
SNAP microresonators introduced by strong bending of optical fibers 

Daria Bochek, Nikita Toropov, Ilya Vatnik, Dmitry Churkin, Misha Sumetsky 

 

We introduce a new method of fabrication of Surface Nanoscale Axial Photonic (SNAP) 

microresonators by strong bending of an optical fiber. We experimentally demonstrate that 

geometric deformation and refractive index variation induced by bending is sufficient for 

the formation of a SNAP bottle resonator with nanoscale effective radius variation (ERV) 

along the fiber axis. In our experiment, we bend the optical fiber into a loop and investigate 

the properties of the fabricated tunable bottle resonator as a function of the loop 

dimensions. We find that the introduced ERV is approximately proportional to the local 

curvature of the loop while the ERV maximum is proportional to the maximum of the loop 

curvature squared. The advantages of the demonstrated method consist in its simplicity, 

robustness, and the ability of mechanical tuning of introduced resonant structures. This is 

of crucial importance for the creation of robust and tunable SNAP devices for applications 

in optical classical and quantum signal processing and ultraprecise sensing. 

The high Q-factor optical microresonators have a great potential as basic elements of miniature signal 

processors and delay lines in optical communications [1-3], microlasers [1, 4, 5], ultraprecise sensors 

[4, 6], frequency comb generators [7], optomechanical devices [8], and quantum information devices 

[9, 10]. To date, two major platforms for the volume manufacturing of microresonator photonic devices 

have been developed: the ring resonator platform [2] and the photonic crystal platform [11]. The 

fabrication precision, low loss, and tunability of fabricated photonic circuits is being steadily improved. 

However, the achieved precision and loss level are still not sufficient for several practical applications 

such as fabrication of miniature optical delay lines and buffers [12, 13]. 

On the other hand, the Surface Nanoscale Axial Photonics (SNAP) platform [3, 14, 15], which utilizes 

whispering gallery mode (WGM) microresonators fabricated at the surfaces of optical fiber, combines 

the benefits of ultra-low loss and high fabrication precision. It was shown in [15, 16] that such a small 

variation of effective radius variation (ERV) is sufficient for strong localization of light and formation 

of microresonators and can be introduced with subangstrom precision. For example, the fabrication 

precision of SNAP was demonstrated to be better than 0.2 Å in ERV [15], which is almost two orders 

of magnitude better than that achieved in photonics technologies developed to date. In SNAP structures, 

WGMs circulate around the fiber surface while undergoing slow propagation along its axis. The axial 

propagation is fully controlled by the introduced nanoscale ERV of the optical fiber, which includes the 

contribution from the variations of refractive index and physical dimensions of the fiber.  

Up to date two methods for creating of permanent SNAP resonators were demonstrated. The first 

method consists in local annealing of the fiber surface with a focused CO2 laser beam which causes 

local thermal relaxation of the tension which was frozen-in during the fiber drawing [16]. The second 

method employs the femtosecond laser inscription which introduce local stresses inside the fiber [17]. 

Both methods allow to introduce nanoscale ERV of the optical fiber. Similar to the ring resonator and 

photonic crystal technologies, the future development of the SNAP platform will enable new important 

applications if SNAP structures are made tunable. While thermally tunable and fully reconfigurable 

SNAP microresonators have been demonstrated [18, 19], several applications (e.g., those in cavity 

quantum electrodynamics [20]) require or can benefit from their mechanical rather than thermal tuning. 

In this Letter, we present a mechanically tunable SNAP platform which is based on effect of strong 

bending of an optical fiber on its ERV. Our approach can be applied to the uniform optical fibers as 

well as for tuning of SNAP structures fabricated by other methods described above. The setup used in 

our experiments is illustrated in Fig. 1. 



 

Fig. 1. (a) Illustration of experimental setup for the characterization of SNAP structure introduced by 

bending of an optical fiber. A micrometer diameter waist of a biconical tapered fiber (TF) is placed 

transversely to the bent optical fiber with a loop profile. The evanescent field in the waist of TF couples 

to WGMs which circulate inside the fiber loop due to the total internal reflection and undergo slow axial 

propagation controlled by the ERV of the fiber. The shape of the fiber loop is tuned by pulling/pushing 

the fiber ends. (b) The force pair ( , )F F  and angular momentum M  acting on the right half of the loop 

and keeping it in equilibrium. 

