1	Author's version of paper accepted 3.6.19, Circulation.
2 3 4 5 6 7	Cite as Wood, A.C., Blissett, J., Brunstrom, J.M., Carnell, S., Faith, M.S., Fisher, J.O., Hayman, L.L., Khalsa, A.S., Hughes, S.O., Miller, A., Momin, S., Welsh, J.A., Woo, J.G., Haycraft, E. Caregiver influences on eating behaviors in young children: A scientific statement from the American Heart Association. <i>Circulation</i> . 2019; [in press]
8	
9	AHA Scientific Statement
10	Caregiver Influences on Eating Behaviors in Young Children
11	A Scientific Statement from the American Heart Association
12	
13	Alexis C. Wood, PhD, Chair, Jacqueline Blissett, PhD, Jeffrey M. Brunstrom, PhD, Susan
14	Carnell, PhD, Myles S. Faith, PhD, Jennifer O. Fisher, PhD, Laura L. Hayman, PhD, Amrik
15	Singh Khalsa, MD, MSc, Sheryl O. Hughes, PhD, Alison Miller, PhD, Shabnam Momin, PhD,
16	Jean A. Welsh, PhD, Jessica G. Woo, PhD, Emma Haycraft, PhD, Co-Chair, on behalf of the
17	American Heart Association Council on Lifestyle and Cardiometabolic Health; Epidemiology and
18	Prevention; and Cardiovascular Disease in the Young; Council on Cardiovascular Stroke
19	Nursing and the Stroke Council
20	
21	Corresponding Author:
22	Alexis Wood, PhD
23	Baylor College of Medicine
24	Children's Nutrition Research Center – Pediatrics

- 1 Houston, Texas 77071
- 2 Phone: 205-975-9198
- 3 Fax: 205-934-8665
- 4 Email: <u>lekkiwood@gmail.com</u>
- 5
- 6

1 ABSTRACT

2 A substantial body of research suggests that efforts to prevent pediatric obesity may benefit 3 from targeting not just what a child eats, but how they eat. Specifically, child obesity prevention 4 should include a component which addresses reasons why children have differing abilities to 5 start and stop eating in response to internal cues of hunger and satiety, a construct known as 6 "eating self-regulation". This review summarizes current knowledge regarding how caregivers 7 can be an important influence on children's eating self-regulation during early childhood. First, 8 we discuss the evidence supporting an association between caregiver feeding and child eating 9 self-regulation. Second, we provide recommendations for caregivers on how to lower children's 10 obesity risk by supporting their eating self-regulation. Finally, we consider these recommendations in the light of a broader social, economic and cultural context and the 11 12 implications of this context for implementation. As far as we are aware, this is the first American 13 Heart Association Scientific Statement to focus on a psychobehavioral approach to reducing obesity risk in young children. It is anticipated that the timely information provided in this review 14 can be utilized not only by immediate caregivers within the immediate and extended family but 15 also by a broad range of community-based care providers. 16

1 INTRODUCTION

Need for statement. A healthy body mass index (BMI) is one of seven core factors which the 2 3 American Heart Association (AHA) emphasizes as important to ideal cardiovascular health.¹ 4 Eight percent of infants (0-2 y) and 23 percent of children (2-5 y) in the United States suffer from excess adiposity.² There is wide recognition that cardiovascular disease (CVD) prevention 5 should begin in early childhood,³ with a component aimed at reducing obesity.^{3,4} Behavioral 6 7 dimensions of eating ("eating behaviors"), collectively describing what, when and how much children eat, are robust correlates of childhood weight status (**Table 1**).⁵⁻²⁶ and child obesity 8 prevention efforts should benefit from a component focused on these. Yet, most interventions²⁷ 9 and / or recommendations^{3, 28} to reduce child obesity risk only try to manipulate what a child 10 eats. This review has been compiled to discuss the role of caregiver feeding behaviors in 11 12 shaping child eating behaviors associated with healthy body weight outcomes.

13

Focus of statement. First, we describe available evidence on how caregiver feeding behaviors influence obesogenic child eating behaviors, adopting a developmental perspective prenatally to childhood, and consider the limitations to this evidence. In the next section, we present evidence-based recommendations designed to help caregivers provide a feeding environment which supports healthy eating behaviors in children. In the final section, we discuss challenges to implementing these recommendations.

20

Limitations to statement Although a wide variety of caregiver factors may influence child eating behaviors, such as attachment quality,²⁹ this review focusses only on caregiver factors which influence child eating behaviors within the immediate feeding environment. Although such factors also often associate with children's dietary intake, this review does not discuss how caregivers may influence children's dietary composition, quality or variety. It is beyond the scope of this document to review any mechanisms underlying caregiver feeding and child eating
 behavior associations.

3

4 THE FEEDING ENVIRONMENT

5 Conceptual framework Feeding children is a reciprocal process that depends on the abilities of the caregiver and the child.²⁹ Early observational data³⁰⁻³⁴ indicated that many children 6 7 inherently vary their food intake in response to the caloric density of foods and energy expenditure to maintain healthy growth. This ability is thought to arise from the "satiety cascade" 8 9 which cues children to eat in response to hunger, and stop eating in response to satiation, and a biobehavioral mechanism termed "eating self-regulation". ³⁵ Some studies refer to 'regulation' 10 over relatively short periods (e.g., 24 hours, or immediately following a fixed preload meal),³⁶ 11 12 while other studies consider eating self-regulation as children's general behavioral responses to hunger, satiation and satiety, which can be measured over a longer term.³⁷ 13

Under the assumption that eating self-regulation is present from birth (even in preterm infants³⁴), caregivers are thought to either (1) support children's innate eating self-regulation tendency; or (2) promote a deviation from this tendency. Thus, early feeding research has focused on a didactic relationship between children and caregivers, examining the interrelationship between children's appetite cues, caregiver responsivity to these, and the effect this has on child eating self-regulation.

20

At the same time, observational data^{30-34, 38} reveal that children vary widely in the extent to which they demonstrate eating self-regulation, even in controlled settings. The strong heritability underlying child eating behaviors, ranging from 49-74% during the first year of life to 62-75% in early childhood (see ^{9, 39} for reviews), calls into question whether all children are born with good eating self-regulation, and highlights the need for research into a more tailored approach to the feeding environment that reflects children's predispositions around eating. Yet,

1 it is not possible to infer the importance of environmental influences from heritability estimates. 2 For example the heritability for child BMI is inversely associated with parental education level⁴⁰ 3 suggesting the environmental moderation of genetic effects. Changes in the heritability of 4 standardized BMI across childhood (~40% at 4 y and 75% at 19 y),⁴¹ thought to result from 5 factors such as growing child autonomy over their personal food intake within the home, and 6 increasing exposure to the wider obesogenic environment, demonstrate that heritable traits can 7 still be influenced by the environment. When considered alongside decades of developmental 8 science demonstrating that sociocultural context can have a powerful role in shaping a wide range of outcomes for children, including general self-regulatory skills,⁴²⁻⁴⁴ these findings 9 highlight a core concept underlying this Scientific Statement, which is that while strong 10 heritability estimates suggest inherent individual differences in child eating self-regulation, they 11 12 do not negate the potential for caregivers to shape, or moderate the expression of, children's 13 eating tendencies.

14

15 CAREGIVER INFLUENCES UNDERLYING CHILD APPETITIVE TRAITS

16

Prenatal influences. Pre-pregnancy obesity,⁴⁵ maternal diet,⁴⁶ and excess weight gain⁴⁵ during 17 pregnancy are all associated with increased risk of obesity among offspring. Long-standing 18 research suggests that what a woman eats during pregnancy not only influences children's taste 19 preferences⁴⁷⁻⁴⁹ (with effects that can occur across their lifetime⁵⁰⁻⁵²), but may also influence 20 21 children's growth via effects on appetite. Little human research on this topic exists, although higher correlations have been shown between children's protein and fat consumption at 10 22 years of age with their mother's intake of these macronutrients during pregnancy, than with her 23 24 postnatal intake.⁵³ However, undernutrition may also be problematic; survivors of the Dutch 25 famine (1944-45) who experienced caloric restriction during pregnancy saw increased obesity rates in their children up to thirty years after birth.⁵⁴ Given the challenges of implementing long-26

1 term experimental studies in humans, animal studies, which allow for much greater experimental control of exposure, have been widely used to examine the association between 2 diet and various health and health-related outcomes.^{55, 56} Offspring of obese (but not lean) 3 4 dams who are subsequently fed high-fat diet for two-to-seven years, including during gestation and lactation, may be more likely to overconsume fat and sucrose,⁵⁷ be heavier at birth,⁵⁸ gain 5 more weight,⁵⁷ and be more susceptible to diet-induced obesity⁵⁸ and poor glycemic control.⁵⁸ 6 7 Dams who are fed a low-protein diet for discrete periods of gestation have female offspring who 8 consume lower amounts of fat, and show less compensation for changes in the caloric content of foods⁵⁹, an effect not seen in males. Animal studies suggest that a prenatal diet impacts 9 offspring neurocircuits involved in satiety,⁶⁰ and alters offspring dopamine signaling.⁵⁷ 10

11

12 The feeding environment. After birth, psychobehavioral aspects of the feeding environment 13 become a more important influence on child eating self-regulation. To maintain good eating selfregulation in children, current research suggests that a caregiver's overarching goal should be: 14 to allow children autonomy over their eating, such that they start and stop eating in response to 15 16 their hunger and satiation. Yet, recognizing the potential role of good dietary quality and variety in healthy growth trajectories for children,^{61, 62} and the availability of calorically dense, nutrient 17 poor foods for many children, caregivers also need to provide structure within the eating 18 environment such that children can be autonomous without compromising a healthy diet. 48,75,91,92 19 It is important to acknowledge that factors such as cultural practices and beliefs (e.g., 20 preference for breastfeeding⁶³ about ideal body size⁶⁴) and resources (e.g., food insecurity that 21 may limit food options⁶⁵) can shape caregivers' methods to achieve these goals. Thus, the 22 challenge for caregivers is to provide structure and boundaries without decreasing children's 23 24 eating autonomy to the extent that they no longer self-regulate their eating, but instead look to 25 external factors to cue eating.

