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This study shows that the spatial specificity of MEG beamformer estimates of electrical activity can be
affected significantly by the way in which covariance estimates are calculated. We define spatial specificity as
the ability to extract independent timecourse estimates of electrical brain activity from two separate brain
locations in close proximity. Previous analytical and simulated results have shown that beamformer
estimates are affected by narrowing the time frequency window in which covariance estimates are made.
Here we build on this by both experimental validation of previous results, and investigating the effect of data
averaging prior to covariance estimation. In appropriate circumstances, we show that averaging has a
marked effect on spatial specificity. However the averaging process results in ill-conditioned covariance
matrices, thus necessitating a suitable matrix regularisation strategy, an example of which is described. We
apply our findings to an MEG retinotopic mapping paradigm. A moving visual stimulus is used to elicit brain
activation at different retinotopic locations in the visual cortex. This gives the impression of a moving
electrical dipolar source in the brain. We show that if appropriate beamformer optimisation is applied, the
moving source can be tracked in the cortex. In addition to spatial reconstruction of the moving source, we
show that timecourse estimates can be extracted from neighbouring locations of interest in the visual cortex.
If appropriate methodology is employed, the sequential activation of separate retinotopic locations can be
observed. The retinotopic paradigm represents an ideal platform to test the spatial specificity of source
localisation strategies. We suggest that future comparisons of MEG source localisation techniques (e.g.
beamformer, minimum norm, Bayesian) could be made using this retinotopic mapping paradigm.

© 2009 Elsevier Inc. Open access under CC BY license. 
Introduction

Magnetoencephalography (MEG) is a non-invasive functional
brain imaging modality that measures the magnetic fields induced
above the scalp by the flow of ion currents between the dendritic tree
and the soma of neuronal cells (Hamalainen et al., 1993). MEG is a
direct measure of neuronal activity since the magnitude of the
measured fields is directly proportional to themagnitude of the neural
current. This means that MEG has excellent temporal resolution.
However, its spatial specificity (defined here as the ability to extract
accurate temporal estimates of electrical activity from spatially separate
sources in the brain) is limited due to the inverse problem which can
be stated: given a measured magnetic field distribution outside the head,
can we reconstruct spatially the neuronal current distribution in the
brain? This problem is ill-posed (Hadamard, 1952) since, due to field
cancellation, a single measured field could result from an infinite
number of possible current distributions, meaning that no unique
M.J. Brookes).
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inverse solution exists. However, in recent years the spatial specificity
of MEG has been improved by the introduction of beamformer
techniques (Van Drongelen et al., 1996; Van Veen et al., 1997;
Robinson and Vrba, 1998; Gross et al., 2001; Sekihara et al., 2001,
2002b).

Beamforming is a spatial filtering approach based on a weighted
sum of field measurements (Van Drongelen et al., 1996; Van Veen et
al., 1997; Robinson and Vrba, 1998; Gross et al., 2001, Sekihara et al.,
2001, 2002b; Robinson, 2004; Cheyne et al., 2006). Each measured
field is multiplied by a weighting factor, and the weighted sum of
sensor measurements gives an estimate of source amplitude at a
predetermined location in the brain. Unlike other localisation metrics,
weighting parameters are data driven and derived based on power
minimisation: the average power emanating from the source space
(i.e. the head) within a given time frequency window (the covariance
window) is minimised, but with a constraint that power originating
from our predetermined location must remain in the output signal.
The result is a set of weighting parameters tuned specifically to a
single location. Sequential application of this calculation to a number
of locations can result in a volumetric image of source power. Task
related change in activity can be imaged either by contrasting power
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estimates made using separate active and control covariance
windows, or by parsing the beamformer projected time series into
active and control segments using beamformer coefficients derived
from a single covariance window. When processed in this way the
spatial specificity of MEG is dependant on the spatial specificity of the
weighting parameters. This in turn depends on the signal to noise
ratio (SNR) of the data, the duration of the covariance window (Tcov),
the signal bandwidth (BW), and matrix regularisation (Brookes et al.,
2008). Some of these factors can be controlled by experimental
design, i.e. Tcov. Other factors, i.e. BW, SNR etc. depend on the effect of
interest.

Neuromagnetic effects fall generally into two groups (Pfurtscheller
and Lopes da Silva, 1999). Non-phase-locked induced effects comprise
stimulus related changes in spontaneous rhythms. Due to their non-
phase-locked nature they are eliminated by trial averaging. Phase-
locked effects comprise evoked responses and driven oscillations. In
both cases the onset phase of the neuromagnetic signal is equivalent
for each stimulus presentationmeaning that the effect remains visible
after averaging. Beamformers are well suited to imaging induced
responses. This is because induced power changes can last for several
seconds and, in some cases, their duration can be controlled by
experimental design. The covariance window is constructed by
concatenating data from multiple trials and if the effect of interest
remains observable and stationary for an extended periodwithin each
trial, the concatenated covariance window is large. Beamformers are
sensitive to covariance window duration and the extended period
helps to achieve an accurate spatial reconstruction. Averaging phase-
locked effects across trials allows a larger SNR than that of induced
effects, which potentially could improve spatial specificity of
beamformer weights. However, averaging (rather than concatenat-
ing) data from individual trials reduces the covariance window. In
addition, the reduction in random noise achieved by averaging can
cause covariance matrices to become singular or ill-conditioned
meaning that matrix regularisation has to be introduced. These effects
make imaging averaged phase-locked responses difficult. SAMerf
(Robinson, 2004) and erSAM (Cheyne et al., 2006, 2007) are
beamformer techniques that have been used to image evoked
responses. In both cases, weighting parameters are derived based on
unaveraged data. This is sensible since Tcov is made large, however,
one could argue that the weights are not tuned optimally to the effect
of interest and spatial specificity is not optimal.

In this paper we aim to combine known theory, simulation and
experiment in order to investigate the improved spatial specificity
that may be afforded by the increase in SNR observed when sensor
level MEG data are averaged. Initially, a simple model is considered
comprising a dipolar source and Gaussian noise. Previously published
theory (Brookes et al., 2008) is used to show that the accuracy of a
data derived covariance matrix is affected by trial averaging. The
effect of averaging on matrix condition number and techniques for
matrix regularisation are also considered. This simulation is extended
to a 2-source simulation employing measured MEG noise. We show
that in most cases, averaging across trials will not significantly change
results. However, if two phase-locked sources are in close proximity,
averaging across trials can improve spatial specificity.

