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Abstract 

The present paper proposes and demonstrates a method for assessing strength of evidence when an 

earwitness claims to recognize the voice of a speaker who is familiar to them. The method 

calculates a Bayes factor that answers the question: What is the probability that the earwitness 

would claim to recognize the offender as the suspect if the offender was the suspect versus what is 

the probability that the earwitness would claim to recognize the offender as the suspect if the 

offender was not the suspect but some other speaker from the relevant population? By “claim” we 

mean a claim made by a cooperative earwitness not a claim made by an earwitness who is 

intentionally deceptive. Relevant data are derived from naïve listeners’ responses to recordings of 

familiar speakers presented in a speaker lineup. The method is demonstrated under recording 

conditions that broadly reflect those of a real case. 
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1. Introduction 

The present paper proposes and demonstrates a method for assessing strength of evidence when an 

earwitness claims to recognize the voice of a speaker who is familiar to them. We calculate  a Bayes 

factor that answers the question: What is the probability that the earwitness would claim to 

recognize the speaker if the speaker they heard was the speaker they claimed to recognize, versus 

what is the probability that the earwitness would claim to recognize the speaker if the speaker they 

heard was actually some other speaker from a specified population? We only consider this question 

with respect to claims made by cooperative earwitnesses and not claims made by earwitnesses who 

are intentionally deceptive. We calculate Bayes factors for naïve listeners’ recognition of familiar 

speakers under conditions broadly reflecting those of a real case. Our aim is not to provide a Bayes 

factor value with respect to that particular case, but to present a method that could potentially be 

used in other cases involving familiar speaker recognition. 

Although the speaker the earwitness actually heard is not always an “offender” and the person the 

earwitness names is not always a “suspect”, for simplicity we will hereinafter adopt these terms. 

Hence, using this terminology, we calculate a Bayes factor that answers the question: What is the 

probability that the earwitness would claim to recognize the offender as the suspect if the offender 

was the suspect versus what is the probability that the earwitness would claim to recognize the 

offender as the suspect if the offender was not the suspect but some other speaker from the relevant 

population? Other terms can be substituted for “offender” and “suspect” as appropriate for the 

particular case. 

1.1. Familiar-speaker recognition and unfamiliar-speaker identification 

There is a substantial amount of research literature on speaker recognition and speaker identification 

by naïve listeners. In this literature, “speaker recognition” refers to the scenario in which a listener 

hears a speaker and claims that the speaker is a person with whom they are already familiar, and 

“speaker identification” refers to the scenario in which a listener hears an unfamiliar speaker then 

later hears a speaker and claims that the latter is the same speaker they heard earlier. Reviews of the 

research literature from the perspective of potential application in legal contexts can be found in 

[1]–[5], and publications focused on related legal issues include [6]–[10]. 

Although the existing research literature may be informative about speaker recognition and speaker 

identification in general, little (if any) research appears to have been conducted under conditions 

that attempt to reflect those of actual legal cases, and none appears to have addressed the question 

that a forensic practitioner working in the likelihood-ratio framework would set out to answer in an 
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actual speaker recognition case: What is the strength of evidence associated with this particular 

earwitness’s claim to recognize this particular speaker under the conditions encountered in this 

particular case? The method we propose is intended to answer this question, and is grounded in 

modern thinking on forensic inference and statistics as represented by the likelihood-ratio 

framework (e.g., [1], [5], [11]–[17]). 

Likelihood ratios were calculated in Yarmey et al.  [18] for non-familiar-speaker identification, but 

the conditions of the experiment did not reflect those of a legal case, calculations were based on 

data pooled across two speakers and multiple listeners, and likelihood ratios were not framed as 

quantifications of strength of evidence. In Yarmey et al. [18], the likelihood ratios were not called 

“likelihood ratios”, but “diagnosticity indices”. “Diagnosticity index”, and the variants 

“diagnosticity ratio”, “diagnostisity measure”, and “diagnostisity value” are terms that appear to be 

peculiar to the eyewitness research literature (e.g., [19]–[21]); Yarmey et al. [18] included both 

earwitness and eyewitness experiments. The eyewitness literature appears to be independent of the 

broader forensic inference and statistics literature – we did not find references to the latter in the 

former. The eyewitness literature does not appear to treat a likelihood ratio value as a quantification 

of strength of evidence that a forensic practitioner would present to a court and that a trier of fact 

would (in theory) then be able to use to update their beliefs (an exception to this may be [22]).1  

Rose [1] p. 99 proposed the calculation of likelihood ratios based on listeners’ claimed recognitions 

of familiar speakers and the use of the resulting likelihood ratio values as quantifications of strength 

of evidence. The example given in Rose [1] was based on previously published data from [26]. The 

data were 10 listeners’ claimed recognitions of one recording each of 10 familiar speakers and 2 

unfamiliar speakers. The recordings were of telephone transmitted speech. In contrast to the 

proposal we make in the present paper to calculate a Bayes factor for a listener’s claimed 

recognition of a particular speaker, the likelihood ratio calculations in Rose [1] were based on 

response data that had been either pooled across speakers for a single listener or pooled across both 

speakers and listeners. We are unable to relate this pooled-data approach to a question that would be 

of interest in an actual case – what would constitute the evidence was not made clear (we discuss 

__________________________________________ 
 
1
 As outsiders working in a different paradigm, a recent debate in the eyewitness literature about the relative merits of 

“diagnosticity” versus receiver operating characteristics (ROC) curves (e.g., [23] and [24]) seems to us to be misplaced 

(scientists working in d ifferent paradigms may be concerned with different questions, Kuhn [25]). It may be that the two 

communit ies of scientists can learn from each other, but we will have to be careful not to misunderstand each other due 

to apparently similar concepts and vocabulary actually having different meanings for the different communities.  
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this issue further in §1.3, §2.8, and §4.2). 

1.2. A real case scenario 

The last author of the present paper was approached to give advice on how to assess strength of 

evidence in relation to claimed speaker recognition in an actual case. Assessing strength of evidence 

did not go ahead in that case, but that enquiry inspired the research reported in the present paper. 

Details presented here about the case are kept to a minimum. 