1 In describing the behaviors which reflect caregiver goals around child feeding/eating, the literature has made the distinction between caregiver feeding styles and caregiver feeding 2 3 practices. Feeding styles (Figure 1) capture the overall emotional climate of meals, and are 4 measured along two dimensions: responsiveness (represented by warmth, acceptance, and 5 involvement during feeding) and demandingness (represented by parental control and 6 supervision of feeding). Feeding behaviors are often categorized using these dimensions into 7 four feeding styles: authoritarian, authoritative, indulgent, and uninvolved,⁶⁶ which characterize the extent to which a caregiver's overall feeding behaviors reflect responsiveness to the child 8 within the context of boundary setting around food.⁶⁶ Alternatively, feeding *practices* describe 9 specific goal-oriented behaviors and can be organized along higher-order dimensions of 10 coercive control (e.g. pressuring children to eat), structure (e.g. limit setting), and autonomy 11 12 support (e.g. praise, active guidance).⁶⁷

13 Authoritative and indulgent feeders are both considered high in responsiveness. however they differ in that the indulgent feeding style is low in demandingness (indicating a lack 14 of structure; Figure 1).^{67, 68} It is the indulgent feeding style out of the two which is associated 15 16 with higher child adiposity and lower child eating-self-regulation, emphasizing the importance of setting boundaries around food.^{48,75,91,92.} Both authoritative and authoritarian feeders set 17 boundaries around food (Figure 1);⁶⁹ but authoritarian parents are considered less responsive 18 19 and show behaviors aiming to change the child's behavior overtly. Such overt behaviors can include using rewards and/or punishments to control food intake, or physically struggling with 20 the child, and are often labelled as "directive".⁶⁹ Authoritative feeders also set boundaries, but 21 implement these via more covert "non-directive" strategies that support the child's autonomy^{69,70} 22 These strategies include reasoning, complimenting, and exerting control over the food 23 24 environment rather than the child, for example making the most readily available foods nutrient 25 dense options from which the child can make selections, and setting mealtime routines within which the child can decide how much to eat.⁶⁹ When compared to the authoritarian feeding 26

style, the authoritative style is associated with better child dietary quality.^{70, 71} As the key
 difference between these two styles lies in the higher responsivity of authoritative feeders to
 child cues, these findings highlight the need to implement boundaries within a responsive
 feeding environment.

5 A strong evidence base suggests that children's eating self-regulation is best supported 6 when caregivers provide a feeding environment which *covertly* sets boundaries around food. 7 such as meal timing and the types of foods eaten by children.⁷⁰⁻⁷² Using overt, directive attempts to control what children eat seems to have "spill over" effects on how and / or how much they 8 eat.⁷³ It seems that when children choose foods based on parental directives, they also start 9 10 and stop eating in response to these, and no longer self-regulate their eating to their appetite cues. The first five years of life is a time of rapid development – below we discuss how each 11 12 developmental stage during this time (infancy, toddlerhood and preschool) poses unique 13 challenges to maintaining a structured, yet responsive, feeding environment.

14

Infancy. Responsive feeding is a reciprocal relationship – children need to communicate their 15 16 needs in order for caregivers to respond to these. From infancy, children display a number of 17 external appetite cues. The earliest hunger cues include sucking, opening/closing mouth repeatedly, smacking and licking lips, and increased alertness.⁷⁴ Corresponding fullness cues 18 19 include turning the head away, increased interest in the environment, decreased activity level, frowning and grimacing, gaze aversion and putting hand(s) to face.⁷⁴ Such cues are non-verbal 20 21 and covert and an early challenge to responsive feeding is the ability of caregivers to perceive and accurately interpret these cues, which varies considerably.⁷⁵ By contrast, crying is a late-22 stage feeding cue, which is widely recognized by caregivers,^{76, 77} but which may be confused 23 24 with non-hunger infant distress. Caregivers endorsing crying as a reliable hunger cue are nearly 25 3 times as likely to have a pressuring feeding style, perhaps due to feeding when the infant is not hungry.⁷⁷ Infants who are fed to soothe non-hunger related distress, which may sometimes 26

be driven by caregivers mistaking distress signals for hunger, are also perceived to have a high
responsiveness to food,⁷⁸ and have a higher BMI in childhood.⁷⁹ Interventions which have
taught caregivers how to discriminate infant cues of hunger from cues of other distress, and
how to soothe non hunger related fussiness without food, have had success in supporting
healthy growth.⁸⁰⁻⁸² Parents of children in neonatal intensive care are more involved in feeding,
and show better awareness of infant distress cues post discharge when they had social support
via an intervention.⁸³

8

The ability of caregivers to recognize and respond to children's cues of internal 9 hunger/satiation may be influenced by early feeding modality (bottle vs. breast). Many studies 10 refute an association between breastfeeding and child obesity risk,^{84-88, 89} which it is beyond the 11 12 scope of this review to discuss. However, some studies have shown that breastfeeding is associated with better child eating self-regulation.⁹⁰ including better satiety responsiveness.⁹¹ 13 and a lower likelihood of emptying a bottle or cup,⁹² than bottle feeding. Contrary findings have 14 also been shown.³² A small randomized study using weighted, opaque bottles that removed 15 16 external cues to bottle fullness, resulted in less formula intake and greater maternal 17 responsiveness to infant feeding cues compared with a standard bottle.⁹³ This effect was seen particularly in mothers who were less responsive to infant satiation cues (defined as highly 18 19 pressuring). It is theorized that less responsive mothers may be more susceptible to feeding in response to cues other than hunger/satiation from infants and so benefit the most from early 20 interventions.⁹³ In addition, in-home recorded sessions found that breastfed infants displayed 21 more engagement and disengagement clues than formula-fed infants,⁹⁴ perhaps making the 22 hunger/satiation cues from infants fed at the breast easier to "read". 23

24

Toddlerhood. The rapid development of toddlerhood enables children to communicate their
 appetite more overtly, such as with rudimentary language and reaching for food. While this may

1 make toddlers' appetites easier to read, toddlerhood brings new challenges as children strive for autonomy and independence. Striving for autonomy is thought to bring about two food-related 2 3 behaviors which present a particular challenge to responsive, non-directive feeding: food 4 neophobia (wariness of trying new foods) and food fussiness / "picky" eating (a more general selectivity regarding which foods are consumed).^{29, 95} Both of these behaviors can be associated 5 6 with children eating a more limited, often less unhealthy diet, and with weight status (Table 1).⁹⁶ 7 Food fussiness and neophobia can involve disgust-response to disliked foods, the rejection of foods on sight, and for some children a contamination-response where disliked foods touching 8 or hidden under liked foods may lead to rejection of the whole meal..⁹⁷ While this phase is 9 developmentally normative and typically short-lived, both behaviors also have trait-like 10 dimensions that result in the persistence of these behaviors throughout childhood and 11 12 adolescence for some children. Little is understood about why food neophobia or fussiness persist in a some children, but not in others.⁷³ This uncertainty, which is often reported as a 13 significant source of caregiver stress,⁹⁸ may push caregivers to employ feeding strategies 14 designed to reduce fussiness around food. Parents who perceive their children as more "picky" 15 with food report using more directive attempts to control child intake, than do parents who do 16 not perceive their children as picky.⁷³ Picky eating in toddlerhood is associated with controlling 17 feeding practices in caregivers, with mothers who perceive their children as "picky" more likely 18 to report restriction and pressure to eat.⁹⁹⁻¹⁰² Not only may directive feeding behaviors pose 19 20 challenges to child eating self-regulation, which can disrupt children's ability to respond to 21 internal hunger/fullness cues thereby contributing to overweight, but they are also associated with increased parental stress at mealtimes.⁷³ Observational data show that stressful feeding 22 encounters are not likely to stimulate a positive response from the child to novel and/or aversive 23 tasting foods,¹⁰³⁻¹⁰⁵ and overall do not appear to alter children's food acceptance.^{106, 107} Non-24 directive strategies such repeatedly offering foods, ¹⁰⁸⁻¹¹⁰ offering a familiar and accepted food 25 alongside novel, or refused foods (such as ketchup¹¹¹ or other palatable dip¹¹²), and having 26

caregivers¹¹³ and/or peers¹¹⁴ model eating the food with enjoyment have been demonstrated to
increase the consumption of a given food, to support children's liking for a wider variety of
healthy foods, and may help maintain responsivity in the feeding environment.