Our simulated results are extended to a retinotopic mapping
experiment. A smoothly rotating and flashing wedge visual stimulus is
employed to induce driven, phase-locked oscillations within visual
cortex. It is well known that the visual field is mapped retinotopically
onto the visual cortex, meaning that as the wedge moves, cortical
pyramidal cells at different locations are activated sequentially. This
gives the impression of a moving electrical source in the brain. Tracking
the retinotopicmotion of such a source has been donepreviously (Engel
et al., 1994; Aine et al., 1996; Gramfort et al., 2007; Yoshioka et al., 2008;
Hagler et al., 2009); however it remains challenging in MEG due to the
non-stationary nature of the source, and the complex geometry of the
visual cortex. We present results showing that this moving source,
induced by the retinotopic stimulus, can be tracked using MEG
beamformer methodology. A sliding covariance window technique,
similar to that introduced by Dalal et al. (2008), is used to extract
timecourse estimates showing the sequential activation of regions in
visual cortex. We show that these results are only possible if data
averaging is employed. The excellent spatiotemporal resolution of MEG
is highlighted, andwepropose that the retinotopyparadigmbeusedasa
future measure of spatial specificity.

Theory and simulation

Notation

Using a beamformer, electrical source amplitude, Q̂ θ(t) at a
predetermined location in source space is estimated using a weighted
sum of the field measurements such that:

Q ̂θ tð Þ = WT
θm tð Þ ð1Þ

m(t) is a vector of magnetic field measurements made at M MEG
sensors at time t. Wθ is a vector of weighting parameters that are
tuned to the location and orientation represented by θ. Using a
spherical head model, since MEG is insensitive to radial dipoles,
source orientation can be represented by a vector in a plane
tangential to the radial direction so that θ=[r,δ], where r represents
location, and δ is the angle of the source with respect to the
azimuthal direction. Note that using a multi sphere model (Huang et
al., 1999), the tangential plane is derived with respect to the average
sphere. To derive Wθ, the overall power in the estimated signal,
e Q ̂2

θ

h i
, computed over covariance window, Tcov, is minimised but

with the constraint that power originating from a source with
location and orientation (θ) must remain in the output signal.
Mathematically this can be written.

minWθ
e Q ̂2θ
� �h i

subject to WT
θLθ = 1 ð2Þ

where Lθ represents the lead fields. The estimated power at θ can be
represented by e Q ̂2θ

h i
= WT

θCWθ and C represents the M×M data
covariance matrix. The solution to Eq. (2) is (Van Veen et al., 1997):

WT
θ = LTθC

−1Lθ
h i−1

LTθC
−1

: ð3Þ

Eq. (3) is well known and shows clearly that the beamformer
weighting parameters are dependent on an accurate measurement of
data covariance. For all computations in this paper the scalar
beamformer is employed. In this formulation the angle δ is found
independently at each r using a non-linear search to compute the
orientation of maximal variance (Robinson and Vrba, 1998).

Analytical insights

Our previous work (Brookes et al., 2008) has investigated what
parameters affect the accuracy of the covariance matrix. The
covariance matrix error, ΔC, is defined as the difference between
the measured covariance matrix, C, and a perfectly calculated
covariance matrix, denoted by C0. Generally we can write:

ΔC = C − C0: ð4Þ

Using a model incorporating a single dipolar source (amplitude Q1

and lead field pattern B1) and Gaussian noise uncorrelated across
sensors (variance ν2) the perfectly constructed covariance matrix is
given by

C0 = v2I + Q2
1B1B

T
1 ð5Þ
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and the Frobenius norm of the covariance matrix error can be shown
to be:

‖ΔC‖F = v2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SNR + 1
2TcovBW

s
: ð6Þ

SNR represents the signal to noise ratio of the source of interest and is
given by:

SNR = Q2
1 ‖B1‖

2
F =Mv2: ð7Þ

The quantity ‖ΔC‖F is a measure of the total error in the covariance
matrix, and previous simulations have shown that if this quantity is
large, the accuracy of the beamformer estimated source power will be
degraded severely (Brookes et al., 2008).

It is possible to use Eq. (6) to provide insight into the effect of data
averaging on the accuracy of the covariance matrix. We know that by
increasing the number of averages the random noise variance, ν2, will
be reduced such that ν2→ν2/Nave where Nave is the total number of
trials averaged. In addition, the covariance window duration will also
be reduced such that Tcov→Tcov/Nave. By considering again Eq. (6) it
is simple to show that the Frobenius norm of the covariance matrix
error becomes:

‖ΔC‖F = v2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NaveSNR + 1
2NaveTcovBW

s
: ð8Þ

Plotting ‖ΔC‖F as a function of Nave (see Fig. 1A, solid green line)
shows that averaging across trials causes a slight reduction in ‖ΔC‖F as
the number of averages is increased.

Single source simulation

As evidenced by Eq. (3), the accuracy of beamformer weights is
dependent not on the covariance matrix, but the inverse of the
covariance matrix. This means that not only must the covariance
estimate be accurate (i.e. ‖ΔC‖F should be small) but also that the
inverse covariance matrix be accurate. With this in mind it becomes
useful to introduce the inverse covariance matrix error, ΔCinv.

ΔCinv = C−1 − C−1
0 ð9Þ

where C0
−1 is the exact covariancematrix inverse assuming an infinite

number of samples, and C−1 is the data derived covariance matrix
inverse. Using the matrix inversion lemma and assuming an infinite
amount of data, we can show that

C−1
0 =

1
v2

I − Q2
1B1B

T
1

v2 + Q2
1 ‖B1‖

2
F

( )
: ð10Þ

In this mathematical formulation, it is possible to measure the
accuracy of the inverse covariancematrix by computing the Frobenius
norm of the inverse covariance matrix error, ‖ΔCinv‖F .

The effect of data averaging on ‖ΔC‖F and ‖ΔCinv‖F was inves-
tigated in simulation. All simulations were based on the third order
gradiometer configuration of a 275 channel CTF MEG system (Vrba
et al., 1991; Vrba and Robinson, 2001, 2002). The location of the
head with respect to the sensor array was based on an experimen-
tal recording session and a multi sphere head model (Huang et al.,
1999) was used. A single dipolar source was simulated in the
occipital cortex, and oriented perpendicular to the radial direction,
δ=25°. The forward solution, BQ1, was based on the derivation by
Sarvas (1987). A single simulated trial comprised 0.5 s of activity
(ON) followed by 0.5 s rest (OFF). The source was given as a root
mean square (r.m.s.) source strength of Q1=5 nAm and the source
timecourse during the ON period was represented by a series of
Gaussian random numbers. A total of 100 trials were simulated,
and the timecourse for each trial was identical to imitate a phase-
locked evoked signal. Gaussian noise data were added at the sensor
level with r.m.s. amplitude v=86.6 fT. The sampling frequency
was set to 600 Hz, and the flat frequency spectrum of both the
signal and noise meant that the total bandwidth was at the Nyquist
limit.