A call was made to emergency services, and the call was recorded at the call center. The call was 

made using a mobile telephone. The caller was a female victim who was in the trunk of a parked car 

when the call was made. Most of the recording was of sounds made by the victim. During a short 

section of the recording, the voices of two males could be heard in the background. The recording 

of the male speakers was mostly unintelligible.  

A suspect was identified based on other evidence. Relatives and friends of the suspect were played 

the recording and asked: Do you recognize the voice of either of the male speakers? If yes, who is 

that speaker? Some of the listeners claimed to recognize one of the voices as that of the suspect.  

The section of the recording for which they claimed to recognize this speaker was approximately 3 s 

long. 

Advice from forensic speech science practitioners was not sought until a fter the procedure 

described above had been carried out. 

1.3. Speaker lineup procedures 

The scenario in the original case is one of familiar-speaker recognition, i.e., a listener hears a voice 

and claims to recognize it as the voice of a particular speaker they already know. This differs from 

an unfamiliar-speaker identification scenario in which a listener, e.g., an earwitness to a crime hears 

the voice of a person they do not know, then later hears the voices of several speakers and is asked 

whether any of those speakers are the speaker they heard earlier. Best practice for 

unfamiliar-speaker identification involves presenting a speaker lineup in which the suspect is one of 

several speakers, and the listener is told that the person they heard earlier may or may not be in the 

lineup – note that the suspect may or may not be the offender. The other speakers in the lineup, the 

speakers other than the suspect, are called “foils”. The foils’ voices and the speaking style and 

conditions under which the voices are recorded must be such that the suspect’s voice does not stand 

out – listeners with no prior involvement in the case should not be able to pick out the voice of the 

suspect. For an example of a protocol for conducting unfamiliar-speaker- identification lineups see 
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Broeders & van Amelsvoort [27]. For an example of a protocol for selection of foil speakers see de 

Jong-Lendle et al. [28]. Further discussion of best practices for speaker lineups appears in: Yarmey 

[3] pp. 126–128; Sherrin [4] pp. 856–859; Morrison et al. [5] §99.960; and references cited therein. 

“Showups” in which the listener hears only one speaker and is asked if the speaker is the same 

speaker as they heard earlier have been criticized as suggestive (see [2], [4], [9], [18], [29]). 

Showups suggest to the earwitness that the police have reason to believe that the single speaker is 

the speaker that the earwitness heard earlier – showups bias the earwitness to think that the suspect 

is the offender.  

A familiar-speaker recognition scenario could involve a true earwitness, i.e., the listener is present 

while the crime is being committed and recognizes the voice of the offender at that time. There is 

usually no recording of the offender, so a forensic voice comparison cannot be conducted. In such a 

scenario, the method we propose in the present paper could potentially be applied post hoc to assess 

strength of evidence associated with the earwitness’s claim to have recognized the offender while 

the crime was being committed. Note that the evidence is the earwitness’s claim to have recognized 

the offender while the crime was being committed. We use “recognize” with the implication that the 

earwitness not only claims that the speaker is familiar to them but also names the speaker (or 

otherwise indicates a particular individual). For the purposes of the present paper, we assume that 

the person named by the earwitness then becomes the suspect. Note that the offender and the 

suspect may or may not be the same person – that is the question before the court. The court will 

make a decision as to which is more likely to be true (beyond a reasonable doubt or on the balance 

of probabilities) assisted by the strength of evidence calculated for the earwitness’s claim to have 

recognized the offender. 

According to the definition given in the previous paragraph, the original case described in §1.2 is 

not a true earwitness scenario. The listeners were played a recording including only two male 

speakers and were asked whether they recognized either of the speakers. This is a form of showup. 

Given that the listeners were relatives and friends of the suspect and likely to a priori have a good 

idea of who it is that the police wanted them to recognize, the procedure was likely to have induced 

an expectation bias. The fact that there were two speakers rather than one is unlikely to have 

substantially mitigated that bias. The method we propose is one that would be preferable to such a 

showup procedure. It involves a lineup procedure that requires listeners to listen to and attempt to 

recognize the voices on multiple recordings of each of a larger number of familiar speakers mixed 

in with some unfamiliar speakers. If the lineup procedure were used instead of a showup procedure, 

the original recording of the offender would be inc luded in the lineup, and the listener’s response to 

the offender recording in the lineup would constitute the evidence. If a showup has already been 
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conducted, the offender recording would not be included in the later lineup, and the listener’s 

response to the offender recording in the earlier showup would constitute the evidence. 

Understanding what constitutes the evidence is a prerequisite to being able to calculate a strength of 

evidence. This fact does not appear to have been fully appreciated in earlier proposals to calculate 

likelihood ratios based on responses to speaker lineups. 

In the original case a recording of the questioned-speaker was available, so, rather than conduct a 

speaker lineup, a forensic voice comparison could potentially have been performed. An 

empirically-validated procedure based on relevant data, quantitative measurements, and statistical 

models, with direct reporting of the likelihood ratio or Bayes factor output by the model would be 

much less susceptible to cognitive bias (see, for example, arguments in [30]). 

In §2 we describe the speaker lineup procedure as we implemented it under conditions broadly 

reflecting those of the original case. The conditions are forensically realistic, but, as a 

demonstration of the method rather than an attempt to answer questions specific to the original case, 

we did not try to replicate all details of the original case. We did not test the same listeners. Using 

the categories defined by Yarmey et al. [31], in the original case the familiarity of the listeners with 

the speaker may have been “high”, whereas in the present research the familiarity of the listeners 

with the speakers likely ranged from “low” to “moderate”. The make and model of car used was not 

the same as in the original case. The language spoken was not the same. We do not know whether 

in the original case the male speakers were inside or outside the car. For the original case we would 

have tested both conditions, but for the demonstration we only tested speakers inside the car. We 

have not attempted to replicate the particular recording system at the emergency call center (such 

systems usually save the recordings in a lossy compressed format). We have not attempted to 

replicate the particular playback equipment and listening environment of the original case. The 

results given in the present paper do not therefore represent strength of evidence values for the 

original case. This was not our intent, our intent was to demonstrate a procedure that could 

potentially be used in other familiar-speaker recognition cases. 