4

5 Preschool period. As the child progresses into the preschool period, food neophobia and food 6 fussiness typically decline, and a wider variety of foods are consumed. While the increased 7 dietary variety is considered a positive development for health, the preschool period brings more possibilities for autonomy as children can access a greater variety of foods and self-feed more 8 capably. Research suggests that for good child eating self-regulation, the preschool period is 9 critical for boundaries around food, but without overt control of child eating. Directive 10 approaches which focus on what (or the amount) a child is eating directly, such as pressure to 11 12 eat certain foods or restricting the types and amount of food consumed are often well-13 intentioned (the goal is usually to improve dietary guality, for example vegetable intake, or overall variety¹¹⁵). However, pressure to eat has been associated with an impaired ability to self-14 regulate eating behaviors in preschool,¹¹⁶ and poorer energy compensation in childhood.¹⁰⁵ By 15 16 contrast, restrictive feeding practices such as limiting intakes of certain (typically snack) foods, have been associated with higher consumption of food when not hungry,¹¹⁷ energy intake,¹⁰³ 17 adiposity,¹¹⁸ and likelihood of failing to stop eating when full,¹¹⁹ as well as poorer compensation 18 for the energy density of food¹²⁰ in early childhood. In preschool, more supportive approaches, 19 such as questions, suggestions, and offering choices within a structured environment which 20 21 limits the types of food available and the timing of meals rather than places limits on the child's eating behaviors is associated with better eating self-regulation and growth trajectories.^{66, 71, 121} 22

23

Limitations of research. Much, but not all, of the caregiver feeding research to date is cross sectional, particularly in the preschool age group, which makes it hard to rule out confounding
 influences such as socioeconomic status (SES). Yet SES is positively correlated with rates and

duration of breastfeeding in most countries, 122, 123 and may be inversely correlated with child 1 obesity,^{124, 125} suggesting it may confound the relationships between breastfeeding and child 2 adiposity outcomes. Similarly, mothers with obesity are less likely to initiate breastfeeding, 126-128 3 4 and, those that do breastfeed, do so for shorter periods than their healthy weight counterparts.^{126, 127, 129-131} There may also be a confounding role for caregiver characteristics; 5 parents with a high BMI are more likely to use controlling^{132, 133} and restrictive¹⁰⁴ feeding 6 7 practices. One study in 7-12 year old siblings discordant for parent feeding did not support a causal role in caregiver feeding control with child obesity risk, ¹³³ which highlights the 8 importance of considering factors in addition to caregiver feeding when developing strategies for 9 child obesity prevention. 10

Even the extant longitudinal studies to date make it difficult to identify the direction of 11 many associations. Evidence has supported directionality from child eating behaviors ¹³⁴⁻¹³⁶ and 12 child BMI¹³⁷⁻¹⁴⁰ to controlling feeding practices from caregivers, as well as the reverse.¹⁴¹⁻¹⁴³ 13 Taken together, this and similar evidence suggests a bi-directionality between child eating 14 behaviors and / or adiposity and caregiver feeding behaviors which some studies have found 15 supported.^{144, 145} Finally, despite a strong theoretical foundation, there is relatively little empirical 16 17 evidence demonstrating the benefits of approaches that reflect warmth and responsiveness to children's eating cues while providing developmentally appropriate expectations, structure, and 18 19 involvement, with more focusing on the sequelae of less responsive, more directive behaviors. Relatedly, much of the extant evidence is observational and only a small number of intervention 20 21 programs have demonstrated evidence of effectiveness at changing caregivers' food-related interactions and behaviors.^{81, 146} 22

23

24 **RECOMMENDATIONS FOR CAREGIVERS**

Tremendous progress has been made linking specific aspects of the caregiver provided feeding
environment with children's ability to self-regulate their eating behaviors. The associated

literature is now substantial, and suggests that good eating self-regulation, and lowered obesity
 risk, is supported when:

3

Prenatal influences on child eating self-regulation are largely inferred from animal
 studies which support the recommendation that pregnancies are initiated at a healthy
 weight, current dietary guidelines for the intake of total calories, fats and sugars are
 adhered to throughout their pregnancy, and weight gain during pregnancy is kept within
 guideline levels.

9 2. Caregivers have knowledge of infant hunger (such as opening mouth wide or settling
into the feed⁷⁴) and satiety (such as taking interest in surroundings, decreases in activity
level, pulling away abruptly or detaching from the nipple, and falling asleep⁷⁴) cues, and
can distinguish these from non-appetite related cues.

Caregivers are responsive to children's hunger and fullness cues, paying attention to
 children's verbal and non-verbal signals and not pressuring children to eat more than
 they wish. For a child who is not underweight (zBMI less than two standard deviations
 from the WHO Median; ¹⁴⁷), caregivers should allow children the choice of when to stop
 eating during a meal, and perhaps the choice not to eat at all.

Caregivers do not focus on what, or how much, a child eats. Rather, a varied diet is
 encouraged via environmental structure such as the consistent and repeated offering of
 healthy foods to children, the use of "preferred" foods (such as a dip), and caregivers
 enthusiastically consuming the food themselves.

5. An appropriate structure around food is set which focuses not on child behavior
specifically, but instead provides rules and limits around children's meals, via consistent
snack routines, timing of meals, and selective availability of foods in the home.

1 POTENTIAL CHALLENGES IN IMPLEMENTATION OF RECOMMENDATIONS Caregivers

should feel empowered to contribute to the development of a healthy eating behavior trajectory
in children. However, we recognize that translating these findings into recommendations for
caregivers faces significant challenges.

5

6 The role of child development. Most children have developed the motor skills necessary to self-7 feed by around 14 months of age¹⁴⁸. During this time, caregivers typically try socialize children, 8 and their eating behaviors, to their personal, familial and cultural values. Such socialization is enabled by children's rapid cognitive development during early childhood children, when 9 children learn language comprehension (~11-12m¹⁴⁹), and that others have beliefs, requests 10 and intentions (~14m;¹⁵⁰). However, such cognitive development also enables non-compliance 11 12 with caregiver requests (the emergency of autonomy; ~1.5 y; ¹⁵¹). Physically, height increases linearly until four years of age, at which time growth slows.¹⁵² However, this pattern may be 13 different for children with a lower birth weight who experience "catch up" growth in early life, 14 which then slows to mirror the expected trajectory.¹⁵² BMI typically has a strongly non-linear 15 growth trajectory, with significant changes in BMI growth rate at approximately 7-9 months of 16 age (peak)¹⁵³ and close to 6 years of age (trough).¹⁵² Growth changes are often accompanied 17 by changes in food consumption,¹⁵⁴ and emerging research shows that parent feeding practices 18 are influenced by child BMI^{139, 140} and child eating behaviors^{135, 136} as well as the reverse. And 19 we recognize that there are individual differences with how children transition through 20 21 developmental periods and growth changes, and there is no one single healthy way. Taken together this highlights that children's individual differences influence the feeding-eating 22 relationship, and can pose challenges to caregiver attempts to shape healthy eating behaviors 23 24 in children.

1 The role of child characteristics. We have already shown that eating behaviors have strong heritabilities. While a strong heritability does limit the potential for the environment to mediate 2 3 the expression of child eating behaviors, we acknowledge that the downstream heritable 4 phenotypes, such as temperament, may represent additional challenges to caregivers. There is 5 now emerging evidence for associations between infant temperament, defined as "individual differences in reactivity and self-regulation that are assumed to have a constitutional basis", ¹⁵⁵ 6 7 and elevated adiposity indices. Adiposity at 6-, 9-, and 12-months of age associates with early distress to limitations.^{156, 157} At 6 years of age, BMI associates with early infant low negative 8 affectivity.^{157, 158} Poorer general self-regulation and self-soothing ability at 9 months has 9 predicted BMI at ~4 years of age.^{157, 159} Temperament may pose a challenge to responsive 10 caregiver feeding practices if food is used to assuage distress,^{160, 161} and may influence the 11 12 associations of caregiver feeding with child eating behaviors, highlighting the reciprocal nature 13 of the relationship between caregiver feeding and child eating.

14

The wider socio-economic context. At a broader level, caregivers who are living in poverty or in 15 under-resourced circumstances may face unique challenges to implementing recommended 16 17 feeding practices. Income and SES can influence feeding practices through many interrelated and complex pathways, including the relatively limited access to relatively more expensive 18 healthy foods for many poor families,¹⁶² especially when such foods require time, expertise, and 19 facilities to prepare and store.¹⁶³ In addition, unpredictable job schedules can constrain meal 20 planning and mitigate against regular routines such as family mealtimes.¹⁶⁴⁻¹⁶⁶ Food insecurity 21 may also impact a parent's food options¹⁶⁷ and drive caregivers to restrict the range of foods 22 given to children, in order to ensure consumption and avoid waste.^{168, 169} Living in poverty can 23 24 increasing caregiver stress; caregivers who are under stress have been found to engage in more restrictive feeding practices with their preschool-aged children.¹⁷⁰ An additional stressor 25 that may influence caregiver feeding practices is the pressure to be a "perfect parent". Although 26

this has not been examined explicitly in regard to feeding, online social comparisons can
negatively affect parenting and relationship outcomes, such as parental competence, coparenting relationship quality, and perceived social support.¹⁷¹

4 These social-contextual factors shape feeding practices at multiple levels. Mental health issues, such as depression, presents challenges in child feeding.¹⁷¹ Differences of opinion on feeding 5 practices between caregiver and partner have been associated with conflict around feeding 6 strategies during early childhood.^{172, 173} Culture may also shape which individuals are 7 responsible for child feeding (e.g., mothers vs. fathers; ^{174, 175} the role of grandparents^{176, 177}) and 8 9 beliefs about the role of restrictive vs. indulgent feeding^{178, 179} in achieving feeding or obesity prevention goals. This statement acknowledges that a single caregiver often does not control 10 11 the child's entire feeding environment, which may pose a challenge to an individual caregiver's 12 capacity to follow recommendations for their children. Caregivers may feel particularly 13 frustrated when their feeding goals for their children are disrupted by others who care for the child, for example grandparents or daycare providers.¹⁶⁸ It may therefore be helpful to develop 14 recommendations for caregivers that include advice on how to navigate such conflicts, for 15 example by encouraging them to explain responsive feeding practices to others involved in their 16 17 child's care and/or identifying ways to respect cultural and/or family-of-origin influences on feeding while incorporating other options (e.g., healthier preparations of traditional foods).¹⁶⁸ 18

19

Considerations: Recommendations to caregivers regarding their feeding behaviors need to be
 offered within the context of implementation challenges. It is important to recognize that:

22

Infants and caregivers can learn from each other regarding healthy, responsive feeding
 practices, and recognition of hunger and satiety cues, regardless of decisions about
 what the infant is fed.