The effect of data averaging was assessed by grouping and
averaging trials. For completely averaged data, 100 groups, each
comprising a single trial were taken and averaged. Alternative
examples include, 50 groups each comprising 2 trials, or 25 groups
each comprising 4 trials. In some cases the total number of trials used
did not equal 100, for example 33 groups of 3 trials was used.
However, in all cases the total number of trials was as close to 100 as
possible. For completely unaveraged data, a single group comprising
100 trials was used. In all cases the number of averages used,Nave, was
equal to the total number of groups, and this took values of 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 14, 16, 20, 25, 33, 50 and 100.

For each value of Nave, four covariance matrices were con-
structed: Cact was created using only data recorded during the ON
period. Cpass was created using data recorded during the OFF period.
Cm =

Cact + Cpassð Þ
2 and represents the mean covariance of the ON and

OFF periods. A regularised version of Cmwas also constructed, denoted
by Cm

(reg). The strategy for regularisation is described in Appendix I and
is summarised by the equation:

C regð Þ
m = Cm + μ + 1ð Þsunav − sCm

� �
I ð11Þ

where sCm is the minimum singular value of Cm and sunav is the
minimum singular value of C(unav) which is a covariance matrix
constructed using the entire 100 trial unaveraged dataset (including
the ON and OFF periods). Here, μ represents a parameter used to
regularise the unaveraged covariance matrix, C(unav).

Regularisation is known to reduce spatial specificity and so for
the purposes of all computations in this paper, μ was set to zero.
Using Eq. (5), a theoretical version of Cm was constructed as
Cm0 = v2I + Q2

1
2

� �
BQ1B

T
Q1 where the Q2

1 = 2 term accounts for the fact
that this equation represents mean covariance in the ON and OFF
periods. The inverse of Cm0 was also derived using Eq. 10.

The differences between the analytical and data derived
covariance matrices were assessed. The Frobenius norm of the
covariance matrix error and inverse covariance matrix error were
plotted as a function of the number of averages. Beamformer
weights were constructed using the regularised covariance

WT
θ = LTθC

regð Þ− 1

m Lθ
h i−1

LTθC
regð Þ− 1

m

� �
and used to plot reconstructed

power, calculated at the known source location, for the ON
(PON=Wθ

T CactWθ) and OFF (POFF=Wθ
T CpassWθ) periods as a

function of Nave. Finally, 1-dimensional images were created showing
the spatial distribution of the pseudo-T-statistic across the source. The
pseudo-T-statistic, —T , is given by (Vrba and Robinson, 2001):

where NON and NOFF represent the beamformer projected noise
estimates in the ON and OFF periods respectively. The whole
simulation was repeated 10 times and standard deviation between
repeats plotted where appropriate. Note that in all cases, the number
of data samples used to create covariance matrices was greater than
the number ofMEG channels. Note also that in all cases, the accuracy of
the non-linear search for δ was assessed.

The results of the simulation are shown in Fig. 1. Fig. 1A shows
‖ΔC‖F as a function of Nave. The solid line shows the theoretical
relationship (Eq. (6)) and the data points show the simulated values.

(12)



Fig. 1. Results of the single source simulation. (A) ‖ΔC‖F versus Nave. The solid line shows the theoretical relationship (Eq. (6)) and the data points show values from the simulation. (B) ‖ΔCinv‖F versus Nave for the unregularised covariance
matrix. (C) ‖ΔCinv‖F versus Nave for the regularised covariance matrix. Note the ×10−4 scaling on the y-axis. (D) Beamformer projected power for the ON (blue) and OFF (green) periods. E) One dimensional beamformer pseudo-T-stat images
extracted from a single interaction of the simulation. Images were formed in this case by scanning in the y direction but equivalent results were derived for both the x and z directions.
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The graph shows a modest improvement in the accuracy of the
covariance matrix with averaging; furthermore, the theoretical
relation agrees well with simulated data. Fig. 1B shows ‖ΔCinv‖F as a
function of Nave for the unregularised case. As shown, without matrix
regularisation, the accuracy of Cm−1 declines with data averaging. This
is a result of a decrease in rank of the covariance matrix. As the
number of averages is increased, the noise level decreases, this causes
a corresponding drop in the smallest singular value of Cm, which, in
turn, causes an increase in condition number. As Cm becomes ill-
conditioned, the accuracy of Cm−1 is degraded. Fig. 1C shows ‖ΔCinv‖F
versus Nave for the regularised case. Here the condition number of
Cm(reg) is maintained approximately constant (see Appendix I) by the
regularisation strategy outlined by Eq. (11). The result is that the
accuracy of the inverse regularised covariance matrix is no longer
degraded by data averaging. However, adding to the leading diagonal
of the covariance matrix is equivalent to adding Gaussian noise to the
simulation. This means that noise eliminated by data averaging has
effectively been added back into the covariance matrix by matrix
regularisation. Fig. 1D shows the beamformer projected power for the
ON (blue) and OFF (green) periods as a function of the number of
averages. Notice here that in all cases the active and control power
estimates are approximately correct and are relatively insensitive to
data averaging. This result is echoed in Fig. 1E which shows 1-
dimensional pseudo-T-statistical images. (The simulated source is
located at y=1 cm) Like projected power, the beamformer image
shows no dependency on whether or not the simulated data were
averaged across trials. This lack of improvement is a result of
regularisation and the fact that noise reduction through averaging is
countered by the regularisation procedure. Unfortunately, as
evidenced by Fig. 1B, regularisation is necessary to maintain the
condition number. The overall conclusion is that in the limits of the
single source and Gaussian noise model, averaging affords no benefit
to beamformer reconstruction.

Two source simulations

The above simulation was extended to incorporate a second
source. Sources were located 1 cm apart in the occipital cortex, with
parallel orientations in the tangential plane δ=25°. A multi sphere
head model was used and the location of the head with respect to the
sensor array was based on an experimental recording session. The
forward solutions were based on the derivation by Sarvas. For source
1, a single simulated trial comprised 0.5 s of activity followed by 0.5 s
rest. For source 2, a single trial comprised 0.5 s of rest followed by 0.5 s
of activity. This gave the impression that the two sources were
activated sequentially. Source 1 was given r.m.s. amplitude 5 nAm.
The r.m.s. amplitude of source 2 was set to either 5 nAm or 10 nAm. As
for our single source simulation, activity comprised a timecourse of
Gaussian random numbers. On each iteration of the simulation, 100
trials were simulated, and source timecourses were phase-locked. The
simulation was repeated 10 times.