1.4. Supplementary material 

The listening experiment, including the acoustic stimuli, is available at: [text redacted for blinding] 

The anonymized results of the listening experiment and the Matlab code used to calculate Bayes 

factors based on those results are available at [32]. 
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2. Method 

2.1. Speakers 

Speakers consisted of a total of 23 adult males, 18 who would be familiar to the listeners plus 5 who 

would not be known to the listeners. Of the 18 familiar speakers, 5 were faculty members from [text 

redacted for blinding], and the other 13 were famous people: [text redacted for blinding]. 

2.2. Recording 

A telephone call was established from a mobile telephone (Samsung Note 4), and the telephone was 

placed in the truck of a car (Citroën Picasso) which was in a parking lot at a time of day when there 

was only occasional traffic. The far end of the call was recorded using a TASCAM Linear PCM 

Recorder DR-40 acoustically coupled to a landline telephone inside a sound-insulated box. 

Each speaker was recorded separately. The speaker sat in the front of the car and responded to open 

questions asked by a female researcher. Audio recordings of the famous people were obtained from 

broadcast media, and were played from a loudspeaker (NTI Audio Talkbox, which is calibrated to 

60 dBA SPL at 1 m) placed at head height on a front seat of the car and pointing toward the other 

front seat. 

The quality of the resulting audio recordings was poor. They had low signal to noise ratios. 

2.3. Stimuli 

Six short sections were extracted from each speaker’s recording.  Each section was ~3 s long. The 

sections were manually selected from within each speaker’s recording, with the conditions that they 

contain only the speech of the speaker of interest and that they not overlap or be contiguous with 

one another. The total number of stimuli was 138 (6 sections × 23 speakers). 

2.4. Listeners 

Listeners were 31 students from [text redacted for blinding]. Potential participants were asked not to 

participate if they had hearing problems. 

2.5. Listening experiment 

The listening experiment was presented online via a web browser. Listeners participated one at a 

time at a place convenient to them. Listeners were asked to do the experiment in a quiet place, but 

no constrains were placed on the audio playback equipment they used. Listeners first saw 
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information related to informed consent. If they agreed to continue, they then saw instructions. No 

personal identifying information was collected from the listeners. Listeners could take a rest at any 

time and resume later as long as they did not close the browser. Listeners could abandon the 

experiment at any time and their responses would not be submitted – to submit their responses, they 

had to click the “submit” button on the final screen of the experiment. Listeners were asked only to 

complete the experiment once, and not to discuss it with other potential participants until after the 

period for data collection was complete. 

Listeners were presented with one recording section at a time. The sections were presented in 

random order. A listener saw a screen with a play button, and could listen to the section as many 

times as they wanted. On the screen there was also a text-entry box, a “continue” button, and the 

following instructions: “If you recognize the speaker, write their given name and  surname in the 

box then press ‘continue’. If you do not recognize the speaker, leave the box empty and continue to 

the next recording.” Prior to the experiment proper, as part of the instructions, the listener saw a 

demonstration of how to respond. The demonstration used a good-quality recording of a famous 

female speaker, [text redacted for blinding].  

2.6. Data coding 

The raw data consisted of the written response of each listener to each recording section. The raw 

data were coded and anonymized by the first author. Each speaker was given a unique numeric code, 

and that code was used in place of the speaker’s name. Coding took account of spelling variants in 

listeners’ responses. For each speaker, a list of variant spellings of their name was created. Initial 

lists of variants included correct spellings and anticipated misspellings. All responses were 

automatically coded according to the lists of variant spellings. Responses that contained text that 

did not appear in the lists were automatically flagged. The first author then went through the 

flagged responses. When a flagged response was due to a variant spelling not already included in 

the lists, and the intended name was obvious, the first author added the new spelling to the 

appropriate list. All responses were then immediately automatically recoded using the revised list, 

hence any other occurrences of the same variant did not require the first author’s attention. In 

addition to adding variant spellings for speakers who actually contributed stimuli, this process also 

involved adding the names of speakers who did not contribute stimuli but whom the listeners named 

in their responses. The anonymized version of the data was used for all subsequent analysis. 

2.7. Statistical analysis  

We begin this section by defining symbols. To elucidate via a concrete example, we use the name 
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of a famous [text redacted for blinding] as the designated speaker (he was not one of the speakers 

used in the present research). The observed count of responses in which the speaker was [text 

redacted for blinding] and a particular listener gave the name [text redacted for blinding] is 𝑐1+. 

The observed count of responses in which the speaker was [text redacted for blinding] but the 

listener did not give the name [text redacted for blinding] is 𝑐0+. The observed count of responses 

in which the speaker was not [text redacted for blinding] but the listener gave the name [text 

redacted for blinding] is 𝑐1−. The observed count of responses in which the speaker was not [text 

redacted for blinding] and the listener did not give the name [text redacted for blinding] is 𝑐0−. 

Hence, 𝑐1+, 𝑐0+, 𝑐1−, and 𝑐0−, refer respectively to the counts of “hits”, “misses”, “false alarms”, 

and “correct rejections”, see Table 1. The total number of times that the listener was presented with 

a recording section of [text redacted for blinding] is 𝑛+ = 𝑐1+ + 𝑐0+ . The total number of times 

that the listener was presented with a recording section of someone other than [text redacted for 

blinding] is 𝑛− = 𝑐1− + 𝑐0−. The listener not giving the name [text redacted for blinding] includes 

the listener giving the name of someone else and the listener not giving any name, i.e., stating that 

they do not recognize the speaker. The sets of variables {𝑐1+, 𝑐0+, 𝑛+} and {𝑐1−, 𝑐0−, 𝑛−} can be 

calculated for any specified combination of a particular listener and a designated speaker. Below we 

will drop the “+” and “−” subscripts when the discussion and calculations are relevant irrespective 

of the set of variables. 

 

Table 1. Matrix of relationships of variables to stimulus-response pairs. Each variable in the table 

refers to a count. The name of any designated speaker can be substituted for “[text redacted for 

blinding]”. 