Modifying one's feeding behaviors can be harder for some caregivers than others.
 Caregiver feeding behaviors are not "set", but differ based on the child's temperament,¹⁸⁰
 and the caregiver's psychological wellbeing.^{107, 181, 182} The guilt and judgement some
 caregivers feel when their child does not conform to their idea of "good" eating
 behaviors"⁹⁸ can be relinquished, which may ultimately encourage a more responsive
 partnership between the caregiver and child with feeding.

Optimal feeding strategies may differ depending on a child's genetically-influenced
behavioral profile, and research has not yet delineated the form this tailoring should
take. A caveat to an individually-tailored approach to food parenting is that being
critiqued for their weight and directly encouraged to lose weight may promote poorer
body self-esteem and disordered eating in children.¹⁸³ Thus, strategies should likely be
adopted for the whole family.^{184, 185}

13

14 CONCLUSIONS AND FUTURE DIRECTIONS

A substantial body of literature links specific caregiver feeding behaviors to child eating self-15 16 regulation. Our recommendations are that caregivers focus not on child characteristics (how 17 much he child eats, or their adiposity), but on creating a structured environment which inherently limits undesirable behaviors (e.g. eating certain foods) without requiring overt control over 18 19 children. However, such recommendations are made in light of several pressing research 20 needs, perhaps the most pertinent of which is integrating how children's individual differences in 21 temperament, appetite, and adiposity shape parent feeding behaviors and influence their effects on feeding self-regulation. Caregiver feeding recommendations will need to be updated as such 22 understanding increases. Further, recognizing the difficulties inherent with implementing our 23 24 recommendations, we encourage policies which address barriers within the wider 25 socioeconomic context, including the social determinants of health, alongside individual caregiver efforts in child obesity prevention. While efforts that encourage caregivers to provide a 26

- 1 responsive, structured feeding environment could be an important component of reducing
- 2 obesity and cardiometabolic risk across the lifespan, it is likely they will be most effective as part
- 3 of a multi-level, multi-component prevention strategy.

1 ACKNOWLEDGMENTS

2 Dr Wood is supported in part by USDA/ARS (Cooperative Agreement 58-3092-5-001). The 3 contents of this publication do not necessarily reflect the views or policies of the USDA, nor 4 does mention of trade names, commercial products, or organizations imply endorsement from 5 the US government. Dr Wood also receives funding from the American Academy of Pediatrics, 6 and has previously received funding from Sabra Dipping Company and Unilever. Dr. Khalsa is 7 supported by the Center for Innovation in Pediatric Practice at Nationwide Children's Hospital. 8 Dr. Khalsa has previously received funding from an institutional awarded National Research 9 Service Award (NRSA) granted to Cincinnati Children's Hospital Medical Center (T32 HP10027). 10

REFERENCES

2	1.	Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, Floyd J, Fornage M,
3		Gillespie C, Isasi C. Heart disease and stroke statistics-2017 update: A report from the
4		american heart association. Circulation. 2017;135:e146-e603
5	2.	Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in
6		the united states, 2011-2012. JAMA. 2014;311:806-814
7	3.	Kumanyika SK, Obarzanek E, Stettler N, Bell R, Field AE, Fortmann SP, Franklin BA,
8		Gillman MW, Lewis CE, Poston WC. Population-based prevention of obesity: The need
9		for comprehensive promotion of healthful eating, physical activity, and energy balance: A
10		scientific statement from american heart association council on epidemiology and
11		prevention, interdisciplinary committee for prevention (formerly the expert panel on
12		population and prevention science). Circulation. 2008;118:428-464
13	4.	Kavey R-EW, Daniels SR, Lauer RM, Atkins DL, Hayman LL, Taubert K. American heart
14		association guidelines for primary prevention of atherosclerotic cardiovascular disease
15		beginning in childhood. Circulation. 2003;107:1562-1566
16	5.	Carnell S, Wardle J. Appetite and adiposity in children: Evidence for a behavioral
17		susceptibility theory of obesity. Am. J. Clin. Nutr. 2008;88:22-29
18	6.	Hill C, Llewellyn CH, Saxton J, Webber L, Semmler C, Carnell S, van Jaarsveld CH,
19		Boniface D, Wardle J. Adiposity and 'eating in the absence of hunger' in children. Int J
20		Obes (Lond). 2008;32:1499-1505
21	7.	Croker H, Cooke L, Wardle J. Appetitive behaviours of children attending obesity
22		treatment. Appetite. 2011;57:525-529
23	8.	Fisher JO, Birch LL. Eating in the absence of hunger and overweight in girls from 5 to 7
24		y of age. <i>Am. J. Clin. Nutr.</i> 2002;76:226-231

1	9.	Wood AC. Appetitive traits: Genetic contributions to pediatric eating behaviors. Pediatric
2		food preferences and eating behaviors. Elsevier; 2018:127-146.
3	10.	Webber L, Hill C, Saxton J, Van Jaarsveld CH, Wardle J. Eating behaviour and weight in
4		children. Int J Obes (Lond). 2009;33:21-28
5	11.	Butte NF, Cai G, Cole SA, Wilson TA, Fisher JO, Zakeri IF, Ellis KJ, Comuzzie AG.
6		Metabolic and behavioral predictors of weight gain in hispanic children: The viva la
7		familia study. Am. J. Clin. Nutr. 2007;85:1478-1485
8	12.	Faith MS, Berkowitz RI, Stallings VA, Kerns J, Storey M, Stunkard AJ. Eating in the
9		absence of hunger: A genetic marker for childhood obesity in prepubertal boys? Obesity
10		(Silver Spring). 2006;14:131-138
11	13.	Kral TV, Allison DB, Birch LL, Stallings VA, Moore RH, Faith MS. Caloric compensation
12		and eating in the absence of hunger in 5-to 12-y-old weight-discordant siblings. The
13		American journal of clinical nutrition. 2012;96:574-583
14	14.	Remy E, Issanchou S, Chabanet C, Boggio V, Nicklaus S. Impact of adiposity, age, sex
15		and maternal feeding practices on eating in the absence of hunger and caloric
16		compensation in preschool children. Int. J. Obes. 2015;39:925
17	15.	Reyes M, Hoyos V, Martinez SM, Lozoff B, Castillo M, Burrows R, Blanco E, Gahagan
18		S. Satiety responsiveness and eating behavior among chilean adolescents and the role
19		of breastfeeding. Int J Obes (Lond). 2014;38:552-557
20	16.	Faith MS, Hittner JB. Infant temperament and eating style predict change in
21		standardized weight status and obesity risk at 6 years of age. Int J Obes (Lond).
22		2010;34:1515-1523
23	17.	van Jaarsveld CH, Boniface D, Llewellyn CH, Wardle J. Appetite and growth: A
24		longitudinal sibling analysis. JAMA Pediatr. 2014;168:345-350

1	18.	Santos JL, Ho-Urriola JA, Gonzalez A, Smalley SV, Dominguez-Vasquez P, Cataldo R,
2		Obregon AM, Amador P, Weisstaub G, Hodgson MI. Association between eating
3		behavior scores and obesity in chilean children. Nutr J. 2011;10:108
4	19.	Fisher JO, Cai G, Jaramillo SJ, Cole SA, Comuzzie AG, Butte NF. Heritability of
5		hyperphagic eating behavior and appetite-related hormones among hispanic children.
6		Obesity (Silver Spring). 2007;15:1484-1495
7	20.	Sleddens EF, Kremers SP, Thijs C. The children's eating behaviour questionnaire:
8		Factorial validity and association with body mass index in dutch children aged 6–7.
9		International Journal of Behavioral Nutrition and Physical Activity. 2008;5:49
10	21.	Viana V, Sinde S, Saxton JC. Children's eating behaviour questionnaire: Associations
11		with bmi in portuguese children. Br. J. Nutr. 2008;100:445-450
12	22.	Braet C, Van Strien T. Assessment of emotional, externally induced and restrained
13		eating behaviour in nine to twelve-year-old obese and non-obese children. Behav. Res.
14		Ther. 1997;35:863-873
15	23.	Baños R, Cebolla A, Etchemendy E, Felipe S, Rasal P, Botella C. Validation of the dutch
16		eating behavior questionnaire for children (debq-c) for use with spanish children. Nutr.
17		Hosp. 2011;26
18	24.	van Strien T, Oosterveld P. The children's debq for assessment of restrained, emotional,
19		and external eating in 7-to 12-year-old children. Int. J. Eat. Disord. 2008;41:72-81
20	25.	Dubois L, Farmer A, Girard M, Peterson K, Tatone-Tokuda F. Problem eating behaviors
21		related to social factors and body weight in preschool children: A longitudinal study.
22		International Journal of Behavioral Nutrition and Physical Activity. 2007;4:9
23	26.	Sleddens EF, Kremers SP, Thijs C. The children's eating behaviour questionnaire:
24		Factorial validity and association with body mass index in dutch children aged 6-7. Int J
25		Behav Nutr Phys Act. 2008;5:49

