UK 

households 

ktoe GWh b kWh kWh % £ p £ kgCO 2e /kWh kgCO 2e 

Coal 414 4815 173 179 1.01 4.07 £7.06 0.416 72 

Solid 168 1954 70 73 0.41 5.48 £3.86 0.045 3 

Natural Gas 26,773 311,370 11,216 11,563 65.23 95 4.32 £579.52 0.208 2333 

Electricity 9284 107,973 3889 3901 22.01 67 15.32 £662.83 0.398 1548 

Heat sold 52 605 22 22 0.13 5.27 £1.15 0.208 5 

Bio. & waste 2079 24,179 871 898 5.07 5.27 £45.90 0.074 64 

Petroleum 2525 29,366 1058 1091 6.15 5.06 £53.52 0.298 315 

Total 41,295 480,261 17,299 17,727 100.00 £1353.83 4340 

Normalised 

totals (per 

m 

2 ) d 
188.581 kWh/m 

2 

14.40 £/m 

2 46.17 

kgCO2e/m 

2 

a Source DBEIS [17] Table 3.01. 
b The conversion is 11,630 MWh per ktoe. 
c The number of UK households in 2016 is given as 27,762,0 0 0 by DBEIS ( [17] , Table 3.03). 
d The average floor area of English homes in 2016 for all tenures, assumed applicable for UK homes, was 94 m 

2 by ( [46] , Table AT2). 
e Factors inferred from DBEIS ( [17] , Table 3.03), 1.003 for electricity, 1.031 all other fuels. 
f Source SAP 2016, Table 12 (BRE) [6] . Assumed mapping between DBEIS fuel names and the many fuel types listed in SAP, 2016, Table 12: Coal = House coal; 

Solid = Wood pellets; Natural Gas = Mains Gas; Electricity = Standard tariff; Heat sold = Community heat network, mains gas boilers; Bio. & waste = Community heat net- 

work, boiler, waste combustion; Petroleum = heating oil. 
g Source SAP 2016, Table 12 (BRE) [6] . Emissions factors for fuels sources mapped as above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For a GHG emissions benchmark of 46.17 kgCO 2e /m 

2 : 

DORGG = ( GG t wn / 46 . 17) × 100 (A4)

where: 

GG wn = total weather-corrected and normalised GHG 

emissions 

kgCO 2e /m 

2 

The rating bands for UK non-domestic buildings span equal di-

visions of 25 rating points. Thus a building that produces the same

GHG emissions as the benchmark (rating 100) sits at the interface

between Band D and B and E 

Appendix B Benchmark energy demand 

The benchmark values against which the weather-corrected and

normalised energy demands, GHG emissions and energy costs are

compared, need to be representative of the average demands for

the UK stock as a whole. Here the benchmark values were derived

from the governments’ document, Energy Consumption in the UK

[17] , which provides annual figures for the total amount of each

fuel used in the domestic sector. 

The mean fuel demand per household was calculated, and the

consequential GHG emissions and energy costs calculated for each

fuel using the GHG emissions factors and costs listed in SAP2016

[6] ; these were then normalised using the average floor area for

UK homes. Fuel use figures for calendar year 2016 were used as is

the year most compatible with the D114 measurement year ( Table

B1 ). 

The weather correction factors used by DBEIs can be inferred

DBEIS [17] , and are 1.003 for electricity and 1.031 for all other fu-

els. 
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