  Name given by listener  

  
[text redacted for 

blinding] 

no name or a 

name other that 
[text redacted for 

blinding] 

total 

Actual speaker 

[text redacted for 
blinding] 

𝑐1+ 

hit 

𝑐0+ 

miss 
𝑛+ 

someone other 

than [text redacted 
for blinding] 

𝑐1− 

false alarm 

𝑐0− 

correct rejection 
𝑛− 
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For each speaker who contributed stimuli, a count was made of the number of responses in which a 

listener gave that speaker’s name when the stimulus was a recording of that speaker, 𝑐1+, and a 

count was made of the number of responses in which the same listener gave that speaker’s name 

when the stimulus was a recording of a different speaker, 𝑐1− . Dividing these counts by, 

respectively, the number of opportunities to give a correct response, 𝑛+, and the number of 

opportunities to give an incorrect response, 𝑛−, see Eq. 1, would provide proportions that could be 

used as maximum likelihood estimates of the probabilities of correct and incorrect responses, 𝜃+ 

and 𝜃− respectively. Dividing the former by the latter, see Eq. 1, would provide a likelihood ratio 

answering the question: What is the probability that the listener would say the designated speaker’s 

name if the recording they heard was of that speaker, versus what is the probability that the listener 

would say the designated speaker’s name if the recording they heard was of some other speaker 

from the relevant population? The other speakers who contributed stimuli were intended to 

represent the population of adult male [text redacted for blinding] speakers.  

 (1) 

𝐿𝑅 =
𝜃+
𝜃−

=
(
𝑐1+
𝑛+

)

(
𝑐1−
𝑛−

)
 

A problem occurs when there is a zero count in either the numerator or denominator, as this would 

give an estimated likelihood ratio of either zero or infinity. Even with non-zero counts, when 𝑛 is 

small the proportion 𝑐1 𝑛⁄  may be a poor estimate of the probability for the population. To resolve 

this problem we will apply a Bayesian analysis; thus we will calculate Bayes factors rather than 

likelihood ratios.2  

For the Bayesian analysis, we use a beta-binomial model (see, for example, [34] §3.3). The 

likelihood of the observed count, 𝑐1, is given by the binomial distribution Bin(𝑐1|𝜃, 𝑛). The 

conjugate prior is given by the beta distribution Beta(𝜃|𝑎, 𝑏) , in which 𝑎  and 𝑏  are 

hyperparameters. Via Bayes’ Theorem, the posterior distribution for 𝜃 is proportional to the 
__________________________________________ 
 
2
 Readers unfamiliar with the difference between likelihood ratios and Bayes factors and looking for a brief 

non-polemical introduction may wish to consult Etz [33]. The relative merits of the use of likelihood ratios and Bayes 

factors in quantifying strength of evidence have recently been debated in the forensic inference and statistics literature, 

including in a recent virtual special issue in Science & Justice: 

https://www.sciencedirect.com/journal/science-and-justice/special-issue/102F0FGVD03 
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likelihood multiplied by the prior distribution. The posterior distribution is therefore proportional to 

a beta distribution for which the posterior parameter values are the sums of the counts and the 

hyperparameter values, see Eq. 2 (for simplicity we have dropped constants that do not depend on 

𝜃, and thus use “proportional to” rather than “equals”). 

(2) 

𝑝(𝜃|𝑐1, 𝑐0 , 𝑎, 𝑏) ∝ Bin(𝑐1|𝜃, 𝑛)Beta(𝜃|𝑎, 𝑏) 

∝ (𝜃𝑐1(1− 𝜃)𝑐0)(𝜃𝑎−1(1 − 𝜃)𝑏−1) 

∝ 𝜃𝑐1+𝑎−1(1 − 𝜃)𝑐0+𝑏−1 

∝ Beta(𝜃|𝑐1 + 𝑎, 𝑐0 +𝑏) 

The expected value for the posterior distribution, i.e., the posterior mean, �̅�, is given in Eq. 3, in 

which 𝑚 = 𝑎+ 𝑏. 

(3) 

�̅� = ∫ 𝜃Beta(𝜃|𝑐1 +𝑎, 𝑐0 + 𝑏)𝑑𝜃
1

0

=
𝑐1 +𝑎

𝑐1 + 𝑎 + 𝑐0 +𝑏
=
𝑐1 +𝑎

𝑛 + 𝑚
 

Independently calculating the posterior mean for the numerator and the denominator, we can then 

calculate the Bayes factor as in Eq. 4. 

(4) 

𝐵𝐹 =
𝜃+̅
𝜃−̅

=
(
𝑐1+ +𝑎+
𝑛+ + 𝑚+

)

(
𝑐1− +𝑎−
𝑛− + 𝑚−

)
 

Given the small amount of data in the numerator (𝑛+ = 6), the results will be sensitive to the choice 

of prior. To reduce the potential for cognitive bias, one should specify ones priors before examining 

the data and not subsequently change one’s choice of priors. We choose to use Jeffreys reference 

priors, [35]–[38], which for the beta distribution has hyperparameter values of 𝑎+ = 0.5 and 

𝑏+ = 0.5 (hence 𝑚+ = 1). Jeffreys reference priors have been proposed as “non- informative” or 

“objective” priors. Irrespective of arguments as to whether these or any other priors are actually 

non- informative or objective, Jeffreys reference priors are widely used in Bayesian statistics and 

thus are arguably generally accepted.  
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Whereas in the numerator 𝑛+ = 6 is the count of 6 stimuli from 1 speaker, in the denominator 

𝑛− = 132 is the count of 6 stimuli from each of 22 speakers. The prior we use for the denominator 

is equivalent to one Jeffreys reference prior per speaker, i.e., 𝑎− = 0.5 × 22 = 11 and 𝑏− = 0.5 ×

22 = 11 (hence 𝑚− = 22). If we did not adjust the relative strength of the priors in the numerator 

and denominator to reflect the ratio of 𝑛− to 𝑛+ the results would be biased toward high Bayes 

factor values. This is illustrated in Appendix A. 

Plugging the chosen values for the hyperparameters (and the values of 𝑛+ and 𝑛−) into Eq. 4, Eq. 

5 gives the equation for calculating the Bayes factor value for each listener’s claimed recognition of 

each speaker. Eq. 5 is specific to the present study, Eq. 4 is the general equation. 