1	27.	Wang Y, Wu Y, Wilson RF, Bleich S, Cheskin L, Weston C, Showell N, Fawole O, Lau B,
2		Segal J. Childhood obesity prevention programs: Comparative effectiveness review and
3		meta-analysis. Database of abstracts of reviews of effects (dare): Quality-assessed
4		reviews [internet]. Centre for Reviews and Dissemination (UK); 2013.
5	28.	Williams CL, Hayman LL, Daniels SR, Robinson TN, Steinberger J, Paridon S, Bazzarre
6		T. Cardiovascular health in childhood: A statement for health professionals from the
7		committee on atherosclerosis, hypertension, and obesity in the young (ahoy) of the
8		council on cardiovascular disease in the young, american heart association. Circulation.
9		2002;106:143-160
10	29.	Satter E. Feeding dynamics: Helping children to eat well. J. Pediatr. Health Care.
11		1995;9:178-184
12	30.	Birch LL, Fisher JO. Development of eating behaviors among children and adolescents.
13		Pediatrics. 1998;101:539-549
14	31.	Birch LL, Fisher JO. Food intake regulation in children. Fat and sugar substitutes and
15		intake. Ann. N. Y. Acad. Sci. 1997;819:194-220
16	32.	Timby N, Hernell O, Lonnerdal B, Domellof M. Parental feeding control in relation to
17		feeding mode and growth pattern during early infancy. Acta Paediatr. 2014;103:1072-
18		1077
19	33.	Fomon SJ, Filer LJ, Thomas LN, Anderson TA, Nelson SE. Influence of formula
20		concentration on caloric intake and growth of normal infants. Acta Paediatr.
21		1975;64:172-181
22	34.	Saunders RB, Friedman CB, Stramoski PR. Feeding preterm infants: Schedule or
23		demand? J. Obstet. Gynecol. Neonatal Nurs. 1991;20:212-220
24	35.	Tan CC, Holub SC. Children's self-regulation in eating: Associations with inhibitory
25		control and parents' feeding behavior. Journal of Pediatric Psychology. 2011;36:340-345

- Johnson SL. Improving preschoolers' self-regulation of energy intake. *Pediatrics*.
 2000;106:1429-1435
- 3 37. Connell LE, Francis LA. Positive parenting mitigates the effects of poor self-regulation on
 bmi trajectories from age 4 to 15 years. *Health psychology : official journal of the Division of Health Psychology, American Psychological Association*. 2014;33:757-764
- 6 38. Satter E. *Child of mine: Feeding with love and good sense*. Bull Publishing Company;
 7 2012.
- 8 39. Wood AC. Gene-environment interplay in child eating behaviors: What the role of
- 9 "nature" means for the effects of "nurture". *Current nutrition reports*. 2018:1-9
- 10 40. Silventoinen K, Huppertz C, van Beijsterveldt CE, Bartels M, Willemsen G, Boomsma DI.
- 11 The genetic architecture of body mass index from infancy to adulthood modified by
- 12 parental education. *Obesity*. 2016;24:2004-2011
- 13 41. Silventoinen K, Jelenkovic A, Sund R, Hur Y-M, Yokoyama Y, Honda C, vB Hjelmborg J,
- 14 Möller S, Ooki S, Aaltonen S. Genetic and environmental effects on body mass index
- 15 from infancy to the onset of adulthood: An individual-based pooled analysis of 45 twin
- 16 cohorts participating in the collaborative project of development of anthropometrical
- 17 measures in twins (codatwins) study. *The American journal of clinical nutrition*.
- 18 2016;104:371-379
- Raver CC. Placing emotional self-regulation in sociocultural and socioeconomic
 contexts. *Child Dev.* 2004;75:346-353
- 43. Calkins SD, Hill A. Caregiver influences on emerging emotion regulation. *Handbook of emotion regulation*. 2007;229248
- 44. Bernier A, Carlson SM, Whipple N. From external regulation to self-regulation: Early
 parenting precursors of young children's executive functioning. *Child Dev.* 2010;81:326339

1	45.	Reynolds RM, Osmond C, Phillips DIW, Godfrey KM. Maternal bmi, parity, and
2		pregnancy weight gain: Influences on offspring adiposity in young adulthood. The
3		Journal of Clinical Endocrinology & Metabolism. 2010;95:5365-5369
4	46.	Shapiro AL, Kaar JL, Crume TL, Starling AP, Siega-Riz AM, Ringham BM, Glueck DH,
5		Norris JM, Barbour LA, Friedman J. Maternal diet quality in pregnancy and neonatal
6		adiposity: The healthy start study. Int. J. Obes. 2016;40:1056
7	47.	Mennella JA, Beauchamp GK. Understanding the origin of flavor preferences. Chem.
8		Senses. 2005;30:i242-i243
9	48.	Mennella JA, Johnson AJ, Beauchamp GK. Garlic ingestion by pregnant women alters
10		the odor of amniotic fluid. Chem. Senses. 1995;20:207-209
11	49.	Mennella JA, Jagnow CP, Beauchamp GK. Prenatal and postnatal flavor learning by
12		human infants. Pediatrics. 2001;107:E88
13	50.	Loper Hb Fau - Loper HB, La Sala M Fau - La Sala M, Dotson C Fau - Dotson C, Steinle
14		N Fau - Steinle N. Taste perception, associated hormonal modulation, and nutrient
15		intake.
16	51.	Zhang G-H, Chen M-L, Liu S-S, Zhan Y-H, Quan Y, Qin Y-M, Deng S-P. Effects of
17		mother's dietary exposure to acesulfame-k in pregnancy or lactation on the adult
18		offspring's sweet preference. Chem. Senses. 2011;36:763-770
19	52.	Teegarden SL, Scott AN, Bale TL. Early life exposure to a high fat diet promotes long-
20		term changes in dietary preferences and central reward signaling. Neuroscience.
21		2009;162:924-932
22	53.	Brion M-JA, Ness AR, Rogers I, Emmett P, Cribb V, Davey Smith G, Lawlor DA.
23		Maternal macronutrient and energy intakes in pregnancy and offspring intake at 10 y:
24		Exploring parental comparisons and prenatal effects. The American journal of clinical
25		nutrition. 2010;91:748-756

1	54.	Roseboom T, de Rooij S, Painter R. The dutch famine and its long-term consequences
2		for adult health. Early Hum. Dev. 2006;82:485-491
3	55.	Lai M, Chandrasekera PC, Barnard ND. You are what you eat, or are you? The
4		challenges of translating high-fat-fed rodents to human obesity and diabetes. Nutrition &
5		<i>diabetes</i> . 2014;4:e135
6	56.	Even PC, Virtue S, Morton NM, Fromentin G, Semple RK. Are rodent models fit for
7		investigation of human obesity and related diseases? Frontiers in nutrition. 2017;4:58
8	57.	Rivera HM, Kievit P, Kirigiti MA, Bauman LA, Baquero K, Blundell P, Dean TA, Valleau
9		JC, Takahashi DL, Frazee T, Douville L, Majer J, Smith MS, Grove KL, Sullivan EL.
10		Maternal high-fat diet and obesity impact palatable food intake and dopamine signaling
11		in nonhuman primate offspring. Obesity (Silver Spring, Md.). 2015;23:2157-2164
12	58.	Tamashiro KL, Terrillion CE, Hyun J, Koenig JI, Moran TH. Prenatal stress or high-fat
13		diet increases susceptibility to diet-induced obesity in rat offspring. Diabetes.
14		2009;58:1116-1125
15	59.	Bellinger L, Lilley C, Langley-Evans SC. Prenatal exposure to a maternal low-protein diet
16		programmes a preference for high-fat foods in the young adult rat. Br. J. Nutr.
17		2004;92:513-520
18	60.	Bhagat R, Fortna SR, Browning KN. Exposure to a high fat diet during the perinatal
19		period alters vagal motoneurone excitability, even in the absence of obesity. The Journal
20		of Physiology. 2015;593:285-303
21	61.	Golley RK, Smithers LG, Mittinty MN, Emmett P, Northstone K, Lynch JW. Diet quality of
22		uk infants is associated with dietary, adiposity, cardiovascular, and cognitive outcomes
23		measured at 7-8 years of age The Journal of nutrition. 2013;143:1611-1617
24	62.	Okubo H, Crozier SR, Harvey NC, Godfrey KM, Inskip HM, Cooper C, Robinson SM.
25		Diet quality across early childhood and adiposity at 6 years: The southampton women's
26		survey. Int. J. Obes. 2015;39:1456

1	63.	Reeves EA, Woods-Giscombé CL. Infant-feeding practices among african american
2		women: Social-ecological analysis and implications for practice. J. Transcult. Nurs.
3		2015;26:219-226
4	64.	Rosas LG, Harley KG, Guendelman S, Fernald LC, Mejia F, Eskenazi B. Maternal
5		perception of child weight among mexicans in california and mexico. Maternal and child
6		health journal. 2010;14:886-894
7	65.	Chen W-t. From "junk food" to "treats" how poverty shapes family food practices. Food,
8		Culture & Society. 2016;19:151-170
9	66.	Hughes SO, Power TG, Papaioannou MA, Cross MB, Nicklas TA, Hall SK, Shewchuk
10		RM. Emotional climate, feeding practices, and feeding styles: An observational analysis
11		of the dinner meal in head start families. Int J Behav Nutr Phys Act. 2011;8:60
12	67.	Vaughn AE, Ward DS, Fisher JO, Faith MS, Hughes SO, Kremers SP, Musher-
13		Eizenman DR, O'connor TM, Patrick H, Power TG. Fundamental constructs in food
14		parenting practices: A content map to guide future research. Nutr. Rev. 2015;74:98-117
15	68.	Hughes SO, Power TG, Orlet Fisher J, Mueller S, Nicklas TA. Revisiting a neglected
16		construct: Parenting styles in a child-feeding context. Appetite. 2005;44:83-92
17	69.	Hughes SO, Shewchuk RM, Baskin ML, Nicklas TA, Qu H. Indulgent feeding style and
18		children's weight status in preschool. Journal of developmental and behavioral
19		pediatrics: JDBP. 2008;29:403
20	70.	Patrick H, Nicklas TA, Hughes SO, Morales M. The benefits of authoritative feeding
21		style: Caregiver feeding styles and children's food consumption patterns. Appetite.
22		2005;44:243-249
23	71.	Arlinghaus KR, Vollrath K, Hernandez DC, Momin SR, O'Connor TM, Power TG, Hughes
24		SO. Authoritative parent feeding style is associated with better child dietary quality at
25		dinner among low-income minority families. The American journal of clinical nutrition.
26		2018;108:730-736