 

The ends of the fiber, which was stripped from the coating and curved into a loop, were put through a 

narrow plastic tube. This simple setup allowed us to fix the loop shape as well as to tune it by pulling 

or pushing the fiber ends. Bending of the optical fiber causes its geometric deformation and, in 

particular, variation of its local effective radius 𝑟. In addition, bending introduces stresses which cause 

the variation of refractive index 𝑛 due to the elasto-optic effect. In a series of experiments described 

below, we demonstrate that strong bending of the optical fiber results in the ERV which is sufficient for 

the formation of SNAP bottle resonators. 

Slow propagation of WGMs along the axis s  of the bent fiber is described by the one-dimensional 

wave equation [14]. In this equation, the wavenumber is expressed through the ERV ( )effr s  and 

wavelength variation ( )c s   where the WGM wavelength   is assumed to be close to the cutoff 

wavelength ( )c s . Variation of  ( )c s  can be rescaled to the ERV of the fiber: 
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where r0 is the radius of the unbent optical fiber. 

 Experimentally, the WGM resonant spectrum is measured by a microfiber, specifically, a micron-

diameter waist of a biconical tapered fiber (TF), which is fixed on a two-axis motorized translation stage 

and placed transversely to the test fiber axis, as illustrated in Fig. 1. The taper is connected to the light 

source and Optical Spectrum Analyzer (OSA) with switchable resolution of 1/0.04 pm and wavelength 

repeatability as high as +-3 pm. The SNAP structure is characterized by its spectrogram, i.e., the surface 

plot of resonant transmission spectra measured at series of equally spaced points along the 

microresonator axis. The spacing between these points determines the spatial resolution of 

measurements. An example of such spectrogram, which characterizes the ERV of the optical fiber 

introduced by bending to be discussed below is shown in Fig. 2(b). 



 

Fig. 2. Experimental characterization of the nanoscale ERV and spectrum of the bottle microresonator 

introduced by bending of the 125 𝜇𝑚 optical fiber. (a) Measured profile of the fiber loop (red 

points) compared to its analytical approximation (black curve). (b) Spectrogram of the introduced 

SNAP bottle resonator measured with spatial resolution of 200 𝜇𝑚 along the fiber axis. Black dashed 

curve is the rescaled curvature of the bent fiber. (c)  Spectrogram of the same unbent fiber segment. 

In our first experiment, we observed the ERV introduced by bending of a standard SMF-28 optical 

fiber. We found that the measured profile of the looped fiber used in this experiment (red points in Fig. 

2(a)) is well approximated by the parametric curve (black line in Fig. 2(a)): 
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where constants 0.48a   mm, 0.7b   mm, 9.15c   mm, 1.71d   mm, 7.8f   mm, and 0.73g   

mm were determined by fitting the experimental data. To determine the ERV of the bent fiber, we 

measured its spectrogram along the whole length of the loop with spatial resolution of 200 𝜇𝑚. In 

order to determine the actual ERV introduced by bending, we first characterized the ERV of the straight 

fiber.  

The spectrograms of the SMF-28 fiber segment bent into a loop and of the same unbent segment are 

shown in Fig. 2(b) and (c), respectively. From Fig 2(c) and Eq. (1) we found that the straight optical 

fiber had an ERV with the slope of ~ 0.016 nm/mm. Comparison of Fig. 2(b) and (c) shows that, in this 

experiment, the original ERV of the unbent fiber was much smaller than the ERV of the introduced 

SNAP bottle resonator. In Fig. 2(b), there are two similar cutoff wavelength profiles which correspond 

to WGMs with different polarizations or different azimuthal and radial WGM quantum numbers. 

Considering for determinacy the more contrast upper profile, we found that the introduced maximum 

ERV ( )max

effr  at the top of the fiber loop is related to the maximum cutoff wavelength variation ( )max

c  

by the rescaling relation, of Eq. (1) where the cutoff wavelength found from Fig. 2(b) is 1552.7c  nm. 