(5) 

𝐵𝐹 =
(
𝑐1+ +0.5
𝑛+ + 1 )

(
𝑐1− +11
𝑛− +22)

=
(𝑐1+ +0.5)(𝑛− +22)

(𝑐1− +11)(𝑛+ +1)
=
𝑐1+ + 0.5

𝑐1− +11
×
154

7
=
𝑐1+ + 0.5

𝑐1− + 11
× 22 

 

2.8. Comments on the evidence and hypotheses considered 

Although some listeners gave the names of some speakers who did not contribute stimuli, Bayes 

factor values were only calculated for speakers who actually contributed stimuli. Our lineup 

procedure is not a database-search procedure designed to suggest candidates that may warrant 

further investigation, i.e., to suggest potential suspects. Instead, a suspect has already been 

identified and the purpose is to evaluate the strength of evidence associated with a listener’s claim 

to have recognized the offender as the suspect. We are only interested in Bayes factors for which 

the hypothesis in the numerator is that the offender is a particular individual already designated as 

the suspect. We are not interested in Bayes factors for which the hypothesis in the numerator is that 

the speaker is some particular speaker other than the suspect, e.g., some other speaker that the 

listener may happen to name during the lineup. In an actual case there is usually only one suspect, 

but for the purpose of demonstrating the method we treat each speaker who contributed stimuli as a 

suspect, and thus calculate a Bayes factor for each speaker who contributed stimuli.  

One could calculate Bayes factors for other evidence and other hypotheses. For example:  

 the evidence could be that the listener did not recognize the offender, and the hypothesis in 

the numerator could be that the offender is a designated speaker who is familiar to the 
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listener; or  

 the evidence could be that the listener did not recognize the offender, and the hypothesis in 

the numerator could be that the offender is a speaker who is not known to the listener; or  

 the evidence could be that the listener claimed to recognize the offender as a particular 

speaker who is familiar to the listener, and the hypothesis in the numerator could be that the 

offender is a designated speaker who is the brother of the speaker whom the listener named.  

For simplicity, in the present study we only examine Bayes factors that answer the question: What 

is the probability that the listener would say a designated familiar speaker’s name if the recording 

they heard was of that speaker, versus what is the probab ility that the listener would say the 

designated speaker’s name if the recording they heard was of some other speaker from the relevant 

population? The other speakers who contributed stimuli were intended to represent the population 

of adult male [text redacted for blinding] speakers. 

 

3. Results 

Table 2 provides the raw counts of the number of times each listener responded with each speaker’s 

name. Results are only shown for speakers who contributed stimuli. Speakers 101 through 105 were 

faculty members familiar to the listeners, Speakers 201 through 205 were unfamiliar speakers, and 

Speakers 301 through 315 were famous people familiar to the listeners. In each cell, the number to 

the left of the vertical bar is the number of times that the listener responded with the speaker’s name 

when the stimulus was a recording of that speaker, and the number to the right of the vertical bar is 

the number of times that the listener responded with the speaker’s name when the stimulus was not 

a recording of that speaker. If the former is greater than the latter the text in the cell is blue, if the 

latter is greater than the former the text in the cell is red (see the electronic version of the present 

paper for color). The cell is blank if both values are zero. If one value is non-zero, the cell contains 

numbers and has a white background. If both values are non-zero, the cell contains numbers and has 

a gray background. Values pooled across all speakers and pooled across all listeners are provided on 

the margins of the table. The bottom row (labelled “total resp.”) gives the total number of responses 

from each speaker, including responses that were the names of speakers who did not contribute 

stimuli. 

Table 3 shows the Bayes factor values corresponding to the counts given in Table 2. Integers and 

fractions with integers in the denominator are exact values. Other values are given to one decimal 
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place. For Bayes factor values greater than 1 the text is blue, and for Bayes factor values less than 1 

the text is red (see the electronic version of the present paper for color). All other formatting of 

Table 3 is the same as for Table 2. Trivially, the Bayes factor value for each blank cell is 1. These 

cells correspond to combinations of listener and speaker for which the listener never gave the 

speaker’s name.  
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Table 2. Raw counts of the number of times each listener responded with each speaker’s name. See main text for further explanation. 

  listeners  

 
 

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 all 

sp
e

ak
e

rs
 

101 
                

0|1 
  

0|1 
 

0|1 
      

6|10 
  

6|13 

102 
                        

0|2 
      

0|2 

103 
                                

104 
  

3|0 
      

2|0 5|0 
 

3|0 
    

2|0 
      

1|0 
   

6|0 
  

22|0 

105 2|0 
 

1|0 
 

2|0 2|0 5|4 2|0 
 

2|0 6|2 3|0 
     

5|0 
 

1|0 
 

5|1 
 

5|0 5|5 
 

1|0 
 

6|26 
 

5|1 58|39 

201 
                                

202 
                                

203 
                                

204 
                                

205 
                                

301 
                       

2|0 
       

2|0 

302 
                                

303 
                         

1|0 
     

1|0 

304 
                                

305 
                         

2|1 
     

2|1 

306 
                                

307 
                                

308 
                

1|0 
  

2|0 
           

3|0 

309 
                                

310 
                                

311 
                                

312 
                                

313 
             

0|1 0|1 
     

0|1 
          

0|3 

 all 2|0 
 

4|0 
 

2|0 2|0 5|4 2|0 
 

4|0 11|2 3|0 3|0 0|1 0|1 
 

1|1 7|0 
 

3|1 0|1 5|2 
 

7|0 6|7 3|1 1|0 
 

18|36 
 

5|1 94|58 

total resp. 2 0 5 0 2 2 9 2 1 4 13 3 3 1 2 1 5 8 0 4 3 7 0 7 14 15 1 0 65 0 6 185 
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Table 3. Bayes factors based on the number of times each listener responded with each speaker’s name. See main text for further explanation. 

  listeners  

 
 

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31  

sp
e

ak
e

rs
 

101 
                

1/1.1 
  

1/1.1 
 

1/1.1 
      

6.8 
  

 

102 
                        

1/1.2 
      

 

103 
                               

 

104 
  

7 
      

5 11 
 

7 
    

5 
      

3 
   

13 
  

 

105 5 
 

3 
 

5 5 8.1 5 
 

5 11 7 
     

11 
 

3 
 

10.1 
 

11 7.6 
 

3 
 

3.9 
 

10.1  

201 
                               

 

202 
                               

 

203 
                               

 

204 
                               

 

205 
                               

 

301 
                       

5 
       

 

302 
                               

 

303 
                         

3 
     

 

304 
                               

 

305 
                         

4.6 
     

 

306 
                               

 

307 
                               

 

308 
                

3 
  

5 
           

 

309 
                               

 

310 
                               

 

311 
                               

 

312 
                               

 

313 
             

1/1.1 1/1.1 
     

1/1.1 
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4. Discussion 

4.1. Bayes factor results per speaker per listener 

The most obvious observation on the results is that most combinations of listeners and speakers did 

not produce any responses, either correct or incorrect. Of 4278 opportunities to give a response (6 

sections × 23 speakers × 31 listeners), or 3348 opportunities excluding the 5 unfamiliar speakers, 

there were only 185 responses total (including 33 responses that were names of speakers who did 

not contribute stimuli). Given the short recordings with poor audio conditions it appears to have 

been very difficult for the listeners to recognize the speakers.  