1	72.	DiSantis K, Hodges E, Johnson S, Fisher J. The role of responsive feeding in overweight
2		during infancy and toddlerhood: A systematic review. Int. J. Obes. 2011;35:480
3	73.	Mascola AJ, Bryson SW, Agras WS. Picky eating during childhood: A longitudinal study
4		to age 11 years. Eating behaviors. 2010;11:253-257
5	74.	Hodges EA, Wasser HM, Colgan BK, Bentley ME. Development of feeding cues during
6		infancy and toddlerhood. MCN. The American journal of maternal child nursing.
7		2016;41:244
8	75.	Hodges EA, Hughes SO, Hopkinson J, Fisher JO. Maternal decisions about the initiation
9		and termination of infant feeding. Appetite. 2008;50:333-339
10	76.	Pridham KF, Berger Knight C, Stephenson GR. Mothers' working models of infant
11		feeding: Description and influencing factors. J. Adv. Nurs. 1989;14:1051-1061
12	77.	Gross RS, Fierman AH, Mendelsohn AL, Chiasson MA, Rosenberg TJ, Scheinmann R,
13		Messito MJ. Maternal perceptions of infant hunger, satiety, and pressuring feeding styles
14		in an urban latina wic population. Academic pediatrics. 2010;10:29-35
15	78.	Mallan KM, Sullivan SE, Susan J, Daniels LA. The relationship between maternal
16		feeding beliefs and practices and perceptions of infant eating behaviours at 4 months.
17		Appetite. 2016;105:1-7
18	79.	Stifter CA, Anzman-Frasca S, Birch LL, Voegtline K. Parent use of food to soothe
19		infant/toddler distress and child weight status. An exploratory study. Appetite.
20		2011;57:693-699
21	80.	Paul IM, Savage JS, Anzman SL, Beiler JS, Marini ME, Stokes JL, Birch LL. Preventing
22		obesity during infancy: A pilot study. Obesity. 2011;19:353-361
23	81.	Savage JS, Birch LL, Marini M, Anzman-Frasca S, Paul IM. Effect of the insight
24		responsive parenting intervention on rapid infant weight gain and overweight status at
25		age 1 year: A randomized clinical trial. JAMA pediatrics. 2016;170:742-749

1	82.	Hohman EE, Paul IM, Birch LL, Savage JS. Insight responsive parenting intervention is
2		associated with healthier patterns of dietary exposures in infants. Obesity. 2017;25:185-
3		191
4	83.	Olmsted RW, Minde K, Shosenberg N, Marton P, Thompson J, Ripley J, Burns S. Self-
5		help groups in a premature nursery—a controlled evaluation. The Journal of pediatrics.
6		1980;96:933-940
7	84.	Brion M-JA, Lawlor DA, Matijasevich A, Horta B, Anselmi L, Araújo CL, Menezes AMB,
8		Victora CG, Smith GD. What are the causal effects of breastfeeding on iq, obesity and
9		blood pressure? Evidence from comparing high-income with middle-income cohorts. Int.
10		J. Epidemiol. 2011;40:670-680
11	85.	Colen CG, Ramey DM. Is breast truly best? Estimating the effects of breastfeeding on
12		long-term child health and wellbeing in the united states using sibling comparisons. Soc.
13		Sci. Med. 2014;109:55-65
14	86.	Kramer MS, Guo T, Platt RW, Sevkovskaya Z, Dzikovich I, Collet J-P, Shapiro S,
15		Chalmers B, Hodnett E, Vanilovich I. Infant growth and health outcomes associated with
16		3 compared with 6 mo of exclusive breastfeeding. The American journal of clinical
17		nutrition. 2003;78:291-295
18	87.	Kramer MS, Matush L, Vanilovich I, Platt RW, Bogdanovich N, Sevkovskaya Z,
19		Dzikovich I, Shishko G, Collet J-P, Martin RM. Effects of prolonged and exclusive
20		breastfeeding on child height, weight, adiposity, and blood pressure at age 6.5 y:
21		Evidence from a large randomized trial The American Journal of Clinical Nutrition.
22		2007;86:1717-1721
23	88.	Oken E, Patel R, Guthrie LB, Vilchuck K, Bogdanovich N, Sergeichick N, Palmer TM,
24		Kramer MS, Martin RM. Effects of an intervention to promote breastfeeding on maternal
25		adiposity and blood pressure at 11.5 y postpartum: Results from the promotion of

- 1 breastfeeding intervention trial, a cluster-randomized controlled trial-. The American journal of clinical nutrition. 2013;98:1048-1056 2 89. Martin RM, Kramer MS, Patel R, Rifas-Shiman SL, Thompson J, Yang S, Vilchuck K, 3 Bogdanovich N, Hameza M, Tilling K. Effects of promoting long-term, exclusive 4 5 breastfeeding on adolescent adiposity, blood pressure, and growth trajectories: A secondary analysis of a randomized clinical trial. JAMA pediatrics. 2017;171:e170698-6 7 e170698 90. Disantis KI, Collins BN, Fisher JO, Davey A. Do infants fed directly from the breast have 8 improved appetite regulation and slower growth during early childhood compared with 9 infants fed from a bottle? Int J Behav Nutr Phys Act. 2011;8:89 10 91. Brown A, Lee M. Breastfeeding during the first year promotes satiety responsiveness in 11 12 children aged 18-24 months. Pediatric obesity. 2012;7:382-390 13 92. Li R, Fein SB, Grummer-Strawn LM. Do infants fed from bottles lack self-regulation of milk intake compared with directly breastfed infants? Pediatrics. 2010;125:e1386-1393 14 93. Ventura AK, Pollack Golen R. A pilot study comparing opaque, weighted bottles with 15 conventional, clear bottles for infant feeding. Appetite. 2015;85:178-184 16 17 94. Shloim N, Vereijken C, Blundell P, Hetherington MM. Looking for cues - infant communication of hunger and satiation during milk feeding. Appetite. 2017;108:74-82 18 19 95. Dovey TM, Staples PA, Gibson EL, Halford JC. Food neophobia and 'picky/fussy'eating in children: A review. Appetite. 2008;50:181-193 20 Carruth BR, Skinner J, Houck K, Moran III J, Coletta F, Ott D. The phenomenon of "picky 21 96. eater": A behavioral marker in eating patterns of toddlers. J. Am. Coll. Nutr. 22 23 1998;17:180-186 24 97. Brown S, Harris G. Disliked food acting as a contaminant during infancy. A disgust
- based motivation for rejection. *Appetite*. 2012;58:535-538

1	98.	Harris HA, Ria-Searle B, Jansen E, Thorpe K. What's the fuss about? Parent
2		presentations of fussy eating to a parenting support helpline. Public health nutrition.
3		2018;21:1520-1528
4	99.	Webber L, Cooke L, Hill C, Wardle J. Associations between children's appetitive traits
5		and maternal feeding practices. J. Am. Diet. Assoc. 2010;110:1718-1722
6	100.	Birch LL, McPhee L, Shoba B, Pirok E, Steinberg L. What kind of exposure reduces
7		children's food neophobia?: Looking vs. Tasting. Appetite. 1987;9:171-178
8	101.	Faith MS, Kerns J. Infant and child feeding practices and childhood overweight: The role
9		of restriction. Maternal & child nutrition. 2005;1:164-168
10	102.	Galloway AT, Fiorito L, Lee Y, Birch LL. Parental pressure, dietary patterns, and weight
11		status among girls who are "picky eaters". J. Am. Diet. Assoc. 2005;105:541-548
12	103.	Fisher JO, Birch LL. Restricting access to palatable foods affects children's behavioral
13		response, food selection, and intake. The American journal of clinical nutrition.
14		1999;69:1264-1272
15	104.	Francis LA, Hofer SM, Birch LL. Predictors of maternal child-feeding style: Maternal and
16		child characteristics. Appetite. 2001;37:231-243
17	105.	Johnson SL, Birch LL. Parents' and children's adiposity and eating style. Pediatrics.
18		1994;94:653-661
19	106.	Murashima M, Hoerr SL, Hughes SO, Kaplowitz SA. Feeding behaviors of low-income
20		mothers: Directive control relates to a lower bmi in children, and a nondirective control
21		relates to a healthier diet in preschoolers The American journal of clinical nutrition.
22		2012;95:1031-1037
23	107.	Blissett J. Relationships between parenting style, feeding style and feeding practices
24		and fruit and vegetable consumption in early childhood. Appetite. 2011;57:826-831
25	108.	Birch LL, Marlin DW. I don't like it; i never tried it: Effects of exposure on two-year-old
26		children's food preferences. Appetite. 1982;3:353-360