From this relation, the observed maximum wavelength variation ( ) 0.25max

c  nm (Fig. 2(b)) 

corresponds to the ERV ( ) 10.1max

effr  nm. Using Eq. (2) we determined the curvature of the loop along 

the axis of the fiber. The rescaled curvature variation is presented by a black dashed curve in Fig. 2(b).  

 



Fig. 3. (a) Profiles of optical fiber loops investigated. (b) Measured ERV distributions along the loops 

where the curve with largest ERV corresponds to the smallest loop in (a). (c) The maximum ERV at 

the top point of the loop versus its radius at the same point. Black curve is approximation of 

experimental data with ( ) 3 2

0 00.28 /max

effr r R  . 

Comparison of this curve with the ERV profile shows that, with a good accuracy, the ERV of bent 

optical fiber is proportional to the local curvature of the loop. The measured value of Q-factor of the 

resonator is ~106 and does not depend on the fiber curvature. 

In our second experiment, we investigated the SNAP bottle resonators introduced by seven fiber 

loops with different sizes shown in Fig. 3(a). We measured the spectrograms of these loops (similar to 

that shown in Fig. 2(b)) starting with the biggest loop (dark blue curve), the size of which was reduced 

down to the smallest loop (light blue curve) by pulling the ends of the fiber as illustrated in Fig. 1. The 

ERV curves found from the spectrograms are shown in Fig. 3(b) and have the same colors as the 

corresponding fiber loops in Fig. 3(a). The maximum ERV values, which corresponds to the top of the 

loops, are plotted in Fig 3(c) as a function of the loop radius 𝑅0 at its top. Fitting the experimental results 

allowed us to come up with the empirical relation between the ERV and local curvature radius ( )R s of 

the fiber: 
3
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where 𝑅0 is loop radius at its top, which axial coordinate we set to 0s   so that 
0 (0)R R .The equation 

indicates on the quadratic dependence of the maximum relative ERV ( )

0/max

effr r  on 
0 0/r R  and linear 

dependence of ( )effr s on local curvature of the fiber.  

In our third experiment, to arrive at smaller dimensions of the SNAP bottle resonator and to 

investigate the dependence of the discovered effect on the fiber radius, we introduced it using an optical 

fiber with radius 
0 20r  µm. The standard SMF-28 fiber cannot be curved into a loop with less than ~ 

3-4 mm dimensions because of the strength limit. However, a 20 µm radius fiber can be bent into a loop 

with sub-millimeter dimensions. The profile of the loop, which was fabricated using the approach 

illustrated in Fig. 1, is shown by red points in Fig. 4(a) and approximated by black parametric curve 

determined by Eq. (2) with constants 9.7a   mm, 0.16b   mm, 9.15c   mm, 0.46d   mm, 7.66f   

mm, and 0.28g   mm. The spectrogram of this loop and of the same straight section are shown in Fig. 

4(b, c). It is seen from Fig. 4(c) that the original ERV of the straight fiber was significantly greater than 

that for the SMF-28 fiber characterized in Fig. 2(c). Therefore, in order to compare the ERV profile 

introduced by bending with the distribution of the local loop curvature (similar to the comparison shown 

in Fig. 2(b) for the SMF-28 fiber), we took this original ERV into account. Specifically, the dashed 

black curve in Fig. 4(b) shows the rescaled loop curvature profile plus the original linear ERV of the 

fiber found from Fig. 4(c). Similar to the case of the SMF-28, we observed that the dependence of the 

ERV introduced by bending was proportional to the local loop curvature. Note that the relatively large 

original linear ERV of this fiber does not affect the parabolic shape of the introduced microresonator 

which is important for several applications [3].  



  

Fig. 4. Investigation of the SNAP bottle resonator introduced by bending of the 20 μm radius optical 

fiber. (a) Measured profile of the optical fiber loop (red points). Black solid curve is the fit of the 

measured loop profile with parametric Eq. (2). (b) The spectrogram measured with spatial 

resolution of 35 𝜇𝑚 along the fiber loop shown in (a). Black dashed curve represents the sum of the 

rescaled local curvature distribution of the bent fiber and the original linear ERV of the same fiber 

segment. (c) Spectrogram of the same unbent fiber segment. (d) Magnified region of the spectrogram 

outlined in (b) that resolves axial modes near the top of the introduced bottle resonator. 