Of the 18 familiar speakers, only 7 were correctly recognized at least once by at least one of the 31 

listeners. Only 2 speakers were ever correctly recognized by more than two listeners. Speaker 104 

was correctly recognized at least once by 7 listeners and Speaker 105 was correctly recognized at 

least once by 17 listeners. Both of these familiar speakers were faculty members rather than famous 

people. A potential explanation for why these speakers were correctly recognized at a higher rate is 

that they could have been more familiar to the listeners than the other speakers. Another potential 

explanation is that they could have distinctive voices, i.e., voices that would be atypical with respect 

to the rest of the population that listeners are used to hearing (and in this case potentially atypical 

with respect to the other speakers who contributed stimuli). In the first author’s judgment, both 

these speakers have atypical voices. Speaker 104, in particular, has a high-pitched voice. Previous 

research on unfamiliar speaker identification has found that atypical speakers are easier to recognize, 

e.g., [39], although speakers who are atypical in the same way (e.g., both have the same accent that 

is atypical from the perspective of the listeners) are more likely to be confused with each other, e.g., 

[40]. In [41] an unfamiliar speaker was mistakenly identified as a familiar speaker; both speakers 

had the same accent, and that accent was atypical from the perspective of the listeners.  

In addition to variation related to speakers, there was also variation related to listeners: 6 listeners 

gave no responses at all, 21 gave less than 10 responses, 3 gave 10–15 responses, and 1 gave 65 

responses. We have no explanation for why the latter listener (Listener 29) gave so many responses 

compared to the other listeners. A large number of Listener 29’s responses were false alarms, but 

this listener was the only listener to have Bayes factors greater than 1 for more than two speakers. 

Listener 29 gave 6 correct Speaker 104 responses out of 6 opportunities and 0 incorrect Speaker 104 

responses out of 132 opportunities. This resulted in a Bayes factor value of 13, which was the 

largest Bayes factor value for any listener’s claimed recognition of any speaker. The constrained 
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magnitude of the Bayes factor is appropriate since large values cannot be justified from small 

samples (see discussion in [42] and [43]). Calculating a Bayes factor using (relatively) 

uninformative priors is a way to take account of the sample size and constrain the magnitude of the 

result accordingly. If we had used a larger sample size, specifically more stimuli per speaker, we 

could potentially have obtained higher Bayes factor values. For actual application we would advise 

using more stimuli per speaker if possible (and a smaller number of speakers). 

Given the large variation across speakers and listeners, it appears that it would not in general be safe 

to attempt to predict the strength of evidence associated with any particular listener’s claimed 

recognition of any designated speaker based on results from any other combination of speaker and 

listener. How well a listener performs on other speakers would not be a good predictor, and (with 

the potential exception of Speakers 104 and 105) how well other listeners perform on a speaker 

would not be a good predictor.  

There has been discussion in recent years of the issue of the precision of likelihood ratios. In 

Appendix B we discuss this issue in relation to the results of the present study. 

4.2. Bayes factor results for groups of listeners 

In the original case there were several listeners, so in such a scenario calculating a Bayes factor for 

a group of listeners’ claimed recognitions would be appropriate for quantifying the strength of 

evidence. If multiple earwitnesses claim to recognize an offender then that could potentially 

correspond to a greater strength of evidence than if a single listener claims to recognize the 

offender. 

One has to be clear about what would constitute the evidence (note the discussion on evidence and 

hypotheses in §1.3 and §2.8). If there were three earwitnesses total and all three independently 

claimed to recognize the offender as the suspect, then that is what would constitute the evidence. If 

two of the earwitnesses independently claimed to recognize the offender as the suspect and the third 

earwitness independently claimed not to recognize the offender, then that is what would constitute 

the evidence. If all three earwitnesses conferred and made a consensus claim of recognition, then 

that is what would constitute the evidence.  

It would, in principle, be possible to calculate Bayes factors for each of the examples of evidence 

given above. If earwitnesses conferred on the claimed recognition of the offender then the lineup 

design would also have them confer and the counts would be the results of the group consensus. 

Note that strength of evidence should not be calculated using counts pooled from multiple listeners  

who independently responded to the lineup; such a calculation would not relate to any possible 
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evidence. 

For simplicity, in the present paper we only calculate a Bayes factor for the first example given 

above: There are three earwitnesses total and each of them independently claimed to recognize the 

offender as the suspect; they had no opportunity to confer. For illustrative purposes we pick Speaker 

105 as the designated speaker and Listeners 06, 07, and 11 as the three listeners. We assume that 

each of the three listeners has independently recognized a recording of the offender as the suspect (a 

recording of the offender included in the lineup or in a showup), or each heard the offender 

speaking during the commission of the crime and independently recognized the offender as the 

suspect. Note the recording of the offender should not be confused with recordings of the suspect. 

Since each listener independently claimed to recognize the offender as the suspect, we use naïve 

Bayes fusion and simply multiply together the Bayes factor values that were independently 

calculated for each listener, hence the resulting Bayes factor value is the product of the three values 

from Table 3: 5 × 8.06̇ × 11 = 433. 6̇.  

4.3. Implementation issues 

In the present study the audio conditions were so poor that a priori we did not consider it necessary 

to select speakers who sounded particularly similar to each other. Under better audio conditions, it 

would be necessary to follow the procedures used for unfamiliar-speaker-identification lineups and 

select foil speakers who sound similar to the target speaker. Foil speakers could be a mixture of 

speakers who are familiar to the listener(s), and speakers who are unfamiliar to the listener(s). 