Two strategies for adding sensor noise were employed:

1. Gaussian noise data were added, equivalent to the single source
simulation, with r.m.s. amplitude υ=86.6 fT.

2. Experimental noise data were recorded from a single healthy
volunteer.

To record experimental noise, a subject was asked to lie in theMEG
system with their eyes open and 1000 s of resting state MEG data was
recorded using the third order gradiometer configuration of a 275
channel CTF MEG system with a sampling rate of 600 Hz. (Note that
1000 s were recorded to allow 10 separate noise measurements, each
100 s in duration.) During data acquisition the location of the subject's
head within the scanner was measured by energising 3 electromag-
netic coils placed at three fiducial points on the head (nasion, left
preauricular and right preauricular). Following data acquisition, the
positions of these three coils were measured relative to the subject's
head shape using a 3D digitiser (Polhemus isotrack). An MPRAGE
structural MR brain image was acquired using a Philips Achieva 7 T
MR system. (1 mm3 isotropic resolution, 256×256×160 matrix size,
TR=8.1 ms, TE=3.7 ms, TI=960 ms, shot interval=3s, FA=8° and
SENSE factor=2.) The locations of the three fiducial points, and the
MEG sensors with respect to the brain anatomy was then determined
by surface matching the digitised head surface to the head surface
extracted from the MR image. These measured ‘brain noise’ data were
then added to the simulated measurements from the two dipoles in
the visual cortex.

As previously, data were grouped so that the effect of trial
averaging could be assessed. For each value of Nave, four covariance
matrices were constructed: Cact was created using data recorded
during the ON period of source 1 (i.e. the first 0.5 s of each trial). Cpass

was created using data recorded during the OFF period of source 1 (i.e.
0.5 sb tb1 s). A mean covariance, Cm, of the whole trial was also
calculated as previously, and this contained information on both
source 1 and source 2. A regularised version of Cm was also
constructed using the regularisation strategy summarised by Eq.
(11). Beamformer weighting parameters were derived using the
mean regularised covariance and a lead field tuned to the location of
source 1. This meant that for the purposes of this simulation, source 1
could be thought of as the source of interest whereas source two was
thought of as interference. For each value of Nave the beamformer
estimated source power, and source timecoursewere computed at the
location of source 1. Source power estimates for the ON and OFF
periods were plotted as a function of Nave. To test the accuracy of the
timecourse estimate, the correlation between the beamformer
estimated timecourse and the original simulated timecourses of
both sources 1 and 2 was calculated and plotted as a function of Nave.
Finally, the spatial distribution of the pseudo-T-statistic was plotted.

All of the above was done for both Gaussian and experimental
noise and for all computations the accuracy of the estimated δ was
noted.

Fig. 2 shows results of the two source simulation with Gaussian
noise. Fig. 2A shows the beamformer reconstructed power in the ON
(blue) and OFF (green) periods reconstructed at the location of source
1. Results are plotted against Nave. If the beamformer were completely
suppressing source 2, then the green line should remain at zero, and
the blue line should remain at 25 nAm2. The plot therefore shows
some improvement with source 2 being better suppressed as the total
number of averages is increased. This result is echoed in the
timecourse correlation shown in Fig. 2B. Here, the blue data points
show the Pearson correlation coefficient between the beamformer
timecourse estimate made at the location of source 1, and the original
simulated timecourse for source 1. The green data points show the
Pearson correlation coefficient between the beamformer timecourse
estimate made at the location of source 1, and the original simulated
timecourse for source 2. Ideally the blue line should tend towards 1
whereas the green line should tend towards zero. Again a modest
improvement is observed with data averaging. Fig. 1C shows a one-
dimensional beamformer image. Note that the image is constructed
using Eq. (12) where PON is calculated for the first 0.5 s of each trial
and POFF is calculated for the last 0.5 s of each trial. Since source 2 is
active during the final 0.5 s of each trial, the pseudo-T-stat at the
location of source 2 (y=0) is negative.

Fig. 3 shows results of the two source simulation with experimen-
tally recorded noise. A striking difference is observed in terms of the
effect of data averaging in the Gaussian noise case, and the
experimental noise case. Fig. 3A shows the power in the ON (blue)
and OFF (green) periods reconstructed at the true location of source 1.
Notice that with no averaging, the power leaking into source 1 is so
great that the power estimates in the ON and OFF periods cannot be
distinguished. As the level of averaging is increased, the beamformer



Fig. 2. Results of the two source simulations with Gaussian random noise. (A) beamformer reconstructed power in the ON (blue) and OFF (green) periods reconstructed at the
location of source 1. Results are plotted against Nave (B) timecourse correlation. The blue data points show the Pearson correlation coefficient between the beamformer timecourse
estimate made at the location of source 1, and the original simulated timecourse for source 1. The green data points show the Pearson correlation coefficient between the
beamformer timecourse estimate made at the location of source 1, and the original simulated timecourse for source 2. (C) Example 1-dimensional images, from a single iteration of
the simulation, showing the pseudo-T-statistic as a function of position, y. Source 1 is at y=1. Source 2 is at y=0. Note for A, B and C, the amplitudes of sources 1 and 2 were 5 nAm
and 10 nAm respectively.
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weights become more spatially specific and are better able to cancel
out interference. The timecourse correlation plots shown in Fig. 3B
support this argument. Using unaveraged data results in a timecourse
estimate with equivalent correlation to both source 1 and source 2. In
other words, both sources are indistinguishable. Conversely, with
averaged data the timecourse better estimates that of source 1 and
correlation with source 2 is low. Fig. 3C shows one-dimensional
images equivalent to those in Fig. 2C. Again the advantage of data
averaging becomes apparent. The pseudo-T-statistic is based onpower
difference between the ON and OFF periods, since using unaveraged
data the power estimates in these two temporal windows are
indistinguishable, no peak occurs in the pseudo-T-statistical image.

As stated above the scalar beamformer involves a search for the
optimum azimuthal angle, δ, in the tangential plane. Here, using
Gaussian noise, for all values of Nave, this angle search produced a
correct result (δ=25±1°). When using real brain noise, the higher
signal to noise afforded by data averaging yielded slightly better
estimation of δ for averaged (δ=25±5°) compared to unaveraged
(δ=29±6°) data. This effect was however not thought be a direct
cause of the differences between noise models.
The difference between the Gaussian and experimentally recorded
noise models can be understood if one considers the dominant noise
sources in both cases, and how the beamformer distributes spatial
degrees of freedom. In the case of experimentally recorded brain
noise, a large number of resting state neural generators will be active
leading to a large number of brain sources distributed widely across
the cortex. These sources create spatially correlated signals at the
channel level and must be rejected by the beamformer. Conversely,
Gaussian noise is uncorrelated across channels and does not emulate
brain sources. None of the resting state neural mechanisms, measured
in experimental data, will be time locked to the trial onset. Averaging
will therefore suppress such effects, and the beamformer must try to
reject interference from fewer sources in averaged compared to
unaveraged data. Previous work (Barnes and Hillebrand, 2003) has
shown that the beamformer optimally distributes spatial degrees of
freedom such that variations in weighting parameters are greatest
close to areas of maximal activation. In other words, the greatest
spatial resolution is available close to brain sources. Using averaged
data the beamformer can concentratemore spatial degrees of freedom
on the suppression of source 2 than it can in unaveraged experimental