Remarkably, the axial size of the resonator formed by the  radius fiber is noticeably smaller 

than that formed by the SMF-28 fiber while its ERV is of the same order. The localized axial modes of 

this resonator can be resolved by magnifying the region outlined by a black rectangle in Fig. 4(b), which 

is shown in Fig. 4(d). The observed discrete spectrum confirms the existence of WGMs localized within 

the millimeter-scale length of the created SNAP bottle resonator. We determined the free spectral range 

of these modes in the vicinity of the top of the loop by approximating the measured ERV by the 

parabolic dependence 2

0( ) / (2 )effr s s R    with axial radius 
0 70R  m. In this approximation, the free 

spectral range of the axial resonances is determined from the equation [23]: 
2 1 1/2

0 0(2 ) ( )FSR c n r R      .   (4) 

For the silica fiber with refractive index 𝑛 = 1.46 and radius 
0 20r  µm at the cutoff wavelength 

1.55c  µm, we have 7FSR  pm in good agreement with the experimental data shown in Fig. 4(d). 

In the preliminary analysis of experimental results obtained, we considered a model shown in the Fig. 

1(b) replicating the behavior of the fiber loop of our experiment. In this model, the right-hand side of 

the fiber loop is fixed at its axial coordinate 0s   and the force F  applied to the loop determines the 

reaction of the tube.  Since the fiber segment shown in this figure is in equilibrium, the value of the 

angular momentum M  applied at the cross-section 0s   from the left-hand side part of the loop (not 

shown) should be equal to hF where h  is the arm of the couple ( , )F F , | |F  F , and | |M  M . For 

small s , near the top of the loop , the deformations 
xu , yu , and 

zu  of the fiber along the x , y , and z  

directions is described in the linear approximation in 
0 0/r R  as [24] 
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Here 4

0 / 4I r is the bending moment of inertia of the fiber, 2

0A r  is its cross-section area, 97 10E  

Pa, is the Young’s modulus, 0.17   is the Poisson ratio, and y  and z  are the coordinates normal to 



x  oriented normal and parallel to the plane of the picture, respectively. From Eq. (5), the fiber curvature 

at 0s   is 2 2

01/ / /xR d u ds M EI  . From this equation, the fiber curvature radius 
0 2.1R  mm and 

arm 10h  mm of the 62.5 µm radius fiber loop shown in Fig. 2(a) correspond to 0.08F  N and 
38 10  N mM    . It is seen from Eqs. (5) and (6) that the terms proportional to M are antisymmetric in 

x  and y . Therefore, their contribution into the ERV, which is calculated by averaging over the 

azimuthal angle in the fiber cross-section [16], vanishes. The remaining terms being proportional to F  

result in variation of the fiber radius by 
0 / 1r Fr EA  ; nm and variation of the refractive index by 

5

2 / 2.6 10n C F A   ;  which corresponds to the ERV 
0 / 1nr n ; nm (here 12 1

2 4 10 PaC     is the 

stress-optic coefficient of silica [25]). Both values are significantly smaller than those observed 

experimentally (see Fig. 2(b)). Therefore, we suggest that the major contribution to the observed ERV 

is given by the nonlinear terms 2 2

0 0~ /r R  neglected in Eqs. (5) and (6).  In particular, for the fiber with 

radius 
0 62.5r   µm these terms may contribute to the ERV as much as 3 2

0 0 0 0/ ~ / 10xu r R r R ; nm, which 

is comparable with the ERV observed experimentally.  

In conclusion, we have demonstrated a new technique for fabrication of tunable SNAP 

microresonators at the surface of a silica fiber. Our approach is much simpler than those developed 

previously, since it does not require the use of lasers and consists only in controllable fiber bending. 

The theoretical description of the observed elasto-optical effects leading to the formation of SNAP 

bottle resonators, and in particular, accurate calculation of the ERV along the bent fiber requires the 

numerical solution of the nonlinear equations of elasticity is underway and will be reported elsewhere. 

The proposed experimental setup used is simple and therefore enables fabrication of simplest tunable 

SNAP bottle resonators. The ability to tune the introduced resonant structures mechanically is of great 

importance for the creation of robust and tunable SNAP devices which can be used for applications in 

classical and quantum optical signal processing as well as ultraprecise sensing. 
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