Different protocols for unfamiliar-speaker- identification lineups suggest using between 5 and 8 foils. 

Such speakers are not theoretically necessarily difficult to find, as relatives or friends from a close 

social group may sound similar to the suspect. To further distract the listener(s) and reduce the 

potential for bias, we would recommend including multiple other familiar speakers, and foil 

speakers who sound similar to the other familiar speakers. To serve this purpose, those other 

familiar speakers would not necessarily have to sound particularly similar to the suspect, although it 

would reduce the burden elsewhere if they did. To avoid introducing a bias, if the other familiar 

speakers do not sound particularly similar to the suspect, the number of similar-sounding foils for 

each of the other familiar speakers should be (at least approximately) the same as for the suspect. If 

the other familiar speakers do not sound similar to the suspect then it would then be appropriate for 

𝑛− to be based on the number of foils that sound similar to the suspect rather than the total number 

of speakers in the lineup. 

As we mentioned in §4.1, if possible, we would advise using more stimuli per speaker (and 

probably a smaller number of speakers) than were used in the listening experiment reported in the  
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present paper. This would potentially allow for Bayes factor values that are further from 1. 

A serious practical (and potentially legal) problem arises in that to run the lineup we would need to 

obtain recordings of the suspect under conditions that reflect those of the case. Cooperation may not 

be forthcoming and may not be compellable at all or not compellable in such a way as to obtain the 

required recording conditions. It may also in practice be difficult to obtain recordings of other 

speakers who sound similar to the suspect and/or who are familiar to the listeners. 

The difficulty of obtaining recordings of the suspect (and recordings of other speakers) under 

conditions that reflect those of the case could be mitigated if it is possible to obtain high-quality 

audio recordings under other circumstances (e.g., during an interview). It may then be possible to 

process the high-quality recordings in order to obtain conditions that reflect those of the case, e.g., 

in the present study rather than have the famous speakers sit in the car, high-quality recordings of 

them were played through a loudspeaker placed in the car. 

The practical difficulties associated with unfamiliar-speaker-identification lineups are such that in 

some jurisdictions they are not often used, [10]. The practical difficulties associated with the 

familiar-speaker-recognition lineup method proposed in the present paper are somewhat greater. It 

is therefore unlikely that the proposed method will be used frequently, but it may be worth using in 

a small number of important cases in which the strength of evidence associated with the 

familiar-speaker recognition is pivotal.  

If a recording of the offender is available, as one was in the original case, then we would 

recommend performing a forensic voice comparison analysis instead. The process of 

training/optimizing and empirically validating a forensic voice comparison under conditions that 

reflect those of the case would face some, but not all, of the practical challenges that would be 

encountered in setting up a speaker lineup. A forensic voice comparison system based on relevant 

data quantitative measurements, and statistical models, with direct reporting of the output of the 

model, would be intrinsically much more resistant to cognitive bias. 

 

5. Appendix A: Effect of not adjusting the prior to take account of the ratio of 𝒏− to 𝒏+ 

In the calculation of the numerators of the Bayes factors in the present study 𝑛+ = 6 but in the 

calculation of the denominators 𝑛− = 132. If we did not adjust the relative strength of the priors in 

the numerator and denominator to reflect the ratio of 𝑛− to 𝑛+ the results would be biased toward 

high Bayes factor values. For example, if 𝑐1+ and 𝑐1− were both 0, then the calculated Bayes 
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factor value should be 1. If, however, 𝑎+, 𝑏+, 𝑎−, and 𝑏− were all set to 0.5 (hence 𝑚+ and 𝑚− 

would both be 1), substituting these values into Eq. 4 would give a calculated Bayes factor value of 

19 (see Eq. 6a). Likewise, 𝑐1+ 𝑛+⁄ = 1 6⁄  and 𝑐1− 𝑛−⁄ = 22 132⁄ = 1 6⁄  should result in a 

calculated Bayes factor value of 1, but using priors of 𝑎+ = 𝑏+ = 𝑎− = 𝑏− = 0.5 would result in a 

calculated Bayes factor value of 1.26̇ (see Eq. 6b). 

(6a) 

(
0 + 0.5
6 + 1 )

(
0 + 0.5
132 + 1)

=
133

7
= 19 

(6b) 

(
1 + 0.5
6 + 1

)

(
22 + 0.5
132 + 1

)
=
1.5 × 133

7 × 22.5
=
199.5

157.5
= 1.26̇ 

 

In contrast, adjusting the hyperparameter values to reflect the ratio of 𝑛− to 𝑛+ as described in 

§2.7, i.e., 𝑎+ = 𝑏+ = 0.5 (hence 𝑚+ = 1) but 𝑎− = 𝑏− = 11 (hence 𝑚− = 22), leads to the 

correct results (see Eq. 7a and Eq. 7b). 

(7a) 

(
0 + 0.5
6 + 1 )

(
0 + 11
132 + 22)

=
0.5 × 154

7 × 11
=
77

77
= 1 

(7b) 

(
1 + 0.5
6 + 1

)

(
22 + 11
132 + 22

)
=
1.5 × 154

7 × 33
=
231

231
= 1 

 

6. Appendix B: Precision 

In recent years there has been discussion of the issue of precision of likelihood ratios, including in a 
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virtual special issue on the topic in Science & Justice: 

https://www.sciencedirect.com/journal/science-and-justice/special- issue/102F0FGVD03 

For at least some subjectivist Bayesians the idea that there could be imprecision in Bayes factor 

values is anathema, e.g., Taroni et al. [44] and Berger & Slooten [45]. More moderate voices, e.g., 

Ommen et al. [46], have pointed out that when calculations result in an approximate Bayes factor 

value (e.g., via Monte Carlo integration), then it would be appropriate to report an estimate of the 

error due to the numerical technique. The purpose of reporting the estimate of the error would be to 

decide whether the calculation method was sufficiently precise to go ahead and use the calculated 

Bayes factor value, not to report a coverage interval or adjust the reported Bayes factor value 

according to a coverage interval (see also Taylor et al. [47] on sensitivity).  