Fig. 3. Results of the two source simulation with Q1=5 nAm, Q2=10 nAm, and experimentally measured noise. (A) beamformer reconstructed power in the ON (blue) and OFF
(green) periods reconstructed at the location of source 1. Results are plotted against Nave (B) timecourse correlation. The blue data points show the Pearson correlation coefficient
between the beamformer timecourse estimate made at the location of source 1, and the original simulated timecourse for source 1. The green data points show the Pearson
correlation coefficient between the beamformer timecourse estimate made at the location of source 1, and the original simulated timecourse for source 2. (C) Example 1-dimensional
images, from a single iteration of the simulation, showing the pseudo-T-statistic as a function of position, y. Source 1 is at y=1. Source 2 is at y=0.
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data. This redistribution of the degrees of freedom acts to increase the
spatial specificity of the weights, leading to a more accurate estimate
of source dynamics. In the Gaussian noise model, only two sources
were simulated. Both were active in averaged and unaveraged data so
we assume the degrees of freedom were distributed equally in both
cases.

Retinotopic mapping experiment

Insights from simulation were employed in an experiment
designed to investigate spatial specificity of MEG and the beamformer
formulation. To do this, thewell known retinotopic organisation of the
visual cortex was exploited. As an object moves in the visual field,
cortical cells at different locations in the visual cortex are activated
sequentially, giving the impression of a moving electrical source. The
dynamic nature of such a source makes source localisation challeng-
ing. In addition the extraction of a timecourse estimate from a single
retinotopic location is difficult because signals generated from
neighbouring retinotopic sources act as interference. This experiment
is therefore similar to our two source simulation in which multiple
cortical locations are sequentially activated and the challenge is to
reject interference from sources other than that at the location of
interest. Four healthy subjects took part in the study, which was
approved by the University of Nottingham Medical School ethics
committee.

Experimental method

The visual stimulus (implemented in PsychoPy (Peirce, 2007)
www.psychopy.org) comprised a 45° wedge, rotating smoothly
around the visual field. The wedge contained a black and white radial
checkerboard pattern alternating at a frequency of 10 Hz and
extending by a total of 6° from central fixation. (Each element of
the checkerboard subtended an azimuthal angle of 15° and extended
2° radially from fixation.) This wedge was presented on a medium
grey background. A single trial comprised one full rotation (25 s)
followed by 5 s rest and in total 30 trials were presented. MEG data
were again recorded using a 275 channel CTF MEG system in third

http://www.psychopy.org
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order gradiometer configuration at a sampling rate of 600 Hz. As
previously the location of the subject's head was measured by
energising and localising 3 fiducial coils inside the scanner. Coil
locations were then digitised along with the subject's head shape
(Polhemus isotrack) and this was fitted to the head surface extracted
from 7 T anatomical MR images (parameters as above) in order to gain
the locations of the MEG sensors with respect to the brain anatomy.

The 10 Hz flashing checkerboard was expected to drive a 20 Hz
phase-locked response in the visual cortex. All MEG data were
therefore bandpass frequency filtered between 18 Hz and 22 Hz. They
were then processed using beamformer techniques applied using
Matlab.

To spatially localise retinotopic locations, Ŧ-statistical images were
created by comparison of 18–22 Hz power in active and control time
windows. The duration of these time windows was optimised to
ensure that enough data was included to obtain a reasonable
covariance estimate (see Appendix II). This resulted in a covariance
duration Tcov=5 s for both the active and control windows. The active
time window was allowed to shift in time, and 25 separate pseudo-T-
statistical images were constructed using 25 temporally shifted
overlapping active windows. These windows were centred at 1 s
intervals between 0 and 24 s. For active windows close to the
beginning or end of stimulation, the window was allowed to wrap to
obtain the required 5s of data. So for example, if a window was
centred at t=1 s, data in the range 23.5 s≤ t≤25 s and data in the
range 0 s≤ t≤3.5 would be concatenated. For all 25 pseudo-T-
statistical images the control time windowwas taken as the 5 s of rest
at the end of each trial, and thus did not overlap with any portion of
the active window. In the first case, covariance estimates for the active
and control time windows were constructed based on data that was
averaged across trials. In the second case, data were left unaveraged
and active and control data segments concatenated prior to
covariance calculation. In the case of averaged data, resulting
covariance matrices were regularised according to the strategy
outlined in Eq. (11). The parameter sCm was taken as the minimum
singular value of the covariance matrix derived from averaged data in
the active and control window. The parameter sunav was defined as
the minimum singular value of a covariance matrix constructed from
the unaveraged, frequency filtered dataset (i.e. using all 30 s of all 30
trials).

Timecourse estimates were made for 5 locations of interest in the
visual cortex derived from 5 of the pseudo-T-statistical images
described above. These images showed activation in 5 s windows
centred at t=2.5 s, 7.5 s, 12.5 s, 17.5 s, and 22.5 s. In all cases two
timecourse estimates were made using averaged and unaveraged
data. For both, a sliding covariance window technique, similar to that
described by Dalal et al. (2008) was employed. The aim of the sliding
window technique was to optimise the spatial specificity of the
beamformer weights calculation. The covariance window duration,
Tcov, was set to its minimumpossible value of 5 s. A total of 25 separate
covariance windows were used, windows being centred at 1 s
intervals between 0.5 s and 24.5 s. The timecourse estimate for the
central second within each window was constructed as per Eq. (1).

• For example: the timecourse estimate for the period (5 s≤ tb6 s)
was given by the equation Q̂θ (5 s≤ tb6 s)=W(3 s≤ tb8 s)θT m
(5 s≤ tb6 s), where the weights vector W(3 s≤ tb8 s)θ represents
the beamformer weights at location and orientation θ constructed
using an average covariance matrix derived from matrices
constructed using data in the 3 s≤ tb8 s window, and data in the
control window.

Basing covariance windows on reduced time windows helps to
sensitise the weights and ‘focus’ the degrees of freedom on sources
active only during this limited period, and not the full 30 s trial length.
Reducing Tcov further would, in principle further improve spatial
specificity. However, as shown in Appendix II this may reduce
accuracy. Following computation, all covariance matrices were
regularised according to Eq. (11). Final timecourse estimates were
Hilbert transformed, and the absolute value of the analytic signal
computed in order to yield the envelope of oscillatory activity in the
18–22 Hz frequency band.