1	109.	Sullivan SA, Birch LL. Pass the sugar, pass the salt: Experience dictates preference.
2		Dev. Psychol. 1990;26:546
3	110.	Carruth BR, Ziegler PJ, Gordon A, Barr SI. Prevalence of picky eaters among infants
4		and toddlers and their caregivers' decisions about offering a new food. J. Am. Diet.
5		Assoc. 2004;104:57-64
6	111.	Pliner P, Stallberg-White C. "Pass the ketchup, please": Familiar flavors increase
7		children's willingness to taste novel foods. Appetite. 2000;34:95-103
8	112.	Fisher JO, Mennella JA, Hughes SO, Liu Y, Mendoza PM, Patrick H. Offering "dip"
9		promotes intake of a moderately-liked raw vegetable among preschoolers with genetic
10		sensitivity to bitterness. Journal of the Academy of Nutrition and Dietetics.
11		2012;112:235-245
12	113.	Pelchat ML, Pliner P. "Try it. You'll like it". Effects of information on willingness to try
13		novel foods. Appetite. 1995;24:153-165
14	114.	Momin SR, Hughes SO, Elias C, Papaioannou MA, Phan M, Vides D, Wood AC.
15		Observations of toddlers' sensory-based exploratory behaviors with a novel food.
16		Appetite. 2018;131:108-116
17	115.	Orrell-Valente JK, Hill LG, Brechwald WA, Dodge KA, Pettit GS, Bates JE. "Just three
18		more bites": An observational analysis of parents' socialization of children's eating at
19		mealtime. Appetite. 2007;48:37-45
20	116.	Carper J, Fisher JO, Birch LL. Young girls' emerging dietary restraint and disinhibition
21		are related to parental control in child feeding. Appetite. 2000;35:121-129
22	117.	Fisher JO, Birch LL. Restricting access to foods and children's eating. Appetite.
23		1999;32:405-419
24	118.	Fisher JO, Birch LL. Restricting access to foods and children's eating. Appetite.
25		1999;32:405-419

119. Johnson SL, Birch LL. Parents' and children's adiposity and eating style. *Pediatrics*.
 1994;94:653-661

- Tripicchio GL, Keller KL, Johnson C, Pietrobelli A, Heo M, Faith MS. Differential
 maternal feeding practices, eating self-regulation, and adiposity in young twins.
 Pediatrics. 2014:peds. 2013-3828
- Hughes C, Ensor R. Individual differences in growth in executive function across the
 transition to school predict externalizing and internalizing behaviors and self-perceived
 academic success at 6 years of age. *J. Exp. Child Psychol.* 2011;108:663-676
- 9 122. Flacking R, Nyqvist KH, Ewald U. Effects of socioeconomic status on breastfeeding
- 10 duration in mothers of preterm and term infants. *European journal of public health*.
- 11 2007;17:579-584
- 12 123. Amir LH, Donath SM. Socioeconomic status and rates of breastfeeding in australia:
- 13 Evidence from three recent national health surveys. *Med. J. Aust.* 2008;189:254-256
- 14 124. Shrewsbury V, Wardle J. Socioeconomic status and adiposity in childhood: A systematic
 review of cross-sectional studies 1990–2005. *Obesity*. 2008;16:275-284
- 16 125. Sobal J, Stunkard AJ. Socioeconomic status and obesity: A review of the literature.
- 17 *Psychol. Bull.* 1989;105:260
- 18 126. Wojcicki JM. Maternal prepregnancy body mass index and initiation and duration of
- breastfeeding: A review of the literature. *Journal of Women's Health*. 2011;20:341-347
- 127. Donath S, Amir L. Does maternal obesity adversely affect breastfeeding initiation and
 duration? *J. Paediatr. Child Health.* 2000;36:482-486
- 22 128. Thompson LA, Zhang S, Black E, Das R, Ryngaert M, Sullivan S, Roth J. The
- association of maternal pre-pregnancy body mass index with breastfeeding initiation.
- 24 Maternal and child health journal. 2013;17:1842-1851

1	129.	Oddy WH, Li J, Landsborough L, Kendall GE, Henderson S, Downie J. The association
2		of maternal overweight and obesity with breastfeeding duration. The Journal of
3		pediatrics. 2006;149:185-191
4	130.	Donath SM, Amir LH. Maternal obesity and initiation and duration of breastfeeding: Data
5		from the longitudinal study of australian children. Maternal & Child Nutrition. 2008;4:163-
6		170
7	131.	Li R, Jewell S, Grummer-Strawn L. Maternal obesity and breast-feeding practices. The
8		American journal of clinical nutrition. 2003;77:931-936
9	132.	Haycraft EL, Blissett JM. Maternal and paternal controlling feeding practices: Reliability
10		and relationships with bmi. Obesity. 2008;16:1552-1558
11	133.	Saelens BE, Ernst MM, Epstein LH. Maternal child feeding practices and obesity: A
12		discordant sibling analysis. Int. J. Eat. Disord. 2000;27:459-463
13	134.	Haycraft E, Blissett J. Predictors of paternal and maternal controlling feeding practices
14		with 2-to 5-year-old children. Journal of nutrition education and behavior. 2012;44:390-
15		397
16	135.	Bauer KW, Haines J, Miller AL, Rosenblum K, Appugliese DP, Lumeng JC, Kaciroti NA.
17		Maternal restrictive feeding and eating in the absence of hunger among toddlers: A
18		cohort study. international journal of behavioral nutrition and physical activity.
19		2017;14:172
20	136.	Jansen E, Williams KE, Mallan KM, Nicholson JM, Daniels LA. Bidirectional associations
21		between mothers' feeding practices and child eating behaviours. international journal of
22		behavioral nutrition and physical activity. 2018;15:3
23	137.	Gregory JE, Paxton SJ, Brozovic AM. Maternal feeding practices, child eating behaviour
24		and body mass index in preschool-aged children: A prospective analysis. International
25		Journal of Behavioral Nutrition and Physical Activity. 2010;7:55

1	138.	Webber L, Cooke L, Hill C, Wardle J. Child adiposity and maternal feeding practices: A
2		longitudinal analysis The American journal of clinical nutrition. 2010;92:1423-1428
3	139.	Jansen PW, Tharner A, Van Der Ende J, Wake M, Raat H, Hofman A, Verhulst FC, Van
4		Ijzendoorn MH, Jaddoe VW, Tiemeier H. Feeding practices and child weight: Is the
5		association bidirectional in preschool children? The American journal of clinical nutrition.
6		2014;100:1329-1336
7	140.	Afonso L, Lopes C, Severo M, Santos S, Real H, Durão C, Moreira P, Oliveira A.
8		Bidirectional association between parental child-feeding practices and body mass index
9		at 4 and 7 y of age. The American journal of clinical nutrition. 2016;103:861-867
10	141.	Farrow CV, Blissett J. Controlling feeding practices: Cause or consequence of early child
11		weight? Pediatrics. 2008;121:e164-169
12	142.	Rodgers RF, Paxton SJ, Massey R, Campbell KJ, Wertheim EH, Skouteris H, Gibbons
13		K. Maternal feeding practices predict weight gain and obesogenic eating behaviors in
14		young children: A prospective study. International Journal of Behavioral Nutrition and
15		Physical Activity. 2013;10:24
16	143.	Campbell K, Andrianopoulos N, Hesketh K, Ball K, Crawford D, Brennan L, Corsini N,
17		Timperio A. Parental use of restrictive feeding practices and child bmi z-score. A 3-year
18		prospective cohort study. Appetite. 2010;55:84-88
19	144.	Tschann JM, Martinez SM, Penilla C, Gregorich SE, Pasch LA, de Groat CL, Flores E,
20		Deardorff J, Greenspan LC, Butte NF. Parental feeding practices and child weight status
21		in mexican american families: A longitudinal analysis. International Journal of Behavioral
22		Nutrition and Physical Activity. 2015;12:66
23	145.	Thompson AL, Adair LS, Bentley ME. Pressuring and restrictive feeding styles influence
24		infant feeding and size among a low-income african-american sample. Obesity.
25		2013;21:562-571

1	146.	Daniels L, Mallan K, Battistutta D, Nicholson J, Perry R, Magarey A. Evaluation of an
2		intervention to promote protective infant feeding practices to prevent childhood obesity:
3		Outcomes of the nourish rct at 14 months of age and 6 months post the first of two
4		intervention modules. Int. J. Obes. 2012;36:1292
5	147.	Organization WH. Who child growth standards: Length/height for age, weight-for-age,
6		weight-for-length, weight-for-height and body mass index-for-age, methods and
7		development. World Health Organization; 2006.
8	148.	Carruth BR, Skinner JD. Feeding behaviors and other motor development in healthy
9		children (2–24 months). J. Am. Coll. Nutr. 2002;21:88-96
10	149.	Hallé PA, de Boysson-Bardies B. Emergence of an early receptive lexicon: Infants'
11		recognition of words. Infant behavior and development. 1994;17:119-129
12	150.	Mitchell P, Lacohée H. Children's early understanding of false belief. Cognition.
13		1991;39:107-127
14	151.	Kuczynski L, Kochanska G, Radke-Yarrow M, Girnius-Brown O. A developmental
15		interpretation of young children's noncompliance. Dev. Psychol. 1987;23:799
16	152.	Silva IdS, De Stavola BL, Mann V, Kuh D, Hardy R, Wadsworth ME. Prenatal factors,
17		childhood growth trajectories and age at menarche. Int. J. Epidemiol. 2002;31:405-412
18	153.	Sun J, Nwaru BI, Hua J, Li X, Wu Z. Infant bmi peak as a predictor of overweight and
19		obesity at age 2 years in a chinese community-based cohort. BMJ open.
20		2017;7:e015122
21	154.	Monteiro POA, Victora CG. Rapid growth in infancy and childhood and obesity in later
22		life-a systematic review. Obesity reviews. 2005;6:143-154
23	155.	Rothbart MK, Ahadi SA, Evans DE. Temperament and personality: Origins and
24		outcomes. J Personal Soc Psych. 2000;78:122-135