The “objective” Bayesian approach we have adopted in the present paper makes use of 

“uninformative” priors which leads to Bayes factor quantifications of strength of evidence that are 

closer to 1 than would result from maximum-likelihood estimates of likelihood ratio values, thus 

addressing what may be the underlying concern related to precision of quantifications of strength of 

evidence: avoiding overstating strength of evidence (see Vergeer et al. [42] and Morrison & Poh 

[43]). The approach we have adopted has a closed-form solution so numerical imprecision per se is 

not an issue. In this appendix, however, we do explore the question of whether the precision of the 

method is good enough to report and use the calculated point-value Bayes factor values. We follow 

the general procedure described in van den Hout & Alberink [48] for estimating the posterior 

distribution of the likelihood ratio. The Bayes factor is the ratio of the expected value of the 

posterior beta distribution of 𝜃+ and the expected value of the posterior beta distribution of 𝜃−. 

Each of the latter expected values are obtained by integrating out 𝜃+ and 𝜃− respectively, see Eq. 

3 and Eq. 4. To estimate the posterior distribution of the likelihood ratio, rather than integrating out 

𝜃+ and 𝜃−, we independently draw a Monte Carlo sample 𝜃+
∗  and a Monte Carlo sample 𝜃−

∗  from 

the respective posterior beta distributions, and calculate an estimate of the posterior likelihood ratio 

𝐿𝑅∗ as in Eq. 8. We repeat this for 1 million pairs of independently drawn samples, and plot the 

histogram of the resulting log10(𝐿𝑅
∗) values. 

(8) 

𝐿𝑅∗ =
𝜃+
∗

𝜃−
∗
 

Figs. 1 through 4 show examples based on counts found in selected cells in Table 2. These counts 

and their corresponding Bayes factor values (from Table 3) are repeated in Table 4. Fig. 1 
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corresponds to the largest Bayes factor value obtained from the data, Fig. 2 to a moderate Bayes 

factor value, Fig. 3 to the smallest Bayes factor value greater than 1, and Fig. 4 to the smallest 

Bayes factor value obtained from the data. The top panels show the posterior beta distributions for 

the numerator (𝜃+) and denominator (𝜃−). The vertical dashed lines give the analytical expected 

values for these distributions, 𝜃̅+ and 𝜃−̅ as calculated using Eq. 3. The bottom panels show the 

histograms from the Monte Carlo estimate of the posterior distribution of the likelihood ratio, the 

posterior distribution for 𝐿𝑅∗. The x-axis is scaled as log10(𝐿𝑅
∗), and extends to the lowest and 

highest values calculated from the Monte Carlo samples (or to 0 if that is a more extreme value). A 

solid vertical line is drawn at log10(𝐿𝑅
∗) = 0, and a dashed vertical line is drawn at the Bayes 

factor value calculated analytically using Eq. 5. Note that the axes are rescaled in each panel and 

figure. This better displays the data within each figure and panel, but should be taken into account 

when visually comparing across figures. 

 For Fig. 1 and Fig. 2, corresponding to Bayes factors of 13 and 8.1 respectively, the 

precision of the posterior distribution of the likelihood ratio is good: the spread of the 

distribution is relatively narrow. We would decide that the precision on the method is good 

enough for it to be used in these instances.  

 For Fig. 3, corresponding to a Bayes factor of 3, the precision of the posterior distribution of 

the likelihood ratio is poorer: the spread of the distribution is relatively wide. This is a 

borderline case as to whether we would decide that the precision of the method is good 

enough in this instance.  

 For Fig. 4, corresponding to a Bayes factor of 1/1.2, the precision of the posterior 

distribution of the likelihood ratio is very poor: the spread of the distribution is very wide 

respectively. We would decide that the precision on the method is not good enough for it to 

be used in this instance. 

Since the Bayes factor values associated with Figs. 3 and 4 are close to 1 anyway, deciding that the 

precision on the method is not good enough for it to be used in these instances would be no great 

loss. The values are close to 1 because the Bayes factor calculations were designed to take account 

of concerns regarding precision of strength of evidence / concerns regarding overstating strength of 

evidence.  

Note that in this appendix we have only explored imprecision due to the posterior beta distributions. 

We have not considered imprecision due to sampling variability or sensitivity to choice of priors. 
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Table 4. Example counts and Bayes factors corresponding to posterior likelihood ratio distributions 

shown in Figs. 1 through 4. 

Figure speaker listener 𝑐1+ 𝑐0+ 𝑐1− 𝑐0− 
Bayes 
factor 

1 104 29 6 0 0 132 13 

2 105 07 5 1 4 128 8.1 

3 105 03 1 5 0 132 3 

4 102 25 0 6 2 130 1/1.2 

 

 

Fig. 1. Example posterior beta distributions for 𝜃+ and 𝜃−  (top panel, blue and red curves 

respectively, see electronic version for color), and Monte Carlo estimate of the posterior distribution 

of the likelihood ratio 𝐿𝑅∗ (bottom panel). Example corresponds to the largest Bayes factor value 

obtained from the data (dashed line). 

Fig. 2. Example posterior beta distributions for 𝜃+ and 𝜃−  (top panel, blue and red curves 

respectively, see electronic version for color), and Monte Carlo estimate of the posterior distribution 

of the likelihood ratio 𝐿𝑅∗ (bottom panel). Example corresponds to a moderate Bayes factor value  

obtained from the data (dashed line). 

Fig. 3. Example posterior beta distributions for 𝜃+ and 𝜃−  (top panel, blue and red curves 

respectively, see electronic version for color), and Monte Carlo estimate of the posterior distribution 

of the likelihood ratio 𝐿𝑅∗ (bottom panel). Example corresponds to the smallest Bayes factor value 

greater than 1 obtained from the data (dashed line). 

Fig. 4. Example posterior beta distributions for 𝜃+ and 𝜃−  (top panel, blue and red curves 

respectively, see electronic version for color), and Monte Carlo estimate of the posterior distribution 

of the likelihood ratio 𝐿𝑅∗ (bottom panel). Example corresponds to the smallest Bayes factor value 

obtained from the data (dashed line). 
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Highlights 

 Method to calculate strength of evidence for familiar-speaker recognition 

 Bayes factors calculated using response data from speaker lineups 

 Method demonstrated under forensically realistic conditions 
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