In order to assess the robustness of temporal effects across the
group, timecourses from peak locations in individual subject
functional images were derived from beamformer weights con-
structed using averaged and unaveraged data. These timecourses
were median filtered (filter width 0.33 s), averaged across subjects
and plotted with error bars showing standard deviation across
subjects. Structural images were spatially transformed to a template
brain using FLIRT in FSL (http://www.fmrib.ox.ac.uk/fsl/flirt/index.
html). This transform was applied to all functional images and the
mean location of the peaks in pseudo-T-statistical images across the
group was derived and marked on the template. It is well known that
large inter-individual differences are observed in retinotopic maps
and averaging maps across subjects may be misleading. These peak
locations therefore only show a crude estimate of approximate brain
locations from which timecourses are derived.

In order to quantify the improvement in spatial specificity afforded
by data averaging, a simple model of the expected sequential
activation of the 5 retinotopic locations was constructed. The model
comprised 5 timecourses, and in all cases activation wasmodelled as a
6.5 s long positive going lobe of a sinusoidal function with a period of
13 s. This function was centred on t=2.5 s, 7.5 s, 12.5 s, 17.5 s, and
22.5 s resulting in 5 timecourses with sequential modulation. A
Pearson correlation coefficient between the experimental time-
courses (from individual subjects) and a model was computed,
along with standard error across subjects.

Results

Fig. 4 shows the results of the retinotopic mapping experiment for
a single representative subject. The left hand column shows pseudo-T-
statistical beamformer images depicting the retinotopic location of
the source. The images shown were based on covariance estimated
using averaged data and active windows were centred on 2.5 s, 7.5 s,
12.5 s, 17.5 s, and 22.5 s. The location of the stimulus in the visual field
at these times is shown inset. The source location behaves as
expected: it switches hemisphere as the stimulus moves from left to
right in the visual field. It also moves below the calcarine fissure when
the stimulus is in the upper half of the visual field, and above the
calcarine fissure when the stimulus is in the lower visual field. This is
consistent with the known organisation of the visual cortex and has
previously been shown using fMRI. Interestingly, the peaks in pseudo-
T-statistical images did not change by more than twice the voxel
dimension when covariance was constructed using unaveraged data,
indicating that averaging has little effect on localisation.

The centre and right hand columns of Fig. 4 show the time
evolution of the envelope of 18–22 Hz power. These temporal
estimates were reconstructed for locations at the peaks in the
functional images. Timecourses in the centre column are recon-
structed from beamformer weights based on averaged data. These
show clearly the sequential activation of the different retinotopic
locations within the cortex. The timecourse from each separate
location shows an increase and decrease in oscillatory activity, which
occurs as the moving retinotopic source passes that particular
location.

It should be pointed out that the temporal scale of the rise and fall
of activity in these timecourse estimates is not reflective of the
temporal resolution of MEG, but rather the spatial resolution of MEG.
As the retinotopic source approaches the location of interest, some
power will begin to leak into the source estimate. The temporal scale
of the increase in power is therefore dependent on the spatial scale of
the power leakage, hence the spatial specificity of theweights, and not

http://www.fmrib.ox.ac.uk/fsl/flirt/index.html
http://www.fmrib.ox.ac.uk/fsl/flirt/index.html


Fig. 4. Results of the retinotopic mapping experiment taken from a single subject and derived using averaged data. The left hand column shows pseudo-T-statistical images (derived from averaged data) depicting the retinotopic location of the
source. Covariance windows were centred on 2.5 s, 7.5 s, 12.5 s, 17.5 s, and 22.5 s. The location of the stimulus in the visual field at these times is shown inset. The centre and right hand columns show the timecourse estimates of the envelope
of 18–22 Hz power. These estimates were taken from peak locations in the images. Timecourses in the centre column are reconstructed using beamformer weights based on averaged data. Timecourses in the right hand column are
reconstructed using beamformer weights based on unaveraged data.
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Fig. 5. Results averaged across subjects. The left hand column shows averaged locations for each stimulus location. The centre and right hand columns show timecourse estimates reconstructed using beamformer weights based on averaged
and unaveraged data respectively. These timecourses are averaged across subjects and error bars show standard deviation.
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the temporal resolution of MEG. Timecourses shown in the right hand
column of Fig. 4 are reconstructed using unaveraged data and do not
show the same temporal signature as those reconstructed using
weights based on averaged data. They appear to be dominated by
power changes at the beginning and the end of the stimulation period.
Interestingly, the location of the wedge at the beginning and the end
of the stimulation period is known to evoke activity in the upper,
shallower regions of the visual cortex (i.e. those regions above the
calcarine fissure). The implication is that the beamformer weights,
computed using unaveraged data, lack the spatial specificity required
to cancel out signals from these shallow sources which will have
larger SNR simply due to geometry. Without averaging the beamfor-
mer cannot therefore accurately reconstruct the temporal signature of
these deeper sources.

Fig. 5 shows the results of the retinotopic mapping experiment,
averaged across subjects. Both the spatial and temporal results agree
with the single subject result, showing the robustness of the effects
that are described. The spatial maps demonstrated the retinotopic
organisation of the visual cortex in all subjects. Further, the sequential
activation of 5 locations of interest could be observed when
timecourse estimates were constructed using weights based on
averaged data. This sequential signature was lost when weights
were constructed using unaveraged data. This is confirmed in Fig. 6
which shows the Pearson correlation between the experimentally
derived timecourses and the sequential activation model for all 5
retinotopic locations. As shown, better correlation was observed for
beamformer projected averaged data compared to beamformer
projected unaveraged data at four out of the 5 retinotopic locations.
The difference in correlation coefficients between averaged and
unaveraged data for the 5 retinotopic locations were −3(±13)%, 8
(±22)%, 28(±15)%, 20(±18)%, and 28(±18)%.

Discussion

The initial aim of this study was to address the question: does data
averaging improve the spatial specificity of MEG beamformer
imaging. Averaging MEG data across trials obviously improves the
signal to noise ratio of the measured effects, thus improving the
accuracy of covariance estimates used. However, averaging also
reduces the total amount of data (information) that is available to
construct the covariance estimate which has been shown to degrade
accuracy (Brookes et al., 2008). Furthermore the reduction in white
noise that is afforded by data averaging can cause data covariance
Fig. 6. Pearson correlation between the data derived timecourses and the sequential
activation model.
matrices to become ill-conditioned such that the inverse covariance
matrix is inaccurate. The problems brought about by data averaging
have led previously described methodologies to rely on unaveraged
broadband weights (Robinson, 2004; Cheyne et al., 2006).