1	156.	Slining MM, Adair L, Goldman BD, Borja J, Bentley M. Infant temperament contributes to
2		early infant growth: A prospective cohort of african american infants. Int J Behav Nutr
3		Phys Act. 2009;6:51
4	157.	Bergmeier H, Skouteris H, Horwood S, Hooley M, Richardson B. Associations between
5		child temperament, maternal feeding practices and child body mass index during the
6		preschool years: A systematic review of the literature. Obesity Reviews. 2014;15:9-18
7	158.	Hittner JB, Johnson C, Tripicchio G, Faith MS. Infant emotional distress, maternal
8		restriction at a home meal, and child bmi gain through age 6years in the colorado
9		adoption project. Eat Behav. 2016;21:135-141
10	159.	Peacock-Chambers E, Radesky JS, Parker SE, Zuckerman B, Lumeng JC, Silverstein
11		M. Infant regulatory problems and obesity in early childhood. Acad Pediatr. 2017;17:523-
12		528
13	160.	Wasser H, Bentley M, Borja J, Davis Goldman B, Thompson A, Slining M, Adair L.
14		Infants perceived as "fussy" are more likely to receive complementary foods before 4
15		months. Pediatrics. 2011;127:229-237
16	161.	Stifter CA, Anzman-Frasca S, Birch LL, Voegtline K. Parent use of food to soothe
17		infant/toddler distress and child weight status. An exploratory study. Appetite.
18		2011;57:693-699
19	162.	Horning ML, Fulkerson JA. A systematic review on the affordability of a healthful diet for
20		families in the united states. Public Health Nurs. 2015;32:68-80
21	163.	Carty SA, Mainvil LA, Coveney JD. Exploring family home food environments:
22		Household resources needed to utilise weekly deliveries of free fruits and vegetables.
23		Nutrition & dietetics. 2017;74:138-146
24	164.	Devine CM, Jastran M, Jabs J, Wethington E, Farell TJ, Bisogni CA. "A lot of sacrifices:"
25		work-family spillover and the food choice coping strategies of low-wage employed
26		parents. <i>Soc. Sci. Med.</i> 2006;63:2591-2603

165.	Roy KM, Tubbs CY, Burton LM. Don't have no time: Daily rhythms and the organization
	of time for low-income families. Family Relations. 2004;53:168-178
166.	Jarrett RL, Bahar OS, Kersh RT. "When we do sit down together" family meal times in
	low-income african american families with preschoolers. Journal of Family Issues.
	2016;37:1483-1513
167.	Vedovato GM, Surkan PJ, Jones-Smith J, Steeves EA, Han E, Trude AC, Kharmats AY,
	Gittelsohn J. Food insecurity, overweight and obesity among low-income african-
	american families in baltimore city: Associations with food-related perceptions. Public
	health nutrition. 2016;19:1405-1416
168.	Mena NZ, Gorman K, Dickin K, Greene G, Tovar A. Contextual and cultural influences
	on parental feeding practices and involvement in child care centers among hispanic
	parents. Childhood obesity. 2015;11:347-354
169.	Daniel C. Economic constraints on taste formation and the true cost of healthy eating.
	Soc. Sci. Med. 2016;148:34-41
170.	Swyden K, Sisson SB, Morris AS, Lora K, Weedn AE, Copeland KA, DeGrace B.
	Association between maternal stress, work status, concern about child weight, and
	restrictive feeding practices in preschool children. Maternal and child health journal.
	2017;21:1349-1357
171.	Coyne SM, McDaniel BT, Stockdale LA. "Do you dare to compare?" associations
	between maternal social comparisons on social networking sites and parenting, mental
	health, and romantic relationship outcomes. Computers in Human Behavior.
	2017;70:335-340
172.	Thullen M, Majee W, Davis AN. Co-parenting and feeding in early childhood: Reflections
	of parent dyads on how they manage the developmental stages of feeding over the first
	three years. Appetite. 2016;105:334-343
	 166. 167. 168. 169. 170. 171.

1	173.	Khandpur N, Charles J, Blaine RE, Blake C, Davison K. Diversity in fathers' food
2		parenting practices: A qualitative exploration within a heterogeneous sample. Appetite.
3		2016;101:134-145
4	174.	Galanti G-A. The hispanic family and male-female relationships: An overview. J.
5		Transcult. Nurs. 2003;14:180-185
6	175.	O'Connor T, Perez O, Garcia IC, Gallagher M. Engaging latino fathers in children's
7		eating and other obesity-related behaviors: A review. Current nutrition reports.
8		2018;7:29-38
9	176.	Kumanyika SK. Environmental influences on childhood obesity: Ethnic and cultural
10		influences in context. Physiol. Behav. 2008;94:61-70
11	177.	Pulgaron ER, Marchante AN, Agosto Y, Lebron CN, Delamater AM. Grandparent
12		involvement and children's health outcomes: The current state of the literature. Families,
13		Systems, & Health. 2016;34:260
14	178.	Cardel M, Willig AL, Dulin-Keita A, Casazza K, Beasley TM, Fernández JR. Parental
15		feeding practices and socioeconomic status are associated with child adiposity in a
16		multi-ethnic sample of children. Appetite. 2012;58:347-353
17	179.	Tovar A, Must A, Metayer N, Gute DM, Pirie A, Hyatt RR, Economos CD. Immigrating to
18		the us: What brazilian, latin american and haitian women have to say about changes to
19		their lifestyle that may be associated with obesity. Journal of immigrant and minority
20		health. 2013;15:357-364
24	400	Managhin O, Jacoba E, Mallan K, Nishalang J, Managara A, and Daviala J
21	180.	McMeekin, S., Jansen, E., Mallan, K., Nicholson, J., Magarey, A., and Daniels, L.
22		Associations between infant temperament and early feeding practices. A cross-sectional
23		study of Australian mother-infant dyads from the NOURISH randomised controlled trial.
24		Appetite 60, 2013; 239-245.

1	181.	Hurley KM, Black MM, Papas MA, Caufield LE. Maternal symptoms of stress,
2		depression, and anxiety are related to nonresponsive feeding styles in a statewide
3		sample of wic participants. The Journal of nutrition. 2008;138:799-805
4	182.	Haycraft E, Farrow C, Blissett J. Maternal symptoms of depression are related to
5		observations of controlling feeding practices in mothers of young children. Journal of
6		Family Psychology. 2013;27:159
7	183.	Gillison FB, Lorenc AB, Sleddens EF, Williams SL, Atkinson L. Can it be harmful for
8		parents to talk to their child about their weight? A meta-analysis. Prev. Med.
9		2016;93:135-146
10	184.	Epstein L. Family-based behavioural intervention for obese children. International journal
11		of obesity and related metabolic disorders: journal of the International Association for the
12		Study of Obesity. 1996;20:S14-21
13	185.	Boutelle KN, Cafri G, Crow SJ. Parent predictors of child weight change in family based
14		behavioral obesity treatment. Obesity. 2012;20:1539-1543
15	186.	Johnson SL, Taylor-Holloway LA. Non-hispanic white and hispanic elementary school
16		children's self-regulation of energy intake. The American journal of clinical nutrition.
17		2006;83:1276-1282
18	187.	Powers SW, Chamberlin LA, Schaick KB, Sherman SN, Whitaker RC. Maternal feeding
19		strategies, child eating behaviors, and child bmi in low-income african-american
20		preschoolers. Obesity. 2006;14:2026-2033
21	188.	Rydell A-M, Dahl M, Sundelin C. Characteristics of school children who are choosy
22		eaters. The Journal of genetic psychology. 1995;156:217-229

Appetitive Trait	Definition	Direction of	Evidence of null
		Association	associations?1
Traits with consistent e	vidence across studies		
Eating in the absence	Eating when having recently	Positive ^{6, 8, 11,}	-
of hunger (EAH)	consumed a meal to satiation	12, 19	
Enjoyment of food	The extent to which palatable	Positive ^{10, 21, 26}	-
	foods provoke eating		
Restrained eating	How strong attempts to	Inverse ²²⁻²⁴	
	restrain eating are		
Satiety	The extent to which children	Positive ^{5, 10, 21,}	-
responsiveness	avoid eating, and for how long	26	
	after, satiation		
Slowness in eating	Fewer bites per minute,	Inverse 10, 21, 26	-
	usually as a meal progresses		
Traits with null studies	and studies suggesting a consiste	ent direction of as	sociation with child
adiposity			
Compensation of	The extent to which energy	Positive ^{13, 105}	One exception ¹⁸⁶
energy intake	intake is reduced, following a		
	caloric 'preload'		
Desire to drink	The tendency to carry drinks,	Positive ^{10, 21}	One exception ¹⁸⁷
	(often sweetened).		
Emotional Overeating	The extent of a tendency to	Positive ^{10, 21}	One exception ²⁶
	eat in response to negative		
	emotions		

Table 1: The Association of Appetitive Traits with Child Adiposity

Emotional	The extent of a tendency	Inverse ²¹	Yes ^{10, 26}
undereating	reduce food intake in		
	response to negative emotions		
External eating / Food	Eating in response to external	Positive ^{5, 10, 21-} 23, 26	One exception ¹⁸⁷
responsiveness	(usually food-related stimuli).		
Food fussiness /	Selectivity regarding which	Positive ^{10, 21, 25,}	Yes ^{26, 188}
pickiness	foods are consumed	26	

Figure 1: Feeding Styles Typology

	Respon	siveness	
	Low	High	
w High	 Authoritarian Sets boundaries around food. Targets child eating behaviors directly Often uses directive strategies. 	 Authoritative Sets boundaries around food Maintains responsivity to child hunger / satiation cues Targets child eating behaviors covertly via the feeding environment Supports child autonomy 	
Low	Uninvolved • Low responsivity to child hunger / satiation cues • Boundaries around food are few	Indulgent Maintains responsivity to child hunger / satiation cues Boundaries around food are few Lack of structure to the eating environment 	