Our analytical and single source simulation results have shown
that, within the limitations of a single source and uncorrelated
Gaussian sensor noise model, averaging data has little effect on the
final accuracy of beamformer estimates. We showed that, overall, the
accuracy of the covariance matrix was improved by data averaging.
However, without regularisation, the loss of rank due to averaging
caused the inverse covariance matrix to become inaccurate, and
therefore beamformer source estimates were distorted severely. To
correct for this, a matrix regularisation strategy was introduced.
Following regularisation, the noise that was eliminated by averaging
was effectively added by regularisation, and therefore there was little
or no advantage to averaging across trials. These single source
simulation results were echoed by a two source simulation that also
employed sensor level Gaussian random noise.

A marked difference was found when experimentally measured
broadband ‘brain noise’ was employed. In the Gaussian noise model,
the dominant source of noise is obviously uncorrelated across MEG
sensors. However, it is well known that in real MEG experiments,
evoked stimulus-induced signals are supplemented by interference
from both external devices and sources of no interest in the brain. This
correlated interference from other sources must be eliminated by the
beamformer if a source of interest is to be reconstructed accurately.
Averaging across trials acts to reduce (or eliminate) sources of
interference that are not phase-locked to stimulus onset. This gives
the beamformer the opportunity to ‘focus’ its power on the remaining
phase-locked interference, which is then eliminated more effectively.
Our two source simulation with experimental brain noise showed
that, using beamformer weights based on unaveraged data, the two
sources could not be separated. However, they were separated using
beamformer weights based on averaged data. This result was echoed
in a retinotopic mappingMEG experiment.We tracked the retinotopic
movement of a moving electrical source. Further, we showed that,
using beamformer weights based on averaged data, independent
timecourse estimates could be extracted from locations in the visual
cortex in close proximity. These timecourses showed the sequential
activation of neighbouring regions in the visual cortex and this
sequential signature was not observed when the beamformer weights
were computed using unaveraged data.

The ultimate limit to the spatial specificity of MEG is characterised
by the ability to extract two independent temporal signals from two
cortical locations with a small separation. Using a beamformer
technique this is characterised by the spatial specificity of the weights
and it is surprising that marked changes in spatial specificity can be
observed by making small changes to data covariance estimation. We
have shown that spatial specificity is improved by using data
averaging to reduce the total number of sources that are to be
suppressed by the beamformer. Other ways of changing spatial
specificity include reducing the duration of the covariance window,
and reducing bandwidth (Dalal et al., 2008). Reducing the duration
allows the beamformer to focus on sources active during a limited
time window. Frequency filtering to reduce bandwidth allows
focusing only on sources within a given frequency band. Many
previous studies have used frequency filtered, temporally windowed
data to obtain functional images, and then broadband data from the
whole experiment to compute a timecourse. Whilst this is not
incorrect, it should be pointed out that the weights used for
computation of the statistical image and timecourse will have very
different spatial specificities. In general, small time frequency
windows will allow more focused weights; however, previous work
(Brookes et al., 2008) has shown that the accuracy of covariance
estimates is degraded if windows are made too small. A trade off is
therefore introduced and judicious selection of a strategy to compute
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data covariance is imperative if the effectiveness of the beamformer
estimate is to be optimal. In Appendix II of this paper, a very simple
strategy is outlined to achieve accurate beamformer estimates, and
still ensure enough information for covariance construction.

Here, averaging MEG data across trials has been shown to improve
spatial specificity. There are however limitations to this approachwhich
maymean that it is not always desirable to average. Gaining an accurate
source estimate using averaged data is dependent on regularisation.
Here we present an approach based on equalising the range of singular
values across the two datasets. This strategy adds noise, however
averaging and regularising in this way can be thought of as removing
correlated interference, and adding uncorrelated Gaussian noise. The
latter does not require cancellation by the beamformer. Unfortunately,
as the spatial specificity of the estimate improves, the beamformer
becomes less robust to inaccurate forward solutions. This means that
non-dipolar sources (for example an extended source) may be
suppressed if data is averaged prior to covariance computation. It is
also conceivable that eliminating the non-phase-locked components of
somesourcesmay lead to two spatially separate sources becomingmore
temporally correlated. This would also lead to suppression of these
sources by the beamformer (Sekihara et al., 2002a), and another
approachmust be employed for accurate localisation. It is certain that in
some cases it is not desirable to average data prior to beamformer
application andwe do not recommend that this approach be adopted as
a standard. However, in cases where sources are expected in close
proximity, and high spatial resolution is required, we can recommend
the use of the averaging approach.

Our retinotopic mapping paradigm elicits a phase-locked driven
response in the visual cortex. This driven response is narrow-band
and relatively long (5 s) time windows were employed to derive
pseudo-T-statistical images. This paradigm was effectively used to
demonstrate the improvement in spatial specificity afforded by data
averaging. However, the response localised here is not necessarily
representative of themore common broadband brief transient evoked
responses often studied in MEG. For this reason further investigation
is required to realise the benefits of averaging transient broadband
evoked responses for beamformer localisation. The retinotopic
mapping paradigm does however represent an ideal way to test the
spatial specificity of weighting parameters. This is because sources in
close proximity are sequentially active, and to obtain an accurate
temporal profile at any one retinotopic location, the source localisa-
tion methodology must reject signals from neighbouring sources.
Here we show that beamforming affords sufficient spatial specificity
to extract the correct temporal sequence of activity from neighbour-
ing retinotopic locations. In addition, this paradigm allows insights
into how beamformersmight be used to trackmoving dipolar sources.
We have shown that there is a limit to the temporal resolution of
beamformer source localisation. This is brought about due to the fact
that the covariance window duration, Tcov must bemade large enough
to ensure accurate power reconstruction. We outline a simple
technique to measure the limits of temporal resolution in Appendix
II. We suggest that this approach be used when measuring moving
sources, or when using a time frequency beamformer approach.
Finally, we suggest that this paradigm be used to test and compare
new source localisation techniques. The fact that MEG can achieve the
spatial resolution required to track our moving retinotopic source is
impressive. Future work should investigate the spatial specificity of
MEG using similar paradigms in somatosensory, motor and auditory
cortices. The latter is of particular relevance. The quiet environment of
the MEG scanner is ideal to investigate tonotopic mapping, something
that is difficult in fMRI due to acoustic noise.

Conclusion

This study has demonstrated that the spatial specificity of MEG
beamformer estimates of electrical activity are affected by the way in
which covariance estimates are calculated. Previous analytical and
simulated results have shown that beamformer estimates are affected
by narrowing the time frequency window in which covariance
estimates are made (Brookes et al., 2007; Dalal et al., 2008). Here
we build on this work by investigating the effect of data averaging
prior to covariance estimation. In appropriate circumstances, averag-
ing was shown to lead to a marked improvement in spatial specificity.
However the averaging process results in ill-conditioned covariance
matrices, thus necessitating an appropriate regularisation strategy.
Further, averaging may worsen the problems associated with
beamformers and correlated sources, and make beamformers less
robust to extended (non-dipolar) sources. We therefore do not
recommend averaging as a general rule. However, we have shown
that when spatially separate brain sources are active in close
proximity, averaging significantly improves the beamformers ability
to extract temporally independent signals from locations of interest. A
moving visual stimulus was used to elicit brain activation at different
retinotopic locations in the visual cortex (Engel et al., 1994). This gives
the impression of a moving dipolar source in the brain. We showed
that the moving source can be tracked in the cortex. Timecourse
estimates were extracted from neighbouring locations of interest in
the visual cortex. The sequential activation of separate retinotopic
locations was observed with averaging but not without averaging.
Finally, the retinotopic paradigm represents an ideal platform to test
the spatial specificity of MEG localisation strategies.We suggest future
comparisons of MEG localisation techniques could be made using this
approach.
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Appendix I—Regularisation

The reduction in randomnoise afforded by averaging can cause the
condition number of covariance matrices to increase. In some cases
covariance matrices can become ill-conditioned, or singular. It is
therefore desirable to regularise the covariance matrix prior to matrix
inversion. In this appendix we introduce a strategy for regularisation
that ensures a well conditioned matrix.

Fig. A1 shows schematically the spread of singular values for the
averaged and unaveraged case. Let Cm represent the covariancematrix
constructed from averaged data whilst C(unav) represents the
covariance matrix based on unaveraged data.

Further, we let the minimum singular value of Cm be represented
by s1 and the maximum singular value of Cm be represented by s2.
Similarly the minimum and maximum singular values of C(unav) are
denoted by s1

(u) and s2
(u) respectively. If we assume that the maximum

singular vector of both covariance matrices represents the same
phase-locked effect of interest, then s2 and s2

(u) will be equal. In the
infinite integration limit, the least significant singular value in both
the unaveraged (s1(u)) and averaged (s1) caseswould be representative
of the white noise level before and after data averaging respectively
and the twowould be related such that s1 = s uð Þ

1 =
ffiffiffiffiffiffiffiffiffi
Nave

p
. In the case of

a finite number of samples however, these least significant singular
values will drop below the white noise level. In the case of s1(u), this
effect will be slight since data are unaveraged and the number of
samples is large. This means that s1

(u) remains a useful estimate of
white noise level. However, in the case of s1, the number of samples
used is less and so the effect will worsen meaning that s1 significantly



Fig. A1. Schematic diagram showing the change in the range of singular values caused by data averaging prior to covariance matrix computation. Note that in both cases, the least
significant singular value will underestimate white noise level, however, this underestimation will be far more pronounced in the averaged case.
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underestimates white noise and s1bbs
uð Þ
1 =

ffiffiffiffiffiffiffiffiffi
Nave

p
. For extremely small

number of samples in the averaged data it is possible that s1→0.
The regularisation strategy that we describe involves making the

singular value range of regularised Cm equal to the singular value
range of C(unav). This strategy ensures that the final Cm is well
conditioned. Note that we will describe a general case which also
allows for regularisation of C(unav).

Let the regularised C(unav) be given by:

C unavð Þ
reg = C unavð Þ + μv2I ðA1Þ

The matrix condition number is defined as the maximum singular
value, divided by the minimum singular value and represents a
measure of the range of singular values. Using Eq. A1 and the above
notation, the condition number of the regularised matrix constructed
using unaveraged data is:

CNu
reg =

su2 + μv2

su1 + μv2
ðA2Þ

The regularised matrix constructed from averaged data is given by

Cmreg = Cm + rI ðA3Þ

and its condition number is given by

CNreg =
s2 + r
s1 + r

ðA4Þ

To match the range of singular values for the regularised Cmreg and
Creg(unav), we must derive a regularisation value r such that CNreg=
CNreg

u . Assuming that rbbs2 and that μν2bbs2u, which will be the case
for data with appropriately high SNR, then we can write that:

r =
s2
su2

su1 + μv2
� �

− s1 ðA5Þ

The regularised Cm is therefore given by:

Cmreg = Cm + μ + 1ð Þsu1 − s1
� �

I ðA6Þ

Finally, we can assume that s2≈s2
u. Furthermore, assuming that

there are a large number of samples in the unaveraged case we
assume that ν2≈ s1

u. The final expression for the regularised
covariance matrix then becomes:

Cmreg = Cm + μ + 1ð Þsu1 − s1
� �	 


I ðA7Þ

For all computations in this paper C(unav) is well conditioned and
s1
(u) is deemed to be a suitably accurate estimation of white noise. For
this reason the μ=0 and we use a simplified expression Cm(reg)=Cm+
(s1u−s1)I to derive the regularised covariance matrix from averaged
data. In a case in which s1

(u) is not an accurate estimation of white
noise, μ can be altered accordingly and the validity of this strategy
holds.

Appendix II—Covariance window optimisation

Our previous work (Brookes et al., 2008) has shown that the
accuracy of beamformer reconstruction is dependent on how much
data is used to construct the covariance estimate. Specifically, if the
covariance window duration Tcov, or the bandwidth BW are made too
small then the electrical power, reconstructed using the beamformer,
is underestimated. It is therefore of great importance to ensure
judicious selection of Tcov and BW. In the retinotopic mapping
experiment, BW was set to 10 Hz and the value of Tcov was optimised
to ensure accurate spatial and timecourse reconstruction. Below a
simple procedure for this optimisation is outlined.

• An initial guess of Tcov=5 swasmade. A single pseudo-T-statistical
imagewas then constructed contrasting power in active (0 sb tb5 s)
and control (25 sb tb30 s) windows. This image yielded a location of
interest in visual cortex.

• Tcov was varied between 0.32 s and 8 s in 25 steps. For each value of
Tcov the beamformer reconstructed power at the location of
interest, was estimated. Power in active (starting at t=0s) and
control (starting at t= 10 s) windows was estimated.

• Power inboth active and controlwindows, and the power difference
between active and control, were plotted as a function of Tcov.

The above procedurewas repeated using an activewindow starting
t=10s and a control window starting at t=0s. This second repetition
enabled Tcov optimisation at a different retinotopic location.

Fig. A2 shows the results of the Tcov optimisation procedure.
Results are averaged across the two retinotopic locations, and all
four subjects. A characteristic curve is produced, showing that for
small Tcov power is underestimated, and the power difference
between the active and control windows is indistinguishable. As
Tcov is increased, power estimates, and the power difference are
increased. These results are in agreement with previous analytical
and simulation studies and suggest that the covariance window
duration should not be made less than 5 s in order to ensure accurate
power reconstruction.
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